ORUNE Wind Srl

Parco Eolico ORUNE sito nei Comuni di Orune (NU)

Relazione Geologica

Maggio 2023

Regione autonoma della Sardegna Committente: ORUNE Wind Srl Titolo del Progetto: Parco Eolico ORUNE sito			ORUNE Win Via Sardegna 00187 Roma P.IVA/C.F. 15 sito nei Comu	Comune di Oruno d Srl a, 40 5802491009	e	
Docume	ento:		N° Documento	:		
	Relazione Geologica		Г	IT-VesOru-CLP-CIV-TR-18		
Frequenties Studio Tecnico di Geologia Applicata all'Ingegneria e all'Ambiente Centro Direzionale "Pittarello" Loc. Scala Sa Perda, 87 09028 Sestu (CA) T +39 070 734 6008 Mob +39 345 788 2814 e-mail: Info@gaiaconsulting.eu		ma Atzori				
Rev	Data Revisione	Descrizione	Redatto	Controllato	Approvato	
00	04.05.2023	Prima emissione	Cosima Atzori			

OPLINE Wind Srl	Cool Cosima Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Kev O	3 di 80

Sommario

1.	Premessa7
2.	Normativa di riferimento7
3.	Studio e indagini di riferimento7
4.	Inquadramento geografico generale8
5.	Caratteristiche di progetto dell'opera13
6.	Inquadramento geologico15
6.1.	Descrizione del contesto geologico dell'area vasta oggetto di intervento15
6.2.	Successione litostratigrafica dell'area di intervento16
6.2.	1. Unità Intrusive del Paleozoico16
6.2.	2. Depositi Quaternari dell'area continentale17
7.	Analisi delle condizioni geostrutturali generali20
7.1.	Campagna di raccolta dei dati geostrutturali su affioramento21
8.	Analisi qualitativa di stabilità dell'ammasso roccioso21
9.	Inquadramento geomorfologico23
9.1.	Lineamenti geomorfologici dell'area di studio23
9.2.	Definizione dell'area geomorfologicamente significativa25
10.	Inquadramento idrogeologico27
10.1	
10.2	29 Caratteristiche delle acque sotterranee
10.3	Analisi della vulnerabilità degli acquiferi
11.	Inquadramento climatico
11.1	. Precipitazioni
11.2	2. Temperature
11.3	37. Stima dell'evapotraspirazione
12.	Inquadramento pedologico40
13.	Uso del Suolo41
14.	Analisi dei vincoli gravanti sui terreni43
14.1	Piano Stralcio D'Assetto Idrogeologico della Sardegna43

	N° Doc.		Pagina
ORUNE Wind Srl Geol. Cosima Atzori	IT-VesOru-CLP-CIV-TR-18	Rev 0	4 di 80
			·
14.2. Art.30 Ter NTA PAL			
14.3. Inventario dei Fenomeni franosi			
14.4 Piano Stralcio delle Fasce Fluviali			48
14.5 Piano di Gestione del Rischio Alluvion	i (PGRΔ)		۲۵ ۵۷
15. Indagini geognostiche			
15.1. Generalità sul metodo sismico a rifraz	ione		51
15.1.1. Caratteristiche delle stese sismiche			
15.1.2. Caratteristiche della Strumentazione	e impiegata		
15.1.3 Elaborazione dei dati			53
15.1.4 Specifiche delle indagini svolte			54
15.1.5 Caratteristiche della strumentazione	e imniegata		54
15.1.6 Interpretazione dei segnali acquisiti			55
15.1.7 Categorie di sottosuolo - D.M. 19.01	2018 (NTC 2018)	••••••	
15.2 Risultati delle indagini del sito S/M O	1 – AG03	••••••	
		••••••	
15.2.1 Masw M1			56
15.2.2. Rifrazione S1			
15.3 Risultati delle indagini del sito S/M O	2 – AG06		5, 58
		••••••	
15 3 1 Masw M2			58
15.3.2 Rifrazione S2			50 59
15.4. Risultati delle indagini del sito S/M 0	3 – AG15		
15.4.1. Masw M3			60
15.4.2. Rifrazione S3			61
15.5. Risultati delle indagini del sito S/M 0	4 – AG10		
15.5.1. Masw M4			62
15.5.2. Rifrazione S4			63
15.6. Risultati delle indagini del sito S/M	5 – AG12		65
с : <u>-</u>			
15.6.1. Masw M5			65
15.6.2. Rifrazione S5			66
16. Modellazione geologica			69
16.1. Caratterizzazione geostrutturale degli	ammassi rocciosi		69
16.2. Viabilità di impianto e sottostazione			76
17. Modello geologico di sito			77
17.1. Modello Geologico 01 –			
AG01/AG02/AG03/AG04/AG/05AG06/AG/07	AG08/AG09/AG10/AG11/AG12/AG13/AG14		77
17.2. Modello Geologico 02 – AG15			78
-			
18. Conclusioni: criticità geologiche e sugg	erimenti operativi		80

OBLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
ONONE WIND SH		IT-VesOru-CLP-CIV-TR-18	Nev 0	5 di 80

Indice delle figure

Figura 1 Localizzazione del progetto	8
Figura 2 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Nord	10
Figura 3 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Sud	11
Figura 4 Inquadramento topografico su Carta IGM scala 1:25000	12
Figura 5 Paesaggio caratteristico dell'area di studio (pressi AG01)	13
Figura 6 Schema di fondazione	14
Figura 7 Schema strutturale della Sardegna	15
Figura 8 - Depositi colluviali (b2) – (pressi AG15)	18
Figura 9 Stralcio carta geologica (Fonte RAS)	19
Figura 10 Schema tettonico della Sardegna NE (da Oggiano et al., 2009)	20
Figura 11 Foglio 500 Nuoro profilo schematico dei rapporti stratigrafici)	21
Figura 12 Tipologie di scivolamento di blocchi rocciosi lungo piani di fratturazione	22
Figura 13 Fratturazione molto spinta su BLA2b – pressi AG03	22
Figura 14 Vista dell'altopiano a Nord dell'AG12	24
Figura 15 Vista verso Nord dall'AG15	24
Figura 16 Particolare della cataste di blocchi/tor verso Nord dall'AG09	25
Figura 17 Vista della vallecola del Canale Broccone a Nord-Est della AG02	25
Figura 18 Reticolo idrografico del Fiume Tirso (in blu il corso d'acqua principale, in verde i secondari, in	
rosso l'area di progetto).	27
Figura 19 Reticolo idrico superficiale (Fonte RAS)	28
Figura 20 Pozzi presenti nell'area di interesse (dall'Archivio Nazionalale delle Indagini del Sottosuolo)	29
Figura 21 - Monografie del pozzo censito nell Archivio Nazionale delle Indagini nel Sottosuolo	30
Figura 22 Schema esemplificativo, non in scala, dei processi di infiltrazione e deflusso sotterraneo	31
Figura 23 Carta delle Permeabilità dei Substrati e dei Suoli – area impianto (Fonte RAS)	33
Figura 24 Reticolo idrografico numerato secondo l'ordine di Stralher	34
Figura 25 Temperature mensili (in °C, nell'asse delle ordinate) registrate nella stazione di Nuoro negli anni	
dal 2018 al 2012, e presso la stazione di Orgosolo per il periodo 1995-2011.	37
Figura 26 Evapotraspirazione (espressa in mm) per la zona di Nuoro.	38
Figura 27 Ventosità media annuale relativa al periodo 1941-1950 e 1959-1961 stazione di Fonni	38
Figura 29 Diagramma ombrotermico (Walter e Lieth) per il settore di Nuoro	39
Figura 30 Climogramma relativo alla regione di Nuoro Errore. Il segnalibro non è defi	inito.
Figura 31 Carta dei Suoli (Fonte RAS)	41
Figura 32 Stralcio della Carta dell'Uso del Suolo della Sardegna (2008, Fonte RAS)	42
Figura 33 Inquadramento PAI Pericolosità da frana – zona Nord (Fonte RAS).	43
Figura 34 Inquadramento PAI Pericolosità da frana – zona Sud (Fonte RAS).	44
Figura 35 - Pericolosità da frana - Variante Generale del PAI (non ancora adottata)	45
Figura 36 Inquadramento PAI Pericolosità idraulica (Fonte RAS).	46
Figura 37 Reticolo idrografico numerato secondo l'ordine di Stralher	47
Figura 38 Archivio IFFI (Fonte ISPRA) in rosso l'area di intervento	48
Figura 39 Stralcio perimetrazione Piano Stralcio fasce Fluviali PSFF 2015	49
Figura 40 Stralcio perimetrazione PGRA 2021	50
Figura 41 Stendimento di sismica a rifrazione in onde P con 24 geofoni, interdistanza di 3,0 m, lunghezza	
complessiva 69,0	52

ORLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Nev 0	6 di 80

Figura 42 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M156
Figura 43 - Sezione sismica R1
Figura 44 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M258
Figura 45 Sezione sismica R259
Figura 46 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M360
Figura 47 Sezione sismica R361
Figura 48 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M463
Figura 49 Sezione sismica R464
Figura 50 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M565
Figura 51 Sezione sismica R4
Figura 52 Ubicazione della prospezione geofisica
Figura 53 - Resistenza a compressione monoassiale per diversi tipi di roccia70
Figura 54 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali
dell'ammasso70
Figura 55 Valori della costante mi per diversi tipi di roccia71
Figura 56 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia72
Figura 57 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies
di Orune74
Figura 58 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies
di Orune75

1. Premessa

Nell'ambito della redazione del Progetto Definitivo del Parco Eolico denominato "**ORUNE**" dislocato nel territorio comunale dei comuni di **Orune** - Provincia di Nuoro (NU), al fine di avere un quadro completo del contesto geologico e geotecnico è stata redatta la presente **Relazione Geologica**, la cui stesura ottempera quanto previsto dal D.M. del 17/01/2018 recante le nuove Norme Tecniche per le Costruzioni (di seguito NTC), con l'obiettivo di evidenziare, le caratteristiche geologico-morfologiche e il comportamento fisico-meccanico dei terreni interessati dalle opere in progetto attraverso:

- 1. Analisi dell'assetto geologico e geomorfologico e definizione del modello geologico di sito;
- 2. La caratterizzazione geotecnica preliminare del modello geologico di sito;
- 3. L'analisi dell'interazione opera-terreno nel volume significativo in funzione delle caratteristiche geotecniche dei terreni di imposta, in relazione alla generica tipologia di fondazioni previste e le potenziali interazioni con le dinamiche di circolazione sotterranea eventualmente esistenti.

2. Normativa di riferimento

La presente relazione è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- D.M LL.PP. 11.03.1988 "Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii attuali e delle scarpate, i criteri generali e le prescrizioni pe la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione in applicazione della Legge 02.02.1974 n°64.
- 2. Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni per l'applicazione del D.M. LL.PP.11.03.1988.
- 3. Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione Geotecnica Italiana.
- 4. D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (6.2.1 Caratterizzazione e modellazione geologica del sito, 6.4.2 Fondazioni superficiali)
- 5. Circ. Min. Infrastrutture e Trasporti 21.01.2019 n°7 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17.01.2018.
- 6. D.L. 3 aprile 2006, n. 152 e successive modificazioni "Norme in materia ambientale".
- 7. Norme di attuazione del PAI aggiornate al 2023 con la Deliberazione n. 15 del 22/11/2022 *"Aggiornamento e integrazione delle Norme di Attuazione del PAI/PGRA",* pubblicata sul BURAS n. 55 del 01/12/2022.

3. Studio e indagini di riferimento

Le informazioni topografiche e geologiche dell'area oggetto della presente relazione sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- 1. Carta Topografica I.G.M. scala in 1:25000
- 2. Carta Tecnica Regionale in scala 1:10000
- 3. Carta Geologica dell'Italia in scala 1:100000
- 4. Carta Geologica dell'Italia in scala 1:50.000 (CARG).
- 5. Cartografia Geologica di base della R.A.S. in scala 1:25.000
- 6. RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- 7. I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- 8. RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- 9. RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico

- 10. RAS Autorità di Bacino Piano di Tutela delle Acque
- 11. RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- 12. Foto aeree, Regione Sardegna

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna di indagini geognostiche eseguite rispettivamente in data 29 e 30 marzo 2023 nella zona di interesse.

4. Inquadramento geografico generale

Il paese di Orune dall'alto dei suoi 800 metri sul livello del mare raggiunti dal rione Cuccuru 'e Teti, appare come un balcone affacciato alla vallata del rio Isalle da dove si può intravedere un panorama che spazia dal Massiccio del Mont'Albo, al Mare della Baronia di Orosei, alla catena del Gennargentu nella Barbagia di Ollolai, fino ai Monti del Marghine. Inoltre dalla cima di Cucumache, 909 metri di altezza che etimologicamente significa punto di Guerra, per la sua vastità di vedute si può allargare la vista fino alle lontana Gallura, il Logudoro e alle più vicine regioni del Monte Acuto e del Goceano.

Nel suo vasto territorio (128 km quadrati, dei quali 64 di proprietà del comune e i restanti di proprietà di privati) vi sono splendidi boschi di quercia da sughero, leccio e roverella. Dal punto di vista altimetrico, il territorio comunale è compreso tra i 99 metri s.l.m. della valle di Isàlle e i 914 metri s.l.m. di Cùccuru 'e su piràstru.

L'area fu abitata già in epoca prenuragica e nuragica, per la presenza sul territorio di alcune domus de janas, tombe dei giganti, nuraghi e pozzi sacri, siti ricchi di numerosi reperti archeologici.

Figura 1 Localizzazione del progetto

In epoca medievale appartenne al Giudicato di Torres e fece parte della curatoria del Goceano e alla diocesi di Castro. Alla caduta del giudicato (1259) entrò a far parte del giudicato di Arborea sotto il quale dal 1339 fece parte della contea del Goceano, e all'estinzione del casato giudicale passò al Marchesato di Oristano. Alla definitiva sconfitta del marchesato (1478) tutta la contea del Goceano passò sotto il dominio aragonese, ove divenne un

OPLINE Wind Srl	Cool Cosimo Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Nev U	9 di 80

feudo regio. Fu riscattato agli ultimi feudatari nel 1839 con la soppressione del sistema feudale. Proprio per questo alcuni studiosi sostengono che Orune sia ultimo centro del Goceano. A vantaggio di questa ipotesi viene in aiuto la parlata orunese che è ha molte affinità con il sardo Logudorese parlato in quelle zone con le desinenze che finiscono in di, da, de.

L'inquadramento cartografico di riferimento è il seguente:

- 1. Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 -Fogli: **481 sez. II "Benetutti", 499 sez. I "Nuoro Ovest"**
- 2. Carta Tecnica Regionale scala 1:10 000 Fogli: **481160** "Sa Pedra 'e sa Rucche", **499040** "Cantoniera Lardine" e **481150** Janna Sas Ferulas.

Figura 2 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Nord

Figura 3 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Sud

Figura 4 Inquadramento topografico su Carta IGM scala 1:25000

OPLINE Wind Srl	Cool Cosimo Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Nev 0	13 di 80

Figura 5 Paesaggio caratteristico dell'area di studio (pressi AG01)

5. Caratteristiche di progetto dell'opera

Il progetto prevede la realizzazione di una centrale eolica con potenza complessiva di 90 MW, con installazione di n. 15 aerogeneratori V162 Vestas ad asse orizzontale montati su torri tubolari ad elementi in acciaio da 6,0 MW ciascuno, comprensiva di tutte le opere connesse, per la realizzazione, il funzionamento e la manutenzione di predetto impianto.

Per quanto riguarda l'opera di connessione, il parco sarà allacciato tramite un cavidotto interrato AT da 150 kV, della lunghezza di circa 13 km che, partendo dalla sottostazione di trasformazione 30/150 kV interna al parco eolico e arrivo fino ad una stazione di smistamento a 150 kV posta nella Zona Industriale "Prato Sardo" del Comune di Nuoro la quale sarà connessa mediante cavidotto interrato AT alla futura SE TERNA di smistamento 150 kV, che rappresenta il punto di connessione dell'impianto alla RTN.

Le caratteristiche tecniche degli aero-generatori e del parco sono le seguenti:

- generatori asincroni trifase con potenza nominale pari a 6,0 MW, tensione 3 X 0.96 Kv, freq. 50 Hz
- rotori a tre pale con diametro pari a 162 m;
- torri in acciaio a sviluppo tronco conico di altezza pari a 125 m;
- cabine elettriche secondarie di trasformazione inserite in ogni aerogeneratore;
- rete elettrica interrata MT a 30 KV dai singoli aerogeneratori alla sottostazione di trasformazione MT/AT;
- sottostazione di trasformazione MT/AT (Media Tensione 30 kV Alta Tensione 150 kV), comprendente sezionamento, ricezione e smistamento;
- rete telematica interrata per il monitoraggio e controllo dell'impianto;

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	14 di 80

• connessione alla Rete di Trasmissione Nazionale (RTN) in alta tensione 150 KV.

Le fondazioni delle torri saranno costituite da piastre in cemento armato atte a ripartire sia le azioni statiche dovute al peso proprio dell'apparato eolico che le azioni dinamiche dovute al vento trasmesse alla base delle torri dagli "apparati eolici". Da un predimensionamento di massima risulta che per terreni sufficientemente portanti ($\sigma > 1$ N/mm^2), dovranno realizzarsi fondazioni a platea di forma circolare aventi un raggio di 12,50 m e un'altezza complessiva di 3,50 m (vedasi elaborati di progetto).

Figura 6 Schema di fondazione

In caso di terreni dalle caratteristiche meccaniche scarse, si realizzeranno delle platee su pali di grande diametro (cm 100) disposti su tutta l'area di base atti a garantire adeguata stabilità al sistema fondazione-terreno.

Le fondazioni saranno interrate e ricoperte da uno strato di terreno dello spessore di circa m 1.

L'utilizzo di una tipologia o di un'altra scaturirà dalle indagini geotecniche derivanti dai sondaggi previsti in fase esecutiva in corrispondenza di ogni aerogeneratore.

Lo scavo ha un diametro di ca m 28 alla base e ca m 31 alla sommità, prevedendo pertanto un volume di scavo per ogni plinto pari mediamente a circa 2.400 m³, dei quali ca. 1.600 m³ verranno depositati vicino allo scavo e riutilizzato per il re-interro.

6. Inquadramento geologico

L'obiettivo dell'analisi dell'assetto geologico è quella di caratterizzare geologicamente e geotecnicamente l'area ove verrà installato il parco eolico e quella geomorfologicamente significativa, con particolare riferimento alle condizioni del substrato roccioso di fondazione, agli scavi ed ai riporti necessari per la realizzazione del sistema di fondazione e delle sue potenziali interazioni con le condizioni al contorno (dinamica geomorfologica, circolazione idrica superficiale e sotterranea, rapporti fra le componenti litologiche interessate) attraverso:

- 1. Definizione dell'assetto geologico-strutturale e idrogeologico di area vasta e dell'area geomorfologicamente significativa;
- 2. Definizione dell'assetto stratigrafico dell'area di sedime delle opere;
- 3. Definizione del modello geologico di sito.

6.1. Descrizione del contesto geologico dell'area vasta oggetto di intervento

A partire dal Paleozoico si sono susseguiti una serie di eventi geologici sviluppatisi nell'arco di circa mezzo miliardo di anni, che hanno reso la Sardegna una delle regioni geografiche più antiche del Mediterraneo centrale e, morfologicamente e cronologicamente eterogenea.

L'isola riflette pertanto una storia geologica molto articolata, che testimonia, in maniera più o meno completa, alcuni dei grandi eventi geodinamici degli ultimi 400 milioni di anni.

L'orogenesi Caledoniana, la più antica, le cui tracce si rinvengono principalmente nel nord della Gran Bretagna e nella Scandinavia occidentale, fu causata dalla progressiva chiusura dell'oceano Giapeto, a seguito della collisione dei continenti Laurentia, Baltica e Avalonia, dando così origine al super continente Laurussia.

La successiva fase dell'orogenesi Ercinica (o Varisica) ha avuto corso a partire dal Carbonifero, circa 350 Ma fa e si è protratta fino al Permiano determinando un'estesa catena montuosa ubicata tra il Nord America e l'Europa.

Quest'orogenesi ha prodotto in Sardegna tre zone metamorfiche principali. Procedendo dal nucleo orogenetico verso l'avanfossa si trovano le zone dette: Assiale (Sardegna NE) – a Falde interne (Sardegna centrale) - a Falde esterne (Sardegna SW).

Successivamente, tra il Carbonifero Sup. e il Permiano Inf., il basamento paleozoico è soggetto magmatismo, intrusioni di differente composizione, che danno luogo a un batolite granitico composito, la cui ossatura fondamentale affiora in continuità nella Sardegna Settentrionale e nella Corsica Occidentale.

Nel resto dell'Isola affiorano plutoni isolati, anch'essi compositi, di minori dimensioni, quali quelli dell'Iglesiente e del Sarrabus.

L'area di studio ricade nella zona a Falde Interne del basamento varisico Sardo; principalmente è costituita da prodotti di magmatismo intrusivo quali granodioriti monzogranitiche, biotitiche, a grana medio-grossa, inequigranulari per Kfs biancastri di taglia 8-10 cm con tessitura orientata per flusso magmatico; in particolare le litologie interessate in maniera diretta dalle fondazione degli aerogeneratori appartengono all'Unità intrusiva del Monte San Basilio (BLA) e all'Unità intrusiva di Benetutti (BTU).

La zona circostante l'area di studio vede, tra le litologie appartenenti al Paleozoico, unità tettoniche appartenenti al complesso metamorfico-sedimentario ercinico oltre che al complesso intrusivo post-ercinico.

Sia il Complesso metamorfico che quello intrusivo risultano diffusamente attraversati dal sistema filoniano tardoercinico a chimismo sia acido che basico, la cui messa in posto è ascrivibile alle fasi distensive postorogenetiche: essi delineano le quote in rilievo dell'area e le principali morfo-strutture del paesaggio in ragione della loro bassa suscettibilità all'erosione.

Le metamorfiti si manifestano intensamente strutturate, sia per via del loro carattere originariamente sedimentario, sia per le azioni di metamorfismo che hanno incrementato la fissilità, sia ancora per l'elevato grado di tettonizzazione.

Lungo le aste tributarie di primo e secondo ordine sono riconoscibili depositi torrentizi, ove presenti, di modesto spessore, costituiti da ciottoli per lo più spigolosi poco arrotondati, in matrice arenaceo -limosa spesso cementata. La successione stratigrafica delle formazioni che interessano l'area (dal Paleozoico al Quaternario) è stata oggetto i numerosi studi specialistici, a cui si fa esplicito riferimento anche nelle Note Illustrative alla carta Geologica d'Italia alla scala 1:100.000, foglio 194 "Ozieri" e nelle Note Illustrative del Foglio 500 in scala 1:50000 di Nuoro Est utilizzate come base di conoscenze per la stesura della presente relazione.

6.2. Successione litostratigrafica dell'area di intervento

Nell'area vasta affiorano le seguenti litologie, di seguito riportate con la nomenclatura adottata dalla RAS nella stesura della cartografia geologica in scala 1:25000:

Unità intrusive del Paleozoico

BTUb - Facies Orune (UNITÀ INTRUSIVA DI BENETUTTI). CARBONIFERO SUP. – PERMIANO
BLA2b - Facies Riu sa Mela (Ponte S'archimissa) (Subunità intrusiva di Punta Biriai - UNITÀ INTRUSIVA DI MONTE SAN BASILIO). CARBONIFERO SUP. – PERMIANO

Corteo Filoniano

fb - Filoni basaltici a serialità transizionale, di composizione basaltica olivinica e trachibasaltica, a struttura porfirica per fenocristalli di Pl, Ol, Cpx, tessitura intersertale-ofitica. CARBONIFERO SUP. - PERMIANO
ap - Filoni e ammassi aplitici. CARBONIFERO SUP. - PERMIANO
mg - Filoni e ammassi di micrograniti. CARBONIFERO SUP. - PERMIANO

Depositi Quaternari dell'area continentale

b2 Coltri eluvio-colluviali. OLOCENE

6.2.1. Unità Intrusive del Paleozoico

Unità intrusiva di Benetutti (BTU)

Occupa un areale di circa 400kmq tra Benetutti, Orune, Buddusò e Pattada. È quasi sempre caratterizzata in prevalenza da granodioriti monzogranitiche spesso fortemente eterogranulari.

Granodioriti monzogranitiche inequigranulari. Facies di Orùne (BTUb)

E' costituita da granodioriti monzogranitiche, localmente tonalitiche, biotitiche, grigie, a grana da media a grossa, fortemente inequigranulari per megacristalli di K-feldspato euedrale biancastro di taglia fino a 10cm, con inclusioni pecilitiche di biotite. La tessitura è orientata per flusso magmatico. La giacitura dei piani di flusso magmatico ha direzione media N120-140 mentre l'immersione ha una discreta variabilità. Dal punto di vista composizionale si

Pagina

17 di 80

tratta di rocce metalluminose. Sono talvolta evidenti "effetti parete fredda" al contatto con il basamento metamorfico (filladi di Lula): la giacitura dei piani di fluidità magmatica si adatta, sebbene localmente, alla forma del "contenitore". Sono altrettanto evidenti i rapporti con i graniti peralluminosi, che intrudono le granodiorito delle facies Orùne generando una struttura complessa e articolata, associata a diffusi fenomeni di ibridazione e assimilazione. Carbonifero-Permiano.

Unità intrusiva di San Basilio

L'unità intrusiva di San Basilio occupa, nella Sardegna centrale-orientale, una superficie molto estesa di quasi 250kmq. In tutto il suo areale di affioramento l'unità si caratterizza per la costante presenza di cordierite, spesso sostituita da pinite pseudomorfa, cui si associano andalusite, sillimanite fibrolitica e muscovite, presenti in proporzioni cariabili ma sempre significative. Si tratta di rocce peralluminose.

Leucomonzograniti porfirici a cordierite. Facies Ponte S'Archimissa o Riu Sa Mela (BLA2b)

E' costituita da monzograniti talora leucocrati, a cordierite, biotite, muscovite e rara andalusite, bianco-giallastri, a grana fine, equigranulari a tendenza porfirica per K-feldspato euedrale biancastro di taglia centimetrica e quarzo globulare. Gli inclusi microgranulari scuri sono piuttosto rari. Localmente si osservano anche litotipi più francamente granodioritici, marcati dall'aumento della percentuale di biotite e da una maggiore frequenza degli enclaves scuri.

In queste rocce risulta ben espressa alla scala mesoscopica una tessitura orientata per flusso magmatico, marcata dall'isorientazione del K-feldspato e degli inclusi femici; sono frequenti anche vistose anisotropie e mineralogiche, generate da intensi fenomeni di turbolenza in fase magmatica.

Questa facies costituisce in genere corpi allungati e disposti secondo l'andamento delle fluidità, talora posti direttamente al contatto con la granodiorite BTU, quasi a costituire facies di bordo tendenzialmente leucocrate, talora in apofisi iniettate entro la stessa granodiorite BTU.

Carbonifero superiore-Permiano

Corteo Filoniano

fb - Filoni basaltici a serialità transizionale, di composizione basaltica olivinica e trachibasaltica, a struttura porfirica per fenocristalli di PI, OI, Cpx, tessitura intersertale-ofitica. CARBONIFERO SUP. – PERMIANO

Filoni e ammassi aplitici. (ap)

Filoni e ammassi di micrograniti. (mg)

Sono costituiti da micrograniti biotitici, da grigio -biancastri a giallastri se alterati, a grana da fine a microgranulare, con tessitura da isotropa a porfirica per K-feldspato biancastro euedrale subcentimetrico e quarzo globulare, con rare biotite e muscovite, immersi in una massa di fondo granofirica. Solo localmente, in corrispondenza di salbande, la struttura è orientata. Sono rocce più tenaci e compatte rispetto alle rocce incassanti e costituiscono creste generalmente in forte rilievo. Hanno giacitura nettamente discordante con le rocce incassanti in quanto subverticali con direzione prevalente E-W e NNE-SSW.

6.2.2. Depositi Quaternari dell'area continentale

I depositi quaternari cartografati nell'area di studio sono generalmente poco rilevanti; sono rappresentati principalmente da depositi di versante, coltri eluvio-colluviali e depositi alluvionali.

OBLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	18 di 80

Figura 8 - Depositi colluviali (b2) – (pressi AG15)

(b2) Coltri eluvio-colluviali

Si tratta di terreni clastici eluviali e colluviali, costituiti essenzialmente da sedimenti spesso monogenici, fini (sabbie e silt), incoerenti, talora grossolani, con lenti di ghiaie angolose, più o meno pedogenizzati ed arricchiti della frazione organica. L'attribuzione all'Olocene di questi depositi è dovuta all'eleveta distribuzione della frazione organica ed alla diretta correlazione con la situazione morfologica del versante attuale. Questa suggerisce che si tratta di sedimenti derivati dall'erosione del suolo durante l'Olocene, mescolati a sedimenti mescolate a sedimenti derivate dalla degradazione meccanica del substrato. Lo spessore massimo raggiunge i 5m al centro delle vallecole dell'altopiano.

Olocene

Figura 9 Stralcio carta geologica (Fonte RAS)

\$472500

7. Analisi delle condizioni geostrutturali generali

Il basamento granitoide dell'area vasta presenta una strutturazione primaria molto marcata nelle facies granodioritiche e monzogranitiche, che diventa sempre meno riconoscibile nei termini leucogranitici; tale strutturazione è inoltre meglio identificabile nei termini eterogranulari rispetto a quelli equigranulari.

Le anisotropie indotte da magmatic flow, particolarmente evidenti nelle facies granodioritiche e monzogranitiche metalluminose, sono disposte secondo un trend molto articolato, con direzioni strutturali prevalenti comprese fra N120 e N150 che immergono con alte inclinazioni (40°-70°) verso ENE e solo raramente verso WSW.

Questo trend è sostanzialmente quello del segmento sardo di catena varisica; cio fa supporre che le discontinuità tettoniche realizzatesi durante la fase collisionale abbiano rigiocato anche durante la fase esumativa della catena, in concomitanza con la messa in posto del Batolite. L'andamento descritto è molto evidente nelle unità granodioritiche NUO, ORG e BTU. L'andamento cartografico della fluidità magmatica nell'unità peralluminosa BLA è nettamente diverso, con i piani di flusso diretti circa N60, subverticali, subparalleli ai contatti tra questa unità e il complesso granodioritico metalluminoso incassante. (da note illustrative Foglio Carg Nuoro Est).

Figura 10 Schema tettonico della Sardegna NE (da Oggiano et al., 2009)

Il settore nord orientale della Sardegna, dalla Gallura alle Baronie, è caratterizzato da due sistemi principali di faglie trascorrenti di importanza regionale, avolte estesi per più di 70 km, ai quali si assocciano strutture transspressive e/o bacini di pull-apart (Bacino di Chilivani-Berchidda, Ottana, Benetutti)

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		21 di 80

Il primo sistema di faglie è orientato NE-SW con rigetti sinistri mentre l'altro è orientato circa E-W con rigetti drestri. Il sistema più sviluppato è quello orientato circa NE-SW (Faglie di Nuoro, di Tavolara, di Olbia e della Gallura) che interessa tuttoa la Sardegna nord-orientale e si estende più a nord anche nel basamento varisico della Corsica, fino al margine collisionale alpino della Corsica nord-orientale.

Figura 11 Foglio 500 Nuoro profilo schematico dei rapporti stratigrafici)

7.1. Campagna di raccolta dei dati geostrutturali su affioramento

Nel corso dei rilievi effettuati è stata realizzata un'indagine mirata alla caratterizzazione geostrutturale delle litologie su cui poggeranno le fondazioni delle turbine, indirizzata al rilievo di tutti i parametri tecnici, verificando in prima battuta le caratteristiche strutturali, come direzione, immersione e inclinazione delle discontinuità presenti, e analizzando le caratteristiche dei vari sistemi di discontinuità. L'analisi della struttura dell'ammasso roccioso e delle discontinuità è infatti indispensabile in quanto essa regola i processi di rottura e deformazione della roccia: lungo tali piani di debolezza, infatti, le resistenze alla trazione risultano sostanzialmente assai ridotte e talora nulle.

8. Analisi qualitativa di stabilità dell'ammasso roccioso

L'intensa fratturazione produce sulla roccia una geometria estremamente variabile in termini di direzione e immersione, nelle tre direzioni principali dello spazio. Ciò che varia in relazione alla composizione granulometrica dei singoli strati originari è la spaziatura tra i giunti e il grado di fissilità. Pertanto è estremamente difficile se non impossibile definire l'assetto a piccola scala per quanto appena descritto.

Si può definire un range di spaziatura alla mesoscala, tale da individuare una potenziale compagine di blocchi in grado di staccarsi dall'ammasso se le condizioni geostrutturali lo permettono (piani a franapoggio o intersezione di piani con direttrice a franapoggio).

Tali dimensioni possono essere individuate tra il decimo di metro cubo a qualche metro cubo. La variabilità direzionale delle famiglie di giunti che individuano i blocchi è piuttosto marcata e diversificata in funzione, come detto della competenza degli strati soggetti agli sforzi.

Ne deriva di fatto, una difficile previsione delle potenziali propensioni a fenomeni di crollo e/o scivolamento, ma si tratta di caratteri locali la cui eteropia laterale risulta sempre molto marcata.

In generale si può affermare che versanti come questi sono oggetto di due fenomeni di scivolamento distinti in relazione al dominio di famiglie di giunti.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		22 di 80

Alla piccola scala laddove il materiale originario è costituito da granulometrie medie e fini, sono più frequenti fenomeni di sfaldamento e distacco di lamine da centimetriche a decimetriche. Queste ultime divengono più simili a piccoli blocchi la dove la granulometria aumenta.

A scala media diffatti, le spaziature nella stessa famiglia sono maggiori, anche oltre metro ed interessano blocchi più grandi ma che rispondono alle medesime dinamiche di quelli pocanzi analizzati.

Di fatto quindi, non potendo generalizzare alla piccola scala è sempre d'obbligo un rilievo puntuale sugli affioramenti ove possibile. Il materiale distaccato si raccoglie ai piedi del pendio, in accumuli più o meno estesi in funzione della pendenza.

Figura 12 Tipologie di scivolamento di blocchi rocciosi lungo piani di fratturazione

Figura 13 Fratturazione molto spinta su BLA2b – pressi AG03

In generale le turbine sono impostate su un altopiano ove non sono presenti importanti dislivelli. Gli affioramenti presenti, laddove non sono coperti dalla coltre eluvio colluviale, mostrano le caratteristiche giaciturali che caratterizzano l'area.

In fig.13 viene illustrata una affioramento appartenente alla Formazione di Riu Sa Mela (BLA2b) caratterizzata da fratturazione a giacitura molto variabile, legata sia al processo di raffreddamento che alla successiva geodinamica. La interferenza di varie famiglie di giunti con direzioni molto variabili su le lineazioni principali di frattura E-W e NE SW producono elementoiisolati di varia dimensione che si presentano per le parti esposte agli agenti atmosferici in cataste (tor).

9. Inquadramento geomorfologico

Il territorio indagato è costituito sostanzialmente da una zona collinare, con rilievi arrotondati e dislivelli dell'ordine di 100 m circa tra monte e valle.

La forma prevalentemente pianeggiante dei versanti collinari dell'area di studio è il risultato della graduale demolizione del rilievo ercinico ad opera degli agenti erosivi, avvenuta alla fine dell'orogenesi ercinica, che ha portato alla formazione di una estesa superficie strutturale nota con il nome di "penepiano ercinico".

I successivi fenomeni di sollevamento tettonico, imputabili all'orogenesi alpina, hanno ridefinito la morfologia del paesaggio operando un ringiovanimento del rilievo. La superficie strutturale paleozoica si è quindi trovata ad una quota maggiore.

Questo ha innescato una nuova azione geomorfogenetica ad opera degli agenti atmosferici (acqua, vento in primis) che hanno rimodellato l'altopiano così come lo conosciamo, ovvero solcato da incisioni vallive che riprendono le linee di fratturazione tettoniche, che isolano il settore montano distinguendolo nettamente dalle aree pianeggianti circostanti.

I prodotti di erosione sia della prima fase che della seconda e attuale vengono trasportati dall'acqua e dal vento e si depositano in relazione alla loro dimensione e all'energia di trasporto delle acque lungo le pendici dei versanti e nelle valli andando a costituire le coperture sedimentarie.

Le morfologie osservabili in quest'area sono strettamente connesse alle caratteristiche di messa in posto delle litologie e dalle caratteristiche fisico-chimiche delle litologie presenti e dalla tipologia ed intensità degli agenti modellanti predominanti.

9.1. Lineamenti geomorfologici dell'area di studio

L'area di studio è costituita da colline con versanti pendenza media non superiore al 15%, la cui forma addolcita è il risultato della graduale demolizione del rilievo ercinico ad opera degli agenti erosivi, avvenuta alla fine dell'orogenesi ercinica, che ha portato alla formazione di una estesa superficie erosionale in rilievo, con il denudamento delle rocce paleozoiche che costituiscono il basamento affiorante.

Qui il processo dominante, considerato il substrato granitoide (in prevalenza granodioriti monzogranitiche), è rappresentato dalla idrolisi dei silicati, che ha avuto modo di esplicarsi con particolare penetratività nella roccia granitoide fratturata del basamento in ambito climatico tropicale e sub-tropicale. Pertanto l'elemento geomorfologico caratterizzante è la presenza di forme erosive relitte e esumate tipiche della roccia granitoide, quali cataste di blocchi, perlopiù sferoidali, e tor.

I fenomeni di sollevamento tettonico recente hanno ridefinito la morfologia del paesaggio con la ridefinizione della superficie erosionale post-ercinica, oggi solcata da profonde incisioni vallive che riprendono le linee di fratturazione tettoniche, che isolano il settore montano distinguendolo nettamente dalle aree pianeggianti circostanti.

Il territorio indagato rientra nella fascia altimetrica collinare - montana, essendo compreso tra 850 e 600 metri sul livello del mare. L'affioramento prevalente dell'unità litologica del Complesso Intrusivo determina una monotonia del paesaggio, caratterizzato per lo più da forme arrotondate e poco acclivi.

L'uniformità del paesaggio collinare è localmente interrotta dall'affioramento dei filoni a chimismo acido che smembrano l'ammasso scistoso, spesso ricoperto da colture erbacee e da vegetazione arborea, tali filoni sono manifesti come roccia affiorante, intensamente fratturata e dalle forme aspre. Al di sopra del substrato

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		24 di 80

metamorfico e granitico sono adagiate le coperture detritiche di versante, soprattutto in corrispondenza dei versanti più acclivi, dove sovente sono soggetti a processi erosivi ad opera delle acque di ruscellamento superficiale, che si incanalano lungo gli impluvi naturali presenti marginalmente all'area indagata.

Figura 14 Vista dell'altopiano a Nord dell'AG12

Figura 15 Vista verso Nord dall'AG15

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18		25 di 80

Figura 16 Particolare della cataste di blocchi/tor verso Nord dall'AG09

Figura 17 Vista della vallecola del Canale Broccone a Nord-Est della AG02

9.2. Definizione dell'area geomorfologicamente significativa

La predisposizione naturale di un territorio a fenomeni di instabilità legata alle dinamiche geomorfologiche deriva in generale dall'interazione di diversi fattori come natura geologica dei terreni, loro assetto sia deposizionale che geostrutturale, circolazione delle acque superficiali e sotterranee con la morfologia, cioè la geometria del territorio. L'area oggetto di intervento, in base delle caratteristiche suddette **non presenta allo stato attuale evidenze di dissesto di natura geologico-geomorfologica in atto**, mentre, potenziali fenomeni di dissesto potrebbero presentarsi con la naturale evoluzione del pendio.

L'area geomorfologicamente significativa per le azioni di progetto è quell'area in cui si esplicano tutti i processi geomorfici, il cui effetto può generare interazioni con le dinamiche ambientali. Pertanto la stessa, nello specifico, si individua nei versanti e nei sub-bacini idrografici presenti che interferiscono con l'opera.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		26 di 80

La geomorfologia di quest'area è prevalentemente interessata dall'azione geochimica e fisica che l'acqua esercitata sui graniti fratturati, la quale, assieme al clima locale caratterizzato dall'imponenza del maestrale e alle importanti escursioni termiche giornaliere, ha smussato e modellato il territorio; le valli a "V" (Riu Ispadula, Riu Alinutronau), che in prossimità del parco non incidono il basamento per oltre 40m e dell'area a Sud del Parco (Riu Giunturas) supera i 250m, sono poi dovute all'azione delle acque superficiali che scorrono sul basamento cristallino fratturato impermeabile.

10. Inquadramento idrogeologico

Secondo la classificazione dei bacini sardi riportata nel Piano di Assetto Idrogeologico, il comune di Orune è incluso nel Sub – Bacino n° 02 Tirso che costituisce unico corso d'acqua principale del bacino, nel tratto compreso tra il centro abitato di Benetutti (al confine tra le Province di Olbia e Sassari) e la foce a mare, in corrispondenza dello Stagno di Cabras, presso il golfo di Oristano. Il tratto studiato ha una lunghezza complessiva di circa 121 km, dei quali circa 33 km sono sommersi dai tre laghi artificiali, lago di Omodeo, di Pranu Antoni e di Santa Vittoria . I corsi d'acqua secondari presenti nel bacino sono costituiti, oltre che dal tratto iniziale del fiume Tirso, dalla sorgente all'inizio del tratto principale per una estensione di circa 29 km, da altri 13 corsi d'acqua minori. Tra questi 9 sono affluenti diretti, 6 di sinistra (riu Mannu 011, riu_Mannu 012, fiume Taloro, riu canale Cannas, fiume Massari e riu Sant'Elena) e 3 di destra (riu Flumeneddu, riu_Marcu e riu Canale Mannu); 4 sono affluenti secondari (il riu Minore affluente di destra del riu Mannu 011, il riu Govossai affluente di sinistra del fiume Taloro,

il Flumini Imbesu affluente di sinistra del fiume Massari e il riu Crabianas affluente di sinistra del riu Marcu).

Figura 18 Reticolo idrografico del Fiume Tirso (in blu il corso d'acqua principale, in verde i secondari, in rosso l'area di progetto).

10.1. Schema della circolazione idrica superficiale

Il reticolo idrografico sulle litologie affioranti è impostato su un sistema di valli e compluvi, ed è caratterizzato da una ramificazione ben sviluppata in tutta l'area vasta che include le zone di interesse per il progetto. Sono presenti diversi corsi d'acqua lungo tutta l'area di interesse, e i relativi affluenti.

L'area di studio ricade unicamente del Sub-bacino del Tirso, il cui principale corso d'acqua che interessa il territorio di Nuoro è il Rio Mannu 012, denominato localmente semplicemente Rio Mannu, il quale lambisce l'ambito industriale di Pratosardo.

Il riu Mannu è un affluente di destra del fiume Tirso, che nasce dalle pendici del monte Cuc.ru su Pirastru (912 m s.m.) nei pressi di Urrune. La valle è per buona parte del suo sviluppo incisa profondamente nel substrato cristallino ed è delimitata da ripidi versanti che scendono dalle alture circostanti. Il fondovalle è pertanto stretto, a tratti tortuoso, e spesso mancano del tutto delle aree golenali. Solo in prossimità della confluenza nel Tirso, nei pressi della zona delle terme di San Saturnino, l'incisione valliva si allarga consentendo così una limitata espansione alle eventuali acque di esondazione. Il Rio Fontana Grasones scorre in prossimità del Riu Mannu per poi confluire in quest'ultimo e scorrere verso ovest in un breve tratto rivestito in cls per poi affiancarsi alla SS131 ed alla ferrovia Mancomer- Nuoro.

I corsi d'acqua più prossimi all'area di progetto sono il **Riu Giunturas** che, partendo da Sud Est del parco scorre verso Sud; il **Riu Mannu** che, a Nord del Parco scorre verso Ovest, al quale affluiscono il **Riu Galile** (a NE), **Riu Marteddu** (che attraversa il parco) e **Riu Scala e Buda** (a W); il **Riu Gantinesinis** e il **Riu Predosu** scorrono a SW del parco affluendo ugualmente al Riu Mannu.

Il progetto prevede l'installazione delle torri eoliche sugli alti topografici, i corsi d'acqua presenti scorrono allontanandosi da queste aree. Ne consegue che, le aree in studio si collocano in concomitanza con gli spartiacque dei bacini idrografici dei fiumi che interessano la zona.

Lo sviluppo del reticolo idrografico è strettamente connesso alle caratteristiche chimico-fisiche delle rocce costituenti il substrato, e al controllo tettonico che si manifesta molto evidente su alcune linee di deflusso, spesso orientate NW-SE e NE-SW come le principali faglie.

Figura 19 Reticolo idrico superficiale (Fonte RAS)

10.2. Caratteristiche delle acque sotterranee

Uno studio idrogeologico ha lo scopo di identificare lo schema di circolazione idrica sotterranea relativo ad una determinata area per poter ricavare informazioni circa i rapporti tra litotipi presenti, la presenza di acqua e le possibili conseguenze derivanti dalla realizzazione di un'opera.

Le rocce si presentano raramente compatte. La proprietà di contenere spazi vuoti tra gli elementi solidi che le compongono, detta porosità, esprime l'attitudine che ha la roccia ad immagazzinare ed a liberare acqua sotterranea. Se la roccia è massiva il passaggio delle acque avviene solo

Le litologie che interessano l'area di studio sono caratterizzate da permeabilità bassa per fratturazione per le litologie intrusive, (BTU1) e (BLA2b), mentre medio-alta per porosità le coperture eluvio-colluviali (b2).

Da un censimento nell'Archivio Nazionale delle Indagini nel Sottosuolo ex Lg 464/1984 non sono presenti perforazioni per uso di acque sotterranee nell'area di interesse. Nelle immagini seguenti le schede di un pozzo (Cod.170595) a circa 6km a ovest dell'impianto (a sinistra dell'immagine)

Nel pozzo con cod.170040 il cui p.c. è a quota 324 m slmm, si rinviene una prima falda di spessore esiguo (1,20m) a quota -1,80m da piano campagna (livello statico) e una seconda falda anchessa di spessore di circa 1m a -39m da p.c.

Figura 20 Pozzi presenti nell'area di interesse (dall'Archivio Nazionalale delle Indagini del Sottosuolo)

IE Wind Srl Cool Cosima Atzari	N° Doc.	Pov 0	Pagina			
le Wind Shi Geol. Cosinia Atzon	IT-VesOru-CLP-CIV-TR-18	Rev U	30 di 80			
		1				
ISPRA Kate Automa ta Matter Automa ta Matter Matter Automa ta Matter	Istituto Superiore per la Protezione e la F Ambientale	Ricerca				
Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)						
Colline 170040						

Numer Portati Portati Numer Numer Stratig Certifi Numer Longit Latitud Longit Latitud (*)Indi compil	ro diametri: 2 za acqua: SI a massima (l/s): 1 a esercizio (l/s): 0 ro falde: 2 ro filtri: 1 ro piezometrie: 1 grafia: SI cazione(*): SI ro strati: 2 udine WGS84 (dd) udine WGS84 (dd) udine WGS84 (dd) ica la presenza di azione della strat	,200 ,500 d): 9,185417 : 40,430111 ms): 9° 11' 07.51" s): 40° 25' 48.40" un professionist: tigrafia	E N a nella DIAMETT				Moser Alicrosoft	
Prog	r Da prof	ondità (m)	A profon	dità (m)	Lunghezza (m)	Dia	ametro (mm)	
1	0,00		3,00	3,0	0	250		
2	3.00		50.00	47.00				
Pro 1	ogr I 1,80	Da profondità (m)	3,0	A profondi	tà (m)	Lung	hezza (m)	
2	39,00		40,	00	00			
Prog	r Da prof	ondità (m)	POSI A profon	IZIONE FILTRI dità (m)	Lunghezza (m)	Di	ametro (mm)	
1	17,00	4	47,00	30,	00	220	220	
MISURE PIEZOMETRICHE								
Dat	a rilevamento	Livello statico	(m) Li	vello dinamico (n	a) Abbassar	nento (m)	Portata (I/s)	
set/199	75	5,70	21,80		18,10		0,800	
			ST	RATIGRAFIA	-			
Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Des	crizione lito	logica	
1	0,00	3,00	3,00	QUATERNARI	O GRANITO ARE	NIZZATO		
2	3,00	50,00	47,00	PALEOZOICO	GRANITO A TE FRATTURATO	GRANITO A TRATTI MOLTO FRATTURATO		

Figura 21 - Monografie del pozzo censito nell Archivio Nazionale delle Indagini nel Sottosuolo

Quota pc slm (m): 324,00 Anno realizzazione: 1998 Complessivamente, le carattaeristiche genetiche e composizionali delle litologie presenti non sono favorevoli alla ritenzione delle acque meteoriche (granodioriti) che la possiedono debolmente e solo per fratturazione, mentre questa è maggiormente marcata in alcuni depositi attuali (colluvi). In questi ultimi la permeabilità è medio-alta per porosità. La circolazione idrica profonda è strettamente legata al grado di fratturazione dell'ammasso roccioso e alla sua permeabilità efficace.

La permeabilità secondaria, o per fessurazione, viene acquisita dalla roccia a seguito della sua formazione.

Tale proprietà può esser limitata dalla presenza di riempimento delle fratture costituito da materiali derivanti dall'alterazione della roccia madre ad alta componente argillosa. Ne consegue che seppur presente una buona rete di fratture anche con importanti spaziature, la presenza di tali riempimenti limita fortemente il passaggio delle acque.

La parte superficiale dell'ammasso roccioso è generalmente più fratturata e pertanto con permeabilità più elevata rispetto alla parte più profonda meno interessata dalla fratturazione, al contatto tra le due si possono sviluppare delle risorgive che hanno carattere prettamente stagionale legato all'andamento pluviometrico generale.

Di seguito viene illustrato in uno schema il processo di infiltrazione accumulo e circolazione legato al regime delle piogge e caratterizzante le litologie vulcaniche nella porzione sommitale e di interesse alle opere del parco eolico.

Gli afflussi che arrivano sul terreno sotto forma per lo più di piogge, più raramente e poco tempo di neve, in parte scorrono lungo la superficie in genere a lamina d'acqua per poi organizzarsi in deboli rivoli che si concentrano lungo gli impluvi fino a raggiungere il bordo dell'altopiano oltre il quale si riversano lungo valli strette a V ancora in evoluzione geomorfologica.

La frazione di acqua che non scorre in superficie in parte evapora e in parte si infiltra nel terreno e nella roccia sottostante scorrendo lungo le fratturazioni in maniera più o meno efficace in funzione del grado di apertura delle stesse, e in funzione della permeabilità della roccia.

Maggiore è la presenza di fratture, maggiore è la possibilità che l'acqua prosegua il suo percorso in profondità. Le falde acquifere e le conseguenti sorgenti che si hanno lungo i versanti e nei tagli erosivi sono per l'appunto legate principalmente alla presenza dei sistemi di frattura a diversa scala e dal materiale derivante dall'alterazione superficiale degli ammassi rocciosi.

Figura 22 Schema esemplificativo, non in scala, dei processi di infiltrazione e deflusso sotterraneo

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	32 di 80

Nell'area di studio si possono distinguere:

- 1. litologie con permeabilità bassa, come le granodioriti (BLA2b), per via della fratturazione;
- 2. litologie con permeabilità medio-alta per porosità, come i depositi eluvio-colluviali:

Da un punto di vista idrogeologico le formazioni dell'area di studio possono essere divise in tre gruppi principali:

- Unità intrusive. È costituito da rocce poco permeabili per fratturazione (graniti, granodioriti, ecc...) K=1x10⁻⁵- 1x10⁻⁷ m/sec
- 2. Depositi quaternari. I depositi quaternari occupano aree molto limitate e raggiungono spessori poco significativi, la permeabilità è di tipo medio-alta per porosità. I depositi di eluviali e colluviali, sono in gran parte costituiti da una struttura clasto-sostenuta (sabbie e ghiaie derivanti dalo smantellamento dei sottostanti granitoidi) e/o matrice-sostenuta presentano una permeabilità medio-alta, in ogni caso i loro spessori esigui non garantiscono una potenza sufficiente per generare acquiferi significativi; K=1x10⁻⁵-1x10⁻⁶ ≤ 1x10⁻⁴ m/sec

Dalla carta della permeabilità dei suoli, resa disponibile dal Geoportale della Regione Autonoma della Sardegna, si evince che l'area di studio presenta nella zona di installazione delle turbine, una **permeabilità bassa per fratturazione**, eccetto che per le aree in cui affiorano i depositi colluviali (b2) per cui la permeabilità **medio-alta per porosità**.

Nell'area attraversata dal cavidotto e alla sottostazione invece la permeabilità risulta medio-bassa per fratturazione.

10.3. Analisi della vulnerabilità degli acquiferi

Ai fini della tutela della riscorsa idrica si è operata una valutazione qualitativa della vulnerabilità degli acquiferi presenti in relazione alle opere da realizzare e in relazione alle varie attività di cantiere.

Sono presenti diverse risorgive la cui genesi è legata al sitema di fratturazione del'acquifero granitoide e ben rappresentato nello schema di fig.22. La capacità di immagazzinamento non è alta e per lo più si tratta di emergenze stagionali il cui regime è molto dipendente dalle piogge. Non si hanno allo stato attuale elementi più precisi sull'entità delle portate. Data la posizione e la relativa profondità delle opere che prevedono gli scavi più profondi (fondazioni degli aerogeneratori, piazzole e aree di deposito temporaneo) non si rilevano potenziali influenze sul normale deflusso delle acque sotterranee. In ogni caso, in fase di progettazione esecutiva sarà opportuno realizzare un piano di monitoraggio specifico.

Altresì le opere in progetto non determinano per loro natura produzione di agenti inquinanti che possono riversarsi nella circolazione idrica sotterranea se non per accidentale guasto meccanico che andrà trattato con le opportune misure di salvaguardia dettate dal T.U. sull'Ambiente.

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	33 di 80

Figura 23 Carta delle Permeabilità dei Substrati e dei Suoli – area impianto (Fonte RAS)

Figura 24 Reticolo idrografico numerato secondo l'ordine di Stralher

11. Inquadramento climatico

La definizione del clima è basata sull'analisi dei parametri meteorologici più comunemente studiati, quali la temperatura e le precipitazioni, il cui andamento è legato alle variazioni stagionali della circolazione atmosferica, considerando inoltre la ventosità, la nuvolosità e l'umidità relativa.

Il clima della Sardegna viene generalmente classificato come "Mediterraneo Interno", caratterizzato da inverni miti e relativamente piovosi ed estati secche e calde, con valori minimi invernali di alcuni gradi al di sotto dello zero e massimi estivi anche superiori ai +40 C.

Lungo le zone costiere, grazie alla presenza del mare, si hanno inverni miti con temperature che scendono raramente sotto lo zero. Anche nelle zone interne pianeggianti e collinari il clima è tipicamente mediterraneo, anche se a causa della maggior lontananza dal mare si registrano temperature invernali più basse ed estive più alte rispetto alle aree costiere.

Nelle zone più interne, come gli altopiani e le vallate spesso incastonate tra i rilievi, il clima acquista caratteri continentali con forti escursioni termiche, risultando particolarmente basse le minime invernali in caso di inversione termica, con temperature che possono scendere anche al di sotto dei -10/-12 C. Sui massicci montuosi nei mesi invernali nevica frequentemente e le temperature scendono sotto lo zero, mentre nella stagione estiva il clima si mantiene fresco, soprattutto durante le ore notturne, e raramente fa caldo per molti giorni consecutivi.

La Sardegna inoltre è una regione molto ventosa; i venti dominanti sono quelli provenienti dal settore occidentale (Maestrale e Ponente) e, in minor misura quelli provenienti da quello meridionale (Scirocco).

Le precipitazioni sono distribuite in maniera variabile ed irregolare, con medie comprese tra i 400 e i 600 mm annui lungo le coste e valori pluviometrici che raggiungono e superano i 1000 mm annui (con locali picchi superiori ai 1300–1400 mm) in prossimità dei rilievi montuosi.

Periodo	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
													annuale
2018	20,0	76,0	127,2	23,2	228,2	61,2	-	35,8	56,4	193, 8	145,2	40,0	1007,0
2017	182,4	69,6	15,6	12,4	0,2	9,8	0,2	0,6	30,8	29,8	77,0	51,4	479,8
2016	47,8	101, 8	47,4	24,2	27,6	25,4	39,8	30,0	41,4	15,4	99,4	177,8	678,0
2015	70,6	80,6	104,2	30,4	14,2	17,6	41,4	2,2	34,2	106, 0	24,6	5,6	531,6
2014	78,2	39,2	132,4	34,0	48,2	22,4	19,8	18,4	18,4	7,0	69,4	25,2	512,6
2013	51,2	92,2	138,2	94,0	53,8	23,6	18,0	3,0	33,6	29,2	277,8	66,2	880,8
2012	29,2	53,2	5,2	116, 8	101,2	0,4	19,8	-	29,8	58,2	81,6	32,4	527,8
2011	26,2	52,8	73,0	55,2	68,0	33,2	11,2	-	23,0	17,8	375,4	49,8	785,6
2010	107,6	38,2	25	129, 8	41,8	21,6	28,7	0,6	24,0	173, 4	119	67,4	777,1
2009	70,6	10,8	32,8	145, 4	4,0	40,2	7,8	3,6	88,2	19,4	36,2	48,4	507,4
2008	53 <i>,</i> 8	32	65	44,2	52	12,4	-	18,2	22,6	53,8	108,5	105,6	568,1

Tabella 1 Andamento pluviometrico dell'area vasta (espresso in mm) ricavato dalla stazione pluviometrica di Nuoro Farcana (per gli anni 2018-2012) e di Orune (per l'arco 2011-2008). A causa del dominio sulla regione dei venti provenienti dai quadranti occidentali, mediamente la maggior frequenza di giorni di pioggia si riscontra nelle zone occidentali dell'isola, mentre in quelle orientali, trovandosi sottovento a questo tipo di circolazione a causa dell'orografia, si ha una minore frequenza di giornate piovose.

Tuttavia, le zone orientali sono spesso soggette a fortissime piogge, per cui gli accumuli medi annuali sono simili tra i due versanti.

L'andamento climatico del territorio di **Orune** e le risorse idriche disponibili sono stati valutati sulla base dei dati forniti dalle stazioni meteorologiche dell'ARPAS presenti nel territorio comunale di Nuoro, Orgosolo e Orune, questi ultimi due sono situati rispettivamente 13Km a Sud e 10Km a Nord del settore in esame.

L'andamento pluviometrico dell'area oggetto di studio è stato ricavato dai dati pluviometrici relativi all'intervallo 2008-2018 estratti dagli Annali Idrologici dell'ARPAS reperibili dal Geoportale della R.A.S., così come i dati termometrici, relativi però alla stazione di Senorbì.

Per quanto riguarda i dati sull'evapotraspirazione, sono stati utilizzati i valori pubblicati dal Dipartimento Specialistico Regionale Idroclimatico (I.M.C.) dell'ARPAS.

Alla stazione di Cagliari - Elmas sono riferiti i dati sulla nuvolosità, umidità relativa e ventosità, estrapolati dalla Rete Mareografica dell'ISPRA.

11.1. Precipitazioni

Nella Tab.2 sono esposti i dati relativi alle precipitazioni nell'intervallo 2012-2018 registrati nella stazione di Nuoro Farcana e di Orune (per gli anni 2008-2011). Viene riportato il valore medio mensile e il totale annuale di precipitazioni (espresso in mm) nei periodi considerati. Per il periodo 2008-2018 si osserva che i valori di precipitazioni presentano valori minimi nei mesi di Luglio e Agosto, e superiori per il periodo compreso tra Settembre e Febbraio.

Nell'area studiata, la piovosità media annuale è pari a circa 659 mm per il periodo compreso tra il 2008 e il 2018.

Tabella 2 Andamento della pluviometria mensile e annuale (nell'asse delle ordinate, in mm) per la stazione di Nuoro Farcana (per gli anni 2018-2012) e di Orune (per l'arco 2011-2008)

L'andamento pluviometrico dell'area di Orune nell'arco dell'anno è caratterizzato dal minimo assoluto di piovosità nel periodo estivo e da un massimo in autunno e inverno, per cui i mesi più secchi sono quelli estivi mentre quelli più piovosi sono quelli invernali.
ORUNE Wind Srl Geol. Co	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	37 di 80

11.2. Temperature

I valori termometrici della stazione meteo di Nuoro, ricavati dal Dipartimento Specialistico Regionale Idroclimatico (I.M.C.) dell'ARPAS, sono illustrati nel grafico di Tab. 3 e sono relativi alla stazione di Nuoro per gli anni dal 2012 al 2018, e alla stazione di Orgosolo per l'intervallo 1995-2011. La temperatura media annua, calcolata con i valori medi mensili per il periodo 1995-2018, è di circa 13,8 °C. Il mese più freddo è Gennaio con una media di circa 6,2°C, mentre le temperature più elevate si riscontrano e Luglio e Agosto con circa 23,5 °C.

Periodo	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
2018	7,4	4,1	7,6	13,4	14,1	19,2	24,1	22,9	19,6	14,6	9,9	7,5
2017	3,6	7,6	9,1	11,2	16,1	22,3	23,4	25,7	16,8	14,6	8,1	5,1
2016	7,3	8	7,4	12,7	13,6	19,3	23,4	21,8	18,2	14,7	10,1	7,5
2015	6	4,4	7,7	11	17	20,2	25	22,7	18,5	13,8	10,2	7,9
2014	6,7	7,1	7,3	11,2	13,5	19,7	20,1	22	19,3	16,4	12,4	6,5
2013	5,4	3,2	7,4	11,2	12,5	17,8	22,4	22,7	17,9	16,6	8,5	6,8
2012	5,3	2	9,2	10	14,1	21,5	23,4	24,9	18,2	14,3	10,5	6,2
1995-2011	7,6	8,1	10,4	13,2	18,3	23,1	26,4	26,1	20,8	17,3	11,9	8,3

Tabella 3 Temperature mensili (in °C) registrate nella stazione di Nuoro negli anni dal 2018 al 2012, e presso la stazione di Orgosolo per il periodo 1995-2011.

Nel grafico di Fig.25 è illustrato l'andamento delle temperature medie mensili per il periodo 1995-2011 registrate nella stazione di Orgosolo, e per gli anni dal 2012 al 2018, relativamente alla stazione di Nuoro.

Figura 25 Temperature mensili (in °C, nell'asse delle ordinate) registrate nella stazione di Nuoro negli anni dal 2018 al 2012, e presso la stazione di Orgosolo per il periodo 1995-2011.

11.3. Stima dell'evapotraspirazione

L' evapotraspirazione è uno dei parametri più significativi nell'ambito di un bilancio idrologico e rappresenta la perdita di una parte delle acque di precipitazione, per evaporazione dal suolo e per traspirazione della vegetazione. Viene calcolata tenendo conto della temperatura e delle precipitazioni, e viene influenzata dalla nuvolosità, dall'umidità relativa e dalla ventosità. Nel grafico di Figura 26 è illustrata l'evapotraspirazione per la zona di Nuoro ricavata dai dati reperibili sul WebGIS dell'ARPAS.

Figura 26 Evapotraspirazione (espressa in mm) per la zona di Nuoro.

Il clima è influenzato anche dall'andamento del vento al suolo (ventosità), che viene definito analizzandone l'intensità, la direzione e la frequenza.

Dall'analisi dei dati resi disponibili dagli studi effettuati per la stesura del PUC di Nuoro anche in quest'area i venti dominanti come nel resto dell'isola provvegnono dai quadranti occidentali.

Figura 27 Ventosità media annuale relativa al periodo 1941-1950 e 1959-1961 stazione di Fonni (PUC, Nuoro)

Il diagramma ombrotermico elaborato per il settore di Nuoro (Fig. 28), a partire dai dati sulla temperatura media e precipitazioni medie, permette di comparare contemporaneamente i regimi medi mensili termici e pluviometrici nell'arco del periodo considerato. L'andamento delle curve consente di visualizzare che nei mesi estivi, dove la temperatura media mensile raggiunge valori superiori ai 23 °C, si hanno i valori di piovosità inferiori, mentre nei

ORUNE Wind Srl Geol. Cosima Atzori	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	39 di 80

mesi invernali, dove le temperature medie mensili oscillano tra i 5 °C e i 10 °C, si raggiungono le piovosità più elevate.

Il clima è caratterizzato da un periodo caldo con scarsa piovosità e uno più freddo e piovoso, si nota che la curva delle precipitazioni giace al di sotto di quella delle temperature nei mesi estivi, che rappresentano il periodo secco in quanto prevale l'evapotraspirazione rispetto agli apporti idrici.

Figura 28 Diagramma ombrotermico (Walter e Lieth) per il settore di Nuoro

Figura 29 Climogramma relativo alla regione di Nuoro

L'analisi delle medie mensili di temperatura e piovosità relative al periodo 2012-2018 permette di classificare il clima dell'area di Orune come "mediterraneo con estate calda", nel quale la temperatura media annua (13,8 °C), non scende mai sotto agli 5 °C, e per quattro mesi (Giugno-Settembre) supera i 18 °C, e le precipitazioni sono superiori ai 650 mm annui.

ORUNE Wind Srl Geol. Cosima Atzori	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	IT-VesOru-CLP-CIV-TR-18	Nev 0	40 di 80	

Dal climogramma (Fig.29) realizzato a partire dai valori medi di precipitazioni e temperature relativi al periodo 2012-2018 per l'area di Nuoro, nel quale i quadranti definiscono le diverse tipologie di climi, ossia freddo arido (I), freddo umido (II), caldo umido (III) e caldo arido (IV), è evidente che il settore in studio è caratterizzato da due periodi, uno lungo di caldo arido ed uno limitato freddo umido.

La classificazione fatta sul clima della regione, è confermata anche dall'indice di aridità medio di Demartonne stimato per l'area in oggetto che ricade nel settore da "secco – sub-umido" a "subumido" per il periodo considerato. L'analisi dei parametri meteorologici permette di confermare l'andamento climatico rilevato in quasi tutta la Sardegna, nettamente bistagionale con le stagioni caldo arida e fresca umida che si alternano nel corso dell'anno, intervallate da due brevi stagioni a carattere intermedio.

12. Inquadramento pedologico

Le tipologie di suolo sono legate per genesi alle caratteristiche delle formazioni geo-litologiche presenti e all'assetto idraulico di superficie nonché ai diversi aspetti morfologici, climatici e vegetazionali.

Poiché la litologia del substrato o della roccia madre ha una importanza fondamentale quale fattore nella pedogenesi dei suoli, le unità principali sono state delimitate in funzione delle formazioni geologiche prevalenti, e successivamente all'interno di esse sono state individuate unità, distinte dalla morfologia del rilievo, dall'acclività e dall'uso del suolo prevalente.

L'area di progetto ricade nei *paesaggi su "rocce intrusive* (graniti, granodioriti, leucograniti etc. del Paleozoico e relativi depositi di versante), cui sono associati suoli delle unità **C1** e **C2** della Carta dei Suoli dell Sardegna:

- 1. **Unità C1** Roccia affiorante, suoli a profilo A-C e subordinatamente A-Bw-C, poco profondi, da sabbioso franchi a franco sabbiosi, permeabili, acidi, parzialmente desaturati".
- 2. Unità C2: Profili A-C, A-Bw-C, roccia affiorante e subordinatamente suoli a profilo A-Bt-C, da poco a mediamente profondi, da sabbioso franchi a franco sabbioso argillosi, permeabili, da subacidi ad acidi, parzialmente desaturati.

Pochi lembi di copertura vegetale si ritrovano sui versanti esposti a Nord e lungo gli impluvi. I profili vanno da poco a mediamente profondi, tessitura da sabbioso-franca a franco-sabbioso argillosa, struttura poliedrica subangolare, permeabili e ad erodibilità elevata.

In particolare tutte le turbine ricadono nell'unità C2 eccetto la turbina AG01 che ricade nell'unità C1. La porzione di viabilità e i cavidotti che collegano le turbine alla stazione di accumulo ricadono nell'unità C2 sopra descritta

ORUNE Wind Srl Geol. Cosima At:	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		41 di 80

13. Uso del Suolo

Dalla Carta dell'Uso del Suolo, resa disponibile dalla Regione Sardegna, si evince che l'ambito di progetto del Parco eolico "**Orune**" si inserisce in un contesto in cui il suolo ricade in vari livelli.

Intorno al lotto di interesse, nello specifico dell'area di installazione delle turbine, le destinazioni d'uso ricadono in ambiti quali Gariga (3232), Aree a pascolo naturale (321), Colture temporanee associate ad altre colture permanenti (2413), Aree agroforestali (244), Aree a ricolonizzazione artificiale (3242), e Bosco di latifoglie (3111). In particolare, dall'analisi della cartografia esistente, si evince che:

- 1. la turbina AG05 ricade nella classe 3232, classificata come "Gariga"
- 2. le turbine AG07 e AG09 ricadono nella classe 321, classificata come "Aree a pascolo naturale",
- 3. le turbine AG01, AG06, AG08, AG10 e AG13 ricadono nella classe **2413**, classificata come "**Colture temporanee associate ad altre colture permanenti**",
- 4. le turbine AG04, AG12 e AG15 ricadono nella classe 31122, classificata come "Sugherete",
- le turbine AG02 e AG03 ricadono nella classe 333, classificata come "Aree con vegetazione rada >5% e <40%",.
- 6. la turbina AG14 ricade nella classe 2112, classificata come "Prati Artificiali".

ORLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	42 di 80

Figura 31 Stralcio della Carta dell'Uso del Suolo della Sardegna (2008, Fonte RAS).

14. Analisi dei vincoli gravanti sui terreni

14.1. Piano Stralcio D'Assetto Idrogeologico della Sardegna

Per quanto riguarda gli aspetti legati alla pericolosità idrogeologica, si sintetizzano gli esiti del Piano Stralcio per l'Assetto Idrogeologico (PAI), che è stato redatto dalla Regione Sardegna ai sensi del comma 6 ter dell'art. 17 della Legge 18 maggio 1989 n. 183 e ss.mm.ii., adottato con Delibera della Giunta Regionale n. 2246 del 21 luglio 2003, approvato con Delibera n. 54/33 del 30 dicembre 2004 e reso esecutivo dal Decreto dell'Assessore dei Lavori Pubblici n. 3 del 21 febbraio 2005.

Il PAI ha valore di piano territoriale di settore e, in quanto dispone con finalità di salvaguardia di persone, beni, ed attività dai pericoli e dai rischi idrogeologici, prevale sui piani e programmi di settore di livello regionale (Art. 4 comma 4 delle Norme Tecniche di Attuazione del PAI). Inoltre (art. 6 comma 2 lettera c delle NTA), "le previsioni del PAI [...] prevalgono: [...] su quelle degli altri strumenti regionali di settore con effetti sugli usi del territorio e delle risorse naturali, tra cui i [...] piani per le infrastrutture, il piano regionale di utilizzo delle aree del demanio marittimo per finalità turistico-ricreative".

Il Comune di Orune non ha ancora prodotto lo studio di dettaglio ex art.8 comma 2 delle Norme tecniche di Attuazione del PAI per l'intero territorio comunale, pertanto sono ancora in vigore le perimetrazioni precedentemente approvate.

Figura 32 Inquadramento PAI Pericolosità da frana – zona Nord (Fonte RAS).

Figura 33 Inquadramento PAI Pericolosità da frana – zona Sud (Fonte RAS).

Nello specifico del progetto, le turbine sono state posizionate in aree con pendenze minori o uguali al 15%. Generalmente tutto il complesso rappresentato da turbina, piazzola temporanea e permanente occupano aree subpianeggianti sufficientemente ampie da garantire la non influenza dell'opera con la dinamica del versante attiguo. Dai sopralluoghi effettuati in sito non si ha inoltre evidenza per quest'area di fenomeni franosi in atto o potenziali. La dinamica geomorfologica di versante è naturalmente presente ma senza manifestazioni importanti.

Nella carta tematica del P.A.I. relativa alla pericolosità geomorfologica resa disponibile dalla RAS, risulta che nel territorio interessato dal progetto sono presenti diversi settori con diverso grado di pericolosità geomorfologica (Hg1, Hg2) per fenomeni legati ad eventi franosi. Queste aree non interessano le posizione delle turbine ma limitatamente alle pericolosità Hg1 e Hg2 alcuni porzioni di viabilità esistente e del cavidotto.

Le turbine non sono compresi nelle perimetrazioni di pericolosità geomorfologica del PAI, mentre piccoli tratti della connessione e della viabilità di servizio attraversano aree Hg1 e Hg2.

La regione Sardegna ha in essere la definizione della Variante Generale al Piano d'Assetto Idrogeologico (PAI) – per la parte frane e nell'ambito delle attività connesse alla sua adozione preliminare a reso noto lo studio di dettaglio e approfondimento del quadro conoscitivo della pericolosità e del rischio da frana nei vari subbacini idrografici della Sardegna tra i quali anche il sub-bacino 02 che interessa l'impianto. Pur non esserndo ancora ientrate in vigore le

ORUNE Wind Srl Geol. Cosima Atzori	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
	IT-VesOru-CLP-CIV-TR-18	Rev U	45 di 80	

norme di salvaguardia derivanti dall'adozione del Piano non ancora avvenuta si è preso comunque in considerazione nelle perimetrazioni interessanti la parte non ancora studiata dal comune che si propone di seguito. Da tale Studio, che si ribadisce è al momento puramente indicativo in attesa di una sua adozione, emerge che l'area di impianto è interessata da perimetrazioni di classe Hg0 e Hg1 e Hg2 limitatamente ad alcuni tratti di viabilità e connessione.

Figura 34 - Pericolosità da frana - Variante Generale del PAI (non ancora adottata).

Per quanto concerne la pericolosità idraulica, nella carta tematica del P.A.I. relativa a questa tematica resa disponibile dalla RAS, risulta che nell'area impianto non sono presenti aree perimetrate, risultano invece interessati da pericolosità idraulica alcuni tratti del cavidotto a sud in prossimità della sottostazione. Poiché il cavidotto correrà interrato ad una profondità di almneo 1m, lo stesso non interferirà con il normale deflusso delle acque.

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.		Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	46 di 80

Figura 35 Inquadramento PAI Pericolosità idraulica (Fonte RAS).

14.2. Art.30 Ter NTA PAI

Il territorio comunale di Orune non è stato ancora oggetto di uno Studio di dettaglio della pericolosità idraulica così come previsto dall'art.8 comma c delle NTA PAI sul territorio comunale ma solo limitatamente ai centri urbani, nelle more della realizzazione dello stesso pertanto, sono state istituite le fasce di prima salvaguardia secondo il comma 1 dell'art.30ter di seguito riportato.

1. Per i singoli tratti dei corsi d'acqua appartenenti al reticolo idrografico dell'intero territorio regionale di cui all'articolo 30 quater, per i quali non siano state ancora determinate le aree di pericolosità idraulica, con esclusione dei tratti le cui aree di esondazione sono state determinate con il solo criterio geomorfologico di cui all'articolo 30 bis, quale misura di prima salvaguardia finalizzata alla tutela della pubblica incolumità, è istituita una fascia su entrambi i lati a partire dall'asse, di profondità L variabile in funzione dell'ordine gerarchico del singolo tratto.

La fascia di rispetto dei corsi d'acqua in base al numero di Stralher equivale a:

Stralher 1	10m
Stralher 2	25m
Stralher 3	50m
Stralher 4	75m
Stralher 5	100m

Stralher 6	150m
Stralher 7	250m
Stralher 8	400m

Dall'analisi del layout sovrapposto al reticolo idrografico si evince quanto segue:

- Nessuna turbina o sua pertinenza (piazzola temporanea o definitiva) interferisce con il reticolo idrografico salvo per un breve tratto la piazzola provvisoria dell'AG04 che interessa l'impluvio denominato FIUME_196401;
- 2. In alcuni tratti la viabilià esistente interseca tratti di impluvio di ordine 1;
- 3. La sottostazione non interferisce con il reticolo idrografico;
- 4. Il cavidotto interseca in più punti aste fluviali di ordine 1 ma esso correrà interrato ad una profondità maggiore di 1m da piano campagna.

Figura 36 Reticolo idrografico numerato secondo l'ordine di Stralher

ORUNE Wind Srl Geol. Cosima Atzo	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	48 di 80

14.3. Inventario dei Fenomeni franosi

Per quanto riguarda il censimento dei siti franosi nell'ambito del Progetto IFFI, nell'inventario non sono menzionate aree che ricadono nell'ambito territoriale del comune di **Orune**.

Figura 37 Archivio IFFI (Fonte ISPRA) in rosso l'area di intervento

14.4. Piano Stralcio delle Fasce Fluviali

Il Piano Stralcio delle Fasce Fluviali (PSFF) definisce, per i principali corsi d'acqua della Sardegna, le aree inondabili e le misure di tutela per le fasce fluviali. A seguito dello svolgimento delle conferenze programmatiche, tenute nel mese di gennaio 2013, il Comitato Istituzionale dell'Autorità di Bacino della Regione Sardegna, con Delibera n.1 del 20.06.2013, ha adottato in via definitiva il Progetto di Piano Stralcio delle Fasce Fluviali.

Il Piano Stralcio delle Fasce Fluviali costituisce un approfondimento ed una integrazione necessaria al Piano di Assetto Idrogeologico (P.A.I.) in quanto è lo strumento per la delimitazione delle regioni fluviali funzionale a consentire, attraverso la programmazione di azioni (opere, vincoli, direttive), il conseguimento di un assetto fisico del corso d'acqua compatibile con la sicurezza idraulica, l'uso della risorsa idrica, l'uso del suolo (ai fini insediativi, agricoli ed industriali) e la salvaguardia delle componenti naturali ed ambientali.

Con Delibera n. 2 del 17.12.2015, il Comitato Istituzionale dell'Autorità di bacino della Regione Sardegna, ha approvato in via definitiva, per l'intero territorio regionale, ai sensi dell'art. 9 delle L.R. 19/2006 come da ultimo modificato con L.R. 28/2015.

Per quanto riguarda le delimitazioni presenti nella cartografia del Piano Stralcio Fasce Fluviali, si evince che nel territorio comunale di **Orune** non sono presenti aree di fascia fluviale.

L'area di progetto non è compresa nelle perimetrazioni del PSFF.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	49 di 80

Figura 38 Stralcio perimetrazione Piano Stralcio fasce Fluviali PSFF 2015

14.5. Piano di Gestione del Rischio Alluvioni (PGRA)

L'articolo 7 del D.Lgs. 23 febbraio 2010 n. 49 "Attuazione della Direttiva Comunitaria 2007/60/CE, relativa alla valutazione e alla gestione dei rischi di alluvioni", che recepisce in Italia la Direttiva comunitaria 2007/60/CE, prevede che in ogni distretto idrografico, di cui all'art. 64 del D.Lgs.152/2006, sia predisposto il **Piano di Gestione del Rischio di Alluvioni** (di seguito indicato come PGRA).

L'obiettivo generale del PGRA è la riduzione delle conseguenze negative derivanti dalle alluvioni sulla salute umana, il territorio, i beni, l'ambiente, il patrimonio culturale e le attività economiche e sociali. Esso coinvolge pertanto tutti gli aspetti della gestione del rischio di alluvioni, con particolare riferimento alle misure non strutturali finalizzate alla prevenzione, protezione e preparazione rispetto al verificarsi degli eventi alluvionali; tali misure vengono predisposte in considerazione delle specifiche caratteristiche del bacino idrografico o del sottobacino interessato. Il PGRA individua strumenti operativi e di *governance* (quali linee guida, buone pratiche, accordi istituzionali, modalità di coinvolgimento attivo della popolazione) finalizzati alla gestione del fenomeno alluvionale in senso ampio, al fine di ridurre quanto più possibile le conseguenze negative.

L'area di impianto non risulta essere interessata da perimetrazioni per rischio alluvioni. Il cavidotto interessa aree a rischio alluvioni in due punti, tuttavia esso correrà interrato ad una profondità maggiore di 1m da piano campagna e pertanto non interferirà con il normale deflusso delle acque.

ORUNE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Nev 0	50 di 80

15. Indagini geognostiche

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1). L'obiettivo delle indagini realizzate è stato:

- 1. Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- 2. Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- 3. Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

La metodica utilizzata è quella indiretta in sito, ovvero l'indagine geofisica, questa costituisce parte integrante delle indagini geognostiche dirette e indirette legate alla caratterizzazione dei terreni di fondazione. In particolare si pone come obbiettivo la ricostruzione dell'assetto sismo-stratigrafico dei terreni sede di posa delle opere di fondazione nonché la classificazione del suolo di fondazione per le categorie semplificate indicate nel Decreto 17 gennaio 2018 - NTC 2018 aggiornamento delle "Norme tecniche per le costruzioni".

Sono stati eseguiti di n°5 stendimenti di sismica con tecnica MASW e rifrazione in onde P. Tutte le basi sismiche MASW ricadono lungo il medesimo allineamento delle rifrazioni, i quali hanno il medesimo centro degli allineamenti sismici.

E' stato inoltre eseguito il Rilievo topografico tramite GPS differenziale STONEX S70G (geofoni, punti di shot, elettrodi /picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di tomografia elettrica e sismica. Sono stati infine elaborati i dati ottenuti tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego di software specialistici.

Stendimento	Metodo di	Orientamento	Geofoni/Picc	Interdistanza	Lunghezza
	indagine		netti		(m)
R/M 1 (SMT01)	Rifrazione/MASW	SE-NO	24	3,0	69,0
R/M 2 (SMT02)	Rifrazione/MASW	SE-NO	24	3,0	69,0
R/M 3 (SMT03)	Rifrazione/MASW	SSE-NNO	24	3,0	69,0
R/M 4 (SMT04)	Rifrazione/MASW	NNE-SSO	24	3,0	69,0
R/M 5 (SMT05)	Rifrazione/MASW	S-N	24	3,0	69,0

Tabella 4 Ubicazione degli stendimenti

15.1. Generalità sul metodo sismico a rifrazione

Il metodo sismico a rifrazione studia la velocità di propagazione delle onde sismiche nel sottosuolo quando il terreno è sottoposto a sollecitazioni artificiali. La determinazione delle velocità si ottiene misurando i tempi di primo arrivo delle onde sismiche generate in diversi punti sulla superficie topografica. Operativamente i profili sismici si eseguono disponendo sul terreno una serie di sensori (geofoni), posti ad un intervallo costante, collegati ad un sismografo mediante un cavo multipolare.

Dopo l'allestimento del dispositivo di ricezione si provvede a generare artificialmente vibrazioni impulsive in corrispondenza di punti prestabiliti lungo i profili: Nello stesso istante di partenza della vibrazione viene trasmesso al sismografo il comando di avvio della registrazione (trigger). Da questo istante inizia l'acquisizione digitale, con campionamento ad intervallo costante e predeterminato, dei segnali ricevuti dai sensori. L'interpretazione dei segnali e la ricostruzione del profilo di velocità delle onde P consiste di almeno due fasi ben distinte, e cioè l'interpretazione dei sismogrammi e l'interpretazione dei diagrammi tempi- istanze (dromocrone).

Nella prima fase i tempi di primo arrivo dei segnali sismici vengono letti direttamente sui sismogrammi di campagna visualizzati a monitor. I tempi letti in corrispondenza di ciascun canale (geofono), vengono memorizzati in appositi files che costituiscono i dati in input del software utilizzato. Per ciascun tiro, quindi, si ricostruisce un diagramma dei tempi di arrivo in funzione della distanza dal punto di tiro stesso.

Pagina

52 di 80

L'interpretazione delle dromocrone consiste, quindi, nel suddividere la funzione tempi/distanze in segmenti a pendenza differente, indicativi della presenza di variazioni di velocità nel sottosuolo. Questa operazione viene eseguita ad un terminale videografico dove è possibile eseguire modifiche ed aggiustamenti continui dell'interpretazione.

Il numero di segmenti per ciascuna funzione equivale al numero di strati che costituiranno il modello interpretativo finale; modello che consiste in una stratigrafia del terreno basata sulle variazioni di velocità delle onde compressionali.

Nella maggior parte dei casi, comunque, si riscontrano variazioni stratigrafiche che non corrispondono a variazioni di tipo litologico in senso stretto, ma alla naturale variazione di compattezza dello stesso materiale che, per alterazione superficiale o per semplice decompressione, si presenta più allentato in prossimità della superficie rispetto alle zone più profonde.

In questi casi per la modellizzazione del sottosuolo, risulta più adatta un'altra tecnica di elaborazione: la tecnica di elaborazione tomografica.

Con questa tecnica il sottosuolo viene suddiviso in elementi finiti di forma quadrata e di dimensioni estremamente piccole (dell'ordine di grandezza di decimetri) un software specifico, (nel nostro caso si è utilizzato il software RAYFRACT vers 4.01), che stima le velocità sismiche compatibili con ogni singolo elemento affinché i tempi di percorso dei vari fronti d'onda, generati nei punti di tiro disposti lungo il profilo, risultino il più possibile simili ai tempi misurati e letti sui sismogrammi. Il risultato che si ottiene è una griglia di valori di velocità dalla superficie fino alle massime profondità di indagine che caratterizzano i vari elementi in cui è stato suddiviso il sottosuolo.

Questa griglia di valori può essere, quindi utilizzata per rappresentare l'andamento nel sottosuolo delle varie litologie presenti mediante variazioni cromatiche associate alle variazioni di velocità o mediante linee di isovelocità.

15.1.1. Caratteristiche delle stese sismiche

Per tutte le basi sismiche sono state eseguite 5 energizzazioni intervallate ogni 3 geofoni secondo lo schema di acquisizione definito dalla specifiche tecniche.

 $abla {G1: posizione dei geofoni} \quad \bigcirc \ {1.0: N^\circ e posizione delle energizzazioni/shot}$

15.1.2. Caratteristiche della Strumentazione impiegata

Per l'esecuzione delle indagini è stato impiegato un sismografo DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz.

Per l'energizzazione ci siamo avvalsi di mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

Figura 40 Stendimento di sismica a rifrazione in onde P con 24 geofoni, interdistanza di 3,0 m, lunghezza complessiva 69,0

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	53 di 80

La quota relativa di ciascun geofono-shot è stata rilevata tramite una livella digitale e GPS differenziale marca Stonex in modo da poter ricostruire la morfologia del terreno e utilizzarla in fase di elaborazione dei dati acquisiti.

15.1.3. Elaborazione dei dati

I dati delle prospezioni sono costituiti dalla geometria d'acquisizione (posizioni e quote relative dei punti scoppio e dei geofoni) e dai tempi di primo arrivo delle onde elastiche di compressione (onde P), determinati manualmente sulle registrazioni riprodotte a schermo (picking dei primi arrivi). La qualità dei dati è risultata nel complesso buona e il picking è stato realizzato facilmente per tutte le basi sismiche. L'inversione dei dati è stata eseguita secondo i criteri della tomografia sismica, mediante apposito software specialistico basato su tecniche di ottimizzazione non lineare. In particolare, l'elaborazione dei dati di sismica a rifrazione è stata eseguita secondo il metodo tomografico impiegando il software Rayfract 4.01, che parte da un modello iniziale

generato con la tecnica Deltat-V. Successivamente viene effettuata l'inversione iterativa del modello con la tecnica WET (Wavepath Eikonal Traveltime tomography processing) che analizza la propagazione dei vari fronti d'onda generati nei punti di tiro fino ad ogni geofono. Il modello stratigrafico ottenuto come insieme di elementi caratterizzati da una specifica velocità viene quindi rappresentato mediante il contour a linee di isovelocità. La colorazione dei vari elementi secondo una scala cromatica riferita a specifici intervalli di velocità facilità l'immediata visione dei risultati

15.2. Indagini sismiche: MASW

Metodologia

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Rayleigh – "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le

OBUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18		54 di 80

onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

 $v = \lambda \times v$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

15.1.4. Specifiche delle indagini svolte

L'indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a **3,0** m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schema), oltre che una battuta al centro della base sismica.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.

15.1.5. Caratteristiche della strumentazione impiegata

Per l'esecuzione del cantiere d'interesse, è stata impiegata una strumentazione di acquisizione DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz. Per l'energizzazione ci è stata utilizzata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

15.1.6. Interpretazione dei segnali acquisiti

Il metodo interpretativo della M.A.S.W. si compone dei seguenti passaggi di analisi dei segnali acquisiti:

• individuazione della variazione del segnale acquisito nel tempo

• analisi di Fourier con definizione dei contenuti spettrali acquisiti nei segnali

• stacking dello spostamento di fase con definizione delle velocità di rotazione retrograda compatibile con il campo di frequenza definita.

A posteriori dell'analisi matematica del segnale acquisito, definito un modello stratigrafico compatibile con la geologia locale, si provvede all'inversione della curva di dispersione ottenendo la sismo-stratigrafia.

L'elaborazione dei dati che ha prodotto il profilo di velocità è stata realizzata grazie all'impiego del software ZondST2D.

15.1.7. Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)

Le "Norme Tecniche per le Costruzioni" – Decreto del 19/01/2018 definiscono le regole per progettare l'opera sia in zona sismica che in zona non sismica. La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\displaystyle\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

VS,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato H è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione. Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle NTC 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

 Tabella 3.2.II. Categorie di sottosuolo (Fonte NTC 2018)

Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

OPLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Nev 0	56 di 80

15.2. Risultati delle indagini del sito S/M_01 – AG03

15.2.1. Masw M1

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_01 – AG03**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

uni spessore dell'i-esimo strato; V_{S,}velocità delle onde di taglio nell'i-esimo strato; N numero di strati; H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto riaido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 3,0 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 3,0 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0	>800	А

Ciò consente di classificare il terreno **fondazioni poste a profondità > 3m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	n]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	660	330	0,33	520	63	196	520
2	1,0	3,1	8%	2 000	1 040	520	0,33	1 442	174	539	1 442
3	3,1	6,2	10%	2 100	1 920	960	0,33	5 158	622	1 932	5 158
4	6,2	9,9	12%	2 200	3 400	1700	0,33	16 956	2 035	6 355	16 956
5	9,9	17,4	15%	2 350	4 820	2410	0,33	36 403	5 460	13 651	36 403
6	17,4	31,5	25%	2 400	6 220	3110	0,33	61 901	15 475	23 213	61 901
7	31,5	38,0	35%	2 450	8 380	4190	0,33	114 700	40 145	43 013	114 700

Figura 41 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M1

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev O	57 di 80

15.2.2. Rifrazione S1

Nella sezione di sismica a rifrazione S1 è possibile distinguere i seguenti sismostrati:

Stendimento R1	ONDE P		
Sismostrati	Profondità da pc (m)	Velocità in m/s	
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0/2,0	400-1.000	
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/2,0 a 3,0/4,0	1.000-1.700	
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,0/4,0,0 a 4,0/6,0	1.700-2.000	
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 4,0/6,0	2.000-5.200	

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di circa 1-2 m un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) e andamento irregolare rispetto al p.c., si osserva fino a profondità comprese tra 3,0 e 4,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) si osserva fino a 4,0 ÷ 6,0. A seguire il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,0 e 4,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 42 - Sezione sismica R1

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	58 di 80

15.3. Risultati delle indagini del sito S/M_02 – AG06

15.3.1. Masw M2

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_02 – AG06**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

con. hi spessore dell'i-esimo strato; V_{s/}velocità delle onde di taglio nell'i-esimo strato N numero di strati:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0	>800	А

Ciò consente di classificare il terreno per **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	1 100	550	0,33	1 451	175	549	1 451
2	1,0	2,7	8%	2 000	2 040	1020	0,33	5 551	669	2 079	5 551
3	2,7	5,5	10%	2 100	2 940	1470	0,33	12 102	1 458	4 541	12 102
4	5,5	10,5	12%	2 200	3 800	1900	0,33	21 183	2 542	7 944	21 183
5	10,5	20,8	15%	2 350	4 040	2020	0,33	25 566	3 835	9 591	25 566
6	20,8	41,2	25%	2 400	5 680	2840	0,33	51 623	12 906	19 359	51 623
7	41,2	42,2	35%	2 450	9 000	4500	0,33	132 304	46 306	49 613	132 304

Figura 43 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M2

OPLINE Wind St	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	59 di 80

15.3.2. Rifrazione S2

Nella sezione di sismica a rifrazione S2 è possibile distinguere i seguenti sismostrati:

Stendimento R2	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,5/2,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/2,0 a 3,0/4,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,0/4,0,0 a 4,0/5,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 4,0/5,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di circa 1-2 m un andamento parallelo rispetto al piano campagna. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 3,0 e 4,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) si osserva fino a 4,0 ÷ 5,0. A seguire il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,0 e 4,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 44 Sezione sismica R2

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	60 di 80

15.4. Risultati delle indagini del sito S/M_03 – AG15

15.4.1. Masw M3

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_03 – AG15**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Sismostratigrafia e calcolo Vs eq							
Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	hi/Vs (s)	
1	1,00	1,00	530,00	1,00	1,00		
2	2,70	1,70	1020,00	2,70	1,70		
3	5,60	2,90	1650,00	5,60	2,90		
4	10,50	4,90	1860,00	10,50	4,90		
5	19,30	8,80	2120,00	19,30	<mark>8,8</mark> 0		
6	34,10	14,80	2370,00	30,00	10,70		
7	38.00	3.90	3360.00	0.00	0.00		

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato; V_{S/}velocità delle onde di taglio nell'i-esimo strato; N numero di strati; H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0	>800	А

Ciò consente di classificare il terreno **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	ст∗	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	ן		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	1 060	530	0,33	1 344	162	510	1 344
2	1,0	2,7	8%	2 000	2 040	1020	0,33	5 551	669	2 079	5 551
3	2,7	5,6	10%	2 100	3 300	1650	0,33	15 250	1 837	5 717	15 250
4	5,6	10,5	12%	2 200	3 720	1860	0,33	20 300	2 436	7 610	20 300
5	10,5	19,3	15%	2 350	4 240	2120	0,33	28 165	4 225	10 562	28 165
6	19,3	34,1	25%	2 400	4 740	2370	0,33	35 952	8 988	13 484	35 952
7	34,1	38,0	35%	2 450	6 720	3360	0,33	73 757	25 815	27 665	73 757

Figura 45 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M3

OBUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	61 di 80

15.4.2. Rifrazione S3

Nella sezione di sismica a rifrazione S3 è possibile distinguere i seguenti sismostrati:

Stendimento R3	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0 a 2,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 2,0 a 3,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 3,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 46 Sezione sismica R3

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev o	62 di 80

15.5. Risultati delle indagini del sito S/M_04 – AG10

15.5.1. Masw M4

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_04 – AG10**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato; V_{s,I}velocità delle onde di taglio nell'i-esimo strato; N numero di strati;

 numero or strato,
 H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido. caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 6,00 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 6,00 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0 ÷ <0,2	346 ÷ 359	E
0,2 ÷ <3,0	360 ÷ 798	В
≥ 3,0	>800	А

Ciò consente di classificare il terreno per **fondazioni poste tra 0,20m e 3,00m** di profondità come **Categoria B**: *Rocce* tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s, mentre per **fondazioni poste a profondità >3,0** m ricade come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	63 di 80

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[m	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	0,9	terre	1 800	320	160	0,33	127	16	49	127
2	1,0	2,9	8%	2 000	500	250	0,33	333	40	127	333
3	2,9	6,1	10%	2 100	1 560	780	0,33	3 403	410	1 275	3 403
4	6,1	10,2	12%	2 200	3 100	1550	0,33	14 092	1 691	5 286	14 092
5	10,2	18,9	15%	2 350	4 980	2490	0,33	38 855	5 828	14 573	38 855
6	18,9	33,2	25%	2 400	7 140	3570	0,33	81 573	20 393	30 587	81 573
7	33,2	38,1	35%	2 450	8 520	4260	0,33	118 564	41 497	44 464	118 564

Figura 47 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M4

15.5.2. Rifrazione S4

Nella sezione di sismica a rifrazione S4 è possibile distinguere i seguenti sismostrati:

Stendimento R4	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0/3,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/3,0 a 3,5/7,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,5/7,0,0 a 4,5/9,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 8,0/9,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di variabile e crescente da sinistra verso destra della sezione tra 1,0 e 3,0 m circa. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 6,0 e 7,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) è presente sino a 8,0 ÷ 9,0. A seguire, il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,5 e 7,0 m dal p.c i terreni risultano già difficilmente rippabili.

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	ner o	64 di 80

Figura 48 Sezione sismica R4

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	65 di 80

15.6. Risultati delle indagini del sito S/M_05 – AG12

15.6.1. Masw M5

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_05 – AG12**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato;	
Vs,velocità delle onde di taglio nell'i-esimo strato;	
N numero di strati;	
H profondità del substrato, definito come quella formazione costituita da roccia o terreno mo	olto
rigido, caratterizzata da Vs non inferiore a 800 m/s.	

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18		
Da 0,0	>800	А		

Ciò consente di classificare il terreno **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	n]	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,1	terre	1 800	800	400	0,33	765	92	284	765
2	1,0	2,6	8%	2 000	1 700	850	0,33	3 854	464	1 442	3 854
3	2,6	5,5	10%	2 100	3 040	1520	0,33	12 935	1 558	4 854	12 935
4	5,5	10,4	12%	2 200	3 480	1740	0,33	17 760	2 131	6 659	17 760
5	10,4	18,9	15%	2 350	3 960	1980	0,33	24 566	3 685	9 209	24 566
6	18,9	34,2	25%	2 400	4 760	2380	0,33	36 256	9 064	13 592	36 256
7	34,2	38,0	35%	2 450	7 000	3500	0,33	80 033	28 012	30 009	80 033

Figura 49 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M5

OBUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	66 di 80

15.6.2. Rifrazione S5

Nella sezione di sismica a rifrazione S5 è possibile distinguere i seguenti sismostrati:

Stendimento R5	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0 a 2,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 2,0 a 3,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 3,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 50 Sezione sismica R4

ORUNE Wind Srl Geol.	Cosima Atzori		N° Doc. IT-VesOru-CLP-CI\	/-TR-18	Rev 0	Pagina 67 di 80
TAVOLA 1. PLANIMETRIA GENERA Progetto: Realizzazione di un parco eolico Località: Orune (Nu) Scala 1:40.000	ALE CON INDAGINI G	EOFISICHE E G	EOGNOSTICHE	Legenda Indagini MAS	W-RIFRAZIONE	
	All	R4-M4		R3-M3		IN ORD
TAVOIA 2. PLANIMETRIA UBICAZIONE INDAGINI GEOFISICHE Progetto: Realizzacione di un parco edico Localia: Orune (N) Soala 11:00	encure, Marer Technology Got	R2-M2	Tedere 2020: CHES / Anoue, Lencer 4/ Media: Change (March 2010) TEXCLA 3: PLANIMETRIA UELC Progetic: Realizzazione di un parco en Localiz: Chang (Na) Scali 1::00	Cherrence Marter Technologer Castoner Indagini Geofisicher R2-M2 Azioner	Engenda Directores tendimento da la co	Complete School Check Advant
Ingery 2003 Maxer Technolog	a Rimile			agery 62023 Maxier Technologie Corre	2-4/2	
TAYOLA 4. PLANIMETRIA UBICAZIONE INDAGINI GEOFISICHE Progetia: Relazzazione di un proce edice Zeada 11.000 Relazione di unacconstructiva Relazione di u	R3-M3 Legenda Entrimento MASV MIRAZONE EAM Directores stendimento de G1 e G1	4 Lunghezz G1-G24- 69,0 m 24	TAVOLA 5, PLANINETRIA UBIC Propertie: Realizacione di un parco ed Località: Conure (hi) Scala 1:1.000	AZIONE INDAGINI GEOFISICHE R4-M4 feo R4-M4 Inagery ©2023 Maxer Technolog	Etegencia Eteralimiento MASW #IRAZIONE IN4 Directione standimiento de C1 al Directione standimiento de C1 al	1944 - Lungharzz G1 G244 e0,9 m 294

B

0

OPLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	NEV U	68 di 80

TAVOLA 6. PLANIMETRIA UBICAZIONE INDAGINI GEOFISICHE R5-M5 Progetic: Realizzazione di un parco eolico Località: Orune (Nu) Scala 1:1.000	Legenda Stendimento MASW-RIFRAZIONE R5-M5 - Lunghezza G1-G24= 69,0 m Direzione stendimento da G1 a G24
All Second of	A term
Imanery 82023 Mayor Technologie Goo	ale
R5-M5	S.C. C.
	NUN TO
· · · · · · · ·	
the second	

Figura 51 Ubicazione della prospezione geofisica

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	Nev 0	69 di 80

16. Modellazione geologica

16.1. Caratterizzazione geostrutturale degli ammassi rocciosi

Per la definizione dei parametri geotecnici del substrato roccioso al quale la fondazione delle turbine si appoggia, è stato adoperato il criterio di caratterizzazione dell'ammasso roccioso di Hoek-Brown generalizzato (1995), supportato dai dati geostrutturali rilevati in sito in pareti esposte, laddove disponibili, dai dati derivanti dai sondaggi geognostici.

Sulla base di tale classificazione, il cui criterio di rottura è definito dalla relazione seguente:

 $\sigma'_1 = \sigma'_3 + \sigma_{ci} (mb (\sigma'_3 / \sigma_{ci}) + s)^a$

dove:

 $\sigma'_1 e \sigma'_3 = s$ forzi efficaci principali rispettivamente massimo e minimo a rottura; mb = costante d'ammasso

s ed a = costanti d'ammasso

 σ_{ci} = resistenza a compressione monoassiale della roccia intatta

è stato possibile risalire ai parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb.

Tale metodologia si basa su caratteristiche proprie dell'ammasso, valutabili tramite osservazioni in sito o con l'ausilio di tabelle sviluppate sulla base di una vasta raccolta di dati pubblicati in letteratura, attraverso cui è possibile stimare con una certa precisione i parametri di coesione e angolo di attrito interno necessari alle verifiche di stabilità, valutando i seguenti parametri:

- 1. Resistenza a compressione monoassiale (Intact Uniaxial Compressive Strength IUCS) stimata su base empirica (Fig.60) e su valori di Point Load.
- Stima dell'indice GSI (Geological Strength Index) in base alle caratteristiche geologiche dell'ammasso: tale indice, introdotto da Hoek, Kaiser e Bawden (1995), può esser definito sulla base delle caratteristiche dell'ammasso (Fig. 61) o sulla base di un controllo diretto con l'indice RMR della classificazione di Bieniawski.
- 3. Determinazione della costante mi (Funzione del tipo di roccia): i valori delle costanti caratteristiche della roccia (oci e mi) vengono generalmente definiti sulla base di apposite prove di laboratorio, ma in assenza delle suddette, è possibile fare riferimento alla tabella di Fig.62, che riassume i valori della costante mi per diversi tipi di roccia.

	Carl Carina Marri	N° Doc.	D O
ORUNE WIND STI	Geol. Cosima Atzori	IT-VesOru-CLP-CIV-TR-18	Rev 0

70	di	8

CLASSE [*]	DESCRIZIONE	RESISTENZA A COMPRESSIONE MONOASSIALE (MPA)	INDICE DI RESISTENZA (POINT LOAD) (MPA)	VALUTAZIONE DELLA RESISTENZA IN SITO	ESEMPI
R6	Resistenza estremamente elevata	> 250	> 10	Un campione può essere scheggiato solamente con un martello geologico	Basalto intatto, silice, selce, diabase, gneiss granito, quarzite
R5	Resistenza molto elevata	100-250	4-10	Un campione richiede molti colpi di un martello geologico per essere fratturato	Anfibolite, arenaria basalto, gabbro, gneiss, granodiorite calcare, marna riolite, tufi
R4	Resistenza elevata	50-100	2-4	Un campione richiede più di un martello geologico per essere fratturato	Calcare, marna, fillite, arenaria, scisto, argillite
R3	Resistenza media	25-50	1-2	Non può essere raschiato o spellato con un coltellino, un campione può essere fratturato con un solo colpo mediante un martello geologico	Argillite, carbone, calcestruzzo, scisto, siltite
R2	Resistenza bassa	5-25	[**]	Con difficoltà può essere spellato con un coltellino, una intaccatura superficiale può essere procurata con un colpo inferto mediante la punta di un martello geologico	Calcare bianco, salgemma
R1	Resistenza molto bassa	1-5	[**]	Si frantuma per effetto di alcuni colpi con la punta di un martello geologico, può essere spellato mediante un coltellino	Rocce estremamente alterate o alterate
R0	Resistenza estremamente bassa	0.25-1	[**]	Intagliato con l'unghia di un pollice	Miloniti, cataclasi

Figura 52 - Resistenza a compressione monoassiale per diversi tipi di roccia

Figura 53 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali dell'ammasso

Sulla base di queste caratteristiche si ottengono i seguenti valori di mb, s, a :

mb = mi [(GSI-100)/28] *s* = e [(GSI-100)/(9-3D)] *a* = 0,5 (per GSI >25)

OBLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-18	nev o	71 di 80

tramite i quali si stimano coesione e angolo di attrito interno secondo il criterio di rottura di Mohr-Coulomb:

 $\sigma'1 = (2c'\cos \phi'/1 - \sin \phi') + (1 + \sin \phi'/1 - \sin \phi') \sigma'3$

I valori coesione e di angolo di attrito interno ottenuti attraverso l'applicazione di tale classificazione sono in generale rispondenti alla tipologia litologica interessata.

È utile sottolineare che esistono delle correlazioni dirette fra i valori di GSI e il valore RMR del sistema di classificazione di Bieniawski

TIPO	CLASSE GRUPPO		-	TESSITURA		
DI ROCCIA			GROSSOLANA	MEDIA	FINE	MOLTO FINE
OIMENTARIE	Clastiche		Conglomerato (22)	Arenaria 19 Grova	Siltite 9	Argillite 4
	Organogene				bianco) one 21)	-
S	Non clastiche	Carbonatiche	Breccia(20)	Calcare Sparitico (10) Calcare Micritico 8		
		Chimiche		Gesso 16	Anidride 13	
IOHE	Non	foliate	Marmo 9	Hornfels (19)	Quarzite 24	
MORF	Leggermente foliate		Migmatite (30)	Anfibolite 25-31	Miloniti (6)	
META	Foliate*		Gneiss 33	Scisti 4-8	Filliti (10)	Scisti argillosi
	С	hiare	Granito 33		Riolite (16)	Ossidiana (19)
			Granodiorite (30)		Dacite (17)	
IGNEE			Diorite (28)		Andesite 19	
	Scure	Gabbro 27	Dolerite (19)	Basalto (17)		
			Norite 22			
	Effusive	piroclastiche	Agglomerato (20)	Breccia (18)	Tufo (15)	

Figura 54 Valori della costante mi per diversi tipi di roccia

ORUNE Wind Srl Geol. Cosima Atzori		IT-Ve	N° Doc. esOru-CLP-CIV	/-TR-18	Rev 0	Pagin 72 di 8
Criterio di rottura empirico $\sigma'_1 = \sigma'_3 + \sqrt{m\sigma_{u(r)}\sigma'_3 + s\sigma^2_{u(r)}}$ $\sigma'_1 = tensione efficace principale massima \sigma'_3 = tensione efficace principale minima \sigma_{u(r)} = resistenza a compressione monoassiale m ed s: costanti empiriche$	COSTANTI DEL MATERIALE: m. s	ROCCE CARBONATICHE CON CLIVAGGIO CRISTALLINO BEN SVILUPPATO Dolomite, calcare e marmo.	ROCCE ARGILLOSE LITIFICATE Argülte, süttle, scisti argitlosi con cilvaggio ben marcato.	ROCCE ARENACEE CON ELEVATA CRISTALLIZZAZIONE E LIMITATO SVILUPPO DI CLIVAGGIO PER CRISTALLIZZAZIONE Arenaria e quazzite	POCCE CRISTALLINE IGNEE E GRANA FINE Andesite, dolerite, diabase e noite	HOCCE IGNEE A GRANA GROSSOLANA E ROCCE CRISTALLINE METAMOFICHE Antibolite, gabbro, gneiss, norite, quarzo-diorite

10.00

1.00

3.43

0.082

0.821

0.00293

0.183

0.00009

0.041

0.000003

0.010

0.0000001

15.00

1.00

5.14

0.082

1.231

0.00293

0.275

0.00009

0.061

0.000003

0.015

0.0000001

17.00

1.00

5.82

0.082

1.395

0.00293

0.311

0.00009

0.069

0.000003

0.017

0.0000001

25.00

1.00

8.56

0.082

2.052

0.00293

0.458

0.00009

0.102

0.000003

0.025

0.0000001

T

m

s

m

s

m

5

m

\$

m

s

m

8

7.00

1.00

2.40

0.082

0.575

0.00293

0.128

0.00009

0.029

0.000003

0.007

0.0000001

CAMPIONI DI ROCCIA INTATTA Campioni di laboratorio senza discontinuità

spaziatura compresa fra 1 e 3 m

AMMASSO ROCCIOSO DI OTTIMA QUALITÀ Ammasso roccioso indisturbato con giunti non alterati di

AMMASSO ROCCIOSO DI BUONA QUALITÀ

Roccia sana o leggermente alterata, leggermente distur-

bato con giunti di spaziatura compresa fra 1 e 3 m.

AMMASSO ROCCIOSO DI DISCRETA QUALITÀ Numerose famiglie di giunti moderatamente alterati, con

AMMASSO ROCCIOSO DI QUALITÀ SCADENTE Numerosi giunti alterati con spaziatura compresa fra 30

e 500 mm, alcuni con riempimento. Detrito di roccia puli-

AMMASSO ROCCIOSO DI QUALITÀ MOLTO SCADENTE Numerosi giunti molto alterati con spaziatura inferiore a

50 mm e con riempimento. Detrito di roccia con mate-

spaziature comprese fra 0.3 e 1 m.

(matrice rocciosa)

Indice CSIR: RMR = 100 Indice NGI: Q = 500

Indice CSIR: RMR = 85 Indice NGI: Q = 100

Indice CSIR: RMR = 65 Indice NGI: Q = 10

Indice CSIR: EMR = 44 Indice NGI: Q = 1

ta compattata. Indice CSIR: RMR = 23 Indice NGI: Q = 0.1

riale fine.

Indice CSIR: RMR = 3 Indice NGI: Q = 0.01

CSIR (Commonwealth Scientific and Industrial Research Organization) Organizzazione Scientifica ed Industriale di Ricerca (Bieniawski 1974) NGI Norway Geotechnical Institute (Barton 1974)

Figura 55 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia.
OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
ORONE WING SH		IT-VesOru-CLP-CIV-TR-18	Nev 0	73 di 80

L'analisi delle caratteristiche geomeccaniche in sito degli ammassi rocciosi interessati dal progetto e l'applicazione del metodo di Hoek-Brown per la definizione dei parametri geotecnici del substrato roccioso ha portato alla classificazione di nr.**3 tipologie** per ogni condizione litologica e strutturale che caratterizza le formazioni presenti. Per il calcolo degli indici e della relativa trasformazione in parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb è stato utilizzato il software RocData vers.3.0 della Rocscience Inc.

Nello specifico: nel livello S1, indicato come "terre debolmente addensate/roccia tenera fratturata", è stato considerato un valore estremamente basso di sgci (valore indicativo della resistenza a compressione uniassiale).

Nei successivi livelli S2, S3 e S4 l'sgci è stato riportato come da osservazioni e classifica speditiva di campo.

Il secondo valore che varia al variare della profondità è il GSI, tale valore dà indicazioni sullo stato di fratturazione della roccia, in questo caso unicamente nel livello S1 non si è tenuto conto di questo valore poiché trattasi di terre sciolte, mentre dal livello S2 al livello S5 si passa da "disintegrated" a "blocky"(rif Fig.52).

Si tratta di valori stimati in base a indagini indirette e a osservazioni su campo, pertanto da confermare puntualmente in fase di progettazione esecutiva.

OPLINE Wind Srl	Gool Cosima Atzori		N° Doc.		Pov 0	Pagina
ORONE WIND SH	Geol. Cosilia Atzoli		IT-VesOru-CLP-CIV-TR-1	8	Kev U	74 di 80
Facies di Orune - BTU Standard ISRM = R5 U martello per essere fri Instabilità= scivolame Ammasso roccioso= d Struttura= massiccia Alterazione= da molto Pareti – mediamente Riempimento – sciolto Roccia – da asciutta a	b n campione richiede mo atturato nti planari e a cuneo a poco a fratturato o alterata a poco alterata alterate o umida	olti colpi di	Tr-VesOru-CLP-CIV-TR-1	8 to of Rock/Soil Strength using RocData Hock-Brown Citerion m = 3:031 = 3 mi = 30 0007 Mick-Brown Citerion m = 3:031 = 3 mi = 30 0007 Mick-Brown Citerion Citerion = 5:050 Mila Rock Mass Parameter Unsile strength = 4:20 modulus of deformation BTUCK	hv strength = 100 MPa urbance factor = 0 a = 0.516 friction angle = 37.32 deg MPa = 4216 97 MPa 	74 di 80
Centre in the second se	Rock/Sol Strength using RocData Hock-Roswn Classification Index-Roswn Classification Biol = 48 in t = 37 transvestments for 100 MPa index-Brown Citerion mb 5:776 s = 0.031 s = 0.507 Motr. Coalomb Fit cohestor P.7.184Pa friction angle = 41.26 deg Rock Mass Tearnet-Bi Indexid compressive strength = 5.556 MPa gibble Strength = 31.721 MPa modulus of deformation = 8912.51 MPa BTUB_S3 BTUB_S3		100 170 160 160 100 120 100 100 100 100 100 100 100 10	Analysis of Rock/Soil Strength u Hock-Brown Sill 59 Hock-Brown mb = 0.55 Moch-Could global str modules of BCK Mass P Unixis of BCK Mass P BTU	sing RocData Classification will compressive strength = 100.1 mi = 37 Diaturtance factor = 0 Criterion 8 = e-0.0105 = e-0.503 bFit = 8.256 MPa friction angle = 44.1 ymmeters mongth = -0.123 MPa mongth = 39.398 MPa 1 deformation = 1878.8.04 MPa b_S4	Pa .2 deg

Figura 56 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies di Orune

20 30 Normal stress (MPa)

Gool Cosima Atzori	N° Doc.	Roy 0	Pagina
Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-18	Kev U	75 di 80

Facies di Orune – BLA2b

- Standard ISRM = R5 Un campione richiede molti colpi di martello per essere fratturato Instabilità= scivolamenti planari e a cuneo Ammasso roccioso= da poco a fratturato
- Struttura= massiccia
- Alterazione= da molto alterata a poco alterata
- Pareti mediamente alterate
- Riempimento sciolto
- Roccia da asciutta a umida

Figura 57 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies di Orune

16.2. Viabilità di impianto e sottostazione

La viabilità di impianto è stata scelta utilizzando dei tracciati preesistenti che verranno adeguatamente ridefiniti nelle sezioni nella misura utile e funzionale al servizio destinato con particolare riferimento alla fase di realizzazione del parco ove avverrà la maggior se non totale movimentazione di carichi e mezzi. La stessa viabilità sarà mantenuta in fase di esercizio.

La viabilità dovrà sopportare un peso per asse pari a 20,5 tonnellate/metro quadro, una pressione massima di circa 2 kg/cm. La carreggiata dovrà essere pari a 5 metri. La pendenza longitudinale massima della viabilità per strade con fondo sterrato o ghiaioso deve essere in condizioni ordinarie del 10% circa, la pendenza potrà essere del 12 % (16% pendenza massima in alcuni tratti) sia in rettilineo che in curva. La pendenza longitudinale minima sarà superiore o al più uguale al 0.5% per permette una rapida evacuazione delle acque superficiali dal manto stradale, che sarà in ogni caso permeabile. Si esclude l'uso di bitume.

Sostanzialmente tutta la viabilità si snoda lungo substrato roccioso con presenza in taluni casi di una copertura superficiale di terreno vegetale e /o roccia degradata con spessori variabili **da 0,00m a 1,00m**.

Per quanto riguarda a scavabilità del substrato roccioso esso nelle varie facies presenti e nella parte superficiale risulta quasi sempre da fratturato a molto fatturato per cui facilmente scavabile con ripper e martellone.

La possibile presenza di alcune saccature a forte componente argillosa suggerisce di prevedere opere di smaltimento delle acque superficiale adeguatamente dimensionate.

Il tracciato del cavidotto si snoda lungo aree pianeggianti e tracciati stradali esistenti. Il cavidotto in progetto andrà a interessare le stesse formazioni che sono terreno di sedimen delle turbine.

17. Modello geologico di sito

Sulla base di quanto emerso dai rilievi e dalle indagini in sito, nell'approccio progettuale, stante il contesto geologico si evidenziano le seguenti criticità a cui sarà necessario prestare la opportuna attenzione nella progettazione esecutiva dell'opera e nelle varie fasi di realizzazione.

L'analisi di tali fattori è funzionale alla progettazione e ha lo scopo di valutare la risposta del terreno ai nuovi carichi ed individuare azioni correttive o accorgimenti tali da limitarne gli effetti. Nello specifico:

- 1. <u>Azioni sulle pareti e stabilità dei fronti</u>. Lo scavo stesso, in quanto genera depressione, può innescare locali smottamenti in corrispondenza degli orizzonti meno competenti a causa di fenomeni di detensionamento determinati dall'asportazione del materiale durante l'escavazione, sia in relazione ai livelli meno competenti sia alle direzioni del sistema di fratturazione che può generare componenti a franapoggio. La profonda deformazione che le metamorfiti hanno subito genera variazioni di giacitura anche nell'ordine del metro pertanto si ritiene importante in fase di realizzazione degli scavi di fondazione eseguire un dettagliato rilievo geostrutturale finalizzato all'esclusione di ogni possibile rischio di crollo e/o slittamento di porzioni di parete.
- 2. <u>Circolazione idrica sotterranea secondaria o indotta e/o stagnazione di acque di pioggia</u> pur se non è stata rilevata in fase di indagine, vanno considerati gli effetti dell'eventuale presenza d'acqua alla quota di imposta delle fondazioni in relazione ad una possibile circolazione idrica indotta dai fenomeni di detensionamento dovuti agli scavi, con particolare riferimento alla stagionalità degli apporti idrici e del relativo flusso negli ambiti più superficiali. In tal caso, in fase esecutiva, sarà opportuno provvedere a mantenere lo scavo asciutto mediante l'installazione di pompe adeguatamente dimensionate per la portata da emungere.

L'analisi ha permesso di fatto di definire il modello geologico del sito ed in particolare, in relazione alle diverse condizioni geologiche e geostrutturali rilevate, è stato individuato **nr.2 modelli geologici rappresentativi** descritti di seguito:

17.1. Modello Geologico 01 -

AG01/AG02/AG03/AG04/AG/05AG06/AG/07AG08/AG09/AG10/AG11/AG12/AG13/AG14

Per la caratterizzazione sono stati utilizzati i dati degli stendimenti geofisici **R1-R2-R4-R5** e le osservazioni in sito. Il modello interessa la formazione intrusiva **BTUb Facies Orune (UNITÀ INTRUSIVA DI BENETUTTI). Granodioriti** monzogranitiche, biotitiche, a grana medio-grossa, inequigranulari per Kfs biancastri di taglia 8-10 cm; tessitura orientata per flusso magmatico. CARBONIFERO SUP. - PERMIANO.

A partire dal piano campagna dopo un primo spessore di circa 0,90 in terre addensate si incontra un livello superficiale di roccia intensamente fratturata a quota variabile da 2,9m a 6,1m, il sottostante substrato roccioso fratturato prosegue fino ad una profondità di circa 10,2 m con velocità di Vs pari a 1550m/sec. Il substrato prosegue da debolmente fratturato a sano fratturato fino ad una profondità di circa 33m da p.c. oltre la quale le velocità Vs risultano oltre i 4260m/sec indicando roccia sana.

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s. Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di variabile e crescente da sinistra verso destra della sezione tra 1,0 e 3,0 m circa. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 6,0 e 7,0 m dal p.c. Il sismostrato C.

intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 6,0 e 7,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) è presente sino a 8,0 ÷ 9,0. A seguire, il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,5 e 7,0 m dal p.c i terreni risultano già difficilmente rippabili.

Il modello è stato costruito considerando i valori più cautelativi ottenuti atraverso trattazione mepirica dei dati geofisici rilevati. Pertanto, considerato il contesto geologico in esame in fase di progettazione esecutiva si consiglia di eseguire delle indagini geognostiche e geofisiche di maggiore dettaglio (in es. sondaggi a carotaggio e geofisica eseguita con stendimenti ubicati a raggiera rispetto al centro della torre eolica).

BTUb

0.00m – 0,90m 0.90m – 2,90-6,10m 2,9-6,10m – 10m 10m – in poi Terre/roccia affiorante molto alterata Roccia tenera e/o intensamente fratturata Substrato roccioso debolmente fratturato Substrato da debolmente fratturato a sano

ORUNE - MODELLO GEOLOGICO 01 -

AG01/AG02/AG03/AG04/AG/05AG06/AG/07AG08/AG09/AG10/AG11/AG12/AG13/AG14

Dati Parametri Resistenza						
Tipo di Terreno		S1- Roccia tenera e/o fratturata	S2 – Roccia tenera e/o intensamente fratturata	S3 – Substrato roccioso debolmente fratturato	S4- Substrato da debolmente fratturato a sano	
Descrizione						
Peso di volume	[kg/mc]	1800	2000	2100	2350	
Peso di volume saturo	[kg/mc]	1900	2000	2100	2350	
Angolo di attrito interno	[°]	27.02	37.36	41,26	44,52	
Coesione	[Mpa]	0.3013	5.990	7.184	8.256	
Dati Parametri Deformabil	ità					
Modulo elastico statico	[Mpa]	63	174	2035	5460	
Coefficiente di Poisson	[]	0,33	0,33	0,33	0,33	
Modulo di taglio (G)	[Mpa]	196	539	6355	13651	
Velocità onde di taglio Vs	[m/sec]	330	520	1700	2410	

17.2. Modello Geologico 02 – AG15

Per la caratterizzazione sono stati utilizzati i dati dello stendimento geofisico M3 e le osservazioni in sito. Il modello interessa le formazioni intrusive BLA2b Facies Ponte S'Archimissa (Subunità intrusiva di Punta Biriai - UNITÀ INTRUSIVA DI MONTE SAN BASILIO). Monzograniti a due miche e cordierite, a grana medio-fine, inequigranulari, porfirici per Kfs biancastri di taglia centimetrica e subordinato Qtz globu.

A partire dal piano campagna dopo un primo spessore di circa 1m in terre addensate si incontra un livello superficiale di roccia intensamente fratturata a quota variabile da 2,7m a 5,6m, il sottostante substrato roccioso fratturato prosegue fino ad una profondità di circa 10,5 m con velocità di Vs pari a 1860m/sec. Il substrato prosegue

da debolmente fratturato a sano fino ad una profondità di circa 34m da p.c. oltre la quale le velocità Vs risultano oltre i 3360m/sec indicando roccia sana.

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Il modello è stato costruito considerando i valori più cautelativi ottenuti attraverso trattazione empirica dei dati geofisici rilevati. Pertanto, considerato il contesto geologico in esame in fase di progettazione esecutiva si consiglia di eseguire delle indagini geognostiche e geofisiche di maggiore dettaglio (in es. sondaggi a carotaggio e geofisica eseguita con stendimenti ubicati a raggiera rispetto al centro della torre eolica).

	0.00m – 1,00m	Terre poco addensate
BLA2b	1,00m – 2,70m	Roccia tenera e/o intensamente fratturato
	2,70m – 10,50m	Substrato roccioso debolmente fratturato
	10,50m – 34m	Substrato da debolmente fratturato a sano

ORUNE - MODELLO GEOLOGICO 02 - AG15						
Dati Parametri Resistenza						
Tipo di Terreno		S1- Terre poco addensate	S2 – Roccia tenera e/o intensamente fratturato	S3 – Substrato roccioso debolmente fratturato	S4- Substrato da debolmente fratturato a sano	
Descrizione						
Peso di volume	[kg/mc]	1800	2000	2100	2200	
Peso di volume saturo	[kg/mc]	1900	2000	2100	2200	
Angolo di attrito interno	[°]	27.02	38.57	39.47	45.11	
Coesione	[Mpa]	0.3013	6.358	6.632	8.467	
Dati Parametri Deformabilità						
Modulo elastico statico	[Mpa]	162	669	1837	2436	
Coefficiente di Poisson	[]	0,33	0,33	0,33	0,33	
Modulo di taglio (G) [Mpa]		510	2079	5717	7610	
Velocità onde di taglio Vs [m/sec]		530	1020	1650	1860	

Pagina

Lo studio condotto finalizzato ad individuare le caratteristiche geologiche, geomorfologiche idrogeologiche e geostrutturali dell'area di interesse alle opere di progetto ha permesso, attraverso il rilievo diretto in sito, le indagini geognostiche e l'interpretazione sinergica tra le informazioni derivate, di definire nr. 2 modelli geologici ai sensi delle NTC 2018 rappresentativi delle diverse condizioni del sito, con particolare riferimento alle posizioni degli aerogeneratori e alla viabilità di accesso e di servizio al sito.

Per quanto concerne l'installazione degli aerogeneratori, gli stessi prevedono opere fondanti costituite da plinti circolari a sezione troncoconica il cui piano di posa è previsto ad una profondità di riferimento di 4m da piano campagna.

L'analisi geologica ha restituito per queste profondità di scavo una condizione generalmente rappresentata da ammassi rocciosi da molto fratturati a fratturati in relazione alla tipologia litologica come definito nei diversi modelli geologici individuati.

In ordine al grado di fratturazione si identificano le seguenti criticità alle quali tener conto in fase di progettazione esecutiva quando i modelli geologici individuati verranno confermati da indagini specifiche e puntuali sui siti di imposta dei singoli aerogeneratori:

- 1. Azioni sulle pareti e stabilità dei fronti: Lo scavo stesso, in quanto genera depressione, può innescare locali smottamenti in corrispondenza degli orizzonti meno competenti a causa di fenomeni di detensionamento determinati dall'asportazione del materiale durante l'escavazione, sia in relazione ai livelli meno competenti sia alle direzioni del sistema di fratturazione che può generare componenti a franapoggio.
- 2. La profonda fratturazione che le granodioriti hanno subito genera variazioni di giacitura anche nell'ordine del metro pertanto si ritiene importante in fase di realizzazione degli scavi di fondazione eseguire un dettagliato rilievo geostrutturale puntuale finalizzato all'esclusione di ogni possibile rischio di crollo e/o slittamento di porzioni di parete.
- 3. Circolazione idrica sotterranea secondaria o indotta e/o stagnazione di acque di pioggia: pur se non è stata rilevata in fase di indagine, vanno considerati gli effetti dell'eventuale presenza d'acqua alla quota di imposta delle fondazioni in relazione ad una possibile circolazione idrica indotta dai fenomeni di detensionamento dovuti agli scavi, con particolare riferimento alla stagionalità degli apporti idrici e del relativo flusso negli ambiti più superficiali delle coltri di alterazione. In tal caso, in fase esecutiva, sarà opportuno provvedere a mantenere lo scavo asciutto mediante l'installazione di pompe adeguatamente dimensionate per la portata da emungere.

Per quanto riguarda la scavabilità del substrato roccioso esso, nelle facies presenti e nella parte superficiale, risulta quasi sempre da fratturato a molto fatturato per cui facilmente scavabile con ripper e martellone.

Il tracciato del cavidotto si snoda lungo aree pianeggianti e tracciati stradali esistenti. Il cavidotto in progetto andrà a interessare le stesse litologie terreno di sedime dell'impianto. Non sono previste fondazioni profonde pertanto non si rilevano particolari criticità per la circolazione idrica sotterranea, salvo il controllo del deflusso delle acque superficiali.