ORUNE Wind Srl

Parco Eolico ORUNE sito nel Comune di Orune (NU)

Relazione Geotecnica

Maggio 2023

Regione Autonoma della Sardegna			Comune di Oruno	2
Committente: ORUNE Wind Srl		ORUNE Win Via Sardegn 00187 Roma P.IVA/C.F. 1	d Srl a, 40 a 5802491009	
Titolo del Progetto:				
Pare	co Eolico ORUNE s	sito nel Comu	ne di Orune (NU)	
Documento:		N° Documento):	
Relazione Geotecnica		1	T-VesOru-CLP-CIV-	TR-20
Centro Direzionale "Pittarello" Loc. Scala Sa Perda, 87 09028 Sestu (CA) T +39 070 734 6008 Mob +39 345 788 2814 e-mail: info@gaiaconsulting.et	Progettista: Dott. Geol. Cosima	Atzori		
Rev Data Revisione	Descrizione	Redatto	Controllato	Approvato
00 04.052023	Prima emissione	Cosima Atzori		

OPLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	NEV U	3 di 61

Sommario

1.	Premessa	6
2.	Normativa di riferimento	6
3.	Studio e indagini di riferimento	6
4.	Inquadramento geografico generale	7
5.	Caratteristiche di progetto dell'opera	12
6.	Inquadramento geologico	14
6.1.	. Descrizione del contesto geologico dell'area vasta oggetto di intervento	14
6.2.	. Successione litostratigrafica dell'area di intervento	15
6.2.	.1. Unità Intrusive del Paleozoico	15
6.2.	.2. Depositi Quaternari dell'area continentale	16
7.	Analisi qualitativa di stabilità dell'ammasso roccioso	
10.1	1. Caratteristiche delle acque sotterranee	19
10.2	2. Analisi della vulnerabilità degli acquiferi	23
8.	Indagini geognostiche	24
8.1.	. Generalità sul metodo sismico a rifrazione	24
8.1.	.1. Caratteristiche delle stese sismiche	25
8.1.	.2. Caratteristiche della Strumentazione impiegata	25
8.1.	.3. Elaborazione dei dati	26
8.1.	.4. Specifiche delle indagini svolte	27
8.1.	.5. Caratteristiche della strumentazione impiegata	27
8.1.	.6. Interpretazione dei segnali acquisiti	28
8.1.	.7. Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)	28
8.2.	. Risultati delle indagini del sito S/M_01 – AG03	29
8.2.	.1. Masw M1	29
8.2.	.2. Rifrazione S1	
8.3.	. Risultati delle indagini del sito S/M_02 – AG06	31
8.3.	.1. Masw M2	31
8.3.	.2. Rifrazione S2	32
8.4.	. Risultati delle indagini del sito S/M_03 – AG15	33
8.4.	.1. Masw M3	

	ODUNE WELLS		N° Doc.	F ^	Pagina
	ORUNE Wind Srl	Geol. Cosima Atzori	IT-VesOru-CLP-CIV-TR-20	Rev 0	4 di 61
8.4.2	. Rifrazione S3				
8.5.	Risultati delle ir	ndagini del sito S/M 04	– AG10		
		, <u> </u>			
8.5.1					35
8.5.2	. Rifrazione S4				
8.6.	Risultati delle ir	ndagini del sito S/M 05	– AG12		
		, <u> </u>	-		
8.6.1	Masw M5				
8.6.2	2. Rifrazione S5				
9.	Modellazione ge	ologica			43
9.1.	Caratterizzazior	ne geostrutturale degli a	ammassi rocciosi		43
9.2.	Viabilità di impi	anto e sottostazione			
• • • •					
10.	Modello geolog	rico di sito			51
10.1	Modello Geolo	ngico 01 –			
AG0	1/AG02/AG03/AG	504/AG/05AG06/AG/07	AG08/AG09/AG10/AG11/AG12/AG13/AG14		51
10.2	Modello Geolo	$\Delta g = \Delta G $			52
10.2		56100 02 71015			
11.	Descrizione del	l'opera di fondazione d	egli aerogeneratori		
• • •	Beschizione den				
12.	Azioni e resiste	nze nelle verifiche agli s	stati limite		
13.	Verifiche di sicu	ırezza (§c6.4.2)			56
Verif	iche di sicurezza	agli SLU di tipo geotecn	ico (GEO) (§C6.4.2.1)		56
Verif	riche di esercizio ((SLE) (§C6.4.2.2)	· · · · · · · · · · · · · · · · · · ·		57
14.	Condizioni di ca	rico delle fondazioni de	egli aerogeneratori		57
15.	Modelli geoteci	nici di riferimento per le	e verifiche		57
1.	Modello Geotecn	ico 04			58
16.	FRONTI DI SCA	/O (§C6.8.6)			61
Indic	e delle figure				
	_				
Figu	ra 1 Localizzazion	e del progetto			7
Figu	ra 2 Inquadramer	nto topografico su C.T.R.	. RAS scala 1:10000, sezione Nord		9
Figu	ra 3 Inquadramer	nto topografico su C.T.R.	. RAS scala 1:10000, sezione Sud		10
Figu	ra 4 Inguadramer	nto topografico su Carta	IGM scala 1:25000		11
Figu	ra 5 Paesaggio ca	ratteristico dell'area di s	studio		12
Figu	ra 6 Schema tetto	onico-strutturale della S	ardegna		14
Figu	ra 7 - Depositi col	luviali (b2) – (pressi AG	 15)		17
0			-		

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	Nev O	5 di 61

Figura 11 - Monografia del pozzo censito nell Archivio Nazionale delle Indagini nel Sottosuolo	21
Figura 12 Schema esemplificativo, non in scala, dei processi di infiltrazione e deflusso sotterraneo	22
Figura 13 Stendimento di sismica a rifrazione in onde P con 24 geofoni, interdistanza di 3,0 m, lunghezza	
complessiva 69,0	25
Figura 14 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M1	L29
Figura 15 - Sezione sismica R1	30
Figura 16 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M2	231
Figura 17 Sezione sismica R2	32
Figura 18 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – Ma	333
Figura 19 Sezione sismica R3	34
Figura 20 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M4	136
Figura 21 Sezione sismica R4	37
Figura 22 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M5	538
Figura 23 Sezione sismica R4	39
Figura 24 Ubicazione della prospezione geofisica	41
Figura 25 - Resistenza a compressione monoassiale per diversi tipi di roccia	44
Figura 26 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali	
dell'ammasso	44
Figura 27 Valori della costante mi per diversi tipi di roccia	45
Figura 28 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia	46
Figura 29 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies	
di Orune	48
Figura 30 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies	
di Orune	49
Figura 28 - Caratteristiche geometriche della fondazione	54

1. Premessa

Nell'ambito della redazione del Progetto Definitivo del Parco Eolico denominato "**ORUNE**" dislocato nel territorio comunale dei comuni di **Orune** - Provincia di Nuoro (NU), al fine di avere un quadro completo del contesto geologico e geotecnico è stata redatta la presente **Relazione Geotecnica** la cui stesura ottempera quanto previsto dal D.M. del 17/01/2018 recante le nuove Norme Tecniche per le Costruzioni (di seguito NTC), con l'obiettivo di evidenziare, le caratteristiche geologico-morfologiche e il comportamento fisico-meccanico dei terreni interessati dalle opere in progetto attraverso:

- 1. La caratterizzazione geotecnica preliminare del modello geologico di sito;
- 2. L'analisi dell'interazione opera-terreno nel volume significativo in funzione delle caratteristiche geotecniche dei terreni di imposta, in relazione alla generica tipologia di fondazioni previste e le potenziali interazioni con le dinamiche di circolazione sotterranea eventualmente esistenti.
- 3. La valutazione preliminare della portanza dei terreni e l'indicazione delle indagini da realizzarsi in fase esecutiva necessarie alla determinazione dei parametri geotecnici specifici per ogni sito.

2. Normativa di riferimento

La presente relazione è redatta in osservanza a quanto stabilito dalla vigente normativa in materia, con particolare riferimento a:

- D.M LL.PP. 11.03.1988 "Norme Tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii attuali e delle scarpate, i criteri generali e le prescrizioni pe la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione in applicazione della Legge 02.02.1974 n°64.
- 2. Circ. Min. LL.PP. n° 30483 del 24.09.1988 Istruzioni per l'applicazione del D.M. LL.PP.11.03.1988.
- 3. Raccomandazioni, programmazione ed esecuzione delle indagini geotecniche, 1975 Associazione Geotecnica Italiana.
- 4. D.M. Infrastrutture 17.01.2018 Norme Tecniche per le Costruzioni. (6.2.1 Caratterizzazione e modellazione geologica del sito, 6.4.2 Fondazioni superficiali)
- 5. Circ. Min. Infrastrutture e Trasporti 21.01.2019 n°7 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17.01.2018.
- 6. D.L. 3 aprile 2006, n. 152 e successive modificazioni "Norme in materia ambientale".

3. Studio e indagini di riferimento

Le informazioni topografiche e geologiche dell'area oggetto della presente relazione sono state ricavate dalle pubblicazioni ufficiali e cartografia tematica esistente. Si elencano di seguito:

- 1. Carta Topografica I.G.M. scala in 1:25000
- 2. Carta Tecnica Regionale in scala 1:10000
- 3. Carta Geologica dell'Italia in scala 1:100000
- 4. Carta Geologica dell'Italia in scala 1:50.000 (CARG).
- 5. Cartografia Geologica di base della R.A.S. in scala 1:25.000
- 6. RAS Carta dell'Uso del Suolo della Regione Sardegna, 2008
- 7. I.S.P.R.A. Archivio nazionale delle indagini nel sottosuolo (legge 464/84)
- 8. RAS Studio dell'Idrologia Superficiale della Sardegna, annali idrologici 1922-2009
- 9. RAS Autorità di Bacino Piano Stralcio d'Assetto Idrogeologico
- 10. RAS Autorità di Bacino Piano di Tutela delle Acque

- 11. RAS Autorità di Bacino Piano Stralcio delle Fasce Fluviali
- 12. Foto aeree, Regione Sardegna

I dati a disposizione sono stati integrati con le informazioni derivanti dai sopralluoghi effettuati dalla scrivente in sito e dagli esiti della campagna di indagini geognostiche eseguite rispettivamente in data 29 e 30 marzo 2023 nella zona di interesse.

4. Inquadramento geografico generale

Il paese di Orune dall'alto dei suoi 800 metri sul livello del mare raggiunti dal rione Cuccuru 'e Teti, appare come un balcone affacciato alla vallata del rio Isalle da dove si può intravedere un panorama che spazia dal Massiccio del Mont'Albo, al Mare della Baronia di Orosei, alla catena del Gennargentu nella Barbagia di Ollolai, fino ai Monti del Marghine. Inoltre dalla cima di Cucumache, 909 metri di altezza che etimologicamente significa punto di Guerra, per la sua vastità di vedute si può allargare la vista fino alle lontana Gallura, il Logudoro e alle più vicine regioni del Monte Acuto e del Goceano.

Nel suo vasto territorio (128 km quadrati, dei quali 64 di proprietà del comune e i restanti di proprietà di privati) vi sono splendidi boschi di quercia da sughero, leccio e roverella. Dal punto di vista altimetrico, il territorio comunale è compreso tra i 99 metri s.l.m. della valle di Isàlle e i 914 metri s.l.m. di Cùccuru 'e su piràstru.

L'area fu abitata già in epoca prenuragica e nuragica, per la presenza sul territorio di alcune domus de janas, tombe dei giganti, nuraghi e pozzi sacri, siti ricchi di numerosi reperti archeologici.

Figura 1 Localizzazione del progetto

In epoca medievale appartenne al Giudicato di Torres e fece parte della curatoria del Goceano e alla diocesi di Castro. Alla caduta del giudicato (1259) entrò a far parte del giudicato di Arborea sotto il quale dal 1339 fece parte della contea del Goceano, e all'estinzione del casato giudicale passò al Marchesato di Oristano. Alla definitiva sconfitta del marchesato (1478) tutta la contea del Goceano passò sotto il dominio aragonese, ove divenne un feudo regio. Fu riscattato agli ultimi feudatari nel 1839 con la soppressione del sistema feudale. Proprio per questo

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	Nev 0	8 di 61

alcuni studiosi sostengono che Orune sia ultimo centro del Goceano. A vantaggio di questa ipotesi viene in aiuto la parlata orunese che è ha molte affinità con il sardo Logudorese parlato in quelle zone con le desinenze che finiscono in di, da, de.

L'inquadramento cartografico di riferimento è il seguente:

- Cartografia ufficiale dell'Istituto Geografico Militare I.G.M scala 1:25 000. Serie 25 -Fogli: 481 sez. II "Benetutti", 499 sez. I "Nuoro Ovest"
- 2. Carta Tecnica Regionale scala 1:10 000 Fogli: **481160** "Sa Pedra 'e sa Rucche", **499040** "Cantoniera Lardine" e **481150** Janna Sas Ferulas.

Figura 2 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Nord

Figura 3 Inquadramento topografico su C.T.R. RAS scala 1:10000, sezione Sud

Figura 4 Inquadramento topografico su Carta IGM scala 1:25000

OPLINE Wind Srl	Cool Cosimo Atzori	N° Doc.	Roy O	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	Nev U	12 di 61

Figura 5 Paesaggio caratteristico dell'area di studio

5. Caratteristiche di progetto dell'opera

Il progetto prevede la realizzazione di una centrale eolica con potenza complessiva di 90 MW, con installazione di n. 15 aerogeneratori V162 Vestas ad asse orizzontale montati su torri tubolari ad elementi in acciaio da 6,0 MW ciascuno, comprensiva di tutte le opere connesse, per la realizzazione, il funzionamento e la manutenzione di predetto impianto.

Per quanto riguarda l'opera di connessione, il parco sarà allacciato tramite un cavidotto interrato AT da 150 kV, della lunghezza di circa 13 km che, partendo dalla sottostazione di trasformazione 30/150 kV interna al parco eolico e arrivo fino ad una stazione di smistamento a 150 kV posta nella Zona Industriale "Prato Sardo" del Comune di Nuoro la quale sarà connessa mediante cavidotto interrato AT alla futura SE TERNA di smistamento 150 kV, che rappresenta il punto di connessione dell'impianto alla RTN.

Le caratteristiche tecniche degli aero-generatori e del parco sono le seguenti:

- generatori asincroni trifase con potenza nominale pari a 6,0 MW, tensione 3 X 0.96 Kv, freq. 50 Hz
- rotori a tre pale con diametro pari a 162 m;
- torri in acciaio a sviluppo tronco conico di altezza pari a 125 m;
- cabine elettriche secondarie di trasformazione inserite in ogni aerogeneratore;
- rete elettrica interrata MT a 30 KV dai singoli aerogeneratori alla sottostazione di trasformazione MT/AT;
- sottostazione di trasformazione MT/AT (Media Tensione 30 kV Alta Tensione 150 kV), comprendente sezionamento, ricezione e smistamento;
- rete telematica interrata per il monitoraggio e controllo dell'impianto;

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	13 di 61

• connessione alla Rete di Trasmissione Nazionale (RTN) in alta tensione 150 KV.

Le fondazioni delle torri saranno costituite da piastre in cemento armato atte a ripartire sia le azioni statiche dovute al peso proprio dell'apparato eolico che le azioni dinamiche dovute al vento trasmesse alla base delle torri dagli "apparati eolici". Da un predimensionamento di massima risulta che per terreni sufficientemente portanti ($\sigma > 1$ N/mm^2), dovranno realizzarsi fondazioni a platea di forma circolare aventi un raggio di 12,50 m e un'altezza complessiva di 3,50 m (vedasi elaborati di progetto).

Schema di fondazione

In caso di terreni dalle caratteristiche meccaniche scarse, si realizzeranno delle platee su pali di grande diametro (cm 100) disposti su tutta l'area di base atti a garantire adeguata stabilità al sistema fondazione-terreno.

Le fondazioni saranno interrate e ricoperte da uno strato di terreno dello spessore di circa m 1.

L'utilizzo di una tipologia o di un'altra scaturirà dalle indagini geotecniche derivanti dai sondaggi previsti in fase esecutiva in corrispondenza di ogni aerogeneratore.

Lo scavo ha un diametro di ca m 28 alla base e ca m 31 alla sommità, prevedendo pertanto un volume di scavo per ogni plinto pari mediamente a circa 2.400 m³, dei quali ca. 1.600 m³ verranno depositati vicino allo scavo e riutilizzato per il re-interro.

6. Inquadramento geologico

L'obiettivo dell'analisi dell'assetto geologico è quella di caratterizzare geologicamente e geotecnicamente l'area ove verrà installato il parco eolico e quella geomorfologicamente significativa, con particolare riferimento alle condizioni del substrato roccioso di fondazione, agli scavi ed ai riporti necessari per la realizzazione del sistema di fondazione e delle sue potenziali interazioni con le condizioni al contorno (dinamica geomorfologica, circolazione idrica superficiale e sotterranea, rapporti fra le componenti litologiche interessate) attraverso:

- 1. Definizione dell'assetto geologico-strutturale e idrogeologico di area vasta e dell'area geomorfologicamente significativa;
- 2. Definizione dell'assetto stratigrafico dell'area di sedime delle opere;
- 3. Definizione del modello geologico di sito.

6.1. Descrizione del contesto geologico dell'area vasta oggetto di intervento

A partire dal Paleozoico si sono susseguiti una serie di eventi geologici sviluppatisi nell'arco di circa mezzo miliardo di anni, che hanno reso la Sardegna una delle regioni geografiche più antiche del Mediterraneo centrale e, morfologicamente e cronologicamente eterogenea.

L'isola riflette pertanto una storia geologica molto articolata, che testimonia, in maniera più o meno completa, alcuni dei grandi eventi geodinamici degli ultimi 400 milioni di anni.

L'orogenesi Caledoniana, la più antica, le cui tracce si rinvengono principalmente nel nord della Gran Bretagna e nella Scandinavia occidentale, fu causata dalla progressiva chiusura dell'oceano Giapeto, a seguito della collisione dei continenti Laurentia, Baltica e Avalonia, dando così origine al super continente Laurussia.

La successiva fase dell'orogenesi Ercinica (o Varisica) ha avuto corso a partire dal Carbonifero, circa 350 Ma fa e si è protratta fino al Permiano determinando un'estesa catena montuosa ubicata tra il Nord America e l'Europa.

Quest'orogenesi ha prodotto in Sardegna tre zone metamorfiche principali. Procedendo dal nucleo orogenetico verso l'avanfossa si trovano le zone dette: Assiale (Sardegna NE) – a Falde interne (Sardegna centrale) - a Falde esterne (Sardegna SW).

Successivamente, tra il Carbonifero Sup. e il Permiano Inf., il basamento paleozoico è soggetto magmatismo, intrusioni di differente composizione, che danno luogo a un batolite granitico composito, la cui ossatura fondamentale affiora in continuità nella Sardegna Settentrionale e nella Corsica Occidentale.

Nel resto dell'Isola affiorano plutoni isolati, anch'essi compositi, di minori dimensioni, quali quelli dell'Iglesiente e del Sarrabus.

L'area di studio ricade nella zona a Falde Esterne del basamento varisico Sardo; principalmente è costituita da prodotti di magmatismo intrusivo quali granodioriti monzogranitiche, biotitiche, a grana medio-grossa, inequigranulari per Kfs biancastri di taglia 8-10 cm con tessitura orientata per flusso magmatico; in particolare le litologie interessate in maniera diretta dalle fondazione degli aerogeneratori appartengono all'Unità intrusiva del Monte San Basilio (BLA) e all'Unità intrusiva di Benetutti (BTU).

La zona circostante l'area di studio vede, tra le litologie appartenenti al Paleozoico, unità tettoniche appartenenti al complesso metamorfico-sedimentario ercinico oltre che al complesso intrusivo post-ercinico.

Pagina

15 di 61

Sia il Complesso metamorfico che quello intrusivo risultano diffusamente attraversati dal sistema filoniano tardoercinico a chimismo sia acido che basico, la cui messa in posto è ascrivibile alle fasi distensive postorogenetiche: essi delineano le quote in rilievo dell'area e le principali morfo-strutture del paesaggio in ragione della loro bassa suscettibilità all'erosione.

Le metamorfiti si manifestano intensamente strutturate, sia per via del loro carattere originariamente sedimentario, sia per le azioni di metamorfismo che hanno incrementato la fissilità, sia ancora per l'elevato grado di tettonizzazione.

Lungo le aste tributarie di primo e secondo ordine sono riconoscibili depositi torrentizi, ove presenti, di modesto spessore, costituiti da ciottoli per lo più spigolosi poco arrotondati, in matrice arenaceo -limosa spesso cementata. La successione stratigrafica delle formazioni che interessano l'area (dal Paleozoico al Quaternario) è stata oggetto i numerosi studi specialistici, a cui si fa esplicito riferimento anche nelle Note Illustrative alla carta Geologica d'Italia alla scala 1:100.000, foglio 194 "Ozieri" e nelle Note Illustrative del Foglio 500 in scala 1:50000 di Nuoro Est utilizzate come base di conoscenze per la stesura della presente relazione.

6.2. Successione litostratigrafica dell'area di intervento

Nell'area vasta affiorano le seguenti litologie, di seguito riportate con la nomenclatura adottata dalla RAS nella stesura della cartografia geologica in scala 1:25000:

Unità intrusive del Paleozoico

BTUb - Facies Orune (UNITÀ INTRUSIVA DI BENETUTTI). CARBONIFERO SUP. – PERMIANO
 BLA2b - Facies Riu sa Mela (Ponte S'archimissa) (Subunità intrusiva di Punta Biriai - UNITÀ INTRUSIVA DI MONTE SAN BASILIO). CARBONIFERO SUP. – PERMIANO

Corteo Filoniano

fb - Filoni basaltici a serialità transizionale, di composizione basaltica olivinica e trachibasaltica, a struttura porfirica per fenocristalli di PI, OI, Cpx, tessitura intersertale-ofitica. CARBONIFERO SUP. - PERMIANO
ap - Filoni e ammassi aplitici. CARBONIFERO SUP. - PERMIANO
mg - Filoni e ammassi di micrograniti. CARBONIFERO SUP. - PERMIANO

Depositi Quaternari dell'area continentale

b2 Coltri eluvio-colluviali. OLOCENE

6.2.1. Unità Intrusive del Paleozoico

Unità intrusiva di Benetutti (BTU)

Occupa un areale di circa 400kmq tra Benetutti, Orune, Buddusò e Pattada. È quasi sempre caratterizzata in prevalenza da granodioriti monzogranitiche spesso fortemente eterogranulari.

Granodioriti monzogranitiche inequigranulari. Facies di Orùne (BTUb)

E' costituita da granodioriti monzogranitiche, localmente tonalitiche, biotitiche, grigie, a grana da media a grossa, fortemente inequigranulari per megacristalli di K-feldspato euedrale biancastro di taglia fino a 10cm, con inclusioni

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Roy O	Pagina
ONONE WIND SH		IT-VesOru-CLP-CIV-TR-20	Nev 0	16 di 61

pecilitiche di biotite. La tessitura è orientata per flusso magmatico. La giacitura dei piani di flusso magmatico ha direzione media N120-140 mentre l'immersione ha una discreta variabilità. Dal punto di vista composizionale si tratta di rocce metalluminose. Sono talvolta evidenti "effetti parete fredda" al contatto con il basamento metamorfico (filladi di Lula): la giacitura dei piani di fluidità magmatica si adatta, sebbene localmente, alla forma del "contenitore". Sono altrettanto evidenti i rapporti con i graniti peralluminosi, che intrudono le granodiorito delle facies Orùne generando una struttura complessa e articolata, associata a diffusi fenomeni di ibridazione e assimilazione. Carbonifero-Permiano.

Unità intrusiva di San Basilio

L'unità intrusiva di San Basilio occupa, nella Sardegna centrale-orientale, una superficie molto estesa di quasi 250kmq. In tutto il suo areale di affioramento l'unità si caratterizza per la costante presenza di cordierite, spesso sostituita da pinite pseudomorfa, cui si associano andalusite, sillimanite fibrolitica e muscovite, presenti in proporzioni cariabili ma sempre significative. Si tratta di rocce peralluminose.

Leucomonzograniti porfirici a cordierite. Facies Ponte S'Archimissa o Riu Sa Mela (BLA2b)

E' costituita da monzograniti talora leucocrati, a cordierite, biotite, muscovite e rara andalusite, bianco-giallastri, a grana fine, equigranulari a tendenza porfirica per K-feldspato euedrale biancastro di taglia centimetrica e quarzo globulare. Gli inclusi microgranulari scuri sono piuttosto rari. Localmente si osservano anche litotipi più francamente granodioritici, marcati dall'aumento della percentuale di biotite e da una maggiore frequenza degli enclaves scuri.

In queste rocce risulta ben espressa alla scala mesoscopica una tessitura orientata per flusso magmatico, marcata dall'isorientazione del K-feldspato e degli inclusi femici; sono frequenti anche vistose anisotropie e mineralogiche, generate da intensi fenomeni di turbolenza in fase magmatica.

Questa facies costituisce in genere corpi allungati e disposti secondo l'andamento delle fluidità, talora posti direttamente al contatto con la granodiorite BTU, quasi a costituire facies di bordo tendenzialmente leucocrate, talora in apofisi iniettate entro la stessa granodiorite BTU.

Carbonifero superiore-Permiano

Corteo Filoniano

fb - Filoni basaltici a serialità transizionale, di composizione basaltica olivinica e trachibasaltica, a struttura porfirica per fenocristalli di Pl, Ol, Cpx, tessitura intersertale-ofitica. CARBONIFERO SUP. – PERMIANO

Filoni e ammassi aplitici. (ap)

Filoni e ammassi di micrograniti. (mg)

Sono costituiti da micrograniti biotitici, da grigio -biancastri a giallastri se alterati, a grana da fine a microgranulare, con tessitura da isotropa a porfirica per K-feldspato biancastro euedrale subcentimetrico e quarzo globulare, con rare biotite e muscovite, immersi in una massa di fondo granofirica. Solo localmente, in corrispondenza di salbande, la struttura è orientata. Sono rocce più tenaci e compatte rispetto alle rocce incassanti e costituiscono creste generalmente in forte rilievo. Hanno giacitura nettamente discordante con le rocce incassanti in quanto subverticali con direzione prevalente E-W e NNE-SSW.

6.2.2. Depositi Quaternari dell'area continentale

I depositi quaternari cartografati nell'area di studio sono generalmente poco rilevanti; sono rappresentati principalmente da depositi di versante, coltri eluvio-colluviali e depositi alluvionali.

OPLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	Nev U	17 di 61

Figura 7 - Depositi colluviali (b2) – (pressi AG15)

(b2) Coltri eluvio-colluviali

Si tratta di terreni clastici eluviali e colluviali, costituiti essenzialmente da sedimenti spesso monogenici, fini (sabbie e silt), incoerenti, talora grossolani, con lenti di ghiaie angolose, più o meno pedogenizzati ed arricchiti della frazione organica. L'attribuzione all'Olocene di questi depositi è dovuta all'eleveta distribuzione della frazione organica ed alla diretta correlazione con la situazione morfologica del versante attuale. Questa suggerisce che si tratta di sedimenti derivati dall'erosione del suolo durante l'Olocene, mescolati a sedimenti mescolate a sedimenti derivate dalla degradazione meccanica del substrato. Lo spessore massimo raggiunge i 5m al centro delle vallecole dell'altopiano.

Olocene

7. Analisi qualitativa di stabilità dell'ammasso roccioso

L'intensa fratturazione produce sulla roccia una geometria estremamente variabile in termini di direzione e immersione, nelle tre direzioni principali dello spazio. Ciò che varia in relazione alla composizione granulometrica dei singoli strati originari è la spaziatura tra i giunti e il grado di fissilità. Pertanto è estremamente difficile se non impossibile definire l'assetto a piccola scala per quanto appena descritto.

Si può definire un range di spaziatura alla mesoscala, tale da individuare una potenziale compagine di blocchi in grado di staccarsi dall'ammasso se le condizioni geostrutturali lo permettono (piani a franapoggio o intersezione di piani con direttrice a franapoggio).

Tali dimensioni possono essere individuate tra il decimo di metro cubo a qualche metro cubo. La variabilità direzionale delle famiglie di giunti che individuano i blocchi è piuttosto marcata e diversificata in funzione, come detto della competenza degli strati soggetti agli sforzi.

Ne deriva di fatto, una difficile previsione delle potenziali propensioni a fenomeni di crollo e/o scivolamento, ma si tratta di caratteri locali la cui eteropia laterale risulta sempre molto marcata.

In generale si può affermare che versanti come questi sono oggetto di due fenomeni di scivolamento distinti in relazione al dominio di famiglie di giunti.

Alla piccola scala laddove il materiale originario è costituito da granulometrie medie e fini, sono più frequenti fenomeni di sfaldamento e distacco di lamine da centimetriche a decimetriche. Queste ultime divengono più simili a piccoli blocchi la dove la granulometria aumenta.

A scala media diffatti, le spaziature nella stessa famiglia sono maggiori, anche oltre metro ed interessano blocchi più grandi ma che rispondono alle medesime dinamiche di quelli pocanzi analizzati.

Di fatto quindi, non potendo generalizzare alla piccola scala è sempre d'obbligo un rilievo puntuale sugli affioramenti ove possibile. Il materiale distaccato si raccoglie ai piedi del pendio, in accumuli più o meno estesi in funzione della pendenza.

Figura 8 Tipologie di scivolamento di blocchi rocciosi lungo piani di fratturazione

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	19 di 61

Figura 9 Fratturazione molto spinta su BLA2b – pressi AG03

In generale le turbine sono impostate su un altopiano ove non sono presenti importanti dislivelli. Gli affioramenti presenti, laddove non sono coperti dalla coltre eluvio colluviale, mostrano le caratteristiche giaciturali che caratterizzano l'area.

In fig.9 viene illustrata una affioramento appartenente alla Formazione di Riu Sa Mela (BLA2b) caratterizzata da fratturazione a giacitura molto variabile, legata sia al processo di raffreddamento che alla successiva geodinamica. La interferenza di varie famiglie di giunti con direzioni molto variabili su le lineazioni principali di frattura E-W e NE SW producono elementoiisolati di varia dimensione che si presentano per le parti esposte agli agenti atmosferici in cataste (tor).

10.1. Caratteristiche delle acque sotterranee

Uno studio idrogeologico ha lo scopo di identificare lo schema di circolazione idrica sotterranea relativo ad una determinata area per poter ricavare informazioni circa i rapporti tra litotipi presenti, la presenza di acqua e le possibili conseguenze derivanti dalla realizzazione di un'opera.

Le rocce si presentano raramente compatte. La proprietà di contenere spazi vuoti tra gli elementi solidi che le compongono, detta porosità, esprime l'attitudine che ha la roccia ad immagazzinare ed a liberare acqua sotterranea. Se la roccia è massiva il passaggio delle acque avviene solo

Le litologie che interessano l'area di studio sono caratterizzate da permeabilità bassa per fratturazione per le litologie intrusive, (BTU1) e (BLA2b), mentre medio-alta per porosità le coperture eluvio-colluviali (b2).

Da un censimento nell'Archivio Nazionale delle Indagini nel Sottosuolo ex Lg 464/1984 non sono presenti perforazioni per uso di acque sotterranee nell'area di interesse. Nelle immagini seguenti le schede di un pozzo (Cod.170595) a circa 6km a ovest dell'impianto (a sinistra dell'immagine)

Nel pozzo con cod.170040 il cui p.c. è a quota 324 m slmm, si rinviene una prima falda di spessore esiguo (1,20m) a quota -1,80m da piano campagna (livello statico) e una seconda falda anchessa di spessore di circa 1m a -39m da p.c.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		20 di 61

Figura 10 Pozzi presenti nell'area di interesse (dall'Archivio Nazionalale delle Indagini del Sottosuolo)

ORUNE Wind Srl Geol. Cosima Atzori	N° Doc. IT-VesOru-CLP-CIV-TR-20	Rev 0	Pagina 21 di 61
			210.01
ISPRA Mana karana puk hana mana ristoma karana puk hana mana ristoma karana puk hana mana puk karana puk hana mana puk karana puk hana mana mana mana mana mana mana mana	Istituto Superiore per la Protezione e la F Ambientale	Ricerca	
Archivio nazion	ale delle indagini nel sottosuolo (Legge 464/1984)		
Dati generali	Ubicazione indicativa dell'area d'inda	gine	
Codice: 170040 Regione: SARDEGNA	A STATE OF THE STA	and the second	

DIAMETRI PERFORAZIONE

FALDE ACQUIFERE

POSIZIONE FILTRI

MISURE PIEZOMETRICHE

STRATIGRAFIA

Livello dinamico (m)

Età geologica

PALEOZOICO

Lunghezza (m)

Lunghezza (m)

18,10

QUATERNARIO GRANITO ARENIZZATO

FRATTURATO

3,00

47,00

A profondità (m)

30,00

A profondità (m)

3,00

40,00

A profondità (m)

21,80

Spessore

(m)

3,00

47,00

3,00

50,00

47,00

Livello statico (m)

A profondità

(m)

Diametro (mm)

Lunghezza (m)

Diametro (mm)

0,800

Portata (l/s)

250

220

220

Descrizione litologica

1,20

1,00

Abbassamento (m)

GRANITO A TRATTI MOLTO

Figura 11 -	Monografia del	pozzo censito nell Ar	chivio Nazionale delle	Indagini nel Sottosuolo

Provincia: SASSARI Comune: BENETUTTI Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 50,00 Quota pc slm (m): 324,00 Anno realizzazione: 1998 Numero diametri: 2 Presenza acqua: SI Portata massima (l/s): 1,200 Portata esercizio (l/s): 0,500

Numero falde: 2 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 2

Progr

Progr

Progr

set/1998

Progr

0,00

3,00

Longitudine WGS84 (dd): 9,185417 Latitudine WGS84 (dd): 40,430111 Longitudine WGS84 (dms): 9° 11' 07.51" E Latitudine WGS84 (dms): 40° 25' 48.40" N

compilazione della stratigrafia

0,00

3,00

1,80

39,00

17,00

Data rilevamento

Da profondità

(m)

(*)Indica la presenza di un professionista nella

Da profondità (m)

Da profondità (m)

3,70

3,00

50,00

Da profondità (m)

La permeabilità secondaria, o per fessurazione, viene acquisita dalla roccia a seguito della sua formazione.

Tale proprietà può esser limitata dalla presenza di riempimento delle fratture costituito da materiali derivanti dall'alterazione della roccia madre ad alta componente argillosa. Ne consegue che seppur presente una buona rete di fratture anche con importanti spaziature, la presenza di tali riempimenti limita fortemente il passaggio delle acque.

La parte superficiale dell'ammasso roccioso è generalmente più fratturata e pertanto con permeabilità più elevata rispetto alla parte più profonda meno interessata dalla fratturazione, al contatto tra le due si possono sviluppare delle risorgive che hanno carattere prettamente stagionale legato all'andamento pluviometrico generale.

Di seguito viene illustrato in uno schema il processo di infiltrazione accumulo e circolazione legato al regime delle piogge e caratterizzante le litologie vulcaniche nella porzione sommitale e di interesse alle opere del parco eolico.

Gli afflussi che arrivano sul terreno sotto forma per lo più di piogge, più raramente e poco tempo di neve, in parte scorrono lungo la superficie in genere a lamina d'acqua per poi organizzarsi in deboli rivoli che si concentrano lungo gli impluvi fino a raggiungere il bordo dell'altopiano oltre il quale si riversano lungo valli strette a V ancora in evoluzione geomorfologica.

La frazione di acqua che non scorre in superficie in parte evapora e in parte si infiltra nel terreno e nella roccia sottostante scorrendo lungo le fratturazioni in maniera più o meno efficace in funzione del grado di apertura delle stesse, e in funzione della permeabilità della roccia.

Maggiore è la presenza di fratture, maggiore è la possibilità che l'acqua prosegua il suo percorso in profondità. Le falde acquifere e le conseguenti sorgenti che si hanno lungo i versanti e nei tagli erosivi sono per l'appunto legate principalmente alla presenza dei sistemi di frattura a diversa scala e dal materiale derivante dall'alterazione superficiale degli ammassi rocciosi.

Figura 12 Schema esemplificativo, non in scala, dei processi di infiltrazione e deflusso sotterraneo

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		23 di 61

Nell'area di studio si possono distinguere:

- 1. litologie con permeabilità bassa, come le granodioriti (BLA2b), per via della fratturazione;
- 2. litologie con permeabilità medio-alta per porosità, come i depositi eluvio-colluviali:

Da un punto di vista idrogeologico le formazioni dell'area di studio possono essere divise in tre gruppi principali:

- Unità intrusive. È costituito da rocce poco permeabili per fratturazione (graniti, granodioriti, ecc...) K=1x10⁻⁵- 1x10⁻⁷ m/sec
- 2. Depositi quaternari. I depositi quaternari occupano aree molto limitate e raggiungono spessori poco significativi, la permeabilità è di tipo medio-alta per porosità. I depositi di eluviali e colluviali, sono in gran parte costituiti da una struttura clasto-sostenuta (sabbie e ghiaie derivanti dalo smantellamento dei sottostanti granitoidi) e/o matrice-sostenuta presentano una permeabilità medio-alta, in ogni caso i loro spessori esigui non garantiscono una potenza sufficiente per generare acquiferi significativi; K=1x10⁻⁵-1x10⁻⁶ ≤ 1x10⁻⁴ m/sec

Dalla carta della permeabilità dei suoli, resa disponibile dal Geoportale della Regione Autonoma della Sardegna, si evince che l'area di studio presenta nella zona di installazione delle turbine, una **permeabilità bassa per fratturazione**, eccetto che per le aree in cui affiorano i depositi colluviali (b2) per cui la permeabilità **medio-alta per porosità**.

Nell'area attraversata dal cavidotto e alla sottostazione invece la permeabilità risulta medio-bassa per fratturazione.

10.2. Analisi della vulnerabilità degli acquiferi

Ai fini della tutela della riscorsa idrica si è operata una valutazione qualitativa della vulnerabilità degli acquiferi presenti in relazione alle opere da realizzare e in relazione alle varie attività di cantiere.

Sono presenti diverse risorgive la cui genesi è legata al sitema di fratturazione del'acquifero granitoride e ben rappresentato nello schema di fig.20. La capacità di immagazzinamento non è alta e per lo più si tratta di emergenze stagionali il cui regime è molto dipendente dalle piogge. Non si hanno allo stato attuale elementi più precisi sull'entità delle portate. Data la posizione e la relativa profondità delle opere che prevedono gli scavi più profondi (fondazioni degli aerogeneratori, piazzole e aree di deposito temporaneo) non si rilevano potenziali influenze sul normale deflusso delle acque sotterranee. In ogni caso, in fase di progettazione esecutiva sarà opportuno realizzare un piano di monitoraggio specifico.

Altresì le opere in progetto non determinano per loro natura produzione di agenti inquinanti che possono riversarsi nella circolazione idrica sotterranea se non per accidentale guasto meccanico che andrà trattato con le opportune misure di salvaguardia dettate dal T.U. sull'Ambiente.

fini della tutela della riscorsa idrica si è operata una valutazione qualitativa della vulnerabilità degli acquiferi presenti in relazione alle opere da realizzare e in relazione alle varie attività di cantiere.

Non sono presenti sorgenti alle quote di realizzazione delle opere che prevedono gli scavi più profondi (fondazioni degli aerogeneratori, piazzole e aree di deposito temporaneo) e la profondità dell'acquifero così come deriva dalle informazioni geologiche è tale che quest'ultimo non venga influenzato dalle opere in possesso e con il normale deflusso delle acque sotterranee. Altresì le opere in progetto non determinano per loro natura produzione di agenti inquinanti che possono riversarsi nella circolazione idrica sotterranea se non per accidentale guasto meccanico che andrà trattato con le opportune misure di salvaguardia dettate dal T.U. sull'Ambiente.

8. Indagini geognostiche

La necessità di integrare le informazioni di tipo geologico e geotecnico derivanti da studi pregressi, dalla letteratura di settore e dai rilievi geologici e geostrutturali in sito, ha reso necessario predisporre un piano di indagini geognostiche propedeutiche alla definizione del modello geologico di riferimento di sito funzionale alle opere previste in progetto così come richiamato dalle Norme Tecniche sulle Costruzioni (NTC2018 - §Cap. 6.2.1). L'obiettivo delle indagini realizzate è stato:

- 1. Definire la stratigrafia ed i rapporti tra le formazioni geologiche interessate dagli interventi;
- 2. Definire le caratteristiche fisico-meccaniche degli ammassi rocciosi coinvolti nelle opere in progetto;
- 3. Individuare la presenza di circolazione d'acqua sotterranea alle profondità di interesse in relazione ai volumi significativi delle opere (fondazioni, piazzole, trincee e rilevati stradali, stabilità dei pendii)

La metodica utilizzata è quella indiretta in sito, ovvero l'indagine geofisica, questa costituisce parte integrante delle indagini geognostiche dirette e indirette legate alla caratterizzazione dei terreni di fondazione. In particolare si pone come obbiettivo la ricostruzione dell'assetto sismo-stratigrafico dei terreni sede di posa delle opere di fondazione nonché la classificazione del suolo di fondazione per le categorie semplificate indicate nel Decreto 17 gennaio 2018 - NTC 2018 aggiornamento delle "Norme tecniche per le costruzioni".

Sono stati eseguiti di n°**5 stendimenti di sismica** con tecnica **MASW e rifrazione in onde P**. Tutte le basi sismiche MASW ricadono lungo il medesimo allineamento delle rifrazioni, i quali hanno il medesimo centro degli allineamenti sismici.

E' stato inoltre eseguito il Rilievo topografico tramite GPS differenziale STONEX S70G (geofoni, punti di shot, elettrodi /picchetti) e restituzione dei profili altimetrici da impiegare nelle sezioni di tomografia elettrica e sismica. Sono stati infine elaborati i dati ottenuti tramite analisi delle prospezioni acquisite in campagna, applicazione filtri, e restituzione grafica delle sezioni sismiche con l'impiego di software specialistici.

Stendimento	Metodo di	Orientamento	Geofoni/Picc	Interdistanza	Lunghezza
	indagine		netti		(m)
R/M 1 (SMT01)	Rifrazione/MASW	SE-NO	24	3,0	69,0
R/M 2 (SMT02)	Rifrazione/MASW	SE-NO	24	3,0	69,0
R/M 3 (SMT03)	Rifrazione/MASW	SSE-NNO	24	3,0	69,0
R/M 4 (SMT04)	Rifrazione/MASW	NNE-SSO	24	3,0	69,0
R/M 5 (SMT05)	Rifrazione/MASW	S-N	24	3,0	69,0

Tabella 1 Ubicazione degli stendimenti

8.1. Generalità sul metodo sismico a rifrazione

Il metodo sismico a rifrazione studia la velocità di propagazione delle onde sismiche nel sottosuolo quando il terreno è sottoposto a sollecitazioni artificiali. La determinazione delle velocità si ottiene misurando i tempi di primo arrivo delle onde sismiche generate in diversi punti sulla superficie topografica. Operativamente i profili sismici si eseguono disponendo sul terreno una serie di sensori (geofoni), posti ad un intervallo costante, collegati ad un sismografo mediante un cavo multipolare.

Dopo l'allestimento del dispositivo di ricezione si provvede a generare artificialmente vibrazioni impulsive in corrispondenza di punti prestabiliti lungo i profili: Nello stesso istante di partenza della vibrazione viene trasmesso al sismografo il comando di avvio della registrazione (trigger). Da questo istante inizia l'acquisizione digitale, con campionamento ad intervallo costante e predeterminato, dei segnali ricevuti dai sensori. L'interpretazione dei segnali e la ricostruzione del profilo di velocità delle onde P consiste di almeno due fasi ben distinte, e cioè l'interpretazione dei sismogrammi e l'interpretazione dei diagrammi tempi- istanze (dromocrone).

Rev 0

Nella prima fase i tempi di primo arrivo dei segnali sismici vengono letti direttamente sui sismogrammi di campagna visualizzati a monitor. I tempi letti in corrispondenza di ciascun canale (geofono), vengono memorizzati in appositi files che costituiscono i dati in input del software utilizzato. Per ciascun tiro, quindi, si ricostruisce un diagramma dei tempi di arrivo in funzione della distanza dal punto di tiro stesso.

L'interpretazione delle dromocrone consiste, quindi, nel suddividere la funzione tempi/distanze in segmenti a pendenza differente, indicativi della presenza di variazioni di velocità nel sottosuolo. Questa operazione viene eseguita ad un terminale videografico dove è possibile eseguire modifiche ed aggiustamenti continui dell'interpretazione.

Il numero di segmenti per ciascuna funzione equivale al numero di strati che costituiranno il modello interpretativo finale; modello che consiste in una stratigrafia del terreno basata sulle variazioni di velocità delle onde compressionali.

Nella maggior parte dei casi, comunque, si riscontrano variazioni stratigrafiche che non corrispondono a variazioni di tipo litologico in senso stretto, ma alla naturale variazione di compattezza dello stesso materiale che, per alterazione superficiale o per semplice decompressione, si presenta più allentato in prossimità della superficie rispetto alle zone più profonde.

In questi casi per la modellizzazione del sottosuolo, risulta più adatta un'altra tecnica di elaborazione: la tecnica di elaborazione tomografica.

Con questa tecnica il sottosuolo viene suddiviso in elementi finiti di forma quadrata e di dimensioni estremamente piccole (dell'ordine di grandezza di decimetri) un software specifico, (nel nostro caso si è utilizzato il software RAYFRACT vers 4.01), che stima le velocità sismiche compatibili con ogni singolo elemento affinché i tempi di percorso dei vari fronti d'onda, generati nei punti di tiro disposti lungo il profilo, risultino il più possibile simili ai tempi misurati e letti sui sismogrammi. Il risultato che si ottiene è una griglia di valori di velocità dalla superficie fino alle massime profondità di indagine che caratterizzano i vari elementi in cui è stato suddiviso il sottosuolo.

Questa griglia di valori può essere, quindi utilizzata per rappresentare l'andamento nel sottosuolo delle varie litologie presenti mediante variazioni cromatiche associate alle variazioni di velocità o mediante linee di isovelocità.

8.1.1. Caratteristiche delle stese sismiche

Per tutte le basi sismiche sono state eseguite 5 energizzazioni intervallate ogni 3 geofoni secondo lo schema di acquisizione definito dalla specifiche tecniche.

 $abla {G1: posizione dei geofoni} \quad \bigcirc \ {1.0: N^\circ e posizione delle energizzazioni/shot}$

8.1.2. Caratteristiche della Strumentazione impiegata

Per l'esecuzione delle indagini è stato impiegato un sismografo DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz.

Per l'energizzazione ci siamo avvalsi di mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

Figura 13 Stendimento di sismica a rifrazione in onde P con 24 geofoni, interdistanza di 3,0 m, lunghezza complessiva 69,0

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		26 di 61

La quota relativa di ciascun geofono-shot è stata rilevata tramite una livella digitale e GPS differenziale marca Stonex in modo da poter ricostruire la morfologia del terreno e utilizzarla in fase di elaborazione dei dati acquisiti.

8.1.3. Elaborazione dei dati

I dati delle prospezioni sono costituiti dalla geometria d'acquisizione (posizioni e quote relative dei punti scoppio e dei geofoni) e dai tempi di primo arrivo delle onde elastiche di compressione (onde P), determinati manualmente sulle registrazioni riprodotte a schermo (picking dei primi arrivi). La qualità dei dati è risultata nel complesso buona e il picking è stato realizzato facilmente per tutte le basi sismiche. L'inversione dei dati è stata eseguita secondo i criteri della tomografia sismica, mediante apposito software specialistico basato su tecniche di ottimizzazione non lineare. In particolare, l'elaborazione dei dati di sismica a rifrazione è stata eseguita secondo il metodo tomografico impiegando il software Rayfract 4.01, che parte da un modello iniziale

generato con la tecnica Deltat-V. Successivamente viene effettuata l'inversione iterativa del modello con la tecnica WET (Wavepath Eikonal Traveltime tomography processing) che analizza la propagazione dei vari fronti d'onda generati nei punti di tiro fino ad ogni geofono. Il modello stratigrafico ottenuto come insieme di elementi caratterizzati da una specifica velocità viene quindi rappresentato mediante il contour a linee di isovelocità. La colorazione dei vari elementi secondo una scala cromatica riferita a specifici intervalli di velocità facilità l'immediata visione dei risultati

15.2. Indagini sismiche: MASW

Metodologia

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Rayleigh – "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		27 di 61

dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$v = \lambda \times v$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

8.1.4. Specifiche delle indagini svolte

L'indagine si sviluppa mediante la materializzazione sul terreno di una linea retta mediante la posa di una fettuccia metrica. A seguire vengono posizionati i geofoni intervallati ad una distanza pari a **3,0** m in funzione anche della disponibilità di spazio. Esternamente alla stesa geofonica, da ora base sismica, a distanza di interesse che può essere pari ad un multiplo della distanza intergeofonica ma anche variabile (in funzione delle disponibilità di cantiere), sia in andata (ovvero in prossimità del geofono 1) che al ritorno (ovvero all'ultimo geofono posizionato sulla base sismica), vengono svolte delle energizzazioni mediante massa battente pari a Kg 10,0. Nel caso in esame, sono state svolte le energizzazioni in "andata" e in "ritorno" con distanza dal geofono 1 e dal geofono 24 crescente e pari a multipli della distanza intergeofonica (v. schema), oltre che una battuta al centro della base sismica.

Il numero di geofoni utile all'esecuzione ottimale di un'indagine M.A.S.W. è risultato, per il cantiere svolto, di 24 geofoni dei quali sono state utilizzate tutte le tracce. Il tempo dell'acquisizione è stato definito tra 1.00 e 2.00 secondi.

MASW: schema geometrico delle acquisizioni a 24 geofoni e interdistanza di 3,0 m

8.1.5. Caratteristiche della strumentazione impiegata

Per l'esecuzione del cantiere d'interesse, è stata impiegata una strumentazione di acquisizione DoReMi, prodotto dalla SARA electronicinstruments, 24bit con frequenza di campionamento 1000 Hz per ognuno dei canali registrati, ciascuno attrezzato con geofoni verticali SARA electronics con frequenza propria di 4.5 Hz. Per l'energizzazione ci è stata utilizzata una mazza battente da 10 kg impattante su piastra di battuta in duralluminio, diametro 18 cm, spessore 4 cm, peso 2 kg.

8.1.6. Interpretazione dei segnali acquisiti

Il metodo interpretativo della M.A.S.W. si compone dei seguenti passaggi di analisi dei segnali acquisiti:

• individuazione della variazione del segnale acquisito nel tempo

• analisi di Fourier con definizione dei contenuti spettrali acquisiti nei segnali

• stacking dello spostamento di fase con definizione delle velocità di rotazione retrograda compatibile con il campo di frequenza definita.

A posteriori dell'analisi matematica del segnale acquisito, definito un modello stratigrafico compatibile con la geologia locale, si provvede all'inversione della curva di dispersione ottenendo la sismo-stratigrafia.

L'elaborazione dei dati che ha prodotto il profilo di velocità è stata realizzata grazie all'impiego del software ZondST2D.

8.1.7. Categorie di sottosuolo - D.M. 19.01.2018 (NTC 2018)

Le "Norme Tecniche per le Costruzioni" – Decreto del 19/01/2018 definiscono le regole per progettare l'opera sia in zona sismica che in zona non sismica. La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione

$$V_{S,eq} = \frac{H}{\displaystyle\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

hi spessore dell'i-esimo strato;

VS,i velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato H è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione. Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle NTC 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

 Tabella 3.2.II. Categorie di sottosuolo (Fonte NTC 2018)

Categoria	Descrizione
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	29 di 61

8.2. Risultati delle indagini del sito S/M_01 – AG03

8.2.1. Masw M1

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_01 – AG03**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

uni, spessore dell'i-esimo strato; V_{S,I}velocità delle onde di taglio nell'i-esimo strato; N numero di strati; H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rioido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 3,0 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 3,0 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18	
Da 0,0	>800	А	

Ciò consente di classificare il terreno **fondazioni poste a profondità > 3m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	1]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	660	330	0,33	520	63	196	520
2	1,0	3,1	8%	2 000	1 040	520	0,33	1 442	174	539	1 442
3	3,1	6,2	10%	2 100	1 920	960	0,33	5 158	622	1 932	5 158
4	6,2	9,9	12%	2 200	3 400	1700	0,33	16 956	2 035	6 355	16 956
5	9,9	17,4	15%	2 350	4 820	2410	0,33	36 403	5 460	13 651	36 403
6	17,4	31,5	25%	2 400	6 220	3110	0,33	61 901	15 475	23 213	61 901
7	31,5	38,0	35%	2 450	8 380	4190	0,33	114 700	40 145	43 013	114 700

Figura 14 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M1

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosinia Atzon	IT-VesOru-CLP-CIV-TR-20	nev o	30 di 61

8.2.2. Rifrazione S1

Nella sezione di sismica a rifrazione S1 è possibile distinguere i seguenti sismostrati:

Stendimento R1	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0/2,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/2,0 a 3,0/4,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,0/4,0,0 a 4,0/6,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 4,0/6,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di circa 1-2 m un andamento leggermente irregolare rispetto al piano campagna. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) e andamento irregolare rispetto al p.c., si osserva fino a profondità comprese tra 3,0 e 4,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) si osserva fino a 4,0 ÷ 6,0. A seguire il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,0 e 4,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 15 - Sezione sismica R1

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		31 di 61

8.3. Risultati delle indagini del sito S/M_02 – AG06

8.3.1. Masw M2

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_02 – AG06**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

con. hi spessore dell'i-esimo strato; V_{s/}velocità delle onde di taglio nell'i-esimo strato N numero di strati:

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0	>800	А

Ciò consente di classificare il terreno per **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	1 100	550	0,33	1 451	175	549	1 451
2	1,0	2,7	8%	2 000	2 040	1020	0,33	5 551	669	2 079	5 551
3	2,7	5,5	10%	2 100	2 940	1470	0,33	12 102	1 458	4 541	12 102
4	5,5	10,5	12%	2 200	3 800	1900	0,33	21 183	2 542	7 944	21 183
5	10,5	20,8	15%	2 350	4 040	2020	0,33	25 566	3 835	9 591	25 566
6	20,8	41,2	25%	2 400	5 680	2840	0,33	51 623	12 906	19 359	51 623
7	41,2	42,2	35%	2 450	9 000	4500	0,33	132 304	46 306	49 613	132 304

Figura 16 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M2

ORLINE Wind Srl	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
ONONE WING SIT		IT-VesOru-CLP-CIV-TR-20	Nev 0	32 di 61

8.3.2. Rifrazione S2

Nella sezione di sismica a rifrazione S2 è possibile distinguere i seguenti sismostrati:

Stendimento R2	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,5/2,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/2,0 a 3,0/4,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,0/4,0,0 a 4,0/5,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 4,0/5,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di circa 1-2 m un andamento parallelo rispetto al piano campagna. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 3,0 e 4,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) si osserva fino a 4,0 ÷ 5,0. A seguire il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,0 e 4,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 17 Sezione sismica R2

ORUNE Wind Srl Geol. Cos	Gool Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		33 di 61

8.4. Risultati delle indagini del sito S/M_03 – AG15

8.4.1. Masw M3

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_03 – AG15**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

Sismostratigrafia e calcolo Vs eq								
Nr.	Profondità (m)	Spessori (m)	Vs (m/s)	Hcalc (m)	hi calc (m)	hi/Vs (s)		
1	1,00	1,00	530,00	1,00	1,00			
2	2,70	1,70	1020,00	2,70	1,70			
3	5,60	2,90	1650,00	5,60	2,90			
4	10,50	4,90	1860,00	10,50	4,90			
5	19,30	8,80	2120,00	19,30	8,80			
6	34,10	14,80	2370,00	30,00	10,70			
7	38.00	3.90	3360.00	0.00	0.00			

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato; V_S/velocità delle onde di taglio nell'i-esimo strato; N numero di strati; H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18		
Da 0,0	>800	А		

Ciò consente di classificare il terreno **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	СТ∗	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[n	ן		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,0	terre	1 800	1 060	530	0,33	1 344	162	510	1 344
2	1,0	2,7	8%	2 000	2 040	1020	0,33	5 551	669	2 079	5 551
3	2,7	5,6	10%	2 100	3 300	1650	0,33	15 250	1 837	5 717	15 250
4	5,6	10,5	12%	2 200	3 720	1860	0,33	20 300	2 436	7 610	20 300
5	10,5	19,3	15%	2 350	4 240	2120	0,33	28 165	4 225	10 562	28 165
6	19,3	34,1	25%	2 400	4 740	2370	0,33	35 952	8 988	13 484	35 952
7	34,1	38,0	35%	2 450	6 720	3360	0,33	73 757	25 815	27 665	73 757

Figura 18 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M3

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		34 di 61

8.4.2. Rifrazione S3

Nella sezione di sismica a rifrazione S3 è possibile distinguere i seguenti sismostrati:

Stendimento R3	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0 a 2,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 2,0 a 3,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 3,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 19 Sezione sismica R3

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	35 di 61

8.5. Risultati delle indagini del sito S/M_04 – AG10

8.5.1. Masw M4

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_04 – AG10**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato; V_{s,I}velocità delle onde di taglio nell'i-esimo strato, N numero di strati;

 numero di strati,
 H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto riaido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 6,00 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 6,00 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18
Da 0,0 ÷ <0,2	346 ÷ 359	E
0,2 ÷ <3,0	360 ÷ 798	В
≥ 3,0	>800	А

Ciò consente di classificare il terreno per **fondazioni poste tra 0,20m e 3,00m** di profondità come **Categoria B**: *Rocce* tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s, mentre per **fondazioni poste a profondità >3,0** m ricade come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosinia Atzon	IT-VesOru-CLP-CIV-TR-20		36 di 61

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[m	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	0,9	terre	1 800	320	160	0,33	127	16	49	127
2	1,0	2,9	8%	2 000	500	250	0,33	333	40	127	333
3	2,9	6,1	10%	2 100	1 560	780	0,33	3 403	410	1 275	3 403
4	6,1	10,2	12%	2 200	3 100	1550	0,33	14 092	1 691	5 286	14 092
5	10,2	18,9	15%	2 350	4 980	2490	0,33	38 855	5 828	14 573	38 855
6	18,9	33,2	25%	2 400	7 140	3570	0,33	81 573	20 393	30 587	81 573
7	33,2	38,1	35%	2 450	8 520	4260	0,33	118 564	41 497	44 464	118 564

Figura 20 Parametri di deformazione dinamici e statici dei terreni determinati tramite misure sismiche – M4

8.5.2. Rifrazione S4

Nella sezione di sismica a rifrazione S4 è possibile distinguere i seguenti sismostrati:

Stendimento R4	ONDE P			
Sismostrati	Profondità da pc (m)	Velocità in m/s		
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0/3,0	400-1.000		
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0/3,0 a 3,5/7,0	1.000-1.700		
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 3,5/7,0,0 a 4,5/9,0	1.700-2.000		
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 8,0/9,0	2.000-5.200		

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di variabile e crescente da sinistra verso destra della sezione tra 1,0 e 3,0 m circa. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 6,0 e 7,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) è presente sino a 8,0 ÷ 9,0. A seguire, il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,5 e 7,0 m dal p.c i terreni risultano già difficilmente rippabili.

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		37 di 61

Figura 21 Sezione sismica R4

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	38 di 61

8.6. Risultati delle indagini del sito S/M_05 – AG12

8.6.1. Masw M5

L'indagine sismica con tecnica MASW ha permesso di ottenere il profilo medio di velocità delle onde di taglio verticali Vs dello stendimento **S/M_05 – AG12**, dal quale si possono distinguere i sismostrati di seguito indicati. Si ricorda che si tratta di un profilo medio della velocità di taglio Vs.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

hi spessore dell'i-esimo strato;
Vs,velocità delle onde di taglio nell'i-esimo strato;
N numero di strati;
H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto
igido, caratterizzata da Vs non inferiore a 800 m/s.

Dall'esame del profilo delle Vs si evince una profondità del substrato (bedrock) pari a 2,7 m (Vs>800 m/s). La velocità equivalente di propagazione delle onde di taglio calcolata per il substrato posto a 2,7 m di profondità dal p.c. e piano di posa delle fondazioni è pari a:

Piano di posa [m da p.c.]	Vs eq [m/s]	Categoria sottosuolo NTC'18		
Da 0,0	>800	А		

Ciò consente di classificare il terreno **fondazioni poste a profondità > 2,7m** come **Categoria A**: Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Nella tabella seguente si illustrano i parametri di deformazione dinamici medi calcolati tramite correlazione bibliografica dei parametri di input Vs, e Vp e densità (da bibliografia/correlazione) per ciascun sismostrato definito dalle indagini eseguite.

Sismo strato	Profo	ndità	CT*	Densità γ	Vp	Vs	Coefficiente di Poisson v	Modulo di Young dinamico Ed	Modulo di Young statico Ed	Modulo di taglio G₀	Modulo di comprimibilità o di Bulk - K
	[m	ן]		[Kg/m ³]	[m/s]	[m/s]	[adim]	[MPa]	[MPa]	[MPa]	[MPa]
1	0	1,1	terre	1 800	800	400	0,33	765	92	284	765
2	1,0	2,6	8%	2 000	1 700	850	0,33	3 854	464	1 442	3 854
3	2,6	5,5	10%	2 100	3 040	1520	0,33	12 935	1 558	4 854	12 935
4	5,5	10,4	12%	2 200	3 480	1740	0,33	17 760	2 131	<mark>6 65</mark> 9	17 760
5	10,4	18,9	15%	2 350	3 960	1980	0,33	24 566	3 685	9 209	24 566
6	18,9	34,2	25%	2 400	4 760	2380	0,33	36 256	9 064	13 592	36 256
7	34,2	38,0	35%	2 450	7 000	3500	0,33	80 033	28 012	30 009	80 033

ORUNE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	39 di 61

8.6.2. Rifrazione S5

Nella sezione di sismica a rifrazione S5 è possibile distinguere i seguenti sismostrati:

Stendimento R5	ONDE P		
Sismostrati	Profondità da pc (m)	Velocità in m/s	
A: Unità delle terre di copertura (facilmente rippabili)	Da 0,0 a 1,0	400-1.000	
B: Unità delle rocce tenere e/o intensamente fratturate (rippabili)	Da 1,0 a 2,0	1.000-1.700	
C: Unità delle rocce debolmente fratturate (rippabili con difficoltà)	Da 2,0 a 3,0	1.700-2.000	
D: Unità delle rocce da debolmente fratturate a sane (non rippabili)	Da 3,0	2.000-5.200	

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Figura 23 Sezione sismica R4

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	/ TR-20	Rev 0	Pagina
		11-VESULU-CLF-CIV	/-TK-20		40 01 01
			× (629 - 29 _ 1)		ī
TAVOLA 1. PLANIMETRIA (Progetto: Realizzazione di un parc	GENERALE CON INDAGINI G		Legenda		
Localltà: Orune (Nu) Scala 1:40.000			Indagini MAS	W-RIFRAZIONE	NORD
A SA	A Control of Control o	ZAR	P5 M5		star 1
	Tansar Dependent Mare Perintagen Stocker		Appendix Marin Technical Tid Tid	All	Involve CRUSTON STORES CARTON
New Street	1. 图书字楼	R4-M4		africe.	
	R1-M1			1 al ap	
			R3-M3		

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		41 di 61

Figura 24 Ubicazione della prospezione geofisica

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		42 di 61

La prospezione geofisica attraverso l'impiego delle tecniche MASW e sismica a rifrazione in onde P ha permesso di ricostruire con un buon grado di precisione l'assetto lito-stratigrafico dell'area in esame e dedurne le caratteristiche sismiche.

Per quanto riguarda le MASW, lungo gli stendimenti si evince la presenza di sismostrati con velocità Vs crescente con la profondità sino ad incontrare il bed rock con andamento e spessori indicati nei precedenti paragrafi. La velocità equivalente di propagazione delle onde di taglio calcolata per i differenti siti di indagine, che si ricorda sarà anche funzione del piano di posa delle fondazioni è riportata nel seguente schema riassuntivo:

Sigla Stendimento	Profondità substrato [m]	Vs _{eq} [m/s]	Categoria sottosuolo (NTC2018)
M1	3,0	>800	А
M2	2,7	>800	А
M3	2,7	>800	А
M4	6,0	360 ÷ 798*	B
	6,0	>800**	А
M5	2,7	>800	A

*con profondità piano di posa da 0,2 a 3,0 m p.c.; ** con piano di posa ≥3,0.

I dati derivati dalla MASW messi in correlazione con le bibliografiche indicate nei precedenti paragrafi hanno permesso di determinare i parametri di deformazione dinamici e statici dei terreni e per correlazione ottenere una preliminare definizione dei parametri di resistenza al taglio.

L'elaborazione dei dati di sismica a rifrazione in onde P ha permesso di ricostruire l'assesto sismostratigrafico dei terreni. Nei precedenti paragrafi si illustrano i differenti sismostrati individuati dai quali è possibile distinguere i terreni delle coperture dal substrato roccioso e i suoi differenti gradi di fratturazione.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		43 di 61

9. Modellazione geologica

9.1. Caratterizzazione geostrutturale degli ammassi rocciosi

Per la definizione dei parametri geotecnici del substrato roccioso al quale la fondazione delle turbine si appoggia, è stato adoperato il criterio di caratterizzazione dell'ammasso roccioso di Hoek-Brown generalizzato (1995), supportato dai dati geostrutturali rilevati in sito in pareti esposte, laddove disponibili, dai dati derivanti dai sondaggi geognostici.

Sulla base di tale classificazione, il cui criterio di rottura è definito dalla relazione seguente:

 $\sigma'_1 = \sigma'_3 + \sigma_{ci} (mb (\sigma'_3 / \sigma_{ci}) + s)^a$

dove:

 $\sigma'_1 e \sigma'_3 = s$ forzi efficaci principali rispettivamente massimo e minimo a rottura; mb = costante d'ammasso

s ed a = costanti d'ammasso

 σ_{ci} = resistenza a compressione monoassiale della roccia intatta

è stato possibile risalire ai parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb.

Tale metodologia si basa su caratteristiche proprie dell'ammasso, valutabili tramite osservazioni in sito o con l'ausilio di tabelle sviluppate sulla base di una vasta raccolta di dati pubblicati in letteratura, attraverso cui è possibile stimare con una certa precisione i parametri di coesione e angolo di attrito interno necessari alle verifiche di stabilità, valutando i seguenti parametri:

- 1. Resistenza a compressione monoassiale (Intact Uniaxial Compressive Strength IUCS) stimata su base empirica (Fig.60) e su valori di Point Load.
- Stima dell'indice GSI (Geological Strength Index) in base alle caratteristiche geologiche dell'ammasso: tale indice, introdotto da Hoek, Kaiser e Bawden (1995), può esser definito sulla base delle caratteristiche dell'ammasso (Fig. 61) o sulla base di un controllo diretto con l'indice RMR della classificazione di Bieniawski.
- 3. Determinazione della costante mi (Funzione del tipo di roccia): i valori delle costanti caratteristiche della roccia (oci e mi) vengono generalmente definiti sulla base di apposite prove di laboratorio, ma in assenza delle suddette, è possibile fare riferimento alla tabella di Fig.62, che riassume i valori della costante mi per diversi tipi di roccia.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		44 di 61

CLASSE [*]	DESCRIZIONE	RESISTENZA A COMPRESSIONE MONOASSIALE (MPA)	INDICE DI RESISTENZA (POINT LOAD) (MPA)	VALUTAZIONE DELLA RESISTENZA IN SITO	ESEMPI
R6	Resistenza estremamente elevata	> 250	> 10	Un campione può essere scheggiato solamente con un martello geologico	Basalto intatto, silice, selce, diabase, gneiss granito, quarzite
R5	Resistenza molto elevata	100-250	4-10	Un campione richiede molti colpi di un martello geologico per essere fratturato	Anfibolite, arenaria basalto, gabbro, gneiss, granodiorite calcare, marna riolite, tufi
R4	Resistenza elevata	50-100	2-4	Un campione richiede più di un martello geologico per essere fratturato	Calcare, marna, fillite, arenaria, scisto, argillite
R3	Resistenza media	25-50	1-2	Non può essere raschiato o spellato con un coltellino, un campione può essere fratturato con un solo colpo mediante un martello geologico	Argillite, carbone, calcestruzzo, scisto, siltite
R2	Resistenza bassa	5-25	[**]	Con difficoltà può essere spellato con un coltellino, una intaccatura superficiale può essere procurata con un colpo inferto mediante la punta di un martello geologico	Calcare bianco, salgemma
R1	Resistenza molto bassa	1-5	[**]	Si frantuma per effetto di alcuni colpi con la punta di un martello geologico, può essere spellato mediante un coltellino	Rocce estremamente alterate o alterate
R0	Resistenza estremamente bassa	0.25-1	[**]	Intagliato con l'unghia di un pollice	Miloniti, cataclasi

Figura 25 - Resistenza a compressione monoassiale per diversi tipi di roccia

Figura 26 Abaco per la determinazione di GSI sulla base delle caratteristiche geologiche e strutturali dell'ammasso

Sulla base di queste caratteristiche si ottengono i seguenti valori di mb, s, a :

mb = mi [(GSI-100)/28] s = e [(GSI-100)/(9-3D)] a = 0,5 (per GSI >25)

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		45 di 61

tramite i quali si stimano coesione e angolo di attrito interno secondo il criterio di rottura di Mohr-Coulomb:

 $\sigma' 1 = (2c'\cos \phi'/1 - \sin \phi') + (1 + \sin \phi'/1 - \sin \phi') \sigma' 3$

I valori coesione e di angolo di attrito interno ottenuti attraverso l'applicazione di tale classificazione sono in generale rispondenti alla tipologia litologica interessata.

È utile sottolineare che esistono delle correlazioni dirette fra i valori di GSI e il valore RMR del sistema di classificazione di Bieniawski

TIPO	CLASSE	GRUPPO		TESSITURA		
DI ROCCIA			GROSSOLANA	MEDIA	FINE	MOLTO FINE
ш	Clastiche		Conglomerato (22)	Arenaria 19 Grova	Siltite 9	Argillite 4
DIMENTAR		Organogene		Calcare (7)	bianco) one 1)	-
SE	Non clastiche	Carbonatiche	Breccia(20)	Calcare Sparitico (10)	Calcare Micritico	8
		Chimiche		Gesso 16	Anidride 13	
HO:	Non	foliate	Marmo 9	Hornfels (19)	Quarzite 24	
MORF	Leggermente foliate		Migmatite (30)	Anfibolite 25-31	Miloniti (6)	
METP	Fo	liate*	Gneiss 33	Scisti 4-8	Filliti (10)	Scisti argillosi
	С	hiare	Granito 33		Riolite (16)	Ossidiana (19
			Granodiorite (30)		Dacite (17)	
Ш			Diorite (28)		Andesite 19	
IGN	S	cure	Gabbro 27	Dolerite (19)	Basalto (17)	
			Norite 22			
	Effusive	piroclastiche	Agglomerato (20)	Breccia (18)	Tufo (15)	

Figura 27 Valori della costante mi per diversi tipi di roccia

ORUNE Wind Srl	Gool Cosimo Atzori	N° Doc.	Boy O	Pagina
	Geol. Cosima Alzon	IT-VesOru-CLP-CIV-TR-20	Rev U	46 di 61
		6		

Criterio di rottura empirico $\sigma'_1 = \sigma'_3 + \sqrt{m\sigma_{u(r)}\sigma'_3 + s\sigma^2_{u(r)}}$ $\sigma'_1 = tensione efficace principale massima \sigma'_3 = tensione efficace principale minima \sigma_{u(r)} = resistenza a compressione monoassiale m ed s: costanti empiriche$	COSTANTI DEL MATERIALE: m. s	ROCCE CARBONATICHE CON CLIVAGGIO CRISTALLINO BEN SVILUPPATO Dolomile, calcare e marmo.	ROCCE ARGILLOSE LITIFICATE Argilite, suitle, soisti argillosi con cilvaggio ben marca	ROCCE ARENACEE CON ELEVATA CRISTALLIZZAZIONE E LIMITATO SVILUPPO DI CLIVAGGIO PER CRISTALLIZZAZIONE Arenaria e quarzite	ROCCE CRISTALLINE IGNEE E GRANA FINE Andesite, doientie, diabase e noite	HOCCE IGNEE A GRANA GROSSOLANA E ROCCE CRISTALLINE METAMOFICHE Antibolite, gabbro, gneiss, norite, quarzo-diorite
CAMPIONI DI ROCCIA INTATTA Campioni di laboratorio senza discontinuità (matrice rocciosa) Indice CSIR: RMR = 100 Indice NGI: Q = 500	m S	7.00 1.00	10.00 1.00	15.00 1.00	17.00 1.00	25.00 1.00
AMMASSO ROCCIOSO DI OTTIMA QUALITÀ Ammasso roccioso Indisturbato con giunti non alterati di spaziatura compresa fra 1 e 3 m Indice CSIR: RMR = 85 Indice NGI: Q = 100	m s	2.40 0.082	3.43 0.082	5.14 0.082	5.82 0.082	8.56 0.082
AMMASSO ROCCIOSO DI BUONA QUALITÀ Roccia sana o leggermente alterata, leggermente distur- bato con giunti di spaziatura compresa fra 1 e 3 m. Indice CSIR: RMR = 65 Indice NGI: Q = 10	m s	0.575 0.00293	0.821 0.00293	1.231 0.00293	1.395 0.00293	2.052 0.00293
AMMASSO ROCCIOSO DI DISCRETA QUALITÀ Numerose famiglie di giunti moderatamente alterati, con spaziature comprese fra 0.3 e 1 m. Indice CSIR: EMR = 44 Indice NGI: Q = 1	m S	0.128 0.00009	0.183 0.00009	0.275 0.00009	0.311 0.00009	0.458 0.00009
AMMASSO ROCCIOSO DI QUALITÀ SCADENTE Numerosi giunti alterati con spaziatura compresa fra 30 e 500 mm, alcuni con riempimento. Detrito di roccia puli- ta compatitata. Indice CSIR: RMR = 23 Indice NGI: Q = 0.1	m S	0.029 0.000003	0.041 0.000003	0.061 0.000003	0.069 0.000003	0.102 0.000003
AMMASSO ROCCIOSO DI QUALITÀ MOLTO SCADENTE Numerosi giunti molto alterati con spaziatura inferiore a 50 mm e con riempimento. Detrito di roccia con mate- riale fine. Indice CSIR: RMR = 3 Indice NGI: Q = 0.01	m s	0.007 0.0000001	0.010 0.0000001	0.015 0.0000001	0.017 0.0000001	0.025 0.0000001

CSIR (Commonwealth Scientific and Industrial Research Organization) Organizzazione Scientifica ed Industriale di Ricerca (Bieniawski 1974) NGI Norway Geotechnical Institute (Barton 1974)

Figura 28 Correlazione fra valori di mi, s, indice RMR, ed il tipo di roccia.

ORUNE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		47 di 61

L'analisi delle caratteristiche geomeccaniche in sito degli ammassi rocciosi interessati dal progetto e l'applicazione del metodo di Hoek-Brown per la definizione dei parametri geotecnici del substrato roccioso ha portato alla classificazione di nr.**3 tipologie** per ogni condizione litologica e strutturale che caratterizza le formazioni presenti. Per il calcolo degli indici e della relativa trasformazione in parametri di coesione e angolo di attrito interno secondo Mohr- Coulomb è stato utilizzato il software RocData vers.3.0 della Rocscience Inc.

Nello specifico: nel livello S1, indicato come "terre debolmente addensate/roccia tenera fratturata", è stato considerato un valore estremamente basso di sgci (valore indicativo della resistenza a compressione uniassiale).

Nei successivi livelli S2, S3 e S4 l'sgci è stato riportato come da osservazioni e classifica speditiva di campo.

Il secondo valore che varia al variare della profondità è il GSI, tale valore dà indicazioni sullo stato di fratturazione della roccia, in questo caso unicamente nel livello S1 non si è tenuto conto di questo valore poiché trattasi di terre sciolte, mentre dal livello S2 al livello S5 si passa da "disintegrated" a "blocky" (rif Fig.52).

Si tratta di valori stimati in base a indagini indirette e a osservazioni su campo, pertanto da confermare puntualmente in fase di progettazione esecutiva.

	Cool Cosimo Atzori		N° Doc.		Day 0	Pagina
ORUNE WIND ST	Geol. Cosima Atzori		IT-VesOru-CLP-CIV-TR-2	Rev 0	48 di 61	
Facies di Orune - BTU Standard ISRM = R5 U martello per essere fr Instabilità= scivolame Ammasso roccioso= d Struttura= massiccia Alterazione= da molto Pareti – mediamente Riempimento – sciolto Roccia – da asciutta a	b n campione richiede mo atturato nti planari e a cuneo a poco a fratturato o alterata a poco alterata alterate o umida	olti colpi di		s of Rock/Soil Strength using Rochatz Hoek-Krown Classification Sile 35 m = 37 Dis Hoek-Krown Criterion m = 3.831 s = 0.007 MohrCuolomb Fit consein = 5.960 MPa Rock Mass Parameter tensie strength - 3.02 modulus of deformation BTUCK BTUCK 0 0 0 0 0 0 0 0 0 0 0 0 0	n n strongth = 100 MPa turbance factor = 0 ' a = 0.518 friction angle = 37.36 deg) MPa = 4216.97 MPa = 4216.97 MPa 	244645
(000) September 2015	Rock/Soil Strength using RocLat Hone. Brown Classification GSI = 48 mi = 37. Disturbance factor = 100 MPG GSI = 48 mi = 37. Disturbance factor = 00 m = 5.778 = 5 - 0001 a = 0.507 m = 5.778 = 70.0001 MPG m = 5.788 = 70.0001 MPG m = 5.588 MPG global strength = -0.054 MPG global strength = -0.054 MPG global strength = -0.554 MP		180 170 180 170 180 150 140 150 140 100 120 100 100 100 100 100 10	Analysis of Rock/Soll Strength u Hack Unit (SI = 9) Hock-Brown me = 65 Mohr-Coulon cohesion Rock Mass P Lensis et uniscal o global stri medulus c BTU	sing RocData Classification xixil compressive strength = 100 b m = 37 Distributions factor = 0 b Fit = 256 UPA friction angle = 44.5 arameters ength = -0.123 MPA orgerssave strength = 10.110 MPA interference of the strength = 10.110 MPA to efformation = 16788.04 MPA bS4	Pa 2 deg

Figura 29 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies di Orune

10

20 30 Normal stress (MPa)

S 20

cipal stress (M

ORLINE Wind Srl	Cool Cosimo Atzori	N° Doc.	Pov 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20	Kev U	49 di 61

Facies di Orune – BLA2b

- Standard ISRM = R5 Un campione richiede molti colpi di martello per essere fratturato Instabilità= scivolamenti planari e a cuneo
- Ammasso roccioso= da poco a fratturato
- Struttura= massiccia
- Alterazione= da molto alterata a poco alterata
- Pareti mediamente alterate
- Riempimento sciolto
- Roccia da asciutta a umida

Figura 30 Valori di Coesione e angolo di attrito interno ottenuti utilizzando il software RocData nella Facies di Orune

9.2. Viabilità di impianto e sottostazione

La viabilità di impianto è stata scelta utilizzando dei tracciati preesistenti che verranno adeguatamente ridefiniti nelle sezioni nella misura utile e funzionale al servizio destinato con particolare riferimento alla fase di realizzazione del parco ove avverrà la maggior se non totale movimentazione di carichi e mezzi. La stessa viabilità sarà mantenuta in fase di esercizio.

La viabilità dovrà sopportare un peso per asse pari a 20,5 tonnellate/metro quadro, una pressione massima di circa 2 kg/cm. La carreggiata dovrà essere pari a 5 metri. La pendenza longitudinale massima della viabilità per strade con fondo sterrato o ghiaioso deve essere in condizioni ordinarie del 10% circa, la pendenza potrà essere del 12 % (16% pendenza massima in alcuni tratti) sia in rettilineo che in curva. La pendenza longitudinale minima sarà superiore o al più uguale al 0.5% per permette una rapida evacuazione delle acque superficiali dal manto stradale, che sarà in ogni caso permeabile. Si esclude l'uso di bitume.

Sostanzialmente tutta la viabilità si snoda lungo substrato roccioso con presenza in taluni casi di una copertura superficiale di terreno vegetale e /o roccia degradata con spessori variabili **da 0,00m a 1,00m**.

Per quanto riguarda a scavabilità del substrato roccioso esso nelle varie facies presenti e nella parte superficiale risulta quasi sempre da fratturato a molto fatturato per cui facilmente scavabile con ripper e martellone.

La possibile presenza di alcune saccature a forte componente argillosa suggerisce di prevedere opere di smaltimento delle acque superficiale adeguatamente dimensionate.

Il tracciato del cavidotto si snoda lungo aree pianeggianti e tracciati stradali esistenti. Il cavidotto in progetto andrà a interessare le stesse formazioni che sono terreno di sedimen delle turbine.

10. Modello geologico di sito

Sulla base di quanto emerso dai rilievi e dalle indagini in sito, nell'approccio progettuale, stante il contesto geologico si evidenziano le seguenti criticità a cui sarà necessario prestare la opportuna attenzione nella progettazione esecutiva dell'opera e nelle varie fasi di realizzazione.

L'analisi di tali fattori è funzionale alla progettazione e ha lo scopo di valutare la risposta del terreno ai nuovi carichi ed individuare azioni correttive o accorgimenti tali da limitarne gli effetti. Nello specifico:

- 1. <u>Azioni sulle pareti e stabilità dei fronti</u>. Lo scavo stesso, in quanto genera depressione, può innescare locali smottamenti in corrispondenza degli orizzonti meno competenti a causa di fenomeni di detensionamento determinati dall'asportazione del materiale durante l'escavazione, sia in relazione ai livelli meno competenti sia alle direzioni del sistema di fratturazione che può generare componenti a franapoggio. La profonda deformazione che le metamorfiti hanno subito genera variazioni di giacitura anche nell'ordine del metro pertanto si ritiene importante in fase di realizzazione degli scavi di fondazione eseguire un dettagliato rilievo geostrutturale finalizzato all'esclusione di ogni possibile rischio di crollo e/o slittamento di porzioni di parete.
- 2. <u>Circolazione idrica sotterranea secondaria o indotta e/o stagnazione di acque di pioggia</u> pur se non è stata rilevata in fase di indagine, vanno considerati gli effetti dell'eventuale presenza d'acqua alla quota di imposta delle fondazioni in relazione ad una possibile circolazione idrica indotta dai fenomeni di detensionamento dovuti agli scavi, con particolare riferimento alla stagionalità degli apporti idrici e del relativo flusso negli ambiti più superficiali. In tal caso, in fase esecutiva, sarà opportuno provvedere a mantenere lo scavo asciutto mediante l'installazione di pompe adeguatamente dimensionate per la portata da emungere.

L'analisi ha permesso di fatto di definire il modello geologico del sito ed in particolare, in relazione alle diverse condizioni geologiche e geostrutturali rilevate, è stato individuato **nr.2 modelli geologici rappresentativi** descritti di seguito:

10.1. Modello Geologico 01 -

AG01/AG02/AG03/AG04/AG/05AG06/AG/07AG08/AG09/AG10/AG11/AG12/AG13/AG14

Per la caratterizzazione sono stati utilizzati i dati degli stendimenti geofisici R1-R2-R4-R5 e le osservazioni in sito. Il modello interessa la formazione intrusiva BTUb Facies Orune (UNITÀ INTRUSIVA DI BENETUTTI). Granodioriti monzogranitiche, biotitiche, a grana medio-grossa, inequigranulari per Kfs biancastri di taglia 8-10 cm; tessitura orientata per flusso magmatico. CARBONIFERO SUP. - PERMIANO.

A partire dal piano campagna dopo un primo spessore di circa 0,90 in terre addensate si incontra un livello superficiale di roccia intensamente fratturata a quota variabile da 2,9m a 6,1m, il sottostante substrato roccioso fratturato prosegue fino ad una profondità di circa 10,2 m con velocità di Vs pari a 1550m/sec. Il substrato prosegue da debolmente fratturato a sano fratturato fino ad una profondità di circa 33m da p.c. oltre la quale le velocità Vs risultano oltre i 4260m/sec indicando roccia sana.

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

Il sismostrato A, caratterizzato dalle terre di copertura (facilmente rippabili), presenta uno spessore di variabile e crescente da sinistra verso destra della sezione tra 1,0 e 3,0 m circa. Il sismostrato B caratterizzato da rocce intensamente fratturate (rippabili) si osserva fino a profondità comprese tra 6,0 e 7,0 m dal p.c. Il sismostrato C, caratterizzato da rocce debolmente fratturate (rippabili con difficoltà) è presente sino a 8,0 ÷ 9,0. A seguire, il sismostrato D (rocce non rippabili) sino alla massima profondità indagata.

Dall'osservazione della sezione sismica si può notare un aumento abbastanza graduale delle Vp con alcune variazioni del gradiente generate dalla maggiore o minore densità del materiale roccioso.

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20	nev o	52 di 61

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 3,5 e 7,0 m dal p.c i terreni risultano già difficilmente rippabili.

Il modello è stato costruito considerando i valori più cautelativi ottenuti atraverso trattazione mepirica dei dati geofisici rilevati. Pertanto, considerato il contesto geologico in esame in fase di progettazione esecutiva si consiglia di eseguire delle indagini geognostiche e geofisiche di maggiore dettaglio (in es. sondaggi a carotaggio e geofisica eseguita con stendimenti ubicati a raggiera rispetto al centro della torre eolica).

BTUb

0.00m – 0,90m 0.90m – 2,90-6,10m 2,9-6,10m – 10m 10m – in poi

Terre/roccia affiorante molto alterata Roccia tenera e/o intensamente fratturata Substrato roccioso debolmente fratturato Substrato da debolmente fratturato a sano

ORUNE - MODELLO GEOLOGICO 01 -

AG01/AG02/AG03/AG04/AG/05AG06/AG/07AG08/AG09/AG10/AG11/AG12/AG13/AG14

Dati Parametri Resistenza							
Tipo di Terreno		S1- Roccia tenera e/o fratturata	S2 – Roccia tenera e/o intensamente fratturata	S3 – Substrato roccioso debolmente fratturato	S4- Substrato da debolmente fratturato a sano		
Descrizione							
Peso di volume	[kg/mc]	1800	2000	2100	2350		
Peso di volume saturo	[kg/mc]	1900	2000	2100	2350		
Angolo di attrito interno	[°]	27.02	37.36	41,26	44,52		
Coesione	[Mpa]	0.3013	5.990	7.184	8.256		
Dati Parametri Deformabil	ità						
Modulo elastico statico	[Mpa]	63	174	2035	5460		
Coefficiente di Poisson	[]	0,33	0,33	0,33	0,33		
Modulo di taglio (G) [Mpa]		196	539	6355	13651		
Velocità onde di taglio Vs	[m/sec]	330	520	1700	2410		

10.2. Modello Geologico 02 – AG15

Per la caratterizzazione sono stati utilizzati i dati dello stendimento geofisico M3 e le osservazioni in sito. Il modello interessa le formazioni intrusive BLA2b Facies Ponte S'Archimissa (Subunità intrusiva di Punta Biriai - UNITÀ INTRUSIVA DI MONTE SAN BASILIO). Monzograniti a due miche e cordierite, a grana medio-fine, inequigranulari, porfirici per Kfs biancastri di taglia centimetrica e subordinato Qtz globu.

A partire dal piano campagna dopo un primo spessore di circa 1m in terre addensate si incontra un livello superficiale di roccia intensamente fratturata a quota variabile da 2,7m a 5,6m, il sottostante substrato roccioso fratturato prosegue fino ad una profondità di circa 10,5 m con velocità di Vs pari a 1860m/sec. Il substrato prosegue da debolmente fratturato a sano fino ad una profondità di circa 34m da p.c. oltre la quale le velocità Vs risultano oltre i 3360m/sec indicando roccia sana.

Dall'esame della sezione sismica è possibile distinguere 4 unità sismostratigrafiche principali caratterizzate da velocità crescente delle onde P all'aumentare della profondità, con un range che varia dai 400 m/s ai 5200 m/s.

I 3 sismostrati A, B e C sono compresi entro i primi 3 metri di profondità e a seguire si rileva la presenza del bedrock non rippabile (sismostrato D) con velocità superiori a 2.000 m/s.

Dall'osservazione della sezione sismica si può notare un aumento repentino delle Vp sino a circa 4-5 metri di profondità, tipico della presenza del bedrock semi-affiorante.

In termini di grado di rippabilità si evidenzia che a partire da profondità comprese tra 2,0-3,0 m dal p.c i terreni risultano già difficilmente rippabili.

Il modello è stato costruito considerando i valori più cautelativi ottenuti attraverso trattazione empirica dei dati geofisici rilevati. Pertanto, considerato il contesto geologico in esame in fase di progettazione esecutiva si consiglia di eseguire delle indagini geognostiche e geofisiche di maggiore dettaglio (in es. sondaggi a carotaggio e geofisica eseguita con stendimenti ubicati a raggiera rispetto al centro della torre eolica).

BLA2b

0.00m - 1,00mTerre poco addensate1,00m - 2,70mRoccia tenera e/o intensamente fratturato2,70m - 10,50mSubstrato roccioso debolmente fratturato10,50m - 34mSubstrato da debolmente fratturato a sano

ORUNE - MODELLO GEOLOGICO 02 - AG15

Dati Parametri Resistenza					
Tipo di Terreno		S1- Terre poco addensate	S2 – Roccia tenera e/o intensamente fratturato	S3 – Substrato roccioso debolmente fratturato	S4- Substrato da debolmente fratturato a sano
Descrizione					
Peso di volume	[kg/mc]	1800	2000	2100	2200
Peso di volume saturo	[kg/mc]	1900	2000	2100	2200
Angolo di attrito interno	[°]	27.02	38.57	39.47	45.11
Coesione	[Mpa]	0.3013	6.358	6.632	8.467
Dati Parametri Deformabil	ità				
Modulo elastico statico [Mpa]		162	669	1837	2436
Coefficiente di Poisson []		0,33	0,33	0,33	0,33
Modulo di taglio (G) [Mpa]		510	2079	5717	7610
Velocità onde di taglio Vs	[m/sec]	530	1020	1650	1860

11. Descrizione dell'opera di fondazione degli aerogeneratori

Il dimensionamento preliminare, in attesa della scelta progettuale del committente, tiene conto del modello tipologico di aerogeneratore descritto in premessa.

In questa fase si prevede la realizzazione di opere di fondazione di tipo diretto costituite da un plinto con forma tronco-conica, con pianta circolare avente diametro massimo pari a 25,00 m ed una sezione trapezia avente altezza minima al bordo esterno pari a 0,50, altezza di 2,50m nel profilo della connessione della parte tronco-conica con il colletto centrale dove raggiunge i 3,50m d'altezza.

OPLINE Wind Srl	Gool Cocimo Atzori	N° Doc.	Pov 0	Pagina
ORONE WIND SH	Geol. Cosilia Alzon	IT-VesOru-CLP-CIV-TR-20	Kev U	55 di 61

DATI GEOMETRICI FONDAZIONE:

diametro colletto =	d 1 = 6,00 m
diametro esterno =	d ₂ = 25,00 m
altezza colletto =	h 1 = 0,50 m
altezza intermedia =	h 2= 2,50 m
altezza alla base =	h ₃ = 0,50m
altezza totale =	h _{tot} = 3,50 m

12. Azioni e resistenze nelle verifiche agli stati limite

La nuova normativa sulle costruzioni prevede i coefficienti parziali yF relativi alle azioni indicati nella Tab. 6.2.1. Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1 delle NTC. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza.

Nella valutazione della combinazione delle azioni i coefficienti di combinazione ϕ ij devono essere assunti come specificato nel Cap. 2.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Dormononti	Favorevole	~	0,9	1,0	1,0
Permanenti	Sfavorevole	γG1	1,1	1,3	1,0
Dormononti non strutturali (1)	Favorevole	~	0,0	0,0	0,0
Permanenti non sututtian	Sfavorevole	YG2	1,5	0,0 1,5	1,3
Variabili	Favorevole	~	0,0	0,0	0,0
variaoni	Sfavorevole	YQi	1,5	1,5	1,3

 Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

(1) Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Nel caso specifico di fondazioni superficiali come quella in progetto [6.4.2] "si considerano azioni sull'opera di fondazione quelle dovute al peso proprio del terreno e del materiale di riempimento, ai sovraccarichi, all'acqua, ad eventuali ancoraggi presollecitati, ad urti e collisioni, alle variazioni di temperatura e al ghiaccio.

Per quanto concerne i sovraccarichi si deve tener conto della eventuale presenza di costruzioni, di depositi di materiale, di veicoli in transito, di apparecchi di sollevamento.

Il valore di progetto della resistenza Rd può essere determinato:

a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale yM specificato nella successiva Tab. 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali yR specificati nei paragrafi relativi a ciascun tipo di opera;

b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali yR riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;

c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali yR riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

Per le rocce, al valore caratteristico della resistenza a compressione uniassiale qu deve essere applicato un coefficiente parziale yqu=1,6. Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della

resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali.

Nello specifico, la normativa evidenzia anche che ...[6.2.4] nei casi in cui a causa della particolare complessità della situazione geotecnica e dell'importanza e impegno dell'opera, dopo estese ed approfondite indagini permangano documentate ragioni di incertezza risolvibili solo in fase costruttiva, la progettazione può essere basata sul metodo osservazionale.

Nell'applicazione di tale metodo si deve seguire il seguente procedimento:

- 1. devono essere stabiliti i limiti di accettabilità dei valori di alcune grandezze rappresentative del comportamento del complesso manufatto-terreno;
- 2. si deve dimostrare che la soluzione prescelta è accettabile in rapporto a tali limiti;
- 3. devono essere previste soluzioni alternative, congruenti con il progetto, e definiti i relativi oneri economici;
- 4. deve essere istituito un adeguato sistema di monitoraggio in corso d'opera, con i relativi piani di controllo, tale da consentire tempestivamente l'adozione di una delle soluzioni alternative previste, qualora i limiti indicati siano raggiunti.

13. Verifiche di sicurezza (§c6.4.2)

VERIFICHE DI SICUREZZA AGLI SLU DI TIPO GEOTECNICO (GEO)

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

(§C6.4.2.1)

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite:

- 1. SLU di tipo geotecnico (GEO)
- 2. collasso per carico limite dell'insieme fondazione-terreno
- 3. collasso per scorrimento sul piano di posa
- 4. stabilità globale
- 5. SLU di tipo strutturale (STR)
- 6. raggiungimento della resistenza negli elementi strutturali,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

La verifica di stabilità globale deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tabella 6.8.I per le resistenze globali.

La rimanenti verifiche devono essere effettuate, tenendo conto dei valori dei coefficienti parziali riportati nelle Tab. 6.2.I, 6.2.II e 6.4.I, seguendo almeno uno dei due approcci:

Approccio 1:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R2)

Approccio 2:

(A1+M1+R3).

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente gR non deve essere portato in conto.

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		57 di 61

Nel caso in esame le verifiche dovranno essere condotte secondo l'approccio 1 combinazione 2.

	, AL 0 0		
VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2,3$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm P} = 1.1$	$\gamma_{\rm P} = 1.1$

Tabella 6.4.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali.

VERIFICHE DI ESERCIZIO (SLE) (§C6.4.2.2)

Si devono calcolare i valori degli spostamenti e delle distorsioni per verificarne la compatibilità con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), nel rispetto della condizione (6.2.7).

Analogamente, forma, dimensioni e rigidezza della struttura di fondazione devono essere stabilite nel rispetto dei già menzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

Si fa notare come la scelta di valori dei parametri geotecnici "cautelativi" in mancanza di indagini dirette su ogni singolo aerogeneratore potrebbe sottostimare la capacità portante dei terreni di imposta. E' quindi opportuno, in fase esecutiva disporre un accurato piano di indagini localizzato sulle singole postazioni.

14. Condizioni di carico delle fondazioni degli aerogeneratori

Nella fase di predimensionamento sono stati utilizzati i carichi agenti sulle fondazioni ricavati specifiche tecniche rese disponibili dalla Società Vestas Wind che si riportano di seguito

Characteristic Extreme							
LeadLC/FamilySensor[-]		PLF	Туре	Mbt	Mzt	FndFr	Fzt
		[-]	[-]	[kNm]	[kNm]	[kN]	[kN]
Mbt	14Ecdvraa00(fam89)	1.35	Abs	147900	3222	1142	- <mark>6853</mark>
Mzt	23NTMSCHWO100(fam216)	1.35	Abs	43280	-16550	475.0	-6595
FndFr	1314etm00(fam81)	1.35	Abs	127100	-2004	1252	-6863
Fzt	12IceUHWO100(fam70)	1.35	Abs	67050	-2263	502.1	-7071

I carichi forniti da Vestas Wind come "Extreme load" sono i carichi statici massimi per la specifica turbina eolica calcolati per qualsiasi condizione.

15. Modelli geotecnici di riferimento per le verifiche

Le verifiche sono state eseguite sul modello geotecnico 01 maggiormente cautelativo e rappresentativo. Il piano di appoggio del basamento di fondazione è stato ipotizzato sullo **Strato n. 02**, S2 – Roccia tenera e/o intensamente fratturata, a quota pari a circa 3,50 m da piano campagna, considerando che gli strati superficiali saranno rimossi

OBLINE Wind Srl	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosinia Atzon	IT-VesOru-CLP-CIV-TR-20		58 di 61

dalle attività di scavo; si rimanda alle successive fasi della progettazione la valutazione dei dati geotecnici puntuali per ogni singola piazzola di installazione.

È stato utilizzato il software Loadcap 2023 della GEOSTRU. La fondazione è stata schematizzata come una piastra circolare dello spessore pari all'altezza delle due fondazioni proposte, in quanto il programma non permette l'inserimento di plinto circolare a sezione tronco-conica, con un leggero surplus di carico dovuto al differente peso tra c.a. e terreno di riporto.

La fondazione proposta risulta verificata.

Si riporta di seguito la sintesi delle analisi effettuate e si rimanda all'**Allegato 1 - Relazione di calcolo** allegata alla presente per le specifiche di ogni caso analizzato.

La scelta di valori dei parametri geotecnici "cautelativi", in mancanza di indagini dirette su ogni singolo aerogeneratore, potrebbe sottostimare la capacità portante dei terreni di imposta. E' quindi opportuno, in fase esecutiva disporre un accurato piano di indagini localizzato sulle singole postazioni.

1. Modello Geotecnico 04

DATI GENERALI

Normativa N	TC_2018				
Zona		Orune			
Lat./ Long. [WGS	584]	40.412899017334/9.3665657043457			
Diametro della f	ondazione	25.0	m		
Profondità piano	o di posa	3.5	m		
Profondità falda		2.0			
Sottofondazione	Sporgenz	a, Altezza	0.1/0.1	m	
Correzione para	metri				

SISMA

Accelerazione massima (ama	ıx/g)	0.038
Effetto sismico secondo	Paolucci,	Pecker (1997)
Coefficiente sismico orizzont	ale	0.0075

Coefficienti sismici [N.T.C.]

Dati generali				
	Tipo opera:	2 - Opere ordinarie		
	Classe d'uso:	Classe IV		
	Vita nominale	2:50.0	[anni]	
	Vita di riferimento:		100.0	[anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo:	В
Categoria topografica:	T1

OPLINE Wind Srl	Srl Geol. Cosima Atzori IT-VesOru-CLP-Cl	N° Doc.	Rev 0	Pagina
ORUNE WIND ST		IT-VesOru-CLP-CIV-TR-20	Kev U	59 di 61

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	60.0	0.249	2.685	0.3
S.L.D.	101.0	0.307	2.73	0.307
S.L.V.	949.0	0.587	2.976	0.371
S.L.C.	1950.0	0.693	3.061	0.393

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0.2988	0.2	0.0061	0.003
S.L.D.	0.3684	0.2	0.0075	0.0038
S.L.V.	0.7044	0.2	0.0144	0.0072
S.L.C.	0.8316	0.2	0.017	0.0085

STRATIGRAFIA TERRENO

Spesso	Peso	Peso	Angolo	Coesio	Coesio	Modul	Modul	Poisso	Coeff.	Coeff.	Descriz
re	unità di	unità di	di	ne	ne non	0	0	n	consoli	consoli	ione
strato	volume	volume	attrito	[kN/m²	drenat	Elastic	Edome		daz.	dazion	
[m]	[kN/m³	saturo	[°]]	а	0	trico		primari	е	
]	[kN/m³			[kN/m²	[kN/m²	[kN/m²		а	second	
]]]]		[cmq/s	aria	
]		
0.90	17.65	19.63	27.02	301.3	0.0	630000	0.0	0.33	0.0	0.0	S1
5.20	19.61	19.21	37.33	5995.0	0.0	174000	0.0	0.33	0.0	0.0	S2
				0		0					
3.90	20.59	20.59	41.26	7184	0.0	203500	0.0	0.33	0.0	0.0	S3
						0					
20.00	23.04	23.04	44.20	8256		546000		0.33	0.0	0.0	S4
						0					

Carichi di progetto agenti sulla fondazione

Nr.	Nome combinazi one	Pressione normale di progetto [kN/m ²]	N [kN]	Mx [kN∙m]	My [kN∙m]	Hx [kN]	Hy [kN]	Тіро
1	A2+M2+R 2	92.00	7071.00	16550.00	147900.00	1252.00	0.00	Progetto
2	Sisma	92.00	7071.00	16550.00	147900.00	1252.00	0.00	Progetto
3	S.L.E.	92.00	7071.00	16550.00	147900.00	1252.00	0.00	Servizio
4	A(1)+M(2) +R(2)	92.00	7071.00	16550.00	147900.00	1252.00	0.00	Progetto

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.C
	Sismica	angolo di	efficace	non	volume in	volume	Capacità	apacità
		resistenza		drenata	fondazion	copertura	portante	portante
		al taglio			е		verticale	orizzontal
								е
1	Si	1.25	1.25	1.4	1	1	1.8	1.1
2	Si	1.25	1.25	1.4	1	1	1.8	1.1

ORUNE Wind Srl Ge	Geol Cosima Atzori	N° Doc.	Rev 0	Pagina
	Geol. Cosima Atzon	IT-VesOru-CLP-CIV-TR-20		60 di 61

3	Si	1	1	1	1	1	1.8	1
4	Si	1.25	1	1.25	1	1	1.8	1

o

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2

Autore: Brinch - Hansen 1970

Carico limite [Qult]	17760.04	kN/m²
Resistenza di progetto[Rd]	9866.69	kN/m²
Tensione [Ed] 92.0	kN/m²	
Fattore sicurezza [Fs=Qult/Ed	d]	193.04

Condizione di verifica [Ed<=Rd] Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)

	Costante di Winkler	710401.8	kN/m³
--	---------------------	----------	-------

VERIFICA A SCORRIMENTO (A(1)+M(2)+R(2))

Adesione terreno fondazione	e19.9	kN/m²
Angolo di attrito terreno fon	dazione	0
Frazione spinta passiva	0	%
Resistenza di progetto	8206.04	kN
Sollecitazione di progetto	1252	kN

Condizione di verifica [Ed<=Rd] Verificata

CEDIMENTI PER OGNI STRATO

*Cedimento edometrico calcolato con: Metodo consolidazione monodimensionale di Terzaghi

Pressione nor	male di proget	to	92.0	kN/m²
Cedimento do	po T anni	7.0		
Distanza	7.63	m		
Angolo	253.51	0		
Cedimento to	tale	0	cm	
CEDIMENTI EL	ASTICI			
Pressione nor	male di proget	to	92.0	kN/m²
Spessore strato		6.0	m	
Profondità substrato roccioso			10.0	m
Modulo Elastico		203500.0	kN/m²	
Coefficiente d	i Poisson	0.3		
Coefficiente d	i influenza I1	0.04		
Coefficiente di influenza I2		0.07		
Coefficiente di influenza Is		0.09		
Cedimento al	centro della fo	ndazione	0.46	mm
Coefficiente d	i influenza I1	0.01		
Coefficiente d	i influenza I2	0.05		
Coefficiente d	i influenza Is	0.04		
Cedimento al	bordo	0.1	mm	
Cedimento al	bordo	0.04 0.1	mm	

OBLINE Wind Srl	Geol. Cosima Atzori	N° Doc.	Rev 0	Pagina
		IT-VesOru-CLP-CIV-TR-20		61 di 61

16. FRONTI DI SCAVO (§C6.8.6)

È stata eseguita una verifica di stabilità dei fronti di scavo della fondazione in ordine all'altezza di scavo prevista e alla tipologia di materiale attraversato considerando il modello geotecnico 01 e annullando la coesione e simulando in questo modo gli effetti dello scavo ipotizzando altresì il terreno totalmente saturo.

In generale si hanno localmente medie proprietà di autosostegno. Dato il grado di fratturazione presenti alle profondità investigate non si escludono fenomeni di detensionamento in fase di scavo con il possibile innesco di fenomeni gravitativi localizzati.

In fase esecutiva sarà opportuno verificare con indagini dirette le caratteristiche proprie dei terreni e valutare quindi l'opportunità di realizzare pareti di scavo inclinate e/o gradonate.