

RWE RENEWABLES ITALIA S.R.L.

Studi ambientali:

via A. Doria, 41/G - 00192 ROMA (RM) P.IVA/C.F. 06400370968 pec: rwerenewablesitaliasrl@legalmail.it

Titolo del Progetto:

PARCO EOLICO CORLEONE-CONTESSA

Documento:				N° Documento:				
PRO	OGETTO D	DEFINITIV	O	PEL	_E-P-R	R-0510		
ID PROGETTO:	PELE	DISCIPLINA:	Р	TIPOLOGIA:		FORMATO:		
TITOLO:		CTUDIO		TO ACUETIC	0			
		\ 	1111111111111	TO ACHISTIC	()			

STUDIO DI IMPATTO ACUSTICO

FOGLIO: 1/1 SCALA: INDICATA FILE: PELE-P-R-0510_00.dwg

Progetto:

REWIND ENERGY S.R.L.S.

viale Europa, 249 - 91011 ALCAMO (TP) P.IVA/C.F. 02785820818 pec: rewindenergy@pec.it

VAMIRGEOIND

via Tevere, 9 - 90144 PALERMO (PA) P.IVA/C.F. 05030350820 mail: vamirsas@yahoo.it

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
00	17.04.2023	PRIMA EMISSIONE	BELLOMO	VAMIRGEOIND	REWIND ENERGY

Indice

1	Pr	emessa	4
2	Im	postazione metodologica	6
3	Qu	ıadro conoscitivo	9
rį	3.1 ferim	Inquadramento normativo e definizione dei limiti acustici	
	3.2	Descrizione del contesto territoriale	12
	3.3	Caratteristiche anemologiche del sito	14
	3.3	3.1 Il dato storico	15
	3.3	3.2 Il contesto anemologico durante la campagna fonometrica	20
	3.3	3.3 Confronto e validazione	22
	3.4	Individuazione dell'ambito di studio e censimento dei ricettori	24
	3.4	1.1 Definizione delle attuali sorgenti acustiche sul territorio	26
	3.5	Caratterizzazione del clima acustico attuale	28
		i.l La campagna fonometrica eseguita per la caratterizzazione de nore allo stato attuale	
		5.2 Interazione tra il rumore residuo allo stato attuale e la velocità d nto 38	del
4	Cli	ima acustico nella fase di esercizio	41
	4.1	Le caratteristiche emissive degli aerogeneratori	41
	4.2	La modellazione acustica	44
	4.2	2.1 Il software SoundPlan	44

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

	4.2	2.2 Il metodo di calcolo ISO 9613-2	45
	4.2	2.3 Dati di input al modello	47
4	1.3	Il rumore indotto dal funzionamento del campo eolico	47
4	1.4	La verifica della compatibilità acustica del campo eolico	49
5	Cli	ima acustico nella fase di cantiere	52
5	5.1 52	Le attività di cantiere previste per la realizzazione del parco eoli	co
5	5.2	La modellazione acustica	53
5	5.3	Il rumore indotto dalle attività di cantiere	54
5	5.4	La verifica della compatibilità acustica delle attività di cantiere	54
6	Co	nclusioni	57
7	Ap	pendice A	58
8	Ap	pendice B	60
9	Ap	pendice C	61
10	Ap	pendice D	70
11	Ap	pendice E	79
Ela	abor	rati grafici	
=		urve di isolivello acustico del campo eolico nella fase	di
	C.	ension amonto diagno (6.00, 22.00)	

- funzionamento diurno (6.00-22.00)
- ⇒ Curve di isolivello acustico del campo eolico nella fase di funzionamento notturno (22.00-6.00)
- ⇒ Curve di isolivello acustico del campo eolico nella fase di corso d'opera

1 PREMESSA

Nei Comuni di Corleone e Contessa Entellina in provincia di Palermo (PA) è prevista la realizzazione di un campo eolico costituito da 12 aerogeneratori, ciascuno di potenza nominale pari a 6,6 MW. L'impianto è localizzato sul territorio a nord-ovest del Comune di Corleone, ovvero lungo il confine tra il predetto Comune e quello di Contessa Entellina.

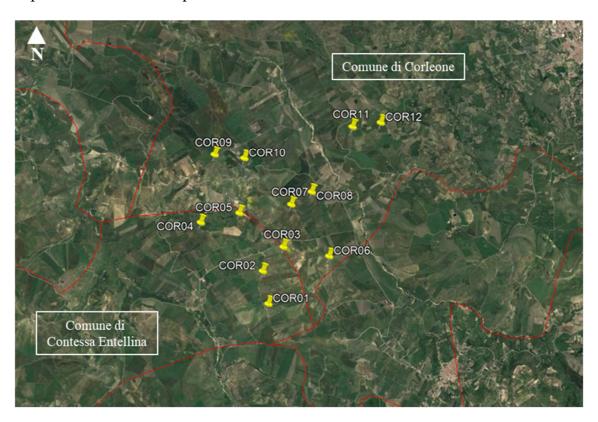


Figura 1-1 Localizzazione del campo eolico oggetto di studio

La seguente tabella geolocalizza e definisce le turbine la cui installazione è prevista per il campo eolico di progetto.

T	C	Coordina	A 14:400 dim o [mo]		
Turbina	Comune	Long. E [m]	Lat. N [m]	Altitudine [m]	
COR01	Contessa Entellina	343696.68	4181158.50	420	
COR02	Contessa Entellina	343595.55	4181844.47	438	
COR03	Contessa Entellina	344035.00	4182334.00	452	
COR04	Contessa Entellina	342325.00	4182874.00	422	
COR05	Contessa Entellina	343131.00	4183053.00	435	
COR06	Corleone	344979.00	4182127.00	501	
COR07	Corleone	344211.66	4183208.86	504	
COR08	Corleone	344644.00	4183461.00	428	
COR09	Corleone	342641.31	4184271.79	537	
COR10	Corleone	343255.05	4184184.31	518	
COR11	Corleone	345517.09	4184800.83	465	
COR12	Corleone	346106.00	4184876.00	475	

Tabella 1-1 Coordinate geografiche puntuali turbine d'impianto

La tipologia di macchina impiegata è di tipo ad asse orizzontale in cui il sostegno, ovvero una torre tubolare con altezza pari a 115 m, porta alla sua sommità la navicella, al cui lato esterno è collegata un rotore di diametro di 170 m.

2 IMPOSTAZIONE METODOLOGICA

Lo studio acustico ha tenuto conto di tutti gli aspetti connessi necessari sia alla caratterizzazione acustica ambientale attuale del territorio interessato sia alla valutazione della possibile interferenza indotta dal funzionamento degli aerogeneratori previsti e dalle relative attività di cantiere connesse alla loro realizzazione.

Per quanto riguarda la definizione del quadro conoscitivo di riferimento, oltre ad individuare i limiti normativi territoriali di riferimento sulla scorta della normativa nazionale, regionale e comunale di riferimento, è stata predisposta sia una analisi territoriale per l'individuazione dei potenziali ricettori sia una campagna fonometrica per la determinazione del rumore ambientale allo stato attuale. A riguardo, in accordo con la UNI/TS 11143-7:2013 "acustica - Metodo per la stima dell'impatto e del clima acustico per tipologia di sorgenti - Parte 7: Rumore degli aerogeneratori", per ciascun aerogeneratore è stata individuata un'area di potenziale disturbo definita da una circonferenza con raggio pari a 1000 m. L'inviluppo di tutte le aree dei 12 aerogeneratori in progetto ha definito l'ambito di studio, all'interno del quale sono stati censiti tutti gli edifici e individuati in particolare quelli a destinazione residenziale.

La campagna fonometrica ha avuto l'obiettivo di valutare, oltre che l'entità del rumore ambientale attuale o residuo nello stato post operam, anche la sua variazione in funzione della velocità del vento sviluppando un'analisi dei livelli che caratterizzano il sito di indagine. In particolare, si è fatto riferimento ai valori misurati in corrispondenza dei punti di misura e assunto una legge di correlazione tra velocità del vento e livelli di rumore basata su dati sperimentali. Questo perché nel caso di un campo eolico, il vento è la

principale variabile che influenza sia l'emissione sonora della turbina eolica (maggiore è l'intensità del vento, maggiore è la potenza sonora emessa dall'aerogeneratore) e la sua propagazione nell'ambiente, sia l'entità del rumore ambientale naturale in un territorio, come nel caso in esame, prettamente naturale/agricolo e scarsamente antropizzato.

Nello specifico, la campagna fonometrica è stata condotta considerando due postazioni differenti e misurando i livelli acustici in più periodi di campionamento sia nel periodo diurno (6.00-22.00) che notturno (22.00-6.00). In particolare, al fine di coprire le situazioni di ventosità e direzione del vento a terra e in quota tipiche del sito oggetto di indagine sono state eseguite 6 misure di tipo "spot", ovvero con durata pari a 15'. Confrontando il dato anemologico storico (1971-2000) con quello caratterizzante il periodo nel quale sono stati eseguiti i rilievi fonometrici è stato possibile verificare che i dati ottenuti non facciano riferimento ad outliers meteorologici che potrebbero inficiare l'intero processo di analisi. Dalla predetta indagine si è appurato che le condizioni in cui sono stati eseguiti i rilievi rispecchiano le condizioni anemologiche tipiche del sito in esame.

Per la verifica delle potenziali interferenze sul clima acustico attuale indotte dagli aerogeneratori sia nella condizione di funzionamento che temporanea di realizzazione degli stessi, è stato predisposto uno studio modellistico previsionale mediante il software SoundPlan con l'obiettivo di determinare le diverse mappature acustiche al suolo e i livelli puntuali in corrispondenza degli edifici residenziali posti all'interno dell'ambito di studio sia per il periodo diurno (6.00-22.00) che in quello notturno (22.00-6.00). In entrambi i casi la metodologia assunta si basa sulla teoria del "worst case scenario", ovvero quello di massimo disturbo, in modo che verificato che questo risulti acusticamente compatibile sul territorio ne consegue come tutti gli altri di

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l. Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

minor interferenza sono conseguentemente verificati. Per quanto riguarda il funzionamento di una pala eolica questa dipende sia dall'intensità del vento che dalla durata dello stesso durante l'arco della giornata. Il "worst case scenario" è quindi definito considerando il funzionamento di ciascuna pala nelle condizioni di massima emissione acustica (Lw giorno 104,3 dB(A) – Lw notte (104,3 dB(A)), secondo la configurazione di progetto, in maniera continua e costante sia nel periodo diurno (6.00-22.00) che notturno (22.00-6.00).

Analogamente per la fase di corso d'opera è stata considerata una condizione di cantiere di massima emissione sulla scorta della tipologia di lavorazioni, del cronoprogramma delle attività e della tipologia e numero di mezzi operativi. Stante la temporaneità delle attività e la diversa localizzazione delle stesse in virtù della posizione dei 12 aerogeneratori, le analisi previsionali di verifica sono state eseguite considerando le posizioni dei mezzi di cantiere più vicine ai ricettori residenziali e lavorativi all'interno dell'ambito di studio.

I risultati ottenuti dalle suddette modellazioni acustiche sono stati quindi utilizzati per la verifica dei valori limite territoriali in corrispondenza dei ricettori in termini di livelli di emissione, di immissione assoluta e differenziale così come previsto dal quadro normativo nazionale, regionale e comunale di riferimento in materia di inquinamento acustico.

3 QUADRO CONOSCITIVO

3.1 Inquadramento normativo e definizione dei limiti acustici di riferimento

La Commissione Centrale Tecnica dell'UNI il 28 gennaio 2013 ha approvato la UNI/TS 11143-7:2013, la quale è stata elaborata per supportare, dal punto di vista metodologico, i diversi tipi di iter autorizzativo per la realizzazione o la modifica di un parco eolico, in conformità alla legislazione nazionale vigente, riportata in questo paragrafo. Essa descrive una metodologia per la stima dell'impatto acustico e del clima acustico, allo scopo di definire un percorso chiaro per i progettisti, i consulenti e per gli enti pubblici competenti. In particolare, la presente specifica tecnica si applica a singoli aerogeneratori, aventi potenza elettrica pari ad almeno 500 kW (come nel caso in esame), e a parchi eolici destinati allo sfruttamento industriale dell'energia del vento. Essa descrive i metodi per la caratterizzazione sperimentale del clima acustico presso i ricettori collocati nell'area di influenza e per la valutazione previsionale dell'impatto acustico.

Si specifica che la UNI/TS 11143-7:2013 non si applica alle sorgenti sonore e alle attività che, pur contemplate nella valutazione dell'impatto acustico di un parco eolico, non sono legate alla fase di esercizio, come, per esempio, le attività di costruzione. Inoltre, non riguarda il calcolo del livello di potenza sonora degli aerogeneratori, per il quale è opportuno applicare la norma CEI EN 61400-11, introdotta al paragrafo 4.2.2, insieme alla UNI ISO 9613-1 "Acustica - Attenuazione sonora nella propagazione all'aperto - Parte 1: Calcolo dell'assorbimento atmosferico".

La Legge Quadro n.447 del 1995, recentemente modificata dal D.Lgs. 42/2017, costituisce il riferimento normativo cardine in materia di

inquinamento acustico ambientale. Nello specifico per l'individuazione dei valori limite di riferimento sul territorio per le diverse sorgenti acustiche demanda ai Comuni la determinazione delle classi acustiche e dei relativi livelli limite in termini di emissione e immissione secondo i criteri dettati dalle normative regionali in armonia con il DPCM 14.11.1997.

Con Decreto dell'11 settembre 2007 la Regione Sicilia ha emanato le linee guida per la classificazione in zone acustiche del territorio dei comuni della Regione siciliana. Queste, oltre che contenere le metodiche che i Comuni devono seguire durante la fase di redazione del proprio Piano di classificazione acustica, contengono anche indicazioni riguardo le attività temporanee, tra cui i cantieri, e le modalità di autorizzazione della deroga ai limiti di emissione.

Nel caso di comuni che non hanno ancora individuato la suddivisione in classi acustiche del proprio territorio di competenza, come nel caso specifico, si fa riferimento a quanto previsto all'art. 6 del DPCM 1 marzo 1991 nel quale vengono individuati dei limiti di accettabilità su tutto il territorio nazionale per le sorgenti sonore fisse (cfr. Tabella 3-1).

Zone	Limite diurno Leq(A)	Limite notturno Leq(A)						
Tutto il territorio nazionale	70	60						
Zona A (*)	65	55						
Zona B (*)	60	50						
Zona esclusivamente industriale	70	70						
(*) Zone di cui all'art.2 del decreto ministeriale n 1444 del 2/04/1968								

Tabella 3-1 Limiti di accettabilità previsti dall'art. 6 del DPCM 1 marzo 1991

L'art.2 del decreto ministeriale n 1444 del 2/04/1968 definisce:

- ➤ Zona A: le parti del territorio interessate da agglomerati urbani che rivestano carattere storico, artistico e di particolare pregio ambientale o da porzioni di essi, comprese le aree circostanti, che possono considerarsi parte integrante, per tali caratteristiche, degli agglomerati stessi;
- ➤ Zona B: le parti del territorio totalmente o parzialmente edificate, diverse dalle zone A: si considerano parzialmente edificate le zone in cui la superficie coperta degli edifici esistenti non sia inferiore al 12,5% (un ottavo) della superficie fondiaria della zona e nelle quali la densità territoriale sia superiore ad 1,5 mc/mq;

In particolare, l'area oggetto di studio non possiede requisiti tali da ricadere nella casistica delle zone classificate di tipo "A" o "B" della precedente tabella poiché l'area edificata è inferiore allo 0,5% del totale (cfr. paragrafo 3.2), né tantomeno di tipo esclusivamente industriale, in quanto quest'ultimo tipo di sorgenti sono poste a buona distanza dalla porzione di territorio indagata (cfr. paragrafo 3.4.1).Ne consegue pertanto come i valori di riferimento in Leg(A) assunti nel presente studio risultino essere pari a 70 dB(A) nel periodo diurno (6:00-22:00) e 60 dB(A) in quello notturno (22:00-6:00). A questi si considerano inoltre i valori di immissione differenziale, ovvero le differenze tra il livello equivalente del rumore ambientale e quello del rumore residuo, fissati a 5 dB(A) nel periodo diurno e 3 dB(A) in quello notturno. A riguardo, il DPCM 14.11.1997 stabilisce che il criterio differenziale non si applica, in quanto ogni effetto del rumore è da ritenersi trascurabile, se il rumore misurato a finestre aperte è inferiore a 50 dB(A) nel periodo diurno (35 dB(A) nel caso di finestre chiuse) e inferiore a 40 dB(A) nel periodo notturno (25 dB(A) nel caso di finestre chiuse).

Quanto detto fa riferimento alle sorgenti acustiche fisse, ovvero quindi agli aerogeneratori. Per quanto riguarda le attività di cantiere, queste si inquadrano come sorgenti acustiche temporanee soggette, proprio per la temporaneità del loro svolgimento, a possibili deroghe ai limiti di rumorosità da parte del Comune competente. In tal senso le succitate Linee guida regionali disciplinano le attività di cantiere stabilendo orari di lavoro (8:00-19:00, salvo ulteriori restrizioni da parte del Comune), limiti di riferimento (70 dB(A), ovvero 65 dB(A) all'interno delle abitazioni), e le modalità di richiesta della deroga a seconda della complessità del caso.

3.2 Descrizione del contesto territoriale

I comuni di Corleone e Contessa Entellina sono situati nel territorio della provincia di Palermo in Sicilia.

Il comune di Corleone si estende per 229,46 km² e ha una densità abitativa di 46,26 abitanti/ km² (scarsamente popolato). Il centro abitato di Corleone si trova ad un'altitudine di 558 metri sul livello del mare: l'altezza massima raggiunta nel territorio comunale è di 1.569 metri s.l.m., mentre la quota minima è di 218 metri. s.l.m.

Il comune di Contessa Entellina si estende per 136,48 km² e ha una densità abitativa di 11,2 abitanti/ km² (scarsamente popolato). Il centro abitato raggiunge un'altitudine massima di circa 571 m s.l.m.. L'altezza massima raggiunta nel territorio comunale è di 1.150 metri s.l.m., mentre la quota minima è di 106 metri. s.l.m.

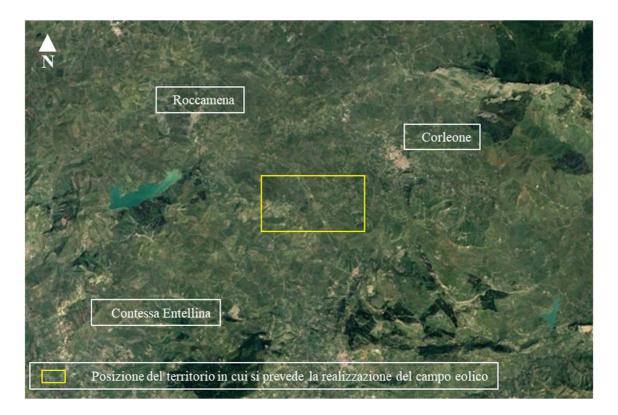


Figura 3-1 Contesto territoriale in cui si prevede l'inserimento del campo eolico

Nello specifico, il contesto in cui il progetto si inserisce è delimitato:

- ✓ a Nord dai centri abitati di Corleone e Roccamena oltreché dalla Strada Provinciale 97;
- ✓ a Sud dai centri abitati di Contessa Entellina e Campofiorito;
- ✓ a Ovest dal territorio collinare a margine del Lago Garcia;
- ✓ ad Est dalle campagne a carattere collinare che si protraggono alla Strada Statale 118;

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza notevole dal campo eolico di progetto.



Figura 3-2 Inquadramento area di intervento su Carta uso suolo Corine Land Cover, fonte: Geo portale Regione Sicilia

Come si evince dalla figura, l'intera area di progetto ricade quasi totalmente in terreni ad uso seminativo semplice.

In generale, l'area interessata dalla realizzazione del parco eolico è omogenea per conformazione e caratteristiche meteo climatiche in quanto tutto l'ambito di studio ricade su territori collinari con elevazione compresa tra i 469 m e 597 m s.l.m.

3.3 Caratteristiche anemologiche del sito

Il presente paragrafo è volto all'analisi delle caratteristiche anemologiche dell'area di studio. Tale analisi è strutturata al fine di perseguire una finalità

costituita da due fasi consequenziali: in primis occorre analizzare dal punto di vista "storico" il contesto di intervento, definendo in un arco temporale ampio le condizioni di vento che hanno caratterizzato l'area interessata dall'iniziativa progettuale in esame, secondariamente occorre analizzare il dato anemologico che ha caratterizzato le giornate in cui è stata svolta la campagna fonometrica per la caratterizzazione del clima acustico attuale. In questo modo è possibile verificare la coerenza con il dato storico e validare i risultati ottenuti, in quanto non potranno essere associati ad outliers meteorologici che potrebbero inficiare l'intero processo di analisi.

La presente trattazione, pertanto, sarà divisa in due parti principali: "il dato storico" che descrive l'analisi nell'arco temporale di riferimento 1971-2000 e l'analisi del "contesto anemologico di misura" corrispondente alle giornate del 4 e 5 gennaio 2023 in cui è stata svolta la campagna fonometrica.

3.3.1 Il dato storico

L'analisi delle caratteristiche anemologiche storiche del sito è stata effettuata sulla base dei dati presenti nell'Atlante Climatico dell'Aeronautica Militare. Il quale raccoglie i dati relativi ad un arco temporale di un trentennio, permettendo così la ricostruzione, in termini medi, delle caratteristiche tipiche e prevalenti durante i diversi periodi dell'anno.

L'Atlante è gestito dall'Aeronautica Militare e risulta coerente con quanto espresso dall'Organizzazione Meteorologica Mondiale (OMM) dove il clima in generale è definito come lo stato medio delle variabili fisiche atmosferiche, con riferimento ad uno specifico periodo temporale e ad un'area circoscritta.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato

LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

In particolare, questo paragrafo ha l'obbiettivo di analizzare e definire le

distribuzioni di frequenza ed intensità dei venti al suolo.

Per il rilevamento dei dati anemologici è stata scelta la stazione meteo più

vicina all'area oggetto di studio e per la quale erano disponibili i dati

necessari all'analisi. Si tratta, pertanto, della stazione meteorologica di Prizzi

(PA), ubicata nel punto più alto del borgo, presso una palazzina demaniale,

distante dall'area di studio circa 20 chilometri e può essere ritenuta più che

significativa e rappresentativa delle condizioni meteoclimatiche dell'area in

esame, in quanto l'APAT (Agenzia per la Protezione dell'Ambiente e per i

servizi Tecnici) afferma che le osservazioni rilevate dalle stazioni meteo

dell'Aeronautica Militare sono rappresentative di un'area di circa 70

chilometri di raggio.

La stazione meteo di riferimento è inquadrata in Figura 3-3, con le seguenti

coordinate UTM:

❖ Lat: 361918.93 m E;

❖ Long: 4175534.44 m N.

16

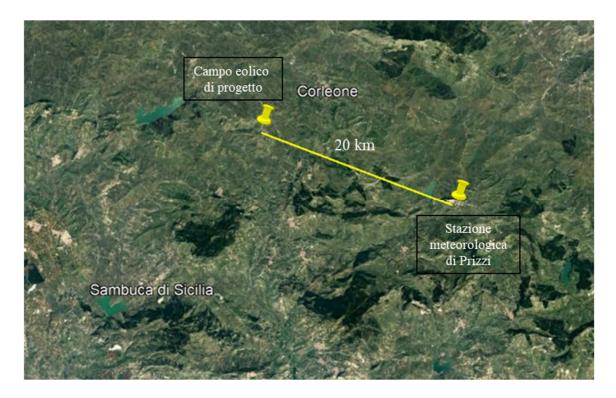


Figura 3-3 Localizzazione della Stazione meteorologica di Prizzi (PA), rispetto al campo eolico di progetto (PA)

Il diagramma seguente riporta le direzioni di provenienza espresse in termini percentuali e l'intensità dei venti in nodi per la stagione primaverile (marzo, aprile e maggio), relativamente all'area di studio.

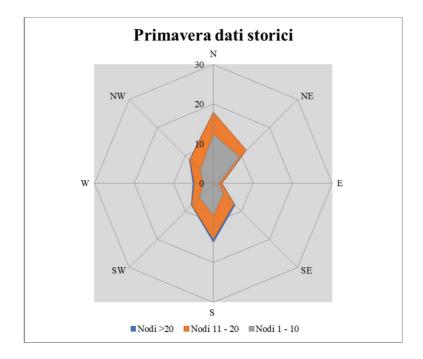


Figura 3-4 Direzione e velocità media del vento 1971-2000 nella stagione primaverile. Fonte: Atlante Climatico Aeronautica militare

L'analisi del diagramma mostra per la stagione primaverile una prevalenza di vento con direzione nord e sud.

Relativamente alle velocità, la precedente rosa dei venti mette in evidenza per la stagione primaverile una prevalenza della classe di vento 11-20 nodi.

Ai fini conoscitivi e anche per valutare la maggiore probabilità del vento negli altri periodi dell'anno oltreché nella stagione primaverile, si riportano di seguito le statistiche anemometriche di lungo periodo del sito eolico in condizioni invernali, autunnali ed estive.

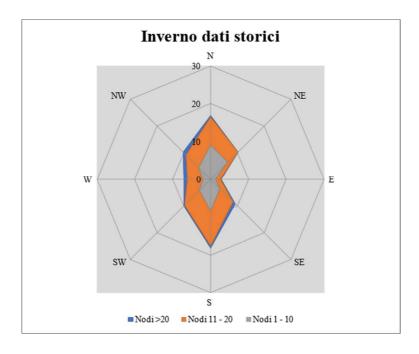


Figura 3-5 Direzione e velocità media del vento 1971-2000 nella stagione invernale. Fonte: Atlante Climatico Aeronautica militare

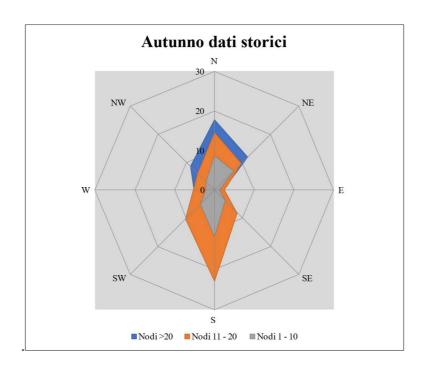


Figura 3-6 Direzione e velocità media del vento 1971-2000 nella stagione autunnale. Fonte: Atlante Climatico Aeronautica militare

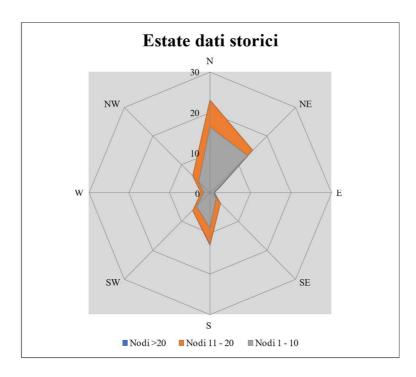


Figura 3-7 Direzione e velocità media del vento 1971-2000 nella stagione estiva. Fonte: Atlante Climatico Aeronautica militare

3.3.2 Il contesto anemologico durante la campagna fonometrica

I dati metereologici vengono costantemente rilevati dagli osservatori e dalle stazioni per poi essere aggregati per l'utilizzo, la trasmissione e l'archiviazione sotto forma di bollettini meteorologici da parte dell'Aeronautica Militare.

In particolare, il bollettino METAR, dal quale sono stati ricavati i dati metereologici dell'area di studio relativi alle condizioni di misura durante la campagna fonometrica (4-5 gennaio 2023), rappresenta un messaggio di osservazione in superficie di tipo aeronautico, che viene emesso ogni mezz'ora oppure ogni ora a seconda del servizio della stazione.

Il bollettino fornisce informazioni relative a diversi parametri, tra cui quelli di vento. In particolare, per il vento vengono adottate differenti unità di misura in base alla componente. Per l'intensità, che corrisponde alla velocità

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l. Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato

Studio al Impatio Acustico – Progetto per la realizzazione al un impianto eotico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

dell'aria rispetto al suolo, l'unità di misura utilizzata è il nodo (KT che corrisponde a 1.852 km/h) e per la direzione di provenienza il grado sessagesimale (si assume come valore 0 la calma di vento e 360 il nord). Lo strumento di misura, chiamato anemometro, è posto, lontano da ostacoli, ad un'altezza di 10 metri dal suolo. In particolare, per il bollettino METAR viene fornita la direzione e l'intensità del vento al suolo; viene, inoltre, indicata anche la raffica, che consiste nella velocità massima del vento riferita allo stesso periodo di 10 minuti, quando questa supera di almeno 10 nodi il valore dell'intensità.

La stazione considerata, coerentemente a quella scelta per l'analisi storica, è rappresentata dalla stazione meteorologica di Prizzi, precedentemente definita.

Al fine di poter descrivere compiutamente lo stato attuale, si riportano di seguito le descrizioni dei parametri di vento per le giornate dell'4 e 5 gennaio 2023, per poi successivamente confrontare quest'ultimi con i dati storici e verificarne la coerenza. Qualora la verifica risultasse positiva in termini di coerenza sarà possibile affermare che le condizioni in cui sono stati eseguiti i rilievi rispecchiano le condizioni anemologiche tipiche del sito in esame.

In relazione alla frequenza percentuale per direzione del vento, come si nota dalla seguente figura, la direzione prevalente registrata è quella sud.

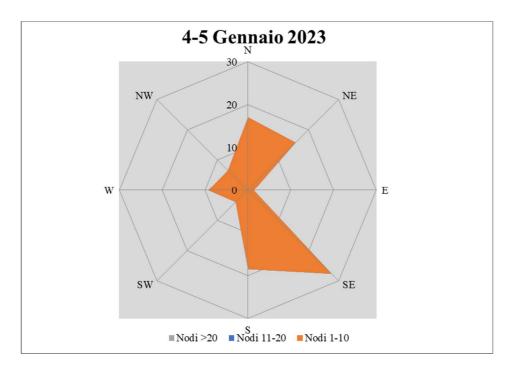


Figura 3-8 Direzione e velocità del vento 04-05/01/2022. Fonte: elaborazione dei dati METAR

Per quel che concerne la velocità del vento, i dati registrati dalla stazione precedentemente definita, indicano una prevalenza della classe 1-10 nodi.

3.3.3 Confronto e validazione

Al fine di validare le misurazioni fonometriche e descrivere il contesto anemologico di riferimento escludendo possibili outliers meteorologici, nel presente paragrafo verranno messi a confronto i dati storici relativi agli anni 1971-2000 per la stagione primaverile, con quelli caratterizzanti le giornate in cui sono stati eseguiti i rilievi.

Con tale verifica sarà quindi evidenziato come il dato anemometrico che ha caratterizzato le giornate di misura dell'04 e 05 gennaio 2023 sia conforme al dato storico. Nello specifico verranno, analizzati e confrontati i parametri di vento, quali direzione e velocità.

La seguente figura mette a confronto le condizioni anemometriche storiche con quelle reali di misura.

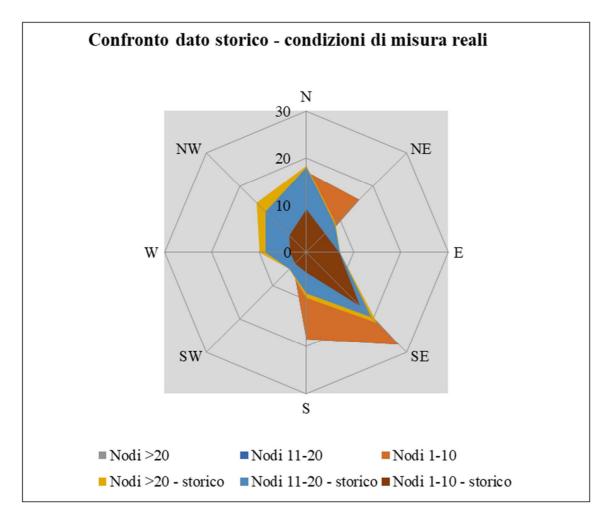


Figura 3-9 Confronto dei dati storici (1971-2000) - condizioni reali della campagna fonometrica (04-05 gennaio 2023)

Dal confronto risulta come le direzioni principali dei venti siano quelle sud est e nord per i dati storici così come per quelli caratterizzanti le giornate di rilievi fonometrici. Per quanto riguarda le velocità invece, per i dati si registra la preponderanza della classe 11-20 nodi, mentre per le giornate di misura 1-10 nodi.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

In linea generale è possibile affermare come vi sia una buona approssimazione del dato attuale (04-05 gennaio 2023) rispetto allo storico per la stagione invernale poiché le direzioni e le intensità seguono la stessa distribuzione. È bene, però, sottolineare come le differenze principali possano essere ricondotte ad una differenza nella modalità di registrazione del dato storico, suddiviso in 12 classi di vento per direzione a differenza del dato attuale suddiviso in 16 classi e ricondotto in back analysis ad 8.

Alla luce di quanto esposto nei paragrafi precedenti in relazione all'aspetto anemologico, è possibile evidenziare in generale una buona corrispondenza del dato attuale relativo alle giornate del 04 e 05 gennaio 2023 con i dati provenienti dalle serie storiche fornite dall'Atlante Climatico 1971-2000 per la stessa stazione meteo di riferimento. Pertanto, possono essere considerati attendibili i rilievi effettuati durante la campagna fonometrica, che verranno utilizzati nel prosieguo della trattazione per la caratterizzazione del rumore allo stato attuale.

3.4 Individuazione dell'ambito di studio e censimento dei ricettori

Come ambito di studio si intende la porzione di territorio che si ritiene potenzialmente interferita dalle opere in progetto nelle loro modalità di funzionamento e realizzazione. Appare evidente come, pertanto, la definizione di tale area sia correlata alla tipologia di sorgente acustica oggetto di studio.

Da un punto di vista acustico un aerogeneratore è una sorgente sonora caratterizzata da una emissione principalmente concentrata alle basse frequenze e quindi potenzialmente percepibile anche ad elevate distanze dalla pala stessa in virtù della maggior lunghezza d'onda che caratterizza una bassa frequenza rispetto ad una alta. In accordo con quanto descritto dalla UNI/TS 11143-7:2013 "Acustica - Metodo per la stima dell'impatto e del clima acustico per tipologia di sorgenti - Parte 7: Rumore degli aerogeneratori", al fine di tener conto di questo fenomeno, per ciascun aerogeneratore è stata definita un'area di potenziale interferenza acustica delimitata da una circonferenza di centro il singolo aerogeneratore e raggio pari a 1000 m.

L'ambito di studio complessivo del parco eolico in studio è definito dall'inviluppo delle 12 singole aree, ciascuna definita per ogni aerogeneratore secondo il suddetto criterio.

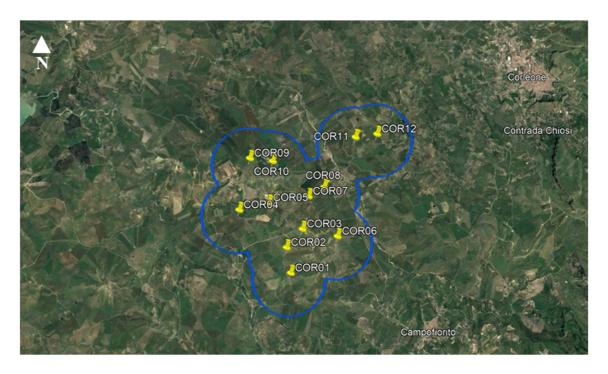


Figura 3-10 Ambito di studio (in blu) e turbine di progetto

Prendendo dunque l'area definita in Figura 3-10 come riferimento per le successive analisi acustiche, è stato effettuato un censimento degli edifici individuando la destinazione d'uso con particolare attenzione a quella

residenziale in quanto certamente oggetto di un potenziale maggior disturbo vista l'operatività del parco eolico in continuo, e quindi anche nel periodo notturno più sensibile.

Il territorio che ricade all'interno dell'ambito di studio è prettamente naturale, poco antropizzato, con alcune aree a destinazione agricola. Gli edifici censiti sono poi stati codificati negli elaborati grafici con il codice Rxxx (cfr. Appendice C). principalmente a destinazione agricola e, per buona parte, in stato di abbandono.

Gli edifici a destinazione d'uso residenziale sono di caratterizzati per un massimo di 2 piani per un'altezza da terra sempre compresa tra i 3 e i 6 metri.

L'approccio precedentemente descritto ha consentito di calcolare la mappa di rumore della zona di indagine oltreché stimare i valori puntuali in dB(A) del rumore prodotto dal campo eolico per tutti i ricettori residenziali ricadenti all'interno dell'ambito di studio, soggetti ai potenziali effetti acustici indotti. Successivamente si è potuta verificare la conformità di quest'ultimi rispetto ai limiti di riferimento nazionali pari a 70 e 60 dB(A) rispettivamente in periodo diurno (6.00-22.00) e notturno (22.00-6.00).

In Appendice C vengono riportati i codici identificativi, l'uso in atto, il numero di piani, i riferimenti geografici e la distanza dall'aerogeneratore di progetto più vicino dei ricettori individuati. Le celle evidenziate rappresentano i ricettori per i quali, in linea con la normativa nazionale di riferimento, è stato eseguito il calcolo dei livelli acustici in facciata poiché a destinazione d'uso residenziale.

3.4.1 Definizione delle attuali sorgenti acustiche sul territorio

Al fine di escludere potenziali effetti acustici cumulativi causati dalla sovrapposizione delle sorgenti (attuali e di progetto), è stata svolta un'analisi

di definizione delle sorgenti attualmente presenti sul territorio, sia nelle prossimità che all'interno dell'ambito di studio precedentemente definito. La disamina ha consentito di escludere la presenza di qualunque tipo di sorgente che possa concorrere all'alterazione dell'attuale clima acustico e/o fornire effetti di disturbo cumulativi indotti dall'inserimento nel contesto territoriale degli aerogeneratori di progetto.

Per quanto riguarda le infrastrutture viarie, all'interno dell'ambito di studio si segnala la presenza delle Strade Provinciali SP44 e SP110 (cfr. Figura 3-11), appartenenti alla categoria F e ritenute trascurabili dal punto di vista acustico in quanto presenta carichi di traffico estremamente modesti.

La Figura 3-11 descrive dal punto di vista grafico le considerazioni appena menzionate.

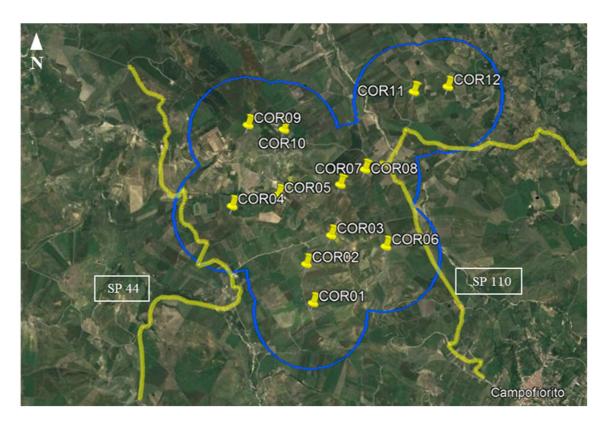


Figura 3-11 Sorgenti stradali più vicine agli aerogeneratori di progetto.

In ultimo, non si rileva la presenza di linee ferroviarie interne o limitrofe all'ambito di studio

3.5 Caratterizzazione del clima acustico attuale

3.5.1 La campagna fonometrica eseguita per la caratterizzazione del rumore allo stato attuale

Per la caratterizzazione del clima acustico allo stato attuale è stata effettuata una campagna fonometrica per il rilevamento dell'attuale rumore ambientale del territorio. Nello specifico sono state considerate due postazioni differenti per le quali sono state eseguite campionamenti di breve durata durante sia il periodo diurno che notturno.

Le misure sono state eseguite secondo le modalità previste dal DM 18.03.1998, ovvero con fonometro di classe I con certificato di taratura valido, calibrazione ante e post misura e in assenza di pioggia e nebbia. Per quanto riguarda le condizioni di vento, seppur il DM indica un valore massimo di 5 m/s, nel caso specifico le misure sono finalizzate alla determinazione del rumore di fondo attuale e della sua variabilità con il vento.

Nello specifico la strumentazione utilizzata è stata:

- ⇒ Fonometro integratore e analizzatore in frequenza 01dB Fusion s/n 12345 con certificato di taratura del produttore 01dB emesso in data 22 novembre 2019 (vedi appendice A);
- ⇒ Calibratore del livello sonoro 01dB Cal01 s/n 867464 con certificato di taratura emesso dal produttore 01dB il 18 dicembre 2018 (vedi appendice A);

- ⇒ Treppiedi ed accessori di completamento;
- ⇒ Sistema di analisi con software 01dB dBTrait.

Le misure sono state eseguite nelle giornate del 04 e 05 gennaio 2023 nelle due postazioni individuate in figura seguente RUM_1 e RUM_2. Per ciascun punto è stato effettuato un campionamento di breve durata del livello acustico equivalente con tempo di integrazione pari a 100 ms, articolato in 5 misure nel periodo diurno e 1 in quello notturno. Questo ha permesso di stabilire i valori in Leq(A) rappresentativi del rumore ambientale allo stato attuale e, quindi, l'entità del rumore residuo da considerare nelle analisi previsionali per la verifica del criterio differenziale.

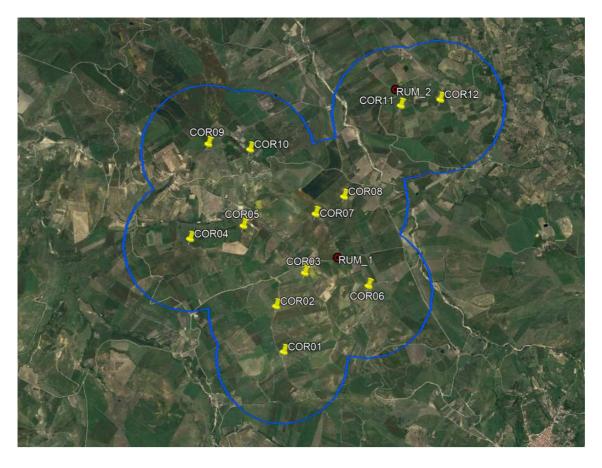


Figura 3-12 Localizzazione dei punti di misura RUM_1 e RUM_2 rispetto al campo eolico di progetto

Figura 3-13 Posizione del fonometro nelle due postazioni di misura RUM_1 e RUM_2

Entrambi i punti sono localizzati in un contesto territoriale similare poco antropizzato e prettamente rurale/agricolo.

Oltre alla caratterizzazione dello stato dei luoghi, le misure hanno come obiettivo quello di definire i valori di Leq(A) nel periodo diurno e notturno rappresentativi del territorio interferito dalle opere in progetto per la verifica della compatibilità acustica del parco eolico attraverso la verifica dei valori di immissione assoluta e differenziale.

Tuttavia, come maggiormente dettagliato nei paragrafi successivi, il vento è il principale elemento esterno che condiziona sia la potenza sonora emissiva della turbina eolica e, quindi, il rumore indotto al terreno, sia il rumore naturale di fondo, ovvero il rumore residuo nella fase post operam.

Attraverso l'interpolazione dei dati acustici, come dettagliato nel paragrafo successivo si è determinata la funzione di correlazione tra velocità del vento e livello acustico del fondo naturale del territorio.

Di seguito si riportano i valori acustici rilevati per ciascuna misura rispetto al valore medio del periodo di misura del Leq(A), del valore massimo e minimo (Lmax e Lmin) e dei valori percentili.

Punto d	Punto di misura: RUM_1									
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10	L5
1	9:30-9:40	42,8	35,7	60,5	36,2	36,8	37,3	41,2	45,6	46,4
2	12:30-12:40	43,9	34,4	57,1	36	37,7	38,9	41,8	46,5	48,2
3	14:10-14:20	42,9	36,2	55,4	36,9	37,7	38,4	42,2	44,9	46,2
4	16:15-16:25	43,3	31,5	56,7	32	33,9	34,5	40,5	47,3	48,4
5	18:10-18:20	44,6	33,6	65,7	34,3	35,4	36	39,7	44,2	46,2
6	22:10-22:20	39,8	34,7	49,5	35,2	36,6	37,2	39,2	41,7	42,4

Tabella 3-2 Livelli acustici rilevati per il punto RUM_l nelle 6 misure eseguite

Punto di misura: RUM_2										
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10	L5
1	9:50-10:00	44,8	35,1	53,8	38,1	39,2	39,9	43,2	46,2	47,2
2	13:00-13:10	46,8	35,2	59,3	37,4	39,4	40,6	44,2	48,0	49,1
3	14:45-14:55	42,3	31,7	58,9	33,9	35,3	36,1	40,3	43,5	44,5
4	15:40-15:50	42,5	34,2	53,2	36,1	37,8	38,5	41,2	44,1	45,0
5	18:30-18:40	39,5	33,5	54,1	34,5	35,5	36,1	38,0	40,5	42,0
6	22:25-22:35	40,7	29,4	49,8	31,0	32,0	32,6	35,0	38,7	39,8

Tabella 3-3 Livelli acustici rilevati per il punto RUM 2 nelle 6 misure eseguite

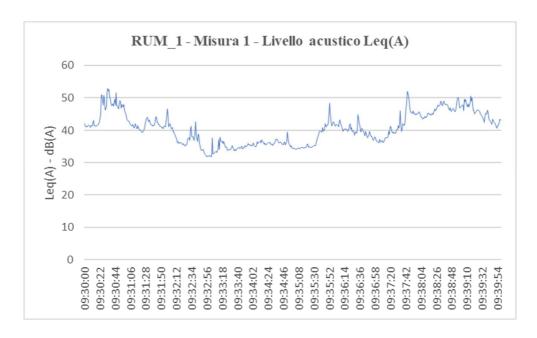


Figura 3-14 Punto di misura RUM_1: misura 1 (periodo diurno)

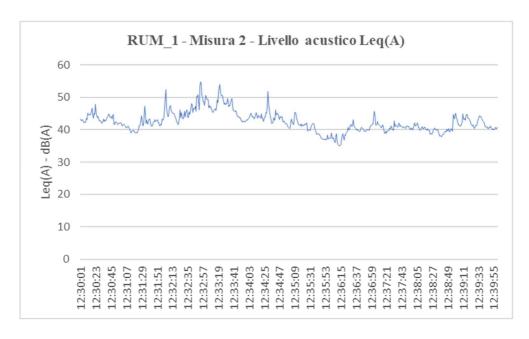


Figura 3-15 Punto di misura RUM 1: misura 2 (periodo diurno)

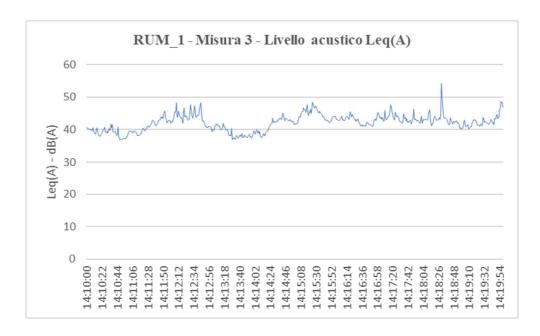


Figura 3-16 Punto di misura RUM_1: misura 3 (periodo diurno)

Figura 3-17 Punto di misura RUM 1: misura 4 (periodo diurno)

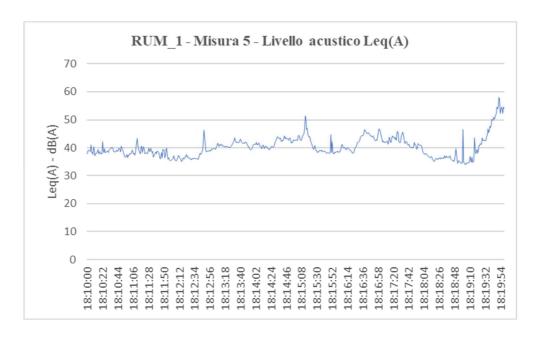


Figura 3-18 Punto di misura RUM_1: misura 5 (periodo diurno)

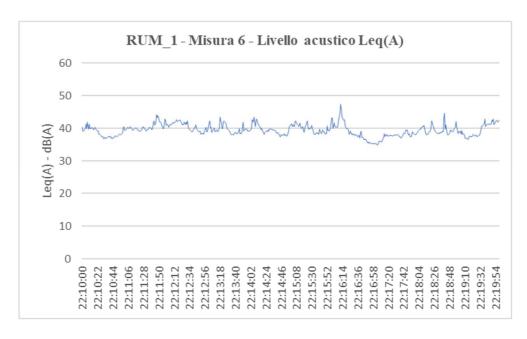


Figura 3-19 Punto di misura RUM 1: misura 6 (periodo notturno)

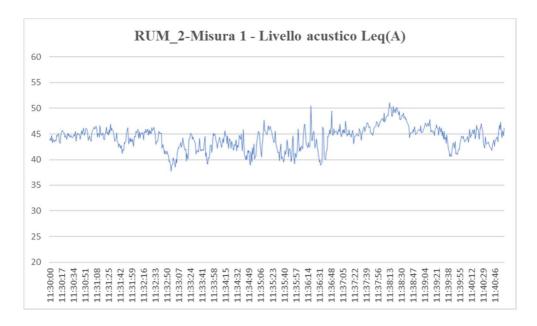


Figura 3-20 Punto di misura RUM 2: misura 1 (periodo diurno)

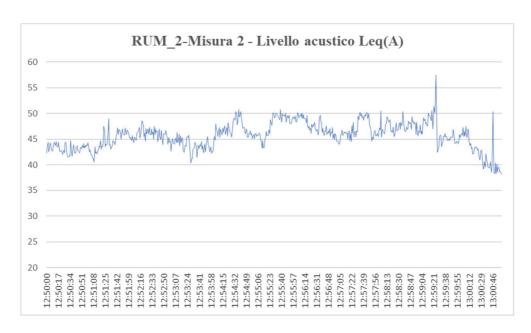


Figura 3-21 Punto di misura RUM_2: misura 2 (periodo diurno)

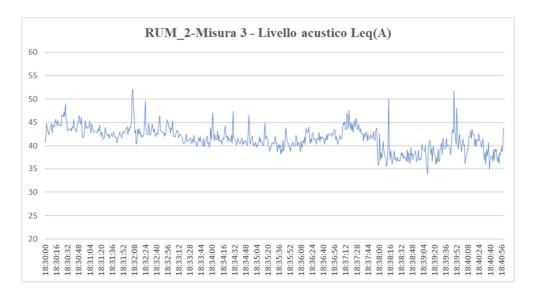


Figura 3-22 Punto di misura RUM 2: misura 3 (periodo diurno)

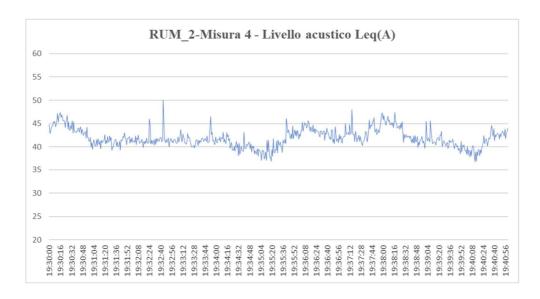


Figura 3-23 Punto di misura RUM 2: misura 4 (periodo diurno)

Figura 3-24 Punto di misura RUM 2: misura 5 (periodo notturno)

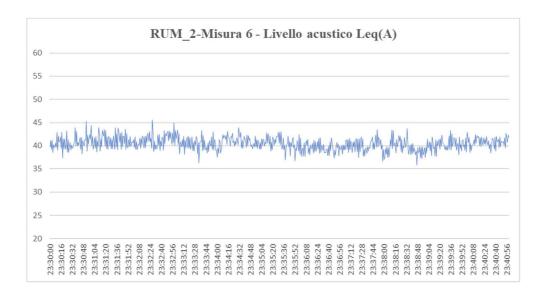
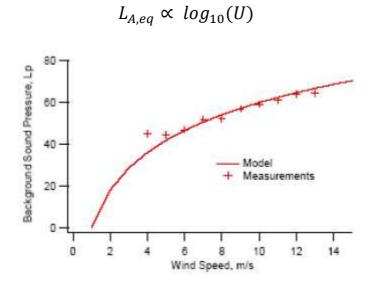


Figura 3-25 Punto di misura RUM 2: misura 6 (periodo notturno)

In sintesi, i valori determinati sulla base dei campionamenti fonometrici eseguiti hanno evidenziato la seguente condizione sul territorio.

Punto di misura	Periodo diurno	Periodo notturno
RUM_1	43,6	39,8
RUM_2	44,5	40,1

Tabella 3-4 Sintesi dei valori in Leq(A) rilevati nei due punti nel periodo diurno e notturno


3.5.2 Interazione tra il rumore residuo allo stato attuale e la velocità del vento

Il rumore residuo è come definito dalla normativa il contributo acustico indotto da tutte le sorgenti sonore presenti nel territorio ad eccezione di quella oggetto di studio e verifica. Nel caso in studio, essendo il parco eolico di nuova realizzazione, risulta evidente come il rumore residuo sia di fatto definito dal rumore ambientale allo stato attuale e, quindi, quello determinato sulla scorta dei suddetti rilievi fonometrici.

In linea generale il rumore ambientale allo stato attuale è indotto sia da fonti naturali, ovvero dall'interazione con il vento con l'orografia, la vegetazione e le costruzioni, sia da fonti antropiche ovvero dal quadro complessivo delle attività umane (traffico, industrie, agricoltura, etc.). Vista la peculiarità della sorgente acustica oggetto di indagine, e di come la sua emissione acustica dipenda dall'intensità del vento, in tale sede si vuole dare evidenza di come anche il rumore di fondo (o residuo) sia funzione delle condizioni anemometriche oltre che del contesto del territorio. Per poter determinare quindi come la sorgente eolica interferisca sul territorio nelle diverse condizioni anemometriche occorre valutare anche la variazione del rumore di fondo secondo la velocità del vento.

Nel caso specifico in esame il territorio interessato dal parco eolico ha una denotazione prettamente naturale con la presenza di alcune attività antropiche di tipo agricolo. Il rumore di fondo è quindi prettamente connesso alla naturalità dei luoghi e alla sua variazione con l'intensità anemometrica. Studi scientifici [Fégeant, 1999] a riguardo hanno evidenziato una correlazione tra la velocità del vento e il livello acustico misurato del rumore di fondo secondo la seguente formula:

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l. Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Le misure eseguite sul campo hanno permesso di valutare la correlazione tra intensità di vento e Leq(A) del rumore ambientale di fondo. In particolare, i due punti scelti ricadono in un territorio omogeneo a carattere prettamente rurale/agricolo ma a diversa altezza rispetto al livello del mare: RUM_01 è posizionato in cima ad una collina a 510 m s.l.m. mentre RUM_02 è posizionato al centro di due pendii collinari a 425 m s.l.m.

Dall'interpolazione dei dati di vento e rumore è stata individuata la correlazione tra i due parametri. Questa è stata stimata differenziando il periodo diurno e notturno.

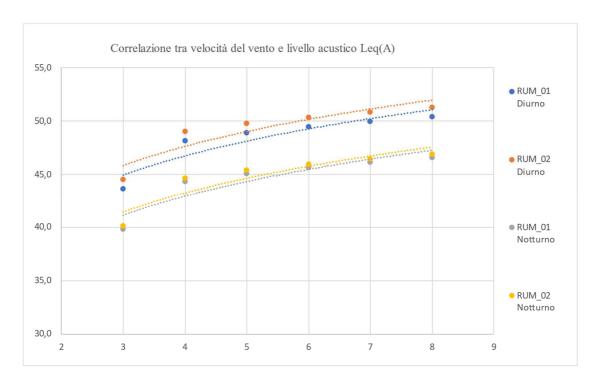


Figura 3-26 Correlazione tra velocità del vento e livello acustico Leq(A) del rumore naturale di fondo (rumore residuo post operam) sulla base dei dati fonometrici rilevati

Considerando quindi la suddetta legge di correlazione tra velocità del vento e rumore naturale, e verificando le condizioni anemometriche durante le indagini di misura (velocità del vento di circa 3 m/s), per il caso specifico si riporta di seguito il valore del rumore residuo nelle diverse condizioni.

Dunto	Lag(A)	Velocità del vento					
Punto	Leq(A)	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s
RUM_01	Diurno	43,6	48,1	48,9	49,5	50,0	50,4
	Notturno	39,8	44,3	45,1	45,7	46,2	46,6
RUM_02	Diurno	44,5	49,0	49,8	50,4	50,9	51,3
	Notturno	40,1	44,6	45,4	46,0	46,5	46,9

Tabella 3-5 Valore del rumore residuo al variare della velocità del vento a partire dal dato misurato e utilizzando la legge di correlazione basata su dati sperimentali

4 CLIMA ACUSTICO NELLA FASE DI ESERCIZIO

4.1 Le caratteristiche emissive degli aerogeneratori

Il campo eolico è costituito da 12 aerogeneratori di potenza unitaria di 6,6 MW, ciascuno dei quali caratterizzato da una altezza del mozzo di 115 m e un diametro del rotore di 170 m.

Da un punto di vista acustico una turbina eolica genera rumore sia per fenomeni aerodinamici dovuti all'interazione tra il vento e le pale sia per fenomeni meccanici dovuti al movimento dei diversi componenti all'interno della gondola. Il rumore aerodinamico a banda larga rappresenta la componente emissiva principale ed è connesso ai fenomeni di flusso intorno alle pale e alla velocità del rotore stesso, ovvero:

- ⇒ perdita di portanza per effetto della separazione del flusso intorno alla pala (presenza della torre sottovento, cambi di intensità anemometrica, turbolenze di scia, etc.);
- ⇒ presenza di turbolenze atmosferiche che inducono variazioni della pressione intorno alla pala;
- ⇒ accoppiamento aria-pala, ovvero dalla corrente di aria lungo le superfici del profilo alare.

Il rumore aerodinamico è un rumore di natura a banda larga tipicamente concentrato alle basse frequenze.

Il rumore di origine meccanica è connesso invece ai diversi componenti e alla loro interazione dinamica durante il funzionamento delle pale eoliche, ovvero generatore, ventilatori, moltiplicatore di giri, etc. Il rumore prodotto, di tipo tonale essendo le sorgenti connesse alla rotazione di componenti meccanici, si propaga direttamente nell'aria o attraverso la trasmissione strutturale a seconda della localizzazione dello specifico componente.

Per quanto riguarda le caratteristiche emissive dell'aerogeneratore si è fatto riferimento a quanto previsto ai dati forniti dal costruttore e determinati sulla scorta della normativa CEI EN 61400-11 che costituisce un riferimento per stabilire le tecniche di misura e di analisi delle emissioni acustiche delle turbine eoliche. Come detto in precedenza la potenza sonora emissiva di una turbina eolica dipende dalle condizioni di velocità del vento: maggiore è l'intensità anemometrica più elevata è l'energia sonora emessa. L'impostazione metodologica alla base del presente studio acustico è quella di valutare la condizione di massima interferenza, il cosiddetto "worst case scenario, ovvero quello caratterizzato da una condizione di potenza sonora emissiva maggiore. Nel caso specifico tale condizione viene raggiunta già ad una velocità del vento di 8 m/s con un livello di potenza sonora Lw pari a 104,3 dB(A). Oltre tale velocità e fino a quella di "cut-out" la potenza sonora si mantiene costante. Tuttavia, è possibile impostare la turbina in una modalità specifica definita "MODE S06", grazie alla quale riesce a generare energia tramite la forza motrice esercitata dal vento sviluppando però una minor potenza sonora Lw, pari a 98,0 dB(A). Tale modalità di funzionamento sarà attivata per il progetto in esame durante il periodo notturno al fine di minimizzare le potenziali interferenze con i ricettori.

Nello specifico tale modalità di, stante la vicinanza a ricettori di tipo residenziale, tale funzionamento è previsto per le turbine evidenziate in tabella seguente.

	Coordina	ate UTM	Lw periodo	Lw periodo
Turbina	Long. E [m]	Lat. N [m]	diurno [dB(A)]	notturno [dB(A)]
COR01	343696.68	4181158.50	104,3	104,3
COR02	343595.55	4181844.47	104,3	104,3
COR03	344035.00	4182334.00	104,3	98,0
COR04	342325.00	4182874.00	104,3	104,3
COR05	343131.00	4183053.00	104,3	104,3
COR06	344979.00	4182127.00	104,3	104,3
COR07	344211.66	4183208.86	104,3	104,3
COR08	344644.00	4183461.00	104,3	104,3
COR09	342641.31	4184271.79	104,3	98,0
COR10	343255.05	4184184.31	104,3	98,0
COR11	345517.09	4184800.83	104,3	104,3
COR12	346106.00	4184876.00	104,3	104,3

Le principali caratteristiche degli aerogeneratori costituenti il parco eolico oggetto di studio sono:

❖ altezza mozzo: 115 m;

❖ dimensioni pale: 85 m;

❖ diametro rotore: 170 m;

• potenza nominale: 6,6 MW;

❖ livello di potenza sonora diurno: 104,3 dB(A) ad una velocità del vento di 8 m/s

❖ livello di potenza sonora notturno: 98,0 dB(A) ad una velocità del vento di 8 m/s

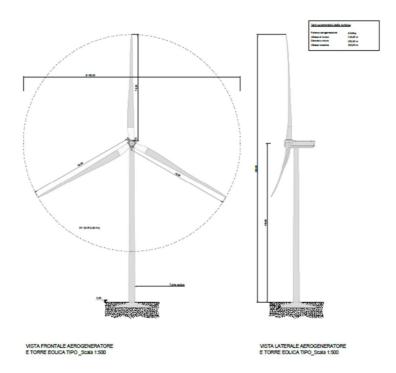


Figura 4-1 Vista aerogeneratore

4.2 La modellazione acustica

4.2.1 Il software SoundPlan

L'analisi modellistica previsionale è stata sviluppata attraverso il software di calcolo SoundPlan 8.2, sviluppato dalla Braunstein & Berndt GmbH sulla base di norme e standard definiti dalle ISO e da altri standards utilizzati localmente.

La peculiarità del modello SoundPLAN si basa sul metodo di calcolo per "raggi". Il sistema di calcolo fa dipartire dal ricevitore una serie di raggi ciascuno dei quali analizza la geometria della sorgente e quella del territorio, le riflessioni e la presenza di schermi. Studiando il metodo con maggior dettaglio si vede che ad ogni raggio che parte dal ricettore viene associata una porzione di territorio e così, via via, viene coperto l'intero territorio. Quando un raggio incontra la sorgente, il modello calcola automaticamente

il livello prodotto della parte intercettata. I contributi forniti dai diversi raggi vengono evidenziati nei diagrammi di output. In tali schematizzazioni la lunghezza dei raggi è proporzionale al contributo in rumore fornito da quella direzione. Quando invece un raggio incontra una superficie riflettente come la facciata di un edificio, il modello calcola le riflessioni multiple. A tal proposito l'operatore può stabilire il numero di riflessioni massimo che deve essere calcolato ovvero la soglia di attenuazione al di sotto della quale il calcolo deve essere interrotto. Questa metodologia di calcolo consente quindi una particolare accuratezza nella valutazione della geometria del sito e risulta quindi molto preciso ed efficace in campo urbano, dove l'elevata densità di edifici, specie se di altezza elevata, genera riflessioni multiple che producono un innalzamento dei livelli sonori.

La possibilità di inserire i dati sulla morfologia dei territori, sui ricettori e sulle infrastrutture esistenti ed in progetto mediante cartografia tridimensionale consente di schematizzare i luoghi in maniera più che mai realistica e dettagliata. Ciò a maggior ragione se si considera che, oltre alla conformazione morfologica, è possibile associare ad elementi naturali e antropici specifici comportamenti acustici. Il modello prevede infatti l'inserimento di appositi coefficienti che tengono conto delle caratteristiche più o meno riflettenti delle facciate dei fabbricati o del territorio naturale o antropizzato.

4.2.2 Il metodo di calcolo ISO 9613-2

Per la valutazione della propagazione acustica nell'ambiente il metodo di calcolo assunto è quello dello standard ISO 9613-2 indicato come metodo per le attività produttive e industriali. Tale metodica viene utilizzata per

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

stimare i livelli di pressione sonora ad una determinata distanza dal punto di emissione basandosi su algoritmi di propagazione che dipendono dalla frequenza e tengono conto degli effetti di:

- ➤ Divergenza geometrica;
- > Riflessione delle superfici;
- > Assorbimento atmosferico;
- Effetto di schermatura del terreno e degli ostacoli;
- > Terreno complesso;
- Attenuazione laterale dovuta all'effetto del terreno;
- ➤ Direttività della sorgente;
- ➤ Attenuazione dovuta alla vegetazione;
- Attenuazione dovuta alle condizioni meteorologiche.

Come indicato dalla UNI/TS 11143-7:2013 e da ISPRA nelle "Linee guida per la valutazione e il monitoraggio dell'impatto acustico degli impianti eolici", nel caso di una modellazione acustica di aerogeneratori occorre tener conto di una serie di fattori connessi ai dati emissivi delle turbine fornite dai costruttori sulla norma CEI EN 61400-11, all'altezza e dimensioni del rotore e alle condizioni meteorologiche che influenzano la propagazione del suono a grandi distanze.

Riguardo il primo aspetto, essendo l'impianto di nuova realizzazione ed inserito in un contesto territoriale attualmente privo di altre sorgenti analoghe (nuovo parco eolico e non estensione di uno attuale), si è scelto di considerare il valore del livello di potenza sonora massimo rispettivamente diurno e notturno tra quelli forniti dal costruttore e stimati secondo la norma CEI EN 61400-11. Per tener conto degli effetti meteorologici nella propagazione del rumore sono stati inseriti i principali valori medi annui

relativi ad umidità, temperatura, pressione atmosferica e la rosa dei venti secondo i dati meteorologici annuali.

4.2.3 Dati di input al modello

L'applicazione del modello previsionale SoundPlan ha richiesto l'inserimento dei dati riguardanti i seguenti aspetti:

- 1. Orografia per la costruzione tridimensionale della morfologia del terreno;
- 2. Edifici:
- 3. Layout del parco eolico definendo per ciascun aerogeneratore i parametri dimensionali (altezza mozzo, diametro rotore);
- 4. Caratteristiche emissive diurne (6.00 22.00) degli aerogeneratori (Livello di potenza sonora singola turbina eolica pari a 104,3 dB(A)) modellate in SoundPlan con lo specifico strumento "turbina eolica";
- 5. Caratteristiche emissive notturne (22.00 6.00) degli aerogeneratori (Livello di potenza sonora singola turbina eolica pari a 98,0 dB(A)) modellate in SoundPlan con lo specifico strumento "turbina eolica";
- 6. Dati meteorologici per il calcolo della propagazione del rumore nell'ambiente.

Lo standard di calcolo è come detto quella della UNI ISO 9613-2 impostando una griglia 5x5 m e un ordine di riflessione pari a 3.

4.3 Il rumore indotto dal funzionamento del campo eolico

Il risultato dello studio previsionale con il software Soundplan consiste sia nella mappatura acustica al suolo calcolata a 4 metri dal piano campagna e

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

all'interno dell'intero ambito di studio sia nei valori di Leq(A) puntuali in corrispondenza dei ricettori sulla facciata più esposta al rumore del campo eolico sia durante il periodo diurno (6.00-22.00) che in quello notturno (22.00-6.00).

Negli elaborati grafici "Curve di isolivello acustico del campo eolico nella fase di funzionamento diurno (6.00-22.00)" e "Curve di isolivello acustico del campo eolico nella fase di funzionamento notturno (22.00-6.00)" sono riportate le mappature acustiche diurne e notturne in termini di Leq(A). Le curve sono rappresentate con passo di 1 dB fino al valore dei 40 dB(A).

Si tiene a sottolineare che la potenza sonora emissiva delle turbine eoliche in questo caso specifico non è costante: nel periodo diurno è assunta pari a 104,3 dB(A) ed in quello notturno pari a 98,0 dB(A). Di conseguenza, il risultato in Leq(A) risulta differenziato per i due periodi di riferimento previsti dalla normativa. I suddetti elaborati grafici rappresentano quindi le condizioni di massima emissione del campo eolico diurne (6:00-22:00) e notturne (22:00-6:00).

Per quanto concerne i valori in Leq(A) puntuali, questi sono stati calcolati in corrispondenza ciascun ricettore residenziale ricadente all'interno dell'ambito di studio (cfr. paragrafo 3.4) sia durante il periodo diurno che notturno. Il calcolo tiene conto della facciata più esposta al rumore indotto dagli aerogeneratori assumendo un punto di calcolo all'esterno dell'edificio. Tali valori sono riportati nelle tabelle dei risultati riportate in Appendice D (riga "Rumore campo eolico").

4.4 La verifica della compatibilità acustica del campo eolico

Per quel che concerne la verifica della compatibilità acustica del campo eolico, la normativa in materia di inquinamento acustico prevede la verifica dei limiti di immissione assoluta e differenziale.

Per quanto concerne i limiti di immissione assoluti, nel caso specifico questi sono fissati dal DPCM 1 marzo 1991 non essendo i comuni di Corleone e di Contessa Entellina (in cui ricade l'ambito di studio acustico) dotati di Piano Comunale di Classificazione Acustica del territorio ai sensi della L.447/95. Tali valori come noto sono fissati essere pari a 70 dB(A) nel periodo diurno e 60 dB(A) nel periodo notturno.

Per quanto concerne invece i valori limite di immissione differenziale questi sono fissati pari a 5 dB(A) nel periodo diurno e 3 dB(A) in quello notturno.

La normativa di riferimento indica che tale verifica debba essere eseguita all'intero degli edifici negli ambienti abitativi o lavorativi a finestre aperte o chiuse purché il valore del Leq(A) sia superiore a 50 dB(A), o 35 dB(A) nel secondo caso, nel periodo diurno o 40 dB(A), o 25 dB(A) a finestre chiuse, nel periodo notturno.

In questo caso, la verifica del criterio differenziale viene eseguita all'esterno dell'edificio, in questo modo non si tiene conto di alcun fattore "standard" connesso all'abbattimento acustico dell'involucro edilizio in dB(A) che potrebbe indurre ad una eccessiva approssimazione del risultato.

La verifica della compatibilità acustica del campo eolico tiene conto delle seguenti ipotesi:

1) Condizione di massima emissione diurna e notturna di ciascun aerogeneratore ad una velocità del vento di 8 m/s (intensità del vento alla quale la potenza sonora della turbina eolica raggiunge il valore

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

- massimo sia nelle condizioni diurne che notturne) in funzionamento continuo nelle 24 ore;
- 2) Rumore residuo rappresentativo del territorio considerando una condizione meteorologica (velocità vento) omogenea a quella assunta per la stima emissiva del campo eolico (8 m/s);
- 3) Limiti di immissione assoluta secondo il DPCM 1.3.1991 data l'assenza del PCCA dei comuni di Corleone e di Contessa Entellina;
- 4) Verifica del limite di immissione differenziale sulla base dei valori acustici in facciata all'esterno (ipotesi cautelativa in quanto non viene considerato il potere fonoisolante della struttura e quindi una riduzione dei valori di Leq(A) all'interno dell'ambiente abitativo).

Nelle tabelle in Appendice D sono riportati i valori in Leq(A) riferiti ai diversi contributi, ovvero:

- > Rumore indotto dal campo eolico nel periodo diurno e notturno (sorgente specifica oggetto di verifica);
- ➤ Rumore residuo, ovvero il rumore indotto dalle altre sorgenti presenti sul territorio e pari al rumore ambientale ante operam misurato nelle due postazioni di misura (si associa il valore medio tra quelli misurati in corrispondenza di RUM 01 e RUM 02);
- ➤ Rumore ambientale, ovvero il rumore complessivo dato dalla somma dei due suddetti contributi.

La Legge Quadro sull'inquinamento acustico 447/95 stabilisce che non vada effettuata la verifica dei limiti acustici definiti al paragrafo precedente se non per gli edifici residenziali e lavorativi. Inoltre, il DPCM 14.11.1997 stabilisce che il calcolo dei livelli differenziali è applicabile ai soli ambienti abitativi e lavorativi.

Verificata la conformità ai requisiti di legge in materia di inquinamento acustico nella condizione di funzionamento del campo eolico alla massima emissione acustica diurna e notturna già ad una velocità del vento di 8 m/s, secondo la metodologia assunta del "worst case scenario" qualsiasi altra condizione operativa degli aerogeneratori è tale da non indurre un superamento dei valori limite assoluti e differenziali.

5 CLIMA ACUSTICO NELLA FASE DI CANTIERE

5.1 Le attività di cantiere previste per la realizzazione del parco eolico

Le principali attività di cantiere sono quelle connesse alla realizzazione degli aerogeneratori, in quanto opere principali del parco eolico. Per ciascun aerogeneratore si prevedono le seguenti macro-attività:

- ✓ Scavo per le fondazioni;
- ✓ Realizzazione delle opere di fondazione (pali e plinti);
- ✓ Preparazione della piazzola;
- ✓ Montaggio delle componenti (torre, navicella, rotore, pale, etc.).

Per l'esecuzione delle suddette attività si prevede principalmente l'utilizzo dei macchinari indicati in tabella seguente. Da un punto di vista acustico emissivo, ciascun macchinario è stato caratterizzato sulla base di valori desunti dalla letteratura di settore (cfr. INAIL – CPT Torino).

Lavorazione	Macchinari	Potenza sonora
Scavi per le fondazioni	Escavatore	107 dB(A)
	Pala gommata	102 dB(A)
	Autocarro	101 dB(A)
Realizzazione delle opere di fondazione	Macchina per pali	110 dB(A)
	Pala gommata	102 dB(A)
	Betoniera con pompa cls	112 dB(A)
	Autogru	101 dB(A)
Preparazione della piazzola	Pala gommata	102 dB(A)
	Grader	101 dB(A)
	Rullo	105 dB(A)
Montaggio componenti	Gru	101 dB(A)
	Attrezzature per assemblaggi	85 dB(A)
	Montacarichi	97 dB(A)

Tabella 5-1 Macchinari di cantiere principalmente impiegati nella fase di corso d'opera e loro caratterizzazione acustica

L'impostazione metodologica assunta per la fase di corso d'opera prevede la

verifica dell'interferenza sul clima acustico attuale indotta dalla fase di

cantiere più critica, ovvero quella a maggior emissione acustica. Stante il

suddetto quadro di massima delle lavorazioni previste e il parco mezzi

principalmente utilizzato per la realizzazione delle opere si assume che lo

scenario più critico sia rappresentato dalla fase di realizzazione delle opere

di fondazione.

5.2 La modellazione acustica

Anche per la fase di cantiere l'analisi previsionale si basa su una

modellazione acustica con il software SoundPlan e la metodica di calcolo

della UNI 9613-2.

Per ciascun cantiere la potenza emissiva acustica è pari alla somma

energetica delle potenze sonore dei macchinari impiegati.

L'orario di lavoro è stato assunto pari a 8 ore nel periodo diurno, avendo

escluso quindi attività di cantiere nel periodo notturno.

Come detto la lavorazione più critica è costituita dall'insieme dei macchinari

necessari alla realizzazione delle opere di fondazione in virtù del maggior

numero di mezzi impiegati e delle relative potenze sonore emissive. Ciascun

cantiere è quindi modellato come una sorgente areale di 70 x 70 m, altezza 2

m dal piano campagna, potenza sonora emissiva complessiva (somma

energetica dei singoli contributi) pari a 114,6 dB(A) e operatività nelle 8 ore

del periodo diurno.

53

5.3 Il rumore indotto dalle attività di cantiere

In questo caso l'output del modello di simulazione è costituito dalla mappatura acustica al suolo ad una altezza di 4 m in termini di Leq(A) nell'intorno di 1000 m dagli aerogeneratori, sia dai valori di Leq(A) puntuali in corrispondenza dei ricettori residenziali e lavorativi dell'ambito di studio precedentemente definito.

Le curve della mappatura acustica rappresentate fino al livello dei 50 dB(A) e passo 2 dB(A) sono riportate nell'elaborato grafico "Curve di isolivello acustico del campo eolico nella fase di corso d'opera". Queste si riferiscono al solo periodo diurno essendo le attività di cantiere previste di giorno per una durata complessiva di 8 ore.

In Appendice E si riportano i valori acustici ad 1 metro della facciata rappresentativi del livello massimo sulla facciata più esposta indotti dall'attività di cantiere (riga "Rumore cantiere").

5.4 La verifica della compatibilità acustica delle attività di cantiere

Il cantiere come detto si configura come una attività temporanea e limitata al solo periodo di realizzazione delle opere previste dal progetto. Nel contesto normativo di riferimento indicato nella prima parte dello studio acustico, tali attività sono disciplinate dalle linee guida approvate dalla Regione con Decreto dell'11 settembre 2007 e oggetto di autorizzazione da parte del Comune territorialmente competente preventivamente l'inizio delle attività. La fase di autorizzazione e richiesta di deroga ai limiti acustici sarà pertanto oggetto di richiesta da parte della Ditta preventivamente all'inizio dei lavori nell'ambito del quadro del processo di autorizzazione generale di avvio dei cantieri.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

In tale sede si vuole dare riscontro di come in linea generale la fase di realizzazione del parco eolico sia compatibile da un punto di vista acustico secondo il quadro prescrittivo indicato dalle succitate linee guida regionali. Queste individuano un valore di riferimento di 70 dB(A) in corrispondenza dei ricettori che si riduce a 65 dB(A) nel caso di livelli acustici all'interno delle abitazioni.

Per quanto concerne le attività di realizzazione delle opere di progetto, sulla base delle condizioni assunte nello studio, ovvero di scenario potenzialmente più critico in virtù del numero di mezzi oltre di valori di potenza sonora, nonché di ulteriori fattori cautelativi quali la sovrapposizione di più cantieri in parallelo, dai risultati calcolati mediante il software SoundPlan si evince come il livello acustico indotto dalla fase di corso d'opera sia contenuto al territorio nelle immediate vicinanze dell'area di cantiere.

In Appendice E sono riportati i valori in Leq(A) riferiti ai diversi contributi, ovvero:

- ✓ Rumore indotto dalla fase di cantiere (sorgente specifica oggetto di verifica);
- ✓ Rumore residuo, ovvero il rumore indotto dalle altre sorgenti presenti sul territorio e pari al rumore ambientale ante operam misurato nelle due postazioni di misura (si associa il valore medio tra quelli misurati in corrispondenza di RUM_01 e RUM_02);
- ✓ Rumore ambientale, ovvero il rumore complessivo dato dalla somma dei due suddetti contributi.

Contestualmente viene riportata la verifica del rispetto dei limiti definiti dal Decreto dell'11 settembre 2007 della Regione Sicilia per ciascun edifico considerato dall'analisi.

Dalla disamina dei risultati ottenuti è possibile affermare che la fase di corso d'opera per la realizzazione del parco eolico oggetto di studio è tale da non indurre una interferenza sul clima acustico attuale.

6 CONCLUSIONI

Verificata la conformità ai requisiti di legge in materia di inquinamento acustico nella condizione di funzionamento del campo eolico alla massima emissione acustica diurna e notturna già ad una velocità del vento di 8 m/s, secondo la metodologia assunta del "worst case scenario" qualsiasi altra condizione operativa degli aerogeneratori è tale da non indurre un superamento dei valori limite assoluti e differenziali.

Per quel che concerne la fase di corso d'opera la realizzazione degli aerogeneratori di progetto del parco eolico non costituisce una criticità sul clima acustico. Infatti, in ogni caso i livelli acustici sono ben distanti dal limite normativo di riferimento. In conclusione, sulla base dei risultati ottenuti e della temporaneità delle attività di cantiere si ritiene trascurabile l'interferenza acustica sul territorio.

Tecnico Competente in Acustica Ambientale Ing. Mauro Di Prete– Albo ENTECA n. 7332

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

APPENDICE A

Certificati di taratura della strumentazione

CENTRO DI TARATURA LAT 227 Laboratorio Accreditato di Taratura

ACCREDIA

LAT 227

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreemen

CERTIFICATO DI TARATURA LAT 227/2875

Pagina 1 di 10

- Data di Emissione: 2021/12/13

- cliente

LR.LD.E. Srl Via Giacomo Trevis, 88

00147 - Roma (RM)

- destinatario

Idem

Il presente certificato di taratura è emesso in base all'accreditamento LAT 227 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

- Si riferisce a: Referring to

oggetto

Fonometro

- costruttore

01dB

- modello

FUSION

- matricola

11452

- data delle misure

specificato.

registro di laboratorio CT 369/21

2021/12/13

This certificate of calibration is issued in compliance with the accreditation LAT 227 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2

58

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Via dei Bonzagna, 22 00133 ROMA 06 2023263

06 2023263

CENTRO DI TARATURA LAT 227

ACCREDIA Laboratorio Accreditato di Taratura LAT 227

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreemen

Pagina 1 di 10

CERTIFICATO DI TARATURA LAT 227/2882

- Data di Emissione: 2021/12/16

LR.I.D.E. Srl

Via Giacomo Trevis, 88

00147 - Roma (RM)

Il presente certificato di taratura è emesso in base all'accreditamento LAT 227 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del

Centro.

- Si riferisce a:

- oggetto

Fonometro

2021/12/16

01dB FUSION

- matricola

- data delle misure

- registro di laboratorio CT 376/21

This certificate of calibration is issued in compliance with the accreditation LAT 227 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

59

8 APPENDICE B

Tecnico competente in acustica ambientale

9 APPENDICE C

Ricettor	Numer		Distanza da	Coordina	ate UTM
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R001	2	Residenziale	798	341931,743	4183865,6 5
R002	1	Ruderi, box e depositi	810	341933,843	4183588,7 5
R003	2	Residenziale	798	341937,779	4183887,0 9
R004	2	Residenziale	789	341951,693	4183972,4 6
R005	1	Ruderi, box e depositi	757	341953,111	4183874,2 4
R006	2	Residenziale	722	341968,479	4183966,4
R007	1	Ruderi, box e depositi	734	341975,303	4183932,2 9
R008	2	Residenziale	741	341979,717	4183889,1
R009	2	Residenziale	680	341982,457	4183960,2 5
R010	1	Ruderi, box e depositi	553	341998,195	4183325,3
R011	1	Ruderi, box e depositi	704	342001,452	4183887,0 7
R017	2	Residenziale	660	342062,839	4183931,1
R018	1	Ruderi, box e depositi	795	342075,493	4183703,6
R019	2	Residenziale	739	342080,334	4183768,6 8
R020	1	Ruderi, box e depositi	634	342102,29	4183922,9 4
R021	2	Residenziale	714	342103,192	4183789,7 5
R022	1	Ruderi, box e depositi	681	342130,008	4183810,2
R024	2	Residenziale	685	342140,813	4183784,1
R025	2	Residenziale	705	342146,731	4183764,0 5
R026	1	Ruderi, box e depositi	537	342162,647	4184006,4 8

Ricettor	Numer	er	Distanza da	Coordinate UTM	
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R027	1	Ruderi, box e depositi	670	342179,231	4183780,2 8
R028	1	Ruderi, box e depositi	659	342181,21	4183793,2 6
R029	1	Ruderi, box e depositi	689	342181,983	4183744,2 8
R030	1	Ruderi, box e depositi	675	342182,811	4183771,0 9
R031	1	Ruderi, box e depositi	558	342184,127	4183942,7 5
R032	1	Ruderi, box e depositi	629	342187,4	4183824,4 9
R034	2	Residenziale	626	342199,87	4183817,3
R035	1	Ruderi, box e depositi	645	342205,766	4183786,0 9
R036	1	Ruderi, box e depositi	619	342210,921	4183816,2 6
R037	2	Residenziale	547	342211,153	4183880,7 4
R038	1	Ruderi, box e depositi	610	342221,764	4183820,4 6
R039	2	Residenziale	601	342238,087	4183816,5
R040	2	Residenziale	551	342241,68	4183885,1
R041	2	Residenziale	564	342255,051	4183841,4
R042	2	Residenziale	557	342256,046	4183865,5
R044	2	Residenziale	633	342381,474	4183689,2 5
R045	2	Residenziale	577	342422,918	4183730,2 1
R046	1	Ruderi, box e depositi	835	342459,038	4182036,7 5
R047	2	Residenziale	876	342477,508	4182003,5 1
R049	2	Residenziale	493	342590,172	4183297,8 8
R050	2	Residenziale	504	342607,694	4183307,1 8

Ricettor	Numer		Distanza da	Coordina	ate UTM
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R051	1	Ruderi, box e depositi	516	342625,091	4183302,1 6
R052	2	Residenziale	958	342741,665	4181299,5
R053	1	Ruderi, box e depositi	976	342745,131	4180923,4 5
R054	1	Ruderi, box e depositi	413	342907,096	4183952,0 8
R055	2	Lavorativo	565	342913,585	4183599,4 8
R056	2	Lavorativo	562	342922,955	4183584,2
R057	1	Ruderi, box e depositi	371	342948,316	4183957,2
R058	1	Ruderi, box e depositi	412	343095,863	4184567,2 4
R059	2	Residenziale	369	343137,013	4184562,1 1
R060	2	Residenziale	361	343147,64	4184531,8
R061	2	Residenziale	390	343178,523	4184573,8
R062	1	Ruderi, box e depositi	79	343306,911	4184102,7 5
R063	1	Ruderi, box e depositi	118	343313,59	4184074,3 6
R064	2	Residenziale	258	343314,985	4183931,3
R065	2	Residenziale	254	343319,041	4183936,5 4
R066	1	Ruderi, box e depositi	270	343321,792	4183916,4
R067	1	Ruderi, box e depositi	260	343323,135	4183926,8 4
R068	2	Residenziale	504	343326,775	4180799,0
R069	1	Ruderi, box e depositi	274	343334,381	4183919,7
R070	1	Ruderi, box e depositi	125	343345,477	4184062,6 5
R071	1	Ruderi, box e depositi	115	343347,946	4184102,6 7
R072	1	Ruderi, box e depositi	484	343356,603	4184663,8 7

Ricettor	Numer	Numer	Distanza da	Coordinate UTM	
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R073	1	Ruderi, box e depositi	150	343384,22	4184084,1 7
R074	2	Residenziale	198	343405,411	4184044,3 6
R075	1	Ruderi, box e depositi	407	343425,333	4183808,9 8
R076	2	Residenziale	393	343437,397	4183825,4 9
R077	2	Residenziale	363	343466,337	4183873,3
R078	2	Residenziale	392	343495,24	4183857,1 1
R079	1	Ruderi, box e depositi	435	343505,826	4183815,7 9
R080	1	Ruderi, box e depositi	468	343560,47	4182383,9
R081	1	Ruderi, box e depositi	739	343572,445	4180422,9 7
R082	1	Ruderi, box e depositi	857	343604,716	4184977,7 5
R083	1	Ruderi, box e depositi	333	343672,08	4182319,4 6
R084	1	Ruderi, box e depositi	231	343881,888	4181301,9 8
R085	1	Ruderi, box e depositi	259	343955,832	4181116,6 5
R088	1	Ruderi, box e depositi	479	344009,701	4183668,5 5
R089	1	Ruderi, box e depositi	116	344088,672	4182440,0 6
R090	1	Ruderi, box e depositi	551	344145,49	4181748,0 8
R091	1	Ruderi, box e depositi	623	344187,56	4181548,9 7
R092	1	Ruderi, box e depositi	378	344215,833	4182825,5 5
R093	1	Ruderi, box e depositi	388	344219,744	4182814,9 8
R094	2	Residenziale	228	344221,862	4182473,8
R095	1	Ruderi, box e depositi	188	344224,35	4182298,5 9

Ricettor	Numer	er	Distanza da	Coordinate UTM		
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]	
R096	1	Ruderi, box e depositi	405	344231,109	4182798,2	
R097	1	Ruderi, box e depositi	405	344231,411	4181975,9 7	
R098	2	Residenziale	380	344240,115	4182005,2	
R099	1	Ruderi, box e depositi	672	344281,62	4181497,4 5	
R100	1	Ruderi, box e depositi	301	344283,877	4182156,6	
R101	1	Ruderi, box e depositi	277	344293,757	4182227,2	
R102	1	Ruderi, box e depositi	263	344300,312	4182363,2 6	
R103	1	Ruderi, box e depositi	637	344302,87	4181364,1 7	
R104	1	Ruderi, box e depositi	296	344307,097	4182205,5 4	
R105	1	Ruderi, box e depositi	655	344347,068	4181037,4	
R107	1	Ruderi, box e depositi	965	344415,165	4180497,7 6	
R108	2	Residenziale	413	344415,344	4182137,1	
R109	1	Residenziale	444	344432,601	4182125,3	
R110	1	Ruderi, box e depositi	950	344573,73	4184940,9 6	
R111	1	Ruderi, box e depositi	405	344677,703	4183868,4	
R112	1	Ruderi, box e depositi	655	344684,885	4181534,3	
R113	1	Ruderi, box e depositi	266	344726,065	4182034,4 2	
R114	1	Ruderi, box e depositi	795	344744,112	4181361,9	
R115	1	Ruderi, box e depositi	759	344744,415	4181399,9 7	
R116	1	Ruderi, box e depositi	330	344752,954	4181878,9	
R117	1	Ruderi, box e depositi	536	344761,753	4182619,6	

Ricettor	Numar	Numer	Distanza da	Coordina	ate UTM
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R118	2	Residenziale	585	344772,302	4181577,7 8
R119	2	Residenziale	498	344775,238	4182590,8
R120	2	Residenziale	505	344846,41	4183932,8 8
R121	2	Residenziale	506	344864,624	4183918,9 4
R122	1	Ruderi, box e depositi	690	344894,836	4184112,4 5
R123	1	Ruderi, box e depositi	915	344895,305	4181212,8
R124	1	Ruderi, box e depositi	449	344905,967	4183830,2
R125	2	Residenziale	452	344906	4181672,7
R126	1	Ruderi, box e depositi	423	344984,87	4183719,4 7
R127	2	Residenziale	395	345000,32	4183649,2
R128	2	Residenziale	388	345004,626	4183635,1 1
R129	2	Residenziale	865	345067,306	4185546,6 8
R130	2	Residenziale	840	345071,511	4185524,8
R131	2	Residenziale	536	345090,706	4183766,7
R132	2	Residenziale	539	345098,124	4183760,6 1
R133	2	Residenziale	511	345112,382	4183678,9
R134	1	Ruderi, box e depositi	518	345165,1	4183405,8 4
R135	1	Ruderi, box e depositi	621	345195,758	4185340,0 8
R136	1	Ruderi, box e depositi	618	345217,906	4183708,5 9
R137	2	Residenziale	759	345256,175	4184079,2
R138	1	Ruderi, box e depositi	258	345265,341	4184730,8
R139	1	Ruderi, box e depositi	634	345285,329	4183489,9
R140	1	Ruderi, box e depositi	638	345286,4	4183509,5

Ricettor	Numer	er	Distanza da	Coordinate UTM	
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]
R141	1	Ruderi, box e depositi	339	345288,487	4182273,0 6
R142	1	Ruderi, box e depositi	347	345296,721	4182273,1 7
R143	1	Ruderi, box e depositi	645	345296,903	4183438,4
R144	1	Ruderi, box e depositi	848	345376,172	4183916,2
R145	1	Ruderi, box e depositi	769	345399,544	4183283,6
R146	2	Residenziale	682	345495,372	4182587,8 4
R148	2	Residenziale	723	345530,742	4184069,7 6
R149	1	Ruderi, box e depositi	946	345543,459	4185757,6
R150	1	Ruderi, box e depositi	900	345550,034	4183465,0 6
R152	1	Ruderi, box e depositi	884	345573,955	4185694,5 9
R153	2	Residenziale	873	345591,77	4182760,0 6
R154	2	Residenziale	859	345596,702	4185675,9 2
R156	2	Residenziale	946	345601,492	4185756,3 8
R158	2	Residenziale	898	345613,293	4182768,7 8
R159	1	Ruderi, box e depositi	898	345617,819	4185701,4 6
R160	1	Ruderi, box e depositi	873	345617,905	4185676,8 8
R161	2	Residenziale	896	345619,035	4182763,3
R162	1	Ruderi, box e depositi	844	345622,814	4182678,8
R163	2	Residenziale	917	345629,007	4185718,5
R165	2	Residenziale	870	345638,073	4185682,5 7
R166	2	Residenziale	831	345654,77	4185622,7 1

Ricettor	Numer	ımer	Distanza da	Coordinate UTM		
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]	
R168	2	Residenziale	878	345668,198	4185675,4 7	
R170	1	Ruderi, box e depositi	721	345696,895	4182233,7	
R172	1	Ruderi, box e depositi	853	345908,12	4184036,1 7	
R173	1	Ruderi, box e depositi	338	345952,019	4185188,4	
R174	1	Ruderi, box e depositi	511	345965,313	4185374,9 6	
R175	2	Residenziale	503	345975,501	4185370,5 4	
R176	1	Ruderi, box e depositi	335	345987,609	4185203,8 9	
R177	2	Residenziale	956	346067,692	4183910,2 7	
R178	1	Ruderi, box e depositi	461	346206,381	4185329,6 4	
R179	1	Ruderi, box e depositi	684	346265,626	4184199,3 9	
R180	1	Ruderi, box e depositi	218	346285,771	4185015,8 4	
R181	1	Ruderi, box e depositi	878	346315,671	4185734,4	
R183	1	Ruderi, box e depositi	211	346328,306	4184867,4 2	
R184	1	Ruderi, box e depositi	586	346346,398	4185417,2 5	
R185	2	Lavorativo	981	346362,708	4183905,3 7	
R186	1	Ruderi, box e depositi	774	346460,21	4184182,7 2	
R187	1	Ruderi, box e depositi	404	346493,087	4184738,7	
R188	1	Ruderi, box e depositi	576	346501,494	4185300,9	
R190	1	Ruderi, box e depositi	464	346554,878	4184739,9	
R191	2	Residenziale	813	346595,62	4185535,4 7	
R192	1	Ruderi, box e depositi	536	346628,34	4185039,8	

Ricettor Numer			Distanza da	Coordinate UTM		
e	o piani	Tipologia	aerogenerator e [m]	Long E [m]	Lat N [m]	
R193	2	Residenziale	746	346685,362	4184390,2 1	
R194	2	Residenziale	748	346697,277	4184405,4 1	
R195	1	Ruderi, box e depositi	774	346699,204	4184365,8 8	
R196	1	Ruderi, box e depositi	648	346760,253	4184865,3	
R197	1	Ruderi, box e depositi	706	346816,348	4184901,9	
R198	1	Ruderi, box e depositi	871	346826,156	4185374,3 9	
R199	1	Ruderi, box e depositi	911	346914,497	4185301,4 4	
R200	2	Residenziale	995	346928,068	4184307,5 9	
R201	1	Ruderi, box e depositi	834	346935,222	4184744,9	
R202	2	Residenziale	979	346939,858	4184348,4	
R203	1	Ruderi, box e depositi	861	346965,692	4184781,6 5	
R204	2	Residenziale	972	346977,899	4185323,6	
R205	2	Residenziale	958	346988,04	4184484,1 7	
R206	1	Ruderi, box e depositi	973	347083,965	4184867,4 6	
R207	2	Residenziale	973	347096,413	4184845,5 9	

Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

10 APPENDICE D

Ricettore	Cod.	R1	R3	R4	R6	R8	R9	R17	R19
Rumore campo	LeqD	39,5	38,5	40,1	40,5	40,9	41,2	41,6	41,3
eolico (A)	LeqN	38,9	36,2	37,9	37,4	38,4	39,2	38,7	39,7
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,2	51,1	51,2	51,3	51,3	51,3	51,4	51,4
ambientale (C)	LeqN	47,4	47,1	47,2	47,2	47,3	47,4	47,3	47,5
Limite di immissione differenziale	LeqD	5	5	5	5	5	5	5	5
	LeqN	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,3	0,2	0,3	0,4	0,4	0,4	0,5	0,5
	LeqN	0,7	0,4	0,5	0,5	0,6	0,7	0,6	0,8

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R21	R24	R25	R34	R37	R39	R40	R41
Rumore campo eolico (A)	LeqD	40,9	41,3	41,5	40,5	43,4	41,2	42,5	42,6
	LeqN	39,4	39,8	40	39,4	39,1	39,3	38,4	39,5
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
	LeqN	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	51,3	51,4	51,4	51,3	51,6	51,3	51,5	51,5
	LeqN	47,4	47,5	47,5	47,4	47,4	47,4	47,3	47,5
Limite di immissione differenziale	LeqD	5	5	5	5	5	5	5	5
	LeqN	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,4	0,5	0,5	0,4	0,7	0,4	0,6	0,6
	LeqN	0,7	0,8	0,8	0,7	0,7	0,7	0,6	0,8

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R42	R44	R45	R47	R49	R50	R52	R55
Rumore campo	LeqD	43,4	42,9	42,2	39,6	45,3	45,3	38,5	43,8
eolico (A)	LeqN	39,7	40,9	40,6	39,2	45,2	45,3	38,2	43,6
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,6	51,5	51,4	51,2	52,0	52,0	51,1	51,7
ambientale (C)	LeqN	47,5	47,7	47,7	47,4	49,0	49,1	47,3	48,4
Limite di immissione differenziale	LeqD	5	5	5	5	5	5	5	5
	LeqN	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,7	0,6	0,5	0,3	1,1	1,1	0,2	0,8
	LeqN	0,8	1,0	1,0	0,7	2,3	2,4	0,6	1,7

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R56	R59	R60	R61	R64	R65	R68	R74
Rumore campo	LeqD	44,3	47	47	46,1	49,5	49,6	43,7	51,4
eolico (A)	LeqN	43,9	41,2	41,3	40,5	43,8	43,6	43,6	45,2
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,8	52,4	52,4	52,1	53,3	53,3	51,7	54,2
ambientale (C)	LeqN	48,5	47,8	47,8	47,6	48,5	48,4	48,4	49,0
Limite di	LeqD	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3
Livello	LeqD	0,9	1,5	1,5	1,2	2,4	2,4	0,8	3,3
differenziale (C-B)	LeqN	1,8	1,1	1,1	0,9	1,8	1,7	1,7	2,3

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R76	R77	R78	R94	R98	R108	R109	R118
Rumore campo	LeqD	45,6	46	44,3	50,5	47,4	46,5	42,9	41,4
eolico (A)	LeqN	41,6	41,5	41,5	45,1	43,9	42,6	42,7	41,1
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di immissione	LeqD	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	52,0	52,1	51,8	53,7	52,5	52,2	51,5	51,4
ambientale (C)	LeqN	47,9	47,8	47,8	49,0	48,5	48,1	48,2	47,8
Limite di	LeqD	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3
Livello	LeqD	1,1	1,2	0,9	2,8	1,6	1,3	0,6	0,5
differenziale (C-B)	LeqN	1,2	1,1	1,1	2,3	1,8	1,4	1,5	1,1

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R119	R120	R121	R125	R127	R128	R129	R130
Rumore campo	LeqD	43,6	43,3	43,3	43,9	46	46,1	37,7	39,1
eolico (A)	LeqN	43,2	43,2	43,2	43,7	45,9	46	37,7	39,1
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,6	51,6	51,6	51,7	52,1	52,1	51,1	51,2
ambientale (C)	LeqN	48,3	48,3	48,3	48,5	49,3	49,4	47,2	47,4
Limite di	LeqD	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3
Livello	LeqD	0,7	0,7	0,7	0,8	1,2	1,2	0,2	0,3
differenziale (C-B)	LeqN	1,6	1,6	1,6	1,8	2,6	2,7	0,5	0,7

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R131	R132	R133	R137	R146	R148	R153	R154
Rumore campo	LeqD	43	43	43,8	40,1	41,3	40,5	38,9	38,9
eolico (A)	LeqN	42,9	42,9	43,7	39,9	41	40,3	38,5	38,7
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,6	51,6	51,7	51,2	51,4	51,3	51,2	51,2
ambientale (C)	LeqN	48,2	48,2	48,5	47,5	47,7	47,6	47,3	47,3
Limite di	LeqD	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3
Livello	LeqD	0,7	0,7	0,8	0,3	0,5	0,4	0,3	0,3
differenziale (C-B)	LeqN	1,5	1,5	1,8	0,8	1,0	0,9	0,6	0,6

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R156	R158	R161	R163	R165	R166	R168	R175
Rumore campo	LeqD	38,9	38,2	38,3	37,6	38,9	39,7	38,9	43,6
eolico (A)	LeqN	38,9	38	38	37,4	38,8	39,6	38,8	43,6
Rumore residuo	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
(B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60
Rumore	LeqD	51,2	51,1	51,1	51,1	51,2	51,2	51,2	51,6
ambientale (C)	LeqN	47,4	47,2	47,2	47,2	47,4	47,5	47,4	48,4
Limite di	LeqD	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3
Livello	LeqD	0,3	0,2	0,2	0,2	0,3	0,3	0,3	0,7
differenziale (C-B)	LeqN	0,7	0,5	0,5	0,5	0,7	0,8	0,7	1,7

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R177	R185	R191	R193	R194	R200	R202	R204	R205	R207
Rumore	LeqD	39,3	38	38,3	39,3	39,2	36,5	36,4	36,5	36,7	36,7
campo eolico (A)	LeqN	39,2	37,9	38,3	39,2	39,1	36,4	36,3	36,4	37	36,9
Rumore	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
residuo (B)	LeqN	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
Limite di	LeqD	70	70	70	70	70	70	70	70	70	70
immissione assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore	LeqD	51,2	51,1	51,1	51,2	51,2	51,1	51,1	51,1	51,1	51,1
ambientale (C)	LeqN	47,4	47,2	47,3	47,4	47,4	47,1	47,1	47,1	47,1	47,1
Limite di	LeqD	5	5	5	5	5	5	5	5	5	5
immissione differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello	LeqD	0,3	0,2	0,2	0,3	0,3	0,2	0,2	0,2	0,2	0,2
differenziale (C-B)	LeqN	0,7	0,5	0,6	0,7	0,7	0,4	0,4	0,4	0,4	0,4

verificato

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l. Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

11 APPENDICE E

Ricettore	Cod.	R1	R3	R4	R6	R8	R9	R17	R19
Rumore Cantiere (A)	LeqD	44,2	41	42,7	42,5	43,7	44,4	44,1	44,9
Rumore Residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	51,7	51,3	51,5	51,5	51,7	51,8	51,7	51,9

Ricettore	Cod.	R21	R24	R25	R34	R37	R39	R40	R41
Rumore Cantiere (A)	LeqD	44,5	45,5	45,3	45	46,3	44,8	44,2	44,9
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	51,8	52,0	52,0	51,9	52,2	51,9	51,7	51,9

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R42	R44	R45	R47	R49	R50	R52	R55
Rumore Cantiere (A)	LeqD	44,7	46,2	45,9	42,1	49	49,1	42,2	48,7
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	51,8	52,2	52,1	51,4	53,1	53,1	51,4	52,9

Ricettore	Cod.	R56	R59	R60	R61	R64	R65	R68	R74
Rumore Cantiere (A)	LeqD	48,8	49,3	48,1	47,6	48,6	48,3	45,4	52
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	53,0	53,2	52,7	52,6	52,9	52,8	52,0	54,5

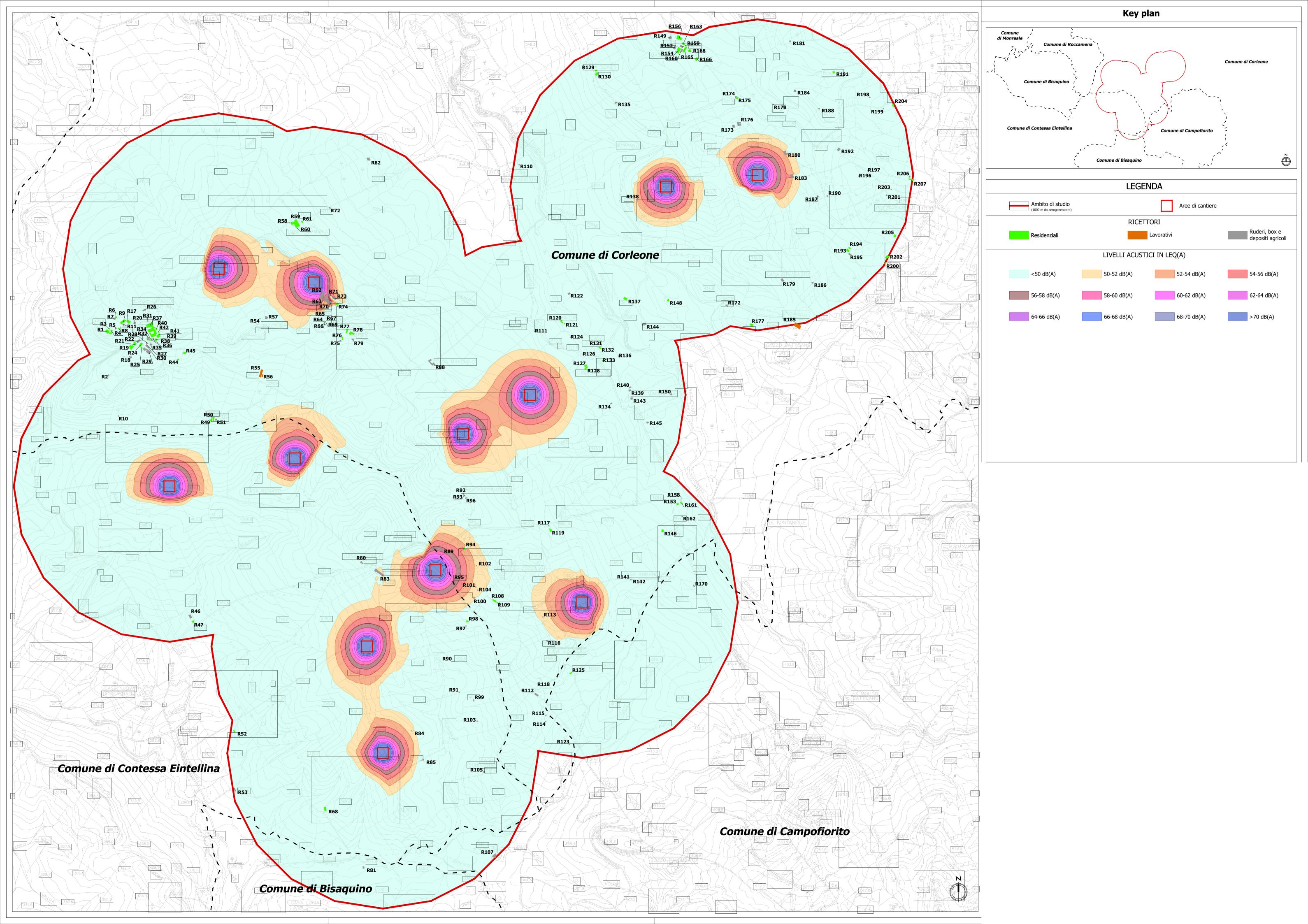
VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

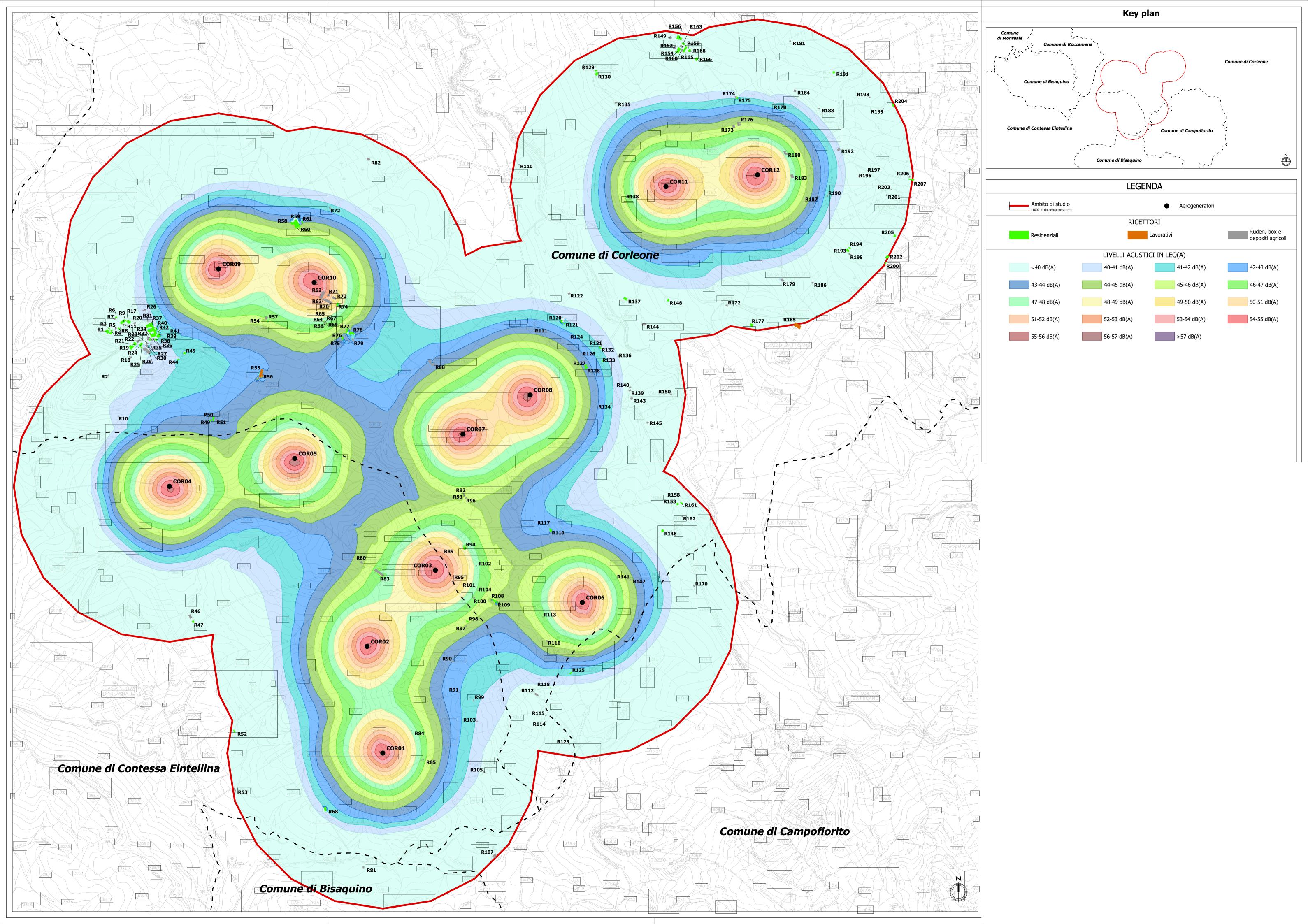
Ricettore	Cod.	R76	R77	R78	R94	R98	R108	R109	R118
Rumore Cantiere (A)	LeqD	45,9	45,9	46,6	55,1	50,5	49,8	45,5	44,9
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	52,1	52,1	52,3	56,5	53,7	53,4	52,0	51,9

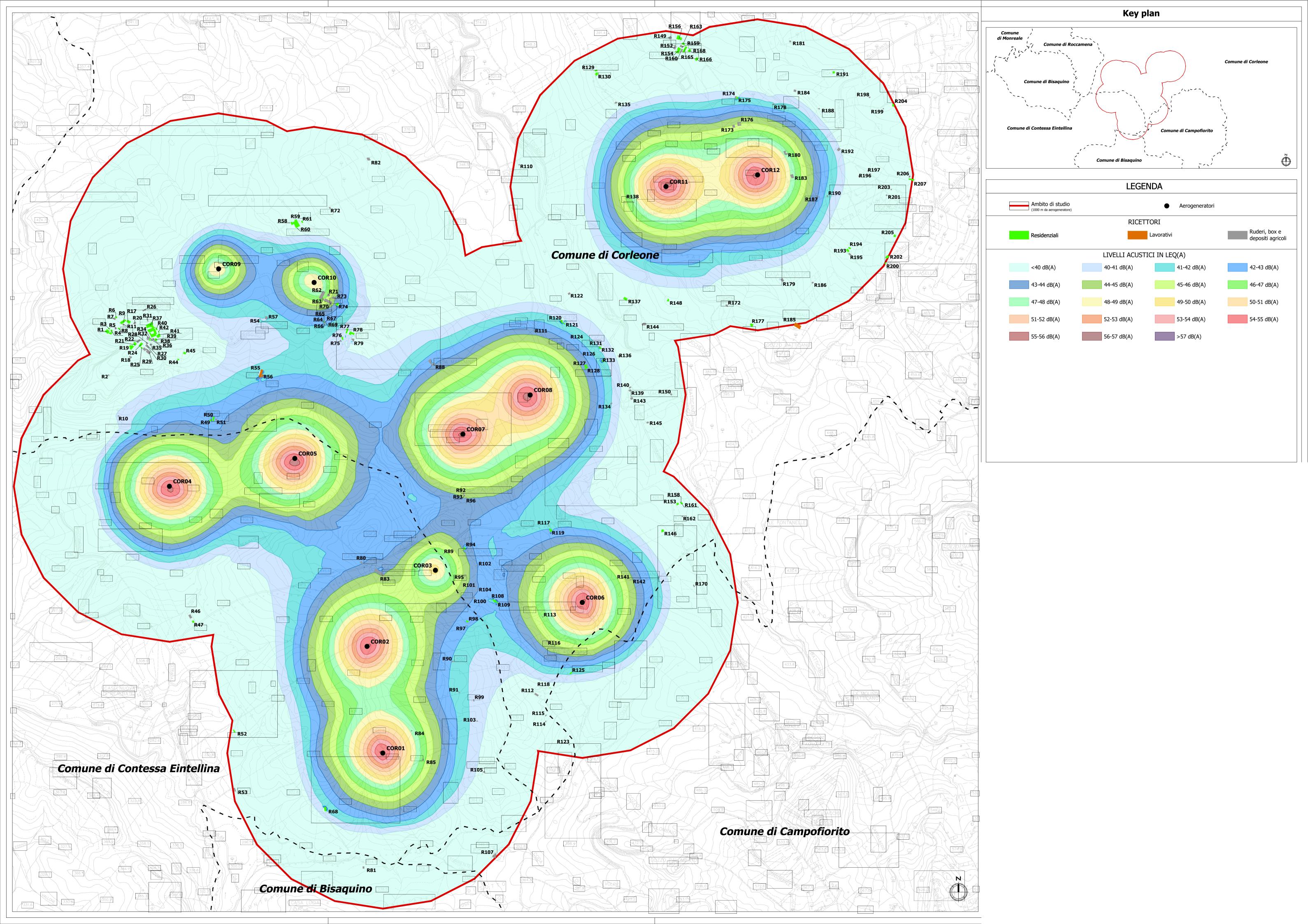
Ricettore	Cod.	R119	R120	R121	R125	R127	R128	R129	R130
Rumore Cantiere (A)	LeqD	45,8	47,5	47,5	45,1	49,9	50	42	43,8
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	52,1	52,5	52,5	51,9	53,4	53,5	51,4	51,7

VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)

Ricettore	Cod.	R131	R132	R133	R137	R146	R148	R153	R154
Rumore Cantiere (A)	LeqD	47,5	47,4	48	45,6	44,4	45,2	42,8	43,4
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	52,5	52,5	52,7	52,0	51,8	51,9	51,5	51,6


Ricettore	Cod.	R156	R158	R161	R163	R165	R166	R168	R175
Rumore Cantiere (A)	LeqD	40,2	42,2	41,6	39,9	43	43,4	43	46,7
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	51,3	51,4	51,4	51,2	51,6	51,6	51,6	52,3


VAMIRGEOIND Ambiente Geologia e Geofisica s.r.l.
Studio di Impatto Acustico – Progetto per la realizzazione di un impianto eolico denominato LEO, sito nel territorio comunale di Corleone, Contessa Entellina e Monreale (Pa)


Ricettore	Cod.	R177	R185	R191	R193	R194	R200	R202	R204
Rumore Cantiere (A)	LeqD	44,5	43,3	43	44,4	44,3	42,1	42	41,7
Rumore residuo (B)	LeqD	50,9	50,9	50,9	50,9	50,9	50,9	50,9	50,9
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70
Rumore ambientale (C)	LeqD	51,8	51,6	51,6	51,8	51,8	51,4	51,4	51,4

Ricettore	Cod.	R205	R207
Rumore Cantiere (A)	LeqD	42,3	43,1
Rumore residuo (B)	LeqD	50,9	50,9
Limite di immissione assoluta	LeqD	70	70
Rumore ambientale (C)	LeqD	51,5	51,6

^{*}Nel caso di edifici a più piani, viene riportato il valore del Leq al piano maggiore tra quelli simulati.

