

PROGETTO DEFINITIVO

RELAZIONE CAMPI ELETTROMAGNETICI

Tipo Elaborato	Codice Elaborato	Data	Scala CAD	Formato	Foglio / di	Scala
REL.	2103_R.18	09/05/2023	-	A4	1/46	-

EF AGRI Società Agricola A R.L.

PROPONENTE

Via del Brennero, 111 38121 - Trento (TN)

SET SVILUPPO s.r.l.

SVILUPPO

Corso Trieste, 19 00198 - Roma (RM)

PROGETTAZIONE

Rev.	Data	Descrizione	Redatto	Verificato	Approvato
00	09/05/2023	Prima Emissione	Ing. M. Marsico	Ing. G. Greco	Ing. M. Marsico

RELAZIONE CAMPI ELETTROMAGNETICI

FATTORIA SOLARE "SU BARROCCU" AGRIVOLTAICO DI TIPO ELEVATO E AVANZATO

di potenza pari a 11,272 MWp e sistema di accumulo pari a 5 MW Progetto:

Titolo Elaborato:

Pagina:

Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Campi Elettromagnetici

3

SOMMARIO

1.	DA	TI G	ENERALI	4
2.	IN	TROI	DUZIONE	4
	2.1.	Cai	npo di forza	4
	2.2.	Foi	ndo naturale di radiazione elettromagnetica	6
	2.3.	Ra	diazione elettromagnetica dovuta al progresso tecnologico	6
	2.3	3.1.	Trasporto e distribuzione dell'energia elettrica	7
	2.3	3.2.	Impianti per radio telecomunicazione	8
	2.4.	Il c	ampo magnetico	8
	2.5.	Lo	spettro elettromagnetico	9
	2.6.	Eff	etti delle radiazioni	10
	2.6	5.1.	Radiazioni ionizzanti	10
	2.6	5.2.	Radiazioni non ionizzanti	10
	2.7.		etti termici e non-termici	
	2.8.	Eff	etti del campo magnetico a 50 Hz e normative	11
	2.9.	Stu	di epidemiologici	12
3.	NC)RMA	ATIVA DI RIFERIMENTO	14
	3.1.	Le	linee guida internazionali	14
	3.2.	Ra	ccomandazioni e direttive europee	14
	3.3.	La	normativa italiana	15
	3.4.	La	legislazione italiana	15
	3.5.	DM	I 29/05/08 (fasce di rispetto per elettrodotti)	16
4.	ME	ETOE	OLOGIA DI CALCOLO	18
	4.1.	Val	utazione delle fasce di rispetto	18
	4.2.	Val	utazione del volume di rispetto dell'obiettivo di qualità	18
	4.3.	Lin	ee elettriche a media tensione	18
	4.4.	Inc	luzione magnetica infrastrutture elettriche	19
	4.4	ł.1.	Moduli Fotovoltaici	19
	4.4	ł.2.	Inverter	19
	4.4	ł.3.	Elettrodotti interrati	20
	4.4	ł.4.	Cabine elettriche	22
5.	AN	IALIS	I E CALCOLO INDUZIONE MAGNETICA	23
	5.1.	Lin	ee AT (36 kV) in cavo interrato con cavi unipolari posati a trifoglio	23
	5.2.	Lin	ee BT in cavo interrato con cavi unipolari posati a trifoglio	32
	5.3.	Cal	oina di Raccolta	35
	5.4.	Po	wer Station	39
	5.5.	Sto	rage Power Station	42

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	4

6. CONCLUSIONI46

1. DATI GENERALI

Proponente	EF AGRI SOCIETÀ AGRICOLA A R.L.
Progetto	Agrivoltaico: progetto di miglioramento fondiario integrato
	da strutture fotovoltaiche elevate di potenza nominale pari
	a 11,272 MWp e completato da un sistema di accumulo di
	potenza nominale pari a 5 MW, per una potenza in
	immissione complessivamente pari a 16,272 MW.
Coordinate geografiche	Latitudine: 39°57'41.30" NORD
	Longitudine: 8°37'39.50 EST
Comuni Interessati dal progett	o Siamaggiore (OR)
	Solarussa (OR)

2. INTRODUZIONE

L'oggetto della presente relazione è il calcolo dei campi elettrici e magnetici generati dalle componenti elettriche dall'impianto agrivoltaico denominato "Fattoria Solare Su Barroccu" e la relativa valutazione di conformità alla normativa di riferimento.

Nei capitoli seguenti verranno:

- Illustrate sinteticamente le considerazioni scientifiche che stanno alla base degli standard di sicurezza in materia di campi elettromagnetici;
- Presentanti i livelli tipici di campo magnetico a 50 Hz che si possono riscontrare in prossimità delle sorgenti presenti nell'ambiente esterno;
- Esposta la normativa europea e nazionale di riferimento;
- Descritte le emissioni elettromagnetiche associate alle infrastrutture elettriche interessate dal progetto e le metodologie di calcolo;
- Calcolati i valori di campo magnetico per le sorgenti derivanti dalla realizzazione del progetto (cabine elettriche e elettrodotti aerei o interrati).

2.1. Campo di forza

Un campo di forza in fisica è una regione di spazio attorno ad un oggetto particolare (detto sorgente del campo) nella quale si manifestano forze su altri oggetti.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	5

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	6

Seguono esempi di campi di forze:

	Campo gravitazionale	Campo elettrico	Campo magnetico
Generato da:	qualunque oggetto dotato di massa	qualunque oggetto dotato di carica elettrica	qualunque conduttore percorso da corrente elettric a
È una regione di spazio nella quale si manifestano forze che agiscono su:		altri oggetti dotati di carica elettrica	altri conduttori percorsi da corrente elettrica

2.2. Fondo naturale di radiazione elettromagnetica

Sulla Terra è presente un fondo naturale di radiazione elettromagnetica di origine cosmica, (prodotto dal sole e dalle stelle), e di origine atmosferica, dovuto a fenomeni metereologici (scariche elettrostatiche). Le radiazioni elettromagnetiche si propagano nello spazio sottoforma di onde (onde elettromagnetiche), le cui caratteristiche dipendono dalla frequenza, ossia dal numero di oscillazioni compiute in un secondo, che si misura in cicli al secondo o Hertz (Hz). Maggiore è la frequenza, maggiore è l'energia trasportata dall'onda.

L'insieme di tutte le possibili onde elettromagnetiche, in funzione della frequenza, costituisce lo spettro elettromagnetico. Al suo interno si possono distinguere due grandi zone, quella delle radiazioni ionizzanti (IR), che hanno un'energia tale da rompere i legami atomici che tengono unite le molecole e quella delle radiazioni non ionizzanti (NIR), che non hanno energia sufficiente per ionizzare la materia: è in questa regione dello spettro che si parla comunemente di campi elettromagnetici.

Un campo elettromagnetico è costituito da due grandezze che variano periodicamente nel tempo: il campo elettrico e il campo magnetico. Il primo si definisce come una proprietà o perturbazione dello spazio, dovuta alla presenza di cariche elettriche, la sua intensità si misura in Volt per metro (V/m). Analogamente, il campo magnetico è legato alla presenza di cariche elettriche in movimento (correnti elettriche) e la sua intensità si esprime in ampère per metro (A/m) o in microtesla (μT) .

2.3. Radiazione elettromagnetica dovuta al progresso tecnologico

Accanto alle sorgenti naturali, il progresso tecnologico ha introdotto un contributo sostanziale dovuto alle sorgenti legate alle attività umane. L'uso sempre crescente delle nuove tecnologie ha infatti portato, negli ultimi decenni, ad un aumento della presenza di sorgenti di campo elettrico,

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	7

magnetico ed elettromagnetico, rendendo di sempre maggiore attualità la problematica dell'esposizione alle radiazioni non ionizzanti.

Le principali sorgenti artificiali di campi elettromagnetici nell'ambiente sono gli impianti per la distribuzione e l'utilizzo di energia elettrica, insieme agli apparati per radiotelecomunicazione, che operano a frequenze comprese tra 0 e 300 GHz. Più precisamente, i sistemi per la trasmissione, distribuzione e utilizzo dell'energia elettrica funzionano nell'intervallo di frequenze compreso tra 0 e 300 Hz, ed i campi elettromagnetici da essi prodotti sono chiamati ELF (Extremely Low Frequency: campi a frequenza estremamente bassa o semplicemente a bassa frequenza), mentre gli impianti per radio telecomunicazione operano nell'intervallo di frequenze da 100 kHz a 300 GHz e generano campi elettromagnetici RF (campi a radiofrequenza, microonde o semplicemente ad alta frequenza).

2.3.1. Trasporto e distribuzione dell'energia elettrica

I sistemi di trasporto e distribuzione dell'energia elettrica, comunemente detti elettrodotti, sono costituiti dalle linee elettriche e dalle stazioni e cabine di trasformazione elettrica. Le caratteristiche principali di una linea elettrica sono la tensione di esercizio, che si misura in chilovolt (kV) e la corrente trasportata, che si esprime in ampère (A). La tensione di esercizio, che determina l'intensità del campo elettrico generato, è un parametro costante all'interno della linea. Le tensioni di esercizio delle linee elettriche in Italia sono 0,4 kV per la bassa tensione, 15, 20 e 30 kV per la media tensione, 36, 132, 150, 220 e 380 kV per l'alta e altissima tensione. La corrente trasportata, parametro dal quale dipende l'intensità del campo magnetico generato, è variabile nel tempo in funzione delle richieste di energia e mediamente può assumere valori da alcuni ampère a qualche migliaio di ampère, a seconda della linea elettrica.

Gli elettrodotti distribuiti sul territorio italiano danno luogo nel loro complesso alla rete elettrica nazionale, che è articolata in una rete di trasmissione e in tre reti di distribuzione ad alta, media e bassa tensione. La Rete di Trasmissione Nazionale (RTN) comprende le reti di trasmissione ad altissima tensione (AAT: 380 kV e 220 kV) e ad alta tensione (AT: 132 kV e 150 kV) e le stazioni elettriche AAT/AT (380-220/150-132 kV). La RTN costituisce l'ossatura principale della rete elettrica nazionale e svolge il ruolo di interconnessione degli impianti di produzione nazionale e di collegamento con la rete elettrica internazionale. La Rete di Distribuzione ad alta tensione (AT: 132-150 kV) collega le stazioni elettriche AAT/AT e le centrali di produzione alle cabine primarie (CP) AT/AT (150-132/36 kV) o AT/MT (150-132/30-15 kV) ubicate nel territorio provinciale e precisamente nelle aree interessate dai più elevati fabbisogni di potenza ed energia elettrica. La Rete di distribuzione a media tensione (MT: 15, 20, 30 kV) serve a garantire l'energia elettrica per le diverse aree territoriali ed i diversi settori produttivi. Tale rete è composta da linee principali

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	8

denominate "dorsali" (la cui alimentazione è garantita dalle cabine primarie), che interessano, di norma, il territorio di più Comuni e servono ad alimentare grandi clienti, e da linee secondarie dette "derivazioni" (derivate appunto dalle dorsali medesime), che di norma interessano i singoli territori comunali. Le linee dorsali collegano tra loro le cabine secondarie MT/BT (15 o 20/0,4 kV). Infine, la Rete di distribuzione a bassa tensione (BT: 400-230 V) costituisce il sistema di distribuzione al servizio delle piccole utenze (abitazione, commercio, artigianato, piccola industria e similari). L'alimentazione delle linee a bassa tensione che interessano il territorio è garantita dalle cabine secondarie MT/BT.

2.3.2. Impianti per radio telecomunicazione

Le principali sorgenti di campi elettromagnetici ad alta frequenza nell'ambiente sono gli impianti per radio telecomunicazione (stazioni radio base, sistemi di diffusione radiotelevisiva, ponti radio, radar, ecc.); una delle caratteristiche principali delle sorgenti RF, da cui dipende il campo elettrico generato, è la potenza immessa in antenna, espressa in Watt (W). Nei centri abitati assumono particolare importanza gli impianti fissi per la telefonia mobile o stazioni radio base (SRB).

2.4. Il campo magnetico

Il campo magnetico si misura in Tesla (T); si usano soprattutto i sottomultipli:

millitesla	mT	un millesimo di Tesla
microtesla	μΤ	un milionesimo di Tesla
nanotesla	nT	un miliardesimo di Tesla

Il campo magnetico prodotto da una corrente continua è costante nel tempo e si dice campo magnetostatico (Figura 1); il campo magnetico prodotto da una corrente alternata varia con l'andamento di una sinusoide nel tempo e si dice campo magnetico alternato o oscillante (Figura 2); la frequenza del campo (misurata in Hertz, simbolo Hz) indica quante volte la sinusoide si ripete ogni secondo; in questa relazione si tratteranno unicamente di campi magnetici oscillanti a 50 Hz.

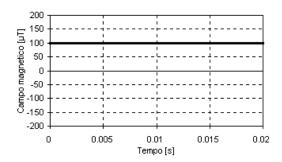


Figura 1: Campo magnetico corrente continua

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu"	Relazione Campi Elettromagnetici	9

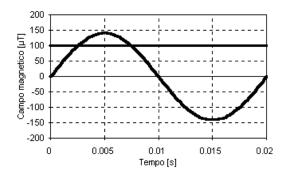


Figura 2: Campo magnetico corrente alternata

L'intensità di un campo magnetico oscillante si esprime attraverso il suo valore efficace, dato dall'intensità di un campo magnetostatico di pari contenuto energetico; si può dimostrare che essa è pari al 70% circa del valore di picco. Una delle caratteristiche più importanti del campo magnetico alternato è la sua capacità di provocare, o indurre, correnti elettriche all'interno degli oggetti conduttori esposti, come per esempio un organismo umano.

IN SINTESI:

- Il campo magnetico è generato da una qualunque corrente elettrica, come quella che scorre in un elettrodotto ad alta tensione o nell'impianto elettrico domestico o in un apparecchio utilizzatore:
- Il campo magnetico si manifesta come forza che agisce su altre correnti elettriche;
- Il campo magnetico si misura in Tesla [T] e sottomultipli; se ha andamento oscillante nel tempo, la frequenza, misurata in Hertz [Hz], indica il numero delle oscillazioni in un secondo;
- Il campo magnetico oscillante è in grado di provocare correnti elettriche negli oggetti conduttori esposti, quindi anche in un organismo umano.

2.5. Lo spettro elettromagnetico

EF AGRI SOCIETA' AGRICOLA A R.L.

Al variare della frequenza, l'onda elettromagnetica assume delle proprietà caratteristiche. Poiché ad ogni onda è associata un'energia trasportata, e questa è proporzionale alla frequenza, le onde ad alta frequenza trasporteranno una maggiore quantità di energia.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	10

Lo spettro può essere suddiviso in sette regioni principali, con frequenza ed energia crescente:

Nome	Intervallo di frequenze	Sorgenti
Basse frequenze	0 - 104 Hz	Elettrodotti, elettrodomestici
Radiofrequenze	104 - 108 Hz	Antenna radio e televisive
Microonde	108 – 1011 Hz	Forni a microonde, telefoni cellulari
Infrarosso	1011 – 1013 Hz	Lampade termiche, fonti di calore
Visibile	1013 – 1014 Hz	Luce solare, lampade
Ultravioletto	1014 – 1017 Hz	Lampade UV
Raggi X, raggi gamma	1017 – 1020 Hz	Radiografia medica, raggi cosmici

2.6. Effetti delle radiazioni

La frequenza di 1015 Hz (nel campo dell'ultravioletto) divide le radiazioni in ionizzanti e nonionizzanti.

2.6.1. Radiazioni ionizzanti

Le radiazioni ionizzanti sono quelle che hanno frequenza superiore a 1015 Hz, e comprendono l'UV lontano, raggi X e raggi gamma.

Sono gravemente dannose per la salute umana: essendo onde ad altissima energia sono in grado di generare ionizzazione, ovvero la rottura dei legami covalenti molecolari, e quindi di danneggiare i DNA delle cellule.

2.6.2. Radiazioni non ionizzanti

Le radiazioni non ionizzanti hanno frequenza inferiore a 1015 Hz, e comprendono i campi delle basse frequenze, radiofrequenze, microonde e infrarosso. La quantità di energia trasportata, e quindi trasferita ai tessuti umani quando questi vengono irradiati, non è sufficiente a rompere i legami chimici delle molecole. Vi sono però dei dubbi sulla loro innocuità, come vedremo in dettaglio.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	11

2.7. Effetti termici e non-termici

Gli effetti biologici dei campi elettromagnetici dipendono principalmente dalla potenza trasportata dalla radiazione.

L'energia trasportata da un'onda elettromagnetica che attraversa un tessuto biologico viene dissipata all'interno del tessuto stesso sotto forma di calore. Il campo magnetico oscillante induce nel tessuto una corrente elettrica che dissipa potenza a causa delle proprietà dielettriche del mezzo.

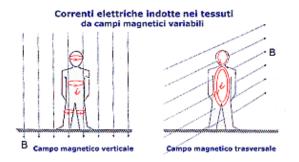


Figura 3: Correnti elettriche indotte nei tessuti

Campi elettromagnetici con densità di potenza superiore a 10 mW/cm² possono provocare danni biologici per effetto termico: gli effetti acuti del campo magnetico sono dovuti all'induzione di corrente elettrica nei tessuti (fino a 10 A/m² per campi magnetici molto intensi), e vanno da interferenze nella percezione sensoriale (visiva e tattile), alla fibrillazione ventricolare, fino al riscaldamento dei tessuti.

2.8. Effetti del campo magnetico a 50 Hz e normative

La sperimentazione su volontari ha permesso di accertare quali sono gli effetti immediati ed oggettivi provocati dalla corrente indotta in un individuo esposto al campo magnetico a 50 Hz. I più significativi sono riportati in tabella, elencati in ordine decrescente di intensità.

Effetti acuti del campo magnetico		
Effetto	Campo magnetico	Densità di corrente
Riscaldamento dei tessuti (0,4 W/kg)	1.600.000 μΤ	10.000 mA/m ²
Induzione di extrasistole (rischio di fibrillazione)	130.000 μΤ	800 mA/m ²
Percezione sensoriale, magnetofosfeni	16.000 μΤ	100 mA/m ²

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	12

Normativa italiana	100 μΤ	0,6 mA/m ²
Soglia di attenzione epidemiologica	0,2 μΤ	-

Si ipotizza che le radiofrequenze e i campi a basse frequenze, anche se emessi con potenza inferiore a 10 mW/cm², possano causare danni biologici con effetti non termici. Sulla possibile dannosità dei campi elettromagnetici sono tuttora in corso molti studi medici che cercano di individuare una correlazione tra l'esposizione prolungata a campi, anche deboli, e l'insorgenza di malattie (tra cui tumori infantili), e allo stesso tempo di scoprire il funzionamento biologico dell'interazione tra campi elettromagnetici e sistemi biologici.

2.9. Studi epidemiologici

Le commissioni tecniche nazionali ed internazionali che hanno redatto le proposte di normativa non hanno ritenuto di poter tenere conto degli studi epidemiologici per formulare i limiti di esposizione.

I motivi di tale scelta - che è stata più volte ribadita anche dall'Organizzazione Mondiale della Sanità - non sono oggetto di questa relazione; però occorre chiarire alcuni concetti:

Le commissioni hanno redatto normative da applicarsi esclusivamente alle esposizioni acute.	Non è vero: i testi delle varie norme precisano esplicitamente che i limiti per la popolazione si applicano ad esposizioni di durata indefinita, anche se raccomandano di applicare criteri cautelativi ispirati al principio ALARA e al concetto di evitare le esposizioni non necessarie.
Nel redigere le normative le commissioni hanno del tutto ignorato i risultati degli studi epidemiologici.	Non è vero: i risultati di tali studi vengono citati, analizzati, confrontati e commentati in dettaglio nei documenti che descrivono l'attività svolta dalle commissioni.
voluto mantenere un atteggiamento compiacente nei confronti delle grandi	La composizione delle commissioni internazionali, che raccolgono esperti da un gran numero di paesi e da tipologie di istituzioni diverse, personalità spesso all'apice della carriera, sono una buona garanzia di comportamento super partes.

Le persone particolarmente esposte sono quelle che abitano, lavorano o comunque risiedono per lunghi periodi nelle vicinanze di elettrodotti ad alta tensione.

Studi epidemiologici, condotti a partire dalla fine degli anni '70, suggeriscono che i campi elettromagnetici a bassa frequenza possano essere considerati come "probabili cancerogeni", anche se l'associazione tra esposizione a tali campi e l'insorgenza di tumori appare di modesta entità e non è sufficiente a stabilire con certezza una correlazione tra esposizione ed effetto.

La prima ipotesi di cancerogenicità dei campi elettromagnetici a bassa frequenza (ELF, Extremely Low Frequency) fu formulata per la prima volta da Nancy Wertheimer e Ed Leeper nel 1979, con l'articolo "Electrical wiring configurations and childhood cancer" pubblicato sull'American Journal of Epidemiology.

Numerose successive indagini su residenti in abitazioni vicine a installazioni elettriche (esposti a campi magnetici di frequenza 50-60 Hz e intensità 0,2-0,4 μ T) hanno evidenziato un possibile aumento del rischio di leucemie e tumori cerebrali nei bambini; indagini su categorie di lavoratori professionalmente esposti hanno evidenziato un aumento di rischio di leucemie e di tumori mammari nella donna.

Altri studi, altrettanto ben condotti, hanno dato risultati negativi o contraddittori: i casi di tumori si sono dimostrati solo in alcuni casi leggermente superiori alla media, e non attribuibili con certezza all'esposizione a radiazioni.

La correlazione tra l'esposizione cronica a campi elettromagnetici a bassa frequenza e l'insorgere di certi tipi di tumori, in particolare leucemie infantili, è quindi ancora incerta. Inoltre, non vi sono ancora conferme sperimentali dell'azione dei campi a basse frequenze sul materiale genetico cellulare, né è stata ancora formulata una convincente ipotesi di meccanismo biologico che spieghi l'effetto di questi campi sulle cellule.

Si ipotizza invece un'azione non tanto diretta (l'energia trasportata dalle onde elettromagnetiche è troppo bassa per rompere anche il più debole legame chimico), quanto piuttosto di promozione dell'insorgenza dei tumori.

Infatti, perché si sviluppi un tumore, è necessaria per prima una mutazione genetica, dovuta a diversi fattori, come l'esposizione ad agenti genotossici (ad esempio l'esposizione a radiazioni ionizzanti) o un errore nella replicazione del DNA. Ma è comunque necessario che vi sia anche un'azione "epigenetica", ovvero capace di favorire la trasformazione di una cellula precancerogena in cellula cancerogena.

Le modalità d'interazione delle radiazioni non ionizzanti con la materia ed i sistemi biologici, gli effetti di tali interazioni e le possibili applicazioni dipendono strettamente dalla frequenza e di conseguenza anche i riferimenti normativi sono differenziati.

IN SINTESI:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	14

- L'esposizione al campo magnetico a 50 Hz di intensità superiore a circa 130.000 μT può avere conseguenze sanitarie gravissime;
- Non esistono effetti accertati per esposizioni al di sotto di circa 1.600 μT;
- L'Italia è una delle poche nazioni ad avere una legge che prescrive un livello massimo ammissibile per le esposizioni al campo magnetico a 50 Hz; il valore previsto (100 μT) risulta notevolmente cautelativo rispetto agli effetti accertati.
- Le commissioni di esperti internazionali e l'Organizzazione Mondiale della Sanità hanno più volte ribadito che i risultati degli studi epidemiologici, sebbene non possano essere ignorati, non sono abbastanza consolidati e coerenti da poter essere utilizzati per identificare dei limiti di esposizione;
- L'adozione generalizzata di limiti di esposizione basati sulla SAR (Specific Absorption Rate) $(0,2~\mu T)$ comporterebbe dover destinare ingenti risorse economiche all'abbattimento dei livelli di campo magnetico a 50 Hz nell'ambiente e nelle abitazioni; tali risorse dovrebbero inevitabilmente essere distolte da altri settori di prevenzione sanitaria, dove il loro utilizzo sarebbe stato probabilmente molto più efficace, anche in considerazione del limitato impatto sanitario che, pur se dovessero trovare conferma le ipotesi peggiori, risulterebbe associato alle esposizioni al campo magnetico a 50 Hz ai livelli consentiti dalle normative vigenti.

3. NORMATIVA DI RIFERIMENTO

3.1. Le linee guida internazionali

- ✓ 644-1994 IEEE "Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields from AC Power Lines";
- ✓ ICNIRP Guidelines "1998 Healt Physics Society "Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz)".

3.2. Raccomandazioni e direttive europee

- ✓ Raccomandazione del Consiglio 1999/519/CE "Raccomandazione del Consiglio del 12 luglio 1999 relativa alla limitazione dell'esposizione della popolazione ai campi elettromagnetici da 0 Hz a 300 GHz";
- ✓ Direttiva 2004/40/CE, 29 aprile 2004 "Directive 2004/40/EC of the european parliament and of the council on the minimum health and safety requirements regarding the exposure of workers to the risk arising from physical agents (electromagnetic fields)".

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	15

3.3. La normativa italiana

- ✓ CEI 211-6 "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz − 10 kHz, con riferimento all'esposizione umana".
- ✓ CEI R014-001 "Guida per la valutazione dei campi elettromagnetici attorno ai trasformatori di potenza"
- ✓ CEI 11-60 "Portata al limite termico delle linee elettriche aeree esterne con tensione maggiore di 100 kV"
- ✓ CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche".

3.4. La legislazione italiana

- ✓ Legge 22 febbraio 2001, n. 36 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";
- ✓ D.P.C.M. 08 luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti".

Questo decreto, per i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità sui campi elettromagnetici alla frequenza di 50 Hz, ha stabilito quanto segue:

 $100\mu T$ per l'induzione magnetica e 5 kV/m per il campo elettrico, intesi come valori efficaci.

A titolo di misura cautelativa per la protezione da possibili effetti a lungo termine, eventualmente connessi con l'esposizione ai campi magnetici generati alla frequenza di rete (50Hz), nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolatici e nei luoghi adibiti a permanenza non inferiori a quattro ore giornaliere, si assume per l'induzione magnetica il valore di attenzione di $10\mu T$, da intendersi come mediana dei valori nell'arco di 24 ore nelle normali condizioni di esercizio.

Nella progettazione di nuovi elettrodotti in corrispondenza di aree di gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione dei nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio, ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, è fissato l'obiettivo di qualità di 3 μ T per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco di 24 ore nelle normali condizioni di esercizio.

Progetto: Titolo Elaborato: Pagina: Fattoria Solare "Su Barroccu" 16 Relazione Campi Elettromagnetici

Frequenza f = 50 Hz	Intensità di campo elettrico E [kV/m]	Induzione magnetica Β [μΤ]
Limite di esposizione *	5	100
(da non superare mai)	5	100
Valore di attenzione **		
(da non superare in		
ambienti abitativi gìà		
esistenti e comunque nei	-	10
luoghi adibiti a		
permanenze non		
inferiori a 4 ore)		
Obiettivo di qualità **		
(da non superare per i		
nuovi elettrodotti o le		
nuove abitazioni in		3
prossimità di elettrodotti	-	3
esistenti dove per nuovo		
si intende costruiti/e		
dopo il 13/09/2003)		
i I		

^{*} Valori efficaci

EF AGRI SOCIETA' AGRICOLA A R.L.

Limiti di esposizione, valori di attenzione e obiettivi di qualità fissati dal DPCM 08/07/2003 (G. U. Serie Generake n.199 del 28/08/2003)

3.5. DM 29/05/08 (fasce di rispetto per elettrodotti)

Differenza simbolica tra fascia di rispetto e area (o distanza) di prima approssimazione:

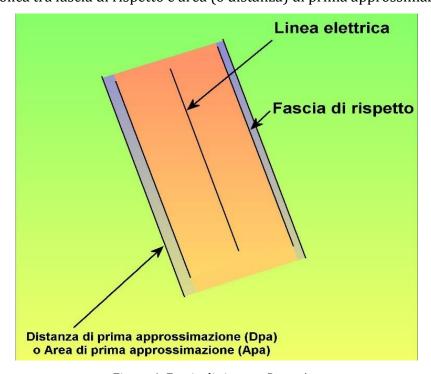


Figura 4: Fascia di rispetto, Dpa e Apa

^{**} Mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	17

Tabella 1: Correnti per il calcolo delle fasce di rispetto nei diversi tipi di linee

	Tipo di corrente da utilizzare per il calcolo della fascia di rispetto		
	Portata in corrente in servizio normale come definita dalla norma Cei 11-		
Linee aeree con	60 articolo 2.6: "È la corrente che può essere sopportata da un conduttore		
tensione superiore a	per il 100% del tempo con limiti accettabili del rischio di scarica sugli		
100 kV	oggetti mobili e sulle opere attraversate e dell'invecchiamento". Deve essere		
	calcolata per il periodo stagionale (caldo o freddo) in cui essa è più elevata.		
Linee aeree con	Portata in corrente in regime permanente fissata dai proprietari/gestori		
tensione inferiore a	a della linea in relazione ai carichi attesi con riferimento alle condizioni		
100 kV	progettuali assunte per il dimensionamento dei conduttori.		
	Portata in regime permanente come definita dalla norma Cei 11-17 articolo		
Linee in cavo	3.5 "massimo valore della corrente che, in regime permanente e in		
Linee in cavo	condizioni specificate, il conduttore può trasmettere senza che la sua		
	temperatura superi un valore specificato".		

Tabella 2: Campo di applicazione del DM 29/05/08 (fasce di rispetto per elettrodotti)

	Tabella 2: Campo di applicazione del DM 29/05/08 (fasce di rispetto per elettrodotti)			
II DM 29/05/08	Elettrodotti (linee, cabine, stazioni) esistenti (solo se vicini a nuovi fabbricati) o			
si applica a:	in progetto, con linee aeree o int			
II DM 29/05/08	Linee esercite a frequenza diversa da quella di rete (50 Hz) Linee definite di classe zero secondo il DI 449/88 ("le linee telefoniche, telegrafiche, per segnalazione e comando a distanza in servizio di impianti elettrici, le quali abbiano tutti o parte dei loro sostegni in comune con linee elettriche di trasporto o di distribuzione o che, pur non avendo con queste alcun sostegno in comune, siano dichiarate appartenenti a questa categoria in sede di autorizzazione")	decreto derivifasce di rissarebbero co previste dal la Tali decreti pidei conduttori non navigabili sulla salut	ti casi, la non a va dalla conside spetto che si munque inferior DI 449/88 e dal revedono delle d ri da fabbricati, i, in riferimento a ce derivanti cici prodotti dalle Distanza dai fabbricati [m]	razione che le calcolerebbero ri alle distanze DM 16/01/91. listanze minime terreni e acque possibili effetti dai campi
non si applica a:	Linee definite di prima classe secondo il DI 449/88 ("le linee di trasporto o distribuzione di energia elettrica, la cui tensione nominale è inferiore o uguale a 1000 V e le linee in cavo per illuminazione pubblica in serie la cui tensione nominale è inferiore o uguale a 5000 V")	Classe zero e prima	I conduttori devono essere inaccessibili dai fabbricati senza l'aiuto di mezzi speciali o senza deliberato proposito	5
	Linee MT in cavo cordato ad elica (interrate o aeree)	MT a 15- 20kV	3,15	6
		Linee in cavo aereo di qualsiasi classe	Non è richiesta nessuna distanza	5

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	18

4. METODOLOGIA DI CALCOLO

4.1. Valutazione delle fasce di rispetto

La regione di calcolo deve avere un'estensione almeno pari a quella del sito di interesse.

Devono essere effettuate tutte le sezioni del campo magnetico a partire dalla quota più bassa del sito di interesse fino oltre l'altezza dei conduttori (nel caso di linee interrate dalla quota più bassa a quella più alta di interesse).

L'estensione della fascia di rispetto è la massima distanza dall'asse della linea, proiettata al suolo verticalmente (filo a piombo), alla quale si calcolano i $3~\mu T$. Per tale valutazione si utilizzano i parametri normativi.

4.2. Valutazione del volume di rispetto dell'obiettivo di qualità

Il volume di rispetto dell'obiettivo di qualità è racchiuso dall'isosuperficie di campo magnetico a 3 μ T. Per tale valutazione si utilizzano i parametri di cui al paragrafo 3.1 con la mediana nelle 24 ore come corrente di calcolo.

Per la determinazione di detto volume, si calcola la distanza massima dall'asse della linea a cui compaiono i $3~\mu T$ per almeno tre altezze ritenute significative: due metri dal suolo, altezza in gronda dell'edificio più alto aumentata di 2~m, altezza relativa alla massima estensione del volume.

Nel caso di linee elettriche interrate vengono fornite tutte le distanze di cui sopra oltre alla valutazione effettuata a livello del suolo.

4.3. Linee elettriche a media tensione

La struttura da considerare per il calcolo, comunicata dal gestore, può venire verificata mediante sopralluogo.

Per le linee aeree l'estensione della fascia di rispetto per le varie tipologie di sostegni è riportata nella seguente tabella. Il calcolo è stato effettuato in base alle tipologie di traliccio fornite dal gestore rappresentative dei sostegni con la massima spaziatura tra i conduttori e con le portate massime dichiarate dal gestore.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	19

Tabella 3: Estensione fascia di rispetto per tipologia di sostegni delle linee aree

Tipologia	Estensione della fascia	Note	Portata di calcolo
Sostegno Stelo Semplice Terna	7.1 m / 7.6 m	(lato 1 cond. / lato 2 cond.)	350 A
Sostegno Stelo Doppia Terna	10.7 m	(struttura simmetrica)	350 A
Sostegno Traliccio Semplice Terna	8.6 m / 9.1 m	(lato 1 cond. / lato 2 cond.)	350 A
Sostegno Traliccio Doppia Terna	11.5 m	(struttura simmetrica)	350 A
Cavo Cordato Aereo	1.0 m	(struttura simmetrica)	350 A

4.4. Induzione magnetica infrastrutture elettriche

Scopo del presente capitolo è quello di descrivere le emissioni elettromagnetiche associate alle infrastrutture elettriche che verranno installate e connesse.

In particolare, saranno valutate le emissioni elettromagnetiche derivanti dalle cabine elettriche – ovvero dalle Power Station (PS) e dalla Cabine di Raccolta – e ai cavidotti previsti per la connessione dell'impianto alla Rete di Distribuzione come previsto in STMG.

4.4.1. Moduli Fotovoltaici

I moduli fotovoltaici lavorano in corrente e tensione continue e non in corrente alternata; per cui la generazione di campi variabili è limitata ai soli transitori di corrente (durante la ricerca del MPP da parte dell'inverter, e durante l'accensione o lo spegnimento) e sono comunque di brevissima durata. Nella certificazione dei moduli fotovoltaici alla norma CEI 82-8 (IEC 61215) non sono comunque menzionate prove di compatibilità elettromagnetica, poiché assolutamente irrilevanti.

4.4.2. Inverter

Gli inverter sono apparecchiature che al loro interno utilizzano un trasformatore ad alta frequenza per ridurre le perdite di conversione. Essi, pertanto, sono costituiti per loro natura da componenti elettronici operanti ad alte frequenze. D'altro canto, il legislatore ha previsto che tali macchine, prima di essere immesse sul mercato, possiedano le necessarie certificazioni a garantirne sia l'immunità dai disturbi elettromagnetici esterni, sia le ridotte emissioni per minimizzarne l'interferenza elettromagnetica con altre apparecchiature elettroniche posizionate nelle vicinanze o con la rete elettrica stessa (via cavo).

A questo scopo gli inverter prescelti possiedono la certificazione di rispondenza alle normative di compatibilità elettromagnetica (EMC) (CEI EN 50273 (CEI 95-9), CEI EN 61000-6-3 (CEI 210-65),

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	20

CEI EN 61000-2-2 (CEI 110-10), CEI EN 61000-3-2 (CEI 110-31), CEI EN 61000-3-3 (CEI 110-28), CEI EN 55022 (CEI 110-5), CEI EN 55011 (CEI 110-6).

Tra gli altri aspetti queste norme riguardano:

- Livelli armonici: le direttive del gestore di rete prevedono un THD globale (non riferito al massimo della singola armonica) inferiore al 5% (inferiore all'8% citato nella norma CEI 110-10). Gli inverter presentano un THD globale contenuto entro il 3%;
- Disturbi alle trasmissioni di segnale operate dal gestore di rete in super-imposizione alla trasmissione di energia sulle sue linee;
- Variazioni di tensione e frequenza: la propagazione in rete di queste ultime è limitata dai relè di controllo della protezione di interfaccia asservita al dispositivo di interfaccia (le fluttuazioni di tensione e frequenze sono però causate per lo più dalla rete stessa, e quindi si rendono necessarie finestre abbastanza ampie per evitare una continua inserzione e disinserzione dell'impianto fotovoltaico);
- La componente continua immessa in rete: il trasformatore elevatore contribuisce a bloccare tale componente (il dispositivo di interfaccia di ogni inverter interviene in presenza di componenti continue maggiori dello 0,5% della corrente nominale);
- Le questioni di compatibilità elettromagnetica concernenti i buchi di tensione (fino ai 3 s in genere) sono in genere dovute al coordinamento delle protezioni effettuato dal gestore di rete locale.

4.4.3. Elettrodotti interrati

Per quanto riguarda il rispetto delle distanze da ambienti presidiati ai fini dei campi elettrici e magnetici, si è tenuto conto del limite di qualità dei campi magnetici, fissato dalla suddetta legislazione a $3~\mu T$.

La tipologia di cavidotti presenti nell'impianto prevede all'interno del campo fotovoltaico l'utilizzo di soli cavi tripolari ad elica (disposti a trifoglio), per i quali vale quanto riportato nella norma CEI 106-11 e nella norma CEI 11-17.

Come illustrato nella suddetta norma CEI 106-11 la ridotta distanza tra le fasi e la loro continua trasposizione, dovuta alla cordatura, fa sì che l'obiettivo di qualità di $3\mu T$, anche in condizioni limite con conduttori di sezione elevata, venga raggiunto già a brevissima distanza dall'asse del cavo stesso.

L'analisi che si applica è relativa alle linee in cavo interrato con cavi unipolari posati a trifoglio:

$$B = \frac{P * I}{R^2} * 0.1 * \sqrt{6}$$

Formula valida per R>>P. Dove:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barr EF AGRI SOCIETA' AGRICO	L Relazione Campi Elettromagnetici	21

- B [μT] è l'induzione magnetica calcolata alla distanza R;
- P [m] è la distanza fra i conduttori disposti ai vertici di un triangolo (in caso di distanze differenti, P diventa la media delle distanze fra i conduttori);
- I [A] è la corrente, simmetrica ed equilibrata che attraversa i conduttori;
- R [m] è la distanza dal baricentro dei conduttori.

È anche possibile calcolare le distanze R' ed R₀:

$$R' = 0,286 * P * I$$

 $R' = d + h$

Formula valida per R>>P. Dove:

- R' [m] è la distanza dal baricentro dei conduttori alla quale l'induzione magnetica si riduce al valore dell'obiettivo di qualità;
- P [m] è la distanza fra i conduttori disposti ai vertici di un triangolo (in caso di distanze differenti, P diventa la media delle distanze fra i conduttori);
- I [A] è la corrente, simmetrica ed equilibrata che attraversa i conduttori;
- d [m] è la profondità di posa;
- h [m] è l'altezza dal livello del suolo.

$$R_0 = \sqrt{(0.082 * P * I - d^2)}$$

Formula valida per R>>P. Dove:

- R₀ [m] è la distanza dall'asse della linea a livello del suolo alla quale l'induzione magnetica si riduce al valore dell'obiettivo di qualità;
- P [m] è la distanza fra i conduttori disposti ai vertici di un triangolo (in caso di distanze differenti, P diventa la media delle distanze fra i conduttori);
- I [A] è la corrente, simmetrica ed equilibrata che attraversa i conduttori;
- d [m] è la profondità di posa.

Si può prevedere infine un campo magnetico preesistente, in base alla area in cui si trova il campo fotovoltaico da analizzare. Di conseguenza:

$$B_{TOT} = B_0 + B$$

Dove:

- B_{TOT} [μ T] è l'induzione magnetica totale;
- B_0 [μ T] è l'induzione magnetica preesistente;
- $B[\mu T]$ è l'induzione magnetica dell'elettrodotto.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	22

4.4.4. Cabine elettriche

Per quanto riguarda le cabine elettriche, sia di trasformazione che di raccolta, le principali sorgenti di emissione sono i trasformatori e i quadri elettrici, all'interno dei quali confluiscono i cavi.

Occorre calcolare la Distanza di Prima Approssimazione (DPA), intesa come distanza da ciascuna delle pareti (tetto, pavimento e pareti laterali), applicando la seguente formula:

$$DPA = 0.40942 * X^{0.5242} * \sqrt{I}$$

Dove:

- DPA [m] è la distanza di prima approssimazione;
- I [A] è la corrente nominale BT;
- x [m] è il diametro esterno del cavo ottenuto simulando una linea trifase con cavi paralleli in uscita dal trasformatore.

Tale formula è valida per cabine elettriche con un unico trasformatore, nonché per cabine elettriche di tipo box (dimensioni mediamente di $4 \text{ m} \times 2,4 \text{ m}$, altezze di $2,4 \text{ m} \in 2,7 \text{ m}$) oppure cabine secondarie di specifica tecnica DG2061 edizioni $7 \in 8$ (dimensioni di circa $5,6 \text{ m} \times 2,4 \text{ m}$, altezza 2,4 m).

5. ANALISI E CALCOLO INDUZIONE MAGNETICA

Nel presente capitolo si riportano i calcoli effettuati sui vari componenti di impianto, sulla base delle leggi fisiche e dei richiami normativi sopra descritti.

Le suddette formule sono state applicate al fine di confermare il rispetto dei limiti previsti sui singoli componenti proposti in impianto. Nella fattispecie le stesse sono state applicate sulle singole linee elettriche BT ed AT (36 kV) di impianto. Al fine di valutare, invece, il contributo di più linee vicine nonché il contributo delle Cabine Elettriche di impianto, anche al netto dell'allestimento delle stesse (correnti in gioco, componenti elettrici e il loro reciproco posizionamento, ecc.), è stata condotta analisi mediante software Magic®, che permette di studiare le sorgenti mediante l'integrazione della legge di Biot-Savart.

I calcoli sono stati eseguiti considerando la profondità di posa delle linee interrate pari a:

- 1,2 m per le linee AT interne al campo fotovoltaico;
- 1,1 m per le linee BT interne al campo fotovoltaico.

È stato altresì considerato un campo magnetico preesistente pari a 0,07 µT.

Le valutazioni sono state condotte in ogni caso in riferimento ad un'altezza dal livello del suolo pari a 1,5 m (altezza uomo) e nel caso delle Cabine elettriche è stata altresì valutata la quota pari al piano di campagna per la determinazione della DPA.

5.1. Linee AT (36 kV) in cavo interrato con cavi unipolari posati a trifoglio

L'impianto agrivoltaico denominato "Su Barroccu" ha n.4 Power Station (c.d. PS) e n.2 Storage Power Station (c.d. SPS). Le PS sono connesse alla Cabina di Raccolta mediante n.1 linea ad anello; anche le SPS sono collegate alla stessa Cabina di Raccolta tramite n.1 linea ad anello. Tali linee ad anello sono caratterizzate da livelli di tensione 20,8/36 kV e risultano così strutturate:

- **Anello PS**: Linea in cavo interrato con cavi unipolari posati a trifoglio del tipo (N)A2XS(F)2Y 3x1x150 mmq che collega le PS (1-3-4-2);
- **Anello SPS:** Linea in cavo interrato con cavi unipolari posati a trifoglio del tipo (N)A2XS(F)2Y 3x1x95 mmq che collega le SPS (1-2).

Si evidenzia che all'interno dell'area di impianto i conduttori di andata e di ritorno appartenenti allo stesso anello possono condividere lo stesso cavidotto, come mostrato nelle tavole di progetto. Si riporta di seguito una tabella contenente i dati utilizzati per le verifiche del limite di esposizione, del valore di attenzione e dell'obiettivo di qualità di una generica linea 20,8/36 kV appartenente all'anello che collega le PS:

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	24

Potenza apparente	S [VA]	12580000
Tensione	V [V]	36000
Fattore di potenza	cos(Φ) [rad]	0,944
Corrente	I [A]	213,72
Diametro esterno cavo	Фest [mm]	41
Distanza fra i conduttori	P [m]	0,041
Distanza obiettivo di qualità	R' [m]	0,85
Profondità di posa	d [m]	1,2
Altezza dal livello del suolo	h [m]	< 0
Distanza dall'asse della linea	R0 [0]	< 0
Induzione magnetica preesistente	Β0 [μΤ]	0,07
Induzione magnetica totale ad altezza uo	r Btot (h = 1,5 m) [μT]	0,36
VERIFICA LIMITE ESPOSIZ	IONE	VERIFICATO
VERIFICA VALORE DI ATTEN	NZIONE	VERIFICATO
VERIFICA OBIETTIVO DI QU	J ALIT À	VERIFICATO

Si riporta di seguito una tabella contenente i dati utilizzati per le verifiche del limite di esposizione, del valore di attenzione e dell'obiettivo di qualità di una generica linea 20,8/36 kV appartenente all'anello che collega le SPS:

Potenza apparente	S [VA]	5000000
Tensione	V [V]	36000
Fattore di potenza	cos(Φ) [rad]	0,944
Corrente	I [A]	84,94
Diametro esterno cavo	Фest [mm]	38
Distanza fra i conduttori	P [m]	0,038
Distanza obiettivo di qualità	R' [m]	0,51
Profondità di posa	d [m]	1,2
Altezza dal livello del suolo	h [m]	< 0
Distanza dall'asse della linea	R0 [0]	< 0
Induzione magnetica preesistente	Β0 [μΤ]	0,07
Induzione magnetica totale ad altezza uo	Btot (h = 1,5 m) [μT]	0,18
VERIFICA LIMITE ESPOSIZ	IONE	VERIFICATO
VERIFICA VALORE DI ATTEN	IZIONE	VERIFICATO
VERIFICA OBIETTIVO DI QU	JALITÀ	VERIFICATO

Si riporta di seguito la modellazione mediante software di quanto sopra descritto, tenendo conto della mutua influenza delle linee 20,8/36 kV che condividono lo stesso cavidotto:

- CAVIDOTTO INTERRATO CON 1 TERNA DI CAVI DISPOSTI A TRIFOGLIO APPARTENENTE ALL'ANELLO CHE COLLEGA LE PS

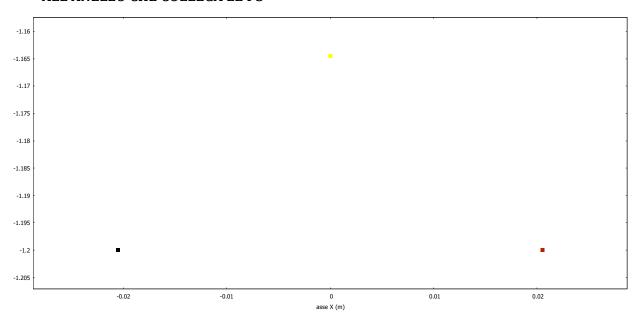


Figura 5: Anello PS, 1 terna, geometria

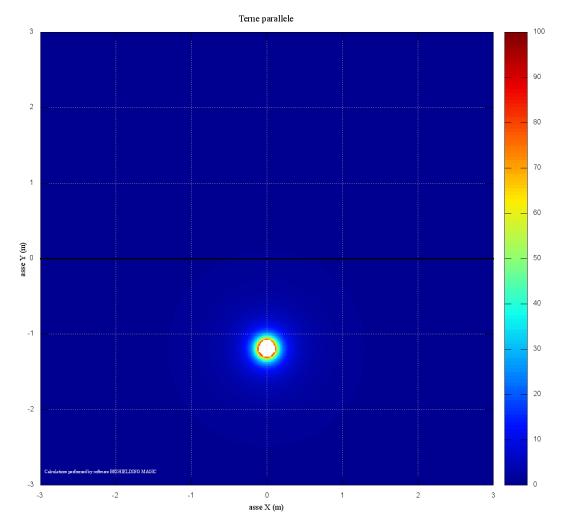


Figura 6: Anello PS, 1 terna, mappa 2D

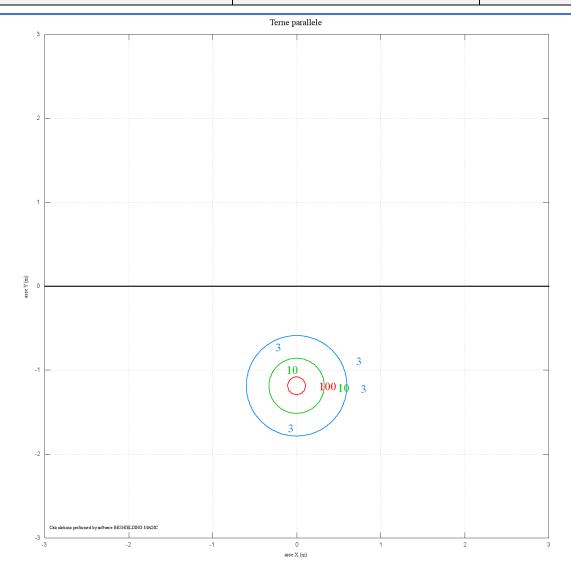


Figura 7: Anello PS, 1 terna, curve isolivello

L'obiettivo di qualità risulta soddisfatto a circa 0,6 m al di sotto del livello del suolo, pertanto sempre soddisfatto al di sopra del livello del suolo (indicato dalla linea nera).

- CAVIDOTTO INTERRATO CON 2 TERNE DI CAVI DISPOSTI A TRIFOGLIO APPARTENENTI ALL'ANELLO CHE COLLEGA LE PS

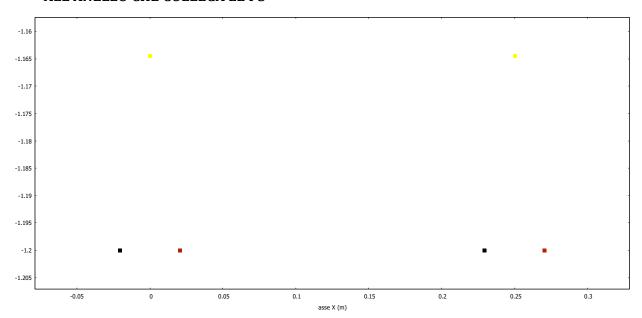


Figura 8: Anello PS, 2 terne, geometria

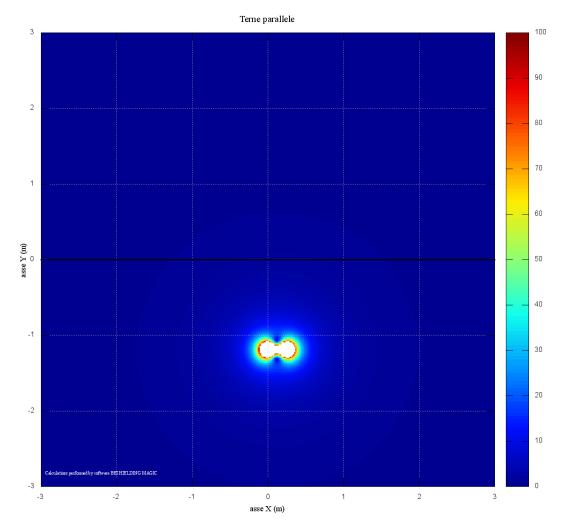


Figura 9: Anello PS, 2 terne, mappa 2D

Progetto: Titolo Elaborato: Pagina:

Fattoria Solare "Su Barroccu"
EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Campi Elettromagnetici 28

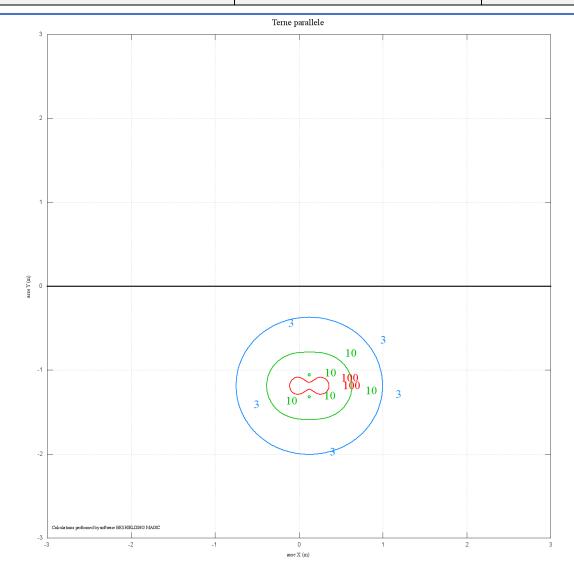


Figura 10: Anello PS, 2 terne, curve isolivello

L'obiettivo di qualità risulta soddisfatto a circa 0,3 m al di sotto del livello del suolo, pertanto sempre soddisfatto al di sopra del livello del suolo (indicato dalla linea nera).

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	29

- CAVIDOTTO INTERRATO CON 1 TERNA DI CAVI DISPOSTI A TRIFOGLIO APPARTENENTI ALL'ANELLO CHE COLLEGA LE SPS

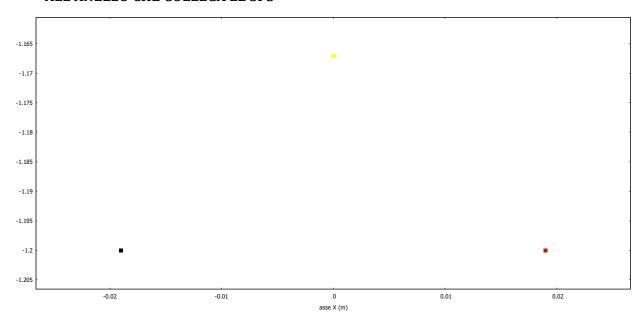


Figura 11: Anello SPS, 1 terna, geometria

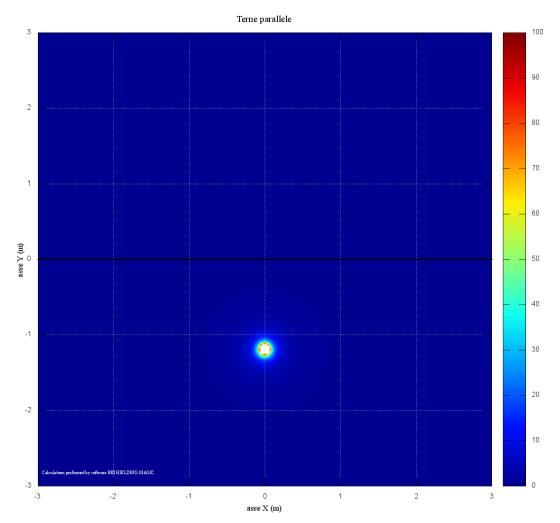


Figura 12: Anello SPS, 1 terna, mappa 2D

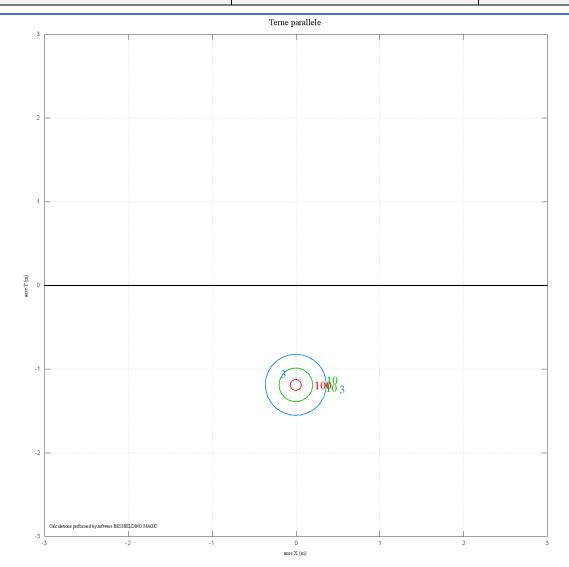


Figura 13: Anello SPS, 1 terna, curve isolivello

L'obiettivo di qualità risulta soddisfatto a circa 0,8 m al di sotto del livello del suolo, pertanto sempre soddisfatto al di sopra del livello del suolo (indicato dalla linea nera).

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	31

- CAVIDOTTO INTERRATO CON 2 TERNE DI CAVI DISPOSTI A TRIFOGLIO APPARTENENTI ALL'ANELLO CHE COLLEGA LE SPS

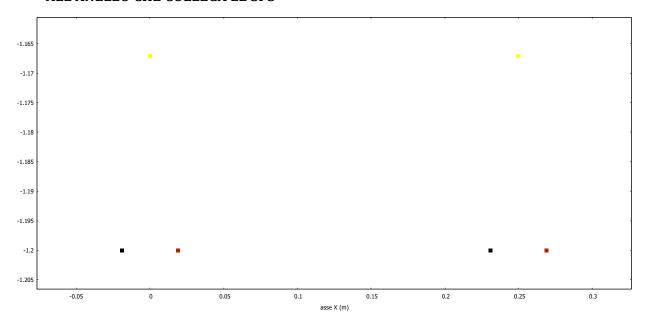


Figura 14: Anello SPS, 2 terne, geometria

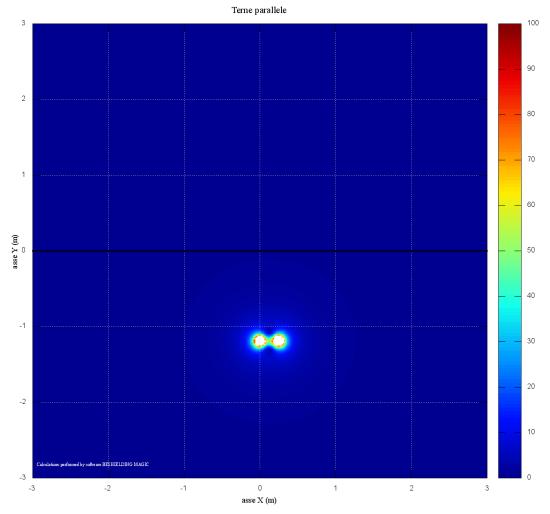


Figura 15: Anello SPS, 2 terne, mappa 2D

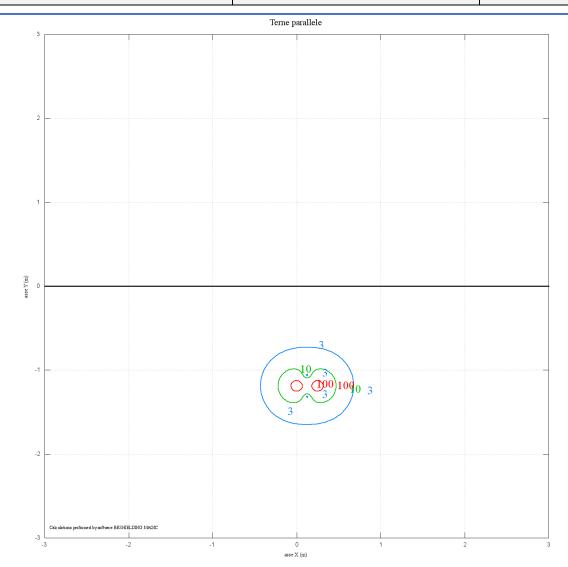


Figura 16: Anello SPS, 2 terne, curve isolivello

L'obiettivo di qualità risulta soddisfatto a circa 0,7 m al di sotto del livello del suolo, pertanto sempre soddisfatto al di sopra del livello del suolo (indicato dalla linea nera).

5.2. Linee BT in cavo interrato con cavi unipolari posati a trifoglio

una PS:

Alle Power Station fanno capo 17 inverter del tipo HUAWEI SUN2000-185KTL-H1 ciascuna. Si riporta di seguito una tabella contenente i dati utilizzati per le verifiche del limite di esposizione, del valore di attenzione e dell'obiettivo di qualità di una generica linea BT in cavo interrato con cavi unipolari posati a trifoglio (FG16R16 3x1x150 mmq), che collega un inverter ad

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	33

Potenza apparente	S [VA]	185000
Tensione	V [V]	800
Fattore di potenza	cos(Φ) [rad]	0,99
Corrente	I [A]	134,9
Diametro esterno cavo	Фest [mm]	24,8
Distanza fra i conduttori	P [m]	0,0248
Distanza obiettivo di qualità	R' [m]	0,52
Profondità di posa	d [m]	1
Altezza dal livello del suolo	h [m]	< 0
Distanza dall'asse della linea	R0 [0]	< 0
Induzione magnetica preesistente	Β0 [μΤ]	0,07
Induzione magnetica totale ad altezza uomo	Btot (h = 1,5 m) [μT]	0,2
VERIFICA LIMITE ESPOSIZIONE		VERIFICATO
VERIFICA VALORE DI ATTENZIONE		VERIFICATO
VERIFICA OBIETTIVO DI QUALITÀ		VERIFICATO

Nelle tavole di progetto è mostrato come gli inverter giungono alle Power Station. Il caso peggiore in termini di induzione magnetica è quello in cui tutte le 17 terne di cavi interrati disposti a trifoglio arrivano alla PS. Tali terne sono posate su due livelli, un livello da 9 terne e un livello da 8 terne.

Si riportano di seguito i risultati ottenuti mediante lo studio software per il caso peggiore:

- CAVIDOTTO INTERRATO CON 17 TERNE DI CAVI DISPOSTI A TRIFOGLIO PARALLELE SU 2 LIVELLI

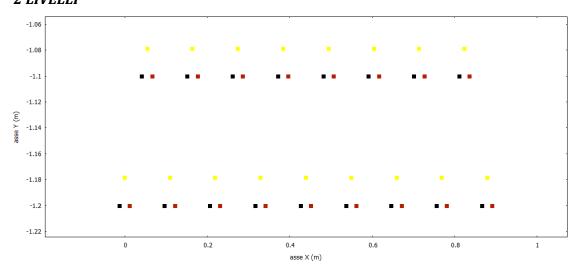


Figura 17: 17 terne, geometria

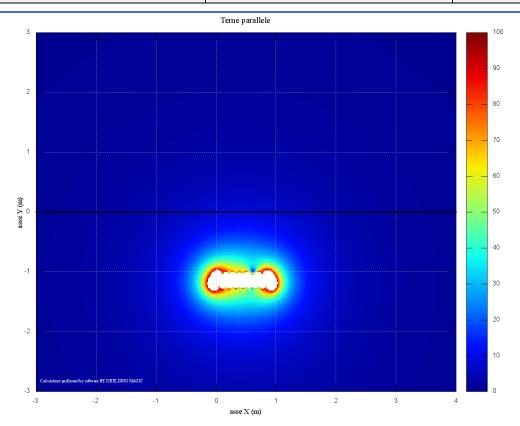


Figura 18: 17 terne, mappa 2D

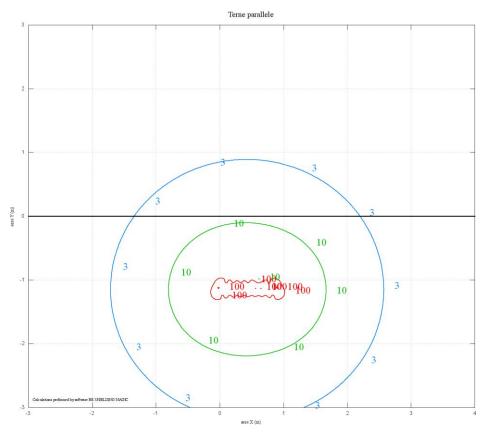


Figura 19: 17 terne, curve isolivello

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	35

L'obiettivo di qualità risulta soddisfatto a circa 1 m dal livello del suolo (indicato dalla linea nera).

5.3. Cabina di Raccolta

Nel calcolo della distanza di prima approssimazione dalla Cabina di Raccolta, sono state considerate le sorgenti di induzione magnetica elencate:

- Trasformatore 36/0,4 kV da 50 kVA a secco, a servizio degli ausiliari (massima corrente circolante dell'avvolgimento secondario pari a 76,46 A);
- Quadro Parallelo 1 con n.4 celle, nello specifico n.2 partenze linea verso la Cabina Utente (corrente massima circolante nelle linee pari a 149,33 A), n.1 dispositivo generale (corrente massima 298,67 A) e n.1 scomparto misure;
- Quadro Parallelo 2 con n°6 celle, nello specifico n°2 arrivi linea appartenenti all'anello di collegamento delle PS (corrente massima circolante negli anelli pari a 213,72 A), n°2 arrivi linea appartenenti all'anello di collegamento delle SPS (corrente massima circolante nell'anello pari a 84,94 A), n°1 protezione trasformatore a servizio degli ausiliari (corrente massima circolante nella linea pari a 0,85 A) e n°1 partenza linea verso il QMT 1;
- QBT 1 a servizio degli ausiliari (corrente massima circolante negli interruttori pari a 38,23
 A);
- QBT 2 a servizio degli ausiliari (corrente massima circolante negli interruttori pari a 38,23
 A).

Si riportano di seguito i risultati ottenuti mediante lo studio software a livello del suolo (h = 0 m) e ad altezza uomo (h = 1,5 m):

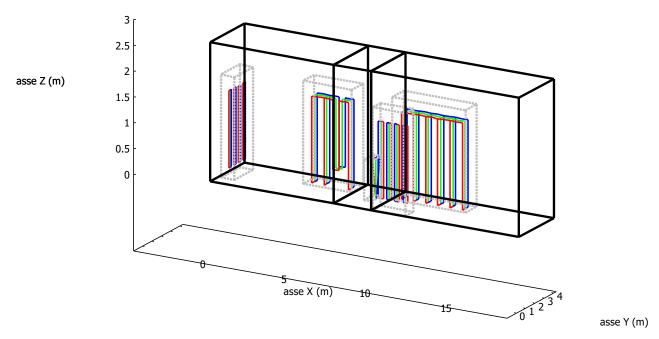


Figura 20: Cabina di Raccolta, geometria

Progetto: Titolo Elaborato: Pagina:

Fattoria Solare "Su Barroccu"
EF AGRI SOCIETA' AGRICOLA A R.L.

Relazione Campi Elettromagnetici 37

CABINA DI RACCOLTA (h = 0 m)

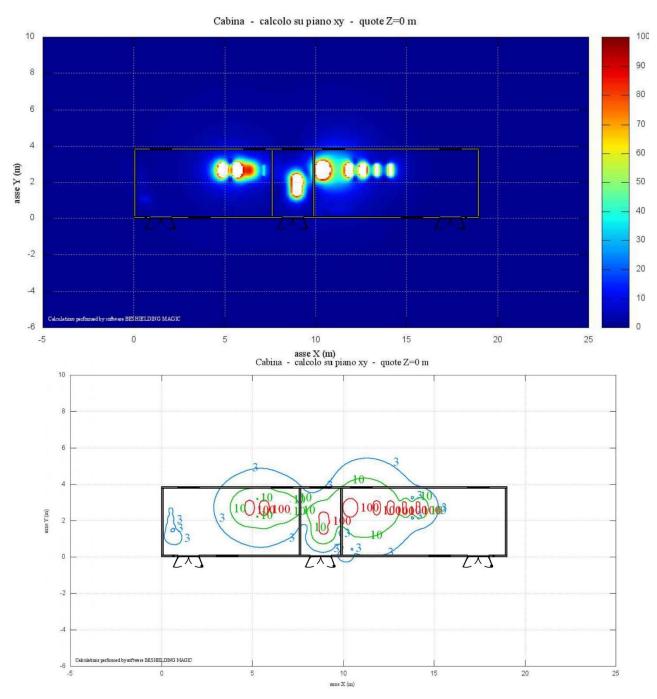


Figura 21: Cabina di Raccolta, h = 0 m, mappa 2D e curve isolivello

L'obiettivo di qualità dalle pareti della cabina si raggiunge a circa 0,3 m dalla parete anteriore, circa 1,6 m dalla parete posteriore, 0 m dalla parete laterale sinistra e 0 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a circa 0,5 m dalla parete posteriore.

La DPA dalla cabina risulta quindi pari a circa 1,6 m.

Progetto: Titolo Elaborato: Pagina: Fattoria Solare "Su Barroccu" 38 Relazione Campi Elettromagnetici

CABINA DI RACCOLTA (h = 1,5 m)

EF AGRI SOCIETA' AGRICOLA A R.L.

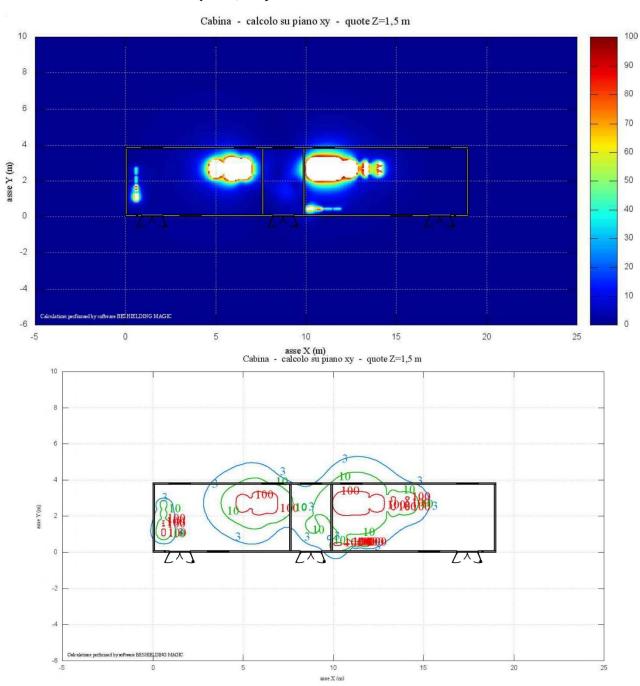


Figura 22: Cabina di Raccolta, h = 1,5 m, mappa 2D e curve isolivello

L'obiettivo di qualità dalle pareti della cabina si raggiunge a circa 0,4 m dalla parete anteriore, circa 1,5 m dalla parete posteriore, circa 0,2 m dalla parete laterale sinistra e 0 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a 0,6 m dalla parete posteriore.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	39

5.4. Power Station

Nel calcolo della distanza di prima approssimazione valido per le n°12 Power Station, sono state considerate le sorgenti di induzione magnetica elencate:

- Trasformatore 36/0,8 kV da 3150 kVA in olio (massima corrente circolante dell'avvolgimento secondario pari a 2293,30 A);
- Trasformatore 800/400 V da 30 kVA a secco, a servizio degli ausiliari (massima corrente circolante dell'avvolgimento secondario pari a 45,87 A);
- Quadro Parallelo con n°3 celle, nello specifico n°1 protezione trasformatore (corrente massima circolante nella linea pari a 53,43 A) e n°2 arrivi/partenze linea appartenenti all'anello di collegamento delle PS (corrente massima circolante nelle linee pari a 213,72 A);
- QBT 1 con due celle (corrente massima circolante in ingresso alle sbarre 2293,30 A);
- QBT 2 a servizio degli ausiliari (corrente massima circolante negli interruttori pari a 45,87
 A).

Si riportano di seguito i risultati ottenuti mediante lo studio software a livello del suolo (h = 0 m) e ad altezza uomo (h = 1,5 m):

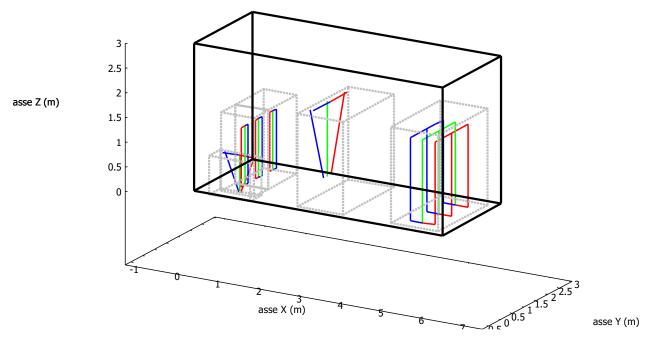


Figura 23: Power Station, geometria

Progetto: Titolo Elaborato: Pagina:

40

Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L. Relazione Campi Elettromagnetici

- POWER STATION (h = 0 m)

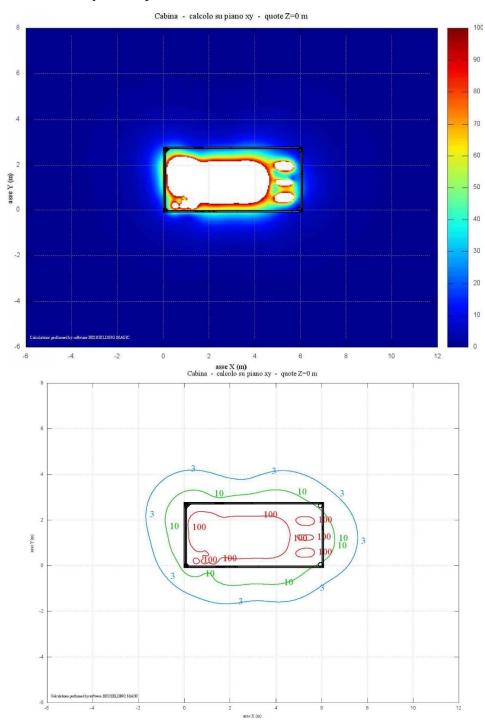


Figura 24: Power Station, h = 0 m, mappa 2D e curve isolivello

L'obiettivo di qualità dalle pareti della PS si raggiunge a circa 1,6 m dalla parete anteriore, circa 1,4 m dalla parete posteriore, circa 1,7 m dalla parete laterale sinistra e circa 1,5 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a circa 0,8 m dalla parete anteriore, circa 0,6 m dalla parete posteriore, circa 0,9 m dalla parete laterale sinistra e circa 0,5 m dalla parete laterale destra.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	41

La DPA dalla cabina risulta quindi pari a circa 1,7 m.

- POWER STATION (h = 1,5 m)

Figura 25: Power Station, h = 1,5 m, mappa 2D e curve isolivello

L'obiettivo di qualità dalle pareti della PS si raggiunge a circa 1,5 m dalla parete anteriore, circa 1,5 m dalla parete posteriore, circa 1,6 m dalla parete laterale sinistra e circa 1,5 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a circa 0,7 m dalla parete

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	42

anteriore, circa 0,7 m dalla parete posteriore, circa 0,8 m dalla parete laterale sinistra e circa 0,6 m dalla parete laterale destra.

5.5. Storage Power Station

Nel calcolo della distanza di prima approssimazione valido per le n°3 Storage Power Station, sono state considerate le sorgenti di induzione magnetica elencate:

- Trasformatore 36/0,52 kV da 2500 kVA in olio (massima corrente circolante dell'avvolgimento secondario pari a 3084,14 A);
- Trasformatore 520/400 V da 8,4 kVA a secco, a servizio degli ausiliari (massima corrente circolante dell'avvolgimento secondario pari a 12,84 A);
- Quadro Parallelo con n°3 celle, nello specifico n°1 protezione trasformatore (corrente massima circolante nella linea pari a 42,47 A) e n°2 arrivi/partenze linea appartenenti all'anello di collegamento delle SPS (corrente massima circolante nelle linee pari a 84,94 A);
- QBT a servizio degli ausiliari (corrente massima circolante negli interruttori pari a 12,84
 A).

Si riportano di seguito i risultati ottenuti mediante lo studio software a livello del suolo (h = 0 m) e ad altezza uomo (h = 1,5 m):

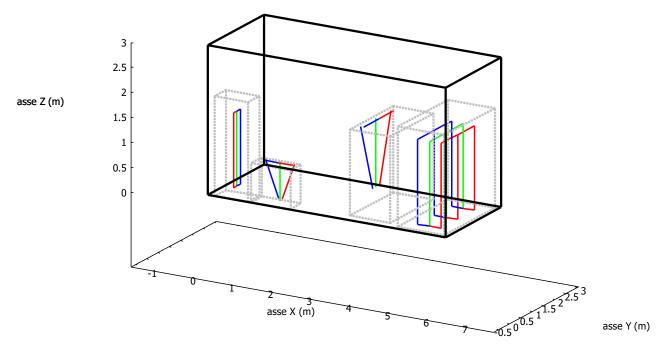


Figura 26: Storage Power Station, geometria

Progetto: Titolo Elaborato: Pagina:

43

Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L. Relazione Campi Elettromagnetici

- STORAGE POWER STATION (h = 0 m)

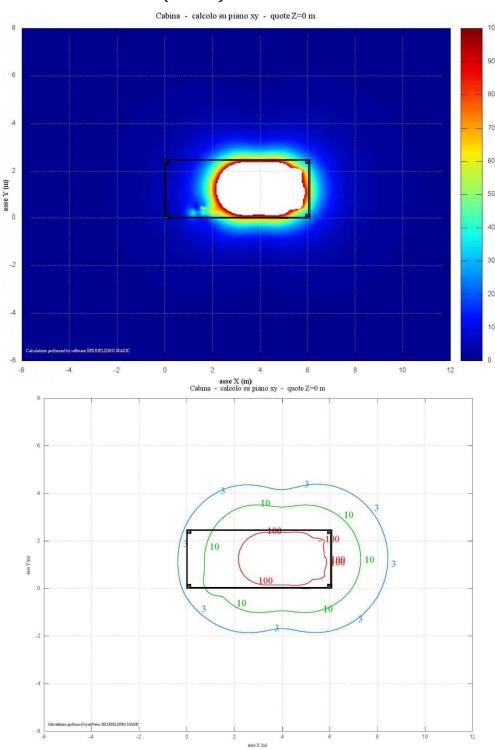


Figura 27: Storage Power Station, h = 0 m, mappa 2D e curve isolivello

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare " <i>Su Barroccu</i> " EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	44

L'obiettivo di qualità dalle pareti della SPS si raggiunge a circa 1,9 m dalla parete anteriore, circa 2 m dalla parete posteriore, circa 0,4 m dalla parete laterale sinistra e circa 2,4 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a circa 1 m dalla parete anteriore, circa 1,1 m dalla parete posteriore e circa 1,2 m dalla parete laterale destra. La DPA dalla cabina risulta quindi pari a circa 2,4 m.

- STORAGE POWER STATION (h = 1,5 m)

Progetto:
Fattoria Solare "Su Barroccu"

Titolo Elaborato:

Relazione Campi Elettromagnetici

Pagina:

45

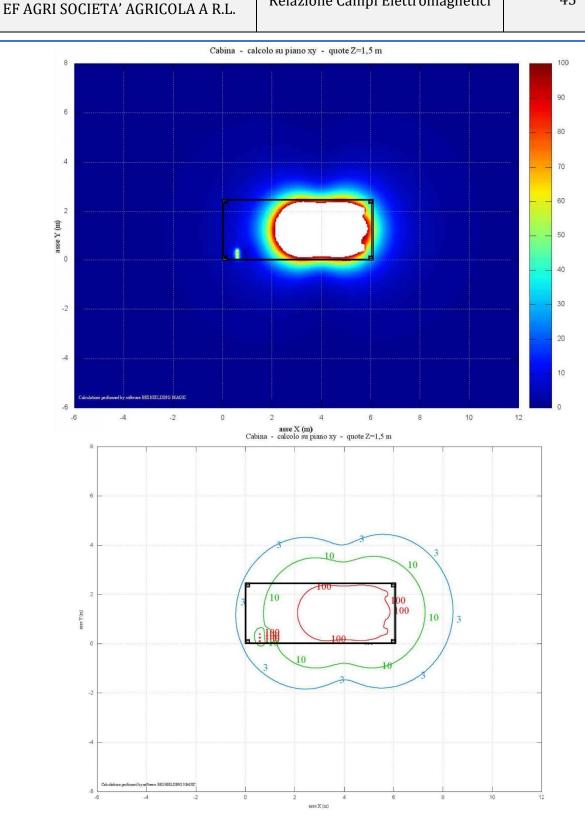


Figura 28: Storage Power Station, h = 1,5 m, mappa 2D e curve isolivello

L'obiettivo di qualità dalle pareti della SPS si raggiunge a circa 1,9 m dalla parete anteriore, circa 2 m dalla parete posteriore, circa 0,4 m dalla parete laterale sinistra e circa 2,4 m dalla parete laterale destra. Si evidenzia il raggiungimento del valore di attenzione a circa 1 m dalla parete anteriore, circa 1,1 m dalla parete posteriore e circa 1,2 m dalla parete laterale destra.

Progetto:	Titolo Elaborato:	Pagina:
Fattoria Solare "Su Barroccu" EF AGRI SOCIETA' AGRICOLA A R.L.	Relazione Campi Elettromagnetici	46

6. CONCLUSIONI

Il DPCM 8 Luglio 2003 fissa i limiti di esposizione per la popolazione ai campi elettrici e magnetici generati da elettrodotti alla frequenza di rete (50Hz). Tali limiti sono pari a 100 μ T, 10 μ T e 3 μ T rispettivamente come limite di esposizione, valore di attenzione e obiettivo di qualità: gli ultimi due sono validi per esposizioni superiori alle 4 ore/giorno.

In base alla definizione del DM del 29 Maggio 2008, occorre applicare la DPA alle stazioni elettriche, alle cabine primarie e secondarie e agli elettrodotti ad esse collegati.

In merito alle radiazioni non ionizzanti, ovvero le uniche associabili ad impianti fotovoltaici come quello in progetto, si è dimostrato il rispetto dei parametri di qualità. Per quanto concerne il campo elettrico, in virtù della schermatura e dell'isolamento dei cavi, il valore rispetta a pieno il limite di 5kV/m, in quanto esso può considerarsi trascurabile.

In riferimento al campo magnetico, lo studio delle varie sorgenti presenti in impianto ha dimostrato l'assenza di fattori di rischio per la salute umana a causa delle azioni di progetto.

In particolare, si sottolineano i seguenti aspetti:

- Le apparecchiature e i dispositivi risultano certificati dai produttori in materia di compatibilità elettromagnetica;
- Il calcolo è stato effettuato nelle condizioni peggiori, non tenendo conto della mediana dei valori nell'arco delle 24 ore nelle normali condizioni di utilizzo (di conseguenza le curve isolivello relative al valore di attenzione e all'obiettivo di qualità effettive corrisponderanno a valori di DPA inferiori);
- Le varie sorgenti, considerate in fase di calcolo a regime, non veicolano praticamente mai la massima corrente teorica:
- Ad una distanza inferiore delle varie DPA non sono ubicati ricettori sensibili, abitazioni o luoghi dove sia ragionevole supporre una permanenza di persone per più di 4 ore al giorno o per periodi prolungati;
- I lavori di manutenzione verranno tutti effettuati in assenza di tensione.

In conclusione, il progetto rispetta i limiti di cui al DPCM 08/07/2003 ed è conforme alla normativa vigente.