

Accordo con Regione Liguria, Autorità di Sistema Portuale del Mar Ligure
Occidentale e Comune di Genova del 14/10/2021

COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

PROGETTO DEFINITIVO

DOCUMENTAZIONE GENERALE

PIANO DI UTILIZZO

PIANO DI UTILIZZO DELLE TERRE E ROCCE DA SCAVO AI SENSI DEL D.P.R. 120/2017

IL PROGETTISTA SPECIALISTICO

Ing. Sara Frisiani Ord. Ingg. Genova N. 9810A

Responsabile Studi Ambientali

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Andrea Federico Ceppi Ord. Ingg. Milano N. A26059 IL DIRETTORE TECNICO

Ing. Sara Frisiani Ord. Ingg. Genova N. 9810A

T.A. Ambiente

CODICE IDENTIFICATIVO						ORDINATORE					
RIFERIMENT	O PROGETTO			RIFERIMENTO DIRETTORIO			RIFERIMENTO ELABORATO				
Codice Commessa	Lotto, Sub-Prog, Cod. Appalto	Fase	Capitolo	Paragrafo	WBS	Parte d'opera	Tip.	Disciplina	Progressivo	Rev.	
1100A3	LL00	PD	DG	PDU	00000	00000	R	AMB	1000	01	SCALA -

VISTO DEL COMMITTENTE

IL RESPONSABILE UNICO DEL PROCEDIMENTO Ing. Laura Tripoli

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Sommario

1	PREMES	54	5
	1.1 STR	UTTURA E CONTENUTI DEL PIANO	5
		RATA E VALIDITÀ DEL PIANO	
2	INQUAD	RAMENTO GENERALE	9
	2.1 INQ	UADRAMENTO TERRITORIALE	9
	2.2 INQ	UADRAMENTO PROGETTUALE	10
	2.2.1	Opere in sotterraneo	12
	2.2.2	Opere maggiori all'aperto	13
	2.2.3	Aree cantieri	13
	2.2.4	Aree di deposito intermedio delle terre	16
	2.2.5	Viabilità di servizio	
	2.2.6	Rimodellamenti e sistemazioni	
		UADRAMENTO GEOLOGICO	
	2.3.1	Descrizione del tracciato	
		UADRAMENTO GEOMORFOLOGICO	
		UADRAMENTO IDROGEOLOGICO	
	2.6 LE C	PERE DA REALIZZARE AI SENSI DEL DPR 120/2017	22
3	CARATTI	RIZZAZIONE AMBIENTALE DEI MATERIALI DA SCAVO	24
	3.1 CON	IOSCENZE PREGRESSE DEI SITI DI INTERESSE E DELLE AREE DI INTERVENTO	24
	3.1.1	Cartografia geochimica regionale	
	3.1.2	Attività antropiche nell'area di intervento	25
	3.2 CAR	ATTERIZZAZIONE AMBIENTALE PREGRESSA	25
	3.2.1	Criteri d'indagine effettuate ai sensi del D.Lgs. 152/2006	
	3.2.2	Metodiche di campionamento	26
	3.2.3	Check-list inquinanti analizzati	
	3.2.4	Verifica dei requisiti ambientali dei materiali da scavo sulla base dei dati pregressi	
	3.2.5	Conformità al Regolamento del 2017 (ex 2012)	
		IPAGNE DI INDAGINE PER LA CARATTERIZZAZIONE DEI TERRENI IN SITO	
	3.3.1	Criteri di ubicazione dei punti d'indagine	
	3.3.2	Ubicazione dei punti e caratteristiche tecniche d'indagine	
	3.3.3	Metodica di campionamento	
	3.3.4	Analisi chimiche di laboratorio	
	3.3.5	Caratterizzazione ambientale da completare in una fase preliminare alle lavorazioni	
		TESI DEI RISULTATI DELLE ANALISI DI CARATTERIZZAZIONE AMBIENTALE	
		MPATIBILITÀ AMBIENTALI DEI MATERIALI DA SCAVO NEI SITI DI UTILIZZO	
		ERFERENZE CON LA PORZIONE SATURA DEL TERRENO	
	3.6.1	Caratterizzazione dell'acqua sotterranea	
4	MODALI	TÀ DI SCAVO E TECNOLOGIE APPLICATE	41
		RE IN SOTTERRANEO	
	4.1.1	Modalità di scavo in tradizionale	42
	4.1.2	Sezioni tipo di scavo	
	4.1.3	Nicchie di collegamento	
		RE ALL'APERTO	
	4.2.1	Scavi da scotico	
	4.2.2	Scavi di sbancamento	
	4.2.3	Rinterri	
	4.2.4	Formazione rilevati e dei rimodellamenti morfologici	51

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

	4.2.5	Formazione delle sottofondazioni e fondazioni di pavimentazione	51
	4.2.6	Scavi di fondazione con micropali o pali di grande diametro	
	4.3 NC	RMALE PRATICA INDUSTRIALE	51
	4.3.1	Vagliatura	52
	4.3.2	Frantumazione	52
	4.3.3	Riduzione elementi/materiali antropici	52
	4.4 INC	CLUSIONI	
	4.4.1	Presenza di elementi in vetroresina (VTR)	
	4.4.2	Presenza di elementi in materiale plastico (PVC)	
	4.4.3	Utilizzo di miscele di perforazione	
	4.5 GE	STIONE DEI MATERIALI IDENTIFICATI COME NON SOTTOPRODOTTI	53
5	BILANC	IO DEI SITI DI PRODUZIONE, DEPOSITO ED UTILIZZO	55
		INCIPALI SITI DI PRODUZIONE TERRE	
	5.2.1 5.2.2	Caratteristiche e tipologie delle aree di deposito in attesa di utilizzo	
	5.2.2	Gestione del deposito dei materiali di scavo	
		INCIPALI SITI DI UTILIZZO TERRE	
		ANCIO MATERIALI DI SCAVO TRA SITI DI PRODUZIONE E SITI DI UTILIZZO	
6	CAMPIC	DNAMENTO ED ANALISI IN CORSO D'OPERA	61
	6.1 CA	RATTERIZZAZIONE DI VERIFICA IN CORSO D'OPERA O FINALE	61
7	GESTIO	NE E TRASPORTO IN FASE DI CANTIERE	63
•			
		ABILITÀ INTERESSATA DALLA MOVIMENTAZIONE DEI MATERIALI DI SCAVO	
		OCEDURE PER LA TRACCIABILITÀ DEI MATERIALI	
	7.3 DIG	CHIARAZIONE DI AVVENUTO UTILIZZO	63

Indice delle Tabelle e delle Figure

Tabella 1-1 Quadro sinottico allegato 5	6
Figura 2-1 Inquadramento territoriale dell'intervento, con i tratti in sotterraneo (in rosso) ed all'aperto (blu)	9
Tabella 2-1 Elenco delle gallerie naturali	13
Tabella 2-2 Elenco delle opere maggiori all'aperto	13
Tabella 2-3 Cantieri Campo Base	
Tabella 2-4 Cantieri nelle aree di imbocco	15
Tabella 2-5 Elenco Cantieri operativi ed industriali	15
Tabella 2-6 Elenco delle Aree di supporto	15
Tabella 2-8 Elenco delle Viabilità di servizio	
Tabella 2-9 Elenco delle aree di imbocco gallerie	
Tabella 2-10 Elenco delle aree di rimodellamento morfologico	
Figura 2-6 Sezione geologica lungo la Galleria naturale Caravaggio	
Figura 2-8 Dettaglio della sezione geologica sulla zona di imbocco in Val Fontanabuona	19
Figura 2-9 Schema di deflusso al contatto calcari-argilliti-ardesie	
Tabella 2-11 Legenda per la classificazione delle unità idrogeologiche	
Tabella 2-12 Valori di permeabilità per le diverse unità idrogeologiche (da Prove Lugeon)	
Figura 3-1 Estratto della cartografia geochimica regionale del Cobalto	
Tabella 3-1 Punti di indagine campagna per la fase preliminare eseguita nel 2011	
Tabella 3-2 Sintesi sulla caratterizzazione ambientale 2011 rispetto alle CSC	
Tabella 3-3 Quadro degli esiti analitici della fase di progetto preliminare	
Tabella 3-4 Elenco dei punti di indagine per la caratterizzazione ambientale svolta in fase di Progetto Definitivo 2013	
Tabella 3-5 Numero di prelievi da svolgere in una fase preliminare ai lavori in aree cantiere	
Tabella 3-6 Punti di indagine da svolgere in una fase preliminare ai lavori per il completamento lungo linea	
FIGURA 4-1 ESEMPIO DI SEZIONE TIPO CON ARCO ROVESCIO	
Figura 4-2 Esempio di sezione tipo senza arco rovescio	42
Tabella 4-1 Sviluppo longitudinale delle formazioni geologiche lungo le gallerie	
Figura 4-3 Sezione tipo Ab1	
Figura 4-4 Sezione tipo Ab2	
Figura 4-5 Sezione tipo Ab3	
Figura 4-6 Sezione tipo Ac	
Figura 4-7 Sezione tipo B0	
Figura 4-8 Sezione tipo BOV	
Figura 4-9 Sezione tipo B2V	
TABELLA 4-2 GALLERIA CARAVAGGIO, DEFINIZIONE DELLE TRATTE E DELLE SEZIONI PREVISTE	
Tabella 4-3 Galleria Fontanabuona, definizione delle tratte e delle sezioni previste	
Tabella 5-1 Siti di produzione: stima dei volumi di scavo (in mc) gestiti a sottoprodotto	
Tabella 5-2 Siti di destinazione: stima dei volumi di scavo (in mc) riutilizzati come sottoprodotti	
TARELLA E 2 PUANCIO DEL MATERIALI DI COAVO AL CENCI DEL DDD 120/2017	60

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Appendice

- A) TABELLE RIEPILOGATIVE ESITI ANALITICI sulle caratterizzazioni ambientali eseguite in fase progettuale
- B) SCHEDA DI SINTESI dei siti di scavo e di utilizzo e delle relative caratterizzazioni ambientali

Allegati

AMB1001

CERTIFICATI DI ANALISI IN LABORATORIO

- a) di Progetto Preliminare, ai sensi del D.Lgs. 152/2006 smi
- b) di Progetto Definitivo, conformi al DPR 120/2017
- c) Indagine sulle acque sotterranee per la porzione satura di terreno

AMB1002

SCHEDE MONOGRAFICHE DEI PUNTI DI INDAGINE

- a) di Progetto Preliminare, ai sensi del D.Lgs. 152/2006 smi
- d) di Progetto Definitivo, conformi al DPR 120/2017

AMB1003

TAVOLE PLANIMETRICHE

- a) delle indagini per la caratterizzazione ambientale,
- b) dei siti di scavo, di deposito e di utilizzo
- c) dei percorsi e delle aree di cantiere
- d) di pianificazione urbanistica

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

1 PREMESSA

Il presente elaborato costituisce il Piano di Utilizzo dei materiali da scavo relativamente alla realizzazione dei lavori di collegamento tra la Val Fontanabuona e l'autostrada A12, Genova-Roma.

L'intervento interesse il territorio della provincia di Genova, in particolar modo dei comuni di Rapallo, Moconesi, Tribogna e Cicagna.

La gestione delle terre e rocce da scavo prodotte è disciplinata dal DLgs 152/2006 e s.m.i. e dal DPR 120/2017, "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo": la gestione nell'ambito dei lavori di realizzazione del progetto è pertanto svolta ai sensi dell'art.184-bis (Sottoprodotto) del DLgs 152/2006 e dell'art. 4 del DPR 120/2017 ("Criteri per qualificare le terre e rocce da scavo come sottoprodotti").

Il presente documento è riferito all'art. 9 ("Piano di Utilizzo") del DPR 120/2017, in relazione alla procedura di VIA nell'ambito di applicazione delle terre e rocce da scavo come sottoprodotti in cantieri di grandi dimensioni (rif art. 8).

Il Piano di Utilizzo, redatto secondo le indicazioni di cui all'Allegato 5 del Regolamento, costituisce dunque parte integrante del Progetto Definitivo e descrive le modalità di gestione dei materiali da scavo derivanti dalla realizzazione dell'intervento autostradale.

Il documento indica le quantità e le modalità di gestione delle terre e dei materiali che si originano nell'ambito delle attività di realizzazione dell'opera, nelle fasi di produzione, trasporto ed utilizzo, nonché il processo di tracciabilità dei materiali dai siti di produzione ai siti di deposito intermedio ed ai siti di destinazione.

Il Piano di Utilizzo contiene le informazioni necessarie ad appurare che i materiali di scavo derivanti dalla realizzazione dell'opera in progetto rispondano ai criteri dettati dal Regolamento e stabiliti sulla base delle condizioni previste dall'art. 184bis, comma 1 del decreto legislativo n. 152 del 2006 e s.m.i., in modo da poter essere escluse dal regime normativo dei rifiuti e quindi essere gestite come sottoprodotti ai sensi dell'art. 183, comma 1, lett. qq) del decreto legislativo n. 152 del 2006 e s.m.i..

Tale approccio risponde all'esigenza di migliorare l'uso delle risorse naturali limitando, di fatto, il ricorso all'approvvigionamento di materiali da cava, e di prevenire, nel rispetto dell'art. 179, comma 1, del decreto legislativo n. 152 del 2006 e s.m.i., la produzione di rifiuti.

Il Proponente, ai sensi dell'art. 17, comma 1 del Regolamento, prima dell'inizio dei lavori di realizzazione dell'intervento, darà specifica comunicazione all'Autorità competente sulle generalità dell'Esecutore. A far data dalla suddetta comunicazione, l'esecutore sarà tenuto a far proprio e rispettare il presente Piano di Utilizzo e ne diverrà responsabile. L'esecutore sarà inoltre tenuto a redigere la modulistica necessaria a garantire la tracciabilità del materiale da scavo.

La rev. 1 risponde alle osservazioni degli Enti, durante la procedura di Valutazione di Impatto Ambientale (rif nota MITE 2023-0025617) e recepisce gli adeguamenti delle soluzioni progettuali:

- a) Nel lato Rapallo, eliminazione di alcune aree di cantiere (CA1, CA3, CA5) e nuovo dimensionamento dell'area CA2 con revisione degli apprestamenti per nuova finalità d'uso:
- Nella finestra di Arboccò, realizzazione di un nuovo viadotto in sostituzione del riempimento in rilevato e adeguamento delle sistemazioni idrauliche per mitigare l'impatto sulle componenti della biodiversità; eliminazione della viabilità di cantiere per ridurre l'interferenza nella valle;
- c) Nel lato Fontanabuona, adeguamento del viadotto sul torrente Lavagna per rispondere ad osservazione del MiBACT su sito di interesse culturale archeologico.

1.1 STRUTTURA E CONTENUTI DEL PIANO

Oltre il corrente capitolo introduttivo, il documento è strutturato in altri 8 capitoli, in relazione ai punti essenziali nella gestione delle terre e rocce da scavo (quantificazione, qualificazione, destinazione e tracciabilità) e a quanto stabilito dall'art. 9 e dall'allegato 5 del Regolamento di cui al DPR 120/2017.

Nel capitolo 2 sono descritti gli inquadramenti territoriale, progettuale e geologico.

Nel capitolo 3 vengono descritte le campagne di indagine eseguite nel 2011 e nel 2013 per la caratterizzazione dei terreni in sito, svolte per la Progettazione Preliminare e Definitiva al fine di valutare la qualità del chimismo del suolo interessato dall'opera in oggetto. Le diverse sezioni sono state aggiornate con i dati di caratterizzazione chimica, sulla base di un piano di indagine geognostico integrativo, svolto nel 2022-2023

Nel capitolo 4 vengono descritte le operazioni di scavo ed i trattamenti di normale pratica industriale previsti.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Nel capitolo 5 sono descritti i siti di movimentazione dei materiali secondo le diverse tipologie di opere presso cui vengono prodotte le terre e rocce (siti di produzione), quelle presso cui i materiali scavati vengono depositati in via provvisoria (siti di deposito) e quelle utilizzate per la realizzazione dell'opera o parti di essa (siti di utilizzo).

Nel capitolo 6 si riportano le modalità con cui l'Impresa esecutrice dovrà effettuate le eventuali ulteriori caratterizzazioni in corso d'opera sui materiali da scavo.

Infine, nel capitolo 7, sono descritte le caratteristiche e le modalità di deposito e di trasporto e la documentazione per la tracciabilità.

In Allegato sono riportati:

Rapporti di Prova delle indagini ambientali ai sensi del DPR 120/2017 (ex D.M. 161/2012) della fase progettuale definitiva ed ai sensi del D.Lgs. 152/2006 della fase progettuale preliminare e definitiva; Elaborati grafici delle indagini ambientali eseguite.

Elaborati grafici con l'ubicazione dei siti di produzione, di deposito e di destinazione dei materiali da scavo

Schede dei siti produzione e di utilizzo con l'identificazione, il riepilogo relativo alle caratterizzazioni e volumi.

Tabella riepilogativa del Bilancio materiali

Elaborati grafici sui percorsi dei mezzi di cantiere.

A supporto del presente Piano di Utilizzo, si dovranno considerare alcuni elaborati del Progetto Definitivo, che risultano utili per eventuali approfondimenti o inquadramento di carattere tecnico di alcuni elementi descritti e richiamati nel testo. Allo stesso tempo si riporta di seguito, come richiesto in fase di integrazione in procedura VIA, un quadro sinottico riferito all'allegato 5 del DPR 120/2017. La tabella è corredata da un elenco degli elaborati di progetto a supporto, quali riferimenti di carattere tematico e specialistico.

Tabella 1-1 Quadro sinottico allegato 5

rabella 1-1 Quadro siriottico allegato o							
Allegato 5							
Contenuti Piano di Utilizzo - AMB1000 (articolo 9)							
	Riferimenti						
l'ubicazione dei siti di produzione delle terre e rocce da scavo con l'indicazione dei relativi volumi in banco suddivisi nelle diverse litologie;	Cap. 2, Cap. 5 e tavole planimetriche AMB1003;						
2. l'ubicazione dei siti di destinazione e l'individuazione dei cicli produttivi di destinazione delle terre e rocce da scavo qualificate sottoprodotti, con l'indicazione dei relativi volumi di utilizzo suddivisi nelle diverse tipologie e sulla base della provenienza dai vari siti di produzione.	Cap. 2, Cap. 5, e tavole planimetriche AMB1003						
3. le operazioni di normale pratica industriale finalizzate a migliorare le caratteristiche merceologiche, tecniche e prestazionali delle terre e rocce da scavo per il loro utilizzo, con riferimento a quanto indicato all'allegato 3;	Cap. 4						
4. le modalità di esecuzione e le risultanze della caratterizzazione ambientale delle terre e rocce da scavo eseguita in fase progettuale in conformità alle previsioni degli allegati 1, 2 e 4	Cap. 3 Appendici A e B AMB1001						
5. l'ubicazione degli eventuali siti di deposito intermedio in attesa di utilizzo, anche alternativi tra loro	Cap. 2, Cap. 5 e tavole planimetriche AMB1003						
6. i percorsi previsti per il trasporto delle terre e rocce da scavo tra le diverse aree impiegate nel processo di gestione nonché delle modalità di trasporto previste	Cap. 7 e tavole planimetriche AMB1003						
Al fine di esplicitare quanto richiesto, il piano di utilizzo indica, altresì, anche in riferimento alla caratterizzazione delle terre e rocce da scavo, i seguenti elementi per tutti i siti interessati dalla produzione alla destinazione, ivi compresi i siti deposito intermedio e la viabilità:							
inquadramento territoriale e topo-cartografico:							

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

	Allegato 5	
	Contenuti Piano di Utilizzo - AME	31000 (articolo 9)
		Riferimenti
1.1	denominazione dei siti, desunta dalla toponomastica del luogo;	Cap. 2 Appendici A e B e tavole planimetriche AMB1003
1.2	ubicazione dei siti	Cap. 2 e tavole planimetriche AMB1003
1.3	estremi cartografici da Carta Tecnica Regionale (CTR);	213030 Rapallo 214150 Tribogna, Moconesi
1.4	Corografia	tavola di progetto EGP 0001 Corografia
1.5	planimetrie con impianti, sottoservizi	tavole di progetto ESC 0020 Planimetria censimento interferenze tecnologiche
1.6	planimetria	tavole di progetto EGP 0002 Planimetria generale d'inquadramento su carta tecnica
1.7	profili di scavo e/o di riempimento;	Cap. 4, con sezioni scavo TUN tavole di progetto allegate a codifica APE
1.8	schema/tabella volumi	Cap. 5
2.	inquadramento urbanistico:	
2.1	Individuazione della destinazione d'uso	tavole planimetriche AMB1003
3.	inquadramento geologico ed idrogeologico:	Cap. 2
3.1	descrizione del contesto geologico della zona	Cap. 2
3.2	ricostruzione stratigrafica del suolo	Cap. 2 tavole di progetto GEO 0002 Carta geologica TAV.1 GEO 0003 Carta geologica TAV.2 GEO 0010 Sezioni geologiche APE0002÷AP0009
3.3	descrizione del contesto idrogeologico della zona;	Cap. 2 GEO 0011 Carta dei complessi idrogeologici TAV.1 GEO 0012 Carta dei complessi idrogeologici TAV.2 GEO 0013 Sezioni idrogeologiche
3.4	livelli piezometrici degli acquiferi principali	tavole di progetto IDR 0010 Profilo idrogeologico longitudinale
4.	descrizione delle attività svolte sul sito:	Cap. 2 e 3
4.1	uso pregresso del sito	Cap. 2 e 3
4.2	definizione delle aree a maggiore possibilità di inquinamento	Cap. 3, secondo indicazioni DPR per infrastruttura stradale
4.3	identificazione delle possibili sostanze presenti	Cap. 2 e 3, secondo indicazioni DPR per infrastruttura stradale
4.4 chim	risultati di eventuali pregresse indagini ambientali e relative analisi nico-fisiche.	Cap. 3 Appendici A e B AMB1001
5.	piano di campionamento e analisi:	Cap. 3
5.1	descrizione delle indagini svolte e delle modalità di esecuzione;	Cap. 3
5.2	localizzazione dei punti di indagine mediante planimetrie;	Cap. 3, Appendice A e B e tavole planimetriche AMB1003
5.3	elenco delle sostanze come dettagliato nell'allegato 4;	Cap. 3
5.4 quar	descrizione delle metodiche analitiche e dei relativi limiti di ntificazione.	Сар. 3

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

1.2 DURATA E VALIDITÀ DEL PIANO

La durata complessiva dei lavori, desumibile da cronoprogramma (CAP0001), è pari a 62 mesi.

La durata di validità del Piano di Utilizzo, pari alla durata dei lavori, è pertanto di 62 mesi a partire dalla data di inizio dei lavori. Con riferimento a quanto indicato in art. 14, comma 1 del Regolamento, salvo particolari deroghe dell'Autorità competente, si indica che i lavori avranno inizio entro due anni dalla data di emanazione del provvedimento di VIA e non dalla data di presentazione del piano di utilizzo.

Se durante l'esecuzione delle opere dovessero subentrare varianti tali da determinare modifiche sostanziali nella gestione delle terre e rocce da scavo, si procederà secondo quanto prescritto.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

2 INQUADRAMENTO GENERALE

2.1 INQUADRAMENTO TERRITORIALE

Il progetto di collegamento tra la Val Fontanabuona e l'autostrada A12 Genova – Roma interessa la provincia di Genova, nei comuni di Rapallo, Cicagna, Tribogna e Moconesi. La figura seguente permette di inquadrare territorialmente l'intervento a progetto.

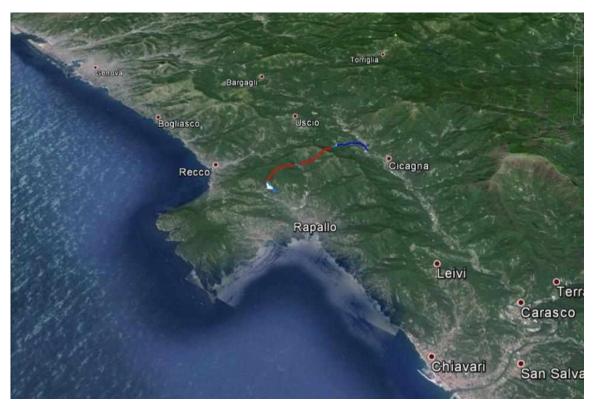


Figura 2-1 Inquadramento territoriale dell'intervento, con i tratti in sotterraneo (in rosso) ed all'aperto (blu)

La Val Fontanabuona, situata nella zona di levante della Provincia di Genova, si sviluppa parallelamente alla linea di costa, a partire da Cogorno, proseguendo per Carasco e Leivi, fino a Lumarzo e Bargagli, lungo il corso del torrente Lavagna e le confluenti valli di Neirone e del Malvaro.

La valle è delimitata da alti contrafforti a nord, che superano i 1000 metri, e da più bassi a sud, che sfiorano appena i 1000 metri.

Il fondovalle è percorso dalla Strada Provinciale n. 225 che si snoda in sponda sinistra del Torrente Lavagna. Il bacino del torrente è disposto in direzione est-ovest ed ha forma asimmetrica, maggiormente ramificata sul versante destro.

Nell'asta principale del torrente, ovvero a partire dalla località Ferriere, fino a Carasco (qui il Torrente confluisce con lo Stura formando il fiume Entella), esso riceve in sponda orografica destra il Rio di Lumarzo, il Torrente Litteglia, il Rio delle Bolle, il Rio Pendola, il Fosso di Roncazzi, il Fosso di Camposasco ed altri corsi d'acqua di minore importanza, mentre in sponda orografica sinistra ha come principali affluenti il Rio d'Urri, il Torrente Neirone, il Canale di Moconesi, il Torrente Malvaro e il Canale d'Isolona. A partire dalla località di Gattorna, lungo tutto il corso del torrente, si alternano sponde rocciose con zone alluvionali pianeggiati.

La valle risulta sostanzialmente coperta da zone boscose (circa il 75% del territorio) nelle quali la specie maggiormente presente è il castagno, mentre l'intervento antropico interessa superfici ridotte, concentrate nel fondovalle, con un'estensione delle attività agricole corrispondente a circa il 15% del territorio.

Superfici molto limitate (circa il 2% del territorio) sono state oggetto di modellazione artificiale da parte dell'uomo, tramite la realizzazione di terrazzamenti e canali d'irrigazione, attualmente soggetti a dissesti e instabilità dei fronti.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Il paesaggio vallivo è altresì caratterizzato dalla presenza di numerose cave di ardesia e discariche (queste ultime sono prevalentemente formate da cumuli di materiali lapidei non adatti alla lavorazione); l'estrazione e la lavorazione dell'ardesia ha costituito, infatti, una delle principali attività economiche della valle a partire dal 1850, assorbendo la maggior parte della manodopera agricola.

2.2 INQUADRAMENTO PROGETTUALE

Il progetto del "Collegamento tra la Val Fontanabuona e l'autostrada A12 Genova – Roma", prevede la realizzazione di un nuovo asse viario, di lunghezza complessiva pari a 5600 m circa, sviluppato quasi interamente in galleria tra esteso tra lo svincolo con la A12 presso Rapallo, di nuova realizzazione, e la nuova barriera di esazione in Val Fontanabuona; il collegamento è poi completato con l'adeguamento della esistente viabilità per circa 1600 m fino al raccordo con la S.P. 22 della Val Lavagna.

A partire da Sud, lato Rapallo, si prevede l'innesto di un nuovo svincolo sulla Autostrada A12, tra le gallerie esistenti Giovanni Maggio, verso Genova, e Casalino, verso Livorno; per la realizzazione delle rampe di collegamento è necessario deviare l'attuale tracciato dell'A12, spostandolo in direzione sud-ovest.

Successivamente, salendo verso Nord, la strada si compone delle gallerie Caravaggio e Fontanabuona, intervallate da un tratto all'aperto in rilevato in corrispondenza della confluenza tra il Rio Gallo ed il Rio Serra (in prossimità dell'abitato di Arboccò).

Il progetto prevede quindi di localizzare la barriera di esazione del pedaggio nel tratto compreso tra l'imbocco della galleria Fontanabuona e l'intersezione con una rotatoria a tre rami in corrispondenza della S.P. n. 22 (rotatoria di Aveno).

L'intervento prevede successivamente l'utilizzo della S.P. n. 22, opportunamente adeguata, fino al'inizio dell'abitato di Moconesi, punto in cui è prevista la realizzazione di un nuovo attraversamento del Torrente Lavagna in variante rispetto al tracciato della viabilità esistente. Si prevede infine l'innesto sulla SP n. 225 mediante una intersezione a rotatoria a tre rami (rotatoria di Moconesi).

Dalla sintetica descrizione, sopra riportata, si evince la possibilità di inquadrare il tracciato in 6 ambiti principali:

- 1) svincolo con A12
- 2) galleria Caravaggio
- 3) area Arboccò
- 4) galleria Fontanabuona
- 5) area del piazzale di esazione Fontanabuona, con innesto S.P. n. 22
- 6) adeguamento S.P. n. 22, con innesto S.P. n. 225

Le aree od ambiti, così suddivise, risultano essere caratterizzate ognuno da:

superfici limitate di intervento, escludendo i tratti in sotterraneo;

uniformità di realizzazione del progetto secondo fasi di lavoro stabilite;

applicazione continua delle stesse modalità di scavo e delle stesse pratiche industriali eventualmente considerate, e

omogeneità del contesto geologico, geomorfologico e territoriale.

Questa suddivisione risulta così funzionale alla gestione dei materiali di scavo e all'inquadramento, descritto dal presente Piano di Utilizzo.

Nella figura seguente si riporta il dettaglio planimetrico della zona con gli interventi sulle opere all'aperto dell'imbocco lato Rapallo della Galleria Caravaggio, dello svincolo in A12 e del rimodellamento morfologico Caravaggio.

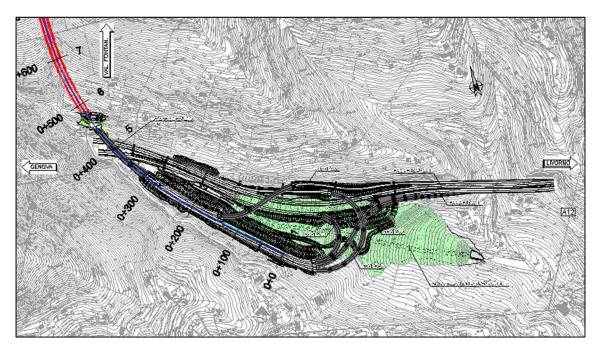


Figura 2-2 –Stralcio planimetrico della zona di intervento lato Rapallo

La figura seguente riproduce il dettaglio nell'area intermedia della finestra di Arboccò, con il collegamento in viadotto tra i due imbocchi lato Fontanabuona della galleria Caravaggio e lato Rapallo della galleria Fontanabuona.

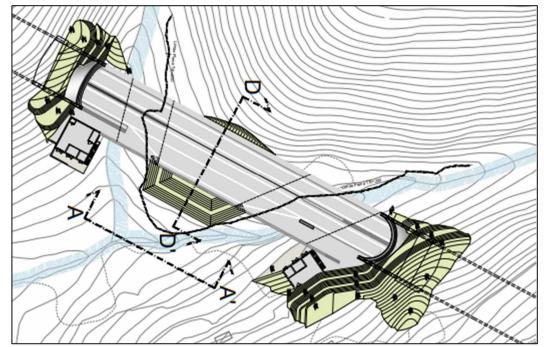


Figura 2-3 – Stralcio planimetrico sulla Finestra di Arboccò

In Val Fontanabuona, come mostrato dai 2 seguenti stralci planimetrici, sono da segnalare la zona del piazzale di esazione, l'area di imbocco N della galleria Fontanabuona ed il rimodellamento morfologico Fontanabuona in prossimità del torrente Litteglia, mentre in prossimità della località di Ferrada di Moconesi l'adeguamento della S.P. 22 in corrispondenza dell'innesto con la S.P. 225 con il ponte sul Torrente Lavagna.

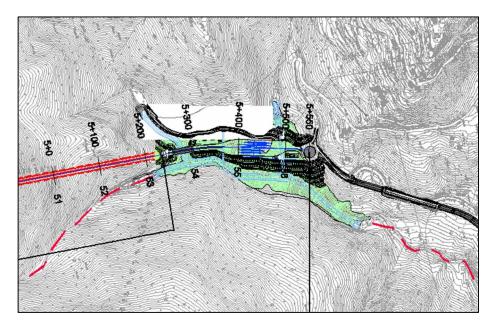


Figura 2-4 - Stralcio planimetrico dell'area lato Fontanabuona, lungo il torrente Litteglia

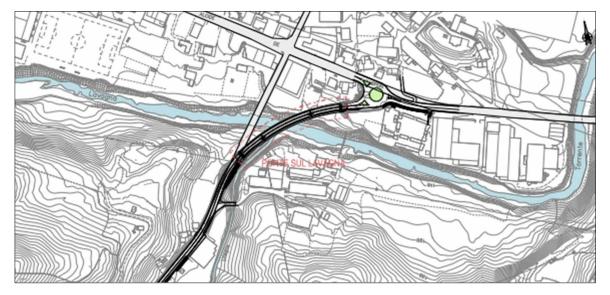


Figura 2-5 Dettaglio planimetrico in località Ferrada di Moconesi

Di seguito vengono elencate e descritte sinteticamente le opere d'arte maggiore, in sotterraneo ed all'aperto, e le aree di cantiere e di intervento, individuate lungo il tracciato in progetto.

2.2.1 Opere in sotterraneo

È prevista la realizzazione di 2 gallerie naturali: Caravaggio e Fontanabuona. Lo sviluppo in metri lineari complessivo dello scavo per le opere in sotterraneo è di circa 4677 m.

La tabella seguente riporta le informazioni in sintesi sulle 2 gallerie, con le rispettive lunghezze, le formazioni geologiche attraversate, i comuni interessati.

AUTOSTRADA A12 GENOVA-ROMA Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma

Progetto Definitivo

Tabella 2-1 Elenco delle gallerie naturali

Opera	Codice	Ambito	Comuni interessati	Lunghezza (m)	Formazione geologica
Galleria Caravaggio	GN01	Galleria Caravaggio	Rapallo	2092	Formazione del M.te Antola (calcari marnosi)
Galleria Fontanabuona	GN02	Galleria Fontanabuona	Rapallo, Tribogna	2585	Formazione del M.te Antola (calcari marnosi), Ardesie di Varzi (ardesie e arenarie) e Argille di M.te Lavagnola (argilliti)

2.2.2 Opere maggiori all'aperto

La tabella seguente riporta l'elenco delle principali opere all'aperto previste, riferite a quelle maggior, come viadotti e ponti. e quelle minori, soprattutto muri di sostegno e di controripa.

Tabella 2-2 Elenco delle opere maggiori all'aperto

Opera	Codice	Ambito	Comune interessato	Lunghezza (m)	Formazione geologica
Viadotti svincolo A12	VI01	Svincolo con A12	Rapallo	238 rampa A	Formazione del M.te Antola (calcari marnosi)
	VI02	Svincolo con A12		152 rampa B	Formazione del M.te Antola (calcari marnosi)
	VI03	Svincolo con A12		127 rampa C	Formazione del M.te Antola (calcari marnosi)
	VI04	Svincolo con A12		33 rampa D	Formazione del M.te Antola (calcari marnosi)
Ampliamento Viadotto rio Casalino	AV01 e AV02	Svincolo con A12	Rapallo	101	Formazione del M.te Antola (calcari marnosi)
Opera scavalco A12	VI05	Svincolo con A12	Rapallo	124	Formazione del M.te Antola (calcari marnosi)
Viadotto Arboccò	VI11	Arboccò	Rapallo	70	Formazione del M.te Antola (calcari marnosi)
Nuovo ponte sul Torrente Liteglia	VI06	Piazzale di esazione Fontanabuona	Tribogna, Cicagna	42	Ardesie Mte Varzi
Viadotto Croso	VI07	adeguamento S.P. n. 22	Tribogna	60	Scisti Manganesiferi
Viadotto Tongusci	VI08	adeguamento S.P. n. 22	Tribogna	110	Scisti Manganesiferi
Viadotto Garbarini	VI09	adeguamento S.P. n. 22	Tribogna	65	Scisti Manganesiferi
Ponte sul Torrente Lavagna	VI10	adeguamento S.P. n. 22	Moconesi	145	Scisti Manganesiferi

2.2.3 Aree cantieri

La cantierizzazione dell'opera prevede essenzialmente la suddivisione delle lavorazioni in due differenti ambiti, poste alle estremità del progetto, svincolo A12 e Val Fontanabuona. Questo è dovuto all'impostazione della

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

realizzazione degli scavi delle gallerie presenti nel progetto, che prevede lo scavo della galleria Caravaggio dall'imbocco lato Rapallo, in prossimità dell'autostrada A12 esistente, e lo scavo della galleria Fontanabuona dall'imbocco lato Val Fontanabuona.

I servizi essenziali di cantierizzazione sono di conseguenza replicati in entrambi gli ambiti, nei quali sono presenti: cantiere di imbocco, cantiere operativo e area di caratterizzazione.

Il progetto prevede:

2 campi base;

10 tra cantieri operativi e di supporto;

4 cantieri di imbocco.

Alle aree di cantiere operativo vengono aggiunti le 2 aree di cantiere coincidenti con l'area di realizzazione del nuovo piazzale di esazione in Val Fontanabuona e l'attuale area di parcheggio autostradale Caravaggio.

Nel primo caso si tratta attualmente di un'area boschiva, interessata dal progetto, per il rimodellamento morfologico con l'area di stazione. Tale area sarà utilizzata, unitamente alla vicina area di imbocco lato Fontanabuona della galleria Fontanabuona per la collocazione degli apprestamenti necessari alla suddetta galleria. Nel secondo caso l'area di parcheggio verrà utilizzato per la realizzazione ed il varo dell'impalcato dello scavalco dell'A12, propedeutico allo scavo della galleria Caravaggio. Successivamente sarà utilizzata unitamente allo scavalco dell'A12 di accesso all'area di imbocco e all'area di imbocco stessa per la collocazione degli apprestamenti necessari alla realizzazione della galleria Caravaggio. In queste 2 situazioni saranno presenti gli impianti di frantumazione di parte dello smarino provenienti dagli scavi delle gallerie con relativo deposito.

In ogni modo nelle aree di cantiere (tutti i cantieri, o porzioni non pavimentate, in area Rapallo e i cantieri CA6, CA7 e parte del CA8 in Fontanabuona), il materiale escavato per il piano di posa dei campi, riferito soprattutto alla sola parte di scotico vegetale, sarà gestito ai sensi del presente Piano di Utilizzo, ma sarà stoccato e riutilizzato a fine lavori, per la sistemazione delle medesime aree. Lo scopo è il ripristino allo stato originale dello strato superficiali dei campi stessi.

Campo base

Sono previsti 2 siti destinati all'alloggio delle maestranze impegnate nei lavori di costruzione. Il primo, CA2, è ubicato nel comune di Rapallo. Il campo è dimensionato su una superficie complessiva di circa 3400 mq.

Il secondo campo base, CA6, è ubicato nel comune di Cicagna, in località Gallinaria, lungo la SS n° 225. La superficie complessiva è di circa 11.000 mq. L'impatto delle aree adibite a campo base sul territorio sarà minimo, visto che al suo interno non viene svolto alcun tipo di lavoro ma solo servizi logistico-amministrativi.

CantiereComuneSuperficie (mq)ApprestamentoCA2Rapallo3.400ufficiCA6Cicagna11.000alloggi e uffici

Tabella 2-3 Cantieri Campo Base

Cantieri di imbocco

Sono le aree esattamente antistanti l'imbocco delle gallerie che – per la loro dimensione limitata - vengono destinate ad ospitare esclusivamente gli impianti più direttamente necessari alla gestione dei lavori in sotterraneo (impianto di ventilazione, impianto acqua industriale, impianto aria compressa, impianto di depurazione delle acque, ecc.) oltre ad un limitato deposito di materiali da costruzione (centine, bulloni, ecc.).

I cantieri di imbocco sono generalmente ubicati in siti difficilmente raggiungibili e lontani dalle aree più urbanizzate. Le superfici dei piazzali sono pavimentate e dotate di regimazione idraulica di tipo chiuso, che fa convergere le acque di piazzale ad un apposito impianto di chiarificazione/depurazione prima della restituzione nel reticolo idrografico.

Complessivamente sono previsti 4 cantieri di imbocco in considerazione delle 2 gallerie naturali previste in progetto.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Tabella 2-4 Cantieri nelle aree di imbocco

Cantiere	Comune	Superficie (mq)	Apprestamento
GI01a	Rapallo	7.300	Cantiere di imbocco lato Rapallo della galleria Caravaggio
GI01b	Rapallo	2.100	Cantiere di imbocco lato Fontanabuona della galleria Caravaggio
GI02a	Rapallo	1.700	Cantiere di imbocco lato Rapallo della galleria Fontanabuona
GI02b	Tribogna	950	Cantiere di imbocco lato Fontanabuona della galleria Fontanabuona

Cantieri operativi e di supporto

Sono cantieri a carattere industriale e sono aree di dimensioni importanti (almeno 4-5.000 mq) destinate ad ospitare gli impianti maggiori (vagliatura, frantumazione, ecc.) a servizio di più imbocchi o siti di lavoro. È quindi necessario collocarli in aree pianeggianti ben servite dalle viabilità, per cui sono spesso vicini a zone urbanizzate e possono interferire con l'ambiente circostante. Il loro impatto deve essere mitigato con l'adozione degli opportuni apprestamenti (barriere antirumore, coibentazione totale degli impianti, ecc.). La maggiore concentrazione di cantieri industriali è presente nella Val Fontanabuona e nei pressi dello svincolo dell'A12.

Le superfici dei piazzali sono impermeabilizzate e dotate di regimazione idraulica di tipo chiuso, che fa convergere le acque di piazzale ad un apposito impianto di chiarificazione/depurazione prima della restituzione nel reticolo idrografico.

Complessivamente sono previsti 5 cantieri operativi e 4 aree di supporto.

Tabella 2-5 Elenco Cantieri operativi ed industriali

Cantiere	Comune	Superficie (mq)	Apprestamento
CA4	Rapallo	3.300	area di deposito e di lavorazione dei materiali di scavo e del terreno vegetale
CA7	Moconesi	16.000	area di deposito dei materiali di scavo provenienti dalla Galleria Fontanabuona; area di deposito mezzi operativi.
Area parcheggio Caravaggio, GI01a	Rapallo	8.500	area di deposito dei materiali di scavo provenienti dalla Galleria Caravaggio; impianti di frantumazione e di lavorazione dello smarino;
CA8	Moconesi	7.000	area di deposito e di lavorazione dei materiali di scavo e del terreno vegetale
Area Piazzale Esazione in Fontanabuona, GI02b	Tribogna	12.000	area di deposito dei materiali di scavo provenienti dalla Galleria Fontanabuona; impianti di frantumazione e di lavorazione dello smarino;

Tabella 2-6 Elenco delle Aree di supporto

Cantiere	Comune	Superficie (mq)	Apprestamento
CA9	Moconesi	1.100	area di supporto logistico
CA10	Tribogna	2.200	area di supporto logistico
CA11	Tribogna	1.100	area di supporto logistico
CA12	Moconesi	2.200	area di supporto logistico

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

2.2.4 Aree di deposito intermedio delle terre

Nell'ambito delle aree di cantiere sono stati individuati i siti di "deposito intermedio", secondo la definizione dell'art. 5 del Regolamento. Si tratta di aree per la deposizione del materiale in attesa della destinazione/utilizzo finale. Nell'ambito del progetto sono previste 5 aree di deposito a terra, come da tabella:

Tabella 2-7 Elenco dei depositi dei materiali di scavo

Cantiere	Comune	Superficie disponibile per il deposito		
		(mq)		
Area Caravaggio	Rapallo	4.000		
CA4	Rapallo	3.300		
Area Fontanabuona	Tribogna	4.000		
CA7	Moconesi	3.900		
CA8	Moconesi	6.600		

I depositi previsti in corrispondenza delle aree di cantiere industriale in parcheggio Caravaggio e CA4, ubicati nel comune di Rapallo, sono a servizio degli scavi della galleria naturale Caravaggio e di quelli previsti all'aperto nell'ambito dello svincolo della A12; i depositi ubicati in Area Fontanabuona (Tribogna) e CA7 e CA8 (Moconesi) sono a supporto degli scavi della galleria naturale Fontanabuona e delle opere all'aperto per gli innesti lungo la SP n°22 e SS n°225.

2.2.5 Viabilità di servizio

Le viabilità di servizio usualmente vengono inserite nei progetti delle opere infrastrutturali per facilitare l'accesso dei mezzi d'opera alle varie aree di lavoro. I collegamenti di cantiere previsti nell'ambito del progetto sono complessivamente 5 e sono elencati nella tabella di seguito riportata.

Tabella 2-8 Elenco delle Viabilità di servizio

VS	Ambito	Finalità
VS.01	area Arboccò	Collegamento tra il cantiere d'imbocco galleria Fontanabuona, lato Rapallo e la viabilità locale da Via Arboccò
VS.02	Piazzale di esazione Fontanabuona	Collegamento tra il cantiere d'imbocco galleria Fontanabuona, lato Val Fontanabuona, e la strada provinciale n. 22
VS.03	Svincolo con A12	Collegamento tra l'area di cantiere A12 e la viabilità locale e l'imbocco della galleria Caravaggio, lato Rapallo
VS.04	a Svincolo con A12	Collegamento tra Autostrada A12 e l'opera di presidio idraulico del Rio Tangon.
VS.05	Piazzale di esazione Fontanabuona	Collegamento tra l'area di cantiere del piazzale di stazione all'opera di captazione lungo il torrente Litteglia.

2.2.6 Rimodellamenti e sistemazioni

Nell'ambito del progetto sono previste:

a) le sistemazioni in corrispondenza degli imbocchi delle 2 gallerie:

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Tabella 2-9 Elenco delle aree di imbocco gallerie

Opera		Codice	Ambito	Comuni interessati	Formazione geologica
Area imbocco lato Galleria Caravaggio	Rapallo	GN01a	Svincolo A12	Rapallo	Formazione del M.te Antola (calcari marnosi)
Area imbocco Fontanabuona Caravaggio	lato Galleria	GN01b	Arboccò	Rapallo	Formazione del M.te Antola (calcari marnosi)
Area imbocco lato Galleria Fontanabuona	Rapallo	GN02a	Arboccò	Rapallo	Formazione del M.te Antola (calcari marnosi)
Area imbocco Fontanabuona Fontanabuona	lato Galleria	GN02b	Piazzale di esazione Fontanabuona	Tribogna	Ardesie di Varzi (ardesie e arenarie)

b) il rimodellamento morfologico in 2 aree:

Tabella 2-10 Elenco delle aree di rimodellamento morfologico

Opera	Codice	Ambito	Comuni interessati	Formazione geologica
Rimodellamento Caravaggio	RM01	Svincolo con A12	Rapallo	Formazione del M.te Antola (calcari marnosi)
Rimodellamento Fontanabuona	RM02	Piazzale di esazione Fontanabuona	Tribogna, Cicagna	Ardesie Mte Varzi e Scisti Manganesiferi

Queste ultime 2 opere di sistemazione ambientale sono importanti per l'entità dei volumi previsti a deposito definitivo, con materiale proveniente soprattutto dallo scavo delle 2 gallerie naturali. Le impronte risultano inoltre essere coincidenti con la maggior parte degli interventi in opera previsti, escludendo le lavorazioni in sotterraneo e quelle relative all'area di Arboccò.

2.3 INQUADRAMENTO GEOLOGICO

L'osservazione dei caratteri geologico strutturali dell'area di interesse mostra come i volumi rocciosi appartenenti alle diverse unità, siano distribuiti in fasce orientate preferenzialmente in direzione circa NW - SE.

L'assetto geologico generale è conferito dalla sovrapposizione della Formazione del M. Antola, affiorante nei settori centrale e meridionale, sulle unità Portello e Gottero che affiora invece nella Val Fontanabuona.

Limitatamente all'area di progetto, le unità geologiche presentano stratificazione diretta in senso WNW - ESE, con immersione prevalentemente verso Sud ed inclinazioni variabili per la presenza di pieghe blande che deformano la stratificazione a scala dell'area di interesse.

Le formazioni geologiche presenti nell'area di progetto appartengono alle unità tettoniche liguri ed in particolare si distinguono:

Unità tettonica Antola

Formazione del Monte Antola FAN (Campaniano inf.-Maastrichtiano inf.): torbiditi calcareo - marnose talvolta siltose, organizzate in strati di spessore fino a metrico di calcareniti, marne e marne calcaree alternate ad argilliti emipelagiche in strati centimetrici.

Unità tettonica Gottero

Ardesie di Monte Verzi AMV (Campaniano): marne, marne calcaree e calcari marnosi in strati gradati da medi a molto spessi, generalmente con base arenitica fine, con intercalazioni di peliti non carbonati in strati molto sottili. In modo subordinato presenti areniti a composizione arcosica alternate a peliti in strati gradati di spessore da medio a sottile. Torbiditi ed emipelagiti di ambiente marino profondo.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Scisti Manganesiferi SMG (Campaniano inf.): argilliti scure manganesifere, siltiti ed areniti fini in strati gradati medi e spessi. Verso l'alto intercalazioni di areniti medie e grossolane a composizione subarcosica e peliti in strati gradati medi. Torbiditi ed emipelagiti di ambiente marino profondo.

Unità tettonica Portello

Formazione di Monte Lavagnola FLV (Cenomaniano sup.- Campaniano inf.) Argilliti grigio scuro, generalmente caratterizzate da assenza di strutture sedimentarie. Questa formazione questa formazione può contenere intercalazioni lenticolari di brecce mono e poligeniche con tessitura matrice o clasto - sostenuta a matrice argillosa.

2.3.1 Descrizione del tracciato

Il nuovo svincolo di interconnessione con l'Autostrada A12 che prevede la formazione di rilevati di altezza massima di circa 20 m e di rampe di interconnessione in viadotto, verrà realizzato in un contesto caratterizzato da condizioni di subaffioramento del substrato lapideo della Formazione calcareo marnosa del Monte Antola, ricoperto in corrispondenza dell'asse vallivo da estesi riporti connessi all'attuale sede autostradale. Superata l'attuale sede autostradale il nuovo collegamento viario prevede la realizzazione di due gallerie separate da un breve tratto all'aperto.

La prima galleria, di lunghezza pari a circa 2100 m, verrà scavata interamente all'interno delle sequenze calcareo marnose appartenenti alla Formazione di Monte Antola, sotto ricoprimenti massimi di circa 400 m.

Le giaciture dei piani di strato, mediamente orientate verso Sud, sono frequentemente legate a pieghe isoclinali alla mesoscala con assi orientati grossomodo E-W.

In tale tratto, alle progr. km 1+310, 1+570, 2+360 e 2+385 circa verranno attraversate 4 zone di faglia a giacitura subverticale e direzioni NNE-SSW per le prime due e E-W le rimanenti in corrispondenza delle quali è prevedibile lo sviluppo di una fascia di intensa fratturazione e cataclasi di ampiezza deca metrica.

Per quanto concerne gli aspetti applicativi connessi allo scavo della galleria in progetto si evidenzia che le buone caratteristiche geomeccaniche dell'ammasso oggetto di escavazione non porranno particolari problemi essendo caratterizzato da una risposta deformativa rapidamente evolvente in campo plastico in condizioni di fronte stabile.

La figura seguente riporta la sezione geologica, fuori scala, lungo la Galleria naturale Caravaggio, in cui si evince la totale omogeneità geologica per l'intero tratto, con gli elementi calcareo-marnosi della Formazione del Monte Antola.

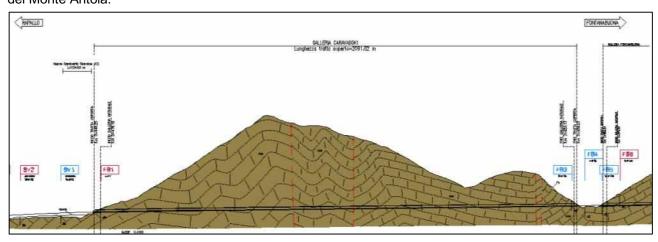


Figura 2-6 Sezione geologica lungo la Galleria naturale Caravaggio

Tra le progr. km 2+250 e 2+650 circa è previsto l'attraversamento di un asse vallivo, nei pressi della località di Arboccò, insistente sempre nel contesto geologico dei Calcari marnosi dell'Antola. La sezione geologica, sotto riportata, lungo la Galleria Fontanabuona, evidenzia che lo scavo avviene in buona parte nei calcari marnosi della formazione geologica del monte Antola, litologia dominante nell'intero tracciato.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

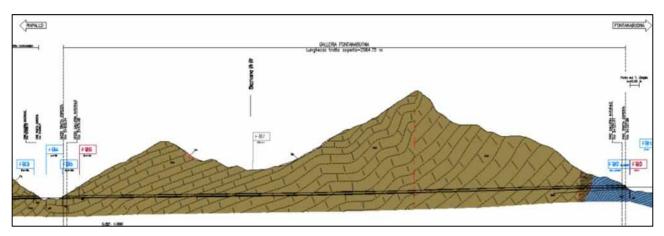


Figura 2-7 Sezione geologica lungo la Galleria naturale Fontanabuona

Tra le progr. km 2+660 e km 5+330 circa il tracciato si svilupperà nuovamente in sotterraneo interessando dapprima nuovamente le sequenze calcareo-marnose della Formazione di Monte Antola e a partire dalla progr. km 5+030 circa le successioni di marne calcaree appartenenti alla Formazione delle Ardesie di Monte Verzi. Il passaggio tra le due formazioni si attua a mezzo di un piano di sovrascorrimento a vergenza settentrionale con immersione verso i quadranti meridionali lungo il quale risulta pinzata una scaglia tettonica di estensione pari a circa 80 m di meta-siltiti e meta-argilliti appartenenti alla Formazione di Monte Lavagnola intensamente tettonizzate. Questo settore è dove si riscontrano le uniche variazioni geologiche interferenti con gli scavi in sotterraneo, evidenziando poi che l'area di imbocco della galleria Fontanabuona risulta insistente negli elementi litologici omogenei della Formazione di Monte Varzi.

Alla progr. km 4+265 circa verrà attraversata una zona di faglia a giacitura subverticale e direzione E-W in corrispondenza della quale è prevedibile lo sviluppo di una fascia di intensa fratturazione e cataclasi di ampiezza deca metrica.

Il tratto terminale dell'asse di progetto in cui sono previsti interventi di adeguamento della viabilità esistente interessa un settore di subaffioramento degli ammassi meta-siltici e meta-pelitici appartenenti alla Formazione degli Scisti Manganesiferi ad eccezione del tratto compreso tra le progr. km 0+350 e 0+700 circa dove verrà coinvolto un accumulo gravitativo di materiale eterogeneo.

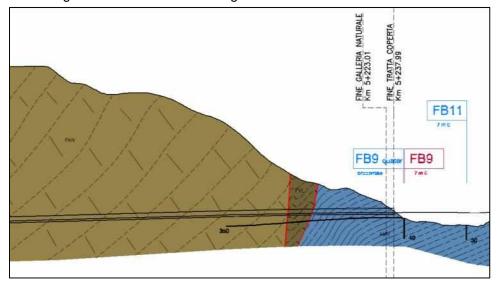


Figura 2-8 Dettaglio della sezione geologica sulla zona di imbocco in Val Fontanabuona

2.4 INQUADRAMENTO GEOMORFOLOGICO

L'area rilevata è suddivisibile in 3 fasce geomorfologiche.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

- a) la valle del torrente Lavagna impostata sulle metapeliti: l'asse vallivo è caratterizzato dai livelli terrazzati di fondovalle con scarpate erosionali; il tratto rettilineo del fiume è verosimilmente impostato su lineamenti strutturali non evidenti a scala degli affioramenti. Su alcune creste perpendicolari all'asse vallivo si evidenziano resti di paleosuperfici localizzate intorno a q. 150 mslm.
- b) il rilievo dello spartiacque impostato sulla formazione del Monte Antola: la dorsale dello spartiacque, impostata sulla Formazione del Monte Antola, è caratterizzata da rilievi importanti ad alta energia; predominano le forme montuose piramidali con i versanti modellati a facce triangolari. I rilievi sono collegati da creste con buona continuità morfologica. L'acclività è elevata, prevalentemente superiore al 50%.
- c) la valle del torrente S. Maria impostata sulla formazione del monte Antola: la parte più meridionale dell'area è interessata dalla valle del Torrente S. Maria, ad andamento circa WNW-SSE, parallelo alla costa. Il versante settentrionale della valle è acclive e costituisce il limite della fascia del rilievo dello spartiacque, mentre il versante meridionale ha morfologie blande, poco acclivi, interessate da ampie paleosuperfici residuali.

I depositi alluvionali sono presenti solamente nel settore nord dell'area rilevata, lungo il corso del torrente Lavagna, e nel settore meridionale, lungo il Torrente S. Maria a Rapallo.

I depositi alluvionali recenti sono minimali e poco caratterizzati morfologicamente; i terrazzi erosionali e i depositi più antichi sono caratterizzati da scarpate erosionali importanti. Anche i conoidi alluvionali e di deiezione che si raccordano alle piane alluvionali alte, sia lungo il t. Lavagna sia lungo il T. S. Maria, sono reincisi e non più attivi.

Depositi antropici importanti sono costituiti dai riporti del sistema autostradale, in corrispondenza dell'uscita Rapallo, dove la valle è stata riempita per uno spessore anche superiore ai 20m.

2.5 INQUADRAMENTO IDROGEOLOGICO

Nella zona interessata dallo scavo della galleria Caravaggio, dal punto di vista prettamente idrogeologico risulta evidente come tutte le sorgenti siano localizzate in corrispondenza delle diverse incisioni del versante. Le incisioni, che in periodo di magra sono totalmente prive di deflussi superficiali, vengono alimentate solamente da deflussi di origine sotterranea, ossia raccolgono un minimo di contributo dalla circolazione idrica che avviene entro linee preferenziali di deflusso coincidenti con l'andamento strutturale suddetto. L'emergenza idrica generalmente può avvenire per soglia di permeabilità determinata dalla presenza di livelli più fini argillitici comunemente presenti, come alternanze litologiche, entro i flysh del Monte Antola.

La zona indagata presso l'area di Arboccò è caratterizzata dalla completa assenza di sorgenti storiche. Nell'area immediatamente ad Est di Arboccò, tra il rio Gallo ed il rio Serra, sono state individuate delle risorgive unicamente in corrispondenza delle incisioni.

Lungo il rio Serra è stata osservata la presenza di deflussi relativamente più abbondanti rispetto ai quantitativi presenti sulle altre incisioni dell'area.

Nella parte alta del bacino del Torrente Litteglia che verrà interessato dallo scavo della galleria Val Fontanabuona e dalle relative opere previste allo sbocco la situazione risulta analogia a quanto osservato sul versante rapallese con i versanti sono completamente ricoperti di vegetazione boschiva.

L'area è caratterizzata dalla presenza di materiale franato che forma una estesa coltre detritica. La concentrazione di captazioni in una zona realmente limitata suggerisce che possa verificarsi una certa circolazione idrica entro la coltre eterogenea; tuttavia, anche per analogia con quanto osservato presso Chignero, non è affatto sicuro che tale coltre ospiti delle falde perenni e diffuse su tutta la sua estensione.

Si osserva inoltre anche che il detrito presente maschera il contatto tettonico tra la formazione del Monte Antola in sovrapposizione alle argilliti di Monte Lavagnola ed alle Ardesie di Monte Verzi. La presenza della struttura tettonica, che mette a contatto due litotipi con grado di permeabilità differente, costituisce una soglia di permeabilità lungo la quale si possono verificare emergenze idriche. Si può ipotizzare che le sorgenti stagionali siano verosimilmente alimentate da una circolazione superficiale che ha prevalentemente luogo, stagionalmente, entro la coltre detritica.

Nella figura seguente si riporta una esemplificazione delle modalità di deflusso in corrispondenza del contatto tettonico tra formazione di Monte Antola (parte chiara) ed argilliti – ardesie (parte più scura); in tratteggiato rosso è il tracciato schematizzato della galleria in progetto.

AUTOSTRADA A12 GENOVA-ROMA Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma

Progetto Definitivo

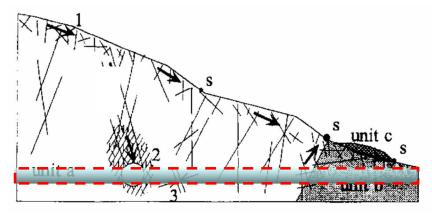


Figura 2-9 Schema di deflusso al contatto calcari-argilliti-ardesie

Nei complessi idrogeologici vengono pertanto distinti, sulla base della ricostruzione geologica di progetto, i settori di sub affioramento del substrato litologico dalle coperture alluvionali o detritiche, queste ultime caratterizzate da differente permeabilità primaria per porosità.

Grado di permeabilità (Classificazione da CIRIA 2000) Unità Unità idrogeologiche geologiche Permeabilità primaria per Unità dei depositi antropici (ripor rilevati, argini, discariche, etc) Depositi antropici porosità Unità a comportamento acquifero Unità a comportamento variabile III secondaria per Permeabilità mista fratturazione e carsismo Unità a permeabilità mista per fratturazione e carsismo VI

Tabella 2-11 Legenda per la classificazione delle unità idrogeologiche

Relativamente ai litotipi del substrato, vengono distinte le seguenti unità. Per l'individuazione del grado di permeabilità sono state anche analizzate le prove Lugeon disponibili.

- A. Unità sostanzialmente "omogenee", in cui la conducibilità idraulica dipende unicamente dal grado di fratturazione e dalla presenza e tipologia di materiali di intasamento, da frizione o alterazione delle pareti dei giunti. Fanno parte di questa categoria le unità argillitiche sostanzialmente impermeabili degli scisti manganesiferi (SMG) e della formazione di Monte Lavagnola (FLV).
- B. Unità caratterizzate da una sostanziale variabilità litologica al proprio interno, in cui sono posti a contatto materiali a differente comportamento reologico da cui differente grado di fratturazione e conducibilità idraulica, con conseguente presenza di limiti di permeabilità nell'ambito della medesima unità. Fanno parte di questa tipologia i litotipi flyschoidi delle Ardesie di Monte Verzi (AMV).

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

C. Unità con permeabilità mista per fratturazione e carsismo, condizione in cui ricadono i litotipi flyshoidi dei Calcari del Monte Antola (FAN) caratterizzati da un limitato e localizzato sviluppo dei fenomeni carsici ed in cui la permeabilità per fratturazione può eventualmente risultare incrementata da fenomeni chimico-dissolutivi.

Tabella 2-12 Valori di permeabilità per le diverse unità idrogeologiche (da Prove Lugeon)

Unità idrogeologiche (substrato)	media	max	min	num
Unità a comportamento acquifero	4,31E-04	-	-	1
Permeabilità variabile in relazione al grado di fratturazione e alle variazioni litologiche	8,30E-08	1.53E-07	5E-08	3
Unità a conducibilità idraulica molto bassa/semipermeabile	6,10E-08	1.12E-07	1,00E-08	2
Unità a permeabilità mista per fratturazione e carsismo	3,62E-07	1.3E-06	8.3E-08	7

2.6 LE OPERE DA REALIZZARE AI SENSI DEL DPR 120/2017

Sulla base degli interventi descritti, sono stati individuati 6 ambiti lungo l'intero tracciato, la cui disposizione è esplicitata negli elaborati grafici riportati in Allegato. Questa suddivisione in ambiti risulta funzionale anche per le disposizioni di movimento materiali da scavo descritte dal presente Piano di Utilizzo.

Gli ambiti, così individuati, risultano infatti essere simili per caratteristiche ambientali e geologiche; allo stesso tempo rispondono a medesime peculiarità progettuali (ad es. lo smarino escavato in sotterraneo dalle gallerie e parzialmente riutilizzato per il riempimento delle stesse in arco rovescio). Questo tipo di inquadramento è utile in funzione anche di alcune superfici limitate per la realizzazione di opere all'aperto, dove tuttavia sono comprese una moltitudine di interventi relativi alla costruzione del corpo stradale.

Questi interventi coincidono spesso con l'impronta dei rimodellamenti morfologici indicati in progetto, in un contesto geolitologico, idrogeologico e geomorfologico che risulta essere appunto omogeneo in tutta la superficie interferita.

Si riporta ad esempio una superficie abbastanza limitata di circa 50.000 mq dell'area di svincolo sull'A12, in un contesto omogeneo interessato da un'unica litologia dominante, come i calcari marnosi del Mte Antola, intervengono tutte le opere relative alle rampe stradali di svincolo, al corpo stradale (rilevato e muri, ecc.) ed alla zona di imbocco.

Lo stesso ragionamento è applicabile anche nel caso dell'area in Fontanabuona (su una superficie di circa 37.000 mq) o lungo la SP22, che interferisce unicamente la litologia degli scisti manganesiferi in un contesto morfologicamente costante, senza nessuna particolare variazione.

La gestione dei materiali è pertanto suddivisa nei seguenti ambiti:

Svincolo A12, zona di svincolo A12-Fontanabuona e rimodellamento morfologico Caravaggio, scavo all'aperto:

- a) Area imbocco lato Rapallo Galleria Caravaggio, GN01a;
- b) Area di svincolo A12, corpo stradale, CS01, e rampe di svincolo, da RS01 a RS09, viadotti (da VI01 a VI05)
- c) Rimodellamento morfologico Caravaggio, RM01;

Galleria Caravaggio, collegamento in galleria, scavo in sotterraneo:

a) Galleria Caravaggio, GN01, in scavo tradizionale e riempimento dell'arco rovescio;

Arboccò, tratto all'aperto tra le 2 gallerie naturali, scavo all'aperto;

- a) Area imbocco lato Fontanabuona Galleria Caravaggio, GN01b;
- b) Area imbocco lato Rapallo Galleria Fontanabuona, GN02a;
- c) Area di Arboccò con corpo stradale su viadotto, VI10;

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Galleria Fontanabuona, collegamento in galleria, scavo in sotterraneo;

a) Galleria Fontanabuona, GN02, in scavo tradizionale e riempimento dell'arco rovescio

Piazzale di esazione Fontanabuona, scavo all'aperto;

- a) Area imbocco lato Fontanabuona Galleria Fontanabuona, GN02b;
- b) Area di rimodellamento morfologico Fontanabuona lunto il torrente Litteglia, RM02;
- c) Area stazione di esazione della Fontanabuona con innesto con S.P. 22, PZ01 e viadotto sul Litteglia, VI06;

Adeguamento S.P. n. 22, scavo all'aperto;

a) Adeguamento e Sistemazione della Strada Provinciale n. 22 esistente nel tratto tra la stazione di esazione ed il punto di collegamento con la S.P. n° 225, con corpo stradale (da IN01 a IN05) e viadotti (da VI07 a VI10).

A questi ambiti si va ad aggiungere un altro gruppo che inquadra le aree cantiere che non risultano direttamente interferenti con gli interventi e le opere previste a progetto e sopra sintetizzate:

Aree di cantiere, scavo all'aperto;

- a) Sul lato Rapallo si individuano i cantieri in area imbocco e parcheggio Caravaggio con CA2 e CA4
- b) Sul lato della Fontanabuona i cantieri in area imbocco e piazzale di esazione con aree da CA6 a CA12.

Sono aree o tratte, oggetto del solo scotico superficiale per la sistemazione ed adeguamento del piano di posa con un limitato movimento di materiali. È previsto inoltre che parte dello stesso materiale escavato venga riutilizzato alla conclusione delle lavorazioni per la sistemazione definitiva delle medesime aree.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

3 CARATTERIZZAZIONE AMBIENTALE DEI MATERIALI DA SCAVO

Al fine di ricostruire la tipologia e le caratteristiche dei materiali presenti nel sottosuolo, risultano di fondamentale importanza le indagini geognostiche (in sito ed in laboratorio).

Si è provveduto in prima fase a reperire tutti i dati disponibili (presso Enti, privati o indagini pregresse realizzate da Autostrade all'interno dell'area in esame nell'ambito della fase preliminare) e successivamente alla realizzazione di una apposita campagna di indagini mirata alla definizione degli aspetti di maggiore interesse ingegneristico ed ambientale (caratterizzazione litologica e meccanica delle diverse formazioni, caratteristiche idrogeologiche e geomeccaniche relative ai principali contesti tettonici, ricostruzione dell'assetto idrogeologico dell'area, ecc.).

Il tracciato di progetto è stato interessato da 3 principali campagna di indagine per la caratterizzazione ambientale dei terreni in sito.

La prima è stata svolta nel 2011 per la fase preliminare di progetto durante le campagne geognostiche, per un inquadramento ai sensi del D. Lgs. 152/2006 smi secondo l'art. 184 bis ed i criteri generali dell'art 186. allora vigente.

La seconda attività è stata eseguita durante il mese di giugno 2013 sulla base delle indicazioni degli allegati 2 e 4 del Regolamento 2012, secondo la definizione di caratterizzazione ambientale di cui all'art. 3, comma 1-g. Queste indicazioni risultano conformi alle disposizioni del DPR 120/2017, che infatti non ha modificato i contenuti dei corrispettivi allegati tecnici.

La terza campagna è stata eseguita nel periodo tra novembre 2022 e maggio 2023, sulla base di un piano di indagine geognostico integrativo, rimanendo conformi alle indicazioni riportate in allegati 2 e 4 del DPR 120/2017.

3.1 CONOSCENZE PREGRESSE DEI SITI DI INTERESSE E DELLE AREE DI INTERVENTO

3.1.1 Cartografia geochimica regionale

Un'indicazione fondamentale preliminare è data dalla prospezione geochimica eseguita dall'Università di Genova (2005) nell'ambito del progetto Carta Geochimica in convenzione tra ARPAL e l'Università di Genova. La finalità del progetto è stata l'organizzazione e la rappresentazione spaziale delle concentrazioni elementali rilevate nella matrice stream sediment (sedimenti fluviali attivi) della Regione Liguria. Seguendo indirizzi di ricerca individuati e già sperimentati a livello europeo e nazionale, il Progetto ha previsto la rielaborazione statistica di dati raccolti dall'Università per l'Archivio Geochimico Nazionale integrati da nuove campionature eseguite negli anni 2007 – 2008.

L'acquisizione dati ha seguito le metodiche che l'IUGS ha pianificato nell'ambito del GRN (Geochemical Reference Network), e applicate dal FOREGS (Forum of European Geological Surveys) in progetti internazionali e dal laboratorio di geochimica dell'Università di Genova durante la prima fase della creazione dell'Archivio Geochimico Nazionale promosso da APAT nei primi anni 2000.

Le indagini coprono la totalità del territorio delle province di Savona e Spezia e i bacini tirrenici della Provincia di Genova, e pertanto restituiscono importanti informazioni sui bacini di interesse del Torrente Boate (Rapallo e Arboccò) e Fiume Entella (con i torrenti Lavagna e Litteglia, nei comuni di Moconesi e Tribogna in Valfontanabuona).

Le cartografie sono state reperite sul sito ufficiale per l'ambiente della Regione Liguria con la disponibilità di banche dati ed informazioni ambientali, (http://www.ambienteinliguria.it/eco3/ep/cartageochimica/index.html).

Questo studio della composizione chimica del materiale sciolto risulta di fondamentale importanza, dal punto di vista pratico, perché permette di stabilire che "le concentrazioni rilevate nei sedimenti ricadenti in regioni geochimiche che "presentano livelli di fondo superiori a quelli stabiliti dalla normativa sono sostituite dalle concentrazioni del fondo naturale". I dati geochimici relativi ai sedimenti fluviali attivi (stream sediments), ipoteticamente rappresentativi del chimismo medio del territorio a monte del punto di prelievo, sono considerati dati primari o dati di base, in quanto non è possibile derivare questi da altri, con una attendibilità accettabile. I sedimenti fluviali rappresentano pertanto il materiale preferito nell'investigazione mineraria a scala di riconoscimento perchè ben rappresentativi delle rocce affioranti nel bacino. Questo materiale è ritenuto infatti molto efficace per individuare anomalie di molti metalli pesanti.

Per ciò che riguarda l'area di interesse, l'elaborazione statistica e la restituzione cartografica, della maggior parte dei metalli pesanti considerati, non evidenziano particolari anomalie di carattere naturale. Si segnalano

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

tuttavia 2 elementi chimici del gruppo, Vanadio e Cobalto: questi 2 metalli presentano valori di concentrazioni naturale molto prossimi o superiori ai limiti di CSC indicati in colonna A, destinazione d'uso verde o agricolo. Nel presente testo viene riportata, a titolo esemplificativo, la carta di distribuzione del Cobalto del bacino idrografico del Fiume Entella-Torrente Lavagna, che ricopre tutta la Val Fontanabuona.

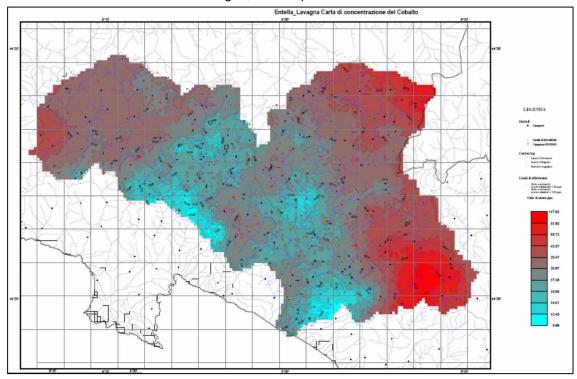


Figura 3-1 Estratto della cartografia geochimica regionale del Cobalto

3.1.2 Attività antropiche nell'area di intervento

Nell'area di intervento è stata fatta anche una ricerca delle attività antropiche, pregresse od attualmente esistenti, che possano rappresentare una potenziale fonte di contaminazione chimica dei materiali da scavo ed allo stesso tempo è stata fatta perciò una verifica della presenza di siti potenzialmente inquinati già riconosciuti.

A parte la presenza dell'infrastruttura autostradale e stradale esistente, il tracciato in progetto si sviluppa in buona parte in condizioni incontaminate e prive di pressioni antropiche rilevanti. Non sono inoltre presenti fonti di alterazione chimica indotta e di origine industriale. Infine, sulla base delle indicazioni rilevate negli elenchi regionali accreditati, il progetto non risulta interessare alcuna area già bonificata o individuata come sito potenzialmente inquinato. Allo stesso tempo non sono presenti siti indicati come ad alto rischio di incidente rilevante.

3.2 CARATTERIZZAZIONE AMBIENTALE PREGRESSA

3.2.1 Criteri d'indagine effettuate ai sensi del D.Lgs. 152/2006

La campagna di indagine ambientale, che ha interessato l'intero tracciato a è stata eseguita mediante un campionamento ragionato, secondo i criteri di cui all'art. 186 del DLgs. 152/2006 e s.m.i., svolta a supporto di una fase di progetto preliminare, nel 2011.

I punti d'indagine sono stati localizzati in posizione opportuna (ubicazione sistematica casuale) considerando le lavorazioni eseguite e da eseguire, ma anche le dimensioni dell'ammasso relative al sito oggetto dello scavo e alle particolari situazioni locali dello stesso.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Sono stati individuati, su circa 7 km di tracciato, 10 punti di indagine, con campionamento puntuale dei terreni e/rocce, prelevati tutti a quota di scavo, di cui 4 sulle opere in sotterraneo delle nuove gallerie.

L'ubicazione planimetrica dei punti è riportata in allegato 2 del presente Piano di Utilizzo. Le informazioni sui punti d'indagine sono riportate nelle seguenti tabelle, mentre in allegato:

Tabella 3-1 Punti di indagine campagna per la fase preliminare eseguita nel 2011

Sondaggio	Profondità prelievo	Litotipo dominante	Ambito	Area od opera
SV2	0,50-1,00	Calcari del M.te Antola	Svincolo A12	Area di svincolo A12 e rimodellamento Caravaggio
SV4	0,50-1,50	Calcari del M.te Antola	svincolo A12 e rimodellamento Caravaggio	Area di svincolo A12 e rimodellamento Caravaggio
SV5	0,20-0,70	Calcari del M.te Antola	svincolo A12 e rimodellamento Caravaggio	Area di svincolo A12 e rimodellamento Caravaggio
FB1	16,00-16,50	Calcari del M.te Antola	galleria Caravaggio	galleria Caravaggio
FB6	34,50-35,00	Calcari del M.te Antola	galleria Fontanabuona	galleria Fontanabuona
FB7	130,1-130,2	Argilliti di M.te Lavagnola	galleria Fontanabuona	galleria Fontanabuona
FB9	8,00-9,00	Ardesie di M.te Varzi	Piazzale di esazione Fontanabuona	Area imbocco lato Fontanabuona galleria Fontanabuona
FB10	0,50-1,00	Ardesie di M.te Varzi	piazzale di esazione Fontanabuona	Area di rimodellamento morfologico Fontanabuona e Area stazione di esazione della Fontanabuona, PZ01 e viadotto sul Litteglia,
FB15	0,00-1,00	Scisti manganesiferi	Adeguamento S.P. n. 22	Adeguamento e Sistemazione SP 22
FB17	0,50-1,00	Scisti manganesiferi	Adeguamento S.P. n. 22	Adeguamento e Sistemazione SP 22

3.2.2 Metodiche di campionamento

Le indagini ambientali in sito sono state effettuate secondo le prescrizioni della normativa (D.Lgs. 152/06, Parte Quarta, Titolo V, Allegato 2) con metodi di scavo a secco, in modo idoneo a prelevare campioni incontaminati ed evitando l'immissione nel sottosuolo di composti estranei e adottando particolari accorgimenti durante ogni manovra. Gli strumenti e le attrezzature impiegate nelle diverse operazioni sono caratterizzati da modalità costruttive e materiali tali da non aver comportato alcuna contaminazione o variazione delle caratteristiche chimico-fisiche delle matrici ambientali indagate.

La caratterizzazione ambientale è stata eseguita mediante scavi esplorativi (pozzetti o trincee) o tramiti indagini geognostiche profonde (sondaggi, eseguiti a carotaggio continuo).

I campioni di terreno dai sondaggi geognostici verticali sono stati prelevati a profondità variabili e di interesse.

I campioni prelevati sono da ritenersi compositi e sono rappresentativi dell'intero strato indagato, essendo formati da più incrementi, presi lungo lo spessore interessato lungo la medesima verticale geognostica.

Ciò avviene per normale prassi per ottenere una rappresentatività "media" di ciascun strato in relazione agli orizzonti individuati e/o alle variazioni laterali.

Ove è stato possibile, il terreno è stato privato della frazione con diametro maggiore di 2 cm direttamente in situ.

La formazione del campione è avvenuta su un telo di plastica (polietilene), in condizioni umide con aggiunta di acqua pura ed in condizioni comunque adeguate a evitare la variazione delle caratteristiche e la contaminazione del materiale. La suddivisione del campione è stata effettuata in più parti omogenee, adottando i metodi della quartatura riportati nella normativa.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Le modalità di conservazione e trasporto del materiale prelevato sono state dettate dalla norma UNI 10802 con trasferimento in laboratorio di analisi in un contenitore mantenuto a 4°C.

3.2.3 Check-list inquinanti analizzati

Con lo scopo di verificare che il chimismo del terreno in posto non pregiudichi un suo eventuale riutilizzo nel rispetto legislativo, è stato utilizzato un ampio set analitico, che ricomprende in buona parte anche quello indicato all'Allegato 4 del Regolamento.

Nei campioni di terreno prelevati si è ritenuto opportuno ricercare i principali metalli pesanti ed idrocarburi leggeri e pesanti, con l'aggiunta dei composti aromatici. L'individuazione di un tale set analitico è influenzata dalla particolare assenza di importanti pressioni antropiche presenti in sito od in aree limitrofe, ad eccezione dell'infrastrutturale autostradale esistente. Di seguito si specifica l'elenco del set chimico scelto per i campioni di terreno suddiviso per classi analitiche:

Composti inorganici: Antimonio (Sb); Arsenico (As); Berillio (Be); Cadmio (Cd); Cobalto (Co); Cromo (Cr) totale; Cromo esavalente (CrVI); Mercurio (Hg); Nichel (Ni); Piombo (Pb); Rame (Cu); Vanadio (V); Zinco (Zn); Cianuri totali (CN-); Fluoruri (F)

Idrocarburi: idrocarburi leggeri (C<12); idrocarburi pesanti (C>12).

Composti aromatici: Benzene; Etilbenzene; Stirene; Toluene; xilene; (m+p)-xilene; xileni (Somma Medium Bound); Sommatoria organici aromatici.

Il terreno è stato prima privato della sua frazione di particelle o materiale con diametro maggiore di 2 cm e, successivamente, le determinazioni analitiche in laboratorio sono state condotte sull'aliquota di granulometria inferiore a 2 mm. Le concentrazioni dei parametri analizzati sono state poi determinate riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro seguendo il D.Lgs. 152/2006 (Parte Quarta, Titolo V, Allegato 2). Nel caso di prelievi di campioni massivi da sondaggio, l'analisi è stata eseguita su matrice polverizzata ricavata da spezzoni litoidi.

Le analisi di laboratorio sui campioni sono effettuate secondo metodiche standardizzate o riconosciute valide a livello nazionale, comunitario o internazionale, tali da garantire l'ottenimento di valori 10 volte inferiori rispetto ai valori di concentrazione limite. Allo scopo si è ricorso a laboratori di analisi certificati ai sensi della normativa vigente in modo conforme a quanto richiesto dalla UNI CEN EN ISO 17025 (con accreditamento ACCREDIA).

3.2.4 Verifica dei requisiti ambientali dei materiali da scavo sulla base dei dati pregressi

Il rispetto dei requisiti di qualità ambientale di cui all'art. 184 bis comma 1 lettera d) del DLgs. 152/2006 e s.m.i. per l'utilizzo dei materiali da scavo come sottoprodotti è garantito quando il contenuto di sostanze inquinanti all'interno dei materiali da scavo sia inferiore alle Concentrazioni Soglia di Contaminazione (CSC), di cui alle colonne A e B tabella 1 allegato 5, al Titolo V parte IV del decreto legislativo n. 152 del 2006 e s.m.i., con riferimento alla specifica destinazione d'uso urbanistica, o ai valori di fondo naturali.

I risultati delle analisi effettuate sui campioni di terreno e materiale litoide evidenziano il totale rispetto dei valori soglia di concentrazione di colonna B, della tabella 1 allegato 5, al titolo V parte IV del Decreto legislativo n. 152 del 2006 e s.m.i., per siti ad uso commerciale-industriale, unica destinazione d'uso prevista per il materiale da scavo.

In allegato 1a sono riportati i certificati delle analisi di laboratorio per la caratterizzazione preventiva delle opere ai sensi del D.Lgs. 152/2006 smi.

Si può indicare che la quasi totalità del materiale scavato è conforme a colonna A, tranne un puntuale episodio con tenori di concentrazione in Cobalto di poco superiore al valore soglia stabiliti per la destinazione d'uso verde/residenziale (26 mg/kg a fronte di un limite di 20 nel campione FB10).

Tabella 3-2 Sintesi sulla caratterizzazione ambientale 2011 rispetto alle CSC

CS	CSC					
< A	Totale					
9	9 1					
% su intero	% su intero intervento					
90,0	10,0	100,0				

1100A3-LL00-PD-DG-PGT-00000-00000-R-AMB1000-1
Piano di Utilizzo delle Terre e Rocce da Scavo, ai sensi del D.P.R. 120/2017

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Tabella 3-3 Quadro degli esiti analitici della fase di progetto preliminare

SIGLA		D.Lgs	D.Lgs	SV2	SV4	SV5	FB1	FB6	FB7	FB9	FB10	FB15	FB17
CAMPIONE		152/2006	152/2006	5V2	574	505	FBI	FB6	FB/	FB9	FB10	FB15	FB1/
Profondità prelievo	m da p.c.	Parte IV	Parte IV	0,50-1,00	0,50-1,50	0,20-0,70	16,00-16,50	34,50-35,00	130,1-130,2	8,00-9,00	0,50-1,00	0,00-1,00	0,50-1,00
Litotipo dominante		All.5 Tab.	All.5	Calcari del	Calcari del	Calcari del	Calcari del	Calcari del	Argilliti di M.te	Ardesie di M.te	Ardesie di M.te	Scisti	Scisti
·		1	Tab. 1	M.te Antola	M.te Antola	M.te Antola	M.te Antola	M.te Antola	Lavagnola	Varzi	Varzi	manganesiferi	manganesiferi
data prelievo		limiti col.	limiti col.	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
		Α	В										
				Svincolo con	Svincolo con	Svincolo con	galleria	galleria	galleria	Plazzale di	Plazzale di	Adequamento	Adequamento
Ambito				A12	A12	A12	Caravaggio	Caravaggio	Caravaggio	esazione	esazione	SP22	SP22
Parametro										Fontanabuona	Fontanabuona		
		10	30			. 4 000				. 4 000			
Antimonio Arsenico	mg/Kg s.s.	20	50	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000
	mg/Kg s.s.	20	10	2,9	4,6	5,2	2,7	5,9	< 2.000	12,9	13,8	4,4	14,2
Berillio	mg/Kg s.s.	2	15	0,3	0,49	0,64	0,5	0,2	0,43	0,62	0,8	0,38	0,55
Cadmio	mg/Kg s.s.	20		< 0.200	< 0.200	0,24	< 0.200	0,27	< 0.200	< 0.200	< 0.200 26	< 0.200	< 0.200
Cobalto	mg/Kg s.s.		250	5,1	7,4	8	3,1	8,6	5,2	13,4		17,5	16,2
Cromo totale	mg/Kg s.s.	150	800	9,5	16,9	30,7	7,5	10	15,4	22,3	31,4	26,2	41,5
Cromo esavalente	mg/Kg s.s.	2	15	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000
Mercurio	mg/Kg s.s.	1 120	5	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Nichel	mg/Kg s.s.		500	13,7	19,1	25,5	9,2	36,4	17,4	25,5	43,8	34,8	50,7
Plombo	mg/Kg s.s.	100	1000	7,9	21,5	16,1	5,4	16,6	5,4	22,1	28,5	20,8	30,4
Rame	mg/Kg s.s.	120	600	42,6	18,8	26,5	12,8	21,6	19,5	28,2	41,9	81,5	53
Selenio	mg/Kg s.s.	3	15	< 0.500	0,78	0,97	0,6	2,5	0,92	0,79	1	0,6	1,2
Stagno	mg/Kg s.s.	1	350	< 0.200	0,53	0,97	0,38	0,68	< 0.200	0,64	0,72	1,1	0,91
Tallio	mg/Kg s.s.	1	10	0,43	< 0.200	0,24	0,69	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Vanadio	mg/Kg s.s.	90	250	7,9	14,1	34,9	5,9	10,6	9,4	17,2	25,2	18,7	30,7
Zinco	mg/Kg s.s.	150	1500	5,8	56,5	54	28,7	51,3	50,8	107	117	94,2	106
Cianuri liberi (ione cianuro)	mg/Kg s.s.	1	100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Fluoruri (ione fluoruro)	mg/Kg s.s.	100	2000	< 1.000	1,7	4,4	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	1,1
Benzene	mg/Kg s.s.	0,1	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Etilbenzene (A)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Stirene (B)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Toluene (C)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Benzo (a)antracene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (a) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Crisene	mg/Kg s.s.	5	50	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Pirene	mg/Kg s.s.	5	50	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
lpa Totali	mg/Kg s.s.	10	100	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
ldrocarburi leggeri (C<=12)	mg/Kg s.s.	10	250	< 1.000	< 1.000	< 1.000	n.r.	n.r.	n.r.	n.r.	< 1.000	< 1.000	< 1.000
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	19	21	19	n.r.	n.r.	n.r.	n.r.	16	14	18
Amianto	mg/Kg s.s.	1000	1000	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
CSC				A	A	A	Α	Α	A	A	В	A	A

3.2.5 Conformità al Regolamento del 2017 (ex 2012)

Dall'attività di indagine geognostica, descritta negli elaborati specialistici di progetto e sintetizzata nell'inquadramento del capitolo 2, si può evincere che le principali formazioni interessate sono caratterizzate principalmente da ardesie, argille, calcari e marne, ovvero rocce di origine sedimentaria.

È da escludersi la presenza naturale di fibre amiantifere di origine naturale, caratteristiche di rocce serpentinitiche, completamente assenti nella zona di interesse, o di origine antropica industriale, non rilevate nelle porzioni investigate. Per la profondità e le condizioni di scavo dell'opera, e per le condizioni pressoché inalterate di buona parte delle aree soggette alle lavorazioni, è inoltre possibile escludere al momento fonti e materiali di origine antropica, in particolar modo petrolifera o industriale.

In tal senso si evidenzia che, in relazione al set analitico indicato in tab 4.1 del Regolamento, anche in questo caso, al netto proprio del parametro amianto, il set di laboratorio risulta essere completo.

Si ritiene pertanto che la disponibilità di queste indagini possa essere ritenuta comunque utile a valutare la compatibilità ambientale dei materiali ai sensi del Regolamento.

Le suddette attività di caratterizzazione risultano infatti conformi alle disposizioni del nuovo Regolamento in quanto:

 a) le caratterizzazioni condotte sono state eseguite mediante campagne di indagine che hanno interessato il tracciato e l'ammasso roccioso di interesse;

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

- b) l'ubicazione dei punti è avvenuta secondo un modello concettuale basato sul campionamento ragionato;
- c) sono stati eseguiti pozzetti esplorativi e sondaggi profondi (per l'intero tratto in galleria con una densità coerente a quella richiesta dal Regolamento per la fase preliminare, 1 ogni circa 5000 m);
- d) le metodiche di campionamento e di preparazione dei campioni sono riferite alla norma UNI10802;
- e) sono adottati i criteri relativi alle frazioni granulometriche da scartare e da sottoporre ad analisi di laboratorio (2 cm / 2 mm), le concentrazioni finali sono riferite alla totalità dei materiali, comprensivi dello scheletro,
- f) le analisi sono state eseguite in laboratori certificati secondo metodi di prova riconosciuti (in grado di ottenere valori 10 volte minori dei limiti).

3.3 CAMPAGNE DI INDAGINE PER LA CARATTERIZZAZIONE DEI TERRENI IN SITO

Il tracciato di progetto è stato interessato da due campagna di indagine per la caratterizzazione ambientale dei terreni in sito, contestualmente all'esecuzione delle indagini geognostiche. La prima indagine è stata svolta nel 2013, eseguita ai sensi del D.M. 161/2012 e conforme alle disposizioni del DPR 120/2017, mentre la seconda è stata svolta in un periodo intercorso tra novembre 2022 e maggio 2023.

Per quanto riguarda l'analisi dei risultati della caratterizzazione ambientale ed il confronto con i limiti di contaminazione previsti dalla normativa va evidenziato che, poiché l'opera in progetto è una infrastruttura viaria, essa determina un uso del territorio assimilabile a quello che la normativa (D.Lgs. 152/2006 e ss.mm.ii., Allegato 5 alla parte IV) indica come uso commerciale o industriale. Di conseguenza come limiti di contaminazione di riferimento per le varie sostanze inquinanti possono essere assunti quelli della colonna B della Tabella 1 dell'Allegato 5 della Parte IV al Titolo V del D. Lgs. 152/2006 e ss.mm.ii.

Per completezza di trattazione, in virtù di un ciclo di gestione delle terre che prevede la possibilità di riutilizzo delle medesime anche al di fuori dei cantieri, nello studio si sono valutati come riferimento anche i limiti della colonna A della Tabella 1 dell'Allegato 5 della Parte IV al Titolo V del D. Lgs. 152/2006, che si riferiscono ad aree residenziali o a verde pubblico o privato.

Nel corso della campagna di indagine 2013 a supporto della progettazione <u>sono stati prelevati un totale di 100 campioni di terreno da sottoporre a caratterizzazione ambientale, provenienti da 43 punti di indagine, distribuiti lungo l'intervento; in particolare per il prelievo ambientale, sono stati interessati n° 11 sondaggi a carotaggio continuo e n° 32 pozzetti mediante uso di escavatore o carotiere.</u>

La campagna di indagine più recente ha previsto il prelievo di 54 campioni da 32 punti di indagine, parte dei quali coincidenti con siti già investigati nel 2013. La maggior parte dei punti sono distribuiti lungo il tracciato della SP22, in Val Fontanabuona, e nella zona di esazione, da 18 pozzetti/scavetti esplorativi o da 14 sondaggi a carotaggio continuo

In allegato sono riportati i Rapporti di Prova emessi dal laboratorio che ha eseguito le analisi sui campioni, ed in appendice sono presenti le tabelle riepilogative.

3.3.1 Criteri di ubicazione dei punti d'indagine

L'analisi delle caratteristiche chimiche dei terreni interessati è stata definita in base all'estensione delle aree o tratti di progetto con lo scopo di ottenere, prima della fase di scavo, un esaustivo grado di conoscenza dei requisiti ambientali. Dal momento che lo scavo all'aperto ed in sotterraneo avviene con mezzi meccanici tradizionali, senza l'utilizzo di additivi o polimeri, e non comporta di conseguenza la possibilità di contaminazione dei terreni, questa caratterizzazione preventiva effettuata in sito, ed eseguita con modalità a secco senza introduzione di materie, è riferita prettamente alle caratteristiche chimiche dei terreni attraversati e finalizzata a definirne l'eventuale contaminazione.

Nella predisposizione del piano di indagini, sono state considerate le pressioni antropiche presenti le conoscenze desunte dagli studi geognostici e la tipologia di interventi previsti in progetto.

Nell'ubicazione delle indagini si sono tenuti in conto i seguenti aspetti:

densità del campionamento, in considerazione dei rilievi in fase preliminare; omogeneità litologica, riferita specialmente ai calcari marnosi della Formazione del M.te Antola, per un'ampia fascia del territorio attraversato;

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

tipologia delle aree interferite;

particolarità e tipologia delle opere sul tracciato ravvicinate tra loro (rampe di innesto e viadotti).

L'individuazione della densità dei punti di indagine nonché la loro ubicazione si è basata su considerazioni di tipo ragionato, in considerazione degli interventi principali e delle opere da realizzare, basandosi sui criteri previsti nell'Allegato 2 del DPR 120/2017. I punti d'indagine hanno seguito pertanto un modello statistico e sono stati localizzati in posizione opportuna.

Le informazioni di ciascun punto d'indagine sono riportate negli elaborati allegati al presente. L'ubicazione dei punti è riportata in apposita planimetria allegata, secondo quanto indicato nell'allegato 5 al D.P.R. 120/2017.

3.3.2 Ubicazione dei punti e caratteristiche tecniche d'indagine

Le indagini ambientali nel sito sono state effettuate secondo le prescrizioni della normativa (ex DM 161/2012 e DPR 120/2017 e D.Lgs. 152/06, Parte Quarta, Titolo V, Allegato 2) con metodi di scavo a secco, in modo idoneo a prelevare campioni senza alterarne le caratteristiche: sono state evitate immissioni nel sottosuolo di composti estranei, adottando particolari accorgimenti durante ogni manovra (uso di rivestimenti, eliminazione di gocciolamenti, pulizia dei contenitori, pulizia di tutti le parti delle attrezzature tra un campione e l'altro).

Alcuni sondaggi a carotaggio continuo, per un totale di 11, eseguiti nella campagna geognostica di progettazione (sigla **FB o SV**) sono stati utilizzati anche per il prelievo di campioni ambientali; la perforazione è stata eseguita a rotazione, rigorosamente a secco, utilizzando margarina vegetale al posto del grasso minerale ed utilizzando ad ogni manovra l'idropulitrice per pulire accuratamente e regolarmente aste e carotiere. Inoltre, sono stati realizzati 32 scavi esplorativi mediante escavatore meccanico o carotiere (Sigla **PZ-CN# o PZ-LL#**), con il solo scopo di prelevare campioni di terreno da sottoporre ad analisi chimica.

I punti di indagine, soggetti a campionamento ed analisi lungo il tracciato, sono stati in totale 43 (come da tabella sotto riportata). La distribuzione di questi siti di indagine è: 4 espressamente lungo il tracciato in linea all'aperto; 35 in aree di cantiere, di imbocco, di sistemazione e di svincolo; 4 per l'investigazione sotterranea profonda lungo i tracciati delle gallerie Fontanabuona e Caravaggio (anche con sondaggi a carotaggio con andamento orizzontale, eseguiti in prossimità degli imbocchi).

Il prelievo complessivo di terre e rocce da scavo è stato di 100 campioni, in doppia o tripla aliquota; tutti i campioni sono stati sottoposti ad analisi di laboratorio. I 100 campioni sono così suddivisi e distribuiti: 31 campioni superficiali, relativi al top soil, 42 campioni superficiali prelevati entro il primo metro di piano campagna, 27 prelievi profondi da sottoporre ad analisi.

È stato possibile eseguire un sondaggio orizzontale al fronte dell'imbocco sud Fontanabuona (FB9quater) prelevando un campione ad ogni variazione della litologia dei materiali da scavo, nei primi 300 m di avanzamento. In tal modo, in riferimento alle indicazioni di allegato 2, è stato possibile analizzare le uniche variazioni litologiche presenti lungo l'intero tracciato in sotterraneo dell'opera a progetto, essendo infatti le 2 gallerie caratterizzate unicamente dal calcale marnoso della Formazione del M.te Antola.

Tabella 3-4 Elenco dei punti di indagine per la caratterizzazione ambientale svolta in fase di Progetto Definitivo 2013

	Sito di indagine	Opera principale prevista	Ambito	n° prelievi	Profondità campionamento (m dal p.c.)	Litologia dominante
1	PzCN17	Area imbocco lato Rapallo Galleria Caravaggio	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
2	PzCN18	Area imbocco lato Rapallo Galleria Caravaggio	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
3	PzCN19	Area imbocco lato Rapallo Galleria Caravaggio	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
4	PzCN01	Area di svincolo A12	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
5	PzCN02	Area di svincolo A12	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
6	PzCN03	Area di svincolo A12	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
7	PzCN05	Area di svincolo A12	innesto A12	2	0,00-0,30 (top soil); 0,30-1,00 m;	Calcari del M.te Antola
8	PzLL01	Area di svincolo A12	innesto A12	3	0,00-0,30 (top soil); 0,30 -1, 00 m; 1,00-2,00 m;	Calcari del M.te Antola

	Sito di indagine	Opera principale prevista	Ambito	n° prelievi	Profondità campionamento (m dal p.c.)	Litologia dominante
9	SV1	Area di svincolo A12	innesto A12	2	0.00-1.00m; 5.00-6.00m	Calcari del M.te Antola
10	FB3	Galleria Caravaggio	Arbocò	3	0.00-0.50 m; 1.00-1.40 m; 29,50-30,0 m;	Calcari del M.te Antola
12	FB4	Area di Arboccò	Arbocò	2	0.00-0.60 m; 0.60-1.00 m	Calcari del M.te Antola
11	FB5	Galleria Fontanabuona	Arbocò	3	0.00-0.45 m; 1.10-1.60 m; 19.60-20.00m	Calcari del M.te Antola
13	FB9quater	Galleria Fontanabuona	innesto con SP22	5	1-1.5m; 42.2-42.6m; 220-221m; 232.5-233m; 254-254.5m	Ardesie di M.te Varzi
14	PzCN21	Galleria Fontanabuona, imbocco lato Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
15	PzCN22	Galleria Fontanabuona, imbocco lato Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
16	PzCN23	Galleria Fontanabuona, imbocco lato Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
17	PzCN24	Galleria Fontanabuona, imbocco lato Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
18	FB11	Area piazzale di esazione della Fontanabuona	innesto con SP22	3	0.00-0.60 m; 0.60-1.00 m; 1,00-1,50 m	Ardesie di M.te Varzi
19	FB12	Area piazzale di esazione della Fontanabuona	innesto con SP22	3	0.00-0.30 m; 0.30-1.00 m; 1,00-1,50 m	Ardesie di M.te Varzi
20	FB14	Area piazzale di esazione della Fontanabuona	innesto con SP22	3	0.00-0.40 m; 0.50-1.00 m; 1,00-2,00 m	Ardesie di M.te Varzi
21	PzCN25	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
22	PzCN26	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
23	PzCN27	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
24	PzCN28	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
25	PzCN29	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
26	PzCN30	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
27	PzCN31	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
28	PzCN32	Area piazzale di esazione della Fontanabuona	innesto con SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Ardesie di M.te Varzi
29	FB20	Area piazzale di esazione della Fontanabuona	innesto con SP22	3	0.00-0.30 m; 0.30-1.40 m; 1,40-1,80 m	Scisti manganesiferi
30	FB18	Adeguamento SP 22, Ponte sul Torrente Lavagna, VI10	adeguame nto SP22	3	0.00-0.60 m; 5,00-5,50 m 5,50-6,00 m	Scisti manganesiferi
31	FB21	Adeguamento SP 22, Ponte sul Torrente Lavagna, VI10	adeguame nto SP22	3	0.00-1.00 m; 3,00-3,80 m; 3.80-4.30m	Scisti manganesiferi
32	PzCN33	Adeguamento SP 22 - CA10	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
33	PzCN34	Adeguamento SP 22 - CA10	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
34	PzCN35	Adeguamento SP 22	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
35	PzCN36	Adeguamento SP 22	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
36	PzCN37	Adeguamento SP 22	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi

	Sito di indagine	Opera principale prevista	Ambito	n° prelievi	Profondità campionamento (m dal p.c.)	Litologia dominante
37	PzCN43	Adeguamento SP 22 - CA8	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
38	PzCN44	Adeguamento SP 22	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
39	PzCN45	Adeguamento SP 22 - CA9	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
40	PzCN46	Adeguamento SP 22 - CA9	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
41	PzCN47	Adeguamento SP 22 - CA9	adeguame nto SP22	2	0,00-0,30 (top soil); 0,30-1,00 m;	Scisti manganesiferi
42	PzLL02	Adeguamento SP 22	adeguame nto SP22	3	0,00-0,30 (top soil); 0,30 -1, 00 m; 1,00-2,00 m;	Scisti manganesiferi
43	PzLL03	Adeguamento SP 22	adeguame nto SP22	3	0,00-0,30 (top soil); 0,30 -1, 00 m; 1,00-2,00 m;	Scisti manganesiferi

Come indicato ad inizio capitolo, nel periodo intercorso tra novembre 2022 e maggio 2023, è stata svolta una campagna geognostica integrativa, durante la quale è stato possibile prelevare nuovi campioni ed aggiornare così il quadro chimico-ambientale sui materiali di scavo.

I punti di questa indagine integrativa, soggetti a campionamento ed analisi lungo il tracciato, sono stati in totale 32 (come da tabella sotto riportata). La distribuzione di questi siti di indagine è quasi completamente dedicata alle opere all'aperto, tranne 1 punto di indagine (FB8) lungo la galleria Fontanabuona: 3 punti nella zona degli interventi lato Rapallo; 5 punti in prossimità dell'area di cantiere CA02, poi ridimensionata; 8 punti di verifica nella zona del rimodellamento in Fontanabuona e 15 punti lungo il tracciato SP22, tra cui alcuni sulla zona di cantiere e supporto alla costruzione del viadotto sul torrente Lavagna.

Il prelievo complessivo di terre e rocce da scavo è stato di 54 campioni, in doppia aliquota; tutti i campioni sono stati sottoposti ad analisi di laboratorio. La distribuzione dei prelievi ha interessato principalmente lo spessore più superficiale, e solo lungo della SP22, i prelievi hanno riguardato la matrice anche in profondità in alcune verticali.

	Sito di indagine	Opera principale prevista	Ambito	n° prelievi	Profondità campionamento (m dal p.c.)	Litologia dominante
44	SE1	Area di svincolo A12	innesto A12	3	0.3 - 2.0 m; 2,0-4,0 m; 8,0-8,2 m	Calcari del M.te Antola
45	SE2	Area di svincolo A12	innesto A12	2	0.1 - 1.0 m; 8,0-8,2 m	Calcari del M.te Antola
46	SE3	Area di svincolo A12	innesto A12	2	0.0 - 2.0 m; 9,0-9,2 m	Calcari del M.te Antola
47	SE4	ex area cantiere CA02	innesto A12	4	0.0 - 2.0 m; 2,0-4,0 m; 13,6-14,6 m; 16,8-17,0 m;	Calcari del M.te Antola
48	Pz1	ex area cantiere CA02	innesto A12	1	0.0 - 1.0 m	Calcari del M.te Antola
49	Pz2	ex area cantiere CA02	innesto A12	2	0.0 - 1.0 m; 1,0-2,0 m;	Calcari del M.te Antola
50	Pz3	area cantiere CA02	innesto A12	1	0.0 - 1.0 m	Calcari del M.te Antola
51	Pz4	area cantiere CA02	innesto A12	1	0.0 - 1.0 m	Calcari del M.te Antola
52	SE6	adeguamento SP22	adeguamento SP22	2	0.1 - 1,3 m; 9,3-9,5 m	Scisti manganesiferi
53	SE7	adeguamento SP22	adeguamento SP22	2	0.1 - 0,7 m; 1,5-1,7 m	Scisti manganesiferi
54	SE8	adeguamento SP22	adeguamento SP22	3	0.2 - 1,5 m; 3,0-4,0 m; 8,0-8,2 m	Scisti manganesiferi

	Sito di indagine	Opera principale prevista	Ambito	n° prelievi	Profondità campionamento (m dal p.c.)	Litologia dominante
55	SE9	adeguamento SP22	adeguamento SP22	3	0.2 - 1,5 m; 3,0-4,0 m; 8,0-8,2 m	Scisti manganesiferi
56	SE10	adeguamento SP22	adeguamento SP22	3	0.2 - 2,0 m; 2,0-4,0 m; 8,4-8,6 m	Scisti manganesiferi
57	SE11	adeguamento SP22	adeguamento SP22	2	0.2 - 1,5 m; 8,8-9,0 m	Scisti manganesiferi
58	SE12	adeguamento SP22	adeguamento SP22	2	0.2 - 2.0 m; 9,0-9,2 m	Scisti manganesiferi
59	SE13	adeguamento SP22	adeguamento SP22	2	0.2 - 2.0 m; 8,0-8,2 m	Scisti manganesiferi
60	SE14	adeguamento SP22	adeguamento SP22	3	0.1 - 2.0 m; 2,0-4,0 m; 8,0-8,2 m	Scisti manganesiferi
61	FB8	Galleria Fontanabuona	Galleria Fontanabuona	2	166,20 - 166,40 m; 177,70-177,90 m;	Calcari del M.te Antola
16rep	PZCN23bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
17rep	PZCN24bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
21rep	PZCN25bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
25rep	PZCN29bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
22rep	PZCN26bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
23rep	PZCN27bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
24rep	PZCN28bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
28rep	PZCN32bis	Area piazzale di esazione della Fontanabuona	innesto con SP22	1	0,0-0,5 m	Ardesie di M.te Varzi
42rep	PZLL02bis	adeguamento SP22	adeguamento SP22	1	0,0-0,5 m	Scisti manganesiferi
35rep	PZCN36bis	adeguamento SP22	adeguamento SP22	1	0,0-0,5 m	Scisti manganesiferi
29rep	FB20bisCA1	cantiere CA12 - SP22	adeguamento SP22	1	0,0-1,0 m	Scisti manganesiferi
62	PZCA12-1	cantiere CA12	adeguamento SP22	1	0,0-1,0 m	Scisti manganesiferi
63	PZCA12-2	cantiere CA12	adeguamento SP22	1	0,0-1,0 m	Scisti manganesiferi
64	PZCA12-3	cantiere CA12	adeguamento SP22	1	0,0-0,5 m	Scisti manganesiferi

Complessivamente il quadro ambientale sulla caratterizzazione chimica dei materiali è descritto da 64 punti di indagine e da 143 analisi (a cui si aggiungono 11 punti di indagini, nella parte della Val Fontanabuona, ripetuti con altrettanti prelievi ed analisi, per un totale complessivo di circa 154 esiti di laboratorio chimico).

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

L'ubicazione planimetrica delle indagini eseguite è riportata in allegato dedicato.

3.3.3 Metodica di campionamento

Le indagini ambientali nel sito sono state effettuate secondo le prescrizioni della normativa (D.Lgs. 152/06, Parte Quarta, Titolo V, Allegato 2) con metodi di scavo a secco, in modo idoneo a prelevare campioni senza alterarne le caratteristiche ed evitando l'immissione nel sottosuolo di composti estranei, adottando particolari accorgimenti durante ogni manovra (uso di rivestimenti, materiali non verniciati, eliminazione di gocciolamenti, pulizia dei contenitori, pulizia di tutti le parti delle attrezzature tra un campione e l'altro).

La quantità di prelievi su ciascun punto di indagine individuato è conforme alle indicazioni dell'allegato 4 del D.P.R. 120/2017, ponendo attenzione alle effettive condizioni del sito, agli orizzonti stratigrafici interessati (con particolare attenzione allo strato superficiale con presenza dell'apparato radicale e vegetale), alle profondità massime di scavo da p.c. previste da progetto in ciascun punto e della possibilità di accesso o di interferenza dei punti stessi.

La caratterizzazione ambientale è stata eseguita mediante profilo con carotieri a mano o scavetti a mano, pozzetti esplorativi e sondaggi geognostici finalizzati anche al prelievo ambientale.

Nel caso di sondaggi a carotaggio continuo per i prelievi profondi, le operazioni di selezione da sondaggio sono effettuate prelevando spezzoni di carota alla quota scavo di interesse appena estratti dal carotiere (almeno 3 aliquote) e formando un campione composito da sottoporre ad analisi.

Lo strato superficiale, top soil, per la presenza della componente organica relativa all'apparato vegetale e radicale, è stato campionato indicativamente nei primi 0,3 m dal p.c., su ogni punto di indagine considerato, eccetto alcuni effettuati tramite sondaggio geognostico.

I 3 siti PZ-LL-nn risultano essere lungo il tracciato lineare, in corrispondenza delle aree di scavo per la realizzazione di piccole opere (ad es. trincee) del rilevato stradale, In considerazione della profondità di scavo limitata a 1-2 m da p.c.,sono stati prelevati su ogni sito, oltre al campione superficiale, 2 campioni rappresentativi di ciascun metro.

I punti di indagine con sigla PZ-CN-nn hanno previsto 2 campionamenti (nella coltre superficiale e tra 0,3-1 m dal p.c.), essendo riferite ad aree di cantiere, aree di rimodellamento o a zone di impronta lungo il tratto lineare di adeguamento della SP 22. Sono aree o tratte, oggetto del solo scotico superficiale per la sistemazione ed adeguamento del piano di posa (sino a circa 0,3 m da p.c., con un massimo pari a circa 0,6-0,8 m da p.c.) con un limitato movimento di materiali.

In generale i campioni volti all'individuazione dei requisiti ambientali dei materiali da scavo sono stati prelevati come campioni formati da diversi incrementi prelevati lungo ciascun orizzonte stratigrafico individuato in ogni punto di indagine. Ciò avviene per ottenere una rappresentatività "media" di ciascun strato in relazione agli orizzonti individuati e/o alle variazioni laterali.

Secondo le metodiche standard, indicate in allegato 4 al D.M. 120/2017 (ex DM 161/2012), il campionamento è stato effettuato sul materiale tal quale, con le dovute operazioni di quartatura, in modo tale da ottenere un campione rappresentativo.

La formazione del campione è avvenuta su un telo di plastica (polietilene) di dimensioni minime di 2x2 m, in condizioni umide e, se necessario, con aggiunta di acqua pura. L'attività si è svolta in condizioni comunque adeguate a evitare la variazione delle caratteristiche e la contaminazione del materiale. La suddivisione del campione è stata effettuata in più parti omogenee, adottando i metodi della quartatura riportati nella normativa.

La preparazione dei campioni delle matrici terrigene, ai fini della loro caratterizzazione chimico-fisica, è stata effettuata secondo i principi generali presenti in normativa e secondo le ulteriori indicazioni di cui al seguito.

Ogni campione prelevato è stato opportunamente vagliato al fine di ottenere una frazione passante al vaglio 2 cm. Le determinazioni analitiche di laboratorio sono state condotte sull'aliquota di granulometria inferiore a 2 mm e successivamente mediata sulla massa del campione passante al vaglio 2 cm.

Le modalità di conservazione e trasporto del materiale prelevato sono dettate dalla normativa di riferimento (UNI 10802). Il campione di laboratorio è stato raccolto in un idoneo contenitore bocca larga con tappo a chiusura ermetica con sottotappo teflonato, sigillato ed etichettato con la data di prelievo, con il riferimento al sito di prelievo e, quindi, all'area di lavoro di provenienza.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

3.3.4 Analisi chimiche di laboratorio

Le analisi chimiche dei campioni di terreno sono state eseguite presso un laboratorio riconosciuto ed accreditato, secondo il sistema di certificazione ACCREDIA, ai sensi della normativa vigente in modo conforme a quanto richiesto dalla UNI CEN EN ISO 17025.

Le analisi territoriali ed ambientali svolte nell'ambito di studio hanno escluso l'esistenza di particolari criticità ambientali, si è supposto che la principale fonte di potenziale contaminazione del suolo interessato dal progetto stradele in oggetto sia rappresentata dal traffico veicolare che insiste sulle parti di infrastruttura esistente. Nei campioni di terreno si è ritenuto pertanto opportuno ricercare i principali metalli pesanti, con aggiunta del vanadio, confermando il set analitico di base proposto con composti aromatici e idrocarburi pesanti. Di seguito si specifica l'elenco del set chimico scelto per i campioni di terreno suddiviso per classi analitiche (tabella 4.1 dell'allegato 4 del DPR 120/2017):

Composti inorganici: Arsenico (As); Cadmio (Cd); Cobalto (Co); Cromo (Cr) totale; Cromo (Cr) VI; Mercurio (Hg); Nichel (Ni); Piombo (Pb); Rame (Cu); Vanadio (V); Zinco (Zn).

Idrocarburi pesanti (C>12).

Composti aromatici: Benzene; Etilbenzene; Stirene; Toluene; Xilene.

Composti aromatici policiclici (IPA).

Amianto al SEM.

Le analisi chimico-fisiche sono state condotte adottando metodologie ufficialmente riconosciute, tali da garantire il rilevamento di valori 10 volte inferiori rispetto ai valori di concentrazione limite e comunque sono utilizzate le migliori metodologie analitiche ufficialmente riconosciute per tutto il territorio nazionale che presentino un limite di quantificazione il più prossimo ai valori di cui sopra.

I risultati delle analisi sui campioni sono stati confrontati con le Concentrazioni Soglia di Contaminazione di cui alle colonne A e B della tabella 1, allegato 5 al titolo V parte IV del D.Lgs. n. 152/2006 e s.m.i., con riferimento alla specifica destinazione d'uso progettuale dei siti di scavo.

3.3.5 Caratterizzazione ambientale da completare in una fase preliminare alle lavorazioni

Nell'ambito della campagna di indagini, secondo i criteri del Regolamento (rif allegato 9 del DPR 120/2017), sono stati individuati punti di prelievo presso i quali in fase progettuale non è stato possibile eseguire il campionamento o raggiungere la effettiva quota scavo. Ciò è avvenuto in corrispondenza di aree caratterizzate da particolari e diversificate condizioni: avverse condizioni del sito o del tratto (acclività, rischio dissesto, interruzione e costrizione del traffico locale, area densamente boscata, area coltivata, ecc.); potenziali interferenze con sottoservizi e opere esistenti; ma anche divieto di accesso da parte della proprietà privata o mancata autorizzazione all'accesso per non reperibilità del proprietario.

Anche alcuni punti riferiti alla caratterizzazione delle aree di cantiere sono stati indisponibili, perché sono interferenti con aree in coltivazione o servizi ed opere, o perché la non reperibilità od il divieto dei proprietari non ne ha permesso l'accesso.

Il campionamento e l'analisi in generale di queste indagini sono rimandati ad una campagna ambientale integrativa da svolgere preventivamente alla fase esecutiva o realizzativa dell'intervento.

Si sottolinea comunque, che il quadro ambientale descritto, emerso dalle indagini geognostiche e dai rilievi di campo sulla caratterizzazione ambientale, è riferito ad una omogeneità litologica del materiale interessato dalle lavorazioni, lungo l'intero tratto in progetto, esclusivamente costituito da formazioni calcaree e argillitiche.

Si evidenzia anche che nel caso delle aree di cantiere il materiale di scavo, nella sola parte di scotico, non subisce particolari movimenti, essendo depositato nel perimetro di duna delle medesime aree e riutilizzato in sito al termine delle lavorazioni per la sistemazione definitiva. Quindi risulta utile che la verifica sulle aree di cantiere possa avvenire anche in una fase preliminare prossima alla predisposizione stessa delle aree: il materiale è gestito nell'ambito dello stesso con disposizioni di verifica e controllo, così come indicato nel capitolo dedicato alla caratterizzazione in corso d'opera.

I punti di indagine risultati inaccessibili e non eseguibili al momento della fase di progetto definitivo sono in totale 11 lungo linea, di cui 3 già eseguiti in progetto ma prevedendo il completamento con prelievo sino a

AUTOSTRADA A12 GENOVA-ROMA Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma

Progetto Definitivo

fondo scavo. Mentre i siti all'interno delle aree di cantiere sono in totale 31, sulla base delle indicazioni di Allegato 4 del D.P.R. 120/2017 (ex DM 161/2012) rispetto alla superficie occupata. La disposizione dei punti dovrà seguire un criterio statistico casuale per garantire comunque una copertura omogenea dell'impronta di cantiere. Da ciascun punto di indagine dovrà essere garantito almeno un prelievo caratteristico della parte vegetale di scotico (in generale tra 0,0 – 0,6 m da p.c., ad eccezione delle aree di supporto dove lo scotico è previsto di spessore 30 cm). Le aree di cantiere ad oggi pavimentate anche in modo parziale potranno essere rivalutate con una modalità differente a quella proposta in funzione anche delle ottimizzazioni che le successive fasi progettuali potranno proporre o prevedere. (ad es CA2, attuale area parcheggio Caravaggio lungo A12).

L'ubicazione dei punti per l'indagine da eseguire in fase preliminare a lavori è indicata negli allegati grafici al presente Piano di Utilizzo.

Di seguito, secondo lo schema indicato dall'allegato 2 del D.M. DPR 120/2017, si riportano solo le quantità minime previste per ciascuna area in relazione alla superficie occupata, aggiornato allo stralcio di alcune aree di cantiere, tra cui il CA3. Da ciascun sito di indagine deve essere garantito almeno un prelievo caratteristico della parte vegetale di scotico (0,0-0,6 m da p.c.):

Tabella 3-5 Numero di prelievi da svolgere in una fase preliminare ai lavori in aree cantiere

Cantiere	Superficie in mq	n° prelievi previsti	Litologia dominante
CA4	3.300	4	Calcari del M.te Antola
CA7	16.000	8	Scisti manganesiferi
CA8	7.000	5	Scisti manganesiferi
CA9	2.100	3	Scisti manganesiferi
CA10	2.200	3	Scisti manganesiferi
CA11	1.100	3	Scisti manganesiferi

Tabella 3-6 Punti di indagine da svolgere in una fase preliminare ai lavori per il completamento lungo linea

Punto indagine	Modalità ed Opera prevista	Profondità campionamento presunta (m dal p.c.)	n° prelievi previsti	Litologia dominante
		(III dai p.c.)		
PzCN17	Pozzetto esplorativo imbocco lato Rapallo Galleria Caravaggio	A fondo scavo	1	Calcari del M.te Antola
PzCN18	Pozzetto esplorativo imbocco lato Rapallo Galleria Caravaggio	A fondo scavo	1	Calcari del M.te Antola
PzCN19	Pozzetto esplorativo imbocco lato Rapallo Galleria Caravaggio	A fondo scavo	1	Calcari del M.te Antola
PZCNXX	Pozzetto esplorativo area imbocchi ambito Abboccò	0,00-0,30 (top soil); 0,30-1,00 m; fondo scavo	3	Calcari del M.te Antola
PZCNXX	Pozzetto esplorativo area imbocchi ambito Abboccò	0,00-0,30 (top soil); 0,30-1,00 m; fondo scavo	3	Calcari del M.te Antola
PZCNXX	Pozzetto esplorativo area imbocchi ambito Abboccò	0,00-0,30 (top soil); 0,30-1,00 m; fondo scavo	3	Calcari del M.te Antola
PZCNXX	Pozzetto esplorativo area imbocchi ambito Abboccò	0,00-0,30 (top soil); 0,30-1,00 m; fondo scavo	3	Calcari del M.te Antola
PZCNXX	Pozzetto esplorativo area imbocchi ambito Abboccò	0,00-0,30 (top soil); 0,30-1,00 m; fondo scavo	3	Calcari del M.te Antola

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

La precedente tabella è stata aggiornata sulla base della campagna integrativa del 2022-2023, svolta in fase di integrazione progettuale, che ha permesso di valutare con il prelievo e l'analisi i terreni interessati dalle lavorazioni per la realizzazione dei viadotti lungo la SP22 (VI07, VI09 e VI10): in tal senso sono stati esclusi dal piano indagini da svolgersi nella fase preliminare del corso d'opera i punti segnalati con FBXX e sostituiti dalle indagini svolte SE6÷SE14. Allo stesso tempo, i pozzetti esplorativi in ambito Arboccò sono stati confermati sebbene non sia più prevista la viabilità di cantiere per l'accesso, in quanto utili alla verifica preventiva per le diverse lavorazioni comunque previste.

3.4 SINTESI DEI RISULTATI DELLE ANALISI DI CARATTERIZZAZIONE AMBIENTALE

Si riporta in sintesi lo studio dei dati ricavati dalle analisi chimiche condotte sui campioni di terreno prelevati, riportati nelle tabelle seguenti.

I campioni di terreno prelevati sono stati consegnati integri e senza alcun tipo di alterazione al laboratorio, dove sono state eseguite le operazioni preliminari di preparazione alle analisi chimiche. Le analisi chimiche di laboratorio sono cominciate con le fasi di preparazione dei campioni.

Le date di consegna e di inizio e fine indagine analitica sono riportate, per tutte le attività di laboratorio eseguite, nei Rapporti di Prova allegati al presente documento. In allegato al presente documento si riportano, infatti, i certificati di prova di tutte le analisi eseguite, in cui sono indicati per ciascun campione i risultati di laboratorio dei diversi parametri ricercati e la metodica utilizzata, il numero del rapporto di prova ed i valori limite previsti dalla normativa (D.Lgs. 152/06, Parte Quarta, Titolo V, Allegato 5, tabella 1 colonne A e B) per un diretto confronto e per la verifica di eventuali superamenti delle concentrazioni soglia di contaminazione (CSC).

I risultati analitici hanno evidenziato, per i campioni di terreno prelevati, un totale rispetto dei limiti vigenti previsti in colonna B, Tabella 1, D.Lgs. 152/2006, Parte Quarta, Titolo V, Allegato 5, e pertanto conformi con la destinazione d'uso industriale e commerciale, quali sono considerate le aree interessate dal tracciato stradale.

I risultati analitici, in particolare, presenti in allegato (AMB1001), permettono di definire che:

- a) Il 100% dei 154 campioni analizzati in laboratorio, ai sensi del D.P.R. 120/2017, risulta conforme ai limiti di cui alle CSC (Concentrazioni Soglia di Contaminazione) della colonna B, della Tabella 1 dell'Allegato 5 alla Parte IV - Titolo V del D.Lgs. 152/06, indicata come riferimento per la destinazione d'uso dei siti di intervento;
- b) Il 62% dei campioni risulta avere tenori al di sotto dei limiti di CSC (Concentrazioni Soglia di Contaminazione) riferiti alla destinazione di uso residenziale o agricola, indicati in colonna A della tabella 1, allegato 5 al titolo V parte I\V del D.Lgs. n. 152/2006 e s.m.i.; i superamenti rilevati nei terreni sono riferiti a tenori di poco superiori alla CSC di colonna A in:
 - alcuni metalli pesanti, soprattutto Cobalto, soprattutto nella parte di Fontanabuona ha riguardato 24 campioni;
 - idrocarburi pesanti (36 campioni su 156), in buona parte su campioni prelevati in prossimità di infrastrutture esistenti qualificate come pressione da traffico veicolare (in particolar modo in ambito innesto A12 e adeguamento SP22), con associato tenori anomali puntuali in Zinco e/o Piombo:
- c) la quasi totalità dei campioni analizzati in laboratorio e prelevati nelle aree di scavo risulta conforme, nella concentrazione in composti "indicatori" di potenziali criticità ambientali, quali composti organici aromatici o policiclici aromatici, ai limiti di CSC di colonna A della Tabella 1 dell'Allegato 5 alla Parte IV - Titolo V del D.Lgs. 152/06; in un solo caso si segnala infatti un tenore anomalo in IPA nella zona della Fontanabuona;
- d) per quanto riguarda la presenza di fibre amiantifere, in coerenza con la natura geologica dei terreni ed all'assenza di riporti di origine antropica e di natura pericolosa, il 100% dei campioni analizzati in laboratorio e prelevati nelle aree di scavo risulta conforme ai limiti della Tabella 1 dell'Allegato 5 alla Parte IV - Titolo V del D.Lgs. 152/06.

Il seguente quadro è stato aggiornato agli esiti analitici sui campioni prelevati durante le indagini integrative 2022-2023.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Tabella 3-7 Riepilogo degli esiti analitici di laboratorio ai sensi del DPR 120/2017

Siti di SCAVO	Numero rapporti di prova	% < CSC colonna A	% < CSC colonna B	% > CSC colonna B
ambito innesto A12	19	64%	36%	0
ambito Abboccò	5	80%	20%	0
ambito innesto con SP22	44	70%	30%	0
adeguamento SP22	76	50%	50%	0
Gallerie	10	90%	10%	0

Tabella 3-8 Quadro di sintesi analitico completo dati 2011, 2013 e 2022

abona o o quadro ar on	to or arramer	000000	u.u.u. = 0 , .		
Siti di SCAVO	Numero rapporti di prova	< A	< B	> B	
ambito innesto A12	32	24	8	0	
ambito Abboccò	5	4	1	0	
ambito innesto con SP22	46	31	15	0	
adeguamento SP22	62	28	34	0	
Gallerie	10	9	1	0	

In allegato sono riportati anche i certificati delle analisi di laboratorio per la caratterizzazione preventiva delle opere ai sensi del DPR 120/2017 (ex DM 161/2012).

3.5 COMPATIBILITÀ AMBIENTALI DEI MATERIALI DA SCAVO NEI SITI DI UTILIZZO

I siti di utilizzo negli ambiti individuati sono sostanzialmente coincidenti con i siti di produzione previsti nei medesimi (si veda l'elaborato grafico in allegato). Pertanto, al netto di ulteriori indagini di caratterizzazione rimandate ad una fase realizzativa di corso d'opera (si veda il paragrafo dedicato nel presente capitolo e le indicazioni di cap. 7), la caratterizzazione dei siti di utilizzo è pertanto costituita dalle stesse informazioni finalizzate alla caratterizzazione dei siti di scavo.

Come da allegato 2 al Regolamento, il rispetto dei requisiti di qualità ambientale di cui all'art. 184 bis comma 1 lettera d) del DLgs. 152/2006 e s.m.i. per l'utilizzo dei materiali da scavo come sottoprodotti è garantito quando il contenuto di sostanze inquinanti all'interno dei materiali da scavo sia inferiore alle Concentrazioni Soglia di Contaminazione (CSC), di cui alle colonne A e B tabella 1 allegato 5, al Titolo V parte IV del decreto legislativo n. 152 del 2006 e s.m.i., con riferimento alla specifica destinazione d'uso urbanistica, o ai valori di fondo naturali.

Sempre secondo l'allegato 2, i materiali da scavo sono utilizzabili per reinterri, riempimenti, rimodellazioni, ripascimenti, interventi in mare, miglioramenti fondiari o viari oppure altre forme di ripristini e miglioramenti ambientali, per rilevati, per sottofondi e nel corso di processi di produzione industriale in sostituzione dei materiali di cava:

se la concentrazione di inquinanti rientra nei limiti di cui alla colonna A, in qualsiasi sito a prescindere dalla sua destinazione.

se la concentrazione di inquinanti è compresa fra i limiti di cui alle colonne A e B, in siti a destinazione produttiva (commerciale e industriale).

Complessivamente i risultati consentono, quindi, di affermare che:

a) data l'assenza di superamenti dei limiti di Concentrazione Soglia di Contaminazione di cui alla colonna B della Tabella 1 dell'Allegato 5 alla Parte IV Titolo V del D.Lgs. 152/06, tutti i materiali e i terreni da scavo di interesse progettuale sono riutilizzabili;

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

- b) tutti i materiali scavati possono essere reimpiegati per la realizzazione di rinterri, rilevati e terrapieni di rimodellamento nell'ambito delle opere in progetto, essendo queste assimilabile ai siti a destinazione d'uso industriale/commerciale cui fa riferimento la colonna B sopra citata;
- c) la maggior parte dei materiali (sulla base delle analisi con concentrazioni al di sotto dei valori soglia della colonna A) può essere riutilizzato in siti a destinazione verde o residenziale o nell'impiego dei ritombamenti o reinterri nei casi di interferenza con la porzione satura.
- d) per tutti i materiali sono soddisfatti i requisiti di compatibilità ambientale, in relazione alla corrispondenza dei siti di utilizzo e dei siti di destinazione.

Per la visione dei risultati delle analisi di laboratorio e dei relativi certificati sulla caratterizzazione preventiva delle opere ai sensi del D.P.R. 120/2017, si rimanda agli allegati al presente Piano.

3.6 INTERFERENZE CON LA PORZIONE SATURA DEL TERRENO

Secondo quanto contenuto in allegato 4 del DPR 120/2017, nei casi di interferenza con la porzione satura, si dovrà utilizzare materiale da scavo per il quale sia stato verificato il rispetto dei limiti di cui alla colonna A (Tabella 1, allegato 5, al Titolo V, parte IV, del D.Lgs 153/2006 e ss.mm.ii.), con le modalità indicate nel suddetto allegato.

L'unica area potenzialmente interferente con parti sature d'acqua risulta essere in Val Fontanabuona nella zona del piazzale di esazione e di rimodellamento morfologico lungo il torrente Litteglia ed in prossimità del Ponte sul Torrente. Dai rilievi piezometrici eseguiti durante le fasi geognostiche di progetto (circa 4-5 m dal p.c.) è infatti possibile che nella fase di costruzione vi possano essere interferenze con il livello d'acqua sotterranea.

Principalmente nell'area si evidenzia che, anticipando quanto successivamente riportato, lo scavo all'aperto previsto interessa la parte corticale in superficie, soprattutto la porzione di terreno vegetale. Lungo l'opera di presidio idraulico del Torrente Litteglia e del ponte sul Torrente stesso non si possono escludere dirette interferenze con la porzione satura.

Dalla verticale FB10, attrezzata a piezometro, si è prelevato già nella fase preliminare di progetto un campione di acqua sotterranea in modalità dinamica (si veda allegato 1d). Il piezometro FB10 è posizionato in posizione ubiquitaria all'interno dell'impronta del rimodellamento morfologico previsto in Val Fontanabuona.

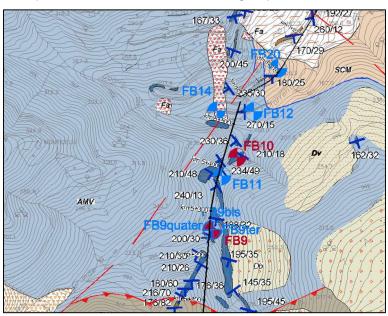


Figura 3-2 Posizione del piezometro FB10

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

3.6.1 Caratterizzazione dell'acqua sotterranea

Come mostrato nell'inquadramento idrogeologico, e sopra ribadito, le possibili interferenze con la falda sono in corrispondenza delle minime soggiacenze freatimetriche in corrispondenza degli attraversamenti fluviali e corsi d'acqua in genere.

In tal senso, viste le risultanze analitiche di laboratorio ed i volumi, si segnala che nei diversi ambiti di scavo e di interesse sussiste l'ampia disponibilità di materiali entro le CSC di colonna A.

L'allegato 2 del DPR 120/2017 prevede che vengano svolte indagini di caratterizzazione delle acque sotterranee in fase progettuale, nel caso di interferenza degli scavi con la porzione satura di terreno. Ciò avviene proprio in corrispondenza degli stessi sondaggi, lungo i quali sono stati prelevati i campioni di terre.

Per ragioni tecniche e logistiche, questa attività non è stata completata in fase di progetto. Pertanto, in base a quanto previsto anche dall'allegato 9 del DPR 120/2017, il Proponente si riserva di fornire un quadro più esaustivo dello stato qualitativo della falda acquifera, prima dell'inizio dei lavori, inviando i dati che saranno acquisiti dal Piano di Monitoraggio Ambientale nella fase di ante operam. Il Piano di Monitoraggio Ambientale, nell'ambito della realizzazione progettuale, prevede la misura quali-quantitativa delle acque sotterranee con attività di prelievo e di analisi chimica in laboratorio con cadenza trimestrale e/o dedicata alle fasi di lavorazioni durante il corso d'opera. Le modalità di acquisizione dei campioni delle acque sotterranee saranno eseguite attraverso un campionamento dinamico, ossia un prelievo di acque effettuato tramite pompa, subito dopo l'operazione di spurgo delle verticali strumentate a piezometro.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

4 MODALITÀ DI SCAVO E TECNOLOGIE APPLICATE

Nel presente capitolo sono descritte in sintesi le procedure ed i metodi di scavo individuati nel progetto per gli scavi all'aperto ed in sotterraneo.

L'attività di scavo e riutilizzo può essere articolata e sintetizzata nelle seguenti operazioni:

operazioni di scavo in sotterraneo, con metodologie tradizionali (martellone ed esplosivo);

operazioni di scavo, all'aperto;

operazioni di carico trasporto e scarico in deposito, con mezzi gommati o cingolati;

operazioni in deposito all'interno della stessa area di lavorazione o in cantiere operativo,

operazioni di trasporto alla destinazione finale, con autocarri;

operazione di utilizzo per reinterri, riempimenti, rimodellazioni e rilevati, con mezzi tradizionali.

Di seguito si elencano i principali mezzi e tecnologie, descritte nei paragrafi successivi:

pale meccaniche gommate o cingolate, escavatori meccanici con benna o martellone, automezzi da carico (articolati, dumper, camion) trivelle di perforazione autobetoniera e pompa spritz.

Inoltre, come specificatamente richiesto dal Regolamento in allegato 5, sono individuate le operazioni di normale pratica industriale previste all'interno dei cantieri per migliorare le caratteristiche tecniche e prestazionali dei materiali scavati.

4.1 OPERE IN SOTTERRANEO

Nel progetto di collegamento della Valle Fontanabuona con l'autostrada A12 Genova – Roma sono previste le gallerie naturali Caravaggio, tra le progressive chilometriche 0+475.10 e 2+526.13 e Fontanabuona, tra le progressive chilometriche 2+670.00 e 5+223.0.

Il tracciato della galleria Caravaggio si estende per uno sviluppo totale di 2103.92 m di cui 2091.82m coperti e 2051.03 in naturale con coperture massime di 400m circa, mentre quello della galleria Fontanabuona si estende per uno sviluppo totale di 2594.43 m di cui 2584.75m coperti e 2553.01 in naturale con coperture massime di 450m circa.

La realizzazione delle opere è prevista con scavo tradizionale. È previsto lo scavo con attacco da due fronti (lato svincolo di Rapallo e lato Val Fontanabuona), con deposito del materiale su entrambi i versanti.

La sagoma della galleria è stata definita in modo tale da potere disporre di due corsie separate da un muro a tutta altezza. Alla singola corsia di marcia, avente larghezza di 4.0 m viene collegata una banchina laterale destra di 1.0 m e un franco laterale sinistro di 1.0 m prima della barriera di sicurezza (profilo redirettivo). In destra, oltre alla banchina laterale, è stato previsto un profilo redirettivo. Il rivestimento definitivo è policentrico con tre differenti centri di curvatura. Inoltre, in funzione delle proprietà geomeccaniche delle formazioni geologiche interessate dagli scavi delle due gallerie naturali si hanno delle tratte con arco rovescio e delle tratte senza l'arco rovescio (si vedano figure seguenti). La sezione di scavo ha dimensioni contenute, variabili da 140 mq a 165 mg.

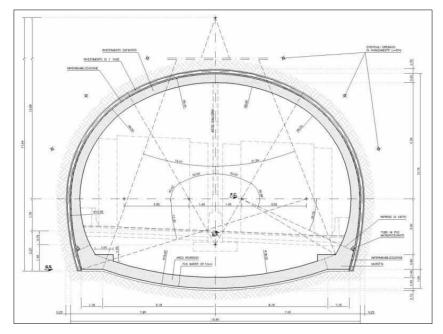


Figura 4-1 Esempio di sezione tipo con arco rovescio

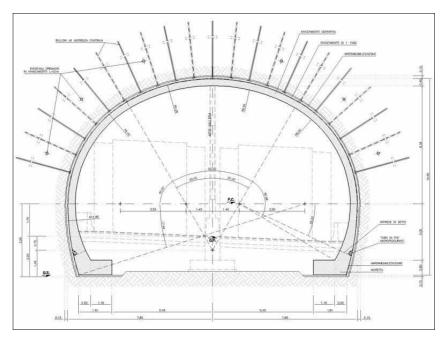


Figura 4-2 Esempio di sezione tipo senza arco rovescio

Tale geometria interna porta ad uno scavo caratterizzato da una dimensione massima sul piano orizzontale di circa 16 m ed una altezza massima di scavo di circa 11 m.

Le due corsie di marcia interamente separate dal suddetto muro a piena altezza sono collegate ogni 500 mediante apposite nicchie.

4.1.1 Modalità di scavo in tradizionale

Di seguito si riportano gli sviluppi relativi e le percentuali del tracciato sotterraneo nelle formazioni geologiche attese, valutati alla quota del piano dei centri delle gallerie Caravaggio e Fontanabuona.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Tabella 4-1 Sviluppo longitudinale delle formazioni geologiche lungo le gallerie

Formazione	sviluppo relativo	sviluppo percentuale		
Formazione	[m]	[%]		
Calcareo-marnosa del Monte Antola	4395	95		
Meta-siltiti e meta-argilittiti di M.te Lavagnola	51	1		
Ardesie di M.te Varzi (in facies calcareo arenacea)	195	5		
Sviluppo totale:	4641	100,0		

Lo scavo delle due gallerie avverrà generalmente a piena sezione tramite l'utilizzo di esplosivo ad eccezione della zona all'interno dell'ammasso argillitico della Formazione di Monte Lavagnola in cui, con molta probabilità, risulterà efficace l'utilizzo del martello demolitore.

Il rivestimento interno della galleria sarà costituito da un getto in calcestruzzo di Rck≥35MPa per le sezioni tipo A e di Rck≥40MPa per le sezioni tipo B.

In rivestimento, armato in funzione delle esigenze statiche, sarà di spessore variabile trasversalmente, a partire da un valore minimo in chiave a un valore massimo nei piedritti, e, nel caso di sezioni di scavo troncoconiche, variabile anche longitudinalmente per seguire la geometria del prerivestimento.

Il getto del rivestimento armato, per i campi di scavo a piena sezione previsti, viene eseguito nelle due fasi di seguito indicate, con tempistiche e modalità definite negli elaborati grafici di progetto:

Arco rovescio e Murette; Piedritti e Calotta.

Si noti che l'arco rovescio è previsto solo nelle sezioni A_c, B0, B0V e B2V, mentre non viene relaizzato nelle sezioni A_{b1}, A_{b2} e A_{b3}.

Dove previsto, alla base del sistema di impermeabilizzazione di calotta, in sommità dei piedritti e lungo tutto lo sviluppo dei piedritti laterali verranno disposti dei tubi fessurati in PVC parzialmente contornati dallo strato impermeabile, collegati fra loro e convoglianti le acque di calotta drenate nelle tubazioni di evaquazione previste all'interno della galleria.

Il getto del rivestimento definitivo in calcestruzzo armato avverrà previa impermeabilizzazione, ad una distanza regolata dal fronte di scavo, in funzione del comportamento deformativo dello stesso; tuttavia, per le sezioni tipo considerate a progetto e di seguito sinteticamente riportate, non sono indicate prescrizioni sulla distanza massima dei getti.

Il tampone al fronte di scavo è da eseguirsi ad ogni fine/inizio campo, preliminarmente all'esecuzione degli interventi di consolidamento ed eventuali drenaggi in avanzamento, o comunque prima di ogni sosta prolungata, dovuta a festività o a qualunque altro motivo. Lo spessore e tipologia (fibrorinforzato o armato con rete), è funzione delle condizioni di stabilità del fronte di scavo e della durata della sosta. Nel caso in cui le operazioni di scavo vengano interrotte per un periodo prossimo alle 24 ore, sarà neceessario porre in opera uno strato di calcestruzzo proiettato fibrorinforzato di 10 cm di fronte.

4.1.2 Sezioni tipo di scavo

Dal punto di vista delle fasi di scavo, le opere in sotterraneo possono essere suddivise in tratti caratterizzati da sezioni tipo differenti per ciascuna delle quali vengono definite le metodologie di scavo e gli interventi di stabilizzazione.

Infatti, sulla base dei calcoli geomeccanici, sono stati individuati diversi tipi di sezioni tipo di intervento che permettono di garantire i seguenti aspetti fondamentali relativamente all'avanzamento in sicurezza degli scavi:

garantire la stabilità del fronte di scavo attraverso il controllo dei fenomeni deformativi interessanti il nucleo, sottoposto ai carichi gravitativi ed alla ridistribuzione tensionale connessa all'apertura del cavo (estrusioni e preconvergenze). Per gli ammassi appartenenti alle formazioni delle ardesie di Monte

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Verzi e dei calcari marnosi del Monte Antola si è valutato un comportamento del fronte di tipo "stabile" o "stabile a breve termine", con deformazioni in campo elastico o elasto-plastico di entità trascurabile. Per la tratta interessata dalle argilliti della formazione di Monte Lavagnola si è invece stimato un comportamento del fronte di tipo "stabile a breve termine" - "instabile", con deformazioni significative che evolvono in campo elastoplastico e formazione di fasce plastiche già presso il fronte; sono quindi previsti interventi di consolidamento del fronte mediante tubi in vetroresina, con intensità funzione del carico litostatico e dei parametri di resistenza e deformabilità dei materiali (misurabili in corso d'opera dall'entità dei valori di preconvergenza ed estrusione). Inoltre, al fine di abbattere le eventuali pressioni neutre nel nucleo ed evitare il decadimento dei parametri dell'ammasso a seguito della saturazione del materiale, potranno essere posti in opera drenaggi in avanzamento.

garantire la stabilità del profilo di scavo, specie in calotta, in corrispondenza del fronte; per le fasce caratterizzate da ammassi lapidei alquanto fratturati o in corrispondenza di ridotti ricoprimenti (inferiori al diametro di scavo) dovrà prevedersi al contorno del cavo un intervento di "presostegno" mediante la messa in opera di una coronella di tubi in acciaio.

garantire un adeguato contenimento del cavo, allo scopo di controllare i fenomeni di convergenza ed evitare i conseguenti detensionamenti e rilasci dell'ammasso al contorno del cavo; tale azione sarà effettuata dal prerivestimento, costituito da raggiere di bulloni o centine in acciaio e da uno strato di calcestruzzo proiettato di rigidezza funzione delle caratteristiche geomeccaniche dell'ammasso, ovvero delle spinte in gioco.

garantire il raggiungimento di "condizioni di stabilità definitive" del cavo nel più breve tempo possibile. Tale azione dovrà essere condotta attraverso la tempestiva messa in opera dei prerivestimenti, a seguito di ogni singolo sfondo, costituiti da raggiere di bulloni o centine e calcestruzzo proiettato.

È previsto l'utilizzo delle sezioni tipo Ab1, Ab2, Ab3, Ac, B0, B0V, B2V (si vedano le figure seguenti, da 4.3 a 4.9). L'applicazione delle sezioni tipo è indicata in termini percentuali (percentuale di applicazione) nei profili geomeccanici e di monitoraggio. I criteri per la loro applicazione sono stati determinati in funzione dalla litologia degli ammassi attraversati, delle caratteristiche geomeccaniche (sintetizzate nel valore di GSI), dello stato tensionale in situ, ovvero del valore di copertura, e delle geometrie di scavo; i seguenti fattori hanno infatti permesso di definire il comportamento del fronte di scavo, in termini deformativi (entità dei valori di preconvergenza ed estrusione, evoluzione in campo elastico o elasto-plastico) e quindi le condizioni di stabilità: "stabile" – categoria A – "stabile a breve termine" – categoria B – "instabile" – categoria C.

In presenza di comportamento del fronte di tipo "stabile", si applica la sezione tipo A, che prevede o l'impiego di bullonatura sistematica, mediante bulloni in acciaio posti in opera radialmente alla sezione di scavo o l'impiego di centine metalliche nel caso in cui l'ammasso risulti maggiormente alterato e/o fratturato.

Laddove si individua un comportamento del fronte di tipo "stabile a breve termine", si procede con la sezione B; in questo caso l'avanzamento sarà condotto mediante le sezioni tipo B0 e B0V a seconda del grado di separazione manifestato localmente dell'ammasso. Oltre al contenimento del cavo operato dal rivestimento di prima fase, mediante centine metalliche inglobate in uno strato di calcestruzzo proiettato, è prevista per la sezione tipo B0V la messa in opera di tubi metallici in prossimità della calotta, quale intervento di "presostegno" per l'eventuale materiale lapideo fratturato e/o ammalorato presente in estradosso allo scavo, durante la fase di posa in opera del rivestimento di prima fase, ed eventualmente la chiodatura del fronte di scavo mediante elementi in vetroresina.

Sempre per condizioni del fronte "stabile a breve termine", in presenza di ammassi meno competenti quali le argilliti della formazione di Monte Lavagnola si adotterà la sezione tipo B2V, che prevede un intervento sistematico del fronte di scavo a contenimento dei fenomeni deformativi del nucleo e anche la messa in opera di una coronella di tubi metallici al contorno del cavo, per consentire un più facile attraversamento di zone con inclusi calcarei e/o marnosi, spesso intercalati alle argilliti.

Occorre evidenziare che a causa degli elevati valori di resistenza a compressione monoassiale sia delle ardesie sia dei calcari marnosi della formazione del Monte Antola le tre sezioni tipo Ab1, Ab2, Ab3 non prevedono la necessità dell'arco rovescio raggiungendo una completa stabilizzazione del cavo mediante la chiodatura radiale con i bulloni in acciaio abbinati ad uno strato di calcestruzzo proiettato e con fenomeni deformativi estremamente limitati che non rendono necessaria la chiusura con arco rovescio del rivestimento definitivo.

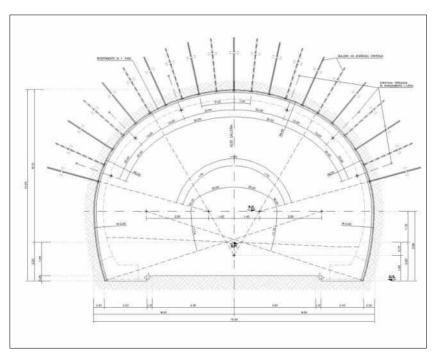


Figura 4-3 Sezione tipo Ab1

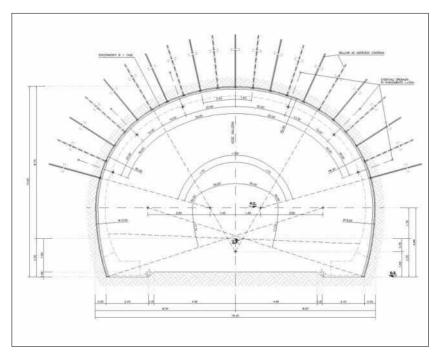


Figura 4-4 Sezione tipo Ab2

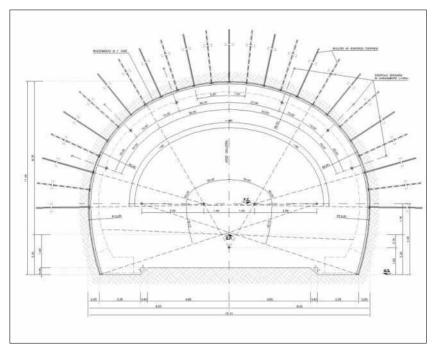


Figura 4-5 Sezione tipo Ab3

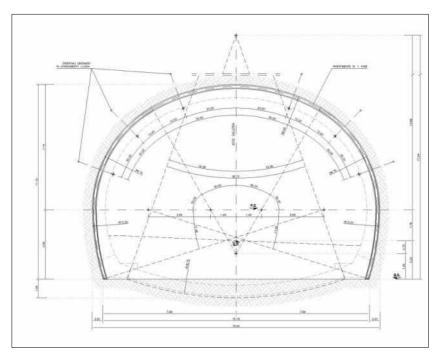


Figura 4-6 Sezione tipo Ac

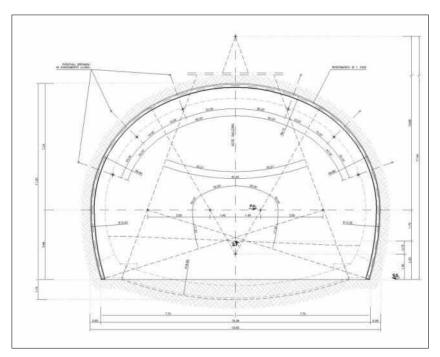


Figura 4-7 Sezione tipo B0

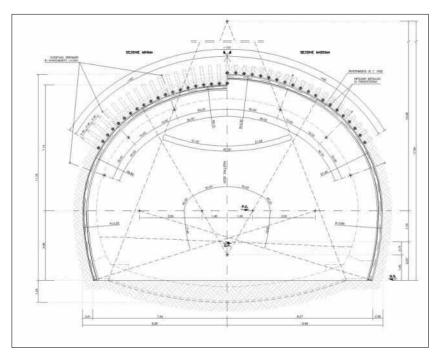


Figura 4-8 Sezione tipo B0V

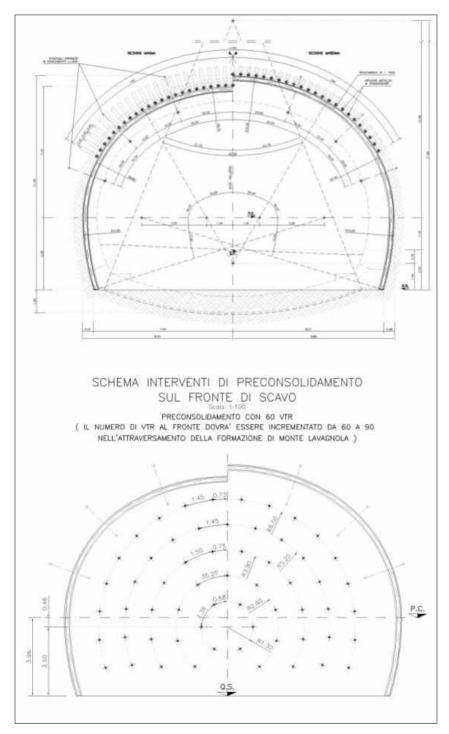


Figura 4-9 Sezione tipo B2V

Per ulteriori dettagli si rimanda agli elaborati di progetto TUN006 e TUN007, ove sono riportate sinteticamente le principali caratteristiche delle sezioni previste.

In funzione delle condizioni di applicazione delle diverse sezioni tipo sopra descritte, è prevista l'applicazione delle diverse sezioni tipo nelle seguenti tratte sia della Galleria Caravaggio sia nella Galleria Fontanabuona:

Tabella 4-2 Galleria Caravaggio, definizione delle tratte e delle sezioni previste

Progressiva di inizio e fine della tratta d'applicazione	Litologia	Lunghezza tratta di applicazione (m)	Sezione tipo
Da 0+476 (imbocco Rapallo) – 0+651	Calcari marnosi	175	B0V (100%)
0+651 – 0+823	Calcari marnosi	172	Ab1 (25%), Ab2 (25%), Ab3 (25%), Ac (20%) e B0 (5)
0+823- 0+950	Calcari marnosi	127	Ab1 (10%), Ab2 (10%), Ab3 (15%), Ac (35%) e B0 (25%) e B0V (5%)
0+950- 1+164	Calcari marnosi	184	Ab1 (10%), Ab2 (10%), Ab3 (10%), Ac (20%) e B0 (30%) e B0V (20%)
1+164 – 1+247	Calcari marnosi	83	Ab1 (5%), Ab2 (5%), Ab3 (5%), Ac (20%) e B0 (35%) e B0V (30%)
1+247 1+737	Calcari marnosi	490	Ab1 (10%), Ab2 (10%), Ab3 (10%), Ac (20%), B0 (30%) e B0V (20%)
1+737 – 1+874	Calcari marnosi	137	Ab1 (10%), Ab2 (10%), Ab3 (15%), Ac (35%), B0 (25%) e B0V (5%)
1+874– 2+444	Calcari marnosi	570	Ab1 (25%), Ab2 (25%), Ab3 (25%), Ac (20%) e B0 (5%)
2+444 – 2+526 (imbocco Fontanabuona)	Calcari marnosi	82	B0V (100%)

Tabella 4-3 Galleria Fontanabuona, definizione delle tratte e delle sezioni previste

Progressiva di inizio e fine della tratta d'applicazione	Litologia	Lunghezza tratta di applicazione (m)	Sezione tipo
Da 2+653 (imbocco Rapallo) – 2+755	Calcari marnosi	102	B0V (100%)
2+755 – 2+951	Calcari marnosi	196	Ab1 (25%), Ab2 (25%), Ab3 (25%), Ac (20%) e B0 (5)
2+951– 3+270	Calcari marnosi	319	Ab1 (10%), Ab2 (10%), Ab3 (15%), Ac (35%) e B0 (25%) e B0V (5%)
3+270 – 3+738	Calcari marnosi	468	Ab1 (25%), Ab2 (25%), Ab3 (25%), Ac (20%) e B0 (5)
3+738 – 3+872	Calcari marnosi	134	Ab1 (10%), Ab2 (10%), Ab3 (15%), Ac (35%) e B0 (25%) e B0V (5%)
3+872 – 4+151	Calcari marnosi	279	Ab1 (10%), Ab2 (10%), Ab3 (10%), Ac (20%), B0 (30%) e B0V (20%)
4+151 – 4+358	Calcari marnosi	207	Ab1 (5%), Ab2 (5%), Ab3 (5%), Ac (20%), B0 (35%) e B0V (30%)
4+358- 4+658	Calcari marnosi	300	Ab1 (10%), Ab2 (10%), Ab3 (10%), Ac (20%), B0 (30%) e B0V (20%)
4+658 – 4+921	Calcari marnosi	263	Ab1 (10%), Ab2 (10%), Ab3 (15%), Ac (35%), B0 (25%) e B0V (5%)
4+921 – 5+028	Calcari marnosi	107	Ab1 (25%), Ab2 (25%), Ab3 (25%), Ac (20%), B0 (5%)

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Progressiva di inizio e fine della tratta d'applicazione	Litologia	Lunghezza tratta di applicazione (m)	Sezione tipo
5+028 – 5+079	Argilliti	51	B2V (100%)
5+079 – 5+152	Ardesie	124	B0 (30%) e B0V (70%)
5+152 – 5+223 (imbocco Fontanabuona)	Ardesie	71	B0V (100%)

In corso d'opera, comunque la gestione delle diverse sezioni previste nel progetto sarà attuata in accordo al metodo osservazionale ovvero sulla base dei dati acquisiti in corso relativamente all'effettivo comportamento dell'ammasso e del complesso terreno-struttura: rilievi geomeccanici del fronte, eventuali indagini puntuali, e dati del monitoraggio topografico, ovvero delle convergenze e dei cedimenti del piede centina. Sulla base di tali dati, infatti, sarà definita in corso d'opera l'effettiva entità dei consolidamenti da eseguire campo per campo, all'interno degli intervalli di variabilità previsti.

4.1.3 Nicchie di collegamento

Sono previste 9 nicchie di collegamento tra le 2 corsie di marcia (4 lungo la Caravaggio e 5 lungo al Fontanabuona, ogni 500 metri di tratto lineare). Tutte le nicchie sono scavate nella formazione calcareomarnosa della Monte Antola, con una sezione di scavo pari a circa 59 mq. Le modalità di avanzamento con scavo, di consolidamento e di rivestimento seguono le medesime fasi previste per le maggiori sezioni delle gallerie principali.

4.2 OPERE ALL'APERTO

Gli scavi all'aperto saranno eseguiti con le seguenti metodologie:

scavi di scotico e sbancamento eseguiti con mezzi meccanici (escavatori con benna e/o martellone, pale meccaniche e autocarri);

scavi di fondazione a sezione obbligata eseguiti con mezzi meccanici (escavatori con benna e/o martellone, pale meccaniche e autocarri);

scavi di fondazione con micropali o pali di grande diametro eseguiti con mezzi meccanici (trivelle di perforazione, escavatori con benna e/o martello, pala meccanica, autocarri, autobetoniera e pompa spritz).

4.2.1 Scavi da scotico

Per gli scavi di scotico, sono utilizzati mezzi dotati di lame e/o benna che a più passaggi asportano gli strati di materiale accantonandolo ai lati del sedime di intervento. In alternativa il materiale è depositato temporaneamente o in prossimità dello scavo stesso o in uno spazio dedicato comunque all'interno della stessa area operativa di cantiere in attesa o del successivo reimpiego per rilevati e rimodellamenti, sistemazioni di aree di imbocco o di cantiere.

4.2.2 Scavi di sbancamento

Per gli scavi di sbancamento sono usati prevalentemente escavatori meccanici cingolati. In relazione alla tipologia di scavo da eseguire, alla profondità e quantità di materiale da scavare, all'escavatore può essere affiancata una pala caricatrice che provvede a caricare i mezzi di trasporto utilizzati per lo spostamento del materiale scavato all'interno del cantiere. Accertate le caratteristiche geotecniche e geologiche, il materiale può essere accantonato in prossimità dello scavo per il successivo riutilizzo (riempimenti, sagomature, finiture finali e/o modellamenti per mitigazioni ambientali) all'interno dello stesso sito di scavo o depositato temporaneamente in un'area all'interno della stessa area operativa di cantiere limitando il trasporto ad una distanza estremamente ridotta dalla zona di scavo.

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

4.2.3 Rinterri

La lavorazione consiste nella chiusura di scavi eseguiti con materiali inerti e/o materiali di risulta provenienti da scavo fino alla sistemazione del piano secondo progetto.

L'attività è composta unicamente dalla messa in opera e stesa del materiale mediante escavatore.

4.2.4 Formazione rilevati e dei rimodellamenti morfologici

La lavorazione consiste nella formazione di rilevati con materiali inerti e/o materiali di risulta e/o terreno vegetale provenienti da attività di scavo o scotico fino alla guota di progetto.

La prima parte dell'attività consiste nella posa in opera del materiale direttamente attraverso il ribaltamento del cassone del camion e la stesa mediante grader. Successivamente si procede alla compattazione del materiale previa bagnatura del terreno stesso.

La lavorazione è composta quindi da quattro attività che si esplicano in due fasi distinte:

a) Fase 1

Messa in opera del materiale mediante scarico diretto dal camion;

Stesa del materiale mediante grader.

b) Fase 2 (solo per la formazione dei rilevati)

Bagnatura del terreno;

Compattazione a macchina del terreno.

4.2.5 Formazione delle sottofondazioni e fondazioni di pavimentazione

L'attività consiste nella posa in opera del misto cementato o misto granulare costituenti gli strati di sottofondazione e fondazione delle pavimentazioni rigide, semirigide o flessibile.

La lavorazione è composta da tre attività elementari che si esplicano in due fasi:

c) Fase 1

Messa in opera del materiale mediante scarico diretto dal camion;

Stesa del materiale mediante grader;

d) Fase 2

Compattazione a macchina del terreno

Nella formazione delle sottofondazioni in misto cementato o misto granulare le azioni di messa in opera e stesa del materiale avvengono in parallelo. Successivamente il rullo esegue la compattazione del terreno.

4.2.6 Scavi di fondazione con micropali o pali di grande diametro

L'attività consiste nella realizzazione di fondazioni profonde attraverso la realizzazione del palo. Essa è costituita da tre attività elementari che si susseguono temporalmente: trivellazione, getto del calcestruzzo e posa in opera dell'armatura.

Trivellazione mediante utensile di perforazione ad elica continua (coclea)

Getto del calcestruzzo mediante pompa di getto collegata alla coclea

Posa in opera dell'armatura a getto ultimato secondo le dimensioni previste dal progetto.

Profondità e diametro del palo variano in funzione dell'opera da realizzare. Complessivamente si hanno diametri compresi fra 250-1200 mm e profondità di 30-35 metri.

4.3 NORMALE PRATICA INDUSTRIALE

Si fa principale riferimento all'art. 1, comma 1, lettera p) e all'art. 4, comma 1, lettera c) del Regolamento ministeriale relativamente alle operazioni di normale pratica industriale effettivamente condotte.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Le operazioni di normale pratica industriale sono finalizzate a migliorare le caratteristiche merceologiche, tecniche e prestazionali dei materiali da scavo per il loro utilizzo, con riferimento a quanto indicato all'allegato 3 del Regolamento.

Le lavorazioni effettuate sui materiali di scavo per ottimizzarne l'utilizzo costituiscono ai sensi dell'Allegato 3 del Regolamento un trattamento di normale pratica industriale in quanto non incidono sulla classificazione come sottoprodotto dei materiali da scavo, non ne modificano le caratteristiche chimico-fisiche bensì consentono di rendere maggiormente produttivo e tecnicamente efficace l'utilizzo di tali materiali (in sostanza si tratta delle stesse lavorazioni che si praticano sui materiali di cava proprio per ottimizzarne l'utilizzo), ferma restando la compatibilità delle frazioni ottenute con i siti di destinazione.

L'attività di gestione delle terre e rocce da scavo di cui al presente Piano di Utilizzo prevede il ricorso a talune tipologie di operazioni di normale pratica industriale ai sensi dell'art. 1 comma 1 lettera p) del Regolamento, di seguito descritte.

Si specifica che vista l'ampia disponibilità di materiale roccioso di natura calcareo-marnosa con qualità tecniche soddisfacenti per la messa a rilevato non è prevista la stabilizzazione con il trattamento a calce o a cemento delle terre. La parte di materiale di natura argillosa (circa 2 % dello scavo in sotterraneo, si veda paragr. 4.1) potrà essere disposta nelle parti profonde o perimetrali dei rimodellamenti morfologici o di ritombamenti previsti per cui non risulta necessario una particolare caratteristica geotecnica di portanza per la realizzazione di un rilevato stradale. Questa disposizione risulta favorevole anche per i limitati volumi previsti di questo tipo di materiale.

4.3.1 Vagliatura

La vagliatura è realizzata tramite macchinari idonei che consentono la separazione delle diverse granulometrie. I cumuli a valle del vaglio sono poi presi in carico per essere inviati, in funzione della rispettiva classe granulometrica, all'impianto per la formazione dei misti stabilizzati/cementati.

Il sistema di vagliatura del materiale è previsto all'interno dei cantieri presenti nell'area parcheggio autostradale Caravaggio, lato Rapallo, e nella zona del rimodellamento morfologico lungo il torrente Litteglia, lato val Fontanabuona.

4.3.2 Frantumazione

L'impianto di frantumazione consente la frantumazione del materiale lapideo per produrre una geometria del materiale a spigoli vivi avente una granulometria che rientri nel fuso granulometrico da utilizzare per la realizzazione delle opere a progetto in terra (rilevati, sottofondazioni per pavimentazioni, ritombamenti, modellazioni morfologiche, sistemazioni ambientali).

Il sistema di frantumazione del materiale è previsto all'interno dei cantieri presenti nell'area parcheggio autostradale Caravaggio, lato Rapallo, e nella zona del rimodellamento morfologico od area della stazione di esazione, lungo il torrente Litteglia, lato val Fontanabuona.

4.3.3 Riduzione elementi/materiali antropici

Tra le operazioni di normale pratica industriale, sempre ai sensi dell'allegato 3 del Regolamento, è considerata anche la possibilità di eseguire operazioni manuali o meccaniche finalizzate alla riduzione della quantità di materiale antropico presente nei volumi di terreno scavati.

Tali materiali antropici, riferibili alle necessarie operazioni per l'esecuzione dello scavo, sono indicati nel seguito.

4.4 INCLUSIONI

4.4.1 Presenza di elementi in vetroresina (VTR)

Nell'ambito dei lavori di realizzazione delle opere e soprattutto delle operazioni di consolidamento sul fronte, è previsto l'utilizzo di elementi tubolari in vetroresina (VTR).

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Nelle fasi di consolidamento sono previsti VTR iniettati con miscele cementizie e additivo accelerante, generalmente a bassa pressione, in una quantità variabile a seconda delle condizioni di stabilità del fronte stesso (si veda tabella 5.1).

I VTR valvolati e iniettati ad alta pressione vengono eseguiti specialmente al contorno. I VTR al fronte contribuiscono alla stabilità dello stesso attraverso la loro elevata resistenza a sollecitazioni di trazione.

L'elemento tubolare è costituito da un profilo cavo a sezione circolare Φ 60 mm con spessore 10 mm, realizzato in resina termoindurente rinforzata con fibre di vetro derivata da un processo industriale che utilizza la tecnologia della pultrusione.

Sono previsti VTR del diametro di 60/40 mm e della lunghezza di 18 m.

4.4.2 Presenza di elementi in materiale plastico (PVC)

Nell'ambito dei lavori di realizzazione delle opere, nel caso si renda necessario il drenaggio in avanzamento di scavo in sotterraneo o di stabilizzazione all'aperto, è previsto l'eventuale utilizzo di elementi tubolari in polivinilcloruro (PVC) o nel caso dell'impermeabilizzazione in galleria il fissaggio dello strato geotessile di copertura con listoni in PVC fissati con chiodi, previa sovrapposizione dei teli e termosaldatura.

Nelle fasi di drenaggio sono previsti pertanto tubi in PVC costituiti da un profilo cavo a sezione circolare Φ 60 mm con spessore minimo di 4 mm, microfessurati per 20.0 m da fondo foro e ciechi per 10 m verso bocca foro, con rivestmento esterno del tubo con tessito non tessuto,

4.4.3 Utilizzo di miscele di perforazione

Nella fase di realizzazione di opere strutturali e idrauliche (a protezione di scavi profondi o di stabilizzazione ecc.), vengono eseguiti lavori di perforazione di pozzi o scavi di paratie.

Lo scavo per pali e/o diaframmi viene spesso realizzato a partire dal piano campagna secondo allineamenti delimitati mediante la formazione di appositi cordoli guida in cemento armato. Il sostentamento delle pareti di scavo viene garantito attraverso l'impiego di miscele cementizie o bentonite.

Nel caso dello scavo in sotterraneo con l'utilizzo di elementi tubolari in vetroresina (VTR) necessari al consolidamento dei fronti di scavo delle gallerie naturali, sono iniettate miscele cementizie, bentonite e additivi acceleranti o fluidificanti.

Tali miscele fluide, sia per perforazioni sia per consolidamenti, hanno alcune peculiarità che permettono maggiori velocità di avanzamento e quindi maggiori produzioni in minor tempo, miglior protezione da cedimenti o franamenti, maggiore stabilità per la ridotta presenza di acqua libera e maggior protezione delle falde stesse.

L'uso di miscele per perforazioni deve garantire la tutela delle a tutela delle qualità ambientali dei terreni e delle falde acquifere interferite, In tal senso la scelta dei prodotti per la formazione delle miscele deve avvenire sulla base delle caratteristiche intrinseche dei prodotti stessi. Quelle ambientalmente compatibili dovranno essere dichiarate, non solo per ciò che riguarda le informazioni ecologiche e chimico-fisiche, ma anche l'eventuale indicazione di proprietà quali ad esempio: grado di tossicità, capacità legante e ossidante, solubilità, infiammabilità, corrosività e biodegradazione, contenuto di polimeri di origine organica, ecc. Non potranno essere presi in considerazione prodotti e additivi le cui schede presentino insufficienti informazioni sul comportamento ambientale.

4.5 GESTIONE DEI MATERIALI IDENTIFICATI COME NON SOTTOPRODOTTI

Tutte i materiali da scavo, che non rispettano le condizioni esposte per il riutilizzo in sito o in siti diversi da quello di scavo, saranno sottoposi alle disposizioni vigenti in materia di rifiuti riportate nella Parte IV "Norme in materia di gestione dei rifiuti e di bonifica dei siti inquinanti", ai sensi dell'art. 183 comma 1 lett. a) del D.Lgs. 152/06 e ss.mm.

Le seguenti tipologie di materiali sono inoltre identificate quali rifiuto e quindi opportunamente gestiti, ovvero allontanamento dal cantiere per il recupero in impianti autorizzati, od, in alternativa ineludibile, lo smaltimento in discariche:

i fanghi di risulta derivanti da perforazioni per la realizzazione di pali e dalla eventuale bagnatura per l'abbattimento delle polveri durante gli scavi;

i tamponi al fronte di scavo, costituiti da spritz-beton con spessore definito per le condizioni di allargo cunicolo o taglio centine (spessore 20 cm), anche fibrorinforzato o armato con rete;

i fanghi derivanti dalla bagnatura del fronte di scavo, anche da nicchie;

la parte superficiale per la potenziale contaminazione dal passaggio dei mezzi in movimento durante lo scavo, anche da nicchie.

i materiali derivanti da smantellamento di strutture preesistenti (ad es. opere in c.a., massicciate stradali, fresatura asfalti, ecc);

il materiale di risulta dal processo di sedimentazione, costituito da polveri di perforazione, boiacche e additivi, e derivato dalla raccolta e trattamento delle acque di lavorazione.

Sebbene le indagini cognitive di progetto non abbiano dato particolari evidenze in tal senso, si specifica che, se dovessero emergere aree o porzioni di scavo con presenza di materiali di riporto con frammenti e/o elementi di origine antropica, con percentuali superiori al 20% (rif. in allegato 10 del DPR 120/2017), questi dovranno essere sottoposti alle medesime disposizioni vigenti in materia di rifiuti.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

5 BILANCIO DEI SITI DI PRODUZIONE, DEPOSITO ED UTILIZZO

L'intero intervento a progetto è lungo circa 7 km ed è individuato dai 2 ambiti omogenei di intervento (4 con scavo all'aperto e 2 con scavo in sotterraneo), funzionali alla movimentazione dei materiali da scavo, secondo l'inquadramento e la caratterizzazione per la compatibilità ambientale, descritti nei precedenti capitoli.

La disposizione planimetrica è esplicitata negli elaborati grafici allegati al presente Piano, in cui sono graficamente riportati i siti di produzione e quelli di riutilizzo delle terre. Di seguito si descrive un elenco dei siti di produzione dei materiali di scavo e dei siti di destinazione, intesi anche come di deposito intermedio, individuati all'interno della cantierizzazione.

5.1 PRINCIPALI SITI DI PRODUZIONE TERRE

I siti di produzione dei materiali da scavo sono costituiti essenzialmente dalle tipologie di opere di seguito indicate e i relativi volumi da movimentare previsti da progetto in banco sono:

Opere all'aperto: 196.682 mc Opere in sotterraneo: 756.288 mc.

Per un volume complessivo pari a **952.970** mc, proveniente dagli scavi previsti per gli interventi a progetto. A questo volume va aggiunto la parte di scavo di scotico relativa alle aree di cantiere (19.440 mc circa) per un totale complessivo di circa **972.410 mc**, così suddiviso:

Tabella 5-1 Siti di produzione: stima dei volumi di scavo (in mc) gestiti a sottoprodotto

		Cantieri Rapallo	Svincolo A12	Galleria Caravaggio	Arboccò	Galleria Fontanabuona	Piazzale di esazione Fontanabuona	Adeguamento S.P. n. 22	Cantieri Fontanabuona	Totale
	•			Ramı	oa principal	e ml 5576		ml 1560		•
T in	in sotterraneo			336.833		419.455				756.288
SCA	all'aperto	990	94.985		17.170		28.570	55.957	18.450	216.122

Nel dettaglio, si esplicita i quantitativi di materiale escavato per ambito, modalità e tipologia di opere considerate:

Opere in sotterraneo

Ambito Galleria Caravaggio:

Galleria Caravaggio, GN01: 336.833 mc;

Ambito Galleria Fontanabuona:

Galleria Fontanabuona, GN02: 419.455 mc;

Opere all'aperto:

Ambito Svincolo A12:

Area imbocco lato Rapallo Galleria Caravaggio, GN01a: 9.121 mc

Area di svincolo A12, corpo stradale, CS01, e rampe di svincolo, da RS01 a RS09, viadotti (da VI01 a VI05): 85.864 mc;

Ambito Arboccò, tratto all'aperto tra le 2 gallerie naturali, scavo all'aperto;

Area imbocco lato Fontanabuona Galleria Caravaggio, GN01b: 5.464 mc;

Area imbocco lato Rapallo Galleria Fontanabuona, GN02a: 6.511 mc;

Area di Arboccò con corpo stradale con rampa, RS10: 5.195 mc;

Ambito Piazzale di esazione Fontanabuona

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Area imbocco lato Fontanabuona Galleria Fontanabuona, GN02b: 2.916 mc

Area stazione di esazione della Fontanabuona con innesto con S.P. 22, PZ01 e viadotto sul Litteglia, VI06: 25.655 mc;

Ambito Adeguamento S.P. n. 22

Adeguamento SP 22, con corpo stradale (da IN01 a IN05) e viadotti (da VI07 a VI10): 55.937 mc.

Ambito Cantieri

Il totale complessivo è di circa 19.440 mc, così suddivisi:

CA4 Rapallo: 990 mc
CA6, Moconesi: 7.620 mc
CA7, Moconesi: 10.200 mc
CA9, Tribogna: 630 mc

Gli scavi interessano principalmente 3 litologie dominanti: argilliti o scisti, ardesie a e calcari marnosi.

Nell'ambito dello scavo in sotterraneo, che rappresenta 95% circa della produzione complessiva dalla rampa principale, si riportano, in riferimento alle formazioni geologiche riscontrate, le caratteristiche tecniche di idoneità al riutilizzo per rilevati (tal quali o previo trattamento con calce):

- a) <u>Formazione del Monte Antola</u> (95% dello scavo in sotterraneo): tale materiale può essere riutilizzato tal quale, senza necessità di stabilizzazione, essendo classificabile, ai sensi della tabella della norma UNI CNR 10006 come terreni granulare riferito ai gruppi A1, A2-4, A2-5, A3.
- b) <u>Formazione del Monte Varzi e Scisti del Monte Lavagnola</u> (5% dello scavo in sotterraneo): terreni coesivi appartenenti ai gruppi A2-6, A2-7, A4, A5, A6 non idoneo al riutilizzo tal quale, soprattutto per la parte prettamente scistosa delle argilliti.

Riferendosi al volume di scavo totale in galleria indicato (756.288 mc), lo scavo in galleria in materiale scistosoardesiaco prevede un volume pari a circa 40.088 mc, mentre lo scavo in sotterraneo in materiale marnosocalcareo granulare sarà pari a circa 716.200 mc. Si specifica che, vista l'ampia disponibilità di materiale roccioso di natura calcareo-marnosa con qualità tecniche soddisfacenti per la messa a rilevato, permette di non prevedere la stabilizzazione con il trattamento a calce o a cemento delle terre.

La parte di materiale di natura prettamente argillosa (circa 1 % dello scavo in sotterraneo, si veda paragr. 4.1, pari a circa 8.311 mc) sarà disposta nelle parti profonde o perimetrali dei rimodellamenti morfologici o dei ritombamenti previsti. La parte derivante dalla formazione di Monte Varzi, facies calcareo arenacea (circa 31.777 mc), sarà disposta nel corpo e nelle parti perimetrali dei rimodellamenti morfologici previsti. Tale disposizione risulta favorevole anche per i limitati volumi previsti di questi tipi di materiale.

Lo scotico superficiale escavato dalle aree di cantiere sarà riutilizzato alla conclusione delle lavorazioni per la sistemazione definitiva delle medesime aree, con un limitato movimento di materiali.

5.2 AREA DI DEPOSITO INTERMEDIO

Nell'ambito della cantierizzazione, sono stati individuati siti inquadrati quali aree di deposito secondo la definizione all'art. 5 del Regolamento del DPR 120/2017. Questi depositi sono localizzati all'interno delle seguenti aree di cantiere:

Cantiere	Comune	Superficie in mq per il deposito
Area Caravaggio	Rapallo	4.000
CA4	Rapallo	3.300
Area Fontanabuona	Tribogna	4.000
CA7	Moconesi	3.900
CA8	Moconesi	6.600

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Nei cantieri del parcheggio di Caravaggio e CA4 sono depositati i materiali provenienti dallo scavo in sotterraneo della Galleria Caravaggio, già eventualmente frantumati nell'area del parcheggio autostradale Caravaggio lungo la A12, o quei terreni originatesi dallo scavo all'aperto in ambito innesto A12.

Nei cantieri CA7 e CA8 ed in area del piazzale sono depositati invece i materiali provenienti dallo scavo in sotterraneo della Galleria Fontanabuona, già eventualmente frantumati nell'area del piazzale di esazione, o quei terreni originatesi dallo scavo all'aperto in ambito innesto SP22 e adeguamento SP22.

5.2.1 Caratteristiche e tipologie delle aree di deposito in attesa di utilizzo

I materiali che verranno depositati nelle aree possono essere suddivisi genericamente nelle seguenti categorie:

terreno sterile derivante da scavi all'aperto;

terre da opere in sotterraneo;

eventuale terreno vegetale (corrispondente al primo strato di terreno, risultante dalle operazioni di scotico, generalmente 20-30 cm).

In tutti i casi le aree di deposito, dimensionate in maniera diversa in funzione dei quantitativi di materiali da accumulare, verranno realizzate in modo da contenere al minimo gli impatti sulle matrici ambientali, con specifico riferimento alla tutela delle acque superficiali e sotterranee ed alla dispersione delle polveri, con eventuale e continua umidificazione della superficie del deposito del materiale.

All'interno delle singole aree il terreno viene stoccato in cumuli separati, distinti per natura e provenienza del materiale, con altezza massima derivante dall'angolo di riposo del materiale in condizioni sature, tenendo conto degli spazi necessari per operare in sicurezza durante le attività di deposito e prelievo del materiale.

In linea generale poi si possono distinguere i materiali già caratterizzati sulla base della loro concentrazione chimica:

deposito di terreni già caratterizzati, per i quali siano state riscontrate concentrazioni di inquinanti inferiori ai limiti di colonna A;

deposito di terreni già caratterizzati, per i quali siano state riscontrate concentrazioni di inquinanti superiori ai limiti di colonna A, ma inferiori ai limiti di colonna B.

La preparazione e disposizione delle aree di deposito richiede in breve le seguenti lavorazioni:

lo scotico dell'eventuale terreno vegetale, che verrà accantonato lungo il perimetro di ciascuna area; la regolarizzazione, compattazione ed impermeabilizzazione del fondo;

la creazione di un fosso di guardia per allontanare le acque di pioggia;

la posa, ove ritenuto necessario, di una recinzione di delimitazione.

Nella fase costruttiva verranno messi in pratica alcuni accorgimenti, utili ad evitare potenziali contaminazioni:

garanzia di funzionamento continuo del sistema di regimazione e convogliamento delle acque superficiali e dell'impianto di raccolta e gestione delle acque di dilavamento;

dotazione di misure idonee a ridurre i disturbi ed i rischi causati dalla produzione di polveri e di materiali trasportati dal vento, con protezioni e delimitazioni perimetrali;

adozione di misure identificative delle aree di deposito, con opportuna segnaletica utile ad evitare contatti con terre e rocce da scavo potenzialmente inquinate ed evitare possibili errori di direzionamento;

dotazione di misure di protezione delle falde acquifere, con un sistema di impermeabilizzazione del fondo e di gestione e raccolta delle acque.

5.2.2 Aree di deposito per terreno vegetale

La rimozione dell'eventuale terreno vegetale riguarda le aree interessate dalla cantierizzazione che non ricadono in aree urbanizzate industriali (ivi comprese le piste, le aree di cantiere propriamente dette e le stesse aree di deposito).

Le aree di deposito del terreno vegetale saranno separate dalle aree di deposito di altre tipologie di terre, come sopra indicato.

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

5.2.3 Gestione del deposito dei materiali di scavo

Il deposito del materiale escavato avrà una gestione della durata compatibile con i tempi di validità del presente Piano, indicati al paragrafo 1.2.

Va evidenziato che il sistema che verrà impiegato per la maggior parte delle aree sarà di tipo "dinamico".

In ciascuna area di deposito saranno normalmente collocate delle terre da scavo, derivanti da scavi e sterri, che verranno quindi reimpiegate, con tempistica diversa in funzione dell'avanzamento dei lavori, per la realizzazione di rinterri, sottofondi o rilevati o per il riempimento dei rimodellamenti morfologici o di sistemazione ambientale.

Faranno generalmente eccezione a questa logica le aree che verranno impiegate per il deposito del terreno vegetale, soprattutto quello di cantiere. Questo avrà origine dalle operazioni di scotico svolte nella prima fase di attività e verrà reimpiegato nell'ambito dei ripristini, delle sistemazioni e del rivestimento delle scarpate. Tipicamente, quindi, l'eventuale terreno vegetale verrà stoccato fin dalla fase iniziale dei lavori e riutilizzato solo nella fase finale dei lavori.

5.3 PRINCIPALI SITI DI UTILIZZO TERRE

I siti di utilizzo sono costituiti in sostanza con siti costituiti da terreno naturale e coincidenti con i siti di produzione.

Nei siti di utilizzo, la cui ubicazione è riportata nell'allegato 4 vengono utilizzati i terreni già caratterizzati provenienti direttamente dai siti di produzione o dai siti di deposito intermedio. I terreni potranno essere sottoposti alle normali pratiche industriali di cui al paragrafo 4.

Il riutilizzo, ai fini dell'inquadramento del materiale ai sensi dell'art.184bis del DLgs 152/2006 smi e dell'art 4 del DPR 120/2017, è stimato in circa 972.410 mc complessivi.

I volumi da riutilizzare previsti da progetto in banco sono così suddivisi:

Opere all'aperto: **circa 894.316 mc**, a cui si aggiungono **circa 19.440 mc** per la sistemazione finale delle aree di cantiere prima della loro restituzione (il totale è stimato in 913.756 mc circa);

Opere in sotterraneo: circa 58.654 mc.

Tabella 5-2 Siti di destinazione: stima dei volumi di scavo (in mc) riutilizzati come sottoprodotti

		Cantieri Rapallo	Svincolo A12	Galleria Caravaggio	Arboccò	Galleria Fontanabuona	Piazzale di esazione Fontanabuona	Adeguamento S.P. n. 22	Cantieri Fontanabuona	Totale
	•			Rampa principale ml 5576						
ZZI in (mc)	in sotterraneo			25.956		32.698				58.654
∃ 8										
RIUTILI banco	all'aperto	990	409.943		27.332		371.210	85.831	18.450	913.756

I siti di utilizzo sono:

Opere in sotterraneo

Ambito Galleria Caravaggio:

Riempimento arco rovescio Galleria Caravaggio, GN01: 25.956 mc;

Ambito Galleria Fontanabuona:

Riempimento arco rovescio Galleria Fontanabuona, GN02: 32.698 mc;

Opere all'aperto:

Ambito Svincolo A12:

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

Sistemazione imbocco lato Rapallo Galleria Caravaggio, GN01a: 15.691 mc

Rimodellamento Caravaggio, RM01: 394.252 mc;

Ambito Arboccò, tratto all'aperto tra le 2 gallerie naturali, scavo all'aperto;

Sistemazione imbocco lato Fontanabuona Galleria Caravaggio, GN01b: 7.780 mc; Sistemazione imbocco lato Rapallo Galleria Fontanabuona, GN02a: 5.382 mc;

Sistemazioni Viadotto Arboccò: 14.170 mc;

Ambito Piazzale di esazione Fontanabuona

Area imbocco lato Fontanabuona Galleria Fontanabuona, GN02b: 4.199 mc Rimodellamento Fontanabuona, RM02: 367.011 mc;

Ambito Adeguamento S.P. n. 22

Sistemazione SP 22, con corpo stradale (da IN01 a IN05) e viadotti (da VI07 a VI10): 85.831 mc.

Ambito Cantieri

Il totale complessivo è di circa 19.440 mc, così suddivisi:

CA4 Rapallo: 990 mc
CA6, Moconesi: 7.620 mc
CA7, Moconesi: 10.200 mc
CA9, Tribogna: 630 mc

Tutti i siti di utilizzo dei materiali di scavo risultano essere in aree di pertinenza autostradale, pertanto con una destinazione d'uso industriale/commerciale. Pertanto, le Concentrazioni Soglia di Contaminazione (CSC) di riferimento risultano essere i valori di colonna B.

Le aree potenzialmente interferente con parti sature d'acqua sono soprattutto in Val Fontanabuona nella zona del piazzale di esazione e di rimodellamento morfologico lungo il torrente Litteglia ed in prossimità del Ponte sul Torrente. Dai rilievi piezometrici eseguiti durante le fasi geognostiche di progetto (circa 4-5 m dal p.c.) è infatti possibile che nella fase di costruzione del realizzando ponte vi possano essere interferenze con il livello d'acqua sotterranea. Quindi secondo quanto contenuto in allegato 4 del DPR 120/2017, nei casi di interferenza con la porzione satura, si dovrà utilizzare materiale da scavo per il quale sia stato verificato il rispetto dei limiti di cui alla colonna A (Tabella 1, allegato 5, al Titolo V, parte IV, del D.Lgs 153/2006 e ss.mm.ii.), con le modalità indicate nel suddetto allegato. In tal senso, viste le risultanze analitiche di laboratorio, si segnala un'ampia disponibilità dei materiali analizzati entro le CSC di colonna A.

5.4 BILANCIO MATERIALI DI SCAVO TRA SITI DI PRODUZIONE E SITI DI UTILIZZO

Il bilancio delle terre riportato riassume i quantitativi dei materiali, indicando i volumi in banco degli scavi e dei riutilizzi ricavati dagli elaborati progettuali.

Rispetto al volume in banco dai siti di produzione (952.970 mc), si dovrà tenere conto sia del fisiologico rigonfiamento che si verifica nelle terre e nei materiali da scavo al momento della loro estrazione dal banco naturale, sia dell'effetto, in termini di modifiche di volume, prodotto dalle tecniche utilizzate per il loro reimpiego. Il volume rigonfiato (si stima un 30% in media) pari a circa 1.238.862 mc risulta essere sufficiente a soddisfare il fabbisogno dei diversi interventi (1.474.539 mc circa)

Si deve considerare poi che la realizzazione del progetto contempla comunque un quantitativo di approvvigionamento esterno (circa 235.676 mc), necessario ad esempio per il completamento di alcuni interventi con materiale idoneo, per l'esecuzione di sistemi di drenaggio di alcune opere e per l'uso a scogliera o a gabbioni. Questo quantitativo di materiale non viene considerato, in quanto non attinente all'inquadramento normativo ai sensi del DPR 120/2017, così come i materiali provenienti dalle demolizioni di opere in calcestruzzo o pavimentazioni che saranno gestite come rifiuti.

Il bilancio complessivo dei movimenti di materiale da scavo, secondo le indicazioni descritte dal presente Piano di Utilizzo, è il seguente:

Tabella 5-3 Bilancio dei materiali di scavo ai sensi del DPR 120/2017

		Totale produzione	066	85.864	9.121	336.833	5.464	5.195	6.511	419.455	2.915	25.655	55.957	18.450	972.410
	Cantieri lato Fontanabuona	CA6, CA7, CA9 e CA11												18.450	18.450
	Adeguamento SP22	Sistemazione SP 22 con corpo stradale (da IN01 a IN05) e viadotti da VI07 a VI10)								29.874			55.957		85.831
	e Fontanabuona	Rimodellamento Fontanabuona (RMD2)								341.356		25.655			367.011
	Piazzale esazione Fontanabuona	Imbocco Fontanabuona galleria Fontanabuona (GN02b)								1.284	2.915				4.199
zione	Galleria Fontanabuona	Riempimento arco rovescio (GND2)								32.698					32.698
Siti di destinazione	•	mbocco rapallo galleria Fontanabuona (GN02a)				3.882		009	1.000						5.382
	Area di Arbocò	Rempimento di Arboccò (RS10)					4.464	4.195	5.511						14.170
		Imbooco Fontanabuona I galleria Caravaggio (GN01b)				6.280	1.000	009							7.780
	Galleria Caravaggio	Riempimento arco rovescio (GN01)				25.956									25.956
	Svincolo A12	Rimodellamento Caravaggio (RM01)		85.864	6.650	287.495				14.243					394.252
	Svince	Imboooo Rapallo galleria Caravaggio (GN01a)			2.471	13.220									15.691
	Cantieri lato Rapallo	C₩	066												066
•			CAI, CA3 e	Corpo stradale, CSO1, e rampe di svincolo, da RSO1 a RSO9, viadotti (da M01	imbocco lato Rapallo Galleria Caravaggio (GN01a)	Galleria naturale (GN01)	Imbocoo Fontanabuona galleria Caravaggio (GN01b)	Rampa stradale (RS10)	Imbocco Rapallo galleria Fontanabuona (GN02a)	Galleria naturale (GN02)	Imbocco Fontanabuona galleria Fontanabuona	Piazzale e stazione di esazione (PZ01)	Corpo stradale, rotatorie e viadotti (da INO1 a INO5) e viadotti (da VIO7) a VI10))	Ca6 CA7, CA8, CA9, CA10 e CA11	
Adeguamento Piazzale esazione Fontanabuona Galleria Finestra di Arbocò Garavaggio Svincolo A12 Isto Rapallo Rapallo							Cantieri lato Fontanabuona	Totale utilizzo							
								ə	nigino ib itiS						

autostrade per l'italia

AUTOSTRADA A12 GENOVA-ROMA

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

6 CAMPIONAMENTO ED ANALISI IN CORSO D'OPERA

Il Regolamento stabilisce che la caratterizzazione ambientale può essere eseguita in corso d'opera nel caso di comprovata impossibilità di eseguire un'indagine ambientale propedeutica in fase di progettazione o qualora si faccia ricorso a metodologie di scavo in grado di determinare una potenziale contaminazione dei materiali da scavo.

Secondo l'allegato 1 del Regolamento, qualora si ravvisi, già in fase progettuale, la necessità di effettuare una caratterizzazione ambientale in corso d'opera, le modalità di esecuzione della stessa a cura dell'esecutore, dovranno essere rispettose di quanto indicato in Allegato 9 parte A.

L'attività di caratterizzazione in corso d'opera è effettuata dall'esecutore sotto la propria responsabilità, ciò in quanto in fase di corso d'opera, l'esecutore, una volta che il proponente ne comunica gli estremi all'Autorità competente, fa suo il Piano di Utilizzo e lo attua divenendone responsabile (art. 2, c. 1, lett. q per la definizione di esecutore e art. 17 in merito alla realizzazione del piano di utilizzo).

A tal fine, in conformità all'Allegato 9 parte A del Regolamento, vengono definiti nel presente documento i criteri generali di esecuzione della caratterizzazione ambientale in corso d'opera. La caratterizzazione durante l'esecuzione dell'opera potrà essere condotta, in base alle specifiche esigenze operative e logistiche della cantierizzazione, in una delle modalità indicate all'Allegato 9 parte A:

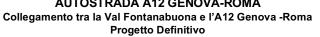
su cumuli all'interno delle opportune aree di cantierizzazione; direttamente sull'area di scavo e/o sul fronte di avanzamento; nell'intera area di intervento.

I criteri generali alla base dell'esecuzione della caratterizzazione ambientale in corso d'opera sono:

- l'Impresa esecutrice ha l'obbligo di effettuare la caratterizzazione dei materiali da scavo provenienti dallo scotico delle aree di cantiere e ivi depositati per il riutilizzo e ripristino finale definitivo per la restituzione a terzi;
- 2) l'Impresa esecutrice ha l'obbligo di effettuare la caratterizzazione in corso d'opera dei materiali che provengono dalle perforazioni;
- 3) l'Impresa esecutrice ha la facoltà di ricaratterizzare i materiali relativi agli scavi all'aperto.

Relativamente ai punti soprariportati, si precisa che:

- a) per caratterizzazione si intende la caratterizzazione ambientale di cui agli allegati 1, 2 e 4 del Regolamento, svolta per attestare la sussistenza dei requisiti di compatibilità ambientale, ove non è stato possibile indagare in fase propedeutica o per quei materiali la cui caratterizzazione necessiti di un maggiore approfondimento esplicabile solo in fase realizzativa;
- b) per ricaratterizzazione si intende la verifica della permanenza dei requisiti di qualità ambientale a seguito dell'esecuzione di attività di scavo, da svolgere in fase di corso d'opera secondo gli allegati 4 e 9 parte A).


in allegato sono riportate le tabelle che indicano l'elenco dei siti di indagine, con il relativo numero di prelievi, per il completamento della campagna di indagine di caratterizzazione dei materiali da scavo. In allegato al presente Piano è riportata in planimetria con l'ubicazione indicativa dei punti di campionamento.

Per quanto riguarda il caso della caratterizzazione in corso d'opera dei materiali provenienti dalla perforazione di pali, di cui si prevede il riutilizzo, la caratterizzazione specifica sarà svolta dall'Appaltatore secondo i criteri sopra riportati. La caratterizzazione ambientale di tali terre da scavo dovrà essere accompagnata dalla dichiarazione d'uso di miscele additive con requisiti ambientali idonei, attestati dalle schede tecniche e/o da prove di laboratorio esclusivamente ed appositamente eseguite.

6.1 CARATTERIZZAZIONE DI VERIFICA IN CORSO D'OPERA O FINALE

In relazione a quanto indicato all'art. 9 comma 7 e all'art. 28 del Regolamento, è fatta salva la possibilità da parte dell'Autorità di controllo di eseguire controlli ed ispezioni in contraddittorio direttamente sull'area di destinazione, sia a completamento che durante la posa in opera del materiale, utilizzando gli stessi criteri adottati per la caratterizzazione in corso d'opera.

L'Appaltatore sarà inoltre tenuto, alla conclusione dei lavori nella fase di ripristino finale, alla verifica di non contaminazione delle aree di cantiere e delle fasce lungo le viabilità utilizzate.

Collegamento tra la Val Fontanabuona e l'A12 Genova -Roma Progetto Definitivo

7 GESTIONE E TRASPORTO IN FASE DI CANTIERE

I siti di destinazione e produzione verranno raggiunti tramite il trasporto con autocarri. I percorsi interferiscono con la viabilità locale in modo decisamente contenuto, a parte la fase iniziale delle cantierizzazioni, per cui risulta ovviamente necessario avvalersi dei percorsi stradali già esistenti (si veda allegato 7). Pertanto, la peculiarità progettuale sulla movimentazione delle terre e dei materiali è quella di interessare unicamente viabilità interne di cantiere.

7.1 VIABILITÀ INTERESSATA DALLA MOVIMENTAZIONE DEI MATERIALI DI SCAVO

I percorsi attraverso i quali avviene la movimentazione dei materiali da scavo dal luogo di produzione al sito di caratterizzazione/cantiere, e da quest'ultimo al sito di destinazione finale (corpo autostradale, pertinenze stradali e/o rimodellamenti morfologici) nel caso specifico del presente intervento, sono quindi individuabili per la maggior parte con l'asse stradale o con le piste di cantiere interne all'area di rimodellamento lato Rapallo e Fontanabuona.

Nel caso di utilizzo delle viabilità locali, per raggiungere le aree di cantiere e di deposito i percorsi sono fissi e definiti a priori ed i conducenti, a meno di situazioni di emergenza, vi si atterranno senza operare variazioni, così come si atterranno al Codice della Strada.

Tutti gli automezzi saranno opportunamente coperti per evitare fenomeni di dispersione ed il contatto con gli agenti atmosferici.

Per la planimetria sulle viabilità di cantiere si veda lo specifico elaborato trasmesso congiuntamente al presente Piano di Utilizzo. Per maggiori dettagli si rimanda agli elaborati sulla cantierizzazione (a codifica CAP), presenti negli elaborati di Progetto Definitivo.

7.2 PROCEDURE PER LA TRACCIABILITÀ DEI MATERIALI

Sulla base di quanto stabilito dall'art. 6 del Regolamento, in tutte le fasi di movimentazione delle terre verrà definita una procedura atta a garantire la tracciabilità dei materiali da scavo: con l'applicazione di tale procedura ciascun volume di terre sarà identificato nelle fasi di produzione, trasporto, deposito e utilizzo.

La documentazione che accompagna il trasporto del materiale da scavo deve essere redatta secondo le indicazioni dell'Allegato 7 del Regolamento da parte dell'esecutore nella fase di corso d'opera.

Tale documentazione viene predisposta all'esecutore nella fase di corso d'opera, l'esecutore, infatti, dal momento della dichiarazione di cui all'art. 9 comma 1, resa dal proponente all'autorità competente, fa suo il Piano di Utilizzo e lo attua divenendone responsabile.

I moduli di trasporto di cui all'allegato 7 accompagnano ciascun mezzo, attestando la provenienza e la destinazione del materiale da scavo con riferimento al codice identificativo delle singole WBS.

7.3 DICHIARAZIONE DI AVVENUTO UTILIZZO

L'avvenuto utilizzo del materiale escavato in conformità al Piano di Utilizzo deve essere attestato dall'esecutore mediante la Dichiarazione di Avvenuto Utilizzo (DAU), art. 7 del Regolamento.

La dichiarazione da parte dell'esecutore all'Autorità competente è sostitutiva dell'atto di notorietà di cui all'art. 47 del D.P.R. 445/2000, in conformità all'allegato 8 del Regolamento e deve essere corredata della documentazione completa in esso richiamata.

A conclusione dei lavori di escavazione ed a conclusione dei lavori di utilizzo di tutta l'opera a progetto, secondo quanto indicato nell'Allegato 8 del Regolamento, l'esecutore compilerà una Dichiarazione di Avvenuto Utilizzo (DAU), che deve essere resa entro il termine in cui il Piano stesso cessa di avere validità.

In relazione alla complessità dell'opera ed ai volumi di terra movimentati, in aggiunta alla DAU prevista dall'Allegato 8 del Regolamento, durante la realizzazione dei lavori, l'esecutore sarà tenuto, a redigere una dichiarazione di avvenuto utilizzo analoga a quella di cui all'Allegato 8 e pertanto sostitutiva dell'atto di notorietà di cui all'art. 47 del D.P.R. 445/2000 con cadenza semestrale. Tale dichiarazione, corredata dei certificati delle analisi effettuate sui campioni, dovrà attestare l'utilizzo dei materiali sia riferito al periodo per il quale viene emessa sia a consuntivo.

Appendice A

TABELLE RIEPILOGATIVE SUGLI ESITI ANALITICI DI LABORATORIO CARATTERIZZAZIONI AMBIENTALI ESEGUITE IN FASE PROGETTUALE 2011, 2013 e 2022

SIGLA				SV2	SV4	SV5	FB1	FB6	FB7	FB9	FB10	FB15	FB17
Profondità prelievo	m da p.c.			0,50-1,00	0,50-1,50	0,20-0,70	16,00-16,50	34,50-35,00	130,1-130,2	8,00-9,00	0,50-1,00	0,00-1,00	0,50-1,00
Litotipo dominante				Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Argilliti di M.te Lavagnola	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Scisti manganesiferi	Scisti manganesiferi
data prelievo				2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
Ambito		2010	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV All.5 Tab. 1 limiti col. A	Parte IV AII.5 Tab. 1 Iimiti col. B	Area di svincolo A12 e rimodellamento morfologico Caravaggio	Area di svincolo A12 e rimodellamento rimodellamento morfologico Caravaggio Caravaggio	Area di svincolo A12 e rimodellamento morfologico Caravaggio	galleria Caravaggio	galleria Fontanabuona	galleria Fontanabuona	imbocco lato Fontanabuona galleria Fontanabuona	Rimodellament o morfologico Fontanabuona e Area stazione di esazione	Adeguamento e Adeguamento e Sistemazione Sistemazione SP 22	Adeguamento e Sistemazione SP 22
Parametro													
Arsenico	mg/Kg s.s.	20	20	2,9	4,6	5,2	2,7	5,9	< 2.000	12,9	13,8	4,4	14,2
Cadmio	mg/Kg s.s.	2	15	< 0.200	< 0.200	0,24	< 0.200	0,27	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Cobalto	mg/Kg s.s.	20	250	5,1	7,4	8	3,1	9'8	5,2	13,4	26	17,5	16,2
Cromo totale	mg/Kg s.s.	150	800	9,5	16,9	30,7	7,5	10	15,4	22,3	31,4	26,2	41,5
Cromo esavalente	mg/Kg s.s.	2	15	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000	< 1.000
Mercurio	mg/Kg s.s.	1	9	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
Nichel	mg/Kg s.s.	120	200	13,7	19,1	25,5	9,2	36,4	17,4	25,5	43,8	34,8	50,7
Piombo	mg/Kg s.s.	100	1000	7,9	21,5	16,1	5,4	16,6	5,4	22,1	28,5	20,8	30,4
Rame	mg/Kg s.s.	120	009	42,6	18,8	26,5	12,8	21,6	19,5	28,2	41,9	81,5	53
Zinco	mg/Kg s.s.	150	1500	5,8	56,5	54	28,7	51,3	50,8	107	117	94,2	106
Benzene	mg/Kg s.s.	0,1	2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Etilbenzene (A)	mg/Kg s.s.	0,5	20	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Stirene (B)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Toluene (C)	mg/Kg s.s.	0,5	20	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Benzo (a)antracene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (a) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	n.r.	n.r.	'J'U	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Crisene	mg/Kg s.s.	5	50	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	u.r.	n.r.	u.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Pirene	mg/Kg s.s.	2	20	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Ipa Totali	mg/Kg s.s.	10	100	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	19	21	19	n.r.	n.r.	n.r.	n.r.	16	14	18
Amianto (qualitativa)	pres/ass			n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.
Amianto	mg/Kg s.s.	1000	1000										
CSC				4	Ą	∢	4	4	A	4	B	A	A

CAMPIONE				FB 3 CA 1	FB 3 CA 2	FB 3 CA 3	FB 5 CA 1	FB 5 CA 2	FB 5 CA 3	FB9 QUATER CA1	FB9 QUATER CA2	FB9 QUATER CA3	FB9 QUATER CA4
Profondità prelievo	m da p.c.			0.00-0.50	1,00-1,40	29,50-30,0	0.00-0.45	1,10-1,60	19,60-20,00	1,00-1,50	42.2-42.6	-	232.5-233
Litotipo dominante				Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	O	Ardesie di M.te Varzi	Ardesie di M.te	Argilliti di M.te	Ardesie di M.te
data prelievo				2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito		5	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV All.5 Tab. 1 Iimiti col.	Parte IV All.5 Tab. 1 Iimiti col. B	Galleria Caravaggio imbocco lato Rapallo	Galleria Caravaggio imbocco lato Rapallo	Galleria Caravaggio imbocco lato Rapallo	Galleria Fontanabuona, imbocco lato Rapallo	Galleria Fontanabuona, imbocco lato Rapallo	Galleria Fontanabuona, imbocco lato Rapallo	Galleria Fontanabuona	Galleria Fontanabuona	Galleria Fontanabuona	Galleria Fontanabuona
Parametro													
Arsenico	mg/Kg s.s.	20	20	6,5	3,7	3,8	3.2	7.1	4.2	8.4	8.0	5.1	9.5
Cadmio	mg/Kg s.s.	2	15	0,35	< 0.1	< 0.1	0.27	0.40	0.19	< 0.1	< 0.1	< 0.1	< 0.1
Cobalto	mg/Kg s.s.	20	250	7,9	3,4	4,7	4.1	8.7	5.0	14	7.5	23	11
Cromo totale	mg/Kg s.s.	150	800	18	11	15	14	13	2.6	20	17	39	31
Cromo esavalente	mg/Kg s.s.	2	15	< 0.2	< 0.2	< 0.2	0.15	0.28	0.25	< 0.2	< 0.2	< 0.2	< 0.2
Mercurio	mg/Kg s.s.	1	5	< 0.1	< 0.1	< 0.1	0.22	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel	mg/Kg s.s.	120	200	23	11	18	17	23	14	30	27	98	36
Piombo	mg/Kg s.s.	100	1000	34	7	11	26	12	5.8	18	16	17	30
Rame	mg/Kg s.s.	120	009	23	11	15	18	20	12	22	25	71	38
Zinco	mg/Kg s.s.	150	1500	51	105	43	20	57	29	69	57	131	126
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	0.0059	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	0.0059	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	0.0088	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	0.010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	0.0078	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	50	< 0.01	< 0.01	< 0.01	0.011	< 0.01	< 0.01	< 0.01	< 0.01	0.011	< 0.01
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	< 0.1	< 0.1	0.074	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	20	750	38	10	7	202	11	< 5	16	6.0	8.6	5.8
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
csc				A	A	A	В	A	¥	4	A	A	A

SIGLA				FB9 QUATER CA5	FB 14 CH 1	FB 14 CH 2	FB 14 CH 3	FB 18 CH 1	FB 18 CH 2	FB 18 CH 3	FB 20 CH 1	FB 20 CH 2	FB 20 CH 3
Profondità prelievo	m da p.c.			254-254.5	0.00-0.40	0.50-1.00	1.00-2.00	09.0-00.0	5.00-5.50	5.50-6.00	0.00-0.30	0.30-1.40	1.00-1.80
Litotipo dominante				Calcari del M.te Antola	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Scisti manganesiferi	Scisti	Scisti	Scisti	Scisti	Scisti
data prelievo				2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito		201	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV AII.5 Tab. 1 Iimiti col. A	Parte IV All.5 Tab. 1 Ilimiti col. B	Galleria Fontanabuona		Area piazzale di Area piazzale di Area piazzale di esezione della esezione della Fontanabuona Fontanabuona	Area piazzale di esezione della Fontanabuona	Adeguamento SP 22	Adeguamento SP 22	Adeguamento SP 22	Area piazzale di esezione della Fontanabuona	Area piazzale di Area piazzale di Area piazzale di esezione della esezione della Fontanabuona Fontanabuona	Area piazzale di esezione della Fontanabuona
Parametro													
Arsenico	mg/Kg s.s.	20	20	5.9	7.5	9.7	12	9.0	7.3	2.0	8.9	13	12
Cadmio	mg/Kg s.s.	2	15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.12	0.14	660.0
Cobalto	mg/Kg s.s.	20	250	5.6	11	13	16	14	18	14	16	19	14
Cromo totale	mg/Kg s.s.	150	800	18	22	24	28	35	33	30	25	27	21
Cromo esavalente	mg/Kg s.s.	2	15	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mercurio	mg/Kg s.s.	1	5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.12
Nichel	mg/Kg s.s.	120	200	23	34	36	45	55	65	47	46	51	38
Piombo	mg/Kg s.s.	100	1000	12	27	27	31	29	23	11	30	39	31
Rame	mg/Kg s.s.	120	009	18	43	36	44	50	56	63	57	58	44
Zinco	mg/Kg s.s.	150	1500	52	83	87	92	89	106	77	101	123	94
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	9,0	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	9,0	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	-	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012	< 0.01	< 0.01
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.010	< 0.01	< 0.01
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.011	< 0.01	< 0.01
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	5	20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013	< 0.01	< 0.01
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.019	< 0.01	< 0.01
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.11	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	20	750	5.6	62	5.8	< 5	21	< 5	4.4	24	7.2	5.9
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
CSC				¥	80	¥	∢	¥	¥	¥	٨	¥	¥

SIGLA				FB 21 CH 1	FB 21 CH 2	FB 21 CH 3	FB 11 CA 1	FB 11 CA 2	FB 11 CA 3	FB 12 CA 1	FB 12 CA 2	FB 12 CA 3	FB 4 CA 1
Profondità prelievo	m da p.c.	_		0.00-1.00	3.00-3.80	3.80-4.30	09.0-00.0	0.60-1.00	1.00-1.50	0.00-0.30	0.30-1.00	1.00-1.50	09.0-00.0
Litotipo dominante				Scisti	Scisti	Scisti	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Calcari del M.te Antola
data prelievo		_		2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito			D.Lgs										
Opera prinicpale di riferimento		U.Lgs 152/2006 Parte IV All.5 Tab. 1 limiti col. A	152/2006 Parte IV All.5 Tab. 1 Iimiti col. B	Adeguamento SP 22	Adeguamento SP 22	Adeguamento SP 22	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della esezione della esezione della esezione della Fontanabuona Fon	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della Fontanabuona	Area di Arboccò
Parametro													
Arsenico	mg/Kg s.s.	20	90	11	4.1	3.4	7.8	8.1	5.3	4.7	5.3	8.5	7.1
Cadmio	mg/Kg s.s.	2	15	< 0.1	< 0.1	< 0.1	0.22	0.24	0.090	0.091	< 0.1	0.33	0.43
Cobalto	mg/Kg s.s.	20	250	22	8.6	24	9.6	9.4	10	6.3	13	15	9.2
Cromo totale	mg/Kg s.s.	150	800	45	16	33	22	18	18	13	21	19	20
Cromo esavalente	mg/Kg s.s.	2	15	< 0.2	< 0.2	< 0.2	0.46	0.39	0.17	0.29	0.48	0.27	0.34
Mercurio	mg/Kg s.s.	-	2	0.24	0.14	< 0.1	< 0.1	0.59	< 0.1	< 0.1	< 0.1	< 0.1	0.26
Nichel	mg/Kg s.s.	120	200	61	31	89	32	27	31	21	37	47	31
Piombo	mg/Kg s.s.	100	1000	38	16	22	25	19	16	17	24	28	42
Rame	mg/Kg s.s.	120	009	64	38	92	28	25	25	19	43	45	34
Zinco	mg/Kg s.s.	150	1500	109	57	107	71	62	54	51	86	96	75
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	-	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013
Benzo (k) fluorantene	mg/Kg s.s.	9,0	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	9	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013
Crisene	mg/Kg s.s.	c ;	09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ulbenzo (a,ı) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013
Pirene	mg/Kg s.s.	2	20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.019
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.12
Idrocarburi pesanti (C>12)	mg/Kg s.s.	20	750	10	6.5	< 5	10	10	3.2	22	8.2	< 5	06
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 100	× 100	× 100	< 100	× 100	< 100	< 100	× 100	< 100	< 100
CSC				В	¥	4	¥	¥	4	4	4	¥	В

SIGLA CAMPIONE				FB 4 CA 2	SV1 CA 1	SV1 CA 2	Pz CN 01 Top Soil	Pz CN 01 C1	Pz CN 02 Top Soil	Pz CN 02 C1	Pz CN 03 Top Soil	Pz CN 03 C1	Pz CN 05 Top Soil
Profondità prelievo	m da p.c.			0.60-1.00	0.00-1.00	5.00-6.00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30
Litotipo dominante				Calcari del M.te Antola	et.	Calcari del M.te Antola	Calcari del M.te Antola						
data prelievo				2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito		-	D.Lgs										
Opera prinicpale di riferimento		U.Lgs 152/2006 Parte IV All.5 Tab. 1 Iimiti col. A	Parte IV All.5 Tab. 1 Ilimiti col. B	Area di Arboccò	Area di svincolo A12	Area di svincolo A12	Area di svincolo Area d	Area di svincolo A12					
Parametro													
Arsenico	mg/Kg s.s.	20	20	5.2	4.2	3.7	6.9	6.7	6.2	7.1	6.2	6.8	6.3
Cadmio	mg/Kg s.s.	2	15	0.24	0.22	0.13	0.32	0.26	0.26	0.32	0.24	0.25	0.20
Cobalto	mg/Kg s.s.	20	250	6.1	5.9	6.1	9.6	11	9.8	11	9.3	10	8.2
Cromo totale	mg/Kg s.s.	150	800	15	21	10	22	21	18	22	23	28	20
lente	mg/Kg s.s.	2	15	0.38	0.70	0.19	0.36	0.46	0.39	0.75	09.0	0.54	0.54
Mercurio	mg/Kg s.s.	1	5	< 0.1	0.076	< 0.1	< 0.1	< 0.1	< 0.1	0.11	< 0.1	< 0.1	< 0.1
	mg/Kg s.s.	120	200	23	26	17	28	24	20	27	22	28	24
Piombo	mg/Kg s.s.	100	1000	9.3	29	8.9	29	31	29	44	37	23	30
Rame	mg/Kg s.s.	120	009	14	21	15	29	23	20	54	20	23	22
Zinco	mg/Kg s.s.	150	1500	44	89	41	99	58	20	77	52	28	59
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
\dashv	mg/Kg s.s.	9,0	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
<u>a</u>	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
natici	mg/Kg s.s.	1	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	0.011	< 0.01	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
200	mg/Kg s.s.	0,5	10	< 0.01	0.017	< 0.01	0.016	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	0.0076	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	< 0.01	0.014	0.0070	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	5	20	< 0.01	0.029	< 0.01	0.0088	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	0.0088	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	50	< 0.01	0.032	0.0070	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	0.15	< 0.1	0.094	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	8.2	218	13	25	16	18	12	25	9.2	13
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente						
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	× 100	< 100	< 100	< 100	< 100
CSC				¥	В	A	A	4	A	A	A	A	4

SIGLA				Pz CN 05 C1	Pz CN 17 Top Soil	Pz CN 17 C1	Pz CN 18 Top Soil	Pz CN 18 C1	Pz CN 19 Top Soil	Pz CN 19 C1	Pz CN 21 Top Soil	Pz CN 21 C1	Pz CN 22 Top Soil
Profondità prelievo	m da p.c.			0,30-1,00	0,000-0,30	0,30-1,00	0,00-00,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30
Litotipo dominante				Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	Calcari del M.te Antola	S	Calcari del M.te Antola	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi
data prelievo				2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito		-	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV AII.5 Tab. 1 Iimiti col.		Area di svincolo A12	Area imbocco lato Rapallo Galleria Caravaggio	Galleria Fontanabuona, imbocco lato Fontanabuona	Galleria Fontanabuona, imbocco lato Fontanabuona	Galleria Fontanabuona, imbocco lato Fontanabuona					
Parametro			1										
Arsenico	mg/Kg s.s.	20	90	7.7	5.7	5.9	4.8	5.9	5.3	6.7	8.9	7.4	9.2
Cadmio	mg/Kg s.s.	2	15	0.26	0.41	0.37	0:30	0.28	0.32	0.34	0.22	0.15	0.12
Cobalto	mg/Kg s.s.	20	250	11	6.3	9.9	5.9	7.2	6.9	8.4	13	13	8.9
Cromo totale	mg/Kg s.s.	150	800	23	18	16	18	18	31	24	22	19	30
Cromo esavalente	mg/Kg s.s.	2	15	69.0	0.65	0.34	0.48	0.36	0.49	0.48	1.0	0.60	0.63
Mercurio	mg/Kg s.s.	-	5	< 0.1	0.079	< 0.1	0.059	< 0.1	0.15	< 0.1	0.11	< 0.1	0.10
Nichel	mg/Kg s.s.	120	200	32	21	19	21	22	32	29	31	28	33
Piombo	mg/Kg s.s.	100	1000	24	108	69	50	28	44	37	49	28	43
Rame	mg/Kg s.s.	120	600	29	25	21	22	23	37	37	33	28	28
Zinco	mg/Kg s.s.	150	1500	74	177	155	67	62	66	91	87	70	89
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	0.018	< 0.01	0.0094	0.011	< 0.01	< 0.01	< 0.01	< 0.01	0.036
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	0.0067	0.0071	0.030	0.032	< 0.01	< 0.01	< 0.01	0.037
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	0.011	0.014	0.0065	0.031	0.051	< 0.01	< 0.01	< 0.01	0.041
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	0.015	0.017	< 0.01	< 0.01	< 0.01	0.021
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	< 0.01	0.013	< 0.01	0.0071	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.017
Crisene	mg/Kg s.s.	5	20	< 0.01	0.020	0.0087	0.0083	0.018	0.024	< 0.01	< 0.01	< 0.01	0.040
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	< 0.01	0.0072	< 0.01	< 0.01	< 0.01	< 0.01	0.019
Pirene	mg/Kg s.s.	5	50	< 0.01	0.023	0.013	0.014	0.030	0.030	0.013	< 0.01	< 0.01	0.041
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	0.11	0.075	0.073	0.16	0.19	< 0.1	< 0.1	< 0.1	0.27
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	9.0	160	91	147	55	404	201	77	25	59
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
CSC				A	8	В	8	В	89	8	8	A	8

SIGLA			•	Pz CN 22 C1	Pz CN 23 Top Soil	Δ.	Pz CN 24 Top Soil	Pz CN 24 C1	Pz CN 25 Top Soil	Pz CN 25 C1	Pz CN 26 Top Soil	_	Pz CN 27 Top Soil
	m da p.c.			0,30-1,00	0,00-0,30	_	0,000-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,000-0,30
				Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi	Ardesie di M.te Varzi				
			i	2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
		2	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV All.5 Tab. 1 Iimiti col.	Parte IV AII.5 Tab. 1 Iimiti col. B	Galleria Fontanabuona, imbocco lato Fontanabuona		Area piazzale di Area piazzale di Area piazzale di Area piazzale di esezione della esezione della esezione della esezione della Fontanabuona Fontanabuona Fontanabuona Fontanabuona Fontanabuona Fontanabuona Fontanabuona	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della Fontanabuona	Area piazzale di esezione della Fontanabuona				
Γ													
	mg/Kg s.s.	20	90	7.5	13	10.0	9.2	7.4	7.4	11	10	10	18
	mg/Kg s.s.	2	15	0.13	0.22	0.25	0.21	0.23	0.20	0.23	0.25	0.23	0.20
	mg/Kg s.s.	20	250	8.8	16	13	10	9.8	11	15	14	14	17
	mg/Kg s.s.	150	800	27	25	19	21	18	26	27	25	30	30
	mg/Kg s.s.	2	15	0.46	0.78	0.75	0.59	0.45	0.73	0.55	0.63	0.53	1.3
	mg/Kg s.s.	1	5	< 0.1	0.14	0.14	080'0	0.089	0.11	0.11	0.11	0.073	0.13
	mg/Kg s.s.	120	200	31	41	32	27	27	28	39	37	45	47
	mg/Kg s.s.	100	1000	21	40	27	35	26	32	37	50	36	48
	mg/Kg s.s.	120	009	23	43	34	23	25	25	35	34	31	44
1	mg/Kg s.s.	150	1500	80	111	78	73	70	79	107	96	87	113
	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	-	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	0.92	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	0.77	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	0.51	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	0.26	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	0.15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	2	20	< 0.01	< 0.01	0.56	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	0.025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	0.0092	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	0.21	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	2	20	< 0.01	< 0.01	1.4	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	mg/Kg s.s.	10	100	< 0.1	< 0.1	4.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	50	750	7.2	84	81	41	37	126	99	22	20	66
	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
	mg/Kg s.s.	1000	1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
				A	8	В	4	A	В	8	8	A	В

Pz CN 32 Top Soil	0,00-0,30	Ardesie di M.te Varzi	2013		Area piazzale di Area p		11	0.20	14	27	0.59	0.24	45	42	42	111	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	98	Assente	< 1000
Pz CN 31 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		13	0.21	14	28	0.42	0.11	43	42	40	100	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	24	Assente	< 1000
Pz CN 31 Top Soil	0,00-0,30	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		12	0.26	14	26	0.36	0.11	43	56	39	101	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	29	Assente	1000
Pz CN 30 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		8.9	0.11	8.7	18	0.25	< 0.1	26	18	33	85	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	23	Assente	7 1000
Pz CN 30 Top Soil	0,00-0,30	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		8.1	0.15	12	20	0.63	< 0.1	35	25	32	83	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	51	Assente	1 1000
Pz CN 29 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		8.7	0.13	11	23	0.65	< 0.1	28	33	25	65	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	17	Assente	1 1000
Pz CN 29 Top Soil	0,00-0,30	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		11	0.32	6.3	27	0.95	0.17	31	71	28	85	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	0.012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	888	Assente	1000
Pz CN 28 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		12	0.31	16	27	0.53	0.12	42	45	41	111	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	49	Assente	1000
Pz CN 28 Top Soil	-	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		9.2	0.23	13	23	0.77	0.092	34	36	36	93	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	146	Assente	1000
Pz CN 27 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		11	0.20	16	30	98.0	0.098	40	38	39	112	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	30	Assente	4 1000
				D.Lgs	Parte IV All.5 Tab. 1 Ilimiti col. B		20	15	250	800	15	2	200	1000	009	1500	2	20	50	20	20	100	10	10	10	10	10	20	10	10	10	10	10	2	20	100	750		1000
				-	152/2006 Parte IV All.5 Tab. 1 Iimiti col.		20	2	20	150	2	-	120	100	120	150	0,1	0,5	0,5	0,5	0,5	1	0,5	0,1	0,5	0,5	0,1	5	0,1	0,1	0,1	0,1	0,1	0,1	5	10	20		1000
	m da p.c.				-		mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	pres/ass	ma/Kass
SIGLA	Profondità prelievo	Litotipo dominante	data prelievo	Ambito	Opera prinicpale di riferimento	Parametro	Arsenico	Cadmio	Cobalto	Cromo totale	Cromo esavalente	Mercurio	Nichel	Piombo	Rame	Zinco	Benzene	Etilbenzene (A)	Stirene (B)	Toluene (C)	Xileni (Somma Medium Bound) (D)	Sommatoria organici aromatici	Benzo (a)antracene	Benzo (a) pirene	Benzo (b) fluorantene	Benzo (k) fluorantene	Benzo (g,h,i) perilene	Crisene	Dibenzo (a,e) pirene	Dibenzo (a,i) pirene	Dibenzo (a,l) pirene	Dibenzo (a,h) pirene	Dibenzo (a,h) antracene	Indeno (1,2,3-cd) pirene	Pirene	lpa Totali	Idrocarburi pesanti (C>12)	Amianto (qualitativa)	Amianto

Pz CN 36 C1 Pz CN 37 Top	0,30-1,00 0,00-0,30	Scisti Scisti manganesiferi	-		Adeguamento Adeguamento SP 22 SP 22		6.3 8.5	0.18 0.16	13 11	27 24		0.077 0.091	38 38		43 57		< 0.01 < 0.01	< 0.05 < 0.05			< 0.05 < 0.05	< 0.1 < 0.1		0.028 0.028		0.015 0.017	0.024 0.023		< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	0.015 0.015	0.013 0.017	0.046 0.039	0.27 0.25	172 57	Acces A
Pz CN 36 Top Soil	0,00-0,30	Scisti	-		Adeguamento SP 22		5.4	0.20	16	24	0.40	0.083	33	31	36	63	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	0.031	0.030	0.038	0.015	0.022	0.051	< 0.01	< 0.01	< 0.01	< 0.01	0.010	0.013	0.048	0.27	133	Accept
Pz CN 35 C1	0,30-1,00	Scisti	2013		Adeguamento SP 22		5.8	0.16	21	41	0.62	0.085	63	31	66	100	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	14	- + V
Pz CN 35 Top Soil	0,00-0,30	Scisti	2013		Adeguamento SP 22		5.3	0.19	24	36	0.71	0.10	59	40	100	103	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	0.020	0.011	0.020	0.011	0.0074	0.023	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0081	0.028	0.14	48	Accepte
Pz CN 34 C1	0,30-1,00	Scisti	2013		Adeguamento SP 22 - CA10		< 2	< 0.1	16	24	0.33	< 0.1	46	12	84	73	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	0.065	0.058	0.061	0.031	0.030	0.088	< 0.01	< 0.01	< 0.01	< 0.01	0.012	0.025	0.10	0.49	33	٥٠٠٥٧
Pz CN 34 Top Soil	0,00-0,30	Scisti	2013		Adeguamento SP 22 - CA10		1.5	0.23	14	22	0.27	< 0.1	44	14	74	68	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	0.10	0.097	0.097	0.054	0.043	0.12	0.0000	< 0.01	< 0.01	< 0.01	0.016	0.039	0.15	0.73	32	٨٠٠٥٠٠
Pz CN 33 C1	0,30-1,00	Scisti	2013		Adeguamento SP 22 - CA10		2.3	0.14	5.6	20	0.16	0.080	25	30	22	49	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	7.6	6.8	8.0	3.9	2.7	8.4	0.80	< 0.01	0.27	0.22	1.9	3.1	9.9	49	52	Accepte
Pz CN 33 Top Soil	0,00-0,30	Scisti	2013		Adeguamento SP 22 - CA10		1.9	0.11	3.8	21	0.11	0.065	23	16	18	32	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	4.1	3.8	4.4	2.0	1.5	4.7	0.44	< 0.01	0.12	0.11	0.94	1.6	2.9	27	29	A.c.c.
Pz CN 32 C1	0,30-1,00	Ardesie di M.te Varzi	2013		Area piazzale di esezione della Fontanabuona		12	0.19	15	27	0.34	< 0.1	48	35	43	103	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	15	Acconto
				D.Lgs	Parte IV All.5 Tab. 1 Iimiti col. B		20	15	250	008	15	9	200	1000	009	1500	2	90	20	20	20	100	10	10	10	10	10	20	10	10	10	10	10	9	09	100	750	
				-	152/2006 Parte IV All.5 Tab. 1 Iimiti col. A		20	2	20	150	2	1	120	100	120	150	0,1	0,5	0,5	0,5	0,5	1	0,5	0,1	0,5	0,5	0,1	2	0,1	0,1	0,1	0,1	0,1	0,1	5	10	20	
	m da p.c.						mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	mg/Kg s.s.	pres/ass
SIGLA	Profondità prelievo	Litotipo dominante	data prelievo	Ambito	Opera prinicpale di riferimento	Parametro	Arsenico	Cadmio	Cobalto	Cromo totale	Cromo esavalente	Mercurio	Nichel	Piombo	Rame	Zinco	Benzene	Etilbenzene (A)	Stirene (B)	Toluene (C)	Xileni (Somma Medium Bound) (D)	Sommatoria organici aromatici	Benzo (a)antracene	Benzo (a) pirene	Benzo (b) fluorantene	Benzo (k) fluorantene	Benzo (g,h,i) perilene	Crisene	Dibenzo (a,e) pirene	Dibenzo (a,i) pirene	Dibenzo (a,l) pirene	Dibenzo (a,h) pirene	Dibenzo (a,h) antracene	Indeno (1,2,3-cd) pirene	Pirene	Ipa Totali	Idrocarburi pesanti (C>12)	Amianto (qualitativa)

SIGLA CAMPIONE				Pz CN 37 C1	Pz CN 43 Top Soil	Pz CN 43 C1	Pz CN 44 Top Soil	Pz CN 44 C1	Pz CN 45 Top Soil	Pz CN 45 C1	Pz CN 46Top Soil	Pz CN 46 C1	Pz CN 47 Top Soil
Profondità prelievo	m da p.c.			0,30-1,00	0,000-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30	0,30-1,00	0,00-0,30
Litotipo dominante				Scisti	Scisti	Scisti	Scisti	Scisti	Scisti	Scisti	Scisti	Scisti	Scisti
data prelievo				2013	2013	2013	2013	2013	2013	2013	2013	2013	2013
Ambito		200	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV All.5 Tab. 1 Iimiti col. A	Parte IV All.5 Tab. 1 Iimiti col. B	Adeguamento SP 22	Adeguamento SP 22 - CA8	Adeguamento SP 22 - CA8	Adeguamento SP 22	Adeguamento SP 22	Adeguamento SP 22 - CA9	Adeguamento SP 22 - CA9	Adeguamento SP 22 - CA9	Adeguamento SP 22	Adeguamento SP 22
Parametro													
Arsenico	mg/Kg s.s.	20	20	6.9	7.0	8.0	3.6	3.6	5.1	5.7	5.3	5.4	5.1
Cadmio	mg/Kg s.s.	2	15	0.17	0.11	0.16	0.14	0.16	0.097	0.098	< 0.1	660.0	0.11
Cobalto	mg/Kg s.s.	20	250	9.0	15	17	18	20	13	15	17	17	12
Cromo totale	mg/Kg s.s.	150	800	30	32	35	31	34	22	26	30	27	29
Cromo esavalente	mg/Kg s.s.	2	15	0.31	0.70	0.83	0.53	0.77	0.27	0.43	0.58	0.41	0.62
Mercurio	mg/Kg s.s.	-	5	0.10	0.18	0.21	< 0.1	< 0.1	< 0.1	0.082	0.091	0.099	< 0.1
Nichel	mg/Kg s.s.	120	200	36	54	62	50	53	41	51	64	72	39
Piombo	mg/Kg s.s.	100	1000	106	34	42	27	33	19	19	25	24	26
Rame	mg/Kg s.s.	120	009	43	59	70	147	161	44	52	20	69	71
Zinco	mg/Kg s.s.	150	1500	102	91	111	88	112	72	79	94	106	71
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	9,0	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	9,0	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	9,0	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	9,0	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	9,0	10	0.029	0.077	0.031	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (a) pirene	mg/Kg s.s.	0,1	10	0.034	0.058	0.042	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	0.041	0.053	0.031	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (k) fluorantene	mg/Kg s.s.	9,0	10	0.021	0.026	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	0.026	0.021	0.017	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	9	50	0.040	0.058	0.072	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	0.010	0.0091	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	2	0.026	0.025	0.012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	50	0.042	0.062	0.055	0.0076	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
lpa Totali	mg/Kg s.s.	10	100	0.28	0.40	0.29	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	20	750	20	122	27	19	25	33	39	12	14	26
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
CSC				В	В	A	В	В	A	ď	Ą	A	¥

SIGLA				Pz CN 47 C1	Pz LL 01 Top Soil	Pz LL 01 C1	Pz LL 01 C2	Pz LL 02 Top Soil	Pz LL 02 C1	Pz LL 02 C2	Pz LL 03 Top Soil	Pz LL 03 C1	Pz LL 03 C2
Profondità prelievo	m da p.c.			0,30-1,00	0,00-0,30	0,30-1,00	1,00-2,00	0,00-0,30	0,30-1,00	1,00-2,00	0,00-0,30	0,30-1,00	1,00-2,00
Litotipo dominante				Scisti	Calcari del M.te	Calcari del M.te Antola	Calcari del M.te Antola	Scisti	Scisti	Scisti	Scisti	Scisti	Scisti
data prelievo				2013	2013	2013	2013	2013	2013	2013	-	-	2013
Ambito		-	D.Lgs										
Opera prinicpale di riferimento		152/2006 Parte IV AII.5 Tab. 1 limiti col. A	Parte IV AII.5 Tab. 1 Iimiti col. B	Adeguamento , SP 22 - CA9	Area di svincolo Area di svincolo Area di svincolo Adeguamento A12 A12 SP 22	Area di svincolo A12	Area di svincolo A12	Adeguamento SP 22					
Parametro											-		
Arsenico	mg/Kg s.s.	20	20	4.4	2.8	2.4	5.7	3.2	2.7	13	3.1	4.7	11
Cadmio	mg/Kg s.s.	2	15	0.11	0.20	0.12	0.10	0.22	0.14	0.17	0.14	0.13	0.17
Cobalto	mg/Kg s.s.	20	250	16	19	19	18	22	21	21	20	20	16
Cromo totale	mg/Kg s.s.	150	800	98	44	38	38	48	48	30	44	42	31
Cromo esavalente	mg/Kg s.s.	2	15	0.26	0.46	0.59	0.49	0.50	92'0	0.33	0.58	0.61	0.48
Mercurio	mg/Kg s.s.	1	5	< 0.1	< 0.1	< 0.1	0.20	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel	mg/Kg s.s.	120	500	54	89	09	58	72	77	43	65	68	43
Piombo	mg/Kg s.s.	100	1000	23	28	23	21	32	27	31	29	27	31
Rame	mg/Kg s.s.	120	600	96	115	80	54	127	109	44	109	123	44
Zinco	mg/Kg s.s.	150	1500	94	130	85	96	113	111	101	97	97	108
Benzene	mg/Kg s.s.	0,1	2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Etilbenzene (A)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stirene (B)	mg/Kg s.s.	0,5	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene (C)	mg/Kg s.s.	9,0	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xileni (Somma Medium Bound) (D)	mg/Kg s.s.	0,5	50	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sommatoria organici aromatici	mg/Kg s.s.	1	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo (a)antracene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (a) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (b) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (k) fluorantene	mg/Kg s.s.	0,5	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo (g,h,i) perilene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Crisene	mg/Kg s.s.	2	50	0.012	< 0.01	< 0.01	0.0093	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,e) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,i) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,l) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) pirene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo (a,h) antracene	mg/Kg s.s.	0,1	10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno (1,2,3-cd) pirene	mg/Kg s.s.	0,1	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pirene	mg/Kg s.s.	5	20	< 0.01	< 0.01	< 0.01	0.019	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ipa Totali	mg/Kg s.s.	10	100	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Idrocarburi pesanti (C>12)	mg/Kg s.s.	20	750	22	49	26	21	41	17	6.4	36	16	8.4
Amianto (qualitativa)	pres/ass			Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente
Amianto	mg/Kg s.s.	1000	1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
CSC				A	A	A	Ą	В	8	8	В	8	A

CAMPIONE					SE1 CA1	SE1 CA2	SE1 CA3	SE2 CA1	SE2 CA2	SE3 CA1	SE3 CA2	SE4 CA1	SE4 CA2	SE4 CA3
Prof.	m da p.c.	Metodo analitico di	D.Lgs.	D.Lgs.	0.3-2.0 m	2.0 - 4.0 m	8.0 - 8.2 m	(0.1 - 1.0 m)	8.0 - 8.2 m	(0.0 - 2.0 m)	9.0 - 9.2 m	(0.0 - 2.0 m)	(2.0 - 4.0 m)	(13.6 - 14.6 m)
rif. n° certificato		aboratorio	Parte IV	Parte IV All.5	895508	895509	895557	895510	895558	895511	895559	895512	895513	895514
data prelievo			All.5 Tab. 1	Tab. 1	18.01.2023	18.01.2023	18.01.2023	25.10.2022	25.10.2022	11.01.2023	11.01.2023	10.01.2023	10.01.2023	10.01.2023
Residuo a 105 °C	%	CMR INSA 2 Q 64 Vol 2 1984	limiti col. B	limiti col. A	94,8	97,2	99,5	85,5	8'66	9'98	8'66	86,6	88	68,9
scheletro (2 mm - 2 cm)	8/K8	D.M. n° 185 del 13/09/99 5/0 C.U. n° 245 del 21/10/99 Metodo II.1			476	592	porfirizz	125	porfirizz	421	porfirizz	292	237	2,86
csc					< B	< A >	< A >	< A >	< A >	< A >	< A >	<b< td=""><td>< B</td><td>< A ></td></b<>	< B	< A >
Arsenico (As)	me/ke	DM 13/09/1999 SO n°185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	20	20	1,67	1,73	6,3	6,9	2,04	3,4	3,3	4,9	8,4	6,3
Cadmio (Cd)	me/ke	DM 13/09/1929 5/0 n°185 GU n° 245 21/10/1929 Met XI.1 + EPA 60/100 2018	15	2	<0,20	<0,20	<0,20	0,214	0,29	0,206	<0,20	0,242	0,207	<0,20
Cobalto (Co)	molko	DM 1309/1929 50 n°185 GUn" 248 21/10/1929 Met XI 1 + EPA 60100 2018	250	20	3.1	3.2	<1,00	60	2.01	4.9	1.65	6.9	6.3	13.1
Cromo totale (Cr)	moffee	DM 1309/1929 SO n°1165 GU n° 248 21/10/1929 Met XI 1 + EPA 60100 2018	800	150	12.6	62	2.7	28.9	7.8	17.4	5.9	26.5	35	39
Cromo esavalente (CrVI)	mg/kg	UNI EN ISO 15192: 2021	15	2	0.158	<0.10	0.25	0.48	0.13	0.27	0.12	0.57	0.68	0.43
Mercurio (Hg)	mg/kg	24/10/1929 Met XI.1 + EPA 60100 2018	2	-	0,207	0,183	0,28	<0,35	0.4	0,234	0,34	0,35	0,35	<0,10
Nichel (Ni)	mg/kg	DM 13/08/1929 5/3 n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	200	120	11,6	6,2	3,9	25,5	5,3	15	5,4	24	26,6	46
Piombo (Pb)	mg/kg	24/10/1929 Met XI.1 + EPA 60100 2018	1000	100	5,4	4,6	4,1	30,1	4,5	31	3,8	231	43	24,4
Rame (Cu)	mg/kg	DM 13/09/1929 50 n°183 QU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	009	120	10,8	8,7	4	25,2	6,9	20,2	4.7	31,4	26,3	41
Vanadio (V)	mg/kg	DM 13/09/1929 5/0 n° 183 GU n° 248 21/10/1929 Met XI.1 + EPA 6010/2018	250	90	80	9	2,48	28	7.8	14,1	6.1	21.7	22,8	35,1
Zinco (Zn)	mg/kg	DM 13/04/1929 5/0 n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	1500	150	28,7	22,1	5,3	73	21,8	69	15.1	109	75	77
Idrocarburi Pesanti C>12 (C12+C40)	mg/kg	UN EN ISO 16703.2011	750	80	90	13,6	<5.0	6.8	<5.0	34	<5.0	120	134	<5.0
Benzene	mg/kg	EPA 5035A 2002 + EPA 6280D 2018	2	0,1	<0.01	<0,01	<0,01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Etilbenzene	mg/kg	EPA 5035A 2002 + EPA 5250D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Stirene	mg/kg	EPA 5035A 2002 + EPA 6280D 2018	50	0,5	0,0126	<0,0100	0,0192	<0,0100	<0,0100	<0,0100	0,01	<0,0100	0,022	<0,0100
Toluene	mg/kg	EPA 5035A 2002 + EPA 6280D 2018	20	9'0	0,0182	0,0209	<0,0100	<0,0100	0,0179	<0,0100	0,028	<0,0100	<0,0100	<0,0100
(m+p)-Xilene	mg/kg	EPA 5035A 2002 + EPA 8290D 2018			<0,0200	<0,0200	<0,0200	<0,0200	0,037	<0,0200	0.027	<0,0200	<0,0200	<0,0200
o-Xilene	mg/kg	EPA 5035A 2002 + EPA 5260D 2018			<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Xileni (somma)	mg/kg	EPA 5005A 2002 + EPA 6260D 2018	50	0,5	0	0	0	0	0,037	0	0,027	0	0	0
Sommatoria solventi organici aromatici (da 20 a 23)	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	100	-	0,031	0,021	0,019	0	0,055	0	0,065	0	0,022	0
Benzo(a)antracene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,5	<0,0100	<0,0100	<0,010	<0,0100	<0,010	0,074	<0,010	0,062	0,47	<0,0100
Benzo(a)pirene	mg/kg	EPA 3250C 2007 + EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,010	<0,0100	<0,010	690'0	<0,010	0,046	0,47	<0,0100
Benzo(b)fluorantene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,5	<0,0500	<0,0500	<0,050	<0,0500	<0,050	0,053	<0,050	<0,0500	0,42	<0,0500
Benzo(k)fluorantene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,5	<0,0500	<0,0500	<0,050	<0,0500	<0,050	<0,0500	<0,050	<0,0500	0,213	<0,0500
Benzo(g,h,i)perilene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,010	<0,0100	<0,010	0,053	<0,010	0,035	6,0	<0,0100
Crisene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	20	9	<0,100	<0,100	<0,10	<0,100	<0,10	<0,100	<0,10	<0,100	0,44	<0,100
Dibenzo(a,e)pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,010	<0,0100	<0,010	0,0213	<0,010	0,0101	20,0	<0,0100
Dibenzo(a,l)pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,010	<0,0100	<0,010	<0,0100	<0,010	<0,0100	<0,0100	<0,0100
Dibenzo(a,))pirene	8x/8m	EPA 3550C 2007 + EPA 6270E 2016	01	1,0	0010°0>	001000>	010,0>	<0,0100	010,0>	<0,0100	010,0>	<0,0100	0,054	<0,0100
Dibenzo(a,h)prene	By/8m	EPA 3550C 2007 • EPA 6270E 2018	2	L'0	00100	50,0100	<0,010	<0,0100	<0,010	<0,0100	<0.010	<0,0100	<0,0100	<0,0100
Diodizo(a,r)anuacono	9 /8 III		2		0010'0	00100	0,000	001000	010'0	15100	010'0	*0.000	200,0	00100
Indeno(1,2,3-cd)pirene	8x/8m	EPA 3000C 2007 + EPA 6270E 2018	0	r,0	<0,0100	<0.0100	<0.010	<0,0100	<0,010	0,04	<0,010	0,03	0,24	<0,0100
PIrene Commencial Identification and initial anomalial (de 95 a 27)	9x/8m	EPA 3550C 2007 • EPA 6270E 2018	200	0 5	001,05	50,100	01.05	001,05	0L,0>	0,107	01,05	50,100	9,04	201,00
Modelland Michael Michael Policicity alonging (us 25 a 57)	By Kg	The state of the s	001	0	0 00	0,0	0,00	0 00	0,0	0,43	0,0	0,19	6,0	0,0
Natitalene	mg/sg	SPA SEED TOOK - SPA STORE TO SE			20,10	20,10	50.10	20.10	20,10	20,10	0,00	20,10	20,10	0,00
Flictor	me/ke	EPA 3550C 2007 • EPA 6270E 2018			<0.10	<0.10	\$0.10	<0.10	<0.10	\$0.10	\$0.10	<0.10	<0.10	<0.10
Filotoniana	o No	EPA 3350C 2007 + EPA 8270E 2018			s0.10	<0.10	<0.10	sn 10	s0.10	0 144	\$0.10	0.124	0.76	s0 10
Factorities	99.00	SPA SAROT SOUTH SEEL HOTTE SOUTH			20,10	0,10	50.10	0,00	0,00	0,130	0,00	20.00	0.25	50,10
According	mg/kg	EPA 33000 coor - EPA BACKE AND			20,10	0,10	20,10	20,10	0,00	0,130	20,10	20,10	0,00	0,00
Accidional	mg/kg	EPA 3300C 2007 - EPA 6270E 2010			20,10	0,10	20,10	20,10	20,10	0.00	20,10	20,10	20,10	0,00
Antracene	mg/kg	DM 06/09/1994 GUn" 288 10/12/1994 All			01,0>	01,0>	01,0>	01,0>	01,05	01,05	01,05	<0,10	01,0>	c0,10
Amianto totale nel campione	mg/kg	1 Met B	1000	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

							740 77	450 67					1
m da p.c.	Met	D.Lgs.	D.Lgs.	16.8 - 17.0 m	(0.0 - 1.0 m)	(0.0 - 1.0 m)	(1.0 - 2.0 m)	(0.0 - 1.0 m)	(0.0 - 1.0 m)	0.1-1.3 m	9.3 - 9.5 m	0.1 - 0.7 m	1.5 - 1.7 m
	laboratorio		Parte IV All.5	895560	895515	895516	895517	895518	895519	865761	865746	865762	865747
			Tab. 1	10.01.2023	20.01.2023	20.01.2023	20.01.2023	21.01.2023	21.01.2023	18.10.2022	18.10.2022	27.09.2022	27.09.2022
×	CNR IRSA 2 G 64 Vol 2 1954	limiti col. B	limiti col. A	99,5	88,4	868	87,5	88,1	86,5	6'56	666	94,4	96
8/K8	D.M. n° 185 del 13/09/9 5/0 G.U. n° 245 del 21/10/99 Metodo II.1			porfirizz	425	496	371	356	265	<1,00	5,1	299	0,59
				< A >	< B	<b< td=""><td><b< td=""><td>< A ></td><td>< B</td><td><b< td=""><td><b< td=""><td>< B</td><td><b< td=""></b<></td></b<></td></b<></td></b<></td></b<>	<b< td=""><td>< A ></td><td>< B</td><td><b< td=""><td><b< td=""><td>< B</td><td><b< td=""></b<></td></b<></td></b<></td></b<>	< A >	< B	<b< td=""><td><b< td=""><td>< B</td><td><b< td=""></b<></td></b<></td></b<>	<b< td=""><td>< B</td><td><b< td=""></b<></td></b<>	< B	<b< td=""></b<>
me/ke	DM 13/09/19/9 5O n°18/5 GU n° 248 21/19/19/9 Met XI 1 + EPA 60100 2018	20	20	1,94	3,7	2,72	4	2,43	5,1	4.4	5,1	1,94	0.59
me/ke	DM 13/09/1999 SO n°185 GU n° 248 21/09/1999 Met XI 1 + EPA 60100 2018	15	2	0.2	<0.20	<0.20	<0.20	<0,20	0,22	<0.20	<0,20	<0.20	<0,20
me/ke	DM 13/09/1999 5/0 n°185 GU n° 248 21/19/1999 Met XI 1 + EPA 60100 2018	250	20	2.7	5,1	3,8	5,7	3,5	7.1	28,4	22,8	13,5	36
mg/kg	DM 1309/1999 5O n°185 GU n° 248 21/10/1939 Met XI.1 + EPA 60100 2018	800	150	8,9	26,2	26,5	29,2	20,1	46	42	44	101	48
mg/kg	UNIENISO 15192; 2021	15	2	0,14	0,57	0,47	0,53	0,53	0,74	0,19	0,13	0,31	0,14
mg/kg	21/10/1999 Met XI.1 + EPA 60100 2018	so.	-	0,36	0,4	0,186	0,35	0,32	0,75	<0,40	<0,10	<0,40	<0,10
mg/kg	DM 1309/1929 50 n°185 GUn" 248 21/10/1929 Met XI.1 + EPA 60100 2018	200	120	7,3	22,3	18,9	23	17,5	36	82	87	7.1	69
mg/kg	DM 13/09/19/9 50 n°185 GU n° 248 2 Und/19/9 Met XI.1 + EPA 60100 2018	1000	100	6,1	88	47	25	30,9	137	24,9	21,3	13	24,6
mg/kg	DM 13/09/1999 5/0 in 185 GU in 248 2 Und/1909 Met XLT + EPA 60100 2018	009	120	7.6	49	16,5	29,7	15,1	33	74	62	43	119
mg/kg	DM 13/04/1999 5/0 n° 185 GU n° 248 21/10/1999 Met XI.1 + EPA 60100 2018	250	06	6'2	16	12,6	18,4	10,5	24,3	27.2	30,2	26,2	24,3
mg/kg	DM 1309/1929 50 n°185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	1500	150	26,4	94	64	87	51	149	108	119	02	120
mg/kg	UN EN BO 16703.2011	750	50	<5,0	97	73	80	26.7	42	<5.0	<0.01	141	<0,01
mg/kg	EPA 5035A 2002 + EPA 8280D 2018	2	0,1	0,0126	<0,01	<0,01	<0,01	<0.01	<0,01	<0.01	<5.0	<0,01	<5.0
mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	0,0116	<0,0100	0,0115	<0.0100	<0,0100
mg/kg	EPA 5035A 2002 + EPA 6250D 2018	20	0,5	0,0108	<0,0100	<0,0100	0,0129	<0,0100	0,0142	<0,0100	<0,0100	<0,0100	<0,0100
mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	0,5	0,0208	<0,0100	<0,0100	0,0187	<0,0100	0,0129	0,0108	0,043	<0,0100	0,012
mg/kg	EPA 5035A 2002 + EPA 6260D 2018			<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	0,036	<0,0200	<0,0200
mg/kg	EPA 5035A 2002 + EPA 6280D 2018			<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	9,0	0	0	0	0	0	0	0	0,036	0	0
mg/kg	EPA 5035A 2002 + EPA 6260D 2018	100	-	0,032	0	0	0,032	0	0,039	0,011	0,091	0	0,012
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9,0	<0,010	0,107	7,7	2,2	0,077	0,038	<0,010	<0,010	<0,010	<0,010
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,010	0,088	5,2	1,51	0,084	0,027	<0,010	<0,010	<0,010	<0,010
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9,0	<0,050	80'0	4,1	1,38	0,068	<0,0500	<0,050	<0,050	<0.050	<0,050
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9,0	<0,050	<0,0500	2,6	1,07	<0,0500	<0,0500	<0,050	<0,050	<0,050	<0,050
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	1,0	<0,010	0,084	3,2	1,37	0,058	0,03	<0,010	<0,010	0,01	<0,010
mg/kg	EPA 3555C 2007 + EPA 6270E 2016	50	2	<0,10	0,107	7,3	2,4	<0,100	<0,100	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 * EPA 6270E 2018	10	1,0	<0,010	0,03	0,97	0,32	0,0183	<0,0100	<0.010	<0,010	<0,010	<0.010
mg/kg mo/ha	EPA 3000C 2007 + EPA 6270E 2018	2 5	0,1	0,010	0.0143	00100	20,0100	00116	20,0100	20,010	20,010	00000	<0,010
mg/kg	EPA 3550C 2007 + EPA 5270E 2018	10	0,1	<0.010	<0.0100	0.26	0.067	<0.0100	<0.0100	<0.010	<0.010	<0.010	<0.010
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,010	0,0158	-	0,38	0,0131	<0,0100	<0,010	<0,010	<0,010	<0,010
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	S	0,1	<0,010	0,051	2,1	1,21	0.04	0,02	<0.010	<0,010	<0,010	<0,010
mg/kg	EPA 3550C 2007 + EPA 5270E 2018	90	2	<0.10	0,142	12,4	3,6	<0,100	<0,100	<0,10	<0,10	<0,10	<0.10
mg/kg	EPA 3550C 2007 + EPA 6270E 2018	100	10	0	0,72	48	16	0.37	0,12	0	0	0	0
mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 + EPA 6270E 2018		,	<0,10	<0,10	0,49	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 + EPA 6270E 2018			<0,10	<0,10	0,77	0,115	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 • EPA 6270E 2018			<0,10	0,183	12,4	4,9	0,109	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 + EPA 8270E 2018	,		<0,10	<0,10	8,5	2,3	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 + EPA 8270E 2018	,		<0,10	<0,10	0,33	<0.10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	EPA 3550C 2007 + EPA 6270E 2018			<0,10	<0,10	1,76	0,54	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
mg/kg	T Met B	1000	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
	87/8u 87		Inches Industrial Inches Inches	Indocation Indocation Indocation Indocation Indocation Indocation Indocation Indocation Indocation Indication Ind	Indicator Indi	Implication Partie IV AII.5 BisSESSO Partie IV AII.5 Partie IV AII.5 BisSESSO Partie IV AII.5 Partie IV AII.5 BisSESSO Partie IV AII.5 Partie IV AII.5	Importation Patro N Patro N		Majoritation Majo	Part Part			

SIGLA					SE8-CA1	SE8-CA2	SE8-CA3	SE9-CA3	SE9-CA1	SE9-CA2	SE10-CA1	SE10-CA2	SE10-CA3	SE11-CA1
Prof.	m da p.c.	Metodo analítico di	D.Lgs.	D.Lgs.	0.2 - 1.5 m	3.0 - 4.0 m	8.0 - 8.2 m	8.4 - 8.6 m	0.2 - 2.0 m	2.0 - 4.0 m	0.2 - 1.5 m	2.0 - 4.0 m	8.0 - 8.2 m	0.2 - 1.5 m
rif. n° certificato		laboratorio		Parte IV AILS	ı	865764	865748	865749	865765	865766	865767	865768	865750	865769
data prelievo				Tab. 1	00	07.10.2022	07.10.2022	05.10.2022	05.10.2022	06.10.2022	29.09.2022	29.09.2022	29.09.2022	11.10.2022
Residuo a 105 °C	ж	CAR IRSA 2 Q 64 Vol 2 1954	limiti col. B	limiti col. A	85,8	91	99,5	98	86,5	81,5	94	89.7	99,2	95,9
scheletro (2 mm - 2 cm)	8/K8	D.M. #* 185 del 13/09/99 5/3 G.U. n° 245 del 21/10/99 Metodo II.1			50,4	45,6	1,48	<0,50	46.7	224	89	202	0.77	<1,00
csc					< A >	< B	<b< td=""><td><b< td=""><td>< A ></td><td>< B</td><td><b< td=""><td><b< td=""><td><b< td=""><td><b< td=""></b<></td></b<></td></b<></td></b<></td></b<></td></b<>	<b< td=""><td>< A ></td><td>< B</td><td><b< td=""><td><b< td=""><td><b< td=""><td><b< td=""></b<></td></b<></td></b<></td></b<></td></b<>	< A >	< B	<b< td=""><td><b< td=""><td><b< td=""><td><b< td=""></b<></td></b<></td></b<></td></b<>	<b< td=""><td><b< td=""><td><b< td=""></b<></td></b<></td></b<>	<b< td=""><td><b< td=""></b<></td></b<>	<b< td=""></b<>
Arsenico (As)	me/ke	DM 13/09/1929 50 n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	20	20	7.2	1.09	1.48	<0.50	5,8	4,2	2.9	2,52	77.0	99'0
Cadmio (Cd)	me/ke	21/10/1929 Met XI.1 + EPA 60100 2018	15	2	<0,20	<0.20	<0.20	<0.20	<0.20	<0,20	<0,20	<0.20	<0.20	<0.20
Cobalto (Co)	me/ke	DM 13/09/1999 5/0 n°185 GU n° 248 21/10/1999 Met XI.1 + EPA 60100 2018	250	20	12,3	20,3	23,9	21,4	19,8	20,8	20,1	20,4	14,5	22,9
Cromo totale (Cr)	mg/kg	DM 13/04/1999 5/0 n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 6010D 2018	800	150	29,4	41	57	40	38	34	42	25,9	58	39
Cromo esavalente (CrVI)	mg/kg	UN EN ISO 15192: 2021	15	2	0,27	0,105	0,16	0,11	0,53	0,91	0,22	0,13	0,2	0,138
Mercurio (Hg)	mg/kg	DM 1309/1999 5G n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60/100 2018	2	-	<0,40	<0,40	<0,10	<0,10	<0,40	<0,40	<0,30	<0,40	0,19	<0,30
Nichel (Ni)	mg/kg	21/10/10/20 Met XI.1 + EPA 60100 2018	200	120	35	29	94	89	71	65	65	40	83	83
Piombo (Pb)	mg/kg	DM 13/09/1929 50 m*165 GU n* 245 21/10/1929 Met XI.1 + EPA 60/100 2016	1000	100	44	14.7	16,6	9,2	27,3	20,4	23	13,6	18,4	16,1
Rame (Cu)	mg/kg	DM 13/09/1929 5/0 n°185 GU n° 248 21/10/1929 Met XLT + EPA 60100 2018	009	120	36	99	88	96	101	29	98	09	268	98
Vanadio (V)	mg/kg	DM 13/09/1929 5/0 m*185 GU n* 248 21/10/1929 Met XI.1 + EPA 60100 2018	250	06	23,7	24,1	34	22	29,1	26,6	27	14	30,3	24,7
Zinco (Zn)	mg/kg	DM 13/09/1999 5/0 n*185 GU n* 248 21/16/1929 Met XI.1 + EPA 60100 2018	1500	150	86	130	212	125	115	106	26	74	245	114
Idrocarburi Pesanti C>12 (C12+C40)	mg/kg	UN EN ISO 167032011	750	20	<5.0	<5.0	<0.01	<0.01	<5.0	7.2	<5.0	<5.0	<0.01	<5.0
Benzene	mg/kg	EPA 2035A 2002 + EPA \$2000 2018	2	0,1	<0.01	<0,01	5,9	<5,0	<0.01	<0,01	<0,01	<0.01	<5.0	<0,01
Etilbenzene	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	50	9,0	<0,0100	<0,0100	0,0117	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Stirene	mg/kg	EPA 5035A 2002 + EPA 8280D 2018	50	9'0	<0,0100	0,0128	0,0146	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	0,0122	<0,0100
Toluene	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	50	9,0	<0,0100	<0.0100	0,039	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0.0100
(m+p)-Xilene	mg/kg	EPA 5035A 2002 + EPA 8260D 2018			<0,0200	<0,0200	0,033	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200
o-Xilene	mg/kg	EPA 5035A 2002 • EPA 6260D 2018			<0,0100	<0,0100	0,0115	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Xileni (somma)	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	9'0	0	0	0,045	0	0	0	0	0	0	0
Sommatoria solventi organici aromatici (da 20 a 23)	mg/kg	EPA 5035A 2002 + EPA 6285D 2018	100	-	0	0,013	0,11	0	0	0	0	0	0,012	0
Benzo(a)antracene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	10	9,0	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(a)pirene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(b)fluorantene	mg/kg	EPA 3559C 2007 + EPA 6270E 2018	10	9,0	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluorantene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9,0	050,0>	<0,050	<0,050	<0,050	<0,050	050'0>	090'0>	<0,050	<0,050	<0,050
Benzo(g,n,l)peniene	mg/xg	EPA 3000C 2007 + EPA 6270E 2016	01	1,0	0.010	0.010	50,010	20,010	20,010	010,03	50,010	010,05	010,05	50,010
Officers	me/re	EPA 3000C 2007 - EPA 8270E 2018	10	0.1	<0.10	c0.10	<0.10	50,10	<0.10	<0.10	S0.10	<0.10	50,10	50010
Dibenzo(a Ilpirene	me/ke	EPA 3550C 2007 + EPA 5270E 2018	10	0.1	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Dibenzo(a,i)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0.010	<0,010	<0,010
Dibenzo(a,h)pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2016	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Dibenzo(a,h)antracene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Indeno(1,2,3-cd)pirene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	5	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Pirene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	90	2	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Sommatoria idrocarburi policicilici aromatici (da 25 a 37)	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	100	10	0	0	0	0	0	0	0	0	0	0
Naftalene	mg/kg	EPA 3550C 2007 + EPA 5270E 2015			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Acenaftene	mg/kg	EPA 3500C 2007 + EPA 5270E 2015			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorene	mg/kg	EPA 3500C 2007 + EPA 5270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorantene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fenantrene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	,		<0,10	<0,10	<0.10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Acenafilene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018			<0,10	<0,10	<0.10	<0,10	<0.10	<0,10	<0,10	<0.10	<0.10	<0.10
Antracene	mg/kg	EPA 3500C 2007 + EPA 6270E 2018			<0,10	<0.10	<0.10	<0,10	<0,10	<0,10	<0,10	<0.10	<0,10	<0.10
Amianto totale nel campione	mg/kg	DM OEGOTIZM GUN 288 TOTZTEM ALI	1000	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

SIGLA					SE11-CA2	SE12-CA1	SE12-CA2	SE13-CA1	SE13-CA2	SE14-CA1	SE14-CA2	SE14-CA3	FB8 -C1	FB8 -C2
Prof.	m da p.c.	Metodo analítico di	D.Lgs.	D.Lgs.	8.8 - 9.0 m	0.3 - 1.5 m	9.0 - 9.2 m	0.2 - 2.0 m	8.0 - 8.2 m	0.1 - 2.0 m	2.0 - 4.0 m	8.0 - 8.2 m	166,20 - 166,40 m	177,70-177,90
rif. n° certificato		laboratorio	152/2006 Parte IV	152/2006 Parte IV All 5	865751	865770	865752	865771	865753	865772	865773	Г	108225	108226
data prelievo			All.5 Tab. 1	Tab. 1	11.10.2022	10.10.2022	10.10.2022	19.10.2022	20.10.2022	21.10.2022	21.10.2022	21.10.2022	Non comunicato	Non comunicato
Residuo a 105 °C	×	CAR IRSA 2 Q 64 Vol 2 1984	limiti col. B	limiti col. A	98,5	93,4	7.66	86,4	98,4	94,2	93	99,4	7.66	966
scheletro (2 mm - 2 cm)	8/K8	O.M. n° 185 del 1309/99 50 G.U. n° 248 del 21/10/99 Metodo 81			4,4	263	0,78	<1,00	<0,50	28,4	285	2,09	porfirizz	porfirizz
csc					< B	< A >	< A >	< B	< A >	< B	< A >	< B	< A >	< A >
Arsenico (As)	mg/kg	DM 13/09/1999 5/0 n°185 GU n° 245 21/00/1999 Met XI.1 • EPA 60100 2018	20	20	4,4	0,57	0,78	1,71	<0,50	3,1	6,9	2,09	1,76	1,92
Cadmio (Cd)	mg/kg	DM 13/08/1999 5/0 n° 185 GU n° 248 21/10/1999 Met XI.1 + EPA 60100 2018	15	2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	0,29	0,25
Cobalto (Co)	mg/kg	DM 13/09/1929 5/0 n° 185 GU n° 245 21/10/1929 Met XI.1 + EPA 60/10/ 2016	250	20	35	14,3	17,3	24,7	10.7	31	12,4	20,2	1,41	2,01
Cromo totale (Cr)	mg/kg	DM 13/09/19/99 5/0 n° 18/5 GU n° 248 21/10/19/29 Met XI.1 + EPA 60/10/2018	800	150	23,1	31,4	49	52	26,7	44	37	37	4,3	6,1
Cromo esavalente (CrVI)	mg/kg	UNI EN ISO 15192: 2021	15	2	0,18	0,2	0,23	1,01	<0,10	0,32	99'0	0,19	0,31	0,32
Mercurio (Hg)	mg/kg	21/10/10/20 Met XI.1 + EPA 60100 2018	2	1	0,19	<0,40	<0,10	<0,40	<0,10	<0,30	<0,40	0,105	0,32	0,32
Nichel (Ni)	mg/kg	21/10/1989 Met XI.1 + EPA 60100 2018	200	120	25	90	51	72	48	89	44	73	5,5	7.1
Piombo (Pb)	mg/kg	21/10/1909 Met XI.1 + EPA 60100 2018	1000	100	28,6	32,8	25,2	28,7	42	28,7	31,4	30,4	10,8	18,1
Rame (Cu)	mg/kg	DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Mel XI.1 + EPA 60/100 2018	009	120	82	94	86	91	93	82	43	104	8,3	9,1
Vanadio (V)	mg/kg	21/10/1928 Net XI.1 + EPA 60100 2018	250	06	14,5	20,5	26,7	36,2	14	27.2	24,3	20,5	4	9'9
Zinco (Zn)	mg/kg	21/10/1929 Net XI.1 + EPA 60100 2018	1500	150	89	104	121	133	138	384	110	122	21,1	24,6
Idrocarburi Pesanti C>12 (C12+C40)	mg/kg	UN EN ISO 16703.2011	750	90	<0,01	<5,0	<0,01	<5,0	<0,01	11.7	12,2	<0,01	105	<5,0
Benzene	mg/kg	EPA 5035A 2002 + EPA 8260D 2018	2	0,1	<5,0	<0,01	<5,0	<0,01	<5,0	<0,01	<0,01	<5,0	<0,01	<0.01
Etilbenzene	mg/kg	EPA 5035A 2002 + EPA 8280D 2018	50	9,0	<0,0100	<0,0100	0,0167	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Stirene	mg/kg	EPA 5035A 2002 + EPA 6200D 2018	20	0,5	0,0144	<0,0100	0,0102	<0,0100	<0,0100	<0,0100	<0,0100	0,0182	<0,0100	<0,0100
Toluene	mg/kg	EPA 5035A 2002 + EPA 82600 2018	20	9,0	0,0194	<0,0100	0,055	<0,0100	0,0168	<0,0100	<0,0100	0,0269	<0,0100	<0,0100
(m+p)-Xilene	mg/kg	EPA 5035A 2002 + EPA 62800 2018			007000	<0.0200	0,039	<0.0200	<0.0200	<0,0200	50,0200	<0.0200	50,0200	<0,0200
Xilani (comma)	moffee	EPA 5035A 2002 + EPA 82002 2018	20	0.5	0	0	0.073	0	0	0	0	0	0	0
Sommatoria solventi organici aromatici (da 20 a 23)	mg/kg	EPA 5035A 2002 + EPA 8285D 2018	100	-	0,034	0	0,155	0	0,017	0	0	0,045	0	0
Benzo(a)antracene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018	10	0,5	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(a)pirene	mg/kg	EPA 3559C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Benzo(b)fluorantene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9'0	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluorantene	mg/kg	EPA 3550C 2007 • EPA 8270E 2018	10	0,5	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)perliene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Crisene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	20	S	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Dibenzo(a,e)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Dibenzo(a,l)pirene	me/ke	EPA 3500C 2007 + EPA 6270E 2018	10	0.1	<0,010	<0.010	<0.010	<0.010	010,0>	<0.010	<0.010	<0.010	010,03	<0,010
Dibenzo(a,h)pirene	mg/kg	EPA 3509C 2007 + EPA 62756 2018	10	0,1	<0.010	<0,010	<0.010	<0.010	<0.010	<0.010	<0,010	<0.010	<0,010	<0.010
Dibenzo(a,h)antracene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018	10	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Indeno(1,2,3-cd)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	5	0,1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	20	2	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Sommatoria idrocarburi policiclici aromatici (da 25 a 37)	mg/kg	EPA 3500C 2007 • EPA 8270E 2018	100	10	0	0	0	0	0	0	0	0	0	0
Naftalene	mg/kg	EPA 3550C 3007 • EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,17	<0,10
Acenaftene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorantene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0.10
Fenantrene	mg/kg	EPA 3500C 2007 + EPA 6270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Acenafulene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0.10
Antracene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018 DM 0608/1994 GUn* 288 10/12/1994 AB			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Amianto totale nel campione	mg/kg	1 Met II	1000	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

SIGLA					PZCN23bis	PZCN24bis	PZCN25bis	PZCN29bis	PZCN26bis	PZCN27bis	PZCN28bis	PZCN32bis	PZLL02bis	PZCN36bis
Prof.	m da p.c.	Metodo analítico di	D.Lgs.	D.Lgs.	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m	0,0-0,5 m
rif. n° certificato		laboratorio		Parte IV All 5	l	129061	129062	129063	129064	129065	129066	129067	129068	129069
data prelievo			-	Tab. 1	22	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023
Residuo a 105 °C	×	CAR IRSA 2 Q 64 Vol 2 1984	limiti col. B	limiti col. A	73,6	7.47	76,5	89,8	6'51	91,3	89,1	85,5	82,6	86,2
scheletro (2 mm - 2 cm)	8/K8	D.M. n° 185 del 13 09/99 50 d.U. n° 248 del 21/10/99 Metodo II.1			257	181	208	579	189	588	613	562	225	535
csc					< A >	< A >	< A	< A >	< A >	< A >	< A >	< A >	< A >	< A
Arsenico (As)	me/ke	241 200 2010 2011 50 m 100 CU m 248 21/10/1929 Met XI.1 + EPA 60100 2018	20	20	6,2	6,9	7	2,02	7	1,99	1,97	2,25	4,6	2,53
Cadmio (Cd)	mg/kg	24/1/2010/2010 SO n°185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	15	2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
Cobalto (Co)	mg/kg	ZM 13/09/1929 SO n°185 GU n° 248 Z17/01/929 Met XI.1 + EPA 60100 2018	250	20	2'6	10,7	10,7	3,6	10,9	3,6	3,4	4	8,1	4,3
Cromo totale (Cr)	mg/kg	DM 13/09/1929 5O n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	800	150	23	25,4	25,1	6'6	24,9	8'6	10,1	9,2	23,2	6'6
Cromo esavalente (CrVI)	mg/kg	UN EN ISO 15192: 2021	15	2	0,34	0,42	0,38	<0,10	0,48	<0,10	<0,10	0,114	0,35	0,16
Mercurio (Hg)	mg/kg	21/10/19/29 Met XI.1 + EPA 60100 2018	9	1	<0,10	<0,10	<0,10	0,111	<0,10	<0,10	0,106	<0,10	<0,10	<0,10
Nichel (Ni)	mg/kg	DM 13/04/1929 5/0 in 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	200	120	24,1	27,3	27	11,8	26,7	11,7	11,5	12,4	24,8	13,5
Piombo (Pb)	mg/kg	DM 13/08/1929 SO n°185 GU n° 248 21/10/1929 Met XI.1 + EPA 60100 2018	1000	100	38	38	37	6'6	36	2'6	6'6	10,3	44	11
Rame (Cu)	mg/kg	21/10/1929 Met XI.1 + EPA 60100 2018	009	120	24,8	72	27.4	10	27	6'6	6'6	11,9	30,6	12,4
Vanadio (V)	mg/kg	21/10/1929 Met XI.1 + EPA 60100 2016	250	06	22,6	24,1	23,7	6,7	23	6'9	6,4	9.7	19,2	8,3
Zinco (Zn)	mg/kg	DM 13/09/1929 SO n° 185 GU n° 248 21/10/1929 Met XI.1 + EPA 60/100 2018	1500	150	73	08	62	29,1	11	29	27,3	31,2	73	35
Idrocarburi Pesanti C>12 (C12+C40)	mg/kg	UNIEN ISO 16703/2011	750	20	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0
Benzene	mg/kg	EPA 5035A 2002 • EPA 8280D 2018	2	0,1	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
Etilbenzene	mg/kg	EPA 5035A 2002 + EPA 8290D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Stirene	mg/kg	EPA 5035A 2002 • EPA 8280D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Toluene	mg/kg	EPA 5035A 2002 + EPA 8200D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
(m+p)-Xilene	mg/kg	EPA 5035A 2002 + EPA 8280D 2018			<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200	<0,0200
o-Xilene	mg/kg	EPA 5035A 2002 + EPA 8290D 2018			<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Xileni (somma)	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	9,0	0	0	0	0	0	0	0	0	0	0
Sommatoria solventi organici aromatici (da 20 a 23)	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	100	-	0	0	0	0	0	0	0	0	0	0
Benzo(a)antracene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	9,0	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Benzo(a)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Benzo(b)fluorantene	mg/kg	EPA 3500C 2007 + EPA 6270E 2018	10	0,5	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500
Benzo(k)fluorantene	mg/kg	EPA 3550C 2007 • EPA 6270E 2018	9	0,5	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0,0500	<0.0500	<0,0500
Derizo(g,rr,)periterie	mo/ka	EPA 3400C 2007 - EPA #3770E 2018	2 9	, a	20,100	20100	00100	50,100	20100	20,0100	20,000	00100	20,100	20,100
Dibenzo(a e loirene	mg/kg	EPA 3500C 2007 + EPA 6270E 2018	9 0	0,1	<0.0100	<0,0100	<0,0100	<0.0100	<0.0100	<0.0100	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,l)pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,i)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,h)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	1,0	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,h)antracene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0.0100	<0,0100
Indeno(1,2,3-cd)pirene	mg/kg	EPA 3500C 2007 + EPA 5270E 2018	2	0,1	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100	<0,0100
Pirene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018	50	2	<0,100	<0,100	<0,100	<0,100	<0,100	<0,100	<0,100	<0,100	<0,100	<0,100
Sommatoria idrocarburi policicilici aromatici (da 25 a 37)	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	100	10	0	0	0	0	0	0	0	0	0	0
Naftalene	mg/kg	EPA 3500C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Acenaftene	mg/kg	EPA 3500C 2007 • EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorene	mg/kg	EPA 3500C 2007 + EPA 5270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fluorantene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Fenantrene	mg/kg	EPA 3550C 2007 • EPA 8270E 2018			<0,10	<0.10	<0,10	<0.10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Acenafilene	mg/kg	EPA 3500C 2007 • EPA 8270E 2018			<0,10	<0.10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Antracene	mg/kg	EPA 3500C 2007 • EPA 6270E 2018			<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
Amianto totale nel campione	mg/kg	1 Met B	1000	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

SIGLA					FB20bisCA1	PZCA12-1	PZCA12-2	PZCA12-3
Prof.	m da p.c.	Metodo analitico di	D.Lgs.	D.Lgs.	0,0-1,0 m	0,0-1,0 m	0,0-1,0 m	0,0-0,5 m
rif. n° certificato		laboratorio	Parte IV	Parte IV All.5	129070	129071	129072	129073
data prelievo			All.5 Tab. 1	Tab. 1	24.05.2023	24.05.2023	24.05.2023	24.05.2023
Residuo a 105 °C	×	ONR INSA 2 Q 64 Vol 2 1984	limiti col. B	limiti col. A	86,6	8.77	75,7	79.7
scheletro (2 mm - 2 cm)	8/K8	D.M. n° 185 del 13/09/09 5/3 d.U. n° 246 del 21/10/99 Metodo II.1			518	30,8	116	<1,00
csc					< A >	< A >	< A >	< A >
Areanico (Ae)	and from	OM 13/09/1999 SO n° 185 GU n° 248	RO	20	28	7.2	11	88
	94,811	DM 1309/1929 50 n° 185 GU n° 248	3		000	0000	0000	000
Cadmio (Cd)	mg/kg	21/10/1009 Met XI.1 + EPA 60100 2018	15	7	02'0>	<0,20	40,20	02,0>
Cobalto (Co)	mg/kg	21/10/1909 Met XI.1 + EPA 60100 2018	250	20	4,4	18,3	14,9	18,5
Cromo totale (Cr)	mg/kg	21/10/1009 Met XI.1 + EPA 60100 2018	800	150	12,1	45	47	45
Cromo esavalente (CrVI)	8x/8m	UN EN ISO 15192: 2021	15	2	0,136	1,6	1,52	0,93
Mercurio (Hg)	8x/8m	21/10/19/89 Met XI.1 + EPA 60100 2018	2	1	0,116	<0,10	<0,10	<0,10
Nichel (Ni)	8x/8m	21/10/1999 Met XI.1 + EPA 60100 2018	200	120	14,8	55	41	25
Piombo (Pb)	8x/8m	21/10/1928 Met XI.1 + EPA 60100 2018	1000	100	12,1	29,3	65	26,7
Rame (Cu)	84/8m	24/10/19/20 AM XLT + EPA 60100 2018	009	120	13,6	52	224	53
Vanadio (V)	mg/kg	248 21100 2010 2010 2010 2010 2010 2010 20	250	90	8,4	35,1	38,4	33,6
Zinco (Zn)	mg/kg	245 THOUTING THE GUN 245 21/10/1929 Met XI.1 + EPA 60100 2018	1500	150	36	115	149	103
Idrocarburi Pesanti C>12 (C12+C40)	mg/kg	UNI EN ISO 16703.2011	750	90	0'5>	<5,0	<5,0	<5,0
Benzene	mg/kg	EPA 5035A 2002 + EPA 8280D 2018	2	0,1	<0,01	<0,01	<0,01	<0,01
Etilbenzene	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100
Stirene	mg/kg	EPA 5035A 2002 + EPA 6200D 2018	20	0,5	<0,0100	<0,0100	<0,0100	<0,0100
Toluene	mg/kg	EPA 5035A 2002 + EPA 6260D 2018	80	9,0	<0,0100	<0,0100	<0,0100	<0,0100
(m+p)-Xilene	mg/kg	EPA 5035A 2002 + EPA 8260D 2018		,	<0,0200	<0,0200	<0,0200	<0,0200
o-Xilene	mg/kg	EPA 5033A 2002 + EPA 8280D 2018			<0,0100	<0,0100	<0,0100	<0,0100
Xileni (somma)	mg/kg	EPA 5035A 2002 + EPA 6200D 2018	20	0,5	0	0	0	0
Sommatoria solventi organici aromatici (da 20 a 23)	mg/kg	EPA 5035A 2002 + EPA 6200D 2018	100	-	0	0	0	0
Benzo(a)antracene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	10	0,5	<0,0100	<0,0100	0,0158	<0,0100
Benzo(a)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Benzo(b)fluorantene	mg/kg	EPA 3559C 2007 + EPA 8270E 2018	10	0,5	<0,0500	<0,0500	<0,0500	<0,0500
Benzo(k)fluorantene	mg/kg me/ke	EPA 3550C 2007 + EPA 6270E 2018 EPA 3950C 2007 + EPA 8270E 2018	10	0,5	<0,0500	<0,0500	<0,0500	<0,0500
Canada Antigorial de la companya de	and an	EPA 3000C 3007 + EPA 8270E 2018	2 02		50 100	s0 100	0,0100	50 100
Oibenzo(a.e.)pirene	mg/kg	EPA 3509C 2007 • EPA 6270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,l)pirene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,i)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,h)pirene	mg/kg	EPA 3559C 2007 + EPA 8270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Dibenzo(a,h)antracene	mg/kg	EPA 3550C 2007 + EPA 5270E 2018	10	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Indeno(1,2,3-cd)pirene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	2	0,1	<0,0100	<0,0100	<0,0100	<0,0100
Pirene	mg/kg	EPA 3550C 2007 + EPA 6270E 2018	20	22	<0,100	<0,100	<0,100	<0,100
Sommatoria idrocarburi policiclici aromatici (da 25 a 37)	mg/kg	EPA 3550C 2007 • EPA 8270E 2018	100	10	0	0	0,016	0
Naftalene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10
Acenaftene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10
Fluorene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10
Fluorantene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	,		<0,10	<0,10	<0,10	<0,10
Fenantrene	mg/kg	EPA 3550C 2007 + EPA 8270E 2018	,	,	<0,10	<0,10	<0,10	<0,10
Acenafülene	mg/kg	EPA 3550C 2007 • EPA 8270E 2018			<0,10	<0,10	<0,10	<0,10
Antracene	mg/kg	EPA 3500C 2007 + EPA 6270E 2018			<0,10	<0,10	<0,10	<0.10
Amianto totale nel campione	mg/kg	1 Met B	1000	1000	<100	<100	<100	<100

Appendice B

SCHEDA DI SINTESI DEI SITI DI SCAVO E DI UTILIZZO E DELLE RELATIVE CARATTERIZZAZIONI AMBIENTALI

<u>OPERA DI</u> DESTINAZIONE	OPERA DI ORIGINE	PUNTO	DI INDAGINE	CERTI	<u>IFICATI</u>	
BESTIMALIONE		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
	Ambito Ga	lleria Carav	/aggio:			
Riempimento Arco rovescio Galleria Caravaggio, GN01	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	А
	Ambito Galle	eria Fontan	abuona:			
		FB6	Calcari del M.te Antola	11SA16605	giu-11	Α
		FB7	Calcari del M.te Antola	11SA19414	giu-11	Α
		FB9 QUATER CA1	Ardesie di M.te Varzi	14295/2013	26/06/ 2013	Α
Riempimento arco rovescio Galleria	Galleria Fontanabuona, GN02	FB9 QUATER CA2	Ardesie di M.te Varzi	14296/2013	26/06/ 2013	Α
Fontanabuona, GN02	T Official abutoffia, Office	FB9 QUATER CA3	Argilliti di M.te Lavagnola	14297/2013	26/06/ 2013	Α
		FB9 QUATER CA4	Ardesie di M.te Varzi	14298/2013	26/06/ 2013	Α
		FB9 QUATER CA5	Calcari del M.te Antola	14299/2013	26/06/ 2013	Α
	Ambito	Svincolo A	.12:			
		Pz CN 17 Top Soil	Calcari del M.te Antola	11527/2013	04/06/ 2013	В
		Pz CN 17 C1	Calcari del M.te Antola	11528/2013	04/06/ 2013	В
Sistemazione imbocco	Area imbocco lato Rapallo Galleria	Pz CN 18 Top Soil	Calcari del M.te Antola	11529/2013	04/06/ 2013	В
lato Rapallo Galleria Caravaggio, GN01a	Caravaggio, GN01a	Pz CN 18 C1	Calcari del M.te Antola	11530/2013	04/06/ 2013	В
		Pz CN 19 Top Soil	Calcari del M.te Antola	11531/2013	04/06/ 2013	В
		Pz CN 19 C1	Calcari del M.te Antola	11532/2013	04/06/ 2013	В
	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	Α
		SV2	Calcari del M.te Antola	11SA16602	giu-11	Α
	Area di svincolo A12, corpo stradale, CS01,	SV4	Calcari del M.te Antola	11SA18924	giu-11	Α
Rimodellamento Caravaggio, RM01	e rampe di svincolo, da RS01 a RS09,	SV5	Calcari del M.te Antola	11SA16603	giu-11	Α
	viadotti (da VI01 a VI05)	SV1 CA 1	Calcari del M.te Antola	10719/2013	24/05/ 2013	В

SV1 CA

2

Calcari del

M.te Antola

24/05/

2013

10720/2013

OPERA DI DESTINAZIONE	OPERA DI ORIGINE	PUNTO	DI INDAGINE	CERTI	FICATI	
		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
		Pz CN 01 Top Soil	Calcari del M.te Antola	11519/2013	04/06/ 2013	Α
		Pz CN 01 C1	Calcari del M.te Antola	11520/2013	04/06/ 2013	А
		Pz CN 02 Top Soil	Calcari del M.te Antola	11521/2013	04/06/ 2013	А
		Pz CN 02 C1	Calcari del M.te Antola	11522/2013	04/06/ 2013	Α
		Pz CN 03 Top Soil	Calcari del M.te Antola	11523/2013	04/06/ 2013	А
		Pz CN 03 C1	Calcari del M.te Antola	11524/2013	04/06/ 2013	Α
		Pz CN 05 Top Soil	Calcari del M.te Antola	11525/2013	04/06/ 2013	Α
		Pz CN 05 C1	Calcari del M.te Antola	11526/2013	04/06/ 2013	Α
		Pz LL 01 Top Soil	Calcari del M.te Antola	12059/2013	07/06/ 2013	А
		Pz LL 01 C1	Calcari del M.te Antola	12060/2013	07/06/ 2013	Α
		Pz LL 01 C2	Calcari del M.te Antola	12061/2013	07/06/ 2013	Α
		Pz CN 17 Top Soil	Calcari del M.te Antola	11527/2013	04/06/ 2013	В
		Pz CN 17 C1	Calcari del M.te Antola	11528/2013	04/06/ 2013	В
	Area imbocco lato Rapallo Galleria	Pz CN 18 Top Soil	Calcari del M.te Antola	11529/2013	04/06/ 2013	В
	Caravaggio, GN01a	Pz CN 18 C1	Calcari del M.te Antola	11530/2013	04/06/ 2013	В
		Pz CN 19 Top Soil	Calcari del M.te Antola	11531/2013	04/06/ 2013	В
		Pz CN 19 C1	Calcari del M.te Antola	11532/2013	04/06/ 2013	В
	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	Α
	Area imbocco lato	FB 5 CA	Calcari del	10717/2013	24/05/	Α
	Rapallo Galleria Fontanabuona, GN02a	FB 5 CA 3 FB 5 CA	Calcari del M.te Antola Calcari del	10718/2013	24/05/ 2013 24/05/	Α
		1	M.te Antola Calcari del	10716/2013	2013	В
	0 " .	FB6	M.te Antola Calcari del	11SA16605	giu-11	A
	Galleria Fontanabuona, GN02	FB7 FB9	M.te Antola	11SA19414	giu-11	Α
		QUATER CA1	Ardesie di M.te Varzi	14295/2013	26/06/ 2013	Α

OPERA DI DESTINAZIONE	OPERA DI ORIGINE	PUNTO	DI INDAGINE	CERTI		
DESTINACIONE	_	CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
		FB9 QUATER CA2	Ardesie di M.te Varzi	14296/2013	26/06/ 2013	Α
		FB9 QUATER CA3	Argilliti di M.te Lavagnola	14297/2013	26/06/ 2013	Α
		FB9 QUATER CA4	Ardesie di M.te Varzi	14298/2013	26/06/ 2013	Α
		FB9 QUATER CA5	Calcari del M.te Antola	14299/2013	26/06/ 2013	Α
	Ambi	to Arboccò)			
	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	Α
	Area di Arboccò con	FB 4 CA 1	Calcari del M.te Antola	10714/2013	24/05/ 2013	В
Sistemazione imbocco lato Fontanabuona	corpo stradale con rampa, RS10	FB 4 CA 2	Calcari del M.te Antola	10715/2013	24/05/ 2013	Α
Galleria Caravaggio, GN01b	Sistemazione imbocco lato Fontanabuona Galleria Caravaggio, GN01b	FB3 CA3	Calcari del M.te Antola	11SA16604	24/05/ 2013	А
		FB 3 CA 1	Calcari del M.te Antola	10714/2013	24/05/ 2013	Α
		FB 3 CA 2	Calcari del M.te Antola	10715/2013	24/05/ 2013	Α
	T	ED 4.04			04/05/	1 1
	Area di Arboccò con corpo stradale con rampa, RS10	FB 4 CA	Calcari del M.te Antola	10714/2013	24/05/ 2013	В
		FB 4 CA 2	Calcari del M.te Antola	10715/2013	24/05/ 2013	Α
	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	Α
	Sistemazione imbocco	FB3 CA3	Calcari del M.te Antola	11SA16604	24/05/ 2013	Α
Riempimento Arboccò, RS10	lato Fontanabuona Galleria Caravaggio,	FB 3 CA 1	Calcari del M.te Antola	10714/2013	24/05/ 2013	Α
	GN01b	FB 3 CA 2	Calcari del M.te Antola	10715/2013	24/05/ 2013	Α
	Area imbassa lat-	FB 5 CA 2	Calcari del M.te Antola	10717/2013	24/05/ 2013	Α
	Area imbocco lato Rapallo Galleria	FB 5 CA 3	Calcari del M.te Antola	10718/2013	24/05/ 2013	Α
	Fontanabuona, GN02a	FB 5 CA 1	Calcari del M.te Antola	10716/2013	24/05/ 2013	В
		FB 5 CA	Calcari del M.te Antola	10717/2013	24/05/ 2013	Α
Sistemazione imbocco lato Rapallo Galleria Fontanabuona, GN02a		FB 5 CA	Calcari del M.te Antola	10718/2013	24/05/ 2013	Α
		FB 5 CA	Calcari del M.te Antola	10716/2013	24/05/ 2013	В
	Galleria Caravaggio, GN01	FB1	Calcari del M.te Antola	11SA16604	giu-11	Α
	2	FB 4 CA 1	Calcari del M.te Antola	10714/2013	24/05/ 2013	В

<u>OPERA DI</u> <u>DESTINAZIONE</u>	OPERA DI ORIGINE	<u>PUNTO</u>	<u>DI INDAGINE</u>	CERTIFICATI				
		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc		
	Area di Arboccò con corpo stradale con rampa, RS10	FB 4 CA 2	Calcari del M.te Antola	10715/2013	24/05/ 2013	А		
Ambito Piazzale di esazione Fontanabuona								
	7 III STOT TUZZUTO UI	FB9	Ardesie di M.te Varzi	11SA19415	giu-11	Α		
		Pz CN 21 Top Soil	Ardesie di M.te Varzi	11671/2013	05/06/ 2013	В		
		Pz CN 21 C1	Ardesie di M.te Varzi	11672/2013	05/06/ 2013	Α		
	Area imbassa lata	Pz CN 22 Top Soil	Ardesie di M.te Varzi	11673/2013	05/06/ 2013	В		
	Area imbocco lato Fontanabuona Galleria Fontanabuona, GN02b	Pz CN 22 C1	Ardesie di M.te Varzi	11674/2013	05/06/ 2013	Α		
	T Gritaria Basila, Grita Es	Pz CN 23 Top Soil	Ardesie di M.te Varzi	11675/2013	05/06/ 2013	В		
Area imbocco lato Fontanabuona Galleria Fontanabuona, GN02b		Pz CN 23 C1	Ardesie di M.te Varzi	11676/2013	05/06/ 2013	В		
		Pz CN 24 Top Soil	Ardesie di M.te Varzi	11677/2013	05/06/ 2013	Α		
		Pz CN 24 C1	Ardesie di M.te Varzi	11678/2013	05/06/ 2013	Α		
,	Galleria Fontanabuona, GN02	FB6	Calcari del M.te Antola	11SA16605	giu-11	Α		
		FB7	Calcari del M.te Antola	11SA19414	giu-11	Α		
		FB9 QUATER CA1	Ardesie di M.te Varzi	14295/2013	26/06/ 2013	Α		
		FB9 QUATER CA2	Ardesie di M.te Varzi	14296/2013	26/06/ 2013	Α		
	T Official abuoria, GNO2	FB9 QUATER CA3	Argilliti di M.te Lavagnola	14297/2013	26/06/ 2013	Α		
		FB9 QUATER CA4	Ardesie di M.te Varzi	14298/2013	26/06/ 2013	Α		
		FB9 QUATER CA5	Calcari del M.te Antola	14299/2013	26/06/ 2013	А		
		FB10	Ardesie di M.te Varzi	11SA16951	giu-11	В		
	Area stazione di esazione della	FB 14 CH 2	Ardesie di M.te Varzi	09647/2013	03/05/ 2013	Α		
Rimodellamento Fontanabuona, RM02	Fontanabuona con innesto con S.P. 22,	FB 14 CH 3	Ardesie di M.te Varzi	09648/2013	03/05/ 2013	Α		
	PZ01 e viadotto sul Litteglia, VI06	FB 20 CH 1	Scisti manganesiferi	09652/2013	03/05/ 2013	Α		
		FB 20 CH 2	Scisti manganesiferi	09653/2013	03/05/ 2013	Α		

<u>OPERA DI</u> DESTINAZIONE	OPERA DI ORIGINE	PUNTO	<u>DI INDAGINE</u>	CERTIFICATI		
		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
		FB 20 CH 3	Scisti manganesiferi	09654/2013	03/05/ 2013	Α
		FB 11 CA 1	Ardesie di M.te Varzi	10708/2013	24/05/ 2013	Α
		FB 11 CA 2	Ardesie di M.te Varzi	10709/2013	24/05/ 2013	Α
		FB 11 CA 3	Ardesie di M.te Varzi	10710/2013	24/05/ 2013	Α
		FB 12 CA 1	Ardesie di M.te Varzi	10711/2013	24/05/ 2013	Α
		FB 12 CA 2	Ardesie di M.te Varzi	10712/2013	24/05/ 2013	Α
		FB 12 CA 3	Ardesie di M.te Varzi	10713/2013	24/05/ 2013	Α
		Pz CN 25 Top Soil	Ardesie di M.te Varzi	11679/2013	05/06/ 2013	В
		Pz CN 25 C1	Ardesie di M.te Varzi	11680/2013	05/06/ 2013	В
		Pz CN 26 Top Soil	Ardesie di M.te Varzi	11681/2013	05/06/ 2013	В
		Pz CN 26 C1	Ardesie di M.te Varzi	11682/2013	05/06/ 2013	Α
		Pz CN 27 Top Soil	Ardesie di M.te Varzi	11683/2013	05/06/ 2013	В
		Pz CN 27 C1	Ardesie di M.te Varzi	11684/2013	05/06/ 2013	Α
		Pz CN 28 Top Soil	Ardesie di M.te Varzi	11685/2013	05/06/ 2013	В
		Pz CN 28 C1	Ardesie di M.te Varzi	11686/2013	05/06/ 2013	Α
		Pz CN 29 Top Soil	Ardesie di M.te Varzi	11687/2013	05/06/ 2013	В
		Pz CN 29 C1	Ardesie di M.te Varzi	11688/2013	05/06/ 2013	Α
		Pz CN 30 Top Soil	Ardesie di M.te Varzi	11689/2013	05/06/ 2013	В
		Pz CN 30 C1	Ardesie di M.te Varzi	11690/2013	05/06/ 2013	Α
		Pz CN 31 Top Soil	Ardesie di M.te Varzi	11691/2013	05/06/ 2013	В
		Pz CN 31 C1	Ardesie di M.te Varzi	11692/2013	05/06/ 2013	Α
		Pz CN 32 Top Soil	Ardesie di M.te Varzi	11693/2013	05/06/ 2013	В
		Pz CN 32 C1	Ardesie di M.te Varzi	11694/2013	05/06/ 2013	Α
	Galleria	FB6	Calcari del M.te Antola	11SA16605	giu-11	Α
	Fontanabuona, GN02	FB7	Calcari del M.te Antola	11SA19414	giu-11	Α

OPERA DI DESTINAZIONE	OPERA DI ORIGINE	PUNTO DI INDAGINE		CERTIFICATI		
		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
		FB9 QUATER CA1	Ardesie di M.te Varzi	14295/2013	26/06/ 2013	А
		FB9 QUATER CA2	Ardesie di M.te Varzi	14296/2013	26/06/ 2013	Α
		FB9 QUATER CA3	Argilliti di M.te Lavagnola	14297/2013	26/06/ 2013	Α
		FB9 QUATER CA4	Ardesie di M.te Varzi	14298/2013	26/06/ 2013	Α
		FB9 QUATER CA5	Calcari del M.te Antola	14299/2013	26/06/ 2013	А

Ambito Adeguamento S.P. n. 22

	Ambito Adeg	uamento 3	D.P. II. 22			
		FB15	Scisti manganesiferi	11SA16952	giu-11	Α
		FB17	Scisti manganesiferi	11SA18925	giu-11	Α
		FB 18 CH 1	Scisti manganesiferi	09649/2013	03/05/ 2013	Α
		FB 18 CH 2	Scisti manganesiferi	09650/2013	03/05/ 2013	Α
		FB 18 CH 3	Scisti manganesiferi	09651/2013	03/05/ 2013	Α
		FB 21 CH 1	Scisti manganesiferi	09655/2013	03/05/ 2013	В
		FB 21 CH 2	Scisti manganesiferi	09656/2013	03/05/ 2013	Α
		FB 21 CH 3	Scisti manganesiferi	09657/2013	03/05/ 2013	Α
Cistomonione CD 22	Adeguamento SP 22, con corpo stradale (da IN01 a IN05) e viadotti (da VI07 a VI10	Pz CN 35 Top Soil	Scisti manganesiferi	11815/2013	06/06/ 2013	В
Sistemazione SP 22, con corpo stradale (da IN01 a IN05) e viadotti (da VI07 a		Pz CN 35 C1	Scisti manganesiferi	11816/2013	06/06/ 2013	В
VI10)		Pz CN 36 Top Soil	Scisti manganesiferi	11817/2013	06/06/ 2013	В
		Pz CN 36 C1	Scisti manganesiferi	11818/2013	06/06/ 2013	В
		Pz CN 37 Top Soil	Scisti manganesiferi	11819/2013	06/06/ 2013	В
		Pz CN 37 C1	Scisti manganesiferi	11820/2013	06/06/ 2013	В
		Pz CN 44 Top Soil	Scisti manganesiferi	11823/2013	06/06/ 2013	В
		Pz CN 44 C1	Scisti manganesiferi	11824/2013	06/06/ 2013	В
		Pz CN 46 C1	Scisti manganesiferi	11828/2013	06/06/ 2013	Α
		Pz CN 47 Top Soil	Scisti manganesiferi	11829/2013	06/06/ 2013	Α

<u>OPERA DI</u> DESTINAZIONE	OPERA DI ORIGINE	PUNTO DI INDAGINE		CERTIFICATI		
		CODICE	LITOLOGIA DOMINANTE	RAPPORTO PROVA	Data prelie vo	csc
		Pz LL 02 Top Soil	Scisti manganesiferi	12062/2013	07/06/ 2013	В
		Pz LL 02 C1	Scisti manganesiferi	12063/2013	07/06/ 2013	В
		Pz LL 02 C2	Scisti manganesiferi	12064/2013	07/06/ 2013	В
		Pz LL 03 Top Soil	Scisti manganesiferi	12065/2013	07/06/ 2013	В
		Pz LL 03 C1	Scisti manganesiferi	12066/2013	07/06/ 2013	В
		Pz LL 03 C2	Scisti manganesiferi	12067/2013	07/06/ 2013	Α
		Pz CN 33 Top Soil	Scisti manganesiferi	11811/2013	06/06/ 2013	В
		Pz CN 33 C1	Scisti manganesiferi	11812/2013	06/06/ 2013	В
		Pz CN 34 Top Soil	Scisti manganesiferi	11813/2013	06/06/ 2013	Α
		Pz CN 34 C1	Scisti manganesiferi	11814/2013	06/06/ 2013	Α
		Pz CN 43 Top Soil	Scisti manganesiferi	11821/2013	06/06/ 2013	В
		Pz CN 43 C1	Scisti manganesiferi	11822/2013	06/06/ 2013	Α
		Pz CN 45 Top Soil	Scisti manganesiferi	11825/2013	06/06/ 2013	Α
		Pz CN 45 C1	Scisti manganesiferi	11826/2013	06/06/ 2013	Α
		Pz CN 46Top Soil	Scisti manganesiferi	11827/2013	06/06/ 2013	Α
		Pz CN 47 C1	Scisti manganesiferi	11830/2013	06/06/ 2013	Α
		FB6	Calcari del M.te Antola	11SA16605	giu-11	Α
		FB7	Calcari del M.te Antola	11SA19414	giu-11	Α
	Galleria Fontanabuona, GN02	FB9 QUATER CA1	Ardesie di M.te Varzi	14295/2013	26/06/ 2013	А
		FB9 QUATER CA2	Ardesie di M.te Varzi	14296/2013	26/06/ 2013	А
		FB9 QUATER CA3	Argilliti di M.te Lavagnola	14297/2013	26/06/ 2013	А
		FB9 QUATER CA4	Ardesie di M.te Varzi	14298/2013	26/06/ 2013	Α
		FB9 QUATER CA5	Calcari del M.te Antola	14299/2013	26/06/ 2013	А

