Provincia del Sud Sardegna

Comune di Villasor

Realizzazione di un impianto fotovoltaico a terra e opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU)

Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Allegato						
RELAPROG26c	Rela	zione per istanza stra	alcio aste fluviali			
		I PROFESSIONISTI	IL COMMITTENTE			
Rev 0 - Giugno 2023		Prof. Ing. Andrea Saba				
		ORDINE INGEGNERI PROVINCIA CAGLIARI N.2439 Dott. Ing. ANDREA SABA				
		Geol. Marco Pilia				
		ORDINE DEI GEOLOGI REGIONE SARDEGNA SEZIONE A N. 471 Dott. Geol. Marco Pilia				

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Indice generale

1 Introduzione	pag. 3
2 Caratteristiche delle aste in esame	pag. 4
3 Applicazione del criterio di non significatività	pag. 4
3.1 Generalità	pag. 4
3.2 Valutazione della portata di piena dei bacini in esame	pag. 5
3.3 Metodo razionale	pag. 6
3.3.1 Il coefficiente di riduzione areale	pag. 6
3.3.2 Il tempo di corrivazione	pag. 6
3.3.3 Il coefficiente di deflusso Φ	pag. 7
3.4 Metodo razionale con curva di possibilità pluviometrica TCEV	pag. 8

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

1. - Introduzione

Il presente studio è finalizzato al riconoscimento del carattere di elemento idrico effimero delle aste indicate come 092101 FIUME 23880 e 092101 FIUME 8466.

Il riferimento normativo è l'Art. 30ter, comma 6 delle Norme di attuazione del PAI, che prevede:

L'Autorità di bacino provvede, con sola funzione ricognitiva, a pubblicare sul sito istituzionale la rappresentazione cartografica dell'ordine gerarchico di cui al comma 1, rispetto alla quale i Comuni possono presentare al Comitato Istituzionale dell'Autorità di Bacino, motivate proposte, previa deliberazione del Consiglio Comunale, di correzione e/o integrazione del reticolo idrografico e/o di riclassificazione del suddetto ordine gerarchico, in presenza nel reticolo idrografico di documentati errori cartografici, di elementi idrici non significativi quali gli effimeri, di situazioni di carsismo, di canali adduttori e/o di bonifica disconnessi dal sistema idrografico nonché di canali afferenti a sistemi stagnali e lagunari e delle saline.

Si tratta quindi di verificare, per i corsi d'acqua in esame, il requisito per la loro classificazione quali "non significativi" ai sensi dell'Art. 30ter, comma 6 delle NTA del PAI, come meglio precisato nelle "Linee guida e indicazioni metodologiche per la corretta individuazione e rappresentazione cartografica del reticolo idrografico ai sensi dell'art.30 ter, comma 6 delle Norme di attuazione del PAI", all'Art. 2.3 - elementi idrici non significativi, punto A):

A) Bacini della zona occidentale idrologicamente omogenea delle Linee Guida del PAI

La condizione di non significatività, che consente la esclusione di un elemento già presente nello shp o la non inclusione di un elemento presente nella sola cartografia IGM 25-VS, è data dalla contestuale presenza delle seguenti caratteristiche, costituite da un bacino di superficie inferiore a $0,50\,$ kmq e portate bicentennali inferiori a $7\,$ mc/s da calcolare alla sezione di confluenza dell'elemento di valle e con tempo di corrivazione fornito dalla formula di Viparelli ($V=1\,$ m/s), con utilizzo del metodo TCEV/SCS con CN(III) non inferiore a 95.

Le indicazioni fornite dalle Linee Guida risultano pertanto estremamente precise ed inequivocabili, e nel presente studio ne sarà data applicazione per il reticolo idrografico di interesse.

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

2. - Caratteristiche delle aste in esame

Le 2 aste idrografiche sono riportati in Tab. 1.

Tabella 1 - Aste presenti nell'area

Nome asta	si immette in:	Ordine Horton Strahler
092101_FIUME_23880	GORA PISCINA MANNA	1
092101_FIUME_8466	GORA PISCINA MANNA	1

3. - Applicazione del criterio di non significatività

3.1. - Generalità

Il criterio di non significatività, già richiamato precedentemente, è formulato differentemente per i bacini orientali e occidentali.

Nelle Linee Guida allegate al Piano di Assetto Idrogeologico è riportata, a pag. 14, la definizione delle zone Occidentali e Orientali, come riportato in Fig. 1.

All. 1.2 Relazione per istanza stralcio aste fluviali pag. 4/12	
---	--

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

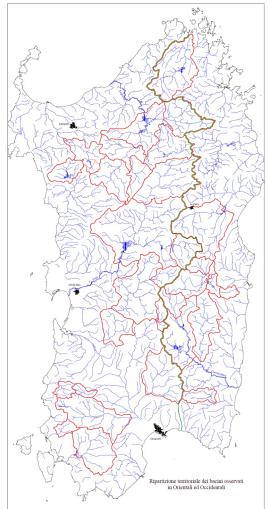


Figura 3 – Definizione delle zone Occidentale ed Orientale idrologicamente omogenee in base all'analisi Regionale condotta sui bacini eveidenziati in rosso.

Figura 1 - Zone orientali e occidentali dei bacini della Sardegna (da Linee Guida PAI)

Dalla figura, si evince che i bacini in esame appartengono alla Zona Occidentale.

3.2. - Valutazione della portata di piena dei bacini in esame

Per l'applicazione del criterio di non significatività, si evidenzia innanzitutto le aste riportate in Tab. 1 presentano una superficie inferiore a 0.50 kmq.

Resta pertanto da calcolare la portata di piena bicentennale considerando alla sezione di confluenza dell'elemento di valle un tempo di corrivazione fornito dalla formula di Viparelli (V=1 m/s), con utilizzo del metodo TCEV/SCS con CN(III) non inferiore a 95.

All. 1.2 Relazione per istanza stralcio aste fluviali pag. 5/12				
---	--	--	--	--

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

A tal fine, sono stati considerati unicamente i tratti terminali di ogni gruppo di aste, ed in particolare i punti di immissione del Rio Figu (oltre al solo ramo 107005_FIUME_7242 valutato alla sua confluenza nel 107005_FIUME_22011), in quanto comprensivi dei tratti a monte.

I parametri descrittivi delle aste in esame sono riportati in Tab. 2.

Tabella 2 - Parametri descrittivi dei bacini in esame

Parametri	descrittivi		
Bacino	s	L	V
	kmq	km	m/s
Fiume 8466	0.29	0.93	1
Fiume 23880	0.16	0.6	1

3.3. - Metodo razionale

Il metodo razionale, impropriamente anche detto cinematico, fornisce la portata di piena tramite l'espressione:

$$Q = \Phi ARF S H / (3.6 Tc)$$
 (1)

nella quale Φ rappresenta l'aliquota di precipitazione che, in occasione della piena, scorre in superficie, ARF (Areal Reduction Factor - Coefficiente di Riduzione Areale) esprime il rapporto tra l'altezza di pioggia media su tutto il bacino e l'altezza di pioggia in un punto al suo interno, valutati a parità di durata e di tempo di ritorno, Tc è il tempo di corrivazione espresso in ore, S la superficie del bacino in kmq, H è l'altezza di precipitazione, in mm, che cade in un punto del bacino in una durata pari a Tc con l'assegnato Tempo di ritorno e Q la portata di piena in mc/s.

3.3.1. - Il coefficiente di riduzione areale

Il coefficiente di riduzione areale, per la specifica valutazione richiesta, è posto pari a 1.

3.3.2. - Il tempo di corrivazione

Il tempo di corrivazione Tc è stimato facendo riferimento all'espressione:

Viparelli:
$$TcV = L/(3.6 \text{ V})$$
 (considerando $V = 1 \text{ m/s}$) (2)

A questo tempo va aggiunto il tempo di accesso alla rete Tf, pari a

$$Ta = Ia / Ic (3)$$

dove Ia sono le perdite iniziali e Ic l'intensità di pioggia critica, da ricercarsi ricursivamente.

Applicando le espressioni precedenti si perviene ai valori riportati in Tab. 3.

All. 1.2 Relazione per istanza stralcio aste fluviali pag. 6/12	All. 1.2			
---	----------	--	--	--

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Tabella 3 - Tempi di corrivazione

Tempo di corrivazione							
Bacino	Tr	i	TcV	Та	Tc		
	anni	mm/ora	ore	ore	ore		
Fiume 8466	50	142	0.26	0.02	0.28		
Fiume 8466	100	156	0.26	0.02	0.28		
Fiume 8466	200	169	0.26	0.02	0.28		
Fiume 8466	500	185	0.26	0.01	0.27		
Fiume 23880	50	135	0.17	0.02	0.19		
Fiume 23880	100	131	0.17	0.02	0.19		
Fiume 23880	200	141	0.17	0.02	0.18		
Fiume 23880	500	156	0.17	0.02	0.18		

3.3.3. - Il coefficiente di deflusso Φ

Stima basata sul CN

Il CN rende conto della porzione di precipitazione meteorica che scorre effettivamente in superficie, al netto quindi delle perdite per infiltrazione, evaporazione e riempimento di depressioni superficiali, e il cui valore è compreso tra 0 (nessuno scorrimento in superficie) e 100 (totale assenza di perdite, tutta la pioggia si trasforma in scorrimento superficiale).

Il coefficiente Φ può essere stimato col metodo del Curve Number (CN) secondo cui vale:

$$\Phi = (H - IA)2/(H(H + S - IA))$$
(4)

in cui:

- CN è un parametro il cui valore è legato alle caratteristiche del suolo e del suo uso superficiale
- $CN_{III} = (23*CN)/(10+0.13*CN)$ è una correzione di CN che tiene conto del fatto che il terreno era già in condizioni di maggiore umidità per effetto di precipitazioni precedenti
- Hè l'altezza di precipitazione totale caduta per la durata pari a Tc (tempo di corrivazione)
- S è la massima perdita per infiltrazione data da S = 254 (100/CN 1)
- IA rappresenta le perdite iniziali, poste pari a c S

Nella specifica valutazione richiesta in questa procedura, il parametro CN_{III} è fissato pari a 95 per tutti i bacini. I parametri per il calcolo delle perdite sono riportati in Tab. 4.

All. 1.2 Relazione per istanza stralcio aste fluviali pag. //12

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Tabella 4 - Valori del CN adottati

Cı	ırve Numbe	er		
Bacino	CN	CN usato	SS	С
			mm	
Fiume 8466	95	95	13.37	0.2
Fiume 23880	95	95	13.37	0.2

3.4. - Metodo razionale con curva di possibilità pluviometrica TCEV

La curva di possibilità pluviometrica basata sulla distribuzione probabilistica TCEV è stata calibrata da Deidda-Piga-Sechi nel 1997 con l'espressione:

$$H = Hm(Tc) a Tc^{n}$$
 (5)

nella quale:

$$Hm(Tc) = 1.1287 Hg (Tc/24)^{-0.493+0.476Log(Hg)}$$
 (6)

con Hg dipendente dalla posizione geografica del bacino, mentre i parametri a ed n dipendono dalla sottozona di appartenenza:

per la sottozona I:

$$a = 0.4642 + 1.0376*Log(Tr)$$
(7)

$$n = -0.18488 + 0.22960*Log(Tr) - 0.033216*(Log(Tr))^{2} \text{ (per Tc < 1 ora)}$$
 (8)

$$n = -0.01469 - 0.0078505*Log(Tr)$$
 (per Tc > 1 ora) (9)

per la sottozona II:

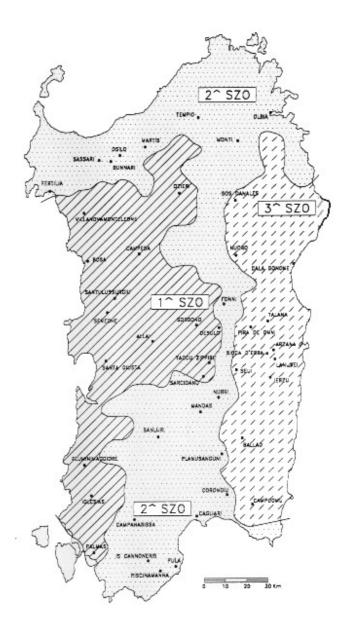
$$a = 0.43797 + 1.089*Log(Tr)$$
 (10)

$$n = -0.18722 + 0.24862 * Log(Tr) - 0.0336305 * (Log(Tr))^{2} \text{ (per Tc < 1 ora)}$$
 (11)

$$n = -0.0063887 - 0.004542*Log(Tr)$$
 (per Tc > 1 ora) (12)

per la sottozona III:

$$a = 0.40926 + 1.1441*Log(Tr)$$
(13)


$$n = -0.1906 + 0.264438*Log(Tr) - 0.038969*(Log(Tr))^{2} \text{ (per Tc < 1 ora)}$$
 (14)

$$n = 0.014929 + 0.0071973*Log(Tr)$$
 (per Tc > 1 ora) (15)

All. 1.2	Relazione per istanza stralcio aste fluviali	pag. 8/12
	1	1 0

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Le sottozone sono riportate in Fig. 2, mentre il parametro Hg in Fig. 3.

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Figura 2 - Sottozone per l'applicazione del metodo TCEV

L'area ricade nella sottozona 2.

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

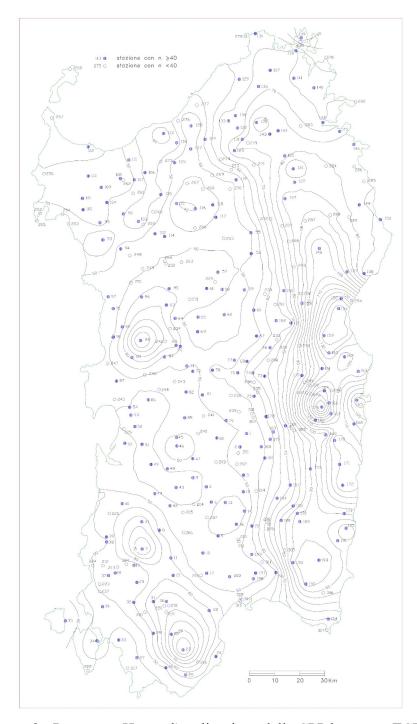


Figura 3 - Parametro Hg per l'applicazione della CPP basata su TCEV

All. 1.2	Relazione per istanza stralcio aste fluviali	pag. 11/12	

Realizzazione di un impianto fotovoltaico a terra avente potenza nominale di 99,9908 MWp e delle relative opere di connessione alla RTN, da realizzarsi in località "Saltu Bia Montis", Comune di Villasor (SU) Studio idrologico e idraulico ai sensi dell'Art. 30ter, commi 2 e 6 - NTA PAI

Il parametro Hg nell'area è pari a 53 mm.

La portata di piena calcolata con questo metodo è riportata in Tab. 5.

Tabella 5 - Portata di piena calcolata col metodo razionale e CPP TCEV

Portata di piena col metodo razionale e CPP TCEV-PAI							
Bacino	Tr	SZ	Hg	Нср	Htp	Ф	Qr,tcev(pai)
	anni		mm	mm	mm		mc/s
Fiume 8466	50	2.000	53.000	26.881	26.88	0.58	4.48
Fiume 8466	100	2.000	53.000	29.322	29.32	0.61	5.13
Fiume 8466	200	2.000	53.000	31.759	31.76	0.63	5.79
Fiume 8466	500	2.000	53.000	35.102	35.10	0.65	6.71
Fiume 23880	50	2.000	53.000	22.315	22.32	0.52	2.77
Fiume 23880	100	2.000	53.000	24.114	24.11	0.55	3.12
Fiume 23880	200	2.000	53.000	25.787	25.79	0.57	3.48
Fiume 23880	500	2.000	53.000	28.131	28.13	0.59	4.01

La portata di piena bicentenaria risulta quindi inferiore a 7.00 mc/s per tutti i bacini in esame.