

REGIONE MOLISE

Provincia di Campobasso

GUGLIONESI (CB)

OGGETTO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

COMMITTENTE

PROGETTAZIONE

WIND ENERGY GUGLIONESI S.r.l.

Via Caravaggio, 125 - 65125 Pescara (PE)

Codice Commessa PHEEDRA: 21_15_EO_GLN

PHEEDRA

PHEEDRA S.r.I. Via Lago di Nemi, 90 74121 - Taranto Tel. 099.7722302 - Fax 099.9870285 e-mail: info@pheedra.it - web: www.pheedra.it

Dott. Ing. Angelo Micolucci

ORDINE INGEGNERI PROVINCIA TARANTO

Sezione A

Dott. Ing.

MICOLUCCI Angelo

n° 1851

Settore

Civile Ambientale
Industriale
Infermazione

3	Giugno 2023	Riscontro nota MiC prot.n. 0003318-P del 8/03/2023	MS	AM	vs
2	-	-	-	-	-
1	Settembre 2021	PRIMA EMISSIONE	MS	АМ	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APPROVATO

OGGETTO DELL'ELABORATO

RELAZIONE DI RENDERING E FOTOINSERIMENTI

FORMATO	SCALA	CODICE DOCUMENTO		NOME FILE	FOGLI			
Λ.4		SOC.	DISC.	TIPO DOC.	PROG.	REV.	GLN-AMB-REL-045 02	
A4	-	GLN	AMB	REL	045	02	GLN-AMB-REL-045_02	

Committente:

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

GLN-AMB-REL-045_02

Nome del file:

Sommario

1.	PREMESSA	. 2
2.	FOTOINSERIMENTO	. 2
2.1.	Punti di presa	. 5
		_
"	Stato di fatto e Rendering di progetto	Q

Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO Nome del file:

GLN-AMB-REL-045 02

1. PREMESSA

La presente relazione espone i criteri e le operazioni svolte per poter produrre l'analisi della visibilità del "Parco Eolico" in progetto. L' impianto eolico è composto da **9 aerogeneratori ognuno da 4,44 MW** da installare nel comune di **Guglionesi** in località "Vallone Cupo", commissionato dalla società **Wind Energy Guglionesi Srl**.

La finalità di un'analisi del paesaggio, oltre a riuscire a leggere i segni che lo connotano, è quella di poter controllare la qualità delle trasformazioni in atto, affinché i nuovi segni, che verranno a sovrapporsi sul territorio, non introducano elementi di degrado, ma si inseriscano in modo coerente con l'intorno.

L'impatto, che l'inserimento dei nuovi elementi produrrà all'interno del sistema territoriale, sarà, comunque, più o meno consistente in funzione, oltre che dell'entità delle trasformazioni previste, della maggiore o minore capacità del paesaggio di assorbire nuove variazioni, in funzione della sua vulnerabilità.

2. FOTOINSERIMENTO

Nel caso degli impianti eolici, costituiti da strutture che si sviluppano essenzialmente in altezza, si rileva una forte interazione con il paesaggio, soprattutto nella sua componente visuale. Tuttavia, per definire in dettaglio e misurare il grado d'interferenza che tali impianti possono provocare alla componente paesaggistica, è opportuno definire in modo oggettivo l'insieme degli elementi che costituiscono il paesaggio, e le interazioni che si possono sviluppare tra le componenti e le opere progettuali che s'intendono realizzare.

L'impatto paesaggistico, sulla base del quale è possibile prendere decisioni in merito ad interventi di mitigazione o a modifiche impiantistiche che migliorino la percezione visiva, è funzione del valore del paesaggio e della visibilità dell'impianto.

Il valore del paesaggio di un ambito territoriale scaturisce dalla quantificazione di elementi quali la naturalità del paesaggio, la qualità attuale dell'ambiente percettibile e la presenza di zone soggette a vincolo.

In particolare, la naturalità di un paesaggio esprime la misura di quanto una zona permanga nel suo stato naturale, senza cioè interferenze da parte delle attività umane.

La qualità attuale dell'ambiente percettibile esprime il valore degli elementi territoriali che hanno subito una variazione del loro stato originario a causa dell'intervento dell'uomo, il quale ne ha modificato l'aspetto in funzione dei propri usi.

Ovviamente per zone soggette a vincolo si intendono tutte quelle che, essendo riconosciute meritevoli di una determinata tutela da parte dell'uomo, sono state sottoposte a una legislazione specifica.

L'interpretazione della visibilità è legata alla tipologia dell'opera ed allo stato del paesaggio in cui la stessa viene introdotta. Gli elementi costituenti un parco eolico (gli aerogeneratori) si possono considerare come un unico insieme e quindi un elemento puntale rispetto alla scala vasta, presa in considerazione, mentre per l'area ristretta, gli stessi elementi risultano diffusi se pur circoscritti, nel territorio considerato.

Da ciò appare evidente che sia in un caso che nell'altro tali elementi costruttivi ricadono spesso all'interno di una singola unità paesaggistica e rispetto a tale unità devono essere rapportati. In tal senso, la suddivisione dell'area in studio in unità di paesaggio permette di inquadrare al meglio l'area stessa e di rapportare l'impatto che subisce tale area agli altri ambiti, comunque influenzati dalla presenza dell'opera.

Per definire la visibilità di un parco eolico si possono analizzare i seguenti indici:

- la percettibilità dell'impianto
- l'indice di bersaglio
- la fruizione del paesaggio

GLN-AMB-REL-045 02

Per quanto riguarda la percettibilità dell'impianto, la valutazione si basa sulla simulazione degli effetti causati dall'inserimento di nuovi componenti nel territorio considerato.

Considerazioni di carattere generale da tenere presente nella determinazione dell'estensione della ZTV sono:

- le pale a causa del loro movimento sono maggiormente visibili da vicino, mentre la torre tubolare e la navicella sono maggiormente visibili a più grandi distanze;
- difficilmente si riesce a distinguere gli aerogeneratori a distanze superiori a 30 km e comunque solo in giornate terse;
- l'estensione della zona teorica di visibilità (ZTV) dipende, ovviamente dal numero di aerogeneratori
 che compongono il parco eolico oltre che dalla loro disposizione lineare o a gruppo. Nel caso di
 disposizione lineare, di solito, l'impatto è maggiore;
- l'estensione della ZTV dipende dall'ubicazione dell'impianto, in linea generale un impianto su crinale è maggiormente visibile di un impianto in area pianeggiante;
- l'estensione della ZTV dipende dall'orografia del territorio pianeggiante o collinare.

Il metodo usato per valutare l'andamento della sensibilità visiva in funzione della distanza è schematizzato in figura 1.

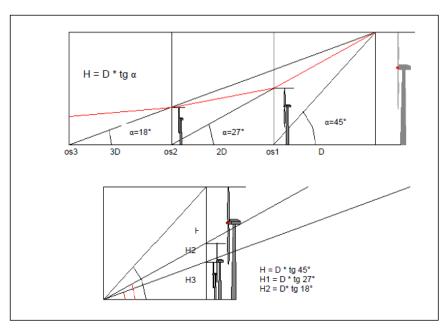


Figura 1 Schema di valutazione della percezione visiva

Tale metodo considera una distanza di riferimento D fra l'osservatore e l'oggetto in esame (aerogeneratore), in funzione della quale vengono valutate le altezze dell'oggetto percepite da osservatori posti via via a distanze crescenti. La distanza di riferimento D coincide di solito con l'altezza HT dell'oggetto in esame, in quanto in relazione all'angolo di percezione α (pari a 45°), l'oggetto stesso viene percepito in tutta la sua altezza. All'aumentare della distanza dell'osservatore diminuisce l'angolo di percezione (per esempio pari a 26,6° per una distanza doppia rispetto all'altezza della turbina) e conseguentemente l'oggetto viene percepito con una minore altezza, corrispondente all'altezza H di un oggetto posto alla distanza di riferimento D dall'osservatore. Tale altezza H risulta funzione dell'angolo α secondo la relazione:

 $H=D*tg(\alpha)$

Ad un raddoppio della distanza di osservazione corrisponde un dimezzamento della altezza percepita H.

Sulla base di queste osservazioni, si evidenzia come l'elemento osservato per distanze elevate tende a sfumare e si confonde con lo sfondo. Per esempio, una turbina eolica alta 111,5 metri, già a partire da distanze di circa 3 - 4 km determina una bassa percezione visiva, confondendosi sostanzialmente con lo sfondo.

Distanza (D/H _T)	Angolo α	Altezza percepita (H/H _T)	Giudizio sulla altezza percepita
1	45°	1	Alta, si percepisce tutta l'altezza
2	26,6°	0,500	Alta, si percepisce dalla metà a un
4	14,0°	0,25	quarto dell'altezza della struttura
6	9,5°	0,167	Medio alta, si percepisce da un quarto
8	7,1°	0,125	a un ottavo dell'altezza della struttura
10	5,7°	0,100	Media, si percepisce da un ottavo a un
20	2,9°	0,05	ventesimo dell'altezza della struttura
25	2,3°	0,04	Medio bassa, si percepisce da 1/20
30	1,9°	0,0333	fino ad 1/40 della struttura
40	1,43°	0,025	
50	1,1°	0,02	Bassa, si percepisce da 1/40 fino ad
80	0,7°	0,0125	1/80 della struttura
100	0,6°	0,010	Molto bassa, si percepisce da 1/80
200	0,3°	0,005	fino ad una altezza praticamente nulla

Figura 2 - Altezza percepita in funzione della distanza di osservazione

Le considerazioni sopra riportate si riferiscono alla percezione visiva di un'unica turbina, mentre per valutare la complessiva sensazione panoramica di un parco eolico composto da più turbine è necessario considerare l'effetto di insieme.

A tal fine occorre considerare alcuni punti di vista significativi, ossia dei riferimenti geografici che, in relazione alla loro fruizione da parte dell'uomo (intesa come possibile presenza dell'uomo), sono generalmente da considerare sensibili alla presenza dell'impianto. L'effetto di insieme dipende notevolmente oltre che dall'altezza e dalla distanza delle turbine, anche dal numero degli elementi visibili dal singolo punto di osservazione rispetto al totale degli elementi inseriti nel progetto.

Nel caso delle strade la distanza alla quale valutare l'altezza percepita deve necessariamente tenere conto anche della posizione di osservazione (ossia quella di guida o del passeggero), che nel caso in cui l'impianto sia in una posizione elevata rispetto al tracciato può in taluni casi risultare fuori dalla prospettiva "obbligata" dell'osservatore. Per questo motivo la distanza scelta come parametro da considerare è quella che sta tra l'osservatore e il primo aerogeneratore che può ricadere nel campo visivo dell'osservatore

stesso, che necessita di avere l'impianto posto su un piano di riferimento all'interno della prospettiva di osservazione (figura 2).

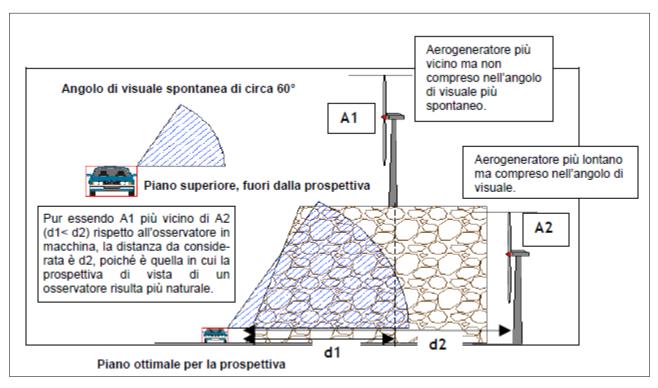


Figura 3 - Schema esplicativo della visibilità secondo l'angolo di visuale delle normali

L'ultimo parametro da valutare è la fruibilità ossia la stima della quantità di persone che possono raggiungere, più o meno facilmente, le zone più sensibili alla presenza del campo eolico, e quindi trovare in tale zona la visuale panoramica alterata dalla presenza dell'opera. I principali fruitori sono le popolazioni locali e i viaggiatori che percorrono le strade e le ferrovie. Viene quindi presa in considerazione la densità degli abitanti residenti nei singoli centri abitati e il volume di traffico per strade e ferrovie.

2.1. PUNTI DI PRESA

La collocazione degli aerogeneratori in progetto è la seguente:

TURBINA	E	N
WTG01	488985	4648227
WTG02	490696	4648398
WTG03	491471	4647808
WTG04	489313	4647478
WTG05	489256	4646622
WTG06	490038	4646987
WTG07	490813	4646766

GLN-AMB-REL-045 02

TURBINA	E	N
WTG08	490979	4645865
WTG09	490780	4644970

GUGLIONESI IN LOCALITA' VALLONE CUPO

mentre i punti di vista da cui si è analizzata la visibilità del parco eolico di progetto sono indicati sull'ortofoto seguente, e sono stati individuati all'interno di un buffer di 10 km intorno alle torri, da alcuni dei vincoli paesistici presenti nell'area in esame:

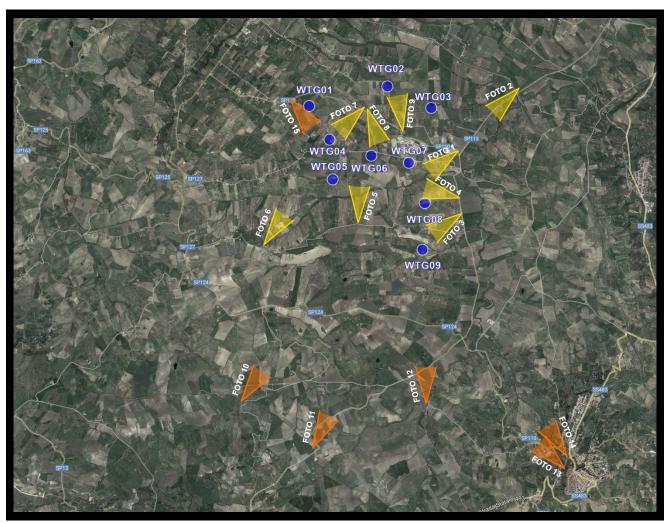


Figura 4 - Individuazione dei punti di presa fotografica dagli elementi sensibili

I fotoinserimenti sono stati realizzati da punti di interesse individuati:

- Foto 1 Incrocio SP113 ed SP 127 per la WTG 07;
- Foto 2 Incrocio SP113 ed SP112 per la WTG 03;
- Foto 3 Strada SP113 WTG09 e WTG08;
- Foto 4 Strada SP113 WTG07;
- Foto5 Contrada Guardata WTG06 e WTG07;
- Foto 6 Contrada Guardata WTG05;
- Foto 7 Strada SP 110 per WTG 01 E WTG 04;

Committente:

Wind Energy Guglionesi Srl

PROGETTO PER LA REALIZZAZIONE DI UN

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

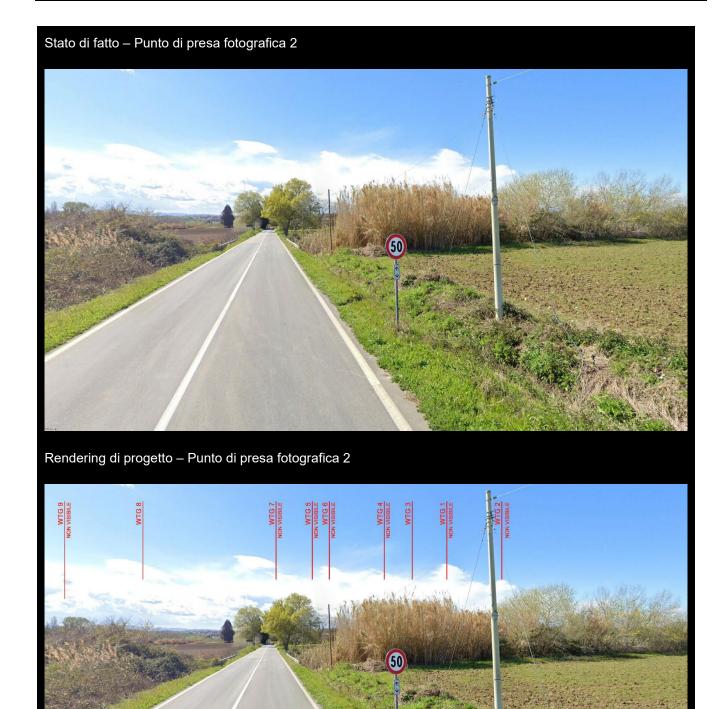
IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

GLN-AMB-REL-045 02

Foto 8 – Strada SP 110 per WTG 08;

- Foto 9 Strada SP 110 per WTG 08;
- Foto 10 Tratturo Centurella Montesecco;
- Foto 11 Tratturo Centurella Montesecco;
- Foto 12 Via Carrera di Riviera;
- Foto 13 Strada Comunale- Comune di Guglionesi;
- Foto 14 Strada Statale SS 483;
- Foto 15 Strada SP 110;

È importante evidenziare che in taluni casi, le dimensioni delle torri eoliche sono state volutamente sovradimensionate al fine di poter cautelativamente valutarne un'interferenza maggiore, al fine di dimostrarne comunque un basso impatto visivo.


Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

GLN-AMB-REL-045_02

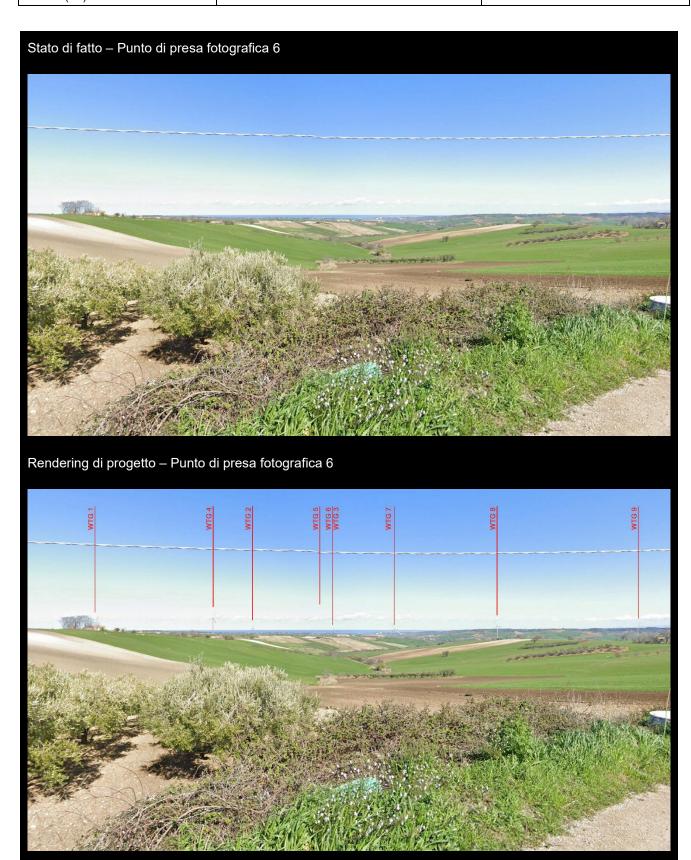
Nome del file:

STATO DI FATTO E RENDERING DI PROGETTO

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

Rendering di progetto – Punto di presa fotografica 4

Nome del file:


GLN-AMB-REL-045_02

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

GLN-AMB-REL-045_02

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

GLN-AMB-REL-045_02

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

GLN-AMB-REL-045_02

Rendering di progetto – Punto di presa fotografica 8

PROGETTO PER LA REALIZZAZIONE DI UN

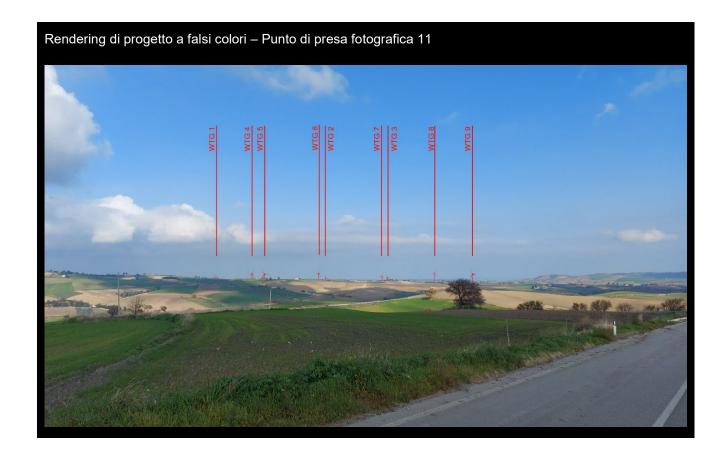
IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

Rendering di progetto – Punto di presa fotografica 9

GLN-AMB-REL-045_02

Nome del file:

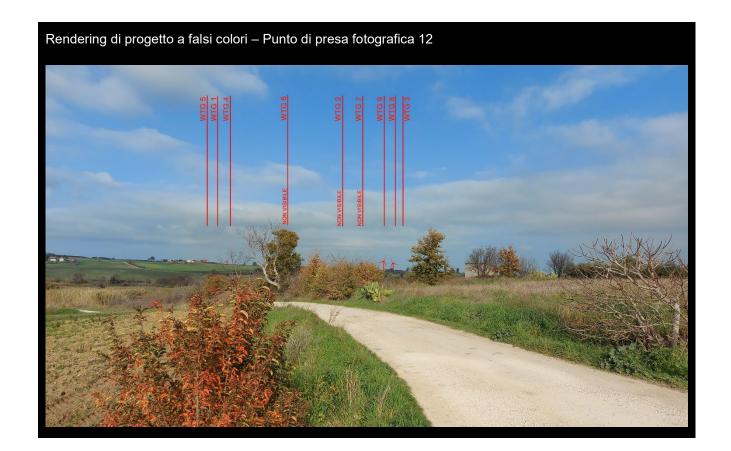
Rendering di progetto – Punto di presa fotografica 10



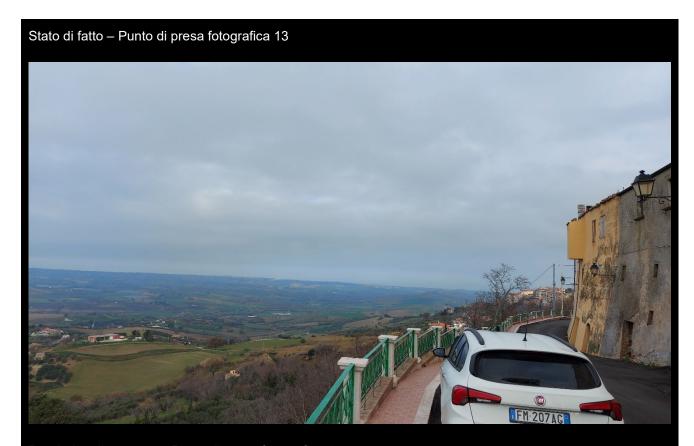
Rendering di progetto – Punto di presa fotografica 11

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

Nome del file:



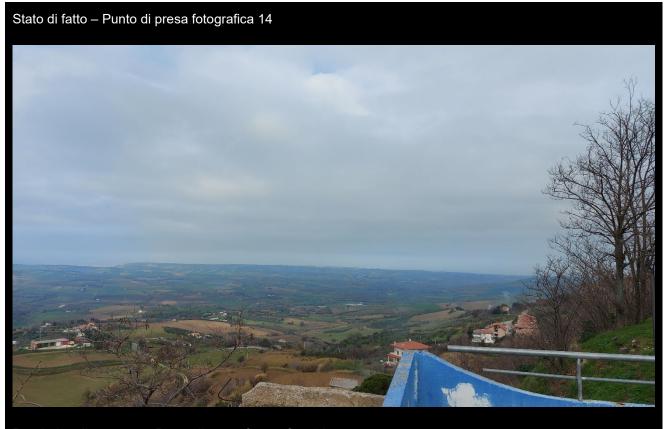
Rendering di progetto – Punto di presa fotografica 12



Nome del file:

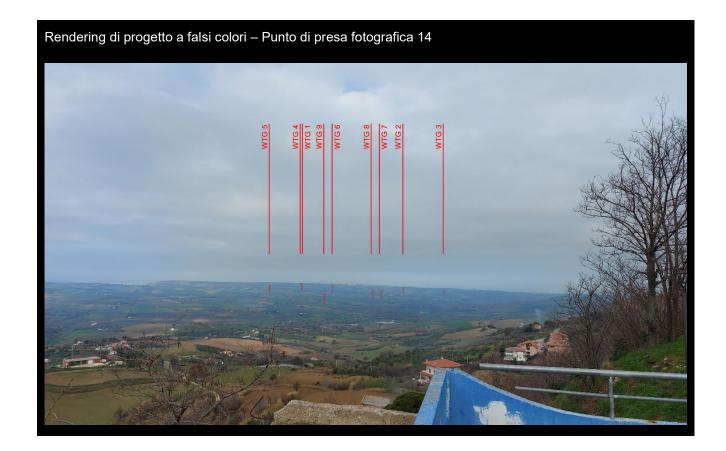
Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

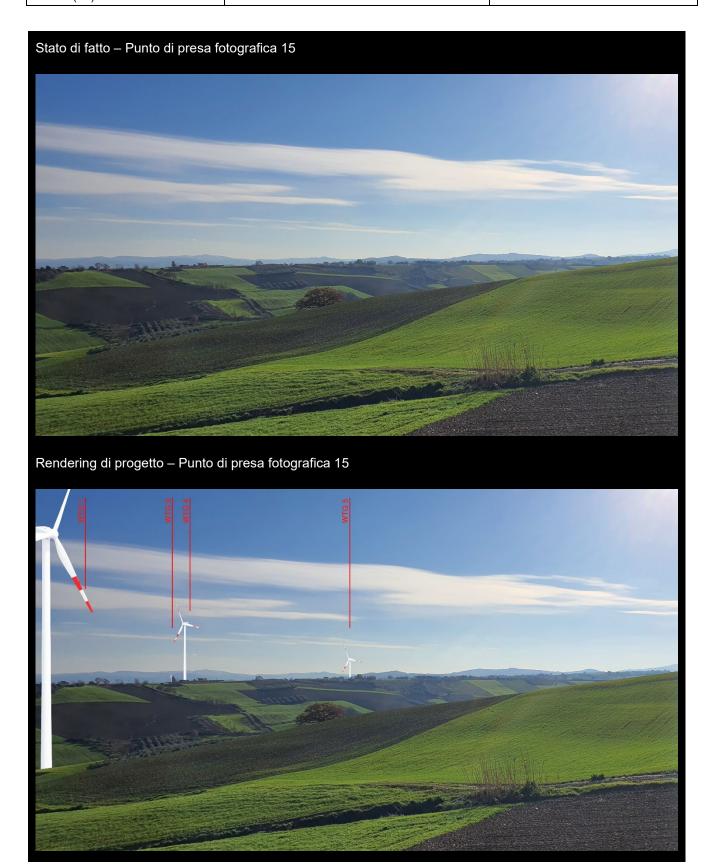


Rendering di progetto – Punto di presa fotografica 13

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO



Rendering di progetto – Punto di presa fotografica 14


Nome del file:

Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO

GLN-AMB-REL-045_02

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI GUGLIONESI IN LOCALITA' VALLONE CUPO Wind Energy Guglionesi Srl Via Caravaggio, 125 Pescara (PE)

GLN-AMB-REL-045_02

Rendering di progetto a falsi colori – Punto di presa fotografica 15