

REGIONE PUGLIA

Provincia di TA(Taranto) TARANTO, FAGGIANO, LIZZANO

GGETT

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO, FAGGIANO E LIZZANO IN LOCALITA' TORREVECCHIA

COMMITTENTE

PROGETTAZIONE

Wind Energy Lizzano Srl - Via Caravaggio, 125 - 65125

Pescara (PE)

Tel. +39085388801 - Fax +390853888200 PEC: windenergylizzano@legalpec.it

Email: info@carlomaresca.it P.IVA: 02372060687

Reg. Imp. Pescara - Cap. Soc. € 10.000 i.v.

Società soggetta all'attività e coordinamento della "Carlo Maresca Spa" www.carlomaresca.it

Codice Commessa PHEEDRA: 23_10_EO_TAB

PHEEDRA S.r.I. Via Lago di Nemi, 90 74121 - Taranto

Tel. 099.7722302 - Fax 099.9870285 e-mail: info@pheedra.it - web: www.pheedra.it

Direttore Tecnico:

Dott. Ing. Angelo Micolucci

ORDINE INGEGNERI PROVINCIA TARANTO

Sezione A

Dott. Ing.

MICOLUCCI Angelo

n° 1851

Settore

Civile Ambientale
Industriale
Infermazione

00	Marzo 2023	PRIMA EMISSIONE	MS	AM	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APPROVATO

OGGETTO DELL'ELABORATO

STIMA DELLA PRODUCIBILITA' DELL'IMPIANTO

FORMATO	SCALA	CODICE DOCUMENTO		NOME FILE	FOGLI			
Λ.4	-	SOC.	DISC.	TIPO DOC.	PROG.	REV.	TAB-CIV-REL-028 00	
A4		TAB	CIV	REL	028	00	TAB-CIV-REL-028_00	

WIND ENERGY LIZZANO S.r.I. Via Caravaggio 125 65125 - Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028_00

Nome del file:

Sommario

1.	PREMESSA	2
2.	Caratteristiche Territoriali ed Infrastrutturali del Sito	3
2.1	Inquadramento	3
2.2.	. Caratteristiche territoriali	4
2.3.	. Sensibilità ambientale e paesaggistica	4
2.4.	. Qualità ambientale	5
2.5.	. Qualità paesaggistica	5
3.	Regime anemologico	5
3.1.	Direzione prevalente del vento	6
3.2.	Densità dell'aria	9
3.3.	. Curva di potenza aerogeneratore	9
3.4.	. Modella rugosità	9
3.5.	. Modellazione effetto scia	10
3.6.	. Layout turbine	10
3.7.	. Correzione delle perdite	11
3.8.	. Riepilogo delle perdite	14
4.	Produttività e calcolo delle ore equivalenti	.14
5	Conclusioni	17

Committente:

WIND ENERGY LIZZANO S.r.I.

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

Nome del file:

1. PREMESSA

La presente relazione descrive un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

Il progetto riguarda la realizzazione di un impianto eolico composto da 9 aerogeneratori ognuno da 6,6 MW da installare nel territorio dei Comuni di Taranto (TA), Faggiano (TA), Lizzano (TA) in località "Torrevecchia", con opere di connessione ricadenti nei medesimi comuni, commissionato dalla società Wind Energy Lizzano S.r.I.

Gli aerogeneratori saranno collegati tra di loro mediante un cavidotto in media tensione interrato. A partire dall'impianto eolico in progetto è prevista la posa di un cavidotto interrato per il collegamento dello stesso alla sottostazione di trasformazione e consegna 30/150 KV di progetto.

La sottostazione di trasformazione è prevista in prossimità della futura Stazione Elettrica RTN 380/150 kV "Taranto 380". Lo stallo nella SSE sarà connesso, tramite un cavidotto interrato in alta tensione allo stallo AT della SE.

L'aerogeneratore preso in considerazione per tale progetto (tipo 170-6,6 della SG – Siemens Gamesa) fa parte di una classe di macchine che possono essere dotate di generatore diversa potenza, in funzione delle esigenze progettuali. Infatti, le WTG 01 e WTG 02 sono tarate a 6,6 MW; mentre le altre WTG a 6,4 MW.

La presente relazione descrive lo studio anemometrico necessaria al progetto per la realizzazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

TAB-CIV-REL-028_00

2. Caratteristiche Territoriali ed Infrastrutturali del Sito

2.1 INQUADRAMENTO

65125 - Pescara (PE)

Il progetto riguarda la realizzazione di un impianto eolico composto da 9 aerogeneratori ognuno da 6,6 MW da installare nel territorio dei Comuni di Taranto (TA), Faggiano (TA), Lizzano (TA) in località "Torrevecchia", con opere di connessione ricadenti nei medesimi comuni di ubicazione degli aerogeneratori.

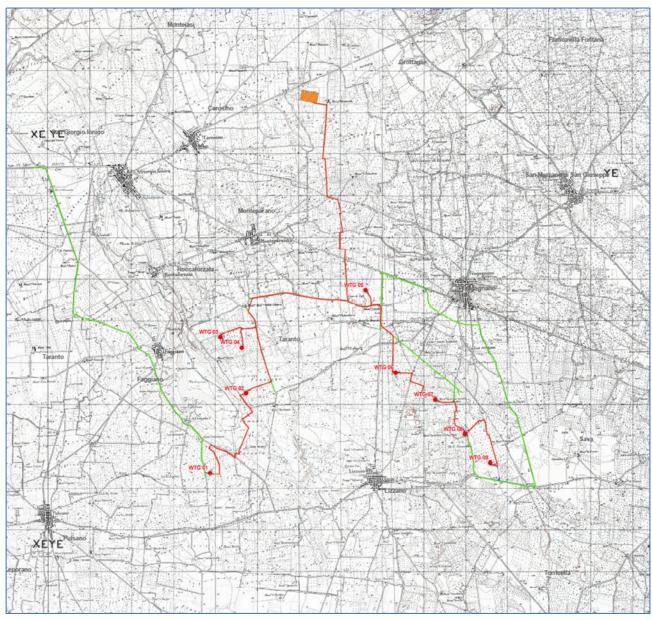


Figura 1 - Inquadramento su IGM

65125 - Pescara (PE)

WIND ENERGY LIZZANO S.r.I. Via Caravaggio 125

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

Nome del file:

2.2. CARATTERISTICHE TERRITORIALI

Il progetto prevede l'installazione di 9 aerogeneratori ognuno di potenza nominale pari a 6.6 MW. Il modello dell'aerogeneratore previsto è una SG 170-6,6 avente altezza al mozzo 115 m e diametro del rotore 170 m.

Gli aerogeneratori denominati con le sigle che vanno da WTG 01 a WTG 09 ricadono tra i comuni di Taranto, Lizzano e Faggiano in località "Torrevecchia".

Le aree d'impianto sono servite dalla viabilità esistente costituita da strade statali, provinciali, comunali e da strade interpoderali e sterrate.

Il parco eolico è circoscritto dalle sequenti strade provinciali, regionali e statali:

- SP 118
- SP 112
- SP 110
- Strada Statale 7 ter
- Strada comunale per Palude Rotonda

L'accesso alle torri è garantito in particolare dalle strade provinciali tramite viabilità di servizio esistente eventualmente da adeguare o da realizzare. La viabilità da realizzare non prevede opere di impermeabilizzazione. Sono inoltre previste piazzole in prossimità degli aerogeneratori.

Per la costruzione degli aerogeneratori è prevista la realizzazione di piazzole temporanee per lo stoccaggio e il montaggio. Tali aree saranno dismesse e ripristinate nella condizione ante operam.

La connessione elettrica tra gli aerogeneratori sarà garantita dalla realizzazione di un cavidotto interrato in MT, fino alle cabine di raccolta /smistamento da realizzarsi in prossimità dell'aerogeneratore WTG05. Il cavidotto sarà realizzato principalmente su strada e solo in via secondaria tramite l'attraversamento dei terreni.

Dalla cabina di raccolta/smistamento è prevista la realizzazione di un cavidotto interrato in MT esterno, della lunghezza di 6,1 km che si svilupperà attraversando strade comunali, sino alla cabina lato utente della SE "Taranto 380".

Durante gli studi preliminari, mediante l'interpretazione dei dati rilevati da stazioni metereologiche e dell'aeronautica presenti nella regione è stata verificata la presenza di una risorsa eolica.

In particolare, nell'area di intervento o nelle sue immediate vicinanze saranno installate stazioni anemometriche le cui finalità sono conformi a quanto definito, riguardo ai criteri di realizzazione degli impianti, e le cui specifiche tecniche vengono riportate di seguito.

2.3. SENSIBILITÀ AMBIENTALE E PAESAGGISTICA

La sensibilità dell'ambiente e del paesaggio non è dei parametri propriamente di progetto. Tuttavia, tali aspetti stanno assumendo un'importanza fondamentale nell'accettabilità pubblica di questa tipologia d'impianto.

WIND ENERGY LIZZANO S.r.I. PARCO EOLICO NEI COMU

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

Nome del file:

La sensibilità ambientale è normalmente rapportata alla tipologia di colture presenti nel territorio, alla naturalità dei luoghi, agli aspetti socio-culturali legati al territorio e al rumore prodotto dalle macchine; la sensibilità paesaggistica è invece rapportata alla "scala" (o alla conformazione morfologica del territorio) ed all'atmosfera" (o alla qualità dello scenario) del contesto paesaggistico. Nella valutazione di impatto ambientale assume particolare importanza la visibilità dell'impianto dai luoghi di grande fruizione pubblica e la preminenza paesaggistica dell'impianto rispetto agli insediamenti circostanti.

2.4. QUALITÀ AMBIENTALE

Il territorio interessato dal sito e quello circostante è di tipo corrente, non di particolare pregio culturale né di significato antropologico. L'ambiente mostra un contesto prettamente agricolo e non presenta elementi di pregio, ad eccezione di qualche appezzamento di modesta entità di coltivazione pregiata.

2.5. QUALITÀ PAESAGGISTICA

Il paesaggio circostante il sito e il sito stesso sono caratterizzati da buona leggibilità e percezione di linearità. Tale circostanza suggerisce un approccio insediativo di inserimento, cioè di conferma e rafforzamento delle linee proprie con le nuove strutture del paesaggio.

3. REGIME ANEMOLOGICO

Nel merito della valutazione dell'indice di ventosità e delle conseguenti determinazioni sulla producibilità specifica ci si è avvalsi della Ricerca di Sistema svolta dal C.E.S.I. - Università degli Studi di Genova (Dipartimento di Fisica) nell'ambito del Progetto ENERIN. L'obiettivo della valutazione è stato quello di verificare i seguenti aspetti:

- valutare e confrontare le stime presunte con il limite minimo previsto dal Regolamento Regionale per quanto attiene alla ventosità delle aree dichiarate eleggibili (1.600 h/eq anno);
- valutare la producibilità stimata in termini di effettivo interesse da parte delle aziende di settore.

La velocità del vento cresce, con l'aumentare della quota secondo la legge logaritmica.

In base ai rilevamenti effettuati nella zona interessata, desunti i valori di rugosità del terreno e valutata la classe di stabilità atmosferica di Pasquill-Gifford di appartenenza, si è stimato il valore medio annuo della velocità del vento alla quota di 115 m, cioè in corrispondenza del mozzo degli aerogeneratori.

Calcolo delle ore di funzionamento dell'impianto

Sulla scorta di banche dati esistenti, utilizzando, per rappresentare i dati di vento la funzione di distribuzione di Weibull in modo da descrivere in forma compatta la distribuzione di frequenza della velocità. La funzione a due parametri di Weibull è matematicamente espressa da:

$$f(u) = \frac{k}{A} \left(\frac{u}{A}\right)^{k-1} exp\left[-\left(\frac{u}{A}\right)^{k}\right]$$

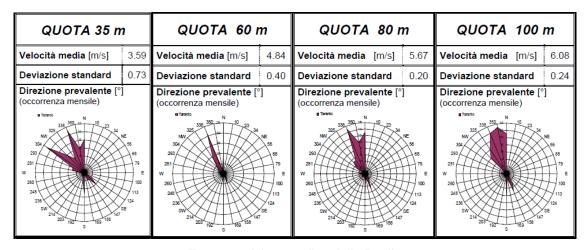
65125 - Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN

PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

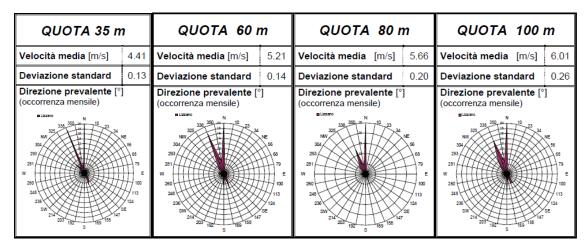
Nome del file:


dove f(u) è la frequenza di occorrenza della velocità u. A è il parametro di scala e k il parametro di forma, si ottiene sulla scorta dei dati a disposizione i seguenti andamenti nel dominio delle frequenze, della velocità del vento e della direzione di provenienza.

Le elaborazioni, le stime e le valutazioni in seguito descritte sono state effettuate con il metodo WasP (Wind Atlas Analysis and Application Program) per il calcolo della produzione. Il programma utilizza i dati anemologici per calcolare il vento geostrofico (vento indisturBTo) per una superficie di diversi km di raggio. Sovrapponendo tale modello del territorio, il programma valuta l'andamento della velocità media annua - e più in generale i parametri statistici della distribuzione della velocità media annua - in punti arbitrari di tale superficie, tenendo conto della sua natura orografica, della rugosità del terreno e dell'eventuale presenza di ostacoli al flusso del vento. Il campo di velocità fornito dal modello è tridimensionale e ciò consente di disporre in modo naturale anche del profilo della velocità media del vento a varie altezze dal suolo.

Pertanto il modello richiede i parametri del territorio quali, l'orografia, la rugosità ostacoli fisici al flusso e i parametri dinamici quali il campo di vento. I primi sono forniti sotto forma di modello territoriale i secondi sotto forma di distribuzione di Weibull.

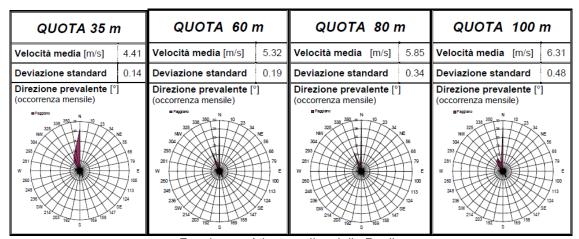
3.1. DIREZIONE PREVALENTE DEL VENTO


La variabilità della direzione del vento è fortemente influenzata dalla micrometeorologia del sito. Siti posti a bassa quota e nei pressi di fasce costiere risentono delle brezze di mare e di brezze di terra locali, che generano una rosa dei venti molto meno articolata rispetto a siti posti a quote intermedie, dove le brezze di pendio e di valle inducono una variazione nella direzione del vento rilevante.

Taranto - Atlante eolico della Puglia

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028_00



Lizzano - Atlante eolico della Puglia

65125 - Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028_00

Faggiano – Atlante eolico della Puglia

Figura 2 - Velocità media annua del vento fino a 100 m s.l.m.m - fonte Atlante Eolico

Via Caravaggio 125 65125 - Pescara (PE) **TAB-CIV-REL-028** 00

Nome del file:

Pescara (PE) LOCALITA' TORREVECCHIA _____

3.2. DENSITÀ DELL'ARIA

La densità media dell'aria è stata stimata dalla quota media di installazione degli aerogeneratori e dalla temperatura media annua della area di intervento. Data una quota di 100 m sul livello del mare ed una temperatura di 15°C la densità è 1.221kg/m³.

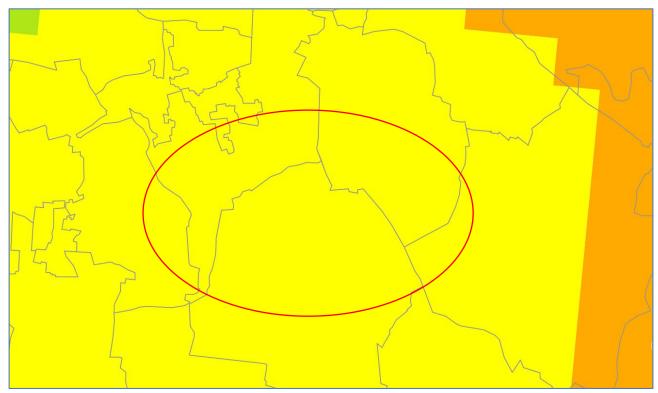


Figura 3 - velocità del vento a 100 m s.l.t.

3.3. CURVA DI POTENZA AEROGENERATORE

La turbina individuata per la costruzione dell'estensione del parco eolico è la SG 170-6,6 della Siemens Gamesa o similari, con potenza nominale di 6,6 MW ed altezza mozzo 115 m, diametro del rotore 170 m.

3.4. MODELLA RUGOSITÀ

L'area individuata per l'istallazione degli aerogeneratori è costituita da terreni destinati a coltivazioni di cereali. Le case sono sparse e di altezza inferiore ai 10 m. Per la classificazione del territorio si è fatto riferimento alla tabella seguente:

65125 - Pescara (PE)

Nome del file:

WIND ENERGY LIZZANO S.r.I. Via Caravaggio 125

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028_00

Terreno	Classe di Rugosità	$Z_0[m]$
- superfici d'acqua, superficie sabbiosa, nevosa, terreno nudo liscio, zone aeroportuali e stradali erba falciata	0	Da 10 ⁻⁴ a 10 ⁻²
- Zone di campagna con poche case sparse, alberi, case di campagna che consentono la vista dell'orizzonte	1	Da 3 10 ⁻² a 5 10 ⁻²
- Case che coprono la vista dell'orizzonte	2	Da 7 10 ⁻² a 10 ⁻¹
- Molti alberi e/o arbusti, fasce con effetto barriera, sobborghi	3	Da 3 10 ⁻¹ a 7 10 ⁻¹

3.5. MODELLAZIONE EFFETTO SCIA

La quantificazione dell'effetto scia, riduzione della velocità in corrispondenza del mozzo della turbina posteriore ad un'altra rispetto alla direzione di provenienza del vento, è stato fatto utilizzando il modello Jensen. La costante di decadimento della velocità è stata selezionata al valore standard di 0,075m. Tale modello permette di calcolare l'efficienza del parco tenendo conto della sovrapposizione della singola scia.

3.6. LAYOUT TURBINE

Coordinate aerogeneratori (UTM33 - WGS - 84)

TURBINA	E (UTM WGS84 33N) [m]	N (UTM WGS84 33N) [m]
WTG01	703809,506	4474168,947
WTG02	704673,863	4476077,405
WTG03	704056,006	4477428,563
WTG04	704568,764	4477174,465
WTG05	707535,295	4478550,189
WTG06	708255,619	4476583,487
WTG07	709207,854	4475921,003
WTG08	709917,071	4475104,931
WTG09	710527,742	4474417,888

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

Nome del file:

TAB-CIV-REL-028 00

3.7. CORREZIONE DELLE PERDITE

La produzione lorda di energia del parco eolico in oggetto non include le perdite che si verificano per la disponibilità della macchina, le perdite per il controllo (isteresi della velocità), le perdite elettriche nelle linee di distribuzione interne al parco fino al punto di misura. Si è tenuto conto di tali perdite considerando un fattore correttivo definito come:

$$E_{net} = J * E_{gross}$$

$$J = \prod_i L f_i$$

$$Lf_i = \left(1 - \frac{\langle E_i \rangle}{E_{gross}}\right)$$

Turbine

Sulla base dei dati raccolti in letteratura e dalle indicazioni fornite dal costruttore le perdite dovute alla disponibilità delle turbine possono essere stimate in 2.0%.

Sottostazione e linee interne

Sulla base dei dati raccolti in letteratura e dalle indicazioni fornite dai costruttori di sottostazioni di trasformazione e linee elettriche le perdite per indisponibilità di tali apparti è **0.5%**.

Rete di distribuzione

Si assume un valore del 1.0%

Perdite elettriche

Considerando il progetto delle linee elettriche e la distribuzione della velocità del vento le perdite dal punto di connessione in bassa tensione ed il punto di misura possono essere stimate in 0.5%, sulla base delle indicazioni derivanti dall'esperienza di gestione di altre centrali analoghe. Le perdite sulle linee, cavidotti interni, dalle turbine al punto di misura sono stimate essere il **2.0%**.

Sporcamento delle pale e ghiaccio

Sulla base delle indicazioni del sito, assenza di insediamenti industriali, e sulla possibilità di formazione di ghiaccio sulle pale si assume che tale perdita sia del **0.3%**.

Perdite dovute al controllo della turbina

L'algoritmo di controllo di fermo macchina per alta velocità di vento introduce una perdita di energia che non è considerata nella curva di potenza fornita dal costruttore.

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

. _...

Nome del file:

TAB-CIV-REL-028_00

L'ammontare di questa perdita è funzione sia dei parametri di controllo che della distribuzione della velocità del vento.

La valutazione di tale perdita può essere fatta considerando che:

$$< E = \int_0^\infty P(V) \cdot g \cdot p(V) dV$$

Dove:

P(V) è la curva di potenza della turbina

p (V) è la funzione di probabilità della velocità in sito

g è pari alle seguenti possibilità:

$$g = 0 \quad per V \leq V1$$

$$g = \frac{0.5 \cdot (V - V1)}{(V2 - V1)} \ per V1 < V \le V2$$

$$g = 0$$
 per $V < V2$

Con V1 è la velocità di restart dopo il fermo macchina per alta velocità (20m/s) e V2 è la velocità di fermo macchina. (25m/s)

In tal evento, mediante l'equazione 1, la perdita calcolata è minore dell'0.5%. In ogni caso si assume un valore par a **0.6%**.

Topografia

L'evidenza sperimentale suggerisce che il modello sottostima le variazioni di velocità all'interno del sito. Per stimare l'ammontare di tale perdita si è considerato un rendimento dovuto alla topografia

$$\Delta E = E \cdot \left| J_{topog} \right|$$

dove J topog include le perdite per variazione di velocità all'interno del sito e pari a 0,98.

Fermo preventivo

Per alcune turbine i costruttori prevedono il fermo preventivo quando il flusso proviene da alcuni settori al fine di proteggere le macchine. Nel caso del parco eolico sito nei comuni di Taranto (TA), Faggiano (TA), e Lizzano (TA) non sono state introdotte restrizioni, pertanto il fattore riduttivo e **0.0%**

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

Nome del file:

Wind Shear

La velocità del vento varia lungo l'asse del rotore determinando una perdita che può essere valutata con la seguente espressione:

$$\Delta E = E_{arass} \left(-0.0352_{2}^{2} + 0.1484_{2} - 0.156 \right) \quad per_{2} \le 2$$

$$\Delta E = 0 \ per_{-} > 2$$

$$Con_{\underline{}} = \frac{h_{hub} - D}{R}$$

Dove hhub è l'altezza del mozzo delle turbine, D è l'altezza massima Z₀ corrispondente agli elementi di rugosità, R è il raggio del rotore.

In questo caso la perdita sarà pari a 0.0%.

Crescita degli alberi

L'effetto della crescita degli alberi è modellizzata da un effettivo aumento dell'altezza di ostacoli.

L'ammontare della perdita può essere stimata dalla seguente espressione:

$$\Delta E = E_{grass} \left(4.04 - 0.29 \, V_{ref} \right) \frac{V < h}{(h_{hub} - 0.65h) \cdot \ln(\frac{h_{hub}}{h - 0.65})}$$

Dove:

 $\Delta h = \dot{e}$ l'aumento di altezza degli alberi in un anno,

h = è l'altezza iniziale degli alberi

 α = è un fattore che converte la crescita annuale in una media annuale su 10 anni e può essere calcolata come:

$$V = \frac{(10-0.5m)m}{10}$$
 con $m = min(10, \frac{h_{max}-h}{< h})$

Fermo macchina per alta velocità

La probabilità di fremo per alta velocità del vento è già determinata dalla probabilità cumulata della curva di Weibull ed estrapolata all'altezza del mozzo.

65125 - Pescara (PE)

WIND ENERGY LIZZANO S.r.I.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

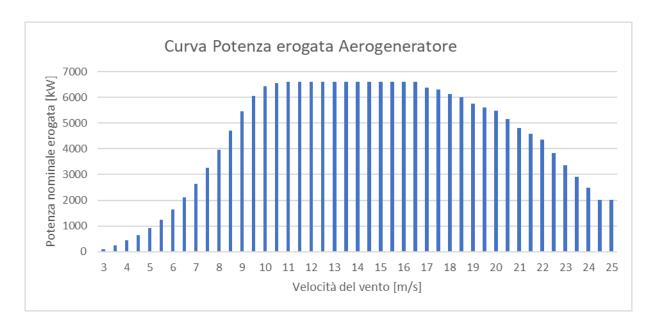
Nome del file:

TAB-CIV-REL-028_00

3.8. RIEPILOGO DELLE PERDITE

Tipologie perdite	Origine	Perdita (%) DE/E	Fattore correttivo delle perdite (Lfi)
Disponibilità (turbine)	Stima	2	0.98
Disponibilità (sottostazione e linee interne)	Stima	0.5	0.995
Disponibilità (Rete di distribuzione)	Stima	1	0.99
Elettriche (in bassa tensione)	Stima	0.5	0.995
Elettriche (nelle linee interne)	Stima	2	0.98
Turbolenza (influenza sulla curva di potenza)	Stima	0.5	0.995
Sporcamento pale (ghiaccio + degrado)	Stima	0.3	0.997
Controllo (isteresi per alta velocità)	Stima	0.6	0.994
Fermo per alta velocità	Calcolato	0	1
Fermo preventivo	Stima	0	1
Topografia	Stima	0	0.98
Wind Shear	Stima	2	1
Crescita degli alberi	Stima	0	1
	1	Prodotto	0.9096

4. PRODUTTIVITÀ E CALCOLO DELLE ORE EQUIVALENTI


La seguente sezione mostra il sommario dei risultati basati, sulle specifiche statistiche di Weibull, sui dati metereologici, sui dati anemometrici. I calcoli sono stati eseguiti con i metodi in precedenza descritti tenendo in conto anche delle perdite.

N° Generatori Previsti	9
Potenza Nominale	6,6 MW
Altezza Torre	115 m
Diametro Rotore	170 m

65125 - Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028_00

I valori della potenza in uscita e del coefficiente di spinta garantiti dal costruttore in funzione della velocità media del vento all'altezza del mozzo e per una densità dell'aria pari a 1,225 Kg/m3 sono i seguenti:

Velocità del		
vento	Potenza	Coef. Spinta
[m\s]	[KW]	[Ct]
3	91	0,28
3,5	243	0,37
4	429	0,41
4,5	649	0,44
5	918	0,45
5,5	1245	0,45
6	1639	0,46
6,5	2102	0,46
7	2644	0,46
7,5	3262	0,46
8	3954	0,46
8,5	4706	0,45
9	5450	0,44
9,5	6072	0,42
10	6445	0,40
10,5	6569	0,37
11	6598	0,35
11,5	6600	0,32
12	6600	0,29
12,5	6600	0,26
13	6600	0,23
13,5	6600	0,21
14	6600	0,18

	A Srl

14,5	6600	0,17
15	6600	0,15
15,5	6600	0,14
16	6600	0,12
16,5	6600	0,11
17	6380	0,10
17,5	6315	0,09
18	6135	0,09
18,5	6020	0,08
19	5756	0,07
19,5	5619	0,06
20	5481	0,06
20,5	5167	0,05
21	4800	0,05
21,5	4586	0,04
22	4369	0,04
22,5	3836	0,03
23	3359	0,03
23,5	2914	0,02
24	2489	0,02
24,5	2013	0,02
25	2013	0,02

Poiché la potenza estraibile da un flusso eolico è direttamente proporzionale alla densità dell'aria, nel caso in cui essa, nelle aree relative al sito in questione, si scosti dal suddetto valore standard è necessario correggere le curve di potenza e del coefficiente di spinta in riferimento alla densità realmente rilevata.

Il Valore della distribuzione della densità di Weibull così calcolato [F(u) = 90,96 %], si traduce in un funzionamento annuo dell'impianto pari a:

$$\frac{\textit{Energia prodotta/anno}}{\textit{Potenza Nominale Aerogeneratore}} = \frac{17.160}{6,60} = 2.950 \, (\text{ore equivalenti})$$

In relazione alle caratteristiche degli aerogeneratori e dei dati anemometrici si prevede una produzione annua totale per il parco eolico, al netto delle perdite elettriche e dell'accuratezza delle stime anemologiche e anemometriche effettuate.

In funzione della velocità media annua stimata e in base alla resa dell'aerogeneratore previsto in progetto, si è desunta la produttività energetica media degli aerogeneratori, pari a **17.160 MWh/anno** con una probabilità del 50% di essere superata.

Committente:

WIND ENERGY LIZZANO S.r.I.

Via Caravaggio 125 65125 - Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEI COMUNI DI TARANTO (TA), FAGGIANO (TA), LIZZANO (TA) IN LOCALITA' TORREVECCHIA

TAB-CIV-REL-028 00

Nome del file:

5. Conclusioni

La presente relazione riporta i risultati dell'analisi e validazione dei dati di vento per il sito di Taranto, Lizzano e Faggiano. Con i risultati ottenuti si è proceduto a valutare la produzione attesa annua sulla base del layout e del tipo di aerogeneratore ipotizzati.

Tale stima di produzione annua netta rappresenta la $P_{50\%}$, ossia il valor medio della distribuzione statistica della produzione annua. Lo scarto quadratico medio di tale distribuzione è dato dal valore dell'incertezza totale calcolato al precedente paragrafo. Sulla base di semplici considerazioni di carattere statistico siamo in grado di valutare il valore di $P_{75\%}$, vale a dire la produzione attesa che presenta una probabilità del 75% di essere superata nel corso dell'anno.

Viene di seguito riportata la tabella riepilogativa indicante per ogni singolo aerogeneratore la producibilità al netto delle perdite per effetto scia e la P_{75%} al netto delle perdite sistematiche e dei parametri di incertezza sopraelencati.

La producibilità media attesa a P_{75%} è 2.390 ore equivalenti mentre a P_{50%} è 2.600 ore equivalenti.