

COMUNE DI CASACALENDA

COMUNE DI MORRONE DEL SANNIO

COMUNE DI SANT'ELIA A PIANISI

COMUNE DI RIPABOTTONI

Committente:

RWE RENEWABLES ITALIA S.R.L. via Andrea Doria, 41/G - 00192 Roma P.IVA/C.F. 06400370968 PEC: rwerenewablesitaliasrl@legalmail.it

Titolo del Progetto:

PARCO EOLICO "SANT'ELIA"

PROGETTO DEFINITIVO				N° Documen	to: PESE_OE_2	2	
ID PROGETTO	PESE	DISCIPLINA:	PD	TIPOLOGIA:	R	FORMATO:	A4

Elaborato:

Relazione tecnica opere elettriche utenza

FOGLIO: 1 di 1 SCALA: - NOME FILE: PESE_OE_2_Relazione tecnica opere elettriche utenza.pdf

Progettisti:

Progettazione:

dott.ing. Raffaele Ciotola

Rev:	Data Revisione:	Descrizione Revisione	Redatto	Controllato	Approvato
00	12/04/2023	PRIMA EMISSIONE	New. Dev.	RWE	RWE

Sommario

1	OGGETT	O	2
2	SCOPO	2	
3	NORMA	2	
4	DESCRIZ	ZIONE DEGLI IMPIANTI ELETTRICI	5
5	LINEE IN	NTERRATE 36 kV	5
	5.1 Ca	ratteristiche dei cavi	5
	5.2 Pro	ofondità di posa e disposizione dei cavi	6
	5.3 Re	ete di terra	6
	5.4 Ca	idute di tensione e perdite di potenza	6
6	CABINA	DI CONSEGNA	7
	6.1.1	Protezioni di rete sulla sbarra 36 kV dell'Utente	
	6.1.2	Reattori shunt	
	6.1.3	Tensioni di esercizio (distanze minime)	10
	6.1.4	Tipo di celle	10
	6.1.5	Caratteristiche dell'apparecchiatura	11
	6.1.6	Servizi ausiliari	12
	6.1.7	Servizi ausiliari in c.a.	12
	6.1.8	Servizi ausiliari in c.c.	13
	6.2 Mi	isura energia	14
	6.2.1	Misure di energia (fatturazione)	14
	6.2.2	Ulteriori apparati di misura	14
	6.3 Te	lecontrollo e telecominicazioni	14
	6.4 Op	pere civili	15
	6.4.1	Piattaforma	15
	6.4.2	Fondazioni	15
	6.4.3	Drenaggio di acqua pluviale	15
	6.4.4	Canalizzazioni elettriche	15
	6.5 Ed	lifici di Controllo	15
	6.6 Me	essa a terra	15
	6.7 Ca	richi elettrici	17
	6.7.1	Massima corrente di impiego	17
7	CIRCUIT	TO DI CONSEGNA A 36 kV	18

RELAZIONE TECNICA OPERE ELETTRICHE

1 OGGETTO

La società RWE Renewables Italia S.R.L. intende realizzare nei comuni di Sant'Elia a Pianisi (CB), Ripabottoni (CB), Casacalenda (CB) e Morrone del Sannio (CB) un impianto eolico costituito da 8 aerogeneratori da 6,6 MW, con una potenza in immissione complessiva di 52,8 MW. L'impianto verrà nominato "SANT'ELIA".

2 SCOPO

Scopo del presente documento è la descrizione ed il calcolo degli impianti elettrici che convogliano l'energia prodotta dall'impianto eolico nella rete di AT di proprietà della società TERNA – Rete Elettrica Nazionale SpA (TERNA).

Come indicato nel preventivo di connessione TERNA Cod. Prat. 202200302 del 24/06/2022 la connessione alla rete AT avverrà per mezzo di un collegamento in antenna a 36 kV ad una nuova stazione Elettrica (SE) di trasformazione a 150/36 kV della RTN, da inserire in entra-esce sulla linea RTN a 150 kV "Morrone – Larino", previa realizzazione di:

- un nuovo elettrodotto a 150 kV della RTN di collegamento tra la nuova SE 150/36 kV suddetta ed un futuro ampliamento della Stazione Elettrica della RTN di Larino;
- un nuovo elettrodotto a 150 kV della RTN di collegamento tra la nuova SE 150/36 kV suddetta ed un futuro ampliamento della Stazione Elettrica della RTN di Rotello.

Le opere relative ai nuovi elettrodotti sono escluse dallo scopo della presente relazione.

3 NORMATIVA DI RIFERIMENTO

- R.D. 11 Dicembre 1933 n° 1775 "Testo Unico delle disposizioni di Legge sulle Acque e sugli Impianti Elettrici",
- Legge 22/02/01 n° 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", (G.U. n° 55 del 7 marzo 2001),
- DPCM 08/07/03, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", (GU n° 200 del 29/08/03),
- DPCM 08/06/01 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità",
- DM 21/03/88 "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni,

- Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04 in merito ai criteri
 per la determinazione della fascia di rispetto,
- DM 29/05/08 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti",
- Legge 28/03/86 n. 339 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne",
- D.M.LL.PP 21/03/88 n° 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e
 l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP 16/01/91 n° 1260 "Aggiornamento delle norme tecniche per la disciplina della costruzione e l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP. 05/08/98 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche esterne",
- Artt. 95 e 97 del D.Lgs n° 259 del 01/08/03,
- Circola Ministeriale n. DCST/3/2/7900/42285/2940 del 18/02/82 "Protezione delle linee di telecomunicazione per perturbazioni esterne di natura elettrica – Aggiornamento delle Circolare del Mini. P.T. LCI/43505/3200 del 08/01/68,
- Circolare "Prescrizione per gli impianti di telecomunicazione allacciati alla rete pubblica, installati nelle cabine, stazioni e centrali elettriche AT", trasmessa con nota Ministeriale n. LCI/U2/2/71571/SI del 13/03/73,
- D.lgs 16/03/99, n. 79 Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell'energia elettrica,
- D.lgs 387/03 Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità,
- DPR 151/11 Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione incendi, a norma dell'articolo 49 comma 4-quater, decreto-legge 31 maggio 2010, n. 78, convertito con modificazioni, dalla legge 30 luglio 2010, n. 122,
- CEI 7-6 Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici,
- CEI 99-2 Impianti elettrici con tensione superiore a 1 kV in c.a Parte 1: Prescrizioni comuni,
- CEI 99-3 Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a.,
- CEI 11-4 Esecuzione delle linee elettriche aeree esterne,
- CEI 99-27 Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica: Linee in cavo,
- CEI 11-25 Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata,

- CEI 11-27 Lavori su impianti elettrici,
- CEI EN 50110-1-2 esercizio degli impianti elettrici,
- CEI 33-2 Condensatori di accoppiamento e divisori capacitivi,
- CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V,
- CEI 57-2 Bobine di sbarramento per sistemi a corrente alternata,
- CEI 57-3 Dispositivi di accoppiamento per impianti ad onde convogliate,
- CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione,
- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua,
- CEI 11-32 Impianti di produzione di energia elettrica connessi a sistemi di III categoria,
- CEI 11-32 V1 Impianti di produzione eolica,
- CEI 103-6 fascicolo 4091 Edizione agosto 1997, Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto,
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne",
- Codice di Rete TERNA e suoi allegati.

4 DESCRIZIONE DEGLI IMPIANTI ELETTRICI

Gli impianti elettrici sono costituiti da:

- IMPIANTO EOLICO: costituito da n°8 aerogeneratori della potenza unitaria di 6,6 MW che convertono l'energia cinetica del vento in energia elettrica per mezzo di un generatore elettrico. Un trasformatore elevatore 0,690/36 kV porta la tensione al valore di trasmissione interno dell'impianto;
- linee interrate in AT a 36 kV: convogliano la produzione elettrica dell'impianto eolico alla Cabina di Consegna;
- Cabina di Consegna: raccoglie le linee in AT a 36 kV per la successiva consegna alla rete AT. In questa cabina vengono posizionati gli apparati di protezione e misura dell'energia prodotta;
- Cavidotto di consegna a 36 kV: cavo di collegamento a 36 kV tra la Cabina di Consegna e la futura Cabina di Consegna di Trasformazione (SE) della RTN 150/36/36 kV;

5 LINEE INTERRATE 36 kV

La rete di alta tensione a 36 kV sarà composta da n° 3 circuiti con posa completamente interrata. Il tracciato planimetrico della rete è mostrato nelle tavole allegate.

Nelle tavole allegate vengono anche riportati lo schema unifilare dove con indicazione della lunghezza e della sezione corrispondente di ciascuna terna di cavo e viene descritta la modalità e le caratteristiche di posa interrata.

5.1 Caratteristiche dei cavi

La rete a 36 kV sarà realizzata per mezzo di cavi unipolari del tipo ARP1H5E (o equivalente) con conduttore in alluminio. Le caratteristiche elettriche di portata e resistenza dei cavi in alluminio sono riportate nella seguente tabella (portata valutata per posa interrata a 1,2 m di profondità, temperatura del terreno di 20° C e resistività termica del terreno di 1 K m /W):

Sezione	Portata	Resistenza
[mm²]	[A]	[Ohm/km]
150	328	0,262
400	563	0,102
630	735	0,061

Caratteristiche elettriche cavo 36 kV

RELAZIONE TECNICA OPERE ELETTRICHE

5.2 Profondità di posa e disposizione dei cavi

I cavi verranno posati con una protezione meccanica (lastra o tegolo) ed un nastro segnalatore. Su terreni pubblici e su strade pubbliche la profondità di posa dovrà essere comunque non inferiore a 1,2 m previa autorizzazione della Provincia. I cavi verranno posati in una trincea scavata a sezione obbligata. Mantenendo valide le ipotesi di temperatura e resistività del terreno, i valori di portata indicati nel precedente paragrafo vanno moltiplicati per dei coefficienti di correzione che tengono conto della profondità di posa di progetto, del numero di cavi presenti in ciascuna trincea e della ciclicità di utilizzo dei cavi.

Dove necessario si dovrà provvedere alla posa indiretta dei cavi in tubi, condotti o cavedi. Per i condotti e i cunicoli, essendo manufatti edili resistenti non è richiesta una profondità minima di posa né una protezione meccanica supplementare. Lo stesso dicasi per i tubi 450 o 750, mentre i tubi 250 devono essere posati almeno a 0,6 m con una protezione meccanica.

In questi casi si applicheranno i seguenti coefficienti:

- lunghezza ≤ 15m: nessun coefficiente riduttivo,
- lunghezza ≥ 15 m: 0,8 m,
- Si installerà una terna per tubo che dovrà avere un diametro doppio di quello apparente della terna di cavi.

Nella stessa trincea verranno posati i cavi di energia, la fibra ottica necessaria per la comunicazione e la corda di terra.

5.3 Rete di terra

La rete di terra sarà costituita dai seguenti elementi:

- · Rete di terra dell'impianto eolico,
- la corda di collegamento tra ciascun anello e la Cabina di Consegna (posata nella stessa trincea dei cavi di potenza),
- maglia di terra della Cabina di Consegna.

La rete sarà formata da un conduttore nudo in rame da 50 mm 2 e si assumerà un valore di resistività ρ del terreno pari a 150 Ω m.

5.4 Cadute di tensione e perdite di potenza

Sulla base dei calcoli svolti e di seguito riportati, sono stati ottenuti i seguenti risultati:

• Cadute di tensione massima nel circuito 3: 2,30%

Perdite totali rete AT:
 1,1 % (568 kW)

CADUTE DI TENSIONE E PERDITE DI POTENZA

CIRCUITO 1								
TRATTO	P (kW)	Lungh. (m)	I (A)	COEF.	CABLE	Iz (A)	e total (%)	P.PERD (kW)
PESE.01 - PESE.03	6600	1350	111	0,80	150	262	1,37	13
PESE.03 - Cab. Cons.	13200	7360	223	0,60	400	338	1,15	112
							·	125

CIRCUITO 2								
TRATTO	P [kW]	Lungh.	lb [A]	COEF.	CAVO	Iz (A)	e total	Perdite
IRATIO	P [KVV]	(m)	ID [A]	RID.	(mm2)	12 (A)	(%)	(kW)
PESE.04 - PESE.02	6600	3000	111	0,60	150	197	1,53	29
PESE.05 - PESE.02	6600	3200	111	0,60	150	197	1,56	31
WTG02 - Cab. Cons.	19800	6610	334	0,60	630	441	1,06	135
								196

CIRCUITO 3								
TRATTO	P [kW]	Lungh.	lb [A]	COEF.	CAVO	Iz (A)	e total	Perdite
IIVATIO		(m)	in [H]	RID.	(mm2)	12 (A)	(%)	(kW)
PESE.08 - PESE.07	6600	4340	111	0,80	150	262	2,30	42
PESE.07 - PESE.06	13200	2110	223	0,80	400	450	1,62	32
PESE.06 - Cab. Cons.	19800	8100	334	0,60	630	441	1,29	166
								240

CIRCUITO DI CONSEGNA								
TRATTO	P [kW]	Lungh. (m)	lb [A]	COEF. RID.	CAVO (mm2)	Iz (A)	e total (%)	Perdite (kW)
Cab. Cons SE Terna	52800	100	891	0,80	1260	1176	0,02	7
								7

6 CABINA DI CONSEGNA

La Cabina di Consegna è necessaria per raccogliere le linee a 36 kV provenienti dall'impianto eolico e permettere l'immissione dell'energia prodotta nella rete di TERNA.

La corrente massima di esercizio in AT è di 891 A, corrispondente al regime di piena potenza dell'impianto eolico, inferiore alle correnti nominali degli apparati e dei conduttori utilizzati.

La Cabina di Consegna è dotata di interruttore sulla linea in arrivo (Interruttore di Interfaccia) per realizzare la separazione funzionale fra le attività interne all'impianto, di competenza del titolare dell'Utente, e quelle esterne ad esso. Ogni linea di sottocampo è dotata di proprio interruttore e di sistema di protezione in grado di separarla dal resto dell'impianto in caso di guasto. Gli interruttori a 36 kV richiesti sono a comando tripolare con potere di interruzione delle correnti di cortocircuito \geq 25 kA e capacità di interruzione della corrente capacitiva a vuoto \geq 50 A.

Il sistema è costituito da:

- N°1 cella con interruttore automatico e sezionatore con funzioni di protezione della linea di consegna a TERNA (Interruttore di Interfaccia),
- N°4 celle con interruttore automatico e sezionatore con funzioni di protezione della rete a 36 kV dell'impianto eolico (interruttori di sottocampo) la reattanza shunt,
- N°1 celle di misura (opzionale),
- N°1 cella con interruttore automatico e sezionatore con funzioni di protezione del trasformatore dei servizi ausiliari.

All'interno dell'edificio tecnico saranno installati inoltre gli apparati di misura, comando, controllo e protezione necessari per la corretta funzionalità dell'impianto.

Come dati di progetto si adottano i seguenti valori:

-	Tensione nominale:	36 kV
-	Tensione massima:	40,5 kV
-	Livello di isolamento	
	-Tensione a impulso atmosferico	185 kV
	-Tensione a frequenza industriale	95 kV
_	Corrente nominale di cortocircuito:	≥ 25 kA
_	Tempo di estinzione del guasto:	0,5 s

Nel sistema a 36 kV all'interno della Cabina di Consegna si utilizzano cavi isolati e segregati in apposite celle prefabbricate, collaudate e certificate dal Costruttore secondo procedure a norma di legge per il livello di isolamento indicato.

6.1.1 Protezioni di rete sulla sbarra 36 kV dell'Utente

Le tarature sono stabilite dal Gestore in accordo al Codice di Rete. In relazione alle esigenze del sistema elettrico a cui è connessa la Centrale Eolica, le tarature potranno essere parzialmente discordanti da quelle indicate nelle tabelle successive.

Le protezioni sulla sbarra 36 kV sono costituite da:

- 1) Protezione di minima tensione rete (27Y)
- 2) Protezione di minima tensione rete (27Δ)
- 3) Protezione di massima tensione rete (59)
- 4) Protezione di minima frequenza rete (81<)
- 5) Protezione di massima frequenza rete (81>)
- 6) Protezione di massima tensione omopolare rete (59N)

Per la funzione protettiva 1) è richiesta l'alimentazione dei circuiti voltmetrici con tensioni stellate. Per le funzioni 2) ÷ 5) è richiesta l'alimentazione dei circuiti voltmetrici con tensioni concatenate. Per la 6) è richiesta un'alimentazione voltmetrica da TV con connessione a triangolo aperto, oppure, per relè in grado di ricavare la tensione omopolare al loro interno, dalle tensioni di fase fornite dai TV con collegamento a stella. Le funzioni in tensione sopra descritte possono essere implementate all'interno di un unico apparato multifunzione adducendo una unica terna di tensioni stellate ed affidando all'apparato il compito di ricavare la terna di tensioni concatenate e la tensione omopolare. Lo stesso risultato può essere conseguito con l'utilizzo di due apparati distinti uno alimentato con tensioni stellate e l'altro con tensioni concatenate.

L'intervento delle protezioni citate deve comandare l'apertura dell'Interruttore di Interfaccia 521 del collegamento con la Stazione Terna.

6.1.2 Reattori shunt

Sono stati previsti due tipologie di reattori shunt:

- a) Reattori shunt dedicati alla compensazione del solo collegamento, al fine di rispettare i vincoli
 costruttivi degli interruttori sulle correnti capacitive massime a vuoto interrompibili. Questi reattori
 sono solidali con il collegamento in cavo con la stazione Terna e le protezioni vanno ad agire sugli
 interruttori ai due estremi;
- b) Reattori shunt utilizzati per il rispetto del vincolo sulla potenza reattiva scambiata con la RTN nel Punto di Connessione. Questi reattori sono connessi alle sbarre 36 kV della stazione Utente e le relative protezioni vanno ad operare sul proprio interruttore (52RS).

6.1.3 Tensioni di esercizio (distanze minime)

	CEI 99-2	Fissata in questo progetto
Distanza minima fase- terra in aria	0,35 m	0,5 m
Distanza minima fase-fase in aria	0,35 m	0,5 m

Tab. 4: Verifica distanze minime (Vn = 36 kV, V $1,2/50 \mu s = 185 kV$)

6.1.4 Tipo di celle

Le caratteristiche strutturali di ogni cella sono analoghe, variando unicamente la apparecchiatura installata, compatibilmente alle necessità relative ad ogni servizio.

Le apparecchiature con le quali sarà dotata ogni tipo di cella è la seguente:

Celle dei trasformatori

- Sbarra da 2000 A
- Derivazione a 2000 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente
- 3 trasformatori di tensione

Cella di linea

- Sbarra da 2000 A
- Derivazione a 1250 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente
- 3 trasformatori di tensione

Oltre alle apparecchiature menzionate, si dispone di 3 trasformatori di tensione nelle sbarre per poter realizzare misure di tensione e potenza.

RELAZIONE TECNICA OPERE ELETTRICHE

Da punto di vista della struttura, queste celle saranno del tipo incapsulato metallico, isolamento in SF₆, per installazione all'interno.

6.1.5 Caratteristiche dell'apparecchiatura

Le caratteristiche elettriche dell'apparecchiatura descritta per ciascuna cella sono le seguenti:

6.1.5.1 Interruttori

 Tensione a impulso atmosferico Tensione a frequenza industriale Tensione a frequenza industriale Intensità massime: Cella di consegna Celle di linea Intensità di cortocircuito:	- 16	ensione massima	40,5 kV
- Intensità massime:	— Те	ensione a impulso atmosferico	185 kV
- Cella di consegna	— Те	ensione a frequenza industriale	95 kV
- Celle di linea	– In	tensità massime:	
 Intensità di cortocircuito: Cella di consegna 25 kA Celle di linea In SF6 6.1.5.2 Trasformatori di corrente Tensione massima 40,5 kV Rapporti di trasformazione: Cella del trasformatore 1600 / 5-5-5 A Celle di linea (linee 1, 2, 3, Shunt) 500 / 5-5 A Potenza e classi di precisione: Cella del trasformatore: Primo nucleo (misura) 15 VA; 0,5 		- Cella di consegna	2.000 A
- Cella di consegna		- Celle di linea	1.250 A
- Celle di linea	– In	tensità di cortocircuito:	
- Isolamento		- Cella di consegna	≥ 25 kA
6.1.5.2 Trasformatori di corrente - Tensione massima		- Celle di linea	25 kA
 Tensione massima	– Is	olamento	in SF6
 Tensione massima			
 Rapporti di trasformazione: Cella del trasformatore	6.1.5.2 T	rasformatori di corrente	
- Cella del trasformatore	– Te	ensione massima	40,5 kV
- Celle di linea (linee 1, 2, 3, Shunt)	– Ra	apporti di trasformazione:	
 Potenza e classi di precisione: Cella del trasformatore: Primo nucleo (misura)			
- Cella del trasformatore: Primo nucleo (misura)		- Cella del trasformatore	1600 / 5-5-5 A
Primo nucleo (misura)			·
	– Po	- Celle di linea (linee 1, 2, 3, Shunt)	·
 Secondo nucleo (protezioni)	– Po	- Celle di linea (linee 1, 2, 3, Shunt) otenza e classi di precisione:	·
	– Po	- Celle di linea (linee 1, 2, 3, Shunt) otenza e classi di precisione: - Cella del trasformatore:	500 / 5-5 A
■ Terzo nucleo (protezioni)	– Po	- Celle di linea (linee 1, 2, 3, Shunt)	500 / 5-5 A
- Celle di linea:	– Po	- Celle di linea (linee 1, 2, 3, Shunt)	500 / 5-5 A
Primo nucleo (misura)	– Po	- Celle di linea (linee 1, 2, 3, Shunt) ptenza e classi di precisione: - Cella del trasformatore: Primo nucleo (misura)	500 / 5-5 A
■ Secondo nucleo (protezioni) 5 VA: 5P20	– Po	- Celle di linea (linee 1, 2, 3, Shunt) ptenza e classi di precisione: - Cella del trasformatore: Primo nucleo (misura) Secondo nucleo (protezioni) Terzo nucleo (protezioni) - Celle di linea:	
3ccondo nacico (protezioni) 3 vA, 31 20	— Po	- Celle di linea (linee 1, 2, 3, Shunt) ptenza e classi di precisione: - Cella del trasformatore: Primo nucleo (misura) Secondo nucleo (protezioni) Terzo nucleo (protezioni) - Celle di linea:	

6.1.5.3 Trasformatori di tensione delle sbarre

-	Tensione massima	40,5 kV
_	Rapporto di trasformazione	36.000:23/100:23/100:3 V
_	Potenza e classe di precisione:	
	Primo nucleo (misura)	100 VA; 0,5
	Secondo nucleo (protezioni)	50 VA; 3P

6.1.5.4 Sezionatori tripolari

I sezionatori delle celle saranno tripolari con tre posizioni (sbarre, disinserito, messa a terra) con azionamento manuale per manovre improvvise e blocco meccanico e elettrico con l'interruttore.

-	Tensione massima	
-	Tensione a impulso atmosferico (1,2/502s)	
_	Tensione a frequenza industriale	
_	Corrente massima:	
	- Cella di consegna	
	- Cella di linea	
_	Corrente di cortocircuito	
_	Isolamentoin SF6	

6.1.6 Servizi ausiliari

I servizi ausiliari (ss.aa.) della Cabina di Consegna sono costituiti da due sistemi di tensione (c.a. e c.c.) necessari per il corretto funzionamento. Si installeranno sistemi di alimentazione in corrente alternata e in corrente continua per alimentare i distinti componenti di controllo, protezione e misura.

I servizi di corrente alternata e continua saranno alloggiati in diversi armadi destinati a realizzare le rispettive distribuzioni.

6.1.7 Servizi ausiliari in c.a.

6.1.7.1 Trasformatori di servizi ausiliari

Per disporre di questi servizi è prevista l'installazione di un trasformatore esterno da 100 kVA.

Le caratteristiche sono le seguenti:

- Trifase isolato in olio
- Potenza nominale100 kVA

•	Tensioni primaria	36±2,5% kV
•	Tensione secondaria (trifase)	0,420 kV
•	Connessioni	Zig-zag / Stella
•	Gruppo di connessione	7Nvn11

6.1.7.2 Gruppo elettrogeno

La Cabina di Consegna è dotata di un gruppo elettrogeno fisso che è disponibile come riserva in caso di guasto del trasformatore di servizi ausiliari o fuori servizio della linea di consegna.

6.1.8 Servizi ausiliari in c.c.

L'alimentazione dei servizi in corrente continua é assicurata da un idoneo sistema raddrizzatore/batterie a 125 Vcc. Le caratteristiche di raddrizzatore e batterie sono:

Raddrizzatore:

Ingresso (c.a.): 3 x 400 / 230 Vca

Uscita (c.c.): 125 V_{cc} +10%, -15%

Corrente nominale: 40 A

Batteria:

- Capacità: 120 Ah

Autonomia minima (guasto c.a.): 8 h

Le apparecchiature alimentate alla tensione di $110 \, V_{cc}$ funzioneranno ininterrottamente. Il processo di carica delle batterie sarà gestito automaticamente, senza la necessità di alcun tipo di vigilanza o controllo, quindi più sicuro per il mantenimento di un servizio permanente.

Le apparecchiature saranno idonee a funzionare con temperature interne all'edificio comprese tra 10°C e 40°C.

In condizioni di normale funzionamento (corrente alternata presente), il raddrizzatore fornirà sia la corrente di funzionamento degli ausiliari in corrente continua, sia la corrente di mantenimento o di carica necessaria per la batteria.

In assenza di corrente alternata di alimentazione, la batteria deve essere in grado di alimentare i circuiti ausiliari in corrente continua per il tempo prefissato.

RELAZIONE TECNICA OPERE ELETTRICHE

6.2 Misura energia

6.2.1 Misure di energia (fatturazione)

L'energia esportata e importata del parco si misurerà a valle della cella di consegna.

La misura sarà effettuata tramite i tre trasformatori di tensione induttivi dedicati e i tre trasformatori di corrente (dai secondari di classe di precisione 0,2).

Caratteristiche degli apparati di misura:

1. Trasformatori di tensione: 36: 23/0,100: 23 kV; 50 VA cl 0,2

2. Trasformatori di corrente:

800/5-5-5-5 A

30VA cl 0,2s (sul secondario di fatturazione)

3. Contatore-registratore elettronico:

Tipo: contatore bidirezionale,

Precisione di misura: Energia attiva (classe 0.2) / Energia reattiva (classe 0.5)

Entrate: 3 x 100: 23 V e 3 x 5 A

N° Registri: 6 (Attiva +, Attiva -, Reattiva Induttiva +, Reattiva Induttiva -, Reattiva Capacitiva +, Reattiva

Capacitiva -)

Comunicazioni: via modem GSM, incorporato nel contatore-registratore.

6.2.2 Ulteriori apparati di misura

Si disporrà delle seguenti misure nelle RTU.

Celle 36 kV

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza (cos 📵)

6.3 Telecontrollo e telecominicazioni

La RTU sarà connessa via porta di comunicazione RS232 con il computer situato nella sala di controllo. Le informazioni della RTU, unitamente a quelle provenienti dagli aerogeneratori e dalle torri meteorologiche, saranno elaborate con un programma informatico al fine di permettere il controllo in remoto del parco e della Cabina di Consegna.

RELAZIONE TECNICA OPERE ELETTRICHE

6.4 Opere civili

Le opere civili per la costruzione della Cabina di Consegna sono di seguito descritte.

6.4.1 Piattaforma

I lavori riguarderanno l'intera area della Cabina di Consegna e consisteranno nell'eliminazione del mantello vegetale, scavo, riempimento e compattamento fino ad arrivare alla quota di appianamento prevista.

6.4.2 Fondazioni

Si realizzeranno le fondazioni necessarie alla stabilità delle apparecchiature a 36 kV.

6.4.3 Drenaggio di acqua pluviale

Il drenaggio di acqua pluviale sarà realizzato tramite una rete di raccolta formata da tubature drenanti che canalizzeranno l'acqua attraverso un collettore verso l'esterno, orientandosi verso le cunette vicine alla Cabina di Consegna.

6.4.4 Canalizzazioni elettriche

Si costruiranno le canalizzazioni elettriche necessarie alla posa dei cavi di potenza e controllo. Queste canalizzazioni saranno formate da solchi, archetti o tubi, per i quali passeranno i cavi di controllo necessari al corretto controllo e funzionamento dei distinti elementi dell'impianto.

6.5 Edifici di Controllo

L'edificio di controllo Cabina di Consegna sarà composto dai seguenti vani:

- Locale celle AT,
- Locale BT e trafo AT/BT,
- Locale Gruppo Elettrogeno,
- Locale comando e controllo,
- Locale servizi igienici,
- Magazzino.

6.6 Messa a terra

Descrizione

La Cabina di Consegna sarà dotata di una rete di dispersione interrata a 0,7 m di profondità.

RELAZIONE TECNICA OPERE ELETTRICHE

Messa a terra di Servizio

Si connetteranno direttamente a terra i seguenti elementi, che si considerano messa a terra di servizio:

- I neutri dei trasformatori di potenza e misura
- Le prese di terra dei sezionatori di messa a terra
- Le prese di terra degli scaricatori di sovratensione
- I cavi di terra delle linee che entrano nella Cabina di Consegna.

Messa a terra di protezione

Tutti gli elementi metallici dell'impianto saranno connessi alla rete di terra, rispettando le prescrizioni nella CEI 99-2.

Si connetteranno a terra (protezione delle persone contro contatto indiretto) tutte le parti metalliche normalmente non sottoposte a tensione, ma che possano esserlo in conseguenza di avaria, incidenti, sovratensione o tensione indotta. Per questo motivo si connetteranno alla rete di terra:

- le carcasse di trasformatori, motori e altre macchine,
- le carpenterie degli armadi metallici (controllo e celle AT),
- gli schermi metallici dei cavi AT,
- le tubature ed i conduttori metallici.

Nell'edificio non si metteranno a terra:

- Le porte metalliche esterne dell'edificio
- Le sbarre anti-intrusione delle finestre
- Le griglie esterne di ventilazione.

I cavi di messa a terra si fisseranno alla struttura e carcasse delle attrezzature con viti e graffe speciali di lega di rame. Si utilizzeranno saldature alluminotermiche Cadweld ad alto potere di fusione per l'unione sotterranea, per resistere alla corrosione galvanica.

Ipotesi di progetto

Secondo i calcoli, si considerano i seguenti dati di partenza:

Corrente di cortocircuito monofase	25 kA
Tempo durata del guasto	0,5 s
Resistenza del terreno (ipotesi)	150 Ωm
Resistenza manto superficiale (10 cm di ghiaia, de 2 2-4 cm)	3000 Ωm

La rete di terra sarà formata da una maglia di circa 4 m x 4 m, e si realizzerà con un conduttore a corda di rame nuda di sezione 95 mm². Per il collegamento degli apparati alla rete di terra si utilizzerà corda di rame nuda di sezione 125 mm².

La rete di terra della Cabina di Consegna sarà connessa alla rete di terra dell'impianto eolico, in modo da ridurre il valore totale della resistenza di terra e agevolare il drenaggio della corrente di guasto. Conformemente alla CEI 99-2, la terra della Cabina di Consegna sarà a sua volta collegata alla rete di terra della cabina di consegna.

6.7 Carichi elettrici

6.7.1 Massima corrente di impiego

La massime correnti di impiego su ciascuna sezione dell'impianto si calcolano per mezzo della seguente formula:

$$I_{IMP}(A) = \frac{S_N(MW)}{\sqrt{3}xU_N(kV) * 0.95} \times 1000$$

Con

S_N: la potenza nominale del circuito

U_N tensione nominale.

Assumendo come ipotesi di calcolo le tensioni e potenze di ciascuna sezione dell'impianto, si ottengono le correnti di impiego riassunte nella seguente tabella:

Sezione	Tensione (kV)	Potenza (kW)	Corrente (A)
Circuito 1	36	13.200	223
Circuito 2	36	19.800	334
Circuito 3	36	19.800	334
Circuito di consegna	36	52.800	891

7 CIRCUITO DI CONSEGNA A 36 kV

La Cabina di Consegna verrà collegata alla nuova Stazione di Trasformazione (SE) della RTN 150/36/36 kV per mezzo di un cavo di collegamento interrato a 36 kV della lunghezza di circa 100 m.

Verranno utilizzate due terne di cavi unipolari RG7H1R (o equivalente) di sezione complessiva pari a 1260 mm², in parallelo con posa diretta nel terreno.

La linea di collegamento a 36 kV dell'impianto di Utente alla stazione RTN sarà dotata di vettori ridondati in Fibra Ottica fra gli estremi con coppie di fibre disponibili e indipendenti utilizzabili per telemisure e telesegnali da scambiare con Terna, lo scambio dei segnali associati alla regolazione locale della tensione, segnali di telescatto associati al sistema di protezione dei reattori shunt di linea, eventuali segnali logici e/o analogici richiesti dai sistemi di protezione e segnali per il sistema di Difesa.