

ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA
SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

PERIZIA DI VARIANTE

CONTRAENTE GENERALE

IL RESPONSABILE DEL CONTRAENTE GENERALE

PROGETTAZIONE

Partecipazioni Italia S.p.A.

IL PROGETTISTA

Dott. Ing. Salvatore Lieto Ordine degli Ingegneri Prov. di Mantova n.1147

IL GEOLOGO

Ing. Iginio Farotti

Geol. Amedeo Babbini

Ordine dei Geologi Regione Toscana n.1032

ASSISTENZA ALLA PROGETTAZIONE

IL PROGETTISTA Ing. Valter Capata

VISTO

IL RESPONSABILE DEL PROCEDIMENTO

IL COORDINATORE DELLA SICUREZZA IN FASE DI ESECUZIONE

Ing. Vincenzo Pardo

IL DIRETTORE DEI LAVORI

Ing. Peppino Marascio

2.1.3 PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

SCALA:

DATA:

OPERE D'ARTE MINORI: GENERALE

Muro in terra rinforzata in SX dal km 1+120 al km 1+170

Relazione tecnica e di calcolo - Muro B

Luglio 2022

Codice Unico di Progetto (CUP) F12C03000050021 (Assegnato CIPE 20.04.2015)

Codice	e Elaborat	o:																			
	Opera			Tratt	О	Settore	C	EE			W	BS			Id	. doc	:.	N. p	orog.	F	Rev.
LO	7 0	3	2	1	3	E	1	6	М	U	0	0	0	3	R	Е	L	0	2		С

REV.	DATA	DESCRIZIONE	Redatto		Controllato	Approvato
A	Maggio 2021	Emissione PED	SGS	C. Agostini	V. Capata	S. Lieto
В	Gemmaio 2022	Emissione a seguito istruttoria ANAS del 22.12.2021	SGS	C. Agostini	V. Capata	S. Lieto
С	Luglio 2022	Emissione a seguito istruttoria ANAS del 18.07.2022	SGS	C.Agostini	V.Capata	S.Lieto

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	2 di 22

INDICE

1.	GENERALITÀ	3
2 .	DOCUMENTI DI RIFERIMENTO	4
2.1	DOCUMENTI DI PROGETTO	4
2.2	NORMATIVE DI RIFERIMENTO	
2.3	SOFTWARE	
3 .	DESCRIZIONE DELL' OPERA	
4.	CARATTERISTICHE DELLE TERRE RINFORZATE	7
5 .	MODELLO GEOTECNICO DI RIFERIMENTO	8
5.1	LIVELLO DELLA FALDA	8
5.2		
6 .	CARATTERIZZAZIONE SISMICA	10
7 .	VERIFICA DEI MURI DI SOSTEGNO IN TERRA RINFORZATA	11
7.1		
	1.1 STABILITA' GLOBALE	
	1.2 STABILITA' LOCALE	
7.2	VERIFICHE STRUTTURALI GEOGRIGLIE	11
8 .	STATI LIMITE E COMBINAZIONI DI CALCOLO	13
8.1	STATI LIMITE CONSIDERATI	13
9.	ANALISI DEI CARICHI	16
9.1	CARICHI PERMANENTI	16
9.2	SOVRACCARICHI ACCIDENTALI	16
9.3	AZIONE SISMICA	16
10 .	ANALISI E VERIFICHE	18
10.1		
10.2		
	0.2.1 Stabilità locale	
	D.2.3 Stabilità globale	
11.	CONCLUSIONI	21
ALLE	EGATO A	22
RFF	PORT DI CALCOLO E VERIFICHE GEOTECNICHE	22

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	3 di 22

1. GENERALITÀ

Il presente documento costituisce la relazione di calcolo del Progetto Esecutivo di Dettaglio (PED) delle opere geotecniche di contenimento previste nell'ambito dei lavori di completamento degli stralci funzionali 3 e 4 del tratto della Pedemontana delle Marche.

La redazione del Progetto Esecutivo di Dettaglio ha lo scopo di ottimizzare, laddove possibile, le opere geotecniche oggetto del Progetto Esecutivo. A tal fine, sono state prese come riferimento per la ottimizzazione le valutazioni e carattezzazioni idrogeologico, geotecniche e sismiche dei siti in esame presenti nel Progetto Esecutivo. I calcoli e le verifiche di sicurezza sono stati effettuati in conformità alle norme NTC 2008.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	4 di 22

2. DOCUMENTI DI RIFERIMENTO

Nella redazione del progetto esecutivo di dettaglio si è fatto riferimento ai seguenti documenti.

2.1 DOCUMENTI DI PROGETTO

- LO703213E01000000REL01D Relazione tecnica generale
- L0703213E02GE0000REL01C Relazione geologica, geomorfologica e geoidrologica generale
- L03213E02GE0001REL01D Relazione geotecnica generale sulle opere all'aperto e gallerie artificiali
- L0703213E04000000REL01D Relazione sismica
- L0703213E02GE0000PRF01C Profilo geologico
- LO703213E02GE0001PRF01D Profilo geotecnico
- L0703213E16OS0000REL01B Relazione tecnica e di calcolo opere di sostegno in terra rinforzata
- L0703213E01MU0003REL01A Relazione tecnica e di calcolo

2.2 NORMATIVE DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

- D.M. 14/01/2008 "Norme tecniche per le costruzioni" (NTC).
- Circolare del 02/02/2009. Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.
- UNI EN1990 EUROCODICE 0 Criteri generali di progettazione strutturale.
- UNI EN1991 EUROCODICE 1 Azioni sulle strutture
- UNI EN1992-1-1 EUROCODICE 2, parte 1-1 Progettazione delle strutture in calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1997-1. EUROCODICE 7, parte 1. Progettazione geotecnica. Parte 1: Regole generali
- UNI EN 1998-5. EUROCODICE 8, parte 5. Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

2.3 SOFTWARE

GeoStru 2021 - www.geostru.eu

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	5 di 22

3. DESCRIZIONE DELL' OPERA

Le analisi e verifiche nel seguito esposte fanno riferimento all'opera di sostegno MU003B situata in SX dell'asse stradale, dal km 1+120 al km 1+170, per uno sviluppo totale di circa 44 m. Questo muro fa parte dell'opera MU03 che comprende un primo tratto identificato come MU03A che si estende da km 1+027 a km 1+112.4.

L'opera in oggetto, disposta in sostituzione di muri di sottoscarpa e di muri su pali in c.a., previsti dal Progetto Esecutivo, è costituita da un muro di sostegno in terra rinforzata, di altezza variabile secondo quanto descritto nel seguito, previsto a margine del corpo stradale dell'asse principale e necessario a garantirne la stabilità in accordo alle NTC2008.

Per quanto riguarda il MU03A, viene mantenuta la soluzione di muri su fondazione diretta e su pali prevista da progetto esecutivo. Per tale tratta, fare riferimento alla relazione L0703213E16MU0003REL01A.

Nelle seguenti figure sono rappresentate la pianta, il profilo longitudinale ed una generica sezione dell'opera in oggetto. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

Figura 1 - Pianta dell'opera

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	С	6 di 22

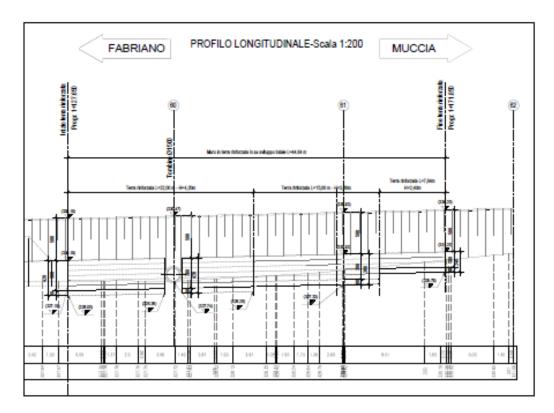


Figura 2 – Profilo longitudinale MU0003B

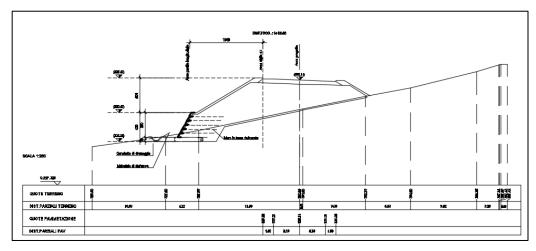


Figura 3- Generica sezione MU0003B

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	7 di 22

4. CARATTERISTICHE DELLE TERRE RINFORZATE

Per la realizzazione di muri in terra rinforzata è stato previsto di adottare la tipologia Terramesh Verde Light prodotta da Maccaferri.

I Terramesh® Verde Linght sono elementi ultilizzati per costruire strutture in terra rinforzata con paramento rinverdibile realizzati in rete metallica a doppia torsione con maglia esagonale, tipo 8x10, tessuta con filo d'acciaio, con rivestimento PoliMac.

Gli elementi sono prodotti in conformità al CPR - Regolamento sui prodotti da Costruzione 305/2011 e alla ENB 10223-3, e presentano le caratteristiche di resistenza riportate di seguito:

Resistenza a trazione nominale della rete

35kN/m

Per quanto riguarda il materiale costituente la terra rinforzata, si prevede l'utilizzo di un terreno caratterizzato da un peso dell'unità di volume $\gamma = 20$ KN/mc ed un angolo d'attrito ϕ =35°.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0003	REL	02	C	8 di 22

5. MODELLO GEOTECNICO DI RIFERIMENTO

Nel presente paragrafo si riporta la caratterizzazione geotecnica specifica per l'opera in esame. Per dettagli si rimanda alla Relazione Geotecnica Generale. Si sottolinea, comunque, che mediamente il profilo stratigrafico presenta un primo strato di depositi coesivi limoso argillosi che si estendono sino ad una profondità media di circa 6 m. Al di sotto di tale strato è presente una fascia di spessore variabile costituita da argilla limosa, marnosa, consistente che sovrasta il substrato a carattere da semilitoide a litoide, e rappresenta la parte superiore alterata del substrato. Quest'ultimo è costituito dalla Formazione di Camerino.

Nell'area adiacente all'opera in oggetto il sondaggio di riferimento, più prossimo alla stessa, risulta essere il sequente: X3.4.

Analizzando il profilo geologico geotecnico, con riferimento ai tratti di ubicazione dell'opera di sostegno oggetto di dimensionamento, è possibile dunque assumere cautelativamente, la seguente configurazione stratigrafica:

 Unità geotecnica
 Profondità dal piano campagna [m da p.c.]
 Descrizione

 Ecla
 0 ÷ 6.3
 Depositi eluvio colluviali limoso argillosi

 Salt
 6.3 ÷ 10.3
 Substrato alterato argilloso limo

 Ap
 >10.3
 Substrato arenaceo pelitico

Tabella 1 - Stratigrafia di riferimento MU0003B

5.1 LIVELLO DELLA FALDA

La falda è riscontrata a profondità variabili. Dalle misurazioni eseguite con le strumentazioni installate in corrispondenza del sondaggio X3.4, è stato rilevato un livello massimo di falda a 3.8m da p.c. Nelle analisi si assume cautelativamente un livello di falda prossima ad una profondità di 1 metro dal piano di posa della terra rinforzata.

5.2 PARAMETRI GEOTECNICI

I parametri geotecnici considerati per l'opera in esame sono riportati nella seguente tabella. Essi fanno riferimento ai parametri medi dei range riportati nella relazione geotecnica generale L03213E02GE0001REL01D e nel profilo geotecnico L0703213E02GE0001PRF04D.

Unità	Y [kN/m³]	φ' [°]	c' [kPa]
Ecla	19	25	10
Salt	19	26	10

Tabella 2 - Parametri geotecnici terreno in sito

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	9 di 22

Ар	23	36	70

Per il materiale costituente il rilevato stradale, vengono considerati i seguenti parametri caratteristici:

Tabella 3 -Parametri geotecnici rinterro

Unità	γ	φ'	c'
	[kN/m3]	[°]	[kPa]
Rilevato	20	35	0

γ = peso dell'unità di volume

 ϕ' = angolo di resistenza al taglio

c' = coesione drenata

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	10 di 22

6. CARATTERIZZAZIONE SISMICA

Per la caratterizzazione sismica del sito si rimanda alle considerazioni presenti nella relazione sismica (L0703213E04000000REL01D).

Di seguito si riportano i parametri di progetto adottati per le verifiche della stabilità dell'opera in caso di azione sismica.

Tabella 4 - Periodo di riferimento azione sismica

Vita nominale V _N Classe d'uso		Coefficiente d'uso	Periodo di riferimento V _R
50	III	1.5	75

Tabella 5 - Accelerazione (ag), fattore (F0) e periodo (T*c)

V _R [anni]	Stato Limite	PV _R	T _R [anni]	a _q [9]	F₀ [-]	T _c [s
	SLO	81%	45	0.078	2.440	0.285
75	SLD	63%	75	0.097	2.433	0.295
75	SLV	10%	712	0.220	2.544	0.333
	SLC	5%	1462	0.277	2.584	0.343

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Tabella 6 - Caratterizzazione sito

Categoria di	Categoria	S _s , fattore	St, fattore	
sottosuolo	topografica	stratigrafico	topografico	
С	T1	1.365	1.0	

Il fattore SS è calcolato come da tabella 3.2.V delle NTC 2008.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	11 di 22

7. VERIFICA DEI MURI DI SOSTEGNO IN TERRA RINFORZATA

Di seguito si riassumono le verifiche condotte per la stabilità globale e locale del muro di sostegno in terra rinforzata ed i metodi di calcolo utilizzati.

7.1 VERIFICHE GEOTECNICHE

7.1.1 STABILITA' GLOBALE

La verifica di stabilità globale del complesso opera di sostegno-terrapieno è condotta mediante l'ausilio del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

Per la verifica si fa riferimento al metodo dell'equilibrio limite di Bishop.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda alla relazione in Allegato A.

7.1.2 STABILITA' LOCALE

La verifica di stabilità dell'opera di sostegno è condotta mediante l'ausilio del modulo SLOPE/M.R.E.che fa parte del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

La stabilità dell'opera viene verificata nel suo insieme considerandola come un corpo rigido, risulta assicurata, quando è verificata la sicurezza a:

- Ribaltamento: rappresentato dalla possibile rotazione del'opera rispetto al punto di valle.
- Scorrimento: dipende dalla possibilità che le forze parallele al piano di contatto tra fondazione e terreno siano superiori alle forze di attrito terreno-fondazione.
- Carico limite: si effettua confrontando la tensione normale massima sul piano di posa della fondazione con la tensione limite di rottura del terreno.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda alla relazione in Allegato A.

7.1.3 VERIFICHE STATO LIMITE ESERCIZIO TERRE RINFORZATE

Nei riguardi degli SLE, in accordo a quanto specificato al paragrafo 6.5.3.2 del DM 14 -01-08 "Verifiche di esercizio" per muri di sostegno, la verifica dell'opera di sostengo nelle condizioni di esercizio, deve essere incentrata nel valutare la compatibilità degli spostamenti dell'opera stessa nei riguardi della funzionalità e stabilità di eventuali manufatti adiacenti.

Non si segnala la presenza di manufatti di particolare rilievo nelle immediate vicinanze delle opere in progetto, pertanto si ritiene non significativo procedere con verifiche degli spostamenti dell'opera stessa.

Le deformazioni massime attese sono da ritenersi comunque ampiamente compatibili nei riguardi degli aspetti funzionali dell'infrastruttura in progetto.

7.2 VERIFICHE STRUTTURALI GEOGRIGLIE

Le verifiche interne o strutturali delle geogriglie vengono condotte mediante l'ausilio del modulo SLOPE/M.R.E. che fa parte del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	12 di 22

Le verifiche riguardano la capacità delle geogriglie a:

- Sfilamento
- Scorrimento
- Resistenza a trazione

Sia per lo sfilamento che per lo scorrimento vengono dimensiontate le lunghezze efficaci necessarie a sviluppare delle forze di attrito tali da contrastare la forza di trazione indotta nei rinforzi, ciò viene effettuata garantendo un assegnato fattore di sicurezza.

La verifica della resistenza a trazione consiste nel dimensionare la sezione nel rinforzo in modo tale da avere delle tensioni indotte inferiori a quella ammissibile.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda al capitolo 5 della relazione tecnica e di calcolo di opere di sostegno in terra rinforzata (L0703213E16OS0000REL01B) e alla relazione in Allegato A.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0003	REL	02	C	13 di 22

8. STATI LIMITE E COMBINAZIONI DI CALCOLO

8.1 STATI LIMITE CONSIDERATI

Per i muri di sostegno o per altre strutture miste ad essi assimilabili, devono essere effettuate le verifiche con riferimento almeno ai sequenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido per la verifica della stabilità globale e locale dell'opera di sostegno
- SLU di tipo strutturale (STR) per il raggiungimento della resistenza negli elementi strutturali

Secondo quanto riportato in normativa DM 14-01-2008, la verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

• Combinazione 2: (A2+M2+R2)

Le rimanenti verifiche devono essere effettuate secondo almeno uno dei seguenti approcci:

Approccio 1:

• Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2)

Approccio 2:

(A1+M1+R3)

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni riportati in Tabella 7 e adoperando i coefficienti parziali del gruppo M per il calcolo delle spinte.

I coefficienti per le azioni A, per i parametri geotecnici M e per le resistenze R sono riassunti nelle seguenti tabelle.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	14 di 22

Tabella 7 – Coefficienti parziali per le azioni SLU

Carichi tipo	Effetto	Coefficiente parziale	EQU	A1 (STR)	A2 (GEO)
Permanenti	Favorevole	v	0.9	1.0	1.0
Permanenti	Sfavorevole	Y G1	1.1	1.3	1.0
Permanenti non	Favorevole	Y G2	0.0	0.0	0.0
strutturali	Sfavorevole		1.5	1.5	1.3
Variabili	Favorevole		0.0	0.0	0.0
variabili	Sfavorevole	Y α	1.5	1.5	1.3

Tabella 8 - Coefficienti parziali per i parametri geotecnici del terreno SLU

Carichi tipo	Coefficiente parziale	M1	M2
Tangente angolo resistenza al taglio	tan φ' _k	1.0	1.25
Coesione efficace	C' _k	1.0	1.25
Resistenza non drenata	C _{uk}	1.0	1.4
Peso unità di volume	γ	1.0	1.0

Tabella 9 – Coefficienti parziali resistenza R2 verifiche di opere in materiali sciolti e fronti di scavo

Verifica	R2
Stabilità globale	γ _R = 1.1

Tabella 10 – Coefficienti parziali resistenza $\gamma_{\rm R}$ per le STR e GEO di muri di sostegno

Verifica	R1	R2	R3
Capacità portante fondazione	$\gamma_R = 1.0$	$\gamma_R = 1.0$	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1.0$	$\gamma_R = 1.1$
Resistenza terreno valle	$\gamma_R = 1.0$	$\gamma_R = 1.0$	γ _R = 1.4

In presenza di azioni sismiche, lo stato limite ultimo considerato comprende lo Stato Limite di Salvaguardia della Vita (SLV).

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	15 di 22

I coefficienti parziali sulle azioni ed i parametri geotecnici sono posti pari all'unità mentre i coefficienti parziali relativi alle resistenze risultano invariati rispetto a quelli considerati per le verifiche in condizioni statiche.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	16 di 22

9. ANALISI DEI CARICHI

9.1 CARICHI PERMANENTI

Per carichi permanenti si intendono le azioni associate ai pesi propri del muro, del terrapieno spingente e dell'acqua di falda, valutati in automatico dal Software di calcolo utilizzato.

9.2 SOVRACCARICHI ACCIDENTALI

Lo schema di carico da traffico veicolare considerato nelle analisi è un carico uniformenente distribuito di valore pari a 30 kPa.

9.3 AZIONE SISMICA

Per la valutazione degli effetti dell'azione sismica sulle masse e sui coefficienti di spinta del terreno, si è fatto riferimento al metodo pseudo-statico previsto al punto 7.11.3.5.2 - "Metodi di Analisi" - delle NTC2008 secondo il quale, nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_{s,m} \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

a_{max} = accelerazione orizzontale massima attesa al sito

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a_q = S_s \cdot S_t \cdot a_q$$

dove

S= coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t) .

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Di seguito sono riportati i valori di β_S e β_m considerati per i fronti di scavo (utilizzati nelle analisi di stabilità globale), e per i muri di sostegno, in accordo con quanto indicato nella NTC2008.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	17 di 22

Tabella 11 – Coefficienti dell'accelerazione massima attesa al sito – Fronti di scavo e rilevati

	Categoria d	i sottosuolo
	A	B, C, D, E
	βs	βs
0.2 <a<sub>g(g)≤0.4</a<sub>	0.3	0.28
0.1 <a<sub>g(g)≤0.2</a<sub>	0.27	0.24
a _g (g)≤0.1	0.2	0.2

Tabella 12 - Coefficienti dell'accelerazione massima attesa al sito - Muri di sostegno

	Categoria d	i sottosuolo
	A	B, C, D, E
	βm	βm
0.2 <a<sub>g(g)≤0.4</a<sub>	0.31	0.31
0.1 <a<sub>g(g)≤0.2</a<sub>	0.29	0.24
a _g (g)≤0.1	0.20	0.18

I parametri di progetto dell'azione sismica considerati nell'analisi dell'opera oggetto della presente relazione sono riassunti nella tabella seguente.

Tabella 13 – Parametri progetto azione sismica equivalente – Fronti di scavo e rilevati

Ss	S _T	a_g	a _{max}	k _h	k _v
1.365	1.0	0.22	0.30	0.084	0.042

Tabella 14- Parametri progetto azione sismica equivalente - Muri di sostegno

Ss	S _T	\mathbf{a}_{g}	a _{max}	k _h	k _v
1.365	1.0	0.22	0.30	0.093	0.047

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	18 di 22

10. ANALISI E VERIFICHE

Si riportano di seguito i risultati delle analisi e verifiche per la sezione di calcolo considerata.

10.1 SEZIONE DI CALCOLO

È stata esaminata una sezione, rappresentativa di geometria e condizioni stratigrafiche che si incontrano in corrispondenza dell'ubicazione prevista per l'opera in esame.

ID muro	Altezza muro [m]	Lato stradale	pk
MU0003B	3.6	SX	1+130

I tabulati di calcolo relativi alle analisi svolte sono riportati nell'Allegato A.

10.2 RISULTATI DELLE ANALISI: SEZIONE TERRA RINFORZATA

10.2.1 Stabilità locale

Si riportano di seguito i risultati delle analisi di stabilità dell'opera di sostegno descritte al par. 7.

Per ulteriori dettagli si rimanda all'Allegato A "Report di calcolo e verifiche geotecniche".

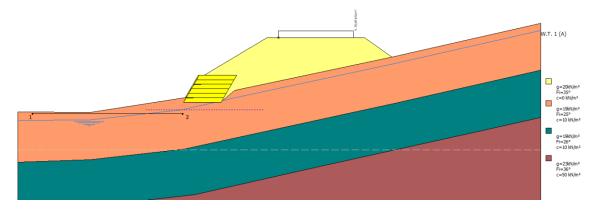


Figura 4 - Modello di calcolo

Figura 5 - Verifiche di stabilità

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	19 di 22

10.2.2 Verifiche strutturali geogriglie

Nella seguente tabella si sintetizzano i risultati ottenuti dalle verifiche strutturali delle geogriglie considerate per la realizzazione delle opere in terra rinforzata, le quali presentano una lunghezza minima complessiva pari a 5m.

Per ulteriori dettagli si rimanda all'Allegato A "Report di calcolo verifiche geotecniche".

Nr **FS Sfilamento FS Rottura** Spinta sul rinforzo (kN) Res. a sfilamento (kN/m) Res. ultima materiale (kN) 14.96 1.1 26.36 71.36 28.99 1 62.24 15.75 1.31 22.06 28.99 2 3 17.01 1.63 17.73 53.41 28.99 4 19.26 2.17 13.35 44.99 28.99 5 24.1 3.26 8.89 37.22 28.99 6 39.81 6.66 4.35 30.48 28.99

Tabella 15 - Risultati verifiche geogriglie

10.2.3 Stabilità globale

Si riportano di seguito i risultati delle verifiche di stabilità globale per il muro in terra rinforzata in condizioni statiche e sismiche.

Dalle analisi eseguite è stato ottenuto un coefficiente di sicurezza FS, relativo alla superficie di scorrimento più critica, superiore al valore del coefficiente parziale di resistenza che riduce la resistenza disponibile del terreno, γ_R , pari a 1.1, pertanto, secondo quanto prescritto dalla normativa considerata, le verifiche di sicurezza risultano essere soddisfatte.

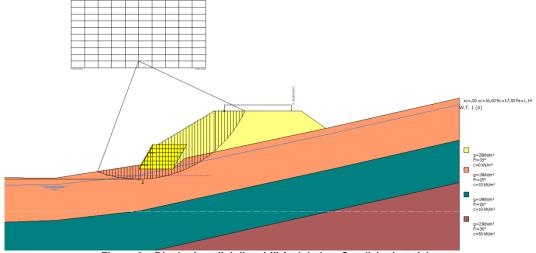


Figura 6 – Risultati analisi di stabilità globale – Condizioni statiche

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	20 di 22

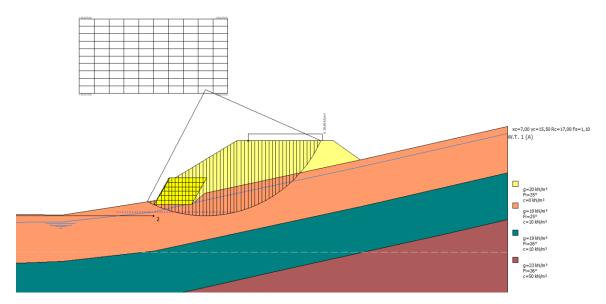


Figura 7 – Risultati analisi di stabilità globale – Condizioni sismiche

Tabella 16 – Fattori di sicurezza stabilità globale

Sez. di calcolo	F.S. Statico	F.S. Sismica
1+140	1.14	1.10

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	21 di 22

11. CONCLUSIONI

La presente relazione tecnica e di calcolo riassume i criteri di dimensionamento, le analisi e le verifiche condotte sulle opere di stabilità per il rilevato stradale dal km 1+120 al km 1+170 dei Lotti 3 e 4 dell'opera Pedemontana delle Marche.

Le verifiche geotecniche e strutturali risultano soddisfatte per gli stati limite considerati secondo la normativa di riferimento.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro in terra rinforzata in SX dal km 1+120 al km 1+170 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0003	REL	02	C	22 di 22

ALLEGATO A

REPORT DI CALCOLO E VERIFICHE GEOTECNICHE

RELAZIONE DI CALCOLO MU03B – Verifiche terra rinforzate

Calcolo della spinta attiva con Coulomb

Il calcolo della spinta attiva con il metodo di *Coulomb* è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida.

Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione:

$$P_t = K_a \cdot \gamma_t \cdot z$$

La spinta S_t è applicata ad 1/3 H di valore

$$S_t = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_a$$

Avendo indicato con:

$$K_{a} = \frac{\text{sen}^{2}(\beta - \phi)}{\text{sen}^{2}\beta \cdot \text{sen}(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - \epsilon)}{\sin(\beta + \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

Valori limite di K_A , $\delta < (\beta - \phi - \epsilon)$ secondo Muller-Breslau:

- γ_t Peso unità di volume del terreno;
- β Inclinazione della parete interna rispetto al piano orizzontale passante per il piede;
- φ Angolo di resistenza al taglio del terreno;
- δ Angolo di attrito terra-muro;
- ε Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria;
- H Altezza della parete.

Calcolo della spinta attiva con Rankine

Se $\varepsilon = \delta = 0$ e $\beta = 90^{\circ}$ (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta *St* si semplifica nella forma:

$$S_{t} = \frac{\gamma \cdot H^{2}}{2} \frac{\left(1 - \sin \phi\right)}{\left(1 + \sin \phi\right)} = \frac{\gamma \cdot H^{2}}{2} \tan^{2} \left(45 - \frac{\phi}{2}\right)$$

che coincide con l'equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale. In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l'attrito terra-muro e la presenza di coesione. Nella sua formulazione generale l'espressione di Ka di Rankine si presenta come segue:

$$Ka = \cos \varepsilon \frac{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

Calcolo della spinta attiva con Mononobe & Okabe

Il calcolo della spinta attiva con il metodo di *Mononobe & Okabe* riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia

di calcolo nella quale l'angolo ϵ , di inclinazione del piano campagna rispetto al piano orizzontale, e l'angolo β , di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità θ tale che:

$$tg \theta = k_h/(1 \pm k_v)$$

con kh coefficiente sismico orizzontale e kv verticale.

Calcolo coefficienti sismici (NTC 2008)

Secondo le Nuove Norme Tecniche per le Costruzioni (NTC 2008) i coefficienti sismici k_h e k_V sono calcolati come:

$$k_h = \beta_m \cdot (a_{max} / g)$$
 $\cdot k_v = \pm 0.5 \cdot k_h$

 β_m coefficiente di riduzione dell'accelerazione massima attesa al sito; per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente β_m assume valore unitario. Per i muri liberi di traslare o ruotare intorno al piede, si può assumere che l'incremento di spinta dovuto al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si assume che tale incremento sia applicato a metà altezza del muro.

a_{max} accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{\text{max}} = S \cdot a_g = S_s \cdot S_T \cdot a_g$$

S coefficiente comprendente l'effetto di amplificazione stratigrafica S_{T} accelerazione orizzontale massima attesa su sito di riferimento rigido.

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R / ln(1 - PVR)$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Effetto dovuto alla coesione

La coesione induce delle pressioni negative costanti pari a:

$$P_{c} = -2 \cdot c \cdot \sqrt{K_{a}}$$

Non essendo possibile stabilire a priori quale sia il decremento indotto nella spinta per effetto della coesione, è stata calcolata un'altezza critica Z_c come segue:

$$Z_{c} = \frac{2 \cdot c}{\gamma} \cdot \frac{1}{\sqrt{K_{A}}} - \frac{Q \cdot \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \epsilon)}}{\gamma}$$

Dove:

Q Carico agente sul terrapieno;

Se Z_c < 0 è possibile sovrapporre direttamente gli effetti, con decremento pari a:

$$S_c = P_C \cdot H$$

con punto di applicazione pari a H/2.

Carico uniforme sul terrapieno

Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a:

$$P_q = K_a \cdot Q \cdot \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \varepsilon)}$$

Per integrazione, una spinta pari a Sq:

$$S_{q} = K_{a} \cdot Q \cdot H \frac{sen\beta}{sen(\beta + \epsilon)}$$

Con punto di applicazione ad H/2, avendo indicato con Ka il coefficiente di spinta attiva secondo Muller-Breslau.

Spinta attiva in condizioni sismiche

In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da:

\

Dove:

H altezza muro

k_v coefficiente sismico verticale

peso per unità di volume del terreno

K coefficienti di spinta attiva totale (statico + dinamico)

E_{WS} spinta idrostatica dell'acqua

E_{wd} spinta idrodinamica.

Per terreni impermeabili la spinta idrodinamica $E_{wd}=0$, ma viene effettuata una correzione sulla valutazione dell'angolo θ della formula di Mononobe & Okabe così come di seguito:

$$tg\theta = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 \mp k_v}$$

Nei terreni ad elevata permeabilità in condizioni dinamiche continua a valere la correzione di cui sopra, ma la spinta idrodinamica assume la seguente espressione:

$$E_{wd} = \frac{7}{12} k_h \gamma_w H'^2$$

Con H' altezza del livello di falda misurato a partire dalla base del muro.

Spinta idrostatica

La falda con superficie distante H_W dalla base del muro induce delle pressioni idrostatiche normali alla parete che, alla profondità z, sono espresse come segue:

$$P_{w}(z) = \gamma_{w} \cdot z$$

Con risultante pari a:

$$\mathbf{S}_{\mathbf{w}} = \frac{1}{2} \cdot \mathbf{\gamma}_{\mathbf{w}} \cdot \mathbf{H}^2$$

La spinta del terreno immerso si ottiene sostituendo γ_t con γ'_t ($\gamma'_t = \gamma_{saturo} - \gamma_w$), peso efficace del materiale immerso in acqua.

Resistenza passiva

Per terreno omogeneo il diagramma delle pressioni risulta lineare del tipo:

$$P_t = K_p \cdot \gamma_t \cdot z$$

per integrazione si ottiene la spinta passiva:

$$\mathbf{S}_{p} = \frac{1}{2} \cdot \boldsymbol{\gamma}_{t} \cdot \mathbf{H}^{2} \cdot \mathbf{K}_{p}$$

Avendo indicato con:

$$K_p = \frac{\text{sen}^2(\phi + \beta)}{\text{sen}^2\beta \cdot \text{sen}(\beta - \delta) \cdot \left[1 - \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi + \epsilon)}{\text{sen}(\beta - \delta) \cdot \text{sen}(\beta - \epsilon)}}\right]^2}$$

(Muller-Breslau) con valori limiti di δ pari a:

$$\delta < \beta - \phi - \epsilon$$

L'espressione di K_p secondo la formulazione di Rankine assume la seguente forma:

$$Kp = \frac{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

Carico limite

Una delle prime famiglie di formule per il calcolo della capacità portate fu proposta da Terzaghi nel 1943.

$$q_{ult} = c \cdot N_c \cdot s_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$$

dove

$$N_q = \frac{a^2}{2 \cdot \cos^2(45 + \omega/2)}$$

$$a = e^{(0.75\pi - \phi/2)} \tan \phi$$

$$N_c = (N_q - 1)\cot\varphi$$

$$N_{\gamma} = \frac{\tan \varphi}{2} \cdot \left(\frac{K_{p\gamma}}{\cos^2 \varphi} - 1 \right)$$

dove $s_c=1$ e $s_{\gamma}=1$. per fondazioni nastriformi.

Brinch Hansen - Vesic - (1970)

Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza:

$$V_d \le R_d$$

Dove V_d è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici. Nella valutazione analitica del carico limite di progetto R_d si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come:

$$R/A'=(2+\pi)\cdot c_{ij}\cdot s_{c}\cdot i_{c}+q$$

Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c_u coesione non drenata

q pressione litostatica totale sul piano di posa

s_c fattore di forma

 $s_c = 0.2 \cdot (B'/L')$ per fondazioni rettangolari

i_c Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_c = 0.5 \cdot \left(1 + \sqrt{1 - H/A' \cdot c_n}\right)$$

ca aderenza alla base, pari alla coesione o ad una sua frazione.

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$R \, / \, A' = c' \cdot N_c \, \cdot s_c \cdot i_c + q' \cdot N_q \cdot s_q \cdot i_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot i_\gamma$$

dove:

$$N_{q} = e^{\pi \tan \phi'} \cdot \tan^{2} (45 + \phi'/2)$$

$$N_{c} = (N_{q} - 1) \cdot \cot \phi'$$

$$N_{\gamma} = 2 \cdot (N_{q} - 1) \cdot \tan \phi'$$

Fattori di forma

$$s_q = 1 + (B'/L') \cdot \sin \phi'$$

per forma rettangolare

$$s_{\gamma}=1-0.3\cdot(\mathrm{B'}/\mathrm{L'})$$

per forma rettangolare

$$s_c = (s_q \cdot N_q - 1)/(N_q - 1)$$

per forma rettangolare, quadrata o circolare.

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$i_{\alpha} = [1 - H/(V + A' \cdot c' \cdot \cot \phi')]^{m}$$

$$i_{\gamma} = \left[1 - H/\left(V + A' \cdot c' \cdot \cot \phi'\right)\right]^{m+1}$$

$$i_c = (i_q \cdot N_q - 1)/(N_q - 1)$$

$$m = m_B = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \quad con \quad H//B'$$

$$m = m_L = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad con \quad H//L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

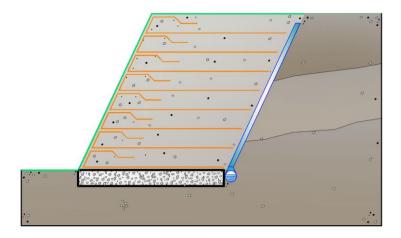
$$m = m_{\theta} = m_L \cos^2 \theta + m_B \sin^2 \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Convenzione segni

Forze verticali positive se dirette dall'alto verso il basso; Forze orizzontali positive se dirette da monte verso valle;

Coppie positive se antiorarie;
Angoli positivi se antiorari.


Terra Rinforzata

Verifiche Interne

Sono finalizzate ad analizzare i possibili meccanismi di collasso che coinvolgono parzialmente o integralmente la porzione di terreno rinforzato.

Hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, a fronte dell'introduzione di possibili cinematismi di rottura che tendono a pregiudicare la funzionalità e la sicurezza del manufatto. Le verifiche effettuate comprendono:

- Verifica di resistenza dei rinforzi (Rottura);
- Verifica allo sfilamento (Pullout).

Verifica a rottura

Si valuta l'entità della resistenza mobilitata dal rinforzo per garantire il raggiungimento di una condizione stabile dell'opera.

La sollecitazione instabilizzante è rappresentata dalla spinta a cui è sottoposto il manufatto da parte dei sistemi di carichi applicati (terreno a tergo, eventuale sovraccarico esterno ed azione del sisma).

La resistenza disponibile nel rinforzo si calcola a partire dalla sua resistenza nominale, applicando opportuni fattori di sicurezza:

$$T_{\text{allow}} = \frac{T_{\text{nom}}}{\prod\limits_{i=1}^{n} FS_i}$$

E' necessario che per ogni livello z_i , profondità a cui è collocato il rinforzo rispetto alla sommità dell'opera, venga soddisfatta la relazione:

$$\frac{T_{allow}}{T_{zi}} \ge FS_{rottura}$$

 $Avendo \ indicato \ con \ T_{Z\dot{1}} \ la \ resistenza \ richiesta, \ alla \ quota \ z_{\dot{1}}, per \ garantire \ la \ stabilità \ del \ manufatto.$

Verifica a sfilamento

La verifica a rottura, definisce l'entità della resistenza a trazione che il rinforzo deve essere in grado di mobilizzare per stabilizzare l'opera.

Il trasferimento della resistenza a trazione dal rinforzo al terreno può avvenire grazie all'interazione che si sviluppa all'interno del rinforzo in corrispondenza del tratto ancorato nella parte stabile del pendio.

In funzione della lunghezza di ancoraggio del telo, infatti, per effetto della spinta generata dalle sollecitazioni a tergo del tratto di terreno rinforzato, si sviluppa internamente al rinforzo, una resistenza che tende, per reazione, ad opporsi al movimento verso l'esterno del sistema composito.

Tale resistenza viene chiamata resistenza allo sfilamento (Pullout).

La resistenza allo sfilamento può essere determinata dalla seguente relazione:

$$T_{\text{pullout}} = 2 \cdot (L_e \cdot f_b \cdot \tan \varphi) \cdot \sigma'_v$$

dove:

T_{pollout}Resistenza mobilitata da un rinforzo ancorato per una lunghezza Le all'interno della parte stabile del terreno;

fb Coefficiente di Pullout;

σ'_V Tensioni normali applicate sulla parte del rinforzo ancorato nella zona resistente, alla quota z_i; in tale valore è incluso il contributo del sovraccarico, se presente.

La verifica a sfilamento risulta soddisfatta se:

$$\frac{T_{\text{pullout}}}{T_{\text{zi}}} \ge FS_{\text{rottura}}$$

Dove T_{zi} è la resistenza richiesta, alla quota z_i , per garantire la stabilità del manufatto.

Forze di trazione nei rinforzi

Si determinano le forze di trazione nei vari rinforzi, date dall'area del diagramma delle pressioni relative a ogni striscia. Per il diagramma triangolare relativo al terrapieno, la forza nella striscia è data dall'area dell'elemento trapezio ab'd'e viene trasformata nella pressione media q_i alla profondità della striscia Z_i mediante la relazione:

$$q_i = \gamma \cdot z_i \cdot K_a$$

La pressione q_i agisce su una area definita dalla spaziatura delle armature $h \times s$ e corrisponde a una forza di trazione nel rinforzo pari a:

$$T_i = q_i \cdot A = \gamma \cdot z_i \cdot K_a \cdot (h \cdot s)$$

Per l'equilibrio la somma delle forze di trazione deve essere pari alla componete orizzontale delle forze agenti.

$$\sum T_i = P_{ah}$$

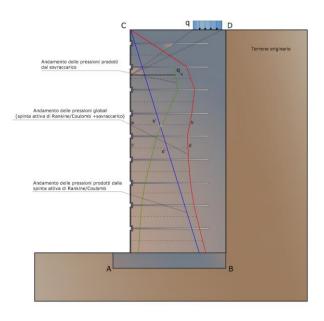


Fig. 2

Calcolo delle lunghezze efficaci Le

Si calcolano le lunghezze delle strisce Le che compaiono in Figura 3, necessarie affinché si sviluppi una forza d'attrito $F_r = T_i$. Sulla base di tali lunghezze e delle dimensioni del cuneo di Rankine, si può determinare la lunghezza globale Lo delle strisce da utilizzare. In generale, per tutta l'altezza del muro si usano strisce della stessa lunghezza. La lunghezza di ancoraggio dipende dal coefficiente d'attrito f=tan δ tra suolo e rinforzo, essendo δ un'opportuna frazione dell'angolo d'attrito interno del terreno ϕ . Se la striscia è sufficientemente scabra $\delta = \phi$, mentre per metalli lisci δ è compreso orientativamente tra 20° e 25° .

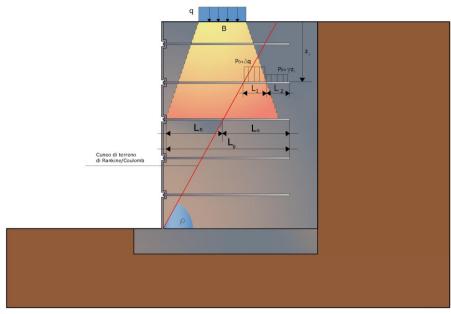


Fig. 3

Per strisce di dimensioni b x Le o per fogli di geotessile di larghezza unitaria e lunghezza Le, entrambe le facce sviluppano attrito; per barre circolari, l'attrito resistente è sviluppato lungo il perimetro. In ogni caso, l'attrito è dato dal prodotto di f per la pressione normale al rinforzo calcolata come $p_0 = \gamma z_i$ dove z_i è la distanza media dalla superficie del terreno al rinforzo. Si ha quindi:

Per strisce:
$$F_i = 2 \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (b \cdot L_e) \ge T_i$$

Per barre:
$$F_i = \pi \cdot D \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (L_e) \ge T_i$$

Per fogli:

$$F_i = 2 \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (1 \cdot L_e) \ge T_i$$

Se nelle precedenti formule il segno ≥ è sostituito col segno di uguale, il coefficiente di sicurezza FS è pari a 1. Se si assume FS > 1, il valore di *Le* risulta necessariamente maggiore di quello dato da queste formule.

Si determina quindi la sezione delle armature b x t. Per barre o strisce in metallo avente sforzo ammissibile pari a fa = fy/FS si ha:

$$b \cdot t \cdot f_a > T_i$$
 oppure $\frac{\pi \cdot D^2}{4} \cdot f_a > T_i$

Nel caso di geotessili si ha il problema che la resistenza del tessuto varia a seconda del produttore; tra quelli possibili si sceglie un tessuto che:

Larghezza striscia b × resistenza per unità di larghezza ≥ Ti

Descrizione

Coefficiente azione sismica orizzontale 0,093 Coefficiente azione sismica orizzontale 0,047

Geometria

Nr.	X	Y
	(m)	(m)
1	0,0	0,0
2	2,08	3,6

3	7,08	3,6
4	5,0	0,0

Terreno rinforzo

Peso unità di volume	20,0 kN/m³
Peso unità di volume saturo	20.0 kN/m^3
Angolo di resistenza a taglio	35.0 °
Coesione	,
	0.0 kN/m^2
Angolo attrito terreno rinforzo	23,3 °

Terreno riempimento

$20,0 \text{ kN/m}^3$
$20,0 \text{ kN/m}^3$
35,0 °
0.0 kN/m^2
23,0 °

Terreno fondazione

Peso unità di volume	19,0 kN/m³
Peso unità di volume saturo	$19,0 \text{ kN/m}^3$
Angolo di resistenza a taglio	25,0 °
Coesione	$10,0 \text{ kN/m}^2$

Nr.	X	y	Tipo	Lunghez	Lunghez	Lunghez	Lunghez	Lunghez	Interass	Fattore	Fattore
	(m)	(m)		za	za	za non	za	za totale	e	sicurezz	sicurezz
				ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip)	(m)	(m)	(m)			to	
				(m)							
1	0,0	0,0	(1)	1	0,6	0	5	5		15,89	1,24
			Geogrig								
			lie								
2	0,35	0,6	(1)	1	0,6	0	5	5		16,71	1,48
			Geogrig								
			lie								
3	0,69	1,2	(1)	1	0,6	0	5	5		18,08	1,84
			Geogrig								
			lie								
4	1,04	1,8	(1)	1	0,6	0	5	5		20,68	2,43
			Geogrig								
			lie								
5	1,39	2,4	(1)	1	0,6	0	5	5		26,63	3,66
			Geogrig								
			lie								
6	1,73	3,0	(1)	1	0,6	0	5	5		47,56	7,54
			Geogrig								
			lie								

Elenco rinforzi

Tipo	Descrizione	Struttura	Resistenza
		(mm)	
1	Geogriglie	Geosintetici	28,99 kN/m

Descrizione

	Nr.	Confermare con il pulsante destro del mouse	X (m)	Y (m)	Lx (m)	Ly (m)	Q (kN/m²)
ĺ	1	Rilevato	2,4	3,6	4,5	1	30

Combinazione 1 (A1+M1)

comomuzione i (i ii i ivii)		
Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,30
3	Spinta falda	1,30
4	Spinta sismica in x	0,00
5	Spinta sismica in y	0,00
6	Rilevato	1,30

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1
2	Coesione	1
3	Coesione non drenata	1
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1,4
3	Scorrimento	1,1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 2 (A2+M2)

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,00
3	Spinta falda	1,00
4	Spinta sismica in x	0,00
5	Spinta sismica in y	0,00
6	Rilevato	1,00

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1,25
2	Coesione	1,25
3	Coesione non drenata	1,4
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1
3	Scorrimento	1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 3 (EQU+M2)

Nr.	Azioni	Fattore combinazione
1	Peso muro	0,90
2	Spinta terreno	1,10
3	Spinta falda	1,10
4	Spinta sismica in x	0,00
5	Spinta sismica in y	0,00

0 NIEV410 1.1

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1,25
2	Coesione	1,25
3	Coesione non drenata	1,4
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1
3	Scorrimento	1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 4 (Sisma)

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,00
3	Spinta falda	1,00
4	Spinta sismica in x	1,00
5	Spinta sismica in y	1,00
6	Rilevato	1,00

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1
2	Coesione	1
3	Coesione non drenata	1
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1,4
3	Scorrimento	1,1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 1 (A1+M1)

	Nr.	X (m)	y (m)	Tipo	Lunghez za ripiegat ura (Lrip) (m)	za facciata (Lf) (m)	Lunghez za non efficace (Lr) (m)	Lunghez za efficace (Le) (m)	Lunghez za totale (Lt) (m)	Interass e (m)	Fattore sicurezz a sfilamen to	Fattore sicurezz a rottura
	1	0,0	0,0	(1) Geogrig lie	1	0,6	0	5	5		15,89	1,24
	2	0,35	0,6	(1) Geogrig lie	1	0,6	0	5	5		16,71	1,48
	3	0,69	1,2	(1) Geogrig lie	1	0,6	0	5	5		18,08	1,84
	4	1,04	1,8	(1) Geogrig lie	1	0,6	0	5	5		20,68	2,43
Γ	5	1,39	2,4	(1)	1	0,6	0	5	5	-	26,63	3,66

			Geogrig lie							
6	1,73	3,0	(1)	1	0,6	0	5	5	 47,56	7,54
			Geogrig lie							

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (7,1/0,0) m Piano di rottura passante per (xr2,yr2) = (7,1/3,6) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Qf Quota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	В	
3,6	0,0	20,0	28,0	35,0	23,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

μ	Ka	Kd	Dk
67,0	0,4	0,64	0,24

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	61,43	26,08	7,08	1,2	
Spinta attiva Coesione	0,0	0,0	7,08	1,8	
Spinta incremento sismico	0,0	0,0	7,08	1,2	
Spinta statica sovraccarico	0,0	0,0	7,08	1,8	
Spinta incr. sismico sovraccarico	0,0	0,0	7,08	1,8	
Peso muro	0,0	360,0	3,54	1,8	

Momento stabilizzante 1459,01 kNm Momento ribaltante 73,72 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	61,43 kN
Sommatoria forze verticali	408,57 kN
Coefficiente di attrito	0,47
Adesione	10.0 kN/m^2

408,57 kN Forze normali al piano di scorrimento Forze parall. al piano di scorrimento 61,43 kN Coeff. sicurezza traslazione Csd 3,56

Traslazione verificata Csd>1

Verifica al ribaltamento

Momento stabilizzante 1459,01 kNm Momento ribaltante 73,72 kNm Coeff. sicurezza ribaltamento Csv 19,79

Muro verificato a ribaltamento Csv>1

Carico	limite:	TERZA	GHI
--------	---------	--------------	-----

Carred minte: TERE/10111		
Somma forze in direzione x	61,43	kN
Somma forze in direzione y (Fy)	408,57	kN
Somma momenti	-1385,3	kNm
Larghezza fondazione	5,0	m
Eccentricità su B	0,89	m
Peso unità di volume	19,0	kN/m^3
Angolo di resistenza al taglio	25,0	0
Coesione	10,0	$kN\!/m^2$
Terreno sulla fondazione	0,0	m
Peso terreno sul piano di posa	19,0	$kN\!/m^3$
Nq	12,72	
Nc	25,13	
Ng	9,7	
sq	1,0	
sc	1,0	
sg	1,0	
Zg (Effetto inerziale in fondazione)	1,0	
iq	1,0	
ic	1,0	
ig	1,0	
Carico limite verticale (Qlim)	2543,48	kN
Fattore sicurezza (Csq=Qlim/Fy)	6,23	
Carico limite verificato Csq>1		

Tensioni sul terreno

Ascissa centro sollecitazione 3,39 m Larghezza della fondazione 5,0 m

Tensione... 0,0 kN/m² x = 0.17x = 5,0Tensione... 169,24 kN/m²

Combinazione 2 (A2+M2)

Nr.	X	у	Tipo	Lunghez	Lunghez	Lunghez	Lunghez	Lunghez	Interass	Fattore	Fattore
	(m)	(m)		za	za	za non	za	za totale	e	sicurezz	sicurezz
				ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip)	(m)	(m)	(m)			to	
				(m)							
1	0,0	0,0	(1)	1	0,6	0	5	5		10,57	1,07
			Geogrig								
			lie								
2	0,35	0,6	(1)	1	0,6	0	5	5		11	1,28
			Geogrig								
			lie								

3	0,69	1,2	(1)	1	0,6	0,01	4,99	5	 11,73	1,6
			Geogrig							
			lie							
4	1,04	1,8	(1)	1	0,6	0,01	4,99	5	 13,12	2,12
			Geogrig							
			lie							
5	1,39	2,4	(1)	1	0,6	0,02	4,98	5	 16,28	3,18
			Geogrig							
			lie							
6	1,73	3,0	(1)	1	0,6	0,03	4,97	5	 27,2	6,5
			Geogrig							
			lie							

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (7,1/0,0) m Piano di rottura passante per (xr2,yr2) = (7,1/3,6) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Qf Quota finale strato

P.U.V. Peso unità di volume (kN/m³);
 Eps Inclinazione dello strato (°);
 Fi Angolo di resistenza a taglio;
 Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	В	
3,6	0,0	20,0	28,0	29,26	23,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

u	Ka	Kd	Dk
- CT 0	0.60	0.06	0.22
67,0	0,63	0,96	0,33

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	75,11	31,88	7,08	1,2	
Spinta attiva Coesione	0,0	0,0	7,08	1,8	
Spinta incremento sismico	0,0	0,0	7,08	1,2	
Spinta statica sovraccarico	0,0	0,0	7,08	1,8	
Spinta incr. sismico sovraccarico	0,0	0,0	7,08	1,8	
Peso muro	0,0	360,0	3,54	1,8	

Verifica alla traslazione

Sommatoria forze orizzontali	75,11	kN
Sommatoria forze verticali	409,19	
Coefficiente di attrito	0,37	
Adesione	8,0	kN/m ²
Forze normali al piano di scorrimento	409,19	kN
Forze parall. al piano di scorrimento	75,11	kN
Coeff. sicurezza traslazione Csd	2,56	

Traslazione verificata Csd>1

Verifica al ribaltamento

Coeff. sicurezza ribaltamento Csv	16,64
Momento ribaltante	90,13 kNm
Momento stabilizzante	1500,12 kNm

Muro verificato a ribaltamento Csv>1

Carico	limite:	TERZA	GHI
--------	---------	--------------	-----

Carico limite: TERZAGHI		
Somma forze in direzione x	75,11	kN
Somma forze in direzione y (Fy)	409,19	kN
Somma momenti	-1409,99	kNm
Larghezza fondazione	5,0	m
Eccentricità su B	0,95	m
Peso unità di volume	19,0	kN/m^3
Angolo di resistenza al taglio	20,46	0
Coesione	8,0	kN/m^2
Terreno sulla fondazione	0,0	m
Peso terreno sul piano di posa	19,0	kN/m^3
Nq	7,81	
Nc	18,24	
Ng	5,32	
sq	1,0	
sc	1,0	
sg	1,0	
Zg (Effetto inerziale in fondazione)	1,0	
iq	1,0	
ic	1,0	
ig	1,0	
Carico limite verticale (Qlim)	1993,19	kN
Fattore sicurezza (Csq=Qlim/Fy) Carico limite verificato Csq>1	4,87	

Tensioni sul terreno

Ascissa centro sollecitazione	3,45	m
Larghezza della fondazione	5.0	m

 $\begin{array}{ll} x=0{,}34 & \text{Tensione...} & 0{,}0 \text{ kN/m}^2 \\ x=5{,}0 & \text{Tensione...} & 175{,}52 \text{ kN/m}^2 \end{array}$

Combinazione 3 (EQU+M2)

Nr.	X	у	Tipo	Lunghez	Lunghez	Lunghez	Lunghez	Lunghez	Interass	Fattore	Fattore
	(m)	(m)		za	za	za non	za	za totale	e	sicurezz	sicurezz
				ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip)	(m)	(m)	(m)			to	

				(m)						
1	0,0	0,0	(1)	1	0,6	0	5	5	 9,74	0,98
			Geogrig							
			lie							
2	0,35	0,6		1	0,6	0	5	5	 10,18	1,17
			Geogrig							
			lie							
3	0,69	1,2	(1)	1	0,6	0,01	4,99	5	 10,91	1,45
			Geogrig							
			lie							
4	1,04	1,8	(1)	1	0,6	0,01	4,99	5	 12,3	1,93
			Geogrig							
			lie							
5	1,39	2,4	(1)	1	0,6	0,02	4,98	5	 15,47	2,89
			Geogrig							
			lie							
6	1,73	3,0		1	0,6	0,03	4,97	5	 26,37	5,91
			Geogrig							
			lie							

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (7,1/0,0) m Piano di rottura passante per (xr2,yr2) = (7,1/3,6) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Qf Quota finale strato

P.U.V. Peso unità di volume (kN/m³);
Eps Inclinazione dello strato (°);
Fi Angolo di resistenza a taglio;
Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	С	В	
3,6	0,0	20,0	28,0	29,26	23,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

μ	Ka Kd	Dk
67,0	0,63 0,96	0,33

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	82,62	35,07	7,08	1,2	

Spints attime Consider	0.0	0.0		7.00	1.0	
Spinta attiva Coesione	0,0	0,0		7,08	1,8	
Spinta incremento sismico	0,0	0,0		7,08	1,2	
Spinta statica sovraccarico	0,0	0,0		7,08	1,8	
Spinta incr. sismico sovraccarico Peso muro	0,0	0,0		7,08	1,8	
Peso muro	0,0	324,0		3,54	1,8	
Momento stabilizzante		1395,25	kNm			
Momento ribaltante		99,14				
Wiomento Hoartante)),1 T	KINIII			
Verifica alla traslazione						
Sommatoria forze orizzontali		82,62	kN			
Sommatoria forze verticali		378,1				
Coefficiente di attrito		0,37				
Adesione			kN/m²			
Forze normali al piano di scorrimento		378,1				
Forze parall. al piano di scorrimento		82,62				
Coeff. sicurezza traslazione Csd		2,19	'			
Traslazione verificata Csd>1		_,				
Verifica al ribaltamento						
Momento stabilizzante	1395	,25 kNm				
Momento ribaltante	99	,14 kNm				
Coeff. sicurezza ribaltamento Csv		14,07				
Muro verificato a ribaltamento Csv>1						
G : I' ' TEDEZAGIN						
Carico limite: TERZAGHI		92.62	1 NY			
Somma forze in direzione x		82,62				
Somma forze in direzione x Somma forze in direzione y (Fy)		378,1	kN			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti		378,1 -1296,11	kN kNm			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione		378,1 -1296,11 5,0	kN kNm m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B		378,1 -1296,11 5,0 0,93	kN kNm m m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume		378,1 -1296,11 5,0 0,93 19,0	kN kNm m m kN/m³			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio		378,1 -1296,11 5,0 0,93 19,0 20,46	kN kNm m m kN/m ³			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0	kN kNm m m kN/m ³ o			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0	kN kNm m m kN/m ³ o			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sq		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione)		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione) iq		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione) iq ic		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione) iq ic ig		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m kN/m³			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione) iq ic ig Carico limite verticale (Qlim)		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0 1,0 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m kN/m³			
Somma forze in direzione x Somma forze in direzione y (Fy) Somma momenti Larghezza fondazione Eccentricità su B Peso unità di volume Angolo di resistenza al taglio Coesione Terreno sulla fondazione Peso terreno sul piano di posa Nq Nc Ng sq sc sg Zg (Effetto inerziale in fondazione) iq ic ig		378,1 -1296,11 5,0 0,93 19,0 20,46 8,0 0,0 19,0 7,81 18,24 5,32 1,0 1,0 1,0 1,0 1,0 1,0	kN kNm m m kN/m³ ° kN/m² m kN/m³			

Tensioni sul terreno

Ascissa centro sollecitazione	3,43	m
Larghezza della fondazione	5,0	m

 $\begin{array}{ll} x=0{,}28 & \text{Tensione...} & 0{,}0 \text{ kN/m}^2 \\ x=5{,}0 & \text{Tensione...} & 160{,}34 \text{ kN/m}^2 \end{array}$

Combinazione 4 (Sisma)

Nr.	X	y	Tipo	Lunghez	Lunghez	Lunghez	Lunghez	Lunghez	Interass	Fattore	Fattore
	(m)	(m)		za	za	za non	za	za totale	e	sicurezz	sicurezz
				ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip)	(m)	(m)	(m)			to	
				(m)							
1	0,0	0,0	(1)	1	0,6	0	5	5		13,54	1,1
			Geogrig								
			lie								
2	0,35	0,6	(1)	1	0,6	0	5	5		14,1	1,31
			Geogrig								
			lie								
3	0,69	1,2	(1)	1	0,6	0	5	5		15,06	1,63
			Geogrig								
			lie								
4	1,04	1,8	(1)	1	0,6	0	5	5		16,85	2,17
			Geogrig								
			lie								
5	1,39	2,4	(1)	1	0,6	0	5	5		20,93	3,26
			Geogrig								
			lie								
6	1,73	3,0	(1)	1	0,6	0	5	5		35,03	6,66
			Geogrig								
			lie								

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (7,1/0,0) m Piano di rottura passante per (xr2,yr2) = (7,1/3,6) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Qf Quota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	ß	
3,6	0,0	20,0	28,0	35,0	23,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

- 11	Kа	Kd	Dk
μ	IXa	Ru	DK
67.0	0.4	0.64	0.24
07.0	0.4	0.04	0.24

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	47,25	20,06	7,08	1,2	
Spinta attiva Coesione	0,0	0,0	7,08	1,8	
Spinta incremento sismico	29,04	12,33	7,08	1,2	
Spinta statica sovraccarico	0,0	0,0	7,08	1,8	
Spinta incr. sismico sovraccarico	0,0	0,0	7,08	1,8	
Peso muro	33,48	360,0	3,54	1,8	

Momento stabilizzante 1503,67 kNm Momento ribaltante 151,81 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	109,77	kN
Sommatoria forze verticali	409,69	kN
Coefficiente di attrito	0,47	
Adesione	10,0	kN/m^2
Forze normali al piano di scorrimento	409,69	kN
Forze parall. al piano di scorrimento	109,77	kN
Coeff. sicurezza traslazione Csd	2,0	
Traslazione verificata Csd>1		

Verifica al ribaltamento

Momento stabilizzante 1503,67 kNm Momento ribaltante 151,81 kNm Coeff. sicurezza ribaltamento Csv 9,9

Muro verificato a ribaltamento Csv>1

Carico limite: TERZAGHI

Currey minter TERESTOTI		
Somma forze in direzione x	109,77	kN
Somma forze in direzione y (Fy)	409,69	kN
Somma momenti	-1351,86	kNm
Larghezza fondazione	5,0	m
Eccentricità su B	0,8	m
Peso unità di volume	19,0	kN/m^3
Angolo di resistenza al taglio	25,0	0
Coesione	10,0	kN/m^2
Terreno sulla fondazione	0,0	m
Peso terreno sul piano di posa	19,0	kN/m^3
Nq	12,72	
Nc	25,13	
Ng	9,7	
sq	1,0	
sc	1,0	
sg	1,0	
Zg (Effetto inerziale in fondazione)	1,0	
iq	1,0	
ic	1,0	
ig	1,0	
Carico limite verticale (Qlim)	2543,48	kN
Fattore sicurezza (Csq=Qlim/Fy) Carico limite verificato Csq>1	6,21	
Carico minice vernicato Csq/1		

Tensioni sul terreno

Ascissa centro sollecitazione	3,3	m
Larghezza della fondazione	5,0	m

x = 0.0	Tensione	$3,3 \text{ kN/m}^2$
x = 5.0	Tensione	160,57 kN/m ²

MU03B – Verifiche di stabilità globale

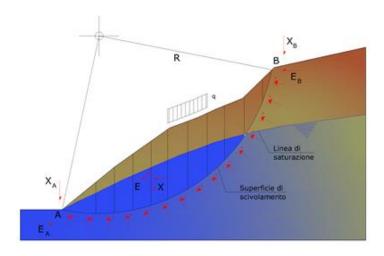
Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:


- Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (φ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ_f) , valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

1

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N; agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali E_i agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X; agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E_i;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

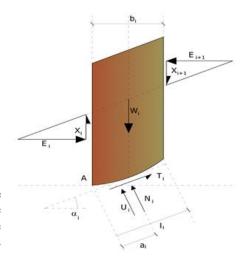
- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.


Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterio di rottura

$$F = \frac{\Sigma \left\{ c_i \times b_i + \left(W_i - u_i \times b_i + \Delta X_i \right) \times \tan \phi_i \right\} \times \frac{\sec \alpha_i}{1 + \tan \alpha_i \times \tan \phi_i \ / \ F}}{\Sigma W_i \times \sin \alpha_i}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X=0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{y}W$$

Essendo:

- **F**_H e **F**_V rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- W peso concio;
- **K**_{**x**} coefficiente sismico orizzontale;
- **K**_v coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Analisi di stabilità dei pendii con: BISHOP (1955) - CONDIZIONI STATICHE

Calcolo eseguito secondo	NTC 2008 & Circ.
Numero di strati	4,0
Numero dei conci	50,0
Grado di sicurezza ritenuto accettabile	1,1
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	-10,0 m
Ordinata vertice sinistro inferiore yi	15,0 m
Ascissa vertice destro superiore xs	10,0 m
Ordinata vertice destro superiore ys	25,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0

Vertici profilo

v ci tici pi oino		
Nr	X	у
	(m)	(m)
1	-22,0	-1,3
2	-12,29	-1,37
3	0,35	0,6
4	2,08	3,6
5	2,88	
6	11,21	8,6
7	24,21	8,6
8	27,88	6,03
9	47,71	10,55

Falda

Nr.	X	у
	(m)	(m)
1	-22,0	-2,4
2	-12,47	-2,36
3	-0,12	-0,99
4	6,81	0,58
5	27,81	0,58 5,05
6	47,71	9,59

Vertici strato1

N	X	y
	(m)	(m)
1	-22,0	-1,3
2	-12,29	-1,37
3	-12,29	-1,37
4	0,35	0,6
5	5,1	0,04
6	6,89	1,56
7	27,88	6,03
8	47,71	10,55

Vertici strato2

N	X	y
	(m)	(m)
1	-22,0	-8,0
2	-12,29	-7,61
3	0,17	-6,22
4	28,36	-0,12
5	47,71	4,28

Vertici strato3

N	X	у
	(m)	(m)
1	-22,0	-14,0
2	-12,29	-13,87
3	1,55	-12,33
4	18,52	-8,51
5	38,98	-4,01
6	47,71	-2,02

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili

Favorevoli: Permanenti, variabili

1,0 1,3

1,0 1,3

Coefficienti parziali per i parametri geotecnici del terreno

	========
Tangente angolo di resistenza al taglio	1,25
Coesione efficace	1,25
Coesione non drenata	1,4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

Strato	Coesione	Coesione non	Angolo	Peso unità di	Peso saturo	Litologia	
	(kN/m^2)	drenata	resistenza al	volume	(kN/m^3)		
		(kN/m^2)	taglio	(kN/m^3)			

		(°)				
1	0	35	20	20	Riilevato	
2	10	25	19	19	Ecla	
3	10	26	19	19	Salt	
4	50	36	23	23	Ap	

Terra rinforzata

No	Tipologia	Tallow (kN)	Resistenza sfilamento (kN)	
1	Geogriglie	28,99	74,32003	
2	Geogriglie	28,99	65,53342	
3	Geogriglie	28,99	57,12474	
4	Geogriglie	28,99	49,26194	
5	Geogriglie	28,99	42,22982	
6	Geogriglie	28,99	36,55304	

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kN/m²)
1	12,74	8,6	22,74	8,6	30

Risultati analisi pendio [NTC 2008 & Circ.]

	==========
Fs minimo individuato	1,14
Ascissa centro superficie	0,0 m
Ordinata centro superficie	16,0 m
Raggio superficie	17,5 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 0.00 yc = 16.00 Rc = 17.50 Fs=1.141

Nr.	B m	Alfa (°)	Li m	Wi (kN)	Kh•Wi (kN)	Kv•Wi (kN)	c (kN/m²)	Fi (°)	Ui (kN)	N'i (kN)	Ti (kN)
1	0,44	-19,6	0,47	0,95	0,0	0,0	8,0	20,5	0,0	2,5	4,1
2	0,44	-18,1	0,46	2,78	0,0	0,0	8,0	20,5	0,0	4,5	4,7
3	0,44	-16,6	0,46	4,49	0,0	0,0	8,0	20,5	0,0	6,3	5,3
4	0,44	-15,1	0,45	6,1	0,0	0,0	8,0	20,5	0,0	7,9	5,8
5	0,44	-13,6	0,45	7,61	0,0	0,0	8,0	20,5	0,0	9,3	6,2
6	0,44	-12,1	0,45	9,02	0,0	0,0	8,0	20,5	0,0	10,6	6,6
7	0,44	-10,7	0,45	10,33	0,0	0,0	8,0	20,5	0,0	11,8	7,0
8	0,44	-9,2	0,44	11,54	0,0	0,0	8,0	20,5	0,0	12,9	7,3
9	0,44	-7,8	0,44	12,66	0,0	0,0	8,0	20,5	0,5	13,3	7,5
10	0,44	-6,3	0,44	13,68	0,0	0,0	8,0	20,5	0,9	13,7	7,6
11	0,44	-4,9	0,44	14,61	0,0	0,0	8,0	20,5	1,3	14,0	7,7
12	0,44	-3,4	0,44	15,44	0,0	0,0	8,0	20,5	1,6	14,3	7,8
13	0,44	-2,0	0,44	16,19	0,0	0,0	8,0	20,5	1,9	14,5	7,8
14	0,44	-0,5	0,44	16,84	0,0	0,0	8,0	20,5	2,2	14,8	7,9
15	0,3	0,7	0,3	11,74	0,0	0,0	8,0	20,5	1,7	10,0	5,3
16	0,58	2,1	0,58	28,9	0,0	0,0	8,0	20,5	3,8	24,7	12,1
17	0,44	3,8	0,44	29,44	0,0	0,0	8,0	20,5	3,3	25,5	11,4

5

18	0,44	5,2	0,44	35,86	0,0	0,0	8,0	20,5	3,6	31,2	13,3
19	0,27	6,4	0,27	25,19	0,0	0,0	8,0	20,5	2,3	22,0	9,1
20	0,61	7,8	0,61	59,03	0,0	0,0	8,0	20,5	5,4	51,2	21,0
21	0,44	9,6	0,45	42,13	0,0	0,0	8,0	20,5	4,1	36,1	14,9
22	0,44	11,0	0,45	43,8	0,0	0,0	8,0	20,5	4,2	37,3	15,3
23	0,44	12,5	0,45	45,38	0,0	0,0	8,0	20,5	4,2	38,6	15,8
24	0,44	14,0	0,45	46,85	0,0	0,0	8,0	20,5	4,2	39,9	16,2
25	0,44	15,5	0,46	48,22	0,0	0,0	8,0	20,5	4,2	41,1	16,6
26	0,44	17,0	0,46	49,5	0,0	0,0	8,0	20,5	4,0	42,3	17,1
27	0,44	18,5	0,46	50,48	0,0	0,0	8,0	20,5	3,8	43,4	17,4
28	0,44	20,0	0,47	51,35	0,0	0,0	8,0	20,5	3,6	44,3	17,8
29	0,44	21,5	0,47	52,11	0,0	0,0	8,0	20,5	3,3	45,3	18,1
30	0,44	23,1	0,48	52,76	0,0	0,0	8,0	20,5	3,0	46,2	18,5
31	0,44	24,6	0,48	53,4	0,0	0,0	8,0	20,5	2,6	47,3	18,8
32	0,44	26,2	0,49	53,93	0,0	0,0	8,0	20,5	2,0	48,4	19,2
33	0,44	27,9	0,5	54,33	0,0	0,0	8,0	20,5	1,5	49,4	19,6
34	0,44	29,5	0,5	54,6	0,0	0,0	8,0	20,5	0,9	50,4	20,0
35	0,44	31,2	0,51	54,73	0,0	0,0	8,0	20,5	0,2	51,4	20,4
36	0,44	32,9	0,52	54,72	0,0	0,0	8,0	20,5	0,0	51,8	20,6
37	0,44	34,6	0,53	54,55	0,0	0,0	8,0	20,5	0,0	52,0	20,7
38	0,44	36,3	0,55	54,21	0,0	0,0	8,0	20,5	0,0	52,0	20,8
39	0,62	38,5	0,79	75,49	0,0	0,0	8,0	20,5	0,0	73,1	29,4
40	0,26	40,4	0,34	30,77	0,0	0,0	0,0	29,3	0,0	28,5	14,0
41	0,44	41,9	0,59	49,4	0,0	0,0	0,0	29,3	0,0	46,1	22,6
42	0,44	43,9	0,61	45,81	0,0	0,0	0,0	29,3	0,0	43,2	21,2
43	0,44	45,9	0,63	43,73	0,0	0,0	0,0	29,3	0,0	41,7	20,5
44	0,44	48,0	0,66	54,97	0,0	0,0	0,0	29,3	0,0	53,2	26,1
45	0,44	50,2	0,69	50,52	0,0	0,0	0,0	29,3	0,0	49,7	24,4
46	0,44	52,5	0,72	45,7	0,0	0,0	0,0	29,3	0,0	45,8	22,5
47	0,44	54,9	0,76	40,45	0,0	0,0	0,0	29,3	0,0	41,4	20,3
48	0,44	57,5	0,82	34,69	0,0	0,0	0,0	29,3	0,0	36,5	17,9
49	0,44	60,3	0,89	28,3	0,0	0,0	0,0	29,3	0,0	30,7	15,1
50	0,44	63,4	0,98	17,2	0,0	0,0	0,0	29,3	0,0	19,4	9,5

Analisi di stabilità dei pendii con: BISHOP (1955) – CONDIZIONI SISMICHE

Calcolo eseguito secondo
NTC 2008 & Circ.
Numero di strati
4,0
Numero dei conci
50,0
Grado di sicurezza ritenuto accettabile
1,1
Coefficiente parziale resistenza
1,0
Parametri geotecnici da usare. Angolo di attrito:
Analisi
Superficie di forma circolare

NTC 2008 & Circ.
1,0
Condizione drenata

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	-10,0 m
Ordinata vertice sinistro inferiore yi	15,0 m
Ascissa vertice destro superiore xs	10,0 m
Ordinata vertice destro superiore ys	25,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0
Coefficiente azione sismica orizzontale	0,084
Coefficiente azione sismica verticale	0,042

Vertici profilo

Nr	X	у
	(m)	(m)
1	-22,0	-1,3
2	-12,29	-1,37
3	0,35	0,6
4	2,08	3,6
5	2,88	3,6 8,6
6	11,21	8,6
7	24,21	8,6
8	27,88	6,03
9	47,71	10,55

Falda

raiua		
Nr.	X	у
	(m)	(m)
	-22,0	-2,4
	-12,47	-2,36
	-0,12	-0,99
	4 6,81	0,58
	5 27,81	5,05
	6 47,71	9,59

Vertici strato 1

veruer su ato							
N	X	у					
	(m)	(m)					
1	-22,0	-1,3					
2	-12,29	-1,37					
3	-12,29	-1,37					
4	0,35	0,6					
5	5,1	0,04					
6	6,89	1,56					

7	27,88	6,03
8	47,71	10,55

Vertici strato2

N	X	у
	(m)	(m)
1	-22,0	-8,0
2	-12,29	-7,61
3	0,17	-6,22
4	28,36	-0,12
5	47,71	4,28

Vertici strato3

N	X	y
	(m)	(m)
1	-22,0	-14,0
2	-12,29	-13,87
3	1,55	-12,33
4	18,52	-8,51
5	38,98	-4,01
6	47,71	-2,02

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili
Favorevoli: Permanenti, variabili
1,0 1,0
1,0 1,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1,25
Coesione efficace	1,25
Coesione non drenata	1,4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

ou augi aiia							
Strato	Coesione	Coesione non	Angolo	Peso unità di	Peso saturo	Litologia	
	(kN/m^2)	drenata	resistenza al	volume	(kN/m^3)		
		(kN/m^2)	taglio	(kN/m^3)			
			(°)				
1	0		35	20	20	Riilevato	
2	10		25	19	19	Ecla	
3	10		26	19	19	Salt	
4	50		36	23	23	Ap	

Terra rinforzata

No	Tipologia	Tallow	Resistenza sfilamento		
		(kN)	(kN)		
1	Geogriglie	28,99	74,32003		
2	Geogriglie	28,99	65,53342		
3	Geogriglie	28,99	57,12474		
4	Geogriglie	28,99	49,26194		
5	Geogriglie	28,99	42,22982		
6	Geogriglie	28,99	36,55304		

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kN/m²)
1	12,74	8,6	22,74	8,6	30

Risultati analisi pendio [NTC 2008 & Circ.]

Fs minimo individuato	0,91
Ascissa centro superficie	0,0 m
Ordinata centro superficie	16,0 m
Raggio superficie	17,5 m

xc = 7,00 yc = 15,50 Rc = 17,00 Fs=1,102

xc =	= 7,00 ye	= 15,50 KC	= 17,00	FS=1,102							
Nr.		Alfa	Li	Wi	Kh•Wi	Kv•Wi	c	Fi	Ui	N'i	Ti
	m	(°)	m	(kN)	(kN)	(kN)	(kN/m^2)	(°)	(kN)	(kN)	(kN)
1	0,47	-26,6	0,52	1,38	0,12	0,06	8,0	20,5	0,0	4,1	5,2
2	0,47	-24,8	0,52	4,03	0,34	0,17	8,0	20,5	0,0	7,3	6,2
3	0,25	-23,5	0,28	3,23	0,27	0,14	8,0	20,5	0,0	5,1	3,7
4	0,68	-21,8	0,73	19,57	1,64	0,82	8,0	20,5	0,0	26,8	14,4
5	0,47	-19,7	0,5	24,71	2,08	1,04	8,0	20,5	0,0	31,3	14,2
6	0,58	-17,9	0,61	43,13	3,62	1,81	8,0	20,5	0,7	51,6	21,9
7	0,36	-16,2	0,37	31,07	2,61	1,3	8,0	20,5	1,3	35,2	14,6
8	0,47	-14,8	0,48	41,85	3,52	1,76	8,0	20,5	2,7	45,5	18,9
9	0,47	-13,1	0,48	44,36	3,73	1,86	8,0	20,5	3,7	46,2	19,1
10	0,47	-11,5	0,48	47,92	4,03	2,01	8,0	20,5	4,7	48,2	19,8
11	0,47	-9,9	0,47	51,36	4,31	2,16	8,0	20,5	5,5	50,1	20,4
12	0,47	-8,3	0,47	54,67	4,59	2,3	8,0	20,5	6,4	51,9	21,0
13	0,47	-6,7	0,47	57,87	4,86	2,43	8,0	20,5	7,1	53,6	21,6
14	0,47	-5,2	0,47	60,78	5,11	2,55	8,0	20,5	7,8	55,1	22,1
15	0,47	-3,6	0,47	63,53	5,34	2,67	8,0	20,5	8,5	56,6	22,6
16	0,47	-2,0	0,47	66,17	5,56	2,78	8,0	20,5	9,1	57,9	23,0
17	0,47	-0,4	0,47	68,7	5,77	2,89	8,0	20,5	9,6	59,3	23,5
18	0,47	1,2	0,47	71,24	5,98	2,99	8,0	20,5	10,0	60,7	24,0
19	0,47	2,7	0,47	73,68	6,19	3,09	8,0	20,5	10,5	62,1	24,4
20	0,47	4,3	0,47	76,0	6,38	3,19	8,0	20,5	10,8	63,5	24,9
21	0,47	5,9	0,47	78,2	6,57	3,28	8,0	20,5	11,0	64,9	25,4
22	0,47	7,5	0,47	80,29	6,74	3,37	8,0	20,5	11,3	66,2	25,9
23	0,47	9,1	0,47	82,26	6,91	3,46	8,0	20,5	11,4	67,6	26,3
24	0,47	10,7	0,48	84,12	7,07	3,53	8,0	20,5	11,4	68,9	26,8
25	0,47	12,3	0,48	85,85	7,21	3,61	8,0	20,5	11,5	70,2	27,2
26	0,36	13,7	0,37	67,06	5,63	2,82	8,0	20,5	8,8	54,8	21,2
27	0,58	15,3	0,6	107,37	9,02	4,51	8,0	20,5	14,0	87,5	34,0
28	0,47	17,2	0,49	85,76	7,2	3,6	8,0	20,5	11,2	69,7	27,2
29	0,47	18,8	0,49	84,37	7,09	3,54	8,0	20,5	10,9	68,5	26,8
30	0,47	20,5	0,5	96,24	8,08	4,04	8,0	20,5	10,6	79,9	30,7
31	0,47	22,2	0,5	95,19	8,0	4,0	8,0	20,5	10,2	79,3	30,5
32	0,47	23,9	0,51	93,38	7,84	3,92	8,0	20,5	9,8	78,1	30,2
33	0,47	25,6	0,52	91,42	7,68	3,84	8,0	20,5	9,3	76,8	29,8
34	0,47	27,4	0,53	89,3	7,5	3,75	8,0	20,5	8,6	75,6	29,4
	0,47	29,2	0,54	87,02	7,31	3,65	8,0	20,5	7,9	74,4	29,1
36	0,47	31,0	0,55	84,57	7,1	3,55	8,0	20,5	7,2	73,1	28,7
37	0,47	32,9	0,56	81,93	6,88	3,44	8,0	20,5	6,3	71,8	28,3
38	0,47	34,8	0,57	79,1	6,64	3,32	8,0	20,5	5,3	70,4	28,0
39	0,47	36,7	0,58	76,07	6,39	3,19	8,0	20,5	4,2	69,0	27,6
40	0,47	38,7	0,6	72,81	6,12	3,06	8,0	20,5	3,0	67,6	27,3
41	0,47	40,8	0,62	69,32	5,82	2,91	8,0	20,5	1,7	66,1	26,9
42	0,47	42,9	0,64	65,56	5,51	2,75	8,0	20,5	0,2	64,5	26,5
43	0,47	45,1	0,66	61,51	5,17	2,58	8,0	20,5	0,0	61,4	25,6
44	0,47	47,3	0,69	57,13	4,8	2,4	8,0	20,5	0,0	57,7	24,5
45	0,47	49,7	0,72	52,32	4,39	2,2	0,0	29,3	0,0	50,6	25,7

3

46	0,47	52,2	0,76	46,93	3,94	1,97	0,0	29,3	0,0	46,3	23,5
47	0,47	54,9	0,81	41,01	3,45	1,72	0,0	29,3	0,0	41,4	21,0
48	0,47	57,7	0,88	34,47	2,9	1,45	0,0	29,3	0,0	35,8	18,2
49	0,47	60,8	0,96	27,13	2,28	1,14	0,0	29,3	0,0	29,1	14,8
50	0,47	64,2	1,08	15,74	1,32	0,66	0,0	29,3	0,0	17,6	9,0