

С

Gennaio 2022

ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA
SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

			PERIZIA	DI VARI	ANTE			
CON	TRAENTE G	PA I.I.	IL RESPONSABII	LE DEL CONT	RAENTE GENERA	LE		
Pari S. IL PI Dott. Ordin Mante	decipazioni Ital p.A. ROGETTISTA Ing. Salvatore Lieto de degli Ingegneri Provova n.1147 EOLOGO Amedeo Babbini de dei Geologi Regione 2) 7. di	ASSISTENZA ALLA PROGETTAZIONE SGS IL PROGETTISTA Ing. Valter Capata					
VISTO:IL	RESPONSABILE DELPROCEDIMEN	NTO	IL COORDINATORE DELLA SICUREZZA IN FASE DI ESECUZIONE			ORI		
Ing. Ig	inio Farotti		Ing. Vincenzo Pardo		Ing. Peppino Marascio			
3° st 4° st OPE Mur	ralcio funzionale: RE D'ARTE MINC	Castelraim Castelraim ORI in SX dal k	MARCHE ondo nord – Caste ondo sud – Inneste m 1+931 al km 2-	o S.S. 77 a Mu		SCALA: DATA: Luglio 2022		
Codio	ce Unico di Progetto	(CUP) F12C0	03000050021 (Assegna	ato CIPE 23-12-201	5)			
Codio	ce Elaborato:	Opera 7 0 .		ttore CEE E 1 6	WBS M U 0 0 0 6		N. prog. Rev.	
REV.	DATA	DESCRIZIO	NE	Redatto		Controllato	Approvato	
Α	Settembre 2020	Emissione		Progin	M. Tartaglia	S.Lieto	A.Grimaldi	
В	Maggio 2021	Emissione	PED	SGS	C.Agostini	V. Capata	S.Lieto	

SGS

C.Agostini

V. Capata

S.Lieto

Emissione a seguito istruoria

ANAS del 22.12.2021

D	Luglio 2022	Emissione a seguito istruoria	SGS	C.Agostini	V.Capata	S.Lieto	
		ANAS del 18.07.2022					

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	3 di 52

INDICE

2. DOCUMENTI DI RIFERIMENTO	
2.1 DOCUMENTI DI PROGETTO	6
2.2 NORMATIVE DI RIFERIMENTO	6
2.3 SOFTWARE	6
3. DESCRIZIONE DELL' OPERA	7
4. CARATTERISTICHE DEI MATERIALI	12
4.1 CALCESTRUZZO PER PALI E CORDOLO	12
4.2 CALCESTRUZZO PER MURI – PARAMENTO	12
4.3 ACCIAIO PER BARRE DI ARMATURA	13
4.4 TERRA RINFORZATA	13
5. MODELLO GEOTECNICO DI RIFERIMENTO	15
5.1 LIVELLO DELLA FALDA	15
5.2 CARATTERIZZAZIONE GEOTECNICA	15
6. CARATTERIZZAZIONE SISMICA	17
7. VERIFICHE GEOTECNICHE E STRUTTURALI	18
7.1 VERIFICHE GEOTECNICHE	18
7.1.1 STABILITA' GLOBALE	
7.1.2 STABILITA' LOCALE	
7.1.3 VERIFICA CAPACITA' PORTANTE PALI	
7.2 VERTITION TO NALI DELLE SEZIONI IN C.A	
7.2.2 STATO LIMITE ESERCIZIO	
7.3 VERIFICHE STRUTTURALI GEOGRIGLIE	21
8. STATI LIMITE E COMBINAZIONI DI CALCOLO	22
8.1 STATO LIMITE ULTIMO	22
8.2 STATO LIMITE ESERCIZIO	24
9. ANALISI DEI CARICHI	26
9.1 CARICHI PERMANENTI	26
9.2 CARICHI ACCIDENTALI	
9.3 AZIONE SISMICA	26
10. ANALISI E VERIFICHE	30
10.1 SEZIONI DI CALCOLO	30
10.2 RISULTATI DELLE ANALISI: SEZIONE PARATIA	30
10.2.1 Sollecitazioni nella paratia	
10.2.2 Verifica sulla spinta mobilitata al piede della paratia	
10.2.4 Stabilità globale	

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	4 di 52

10.2.5	Verifica della capacità portante dei pali sottoposti alle azioni verticali	37
	Verifiche strutturali	
10.3 RIS	SULTATI DELLE ANALISI: SEZIONE TERRA RINFORZATA	48
10.3.1	Stabilità locale	48
10.3.2	Verifiche strutturali geogriglie	48
	Stabilità globale	
11. CON	CLUSIONI	50
APPENDI	CE A	51
APPENDI	CE R	52

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	5 di 52

1. GENERALITÀ

Il presente documento costituisce la relazione di calcolo del Progetto Esecutivo di Dettaglio (PED) delle opere geotecniche di sostegno previste nell'ambito dei lavori di completamento dello stralcio funzionale 3° e 4° del tratto della Pedemontana delle Marche.

La redazione del Progetto Esecutivo di Dettaglio ha lo scopo di ottimizzare, laddove possibile, le opere geotecniche oggetto del Progetto Esecutivo. A tal fine, sono state prese a riferimento per la ottimizzazione le valutazioni e le carattezzazioni idrogeologico, geotecniche e sismiche dei siti in esame presenti nel Progetto Esecutivo.

I calcoli e le verifiche di sicurezza sono stati effettuati in conformità alle norme NTC 2008.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	6 di 52

2. DOCUMENTI DI RIFERIMENTO

Nella redazione del progetto esecutivo di dettaglio si è fatto riferimento ai seguenti documenti.

2.1 DOCUMENTI DI PROGETTO

- LO703213E02GE0000REL01C Relazione geologica, geomorfologica e geoidrologica generale
- LO703213E02GE0001REL01D Relazione geotecnica generale sulle opere all'aperto
- L0703212E04000000REL01C Relazione sismica
- LO703213E02GE0000PRF02C Profilo geologico
- LO703213E02GE0001PRF02D Profilo geotecnico
- L0703213E16OS0000REL01B Relazione tecnica e di calcolo opere di sostegno in terra rinforzata

2.2 NORMATIVE DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

- D.M. 14/01/2008 "Norme tecniche per le costruzioni" (NTC08).
- Circolare del 02/02/2009. Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.
- UNI EN1990 EUROCODICE 0 Criteri generali di progettazione strutturale.
- UNI EN1991 EUROCODICE 1 Azioni sulle strutture
- UNI EN1992-1-1 EUROCODICE 2, parte 1-1 Progettazione delle strutture in calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1997-1. EUROCODICE 7, parte 1. Progettazione geotecnica. Parte 1: Regole generali
- UNI EN 1998-5. EUROCODICE 8, parte 5. Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

2.3 SOFTWARE

GeoStru 2021 - <u>www.geostru.eu</u>

RC-Sec (GeoStru – 2021) - www.geostru.eu

PARATIE PLUS – versione 2021 – Harpaceas – www.harpaceas.it

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	7 di 52

3. DESCRIZIONE DELL' OPERA

Le analisi e verifiche nel seguito esposte fanno riferimento all' opera di sostegno MU06 situata in SX dell'asse stradale e funzionale al contenimento in valle (sottoscarpa) del rilevato stradale da realizzare, dal km 1+931 al km 2+006, per uno svuluppo totale di circa 75m.

Nell'ambito del Progetto Esecutivo di Dettaglio (PED), l'ottimizzazione dell'opera in oggetto prevede opere di sostegno in terra rinforzata e muri in c.a. fondati su pali φ1500/2.0m di lunghezza 8m.

I tratti di applicazione dei due tipi di intervento dipendono dall'altezza di progetto riferita al piede del rilevato stradale e dal p.c. attuale.

In particolare:

- 1) Da pk 1+933 a pk 1+950 sono predisposte opere in terra rinforzata a sostegno di un'altezza di contenimento al piede rilevato variabile tra 2.0m e 3.0m massimo;
- 2) Da pk 1+950 a pk 1+990.3 è previsto il muro in c.a. fondato su paratia di pali φ1500/2.0m e lunghezza 8m strutturalmente connessi attraverso un cordolo in c.a. di testa

Alla progressiva km 1+980, sarà realizzato un collettore per il deflusso delle acque meteoriche che fungerà da bypass tra monte e valle. A tal fine è prevista un'asola sul muro per consentirne l'attraversamento.

In Figura 2, Figura 3 e Figura 4 sono rappresentate pianta, profilo e sezioni tipo dell'opera rispettivamente.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	8 di 52

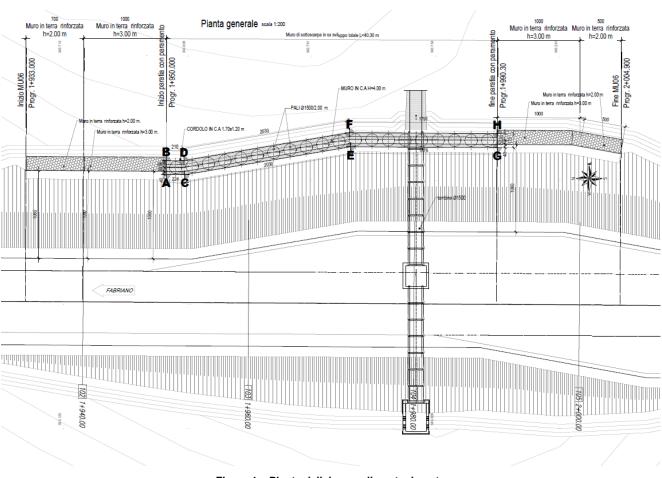


Figura 1 - Pianta della'opera di contenimento

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	9 di 52

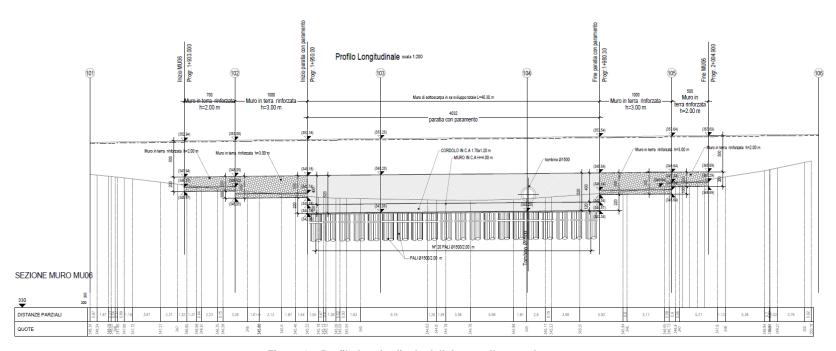
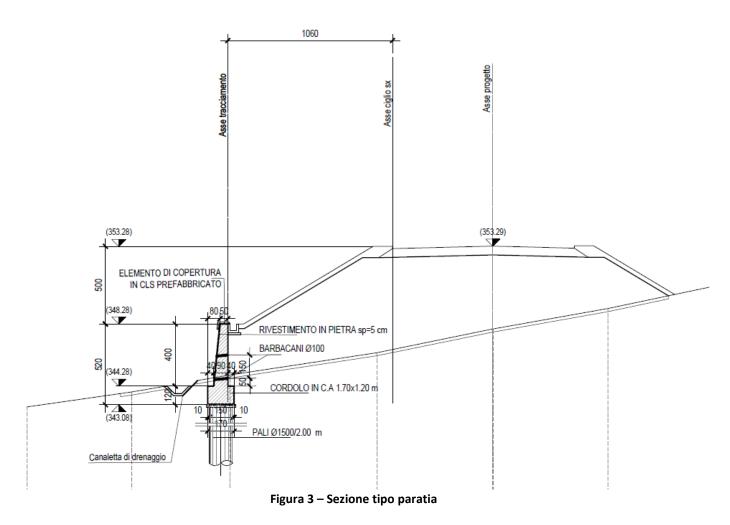


Figura 2 - Profilo longitudinale della'opera di contenimento



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	10 di 52

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	11 di 52

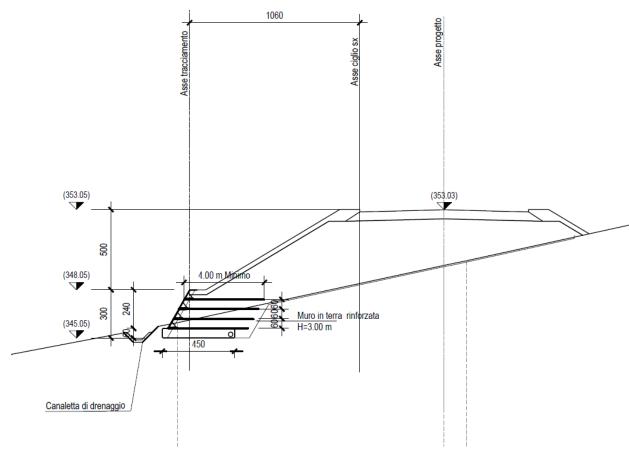


Figura 4 - Sezione tipo terra rinforzata

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag, di Pag.
L073	213	Е	16	MU0006	REL	01	D	12 di 52

4. CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO PER PALI E CORDOLO

Per i getti in opera è stato considerato un calcestruzzo di classe C32/40 le cui proprietà meccaniche sono:

- Resistenza caratteristica cubica a compressione 28 gg: R_{ck} = 40 Mpa

- Resistenza caratteristica cilindrica a compressione 28 gg $f_{ck} = 0.83 \cdot R_{ck} = 32$ Mpa

- Resistenza media cilindrica a compressione: $f_{cm} = f_{ck} + 8 = 40 \text{ Mpa}$

Resistenza media a trazione semplice (assiale): $f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 3.02 \text{ Mpa}$

Resistenza caratteristica corrispondente al frattile 5%: $f_{ctk,0.05}$ =0.7· f_{ctm} =2.12 Mpa Modulo elastico E_{cm} =22· $(f_{cm}/10)^{0.3}$ =33.35GPa

- Rapporto massimo acqua/cemento: A/C≤0.50

- Classe di esposizione ambientale: XA2

I valori delle resistenze di progetto sono ottenuti applicando i seguenti fattori di sicurezza:

- Coefficiente parziale di sicurezza relativo al calcestruzzo: Y_c= 1.5

- Coefficiente riduttivo per la resistenza di lunga durata: α_{cc} =0.85

Resistenza di progetto allo SLU

- Resistenza di calcolo a compressione: $f_{cd} = \alpha_{cc} \cdot f_{ck}/\gamma_{c} = 18.1 \text{ MPa}$ - Resistenza di calcolo a trazione: $f_{ctd} = f_{ctk,0.05}/\gamma_{c} = 1.41 \text{ MPa}$

Resistenza di progetto allo SLE

 $\begin{array}{lll} \text{-} & \text{Tensione limite in comb. caratteristica (rara)} & \sigma_{c,r} = 0.6 \cdot f_{ck} = 19.2 \text{ MPa} \\ \text{-} & \text{Tensione limite in comb. quasi permamente} & \sigma_{c,qp} = 0.45 \cdot f_{ck} = 14.4 \text{ MPa} \\ \text{-} & \text{Tensione limite fessurazione (trazione)} & \sigma_{t} = f_{ctm}/1.2 = 2.52 \text{ MPa} \\ \end{array}$

4.2 CALCESTRUZZO PER MURI – PARAMENTO

Per i getti in opera è stato considerato un calcestruzzo di classe C25/30 le cui proprietà meccaniche sono:

- Resistenza caratteristica cubica a compressione 28 gg: R_{ck} = 30 Mpa

- Resistenza caratteristica cilindrica a compressione 28 gg $f_{ck} = 0.83 \cdot R_{ck} = 24.9 \text{ MPa}$

- Resistenza media cilindrica a compressione: $f_{cm} = f_{ck} + 8 = 32.9 \text{ MPa}$ - Resistenza media a trazione semplice (assiale): $f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 2.56 \text{ MPa}$

- Modulo elastico $E_{cm}=22\cdot(f_{cm}/10)^{0.3}=31.45\text{GPa}$

 $f_{ctk,0.05} = 0.7 \cdot f_{ctm} = 1.79 \text{ MPa}$

- Rapporto massimo acqua/cemento: A/C≤0.50

- Rapporto massimo acqua/cemento: A/C≤0.50

Classe di esposizione ambientale: XC2

Resistenza caratteristica corrispondente al frattile 5%:

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	13 di 52

I valori delle resistenze di progetto sono ottenuti applicando i seguenti fattori di sicurezza:

- Coefficiente parziale di sicurezza relativo al calcestruzzo: Y_c= 1.5

- Coefficiente riduttivo per la resistenza di lunga durata: α_{cc} =0.85

Resistenza di progetto allo SLU

- Resistenza di calcolo a compressione: $f_{cd} = \alpha_{cc} \cdot f_{ck}/\gamma_c = 14.1 \text{ MPa}$ - Resistenza di calcolo a trazione: $f_{ctd} = f_{ctk,0.05}/\gamma_c = 1.19 \text{ MPa}$

Resistenza di progetto allo SLE

 $\begin{array}{lll} \text{-} & \text{Tensione limite in comb. caratteristica (rara)} & \sigma_{c,r} = 0.6 \cdot f_{ck} = 14.9 \text{ MPa} \\ \text{-} & \text{Tensione limite in comb. quasi permamente} & \sigma_{c,qp} = 0.45 \cdot f_{ck} = 11.2 \text{ MPa} \\ \text{-} & \text{Tensione limite fessurazione (trazione)} & \sigma_{t} = f_{ctm}/1.2 = 2.13 \text{ MPa} \\ \end{array}$

4.3 ACCIAIO PER BARRE DI ARMATURA

Per le barre di armatura è stato considerato un acciaio del tipo B450C, le cui caratteristiche di resistenza sono:

 $\begin{array}{lll} \text{-} & \text{Tensione caratteristica di snervamento:} & f_{yk} \geq 450 \text{ MPa} \\ \text{-} & \text{Tensione caratteristica di rottura:} & f_{tk} \geq 540 \text{ MPa} \\ \text{-} & \text{Rapporto } (f_t/f_y)_k: & 1.15 \leq (f_t/f_y)_k < 1.35 \\ \text{-} & \text{Limite sup. resistenza caratteristica di snervamento:} & f_{yk}/(450\text{MPa}) \leq 1.25 \\ \text{-} & \text{Allungamento:} & (A_{qt})_k \geq 7.5\% \\ \end{array}$

Il valore della resistenza di progetto è ottenuto applicando un fattore di sicurezza pari a:

- Coefficiente parziale di sicurezza relativo all'acciaio: $\Upsilon_s = 1.15$

Resistenza di progetto allo SLU

- Resistenza di calcolo dell'acciaio: $f_{yd} = f_{yk}/\Upsilon_s = 450/1.15 = 391 \text{ MPa}$

Resistenza di progetto allo SLE

- <u>Tensione massima acciaio</u> $\sigma_s = 0.8 f_{yk} = 360 MPa$

4.4 TERRA RINFORZATA

Per la realizzazione di muri in terra rinforzata è stato previsto di adottare la tipologia Terramesh Verde Light prodotta da Maccaferri.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	14 di 52

I Terramesh® Verde Linght sono elementi ultilizzati per costruire strutture in terra rinforzata con paramento rinverdibile realizzati in rete metallica a doppia torsione con maglia esagonale, tipo 8x10, tessuta con filo d'acciaio, con rivestimento PoliMac.

Gli elementi sono prodotti in conformità al CPR - Regolamento sui prodotti da Costruzione 305/2011 e alla ENB 10223-3, e presentano le caratteristiche di resistenza riportate di seguito:

• Resistenza a trazione nominale della rete

35kN/m

Per quanto riguarda il materiale costituente la terra rinforzata, si prevede l'utilizzo di un terreno caratterizzato da un peso dell'unità di volume $\gamma = 20$ KN/mc ed un angolo d'attrito $\phi = 35^{\circ}$.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	15 di 52

MODELLO GEOTECNICO DI RIFERIMENTO

Nel presente paragrafo viene illustrato il modello geotecnico di riferimento per l'opera in esame basato sui risultati delle campagne geognostiche effettuate e sull'interpretazione geologica dell'area. Per i risultati ottenuti dalle prove in sito e in laboratorio e maggiori dettagli si rimanda alla Relazione Geotecnica Generale. In particolare, l'area in esame risulta caratterizzata dalla presenza di un deposito di terreni alluvionali antichi dello spessore di circa 12.0m sovrastanti il basamento roccioso di base costituito dalla Formazione di Camerino. Il materiale sciolto su cui insiste l'opera, classificato con l'unità geotecnica *Aate* è costituito prevalentemente da terreni a componente limoso-argillosa e sabbiosa che si presentano moderatamente consistenti. Sia le prove penetrometriche eseguite in sito, che i risultati delle prove di caratterizzazione fisico-meccanica ne testimoniano l'elevata eterogeneità.

Analizzando il profilo geologico geotecnico di progetto ed inquadrando il contesto stratigrafico dell'opera oggetto della presente relazione, è possibile dunque assumere come rappresentativa la seguente successione stratigrafica:

 Unità geotecnica
 Profondità dal piano campagna [m da p.c.]
 Descrizione

 Aate
 0 ÷ 12.0
 Depositi alluvionali antichi

 Salt
 12.0-14.0
 Substrato alterato argilloso llimoso/marnoso

 Ap
 >14.0
 Substrato arenaceo-pelitico

Tabella 1 - Stratigrafia di riferimento MU06

5.1 LIVELLO DELLA FALDA

Nell'area in esame la falda è intestata a profondità variabili secondo quanto riportato nel profilo geotecnico LO703213E02GE0001PRF02D. Nelle analisi si assume cautelativamente un livello di falda prossima al livello minimo riscontrato e circa ad una profondità di 2 metri dal piano campagna.

5.2 CARATTERIZZAZIONE GEOTECNICA

Ai fini del dimensionamento delle opere di sostegno sono stati considerati i parametri geotecnici riportati nella caratterizzazione presentata in relazione LO703213E02GE0001REL01D. In termini operativi sono stati adottati i valori caratteristici medi espressi all'interno dei range di progetto.

Unità	Y [kN/m³]	φ' [°]	c' [kPa]	E [MPa]	v [-]
Aate	19	30	10	40	0.2
Salt	20	26	10	200	0.2
Ар	23	36	70	100	0.2

Tabella 2 - Parametri geotecnici terreno in sito

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	16 di 52

Per il rinterro a tergo dei muri costituente il materiale di formazione del corpo del rilevato viene considerato un materiale granulare, per il quale vengono assunti i seguenti parametri caratteristici:

Tabella 3 -Parametri geotecnici rinterro

Unità	γ	φ'	c'	E
	[kN/m3]	[°]	[kPa]	[MPa]
Rinterro	19	34	0	30

γ = peso dell'unità di volume

 ϕ' = angolo di resistenza al taglio

c' = coesione drenata

E = modulo elastico

v = Modulo poisson

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	17 di 52

6. CARATTERIZZAZIONE SISMICA

Per la caratterizzazione sismica del sito si rimanda alle considerazioni presenti nella relazione sismica (LO703213E04000000REL01D).

Di seguito si riprortano i parametri di progetto adottati per le verifiche della stabilità dell'opera in caso di azione sismica.

Tabella 4 – Periodo di riferimento azione sismica

Vita nominale	Classe d'uso	Coefficiente	Periodo di	
V _N		d'uso	riferimento V _R	
50	III	1.5	75	

Tabella 5 - Accelerazione (ag), fattore (F0) e periodo (T*c)

V _R [anni]	Stato Limite	PV _R	T _R [anni]	a ₉ [9]	F ₀ [-]	T _c [s
	SLO	81%	45	0.078	2.440	0.285
75	SLD	63%	75	0.097	2.433	0.295
75	SLV	10%	712	0.220	2.544	0.333
	SLC	5%	1462	0.277	2.584	0.343

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Tabella 6 - Caratterizzazione sito

Categoria di Categoria sottosuolo topografica		S _s , fattore stratigrafico	St, fattore topografico	
С	T1	1.364	1.0	

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	18 di 52

7. VERIFICHE GEOTECNICHE E STRUTTURALI

Di seguito si riassumono le verifiche condotte per la stabilità globale dell'opera in esame e le verifiche strutturali della paratia e delle terre rinforzate.

7.1 VERIFICHE GEOTECNICHE

7.1.1 STABILITA' GLOBALE

La verifica di stabilità globale del complesso opera di sostegno-terrapieno è condotta mediante l'ausilio del modulo di calcolo VSP all'interno del software Paratie Plus, nel caso delle paratie; mentre nel caso dei muri in terra rinforzata le verifiche di stabilità globale sono state condotte mediante l'ausilio del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

Per la verifica si fa riferimento al metodo dell'equilibrio limite di Bishop con definizione della superficie critica attraverso il criterio della griglia e centri per la ricerca dei cerchi di scorrimento potenziale, o considerando gli intervalli di ingresso e di uscita di possibili superfici di scorrimento.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda all'allegato A.

7.1.2 STABILITA' LOCALE

Le verifiche di carattere geotecnico relative all'opera di sostegno con paratia e all'interazione con il terreno circostante sono condotte mediante l'ausilio del software di calcolo Paratie Plus.

Nel caso delle terre rinforzate, la verifica di stabilità dell'opera di sostegno è condotta mediante l'ausilio del modulo SLOPE/M.R.E.che fa parte del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru. La stabilità di tale opera viene verificata nel suo insieme considerandola come un corpo rigido, e risulta assicurata quando è verificata la sicurezza a:

- Ribaltamento: rappresentato dalla possibile rotazione del'opera rispetto al punto di valle.
- Scorrimento: dipende dalla possibilità che le forze parallele al piano di contatto tra fondazione e terreno siano superiori alle forze di attrito terreno-fondazione.
- Carico limite: si effettua confrontando la tensione normale massima sul piano di posa della fondazione con la tensione limite di rottura del terreno.

7.1.3 VERIFICA CAPACITA' PORTANTE PALI

Le verifiche di capacità portante dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente (DM 14/01/2008. "Norme tecniche per le costruzioni"). La verifica della capacità portante dei pali è soddisfatta se:

Fcd < Rcd essendo Rcd = Rk / YR

dove:

Fcd = carico assiale di compressione di progetto;

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	19 di 52

Rcd = capacità portante di progetto nei confronti dei carichi assiali;

Rk = valore caratteristico della capacità portante limite del palo.

La portata di progetto di un palo trivellato (eseguito con completa asportazione del terreno) "Qd" può essere espressa dalla seguente relazione:

$$Qd = \frac{Qll}{FSL} + \frac{Qbl}{FSB} - W'p$$

dove:

QII = portata laterale limite,

Qbl = portata di base limite,

W'p = peso efficace del palo (al netto del peso del terreno asportato: peso calcestruzzo-peso terreno),

FSL = fattore di sicurezza per la portata laterale a compressione ($=\xi 3 \cdot Ys$).

FSB = fattore di sicurezza per la portata di base ($=\xi 3 \cdot Yb$).

Portata laterale

La portata laterale limite viene valutata con la seguente relazione:

$$Q_{Ll} = \pi \cdot D \cdot \sum i \ (\tau i \cdot hi)$$

dove:

D = diametro palo,

τi = tensione di adesione laterale limite nello strato i-esimo,

hi = altezza dello strato i-esimo.

La tensione tangenziale ultima lungo il fusto del palo, in accordo ad esempio a Burland [1973], Reese & O'Neill [1988], Chen & Kulhawy [1994], O'Neill & Hassan [1994], può essere valutata con riferimento alla seguente espressione:

$$\tau_i = \beta \cdot \sigma v' \leq \tau l, max$$

dove:

 $\sigma'v$ = tensione verticale efficace litostatica,

τl,max = valore massimo dell'adesione laterale limite palo-terreno (pari a 150 kPa per terreni incoerenti).

β = coefficiente empirico β = $k \cdot tan φ$ essendo

k = coefficiente di pressione laterale = 0.6 a compressione e 0.5 a trazione;

 ϕ = angolo di resistenza al taglio.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	20 di 52

Portata alla base

Per la valutazione della portata di base limite sono state utilizzate le sequenti relazioni:

QBI=Ap · qbI

Dove:

Ap = area della base del palo,

qbl = portata limite specifica di base.

La pressione di base del palo associabile a cedimenti pari al 10% del diametro del palo viene valutata con la relazione di Berezantzev (1965) indicata nelle Raccomandazioni AGI (1984):

$$q_{Bl} = N_q^* \cdot \sigma_v' + N_c \cdot c'$$

essendo:

Nq* = coefficiente in funzione dell'angolo di resistenza al taglio del terreno (Raccomandazioni AGI, 1984) da calcolare considerando la correzione proposta da Kishida (1967) per pali trivellati

 $\phi'_{calc} = \phi' k - 3^{\circ}$

 σ'_{v} = tensione verticale efficace;

q_{b,lim} = pressione ultima di base massima consigliabile.

7.1.4 VERIFICHE STATO LIMITE ESERCIZIO TERRE RINFORZATE

Nei riguardi degli SLE, in accordo a quanto specificato al paragrafo 6.5.3.2 del DM 14 -01-08 "Verifiche di esercizio" per muri di sostegno, la verifica dell'opera di sostengo nelle condizioni di esercizio, deve essere incentrata nel valutare la compatibilità degli spostamenti dell'opera stessa nei riguardi della funzionalità e stabilità di eventuali manufatti adiacenti.

Non si segnala la presenza di manufatti di particolare rilievo nelle immediate vicinanze delle opere in progetto, pertanto si ritiene non significativo procedere con verifiche degli spostamenti dell'opera stessa.

Le deformazioni massime attese sono da ritenersi comunque ampiamente compatibili nei riguardi degli aspetti funzionali dell'infrastruttura in progetto.

7.2 VERIFICHE STRUTTURALI DELLE SEZIONI IN C.A.

Le verifiche delle sezioni in c.a. dei pali della paratia sono state condotte per mezzo del codice RC-Sec (GeoStru – 2021). Le sollecitazioni sulla paratia sono ricavate, in condizioni SLE, SLU ed SLV, dal calcolo svolto con il codice Paratie plus.

7.2.1 STATO LIMITE ULTIMO

La determinazione della capacità resistente della sezione del palo viene effettuata con i criteri di cui al punto 4.1.2.3 delle NTC08 per le seguenti sollecitazioni:

- Pressoflessione (rif. formule al punto 4.1.2.1.2.4 delle NTC 2008);

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	21 di 52

Taglio per elementi con armature trasversali (rif. formule al punto 4.1.2.1.3 delle NTC 2008).

7.2.2 STATO LIMITE ESERCIZIO

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

- Verifica delle tensioni nel calcestruzzo e acciaio sotto combinazione di carico quasi permanente e rara (ref. punto 4.1.2.2.4.1 delle NTC 2008)
- Verifica a fessurazione calcestruzzo sotto combinazione di carico frequente e combinazione quasi permanente (ref. punto 4.1.2.2.4.2 e Tab. 4.1.IV delle NTC 2008)

Condizioni Ambientali: Ordinarie

Armature: Poco Sensibili

w < 0.2 mm combinazione Quasi permanente

w < 0.3 mm combinazione frequente.

7.3 VERIFICHE STRUTTURALI GEOGRIGLIE

Le verifiche interne o strutturali delle geogriglie vengono condotte mediante l'ausilio del modulo SLOPE/M.R.E. che fa parte del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

Le verifiche riguardano la capacità delle geogriglie a:

- Sfilamento
- Scorrimento
- Resistenza a trazione

Sia per lo sfilamento che per lo scorrimento vengono dimensiontate le lunghezze efficaci tali da sviluppare delle forze di attrito tali da contrastare la forza di trazione indotta nei rinforzi, ciò viene effettuata garantendo un assegnato fattore di sicurezza.

La verifica della resistenza a trazione consiste nel dimensionare la sezione nel rinforzo in modo tale da avere delle tensioni indotte inferiori a quella ammissibile.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda al capitolo 5 della relazione tecnica e di calcolo di opere di sostegno in terra rinforzata (L0703213E16OS0000REL01B) e all'allegato A.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	22 di 52

8. STATI LIMITE E COMBINAZIONI DI CALCOLO

8.1 STATO LIMITE ULTIMO

Per le opere in materiali sciolti, come i rilevati, devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

• SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido per la verifica della stabilità globale e locale dell'opera di sostegno

Per quanto riguarda l'opera di stabilizzazione, costituita da una paratia di pali, si effettuano le verifiche con riferimento ai seguenti stati limite:

SLU di tipo strutturale (STR) per il raggiungimento della resistenza negli elementi strutturali

Secondo quanto riportato in normativa DM 14-01-2008, la verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

Combinazione 2: (A2+M2+R2)

Le rimanenti verifiche devono essere effettuate secondo almeno uno dei seguenti approcci:

Approccio 1:

• Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2) *

*Per la verifica di portanza dei pali alle azioni verticali la combinazione 2 diventa:

(A2+M1+R2)

come riportato nella Circolare del 02/02/2009. Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008

Approccio 2:

(A1+M1+R3)

Per le paratie si deve considerare il solo Approccio 1.

La resistenza di progetto a compressione Rc,d è calcolata applicando al valore caratteristico della resistenza Rc,k i coefficienti parziali γ R riportati in tabella seguente , relativi alla condizione di pali trivellati. Il valore caratteristico della resistenza Rc,k a compressione è ottenuto applicando i fattori di correlazione ξ 3 e ξ 4 (vedasi tabella seguente) alle resistenze di calcolo Rcal; tali fattori sono funzione del numero di verticali d'indagine rappresentative.

Per ogni opera verrà assunto un coefficiente $\xi 3$ in funzione delle verticali di indagine eseguite. Nella tabella si riassumono i fattori di sicurezza assunti per ciascuna opera d'arte principale.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	23 di 52

In condizioni sismiche le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vanno condotte con riferimento all'Approccio 2 (A1+M1+R3), tenendo conto dei coefficienti parziali riportati nella successiva tabella e ponendo i coefficienti parziali sulle azioni tutti pari all'unità.

Tabella 7 Coefficienti parziali γR da applicare alle resistenze caratteristiche

Resistenza	Simbolo	Pali infissi		Pali trivellati			Pali ad elica continua			
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Уъ	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γ _s	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	γt	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	γst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}} \right\}$$

Tabella 8 Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali di indagine

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni riportati in

Tabella 10 ed adoperando i coefficienti parziali del gruppo (M") per il calcolo delle spinte.

I coefficienti per le azioni A, per i parametri geotecnici M e per le resistenze R sono riassunti nelle sequenti tabelle.

Tabella 9 - Coefficienti parziali per le azioni SLU

Carichi tipo	Effetto	Coefficiente parziale	A1	A2
Permenenti G1	Favorevole	.,	1.0	1.0
Permenenti G1	Sfavorevole	Y G1	1.3	1.0
Permanenti non strutturali G2	Favorevole	YG2	0.8	0.8

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	24 di 52

	Sfavorevole		1.5	1.3
\/ariahili O	Favorevole		0	0
Variabili Q	Sfavorevole	γ α	1.5	1.3

Tabella 10 - Coefficienti parziali per i parametri del terreno SLU

Carichi tipo	Coefficiente parziale	M1	M2
Tangente angolo resistenza al taglio	tan φ' _k	1.0	1.25
Coesione efficace	C' _k	1.0	1.25
Resistenza non drenata	C _{uk}	1.0	1.4
Peso unità di volume	γ	1.0	1.0

Tabella 11 - Coefficienti parziali resistenza R2 verifiche di opere in materiali sciolti e fronti di scavo

Verifica	R2
Stabilità globale	γ _R = 1.1

Tabella 12 – Coefficienti parziali resistenza $\gamma_{\rm R}$ per le STR e GEO di muri di sostegno

Verifica	R1	R2	R3
Capacità portante fondazione	$\gamma_R = 1.0$	γ _R = 1.0	γ _R = 1.4
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1.0$	γ _R = 1.1
Resistenza terreno valle	$\gamma_R = 1.0$	$\gamma_R = 1.0$	γ _R = 1.4

In presenza di azioni sismiche, lo stato limite ultimo considerato comprende lo Stato Limite di Salvaguardia della Vita (SLV).

I coefficienti parziali sulle azioni e parametri geotecnici sono posti pari all'unità mentre i coefficienti parziali relativi alle resistenze risultano invariati rispetto a quelli considerati per le verifiche in condizioni statiche.

8.2 STATO LIMITE ESERCIZIO

Per le verifiche strutturali allo stato limite di esercizio seguenti coefficienti parziali per le azioni sono stati considerati:

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	25 di 52

Tabella 13 - Coefficienti parziali per le azioni SLS Freq. e QP

Carichi tipo	Effetto	γ	Ψ
Permanenti G1	Sfavorevole	1.0	-
Permanenti G2	Sfavorevole	1.0	-
Variabili Q	Sfavorevole	1.0	-

Tabella 14 – Coefficienti parziali per le azioni SLS Rara

Carichi tipo	Effetto	Y	Ψ
Permanenti G1	Sfavorevole	1.0	-
Permanenti G2	Sfavorevole	1.0	-
Traffico Q	Sfavorevole	1.0	0.75

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	26 di 52

9. ANALISI DEI CARICHI

9.1 CARICHI PERMANENTI

Per carichi permanenti si intendono le azioni associate ai pesi propri del palo, del terrapieno spingente e dell'acqua di falda, valutati in automatico dal Software di calcolo utilizzato.

9.2 CARICHI ACCIDENTALI

Lo schema di carico da traffico veicolare considerato nelle analisi è un carico trapezoidale variabile da 60 kPa a 20 kPa.

9.3 AZIONE SISMICA

Per la valutazione degli effetti dell'azione sismica sulle masse e sui coefficienti di spinta del terreno, si è fatto riferimento al metodo pseudo-statico previsto al punto 7.11.3.5.2 - "Metodi di Analisi" - delle NTC2008 secondo il quale, nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_s \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

a_{max} = accelerazione orizzontale massima attesa al sito

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a_a = S_s \cdot S_t \cdot a_a$$

dove

S= coefficiente che comprende l'ieffetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t) .

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Di seguito sono riportati i valori di β_S e β_m consierati per i fronti di scavo (utilizzati nelle analisi globali), per i muri di sostegno, e per le paratie, in accordo a quanto indicato nella NTC2008.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0006	REL	01	D	27 di 52

Tabella 15 - Coefficienti dell'accelerazione massima attesa al sito - Fronti di scavo e rilevati

	Categoria di sottosuolo			
	A	B, C, D, E		
	βs	βs		
0.2 <a<sub>g(g)≤0.4</a<sub>	0.3	0.28		
0.1 <a<sub>g(g)≤0.2</a<sub>	0.27	0.24		
a _g (g)≤0.1	0.2	0.2		

Tabella 16 - Coefficienti dell'accelerazione massima attesa al sito - Muri di sostegno

	Categoria di sottosuolo					
	A	B, C, D, E				
	β_{m}	β_{m}				
0.2 <a<sub>g(g)≤0.4</a<sub>	0.31	0.31				
0.1 <a<sub>g(g)≤0.2</a<sub>	0.29	0.24				
a _g (g)≤0.1	0.20	0.18				

Nel caso delle paratie, le componenti orizzontale e verticale *a*h e *a*v dell'accelerazione equivalente devono essere ricavate in funzione delle proprietà del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità dell'opera di subire spostamenti senza significative riduzioni di resistenza.

Il valore di a_h può essere legato all'accelerazione di picco a_{max} atteso nel periodo di riferimento mediante la relazione:

$$a_h = k_h x g = \alpha \beta a_{max}$$

dove g è l'accelerazione di gravità, k_h è il coefficiente sismico in direzione orizzontale, α < 1 è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera e β < 1 è un coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza.

Per le paratie si può porre $a_v = 0$.

Il valore del coefficiente α può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mentre il coefficiente β risulta funzione del massimo spostamento u_s che l'opera può subire, che deve risultare:

u _s≤ 0.005 H

H = lunghezza complessiva della paratia

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	28 di 52

Entrambi i coefficienti sono espressi nei diagrammi riportati al cap. 7.11.6.3.2 delle NTC08 e di seguito esplicitati per il caso in oggetto.

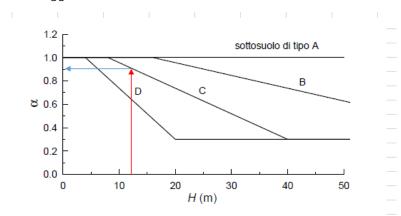


Figura 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità α

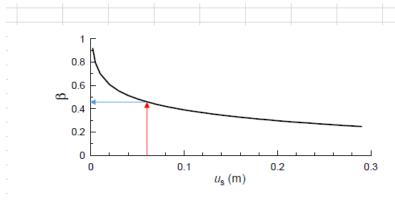


Figura 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β .

I parametri di progetto dell'azione sismica considerati nell'analisi dell'opera oggetto della presente relazione sono riassunti nella tabella seguente.

Tabella 17 – Parametri progetto azione sismica equivalente – Fronti di scavo e rilevati

Ss	S _T	a _g	a _{max}	β	k _h	k _v
1.364	1.0	0.22g	0.30g	0.28	0.084	±0.042

Tabella 18 - Parametri progetto azione sismica equivalente - Muri di sostegno

Ss	S _T	a _g	a _{max}	β	k _h	k _v
1.364	1.0	0.22g	0.30g	0.31	0.09	±0.05

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	29 di 52

Tabella 19 – Parametri progetto azione sismica equivalente – Paratie

Ss	S _T	\mathbf{a}_{g}	a _{max}	k _h	α	β	K _h
1.364	1.0	0.22g	0.30g	0.15	0.92	0.55	0.152

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0006	REL	01	D	30 di 52

10. ANALISI E VERIFICHE

Si riportano di seguito risultati delle analisi e verifiche per le sezioni di calcolo considerate.

10.1 SEZIONI DI CALCOLO

Sono state analizzate 2 sezioni di calcolo, una rappresentativa dei muri su paratia di pali nelle condizioni più sfavorevoli, e una relativa alla porzione con muro in terra rinforzata. Il riepilogo delle sezioni analizzate e le progressive di riferimento è riportato nella seguente tabella.

Tabella 20 - Sezioni di calcolo

ID muro	Sezione di calcolo	H contenimento lato valle [m]	pk
MU06	Paratia	4.0	1+980
MU06	Terra rinforzata	3.0	1+940

Di seguito sono sintetizzati i risulati delle analisi eseguite per le sezioni di calcolo analizzate.

Per il dettaglio delle analisi geotecniche e strutturali, fare riferimento agli ALLEGATI A e B rispettivamente.

10.2 RISULTATI DELLE ANALISI: SEZIONE PARATIA

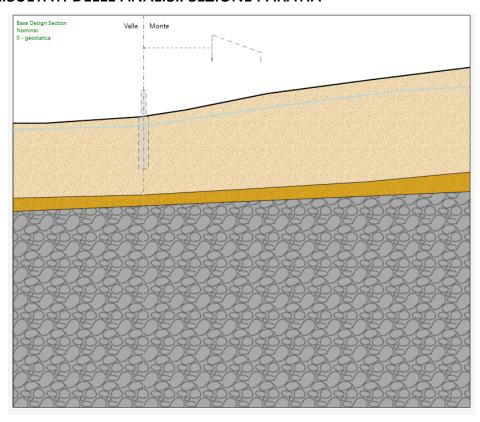


Figura 5- Modello di calcolo Paratie Plus - fase geostatica di inizializzazione degli sforzi

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera Tratto Settore CEE WBS ld.doc. N. prog. Rev. Pag. di Pag. L073 31 di 52 213 Ε 16 MU0006 **REL** 01 D

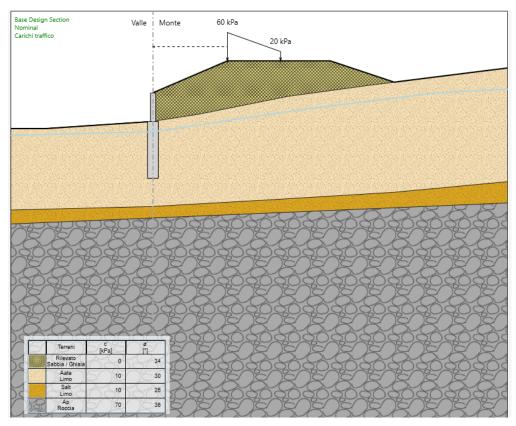


Figura 6- Modello di calcolo Paratie Plus

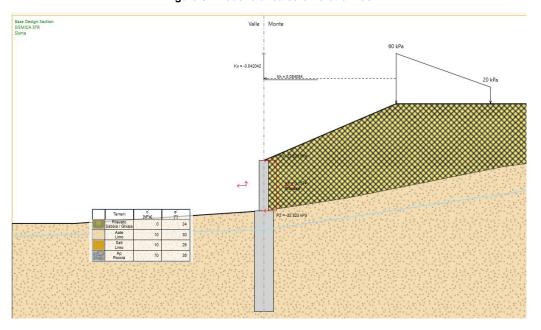


Figura 7- Modello di calcolo Paratie Plus - condizioni sismiche

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	32 di 52

10.2.1 Sollecitazioni nella paratia

Si presentano di seguito i risultati delle analisi per quanto riguarda le sollecitazioni nella paratia simulata con i pali nella parte infissa e dal paramento nella parte fuori terra. Le figure seguenti riportano una rappresentazione della sezione analizzata e le sollecitazioni nella paratia in SLU e SLV.

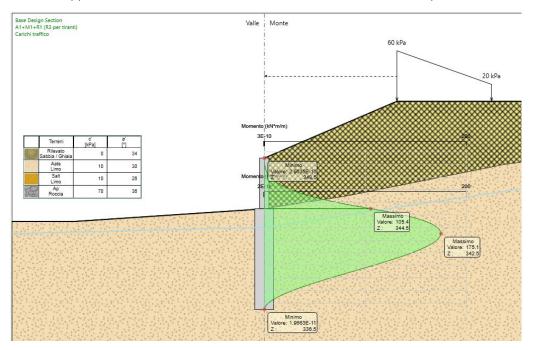


Figura 8- Momento flettente nella paratia - configurazione finale (SLU)

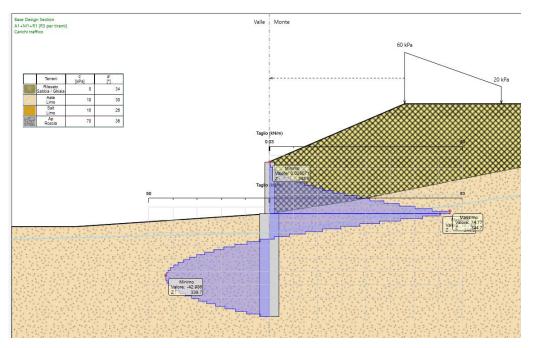


Figura 9 - Taglio nella paratia - configurazione finale (SLU)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	33 di 52

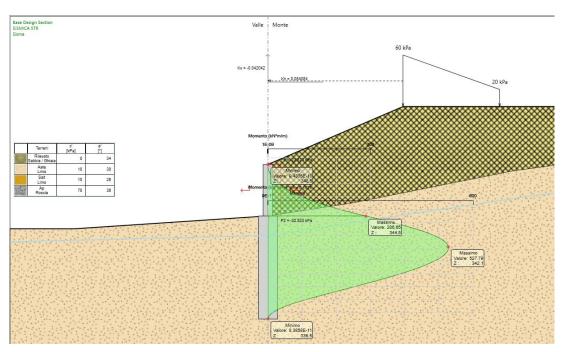


Figura 10- Momento flettente nella paratia - configurazione finale (SLV)

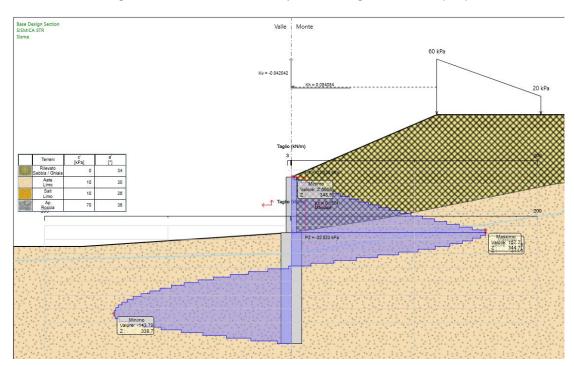


Figura 11- Taglio nella paratia - configurazione finale (SLV)

10.2.2 Verifica sulla spinta mobilitata al piede della paratia

È di seguito riportata la verifica sull'aliquota di spinta passiva mobilitata al piede della paratia.

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	34 di 52

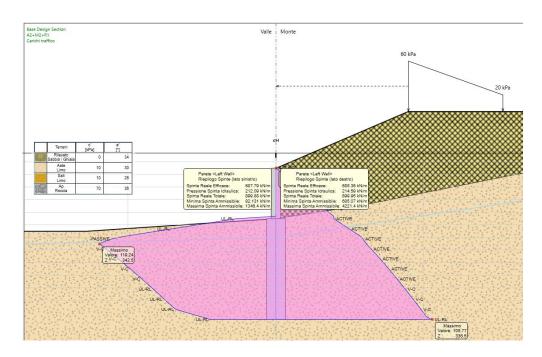


Figura 12 – Verifica sulla spinta mobilitata al piede delle paratia - configurazione finale (SLU)

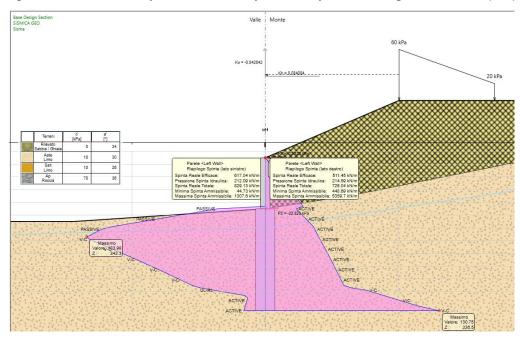


Figura 13- Verifica sulla spinta mobilitata al piede delle paratia - configurazione finale (SLV)

Tabella 21 Mobilitazione della spinta passiva al piede della paratia

rabella 22 informazione della opinta passiva di piede della paratia							
	SLU (A2+M2+R1)	SLV (SISMICA GEO)					
Rp (%)	51	47					

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	35 di 52

10.2.3 Stima degli spostamenti della paratia

Nella seguente figura si riportano i grafici relativi agli spostamenti SLE nella configurazione finale in condizioni statiche.

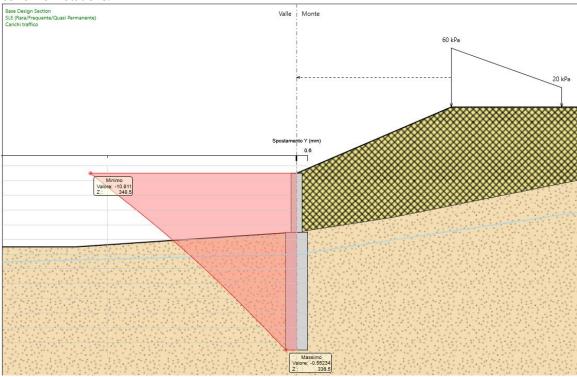


Figura 14 - Spostamenti della paratia - configurazione finale (SLE)

Gli spostamenti qui riportati sono a seguito del riempimento del rilevato e quindi da attendersi durante la fase costruttiva. Durante l'esercizio stradale non sono previsti ulteriori spostamenti orizzontali a tergo del paramento.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	36 di 52

10.2.4 Stabilità globale

Nelle seguenti figure si riportano i risultati delle verifiche di stabilità globale per le condizioni statiche e sismiche.

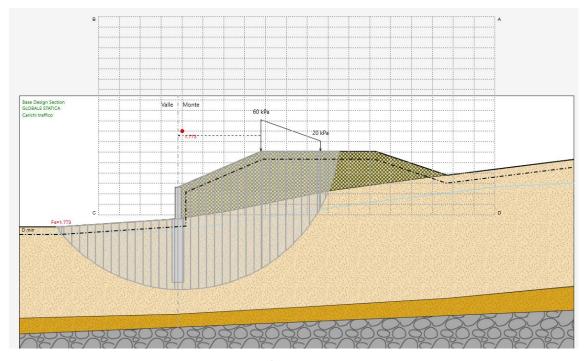


Figura 15 – Verifica di stabilità globale – configurazione finale (SLU)

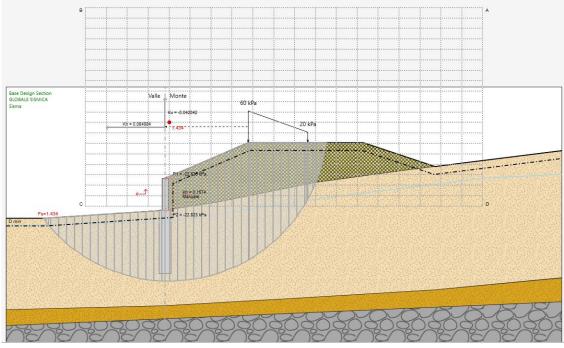


Figura 16 - Verifica di stabilità globale - configurazione finale (SLV)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	37 di 52

In entrambi i casi di analisi è stato ottenuto un coefficiente di sicurezza FS, relativo alla superficie di scorrimento più critica, superiore all'unità. Considerando il valore assunto per il coefficiente parziale di resistenza che riduce la resistenza disponibile del terreno, γ_R , pari a 1.1, secondo quanto prescritto dalla normativa considerata, le verifiche di sicurezza risultano essere soddisfatte.

10.2.5 Verifica della capacità portante dei pali sottoposti alle azioni verticali

I carichi verticali utilizzati per la verifica di capacità portante derivano esclusivamente dal peso proprio del paramento. Il calcolo è stato effettuato prendendo la geometria più grande lungo lo sviluppo del muro. In particolare:

$$N_{max} = W_{paramento} = \gamma \cdot \frac{(b+B) \cdot h}{2} = 25 \cdot \frac{(0.5+1) \cdot 5}{2}$$

$$N_{max} = (1 + k_v) \cdot W_{paramento} = (1 + 0.5 \cdot k_h) \cdot W_{paramento}$$

Tabella 22 Calcolo azioni verticali allo stato limite ultimo

N ULS (A1+M1+R2)	135 kN
N ULS (A2+M1+R2)	100 kN
N ULS SISM	106.5 kN

I parametri di calcolo della capacità portante dei pali vengono riportati nella seguente tabella:

Tabella 23 Parametri di calcolo della capacità portante

	o i arametri	u. ca.co.c	aca cape	acica poi to	
Approccio	Verticali indagate	ξ3	Ys	Yb	F
DA1 (A1+M1+R1)	3	1.65	1.0	1.0	6.7
DA1 (A2+M1+R2)	3	1.65	1.45	1.7	5.2
DA2 SISM (A1+M1+R3)	3	1.65	1.15	1.35	5.9

Di seguito si riportano i risultati delle verifiche di portanza:

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	38 di 52

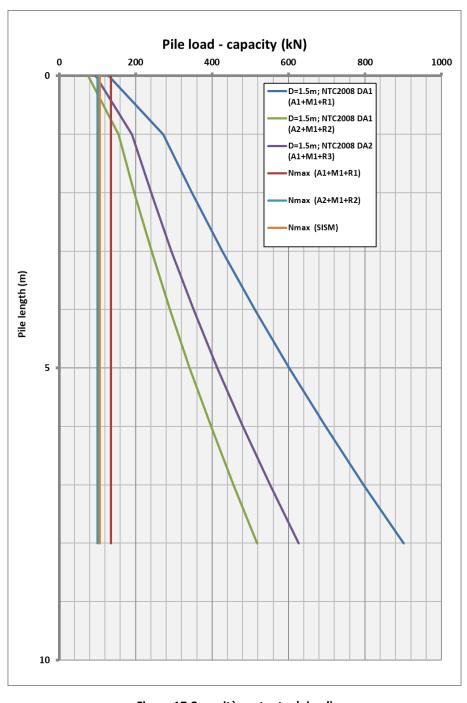


Figura 17 Capacità portante dei pali

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	39 di 52

					Shear Re paran		Bearing fact							R calc			Pile weight			R ck			DA1 - COMB.2 A2 + M1 + R4	DA2 - SEISMIC A1 + M1 + R2
Z	L pile	γ	σ'ν	lito	c'	φ'	Nc	Nq	tan φ'	k	τ	τ_tot	Rlat	Rь	Rtot	w'	w' (A1)	w' (A2)	Rlat/ξ	R _b /ξ	Rtot	Rcd	Red	Red
m, da p.c.	m	kN/mc	kPa	-	kPa	۰	-	-	-	-	kPa	kPa	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
0	0	19	0	Aate	10	30	12,1	8	0,58	0,50	0	0	0	214	214	0	0	0	0	130	130	130	76	96
1	1	19	19	Aate	10	30	12,1	8	0,58	0,50	14	14	64	483	547	44	60	44	39	292	332	272	155	191
2	2	19	28	Aate	10	30	12,1	8	0,58	0,50	15	29	137	610	747	78	106	78	83	370	453	347	196	240
3	3	19	37	Aate	10	30	12,1	8	0,58	0,50	17	46	218	737	955	112	152	112	132	447	579	427	241	294
4	4	19	46	Aate	10	30	12,1	8	0,58	0,50	19	65	307	864	1171	147	198	147	186	524	710	512	290	352
5	5	19	55	Aate	10	30	12,1	8	0,58	0,50	21	86	404	991	1396	181	244	181	245	601	846	602	342	414
6	6	19	64	Aate	10	30	12,1	8	0,58	0,50	22	108	510	1118	1628	215	290	215	309	678	987	697	397	481
7	7	19	73	Aate	10	30	12,1	8	0,58	0,50	24	132	623	1246	1869	249	336	249	378	755	1133	796	456	551
8	8	19	82	Aate	10	30	12,1	8	0,58	0,50	26	158	745	1373	2118	283	382	283	452	832	1284	901	518	627

La verifica a capacità portante dei pali sottoposti ad azioni verticali risulta soddisfatta

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	40 di 52

10.2.6 Verifiche strutturali

L'opera di sostegno è costituita da pali di diametro 1500m ad interasse 2.0m, per la parte infissa e da un muro in c.a. a spessore variabile (da 0.5m in sommità a 0.9m al piede) per la parte emersa costituente il paramento di contenimento del rilevato.

Si prevede la seguente armatura di calcolo:

<u>Pali</u>

• Armatura longitudinale: Gabbia: 20⊕26mm.

• Armatura a taglio: Spirali ₱16/20cm;

Copriferro netto: 90mm

<u>Paramento</u>

Spessore sezione media 75cm

Armatura orizzontale: Φ16/200

Armatura a taglio: Spille ₱12/maglia 200x400

Copriferro sui ferri orizzontali: 50mm

Il quantitativo di armatura minima per ogni elemento strutturale è stato inoltre verificato nei rispetti dei requisiti minimi come prescritto da normativa NTC08.

La paratia è stata verificata per le seguenti combinazioni di carico:

Tabella 24 – Sollecitazioni verificate pali

STATO LIMITE	N [kN]	M [kNm]	T [kN]	
SLU (A1+M1+R1)	-	350	142	
SLE	-	266	108	
SLV	•	1056	316	

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0006	REL	01	D	41 di 52

Tabella 25 – Sollecitazioni verificate paramento

STATO LIMITE	N [kN]	M [kNm]	T [kN]
SLU (A1+M1+R1)	-	106	75
SLE	-	81	57
SLV	-	287	158

PRESSOFLESSIONE STATO LIMITE ULTIMO

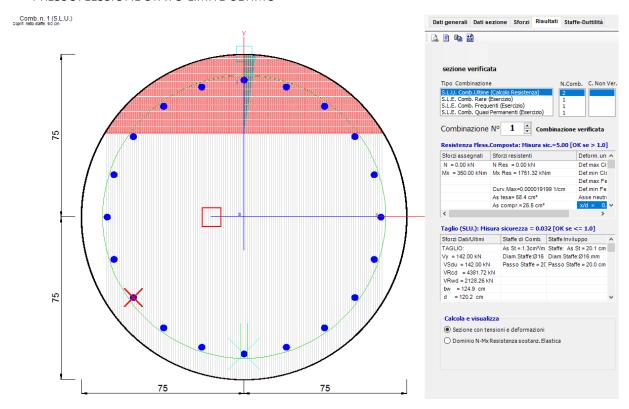


Figura 18 - Combinazione 1 (M_{max}) - SLU

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera Tratto Settore CEE **WBS** ld.doc. Rev. Pag. di Pag. N. prog. L073 213 MU0006 42 di 52 Ε 16 **REL** 01 D

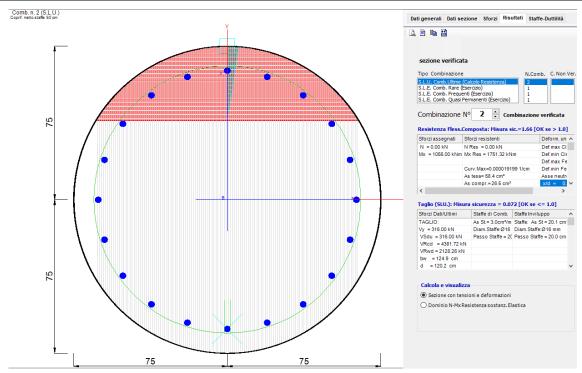
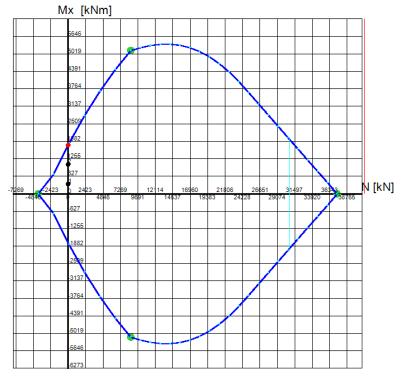



Figura 19 - Combinazione 2 (M_{max}) - SLV

Passo Momenti Mx griglia = 627 kNm

Passo Sforzo Normale N = 2423 kN

Figura 20 - Dominio M-N - SLU e SLV

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Tratto Settore CEE WBS Rev. Pag. di Pag. Opera ld.doc. N. prog. L073 43 di 52 213 Ε 16 MU0006 REL 01 D

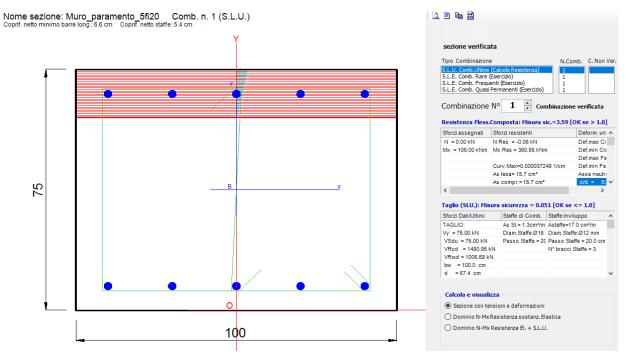


Figura 21 – Combinazione 1 (M_{max}) – SLU

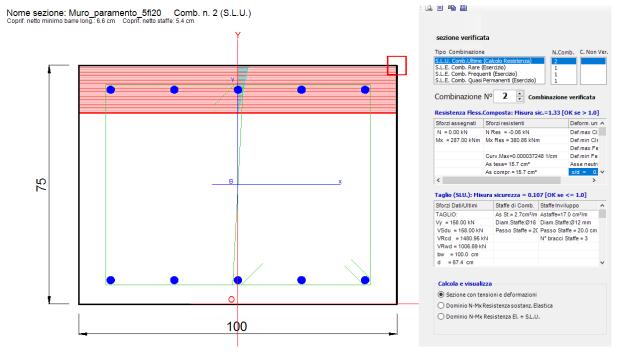


Figura 22 - Combinazione 2 (M_{max}) - SLV

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0006	REL	01	D	44 di 52

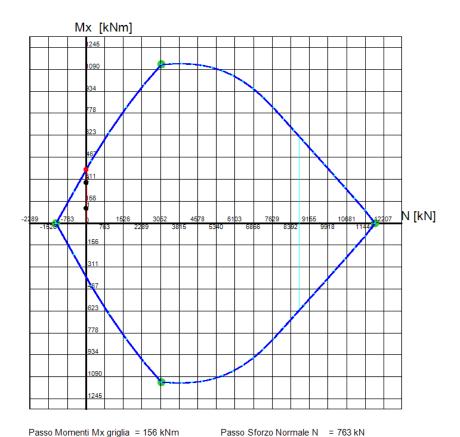


Figura 23 - Dominio M-N - SLU e SLV

STATO LIMITE ESERCIZIO

Di seguito sono riportate le massime sollecitazioni nelle barre e nel calcestruzzo durante le fasi di esercizio e l'apertura massima delle fessure nella sezione maggiormente sollecitate degli elementi strutturali.

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera Tratto Settore CEE **WBS** ld.doc. Rev. Pag. di Pag. N. prog. L073 213 Ε MU0006 REL 45 di 52 16 01 D

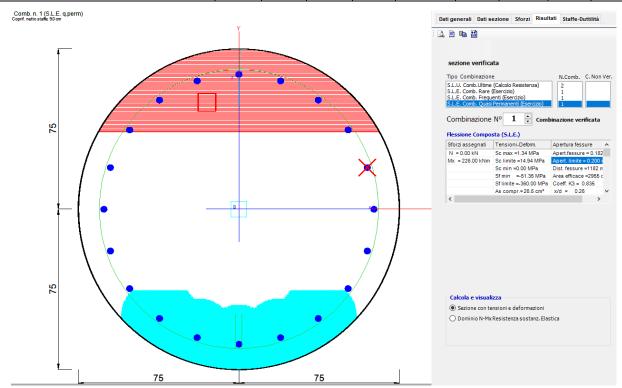


Figura 24 - Combinazione 3 - SLE - Verifiche di fessurazione e di tensione sulle barre

Tabella 26 – Verifica tensioni

COMBINAZIONE	TENSIONI ESERCIZIO	TENSIONI AMMISSIBILI
C.L. E. EDEOLIENTE	σs = 51.35 MPa	360 MPa
S.L.E. FREQUENTE	σc = 1.34 MPa	19.9 MPa
S.L.E. QUASI PERMAMENTE	σs = 51.35 MPa	360 MPa
S.L.E. QUASI PERIVIAIVIENTE	σc = 1.34 MPa	14.9 MPa

Tabella 27 - Verifica apertura fessure

	<u> </u>	
COMBINAZIONE	MAX. APERTURA	FESSURA LIMITE
S.L.E. FREQUENTE	0.18 mm	0.3 mm
S.L.E. QUASI PERMANENTE	0.18 mm	0.2 mm

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	46 di 52

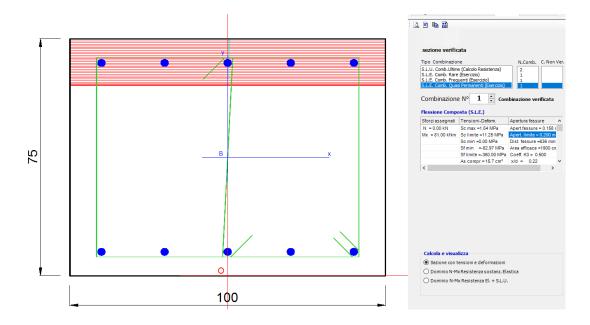


Tabella 28 - Verifica tensioni

COMBINAZIONE	TENSIONI ESERCIZIO	TENSIONI AMMISSIBILI			
C.L.E. EDECLIENTE	σs = 82.97 MPa	360 MPa			
S.L.E. FREQUENTE	σc = 1.54 MPa	15.0 MPa			
C L E OLIACI DEDMANAENTE	σs = 82.97 MPa	360 MPa			
S.L.E. QUASI PERMAMENTE	σc = 1.54 MPa	11.2 MPa			

Tabella 29 – Verifica apertura fessure

COMBINAZIONE	MAX. APERTURA	FESSURA LIMITE
S.L.E. FREQUENTE	0.16 mm	0.3 mm
S.L.E. QUASI PERMANENTE	0.16 mm	0.2 mm

Il cordolo di testa di collegamento dei pali su cui è fondato il paramento è stato dimensionato sulla base delle prescrizioni minime di armatura come riportato al capitolo 4.1.6.1.1 del NTC08.

Si prevede la seguente carpenteria ed armatura di calcolo:

• Larghezza trave = 170cm / Altezza = 120cm

• Armatura longitudinale intera sezione: 24⊕26mm;

• Staffe: Φ 16/20cm;

• Copriferro netto: 5cm

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	47 di 52

Il copriferro netto è stato calcolato considerando i limiti per le travi su terreno preparato secondo quanto riportanto in normativa quantitativi di armatura soddisfano i requisiti da normativa UNI EN 1536:2003 e ENV 1992-1-1.

$$c_{nom} = c_{min} + \Delta_c = 40mm + 10mm = 50~mm$$

Il quantitativo di armatura longitudinale è stato verificato nei rispetti dei requisiti minimi e massimi da normativa UNI EN 1536:2003 e NTC08.

In particolare

$$A_{\rm S}=12\varphi26=0.0063~m^2~{\rm (armatura~in~zona~tesa)}$$

$$A_{s,min}=0.26\frac{f_{ctm}}{fyk}\cdot b_t\cdot d=0.0042~m^2~{\rm [4.1.6.1.1~NTC2008]}$$

$$A_{s_{min}}=0.0013\cdot b_t\cdot d=0.0027~m^2~{\rm [4.1.6.1.1~NTC2008]}$$

$$A_{s,max}=0.04\cdot A_c=0.081~m^2~{\rm [4.1.6.1.1~NTC2008]}$$

Il quantitativo di armatura trasversale è stato verificato nei rispetti dei requisiti minimi da normativa NTC08.

$$A_{\rm sw} = 2 \, \text{bracci} \, \phi 16/20 = 2010 \, \frac{\text{m}m^2}{m}$$

$$A_{\text{sw,min}} = 1.5 \text{ b} = 1800 \frac{\text{m}m^2}{m}$$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	48 di 52

10.3 RISULTATI DELLE ANALISI: SEZIONE TERRA RINFORZATA

10.3.1 Stabilità locale

Si riportano di seguito i risultati delle analisi di stabilità dell'opera di sostegno descritte al par. 7.1.2.

Per ulteriori dettagli si rimanda all'Allegato A "Report di calcolo e verifiche geotecniche".

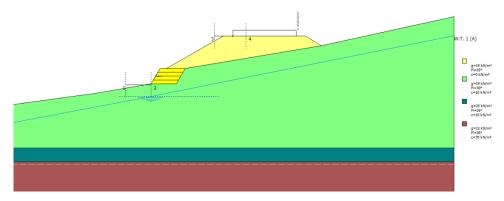


Figura 25 - Modello di calcolo

Figura 26 - Verifiche di stabilità

10.3.2 Verifiche strutturali geogriglie

Nella seguente tabella si sintetizzano i risultati ottenuti dalle verifiche strutturali delle geogriglie considerate per la realizzazione delle opere in terra rinforzata, le quali presentano una lunghezza complessiva pari a 4m.

Per ulteriori dettagli si rimanda all'Allegato A "Report di calcolo verifiche geotecniche".

Tabella 30 - Risultati verifiche geogriglie

			Tabella 30 - Kisultati V	renniche geogrighe	
Nr	FS Sfilamento	FS Rottura	Spinta sul rinforzo (kN)	Res. a fil. (kN/m)	Res. ultima materiale (kN)
1	8.57	1.31	22.21	47.57	28.99
2	9.22	1.73	16.71	38.52	28.99
3	10.75	2.60	11.16	29.99	28.99
4	16.24	5.24	5.53	22.45	28.99

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	49 di 52

10.3.3 Stabilità globale

Si riportano di seguito i risultati delle verifiche di stabilità globale per il muro in terra rinforzata in condizioni statiche e sismiche.

Dalle analisi eseguite è stato ottenuto un coefficiente di sicurezza FS, relativo alla superficie di scorrimento più critica, superiore al valore del coefficiente parziale di resistenza che riduce la resistenza disponibile del terreno, γ_R , pari a 1.1, pertanto secondo quanto prescritto dalla normativa considerata, le verifiche di sicurezza risultano essere soddisfatte.

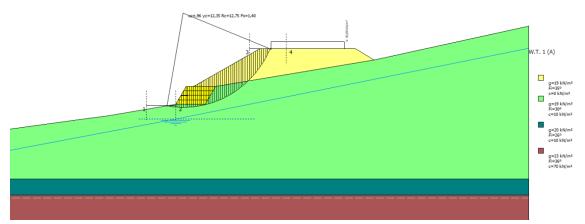


Figura 27 – Verifica di stabilità globale (SLU)

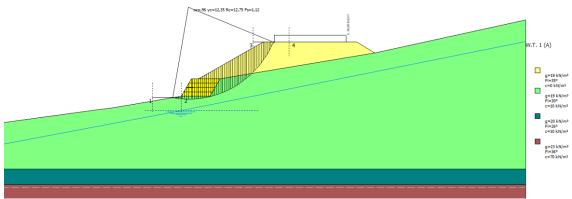


Figura 28- Verifica di stabilità globale (SLV)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	50 di 52

11. CONCLUSIONI

La presente relazione tecnica e di calcolo riassume i criteri di dimensionamento, le analisi e le verifiche condotte sulle opere di stabilità profonda dei terreni di fondazione del rilevato dal km 1+931 al km 2+006 dei Lotti 3 e 4 dell'opera Pedemontana delle Marche.

Le verifiche geotecniche e strutturali risultano soddisfatte per gli stati limite considerati secondo le normative di riferimento.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	51 di 52

APPENDICE A

REPORT DI CALCOLO VERIFICHE GEOTECNICHE

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	D	52 di 52

APPENDICE B

REPORT DI CALCOLO VERIFICHE STRUTTURALI

Report di Calcolo

Nome Progetto: New Project

Autore: Ingegnere

Data: 31/05/2021 12:39:41

Design Section: Base Design Section

Sommario Contenuto Sommario

Descrizione del Software

ParatiePlus analizza il comportamento meccanico di una struttura di sostegno flessibile di uno scavo in terreno o roccia, ponendo l'accento sull'aspetto dell'interazione "locale" fra parete e terreno.

ParatiePlus non permette lo studio di problematiche che coinvolgano un movimento esteso del versante di scavo, in quanto ParatiePlus non consente lo sviluppo di movimenti rigidi della parete o parti di ammasso rispetto ad altre parti di terreno.

Scopo precipuo di ParatiePlus è quindi il calcolo delle azioni flettenti e taglianti e delle deformazioni laterali della parete di sostegno, e la valutazione di tutte quelle grandezze a queste connesse.

Lo studio di una parete flessibile è condotto attraverso una simulazione numerica del reale: il programma stabilisce e risolve un sistema di equazioni algebriche la cui soluzione permette di riprodurre abbastanza realisticamente l'effettivo comportamento dell'opera di sostegno.

La simulazione numerica è quella offerta dal metodo degli elementi finiti.

La schematizzazione in elementi finiti avviene in questo modo:

- si analizza un problema piano (nel piano Y-Z): i gradi di libertà nodali attivi sono lo spostamento laterale e la rotazione fuori piano: gli spostamenti verticali sono automaticamente vincolati(di conseguenza le azioni assiali nelle pareti verticali non sono calcolate);
- la parete flessibile di sostegno vera e propria è schematizzata da una serie di elementi finiti BEAM verticali;
- il terreno, che spinge contro la parete (da monte e da valle) e che reagisce in modo complesso alle deformazioni della parete, è simulato attraverso un doppio letto di molle elasto-plastiche connesse agli stessi nodi della parete;
- i tiranti, i puntoni, le solette, gli appoggi cedevoli o fissi, sono schematizzati tramite molle puntuali convergenti in alcuni punti (nodi) della parete ove convergono parimenti elementi BEAM ed elementi terreno.

Descrizione della Stratigrafia e degli Strati di Terreno

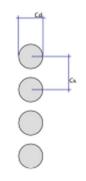
```
Tipo: POLYLINE
Punti
        (-20;355)
        (50;355)
        (50;300)
        (-20;300)
OCR:1
Tipo: POLYLINE
Punti
        (-20;343.5)
        (-15;343.5)
        (0;344.5)
        (6.5;345.5)
        (19;348)
        (30;349.5)
        (34;350)
        (50;352)
        (50;300)
        (-20;300)
OCR:1
Tipo: POLYLINE
Punti
        (-20;332)
        (0;332.5)
        (17.5;333.5)
        (34;334.5)
        (50;336)
        (50;300)
        (-20;300)
OCR:1
Tipo: POLYLINE
Punti
        (-20;330)
        (50;333)
        (50;300)
        (-20;300)
OCR:1
```

Strato di Terrer	no Terreno	γ dry	γ sat	ø' ø	øcvøp c' Su ľ	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rv	c Rvc	Ku	Kvc	Kur
		kN/m ³	kN/m	3 °	° ° kPa kPa		kPa	kPa	kPa	kPa kN	N/m³ l	kN/m³	kN/m³
1	Rilevato	19	19	34	0	Constant	30000	90000					
2	Aate	19	19	30	10	Constant	40000	120000)				
3	Salt	20	20	26	10	Constant	200000	600000)				
4	Ap	23	23	36	70	Constant	100000	300000)				
D 11 DI 2	.004 [6			. /^-	12024 42 20								

Descrizione Pareti

X:0 m

Quota in alto : 344.5 m Quota di fondo : 336.5 m


Muro di sinistra

Sezione: Pali1500

Area equivalente: 0.883572933822129 m

Inerzia equivalente : 0.1243 m⁴/m Materiale calcestruzzo : C32/40 Tipo sezione : Tangent

> Spaziatura : 2 m Diametro : 1.5 m Efficacia : 1

X:0 m

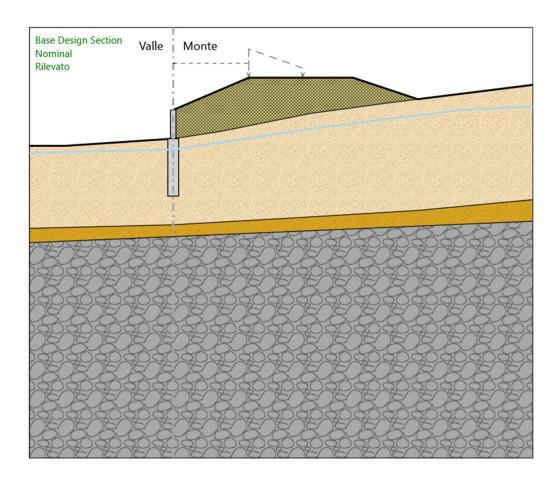
Quota in alto : 348.5 m Quota di fondo : 344.5 m

Muro di sinistra

Sezione: Paramento

Area equivalente : 0.75 m

Inerzia equivalente : 0.0352 m⁴/m Materiale calcestruzzo : C25/30


Tipo sezione : Solid Spessore : 0.75 m

Efficacia: 1

Fasi di Calcolo

Rilevato

Rilevato

Scavo

```
Muro di sinistra
```

Lato monte : 348.5 m Lato valle : 344.5 m

Linea di scavo di sinistra (Irregolare)

(-20;343.5) (-15;343.5)

(0;344.5)

Linea di scavo di destra (Irregolare)

(0;348.5)

(10.5;353)

(19;353)

(25;353)

(34;350)

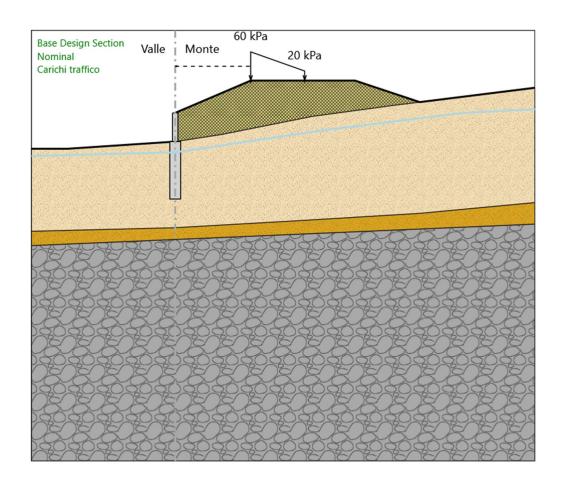
(50;352)

Elementi strutturali

Paratia : Pali 1500

X:0 m

Quota in alto : 344.5 m Quota di fondo : 336.5 m


Sezione: Pali1500

Paratia: Paramento

X:0 m

Quota in alto : 348.5 m Quota di fondo : 344.5 m Sezione : Paramento

Carichi traffico

Carichi traffico

Scavo

Muro di sinistra

Lato monte : 348.5 m Lato valle : 344.5 m

Linea di scavo di sinistra (Irregolare)

(-20;343.5) (-15;343.5) (0;344.5)

Linea di scavo di destra (Irregolare)

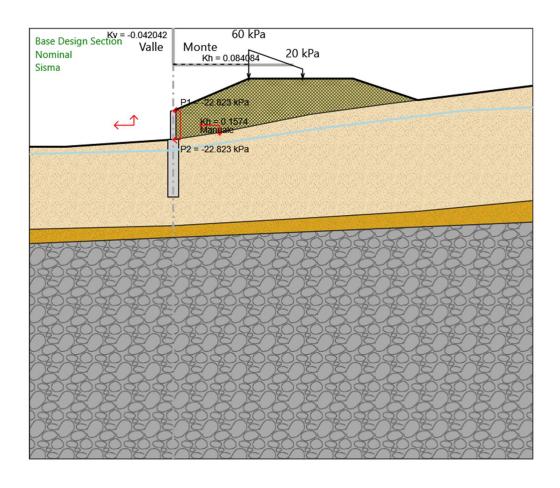
(0;348.5) (10.5;353) (19;353) (25;353) (34;350) (50;352)

Elementi strutturali

Paratia: Pali 1500

ParatiePlus 2021 [v: 21.0.0] - 31/05/2021 12:39:41

X:0 m


Quota in alto : 344.5 m Quota di fondo : 336.5 m Sezione : Pali1500

Paratia : Paramento

X:0 m

Quota in alto : 348.5 m Quota di fondo : 344.5 m Sezione : Paramento

Sisma

Sisma

Scavo

Muro di sinistra

Lato monte : 348.5 m Lato valle : 344.5 m

Linea di scavo di sinistra (Irregolare)

(-20;343.5) (-15;343.5)

(0;344.5)

Linea di scavo di destra (Irregolare)

(0;348.5)

(10.5;353)

(19;353)

(25;353)

(34;350)

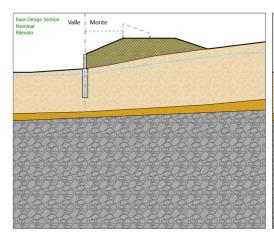
(50;352)

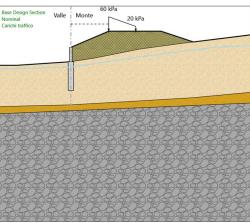
Elementi strutturali

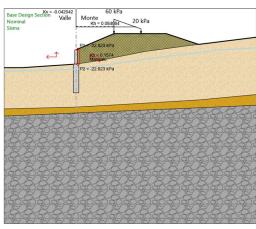
Paratia : Pali 1500

ParatiePlus 2021 [v: 21.0.0] - 31/05/2021 12:39:41

X:0 m


Quota in alto : 344.5 m Quota di fondo : 336.5 m Sezione : Pali1500


Paratia : Paramento

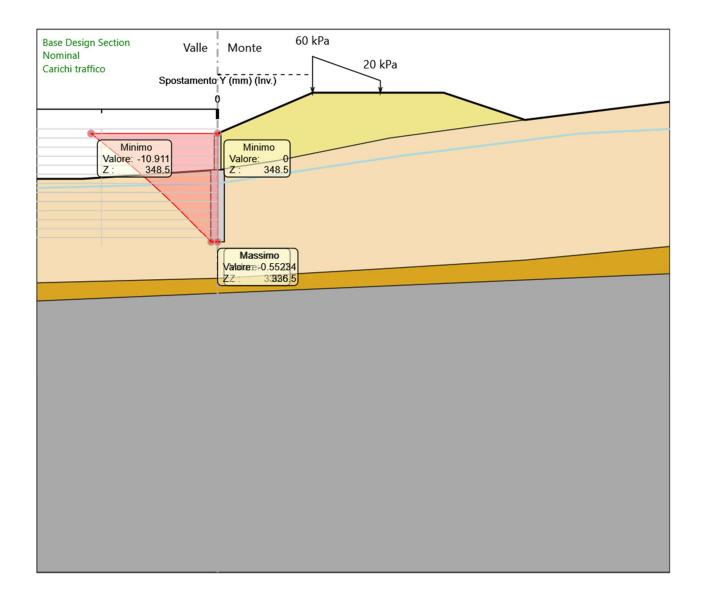

X:0 m

Quota in alto : 348.5 m Quota di fondo : 344.5 m Sezione : Paramento

Tabella Configurazione Stage (Nominal)

Descrizione Coefficienti Design Assumption

Nome	manenti Sfavorevoli (F_dead_lo ad_unfa- vour)	Carichi Per- manenti Favorevoli (F_dead_lo ad_favour)	riabili Sfa- vorevoli (F_live_loa d_unfa- vour)	riabili Fa- vorevoli (F_live_loa d_favour)	smico (F_seism_ load)	sioni Ac- qua Lato Mon te (F_ Wa- terD R)	sioni Ac- qua Lato Vall e (F_ Wa- ter- Res)	nenti De- stabiliz- zanti (F_UPL_G DStab)	Perma- nenti Sta- bilizzanti (F_UPL_G Stab)	zanti (F_UPL_Q DStab)	stabiliz- zanti (F_HYD_G DStab)	Perma- nenti Sta- bilizzanti (F_HYD_G Stab)	Carichi Va- riabili De- stabiliz- zanti (F_HYD_Q DStab)
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Fr equente /Quasi Perma- nente)													
A1+M1+ R1 (R3 per ti- ranti)	1.3	1	1.5	1	0	1.3	1	1	1	1	1	1	1
A2+M2+ R1	1	1	1.3	1	0	1	1	1	1	1	1	1	1
SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1	1	1
GLOBALE STATICA	1	1	1	1	0	1	1	1	1	1	1	1	1
GLOBALE SISMICA	1	1	1	1	1	1	1	1	1	1	1	1	1


Nome	Parziale su tan(ø') (F_Fr)	Parziale su c' (F_eff_cohe)	Parziale su Su (F_Su)	Parziale su qu (F_qu)	Parziale su peso specifico (F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi Per- manente)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1
SISMICA STR	1	1	1	1	1
SISMICA GEO	1	1	1	1	1
GLOBALE STATICA	1.25	1.25	1.4	1	1
GLOBALE SISMICA	1.25	1.25	1.4	1	1

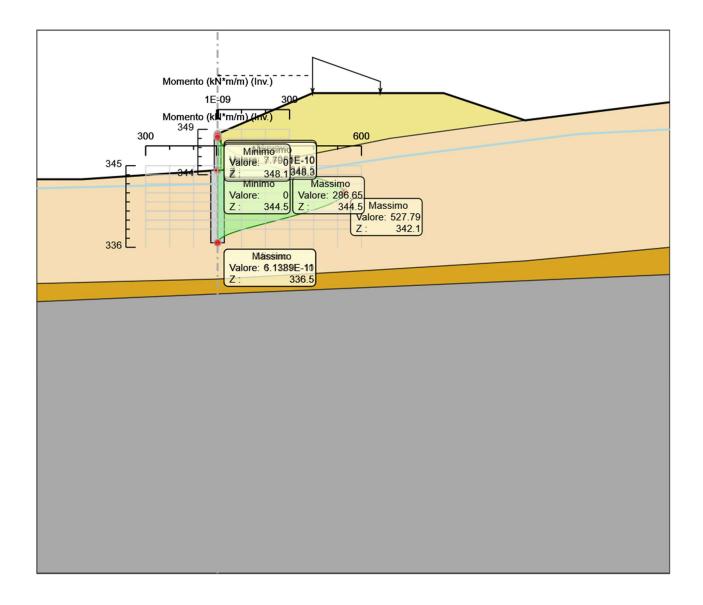
Nome	Parziale resistenza terreno (es. Kp)	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	(F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara/Fre-	1	1	1	1
quente/Quasi Perma-				
nente)				
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1
SISMICA STR	1	1.2	1.1	1
SISMICA GEO	1	1.2	1.1	1
GLOBALE STATICA	1	1	1	1
GLOBALE SISMICA	1	1	1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Rilevato C	arichi traffi	co Sisma
SLE (Rara/Frequente/Quasi Permanente) V	V	
A1+M1+R1 (R3 per tiranti)	V	V	
A2+M2+R1	V	V	
SISMICA STR			V
SISMICA GEO			V
GLOBALE STATICA			
GLOBALE SISMICA			

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi) Grafico Inviluppi Spostamento

Spostamento


Tabella Inviluppi Momento Pali 1500

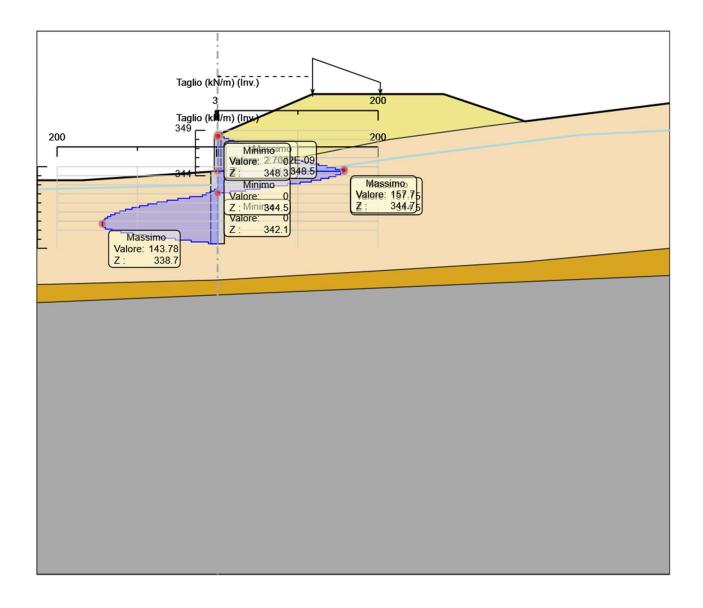
Selected Design Assumptions	Invilunni: Momento	Muro: Pali 1500
<u> </u>	Lato sinistro (kN*m/m)	
344.5	0	286.647
344.3	0	318.198
344.1	0	348.867
343.9	0	378.274
343.7	0	406.042
343.5	0	431.804
343.3	0	455.156
343.1	0	475.732
342.9	0	493.152
342.7	0	507.18
342.5	0	517.703
342.3	0	524.61
342.1	0	527.791
341.9	0	527.37
341.7	0	523.568
341.5	0	516.613
341.3	0	506.723
341.1	0	494.12
340.9	0	479.019
340.7	0	461.637
340.5	0	442.187
340.3	0	420.87
340.1	0	397.916
339.9	0	373.525
339.7	0	347.901
339.5	0	321.251
339.3	0	293.777
339.1	0	265.683
338.9	0	237.168
338.7	0	208.419
338.5	0	179.663
338.3	0	151.085
338.1	0	123.153
337.9	0	96.792
337.7	0	72.699
337.5	0	51.57
337.3	0	33.739
337.1	0	19.424
336.9	0	8.867
336.7	0	2.289
336.5	0	0

Tabella Inviluppi Momento Paramento

Selected Design Assumptions	Inviluppi: Momento	Muro: Paramento
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
348.5	0	0
348.3	0	0.519
348.1	0	2.136
347.9	0	4.909
347.7	0	8.899
347.5	0	14.167
347.3	0	20.768
347.1	0	28.763
346.9	0	38.212
346.7	0	49.174
346.5	0	61.709
346.3	0	75.876
346.1	0	91.735
345.9	0	109.355
345.7	0	128.777
345.5	0	150.07
345.3	0	173.293
345.1	0	198.505
344.9	0	225.768
344.7	0	255.139
344.5	0	286.647

Grafico Inviluppi Momento

Momento


Tabella Inviluppi Taglio Pali 1500

Selected Design Assumptions	• • • •	
Z (m) I	.ato sinistro (kN/m)	Lato destro (kN/m)
344.5	0	157.754
344.3	0	157.754
344.1	0	153.343
343.9	0	147.038
343.7	0	138.839
343.5	0	128.746
343.3	0	116.759
343.1	0	102.878
342.9	0	87.103
342.7	0	70.137
342.5	3.841	52.616
342.3	9.293	34.535
342.1	14.293	15.908
341.9	19.008	0
341.7	34.777	0
341.5	49.45	0
341.3	63.016	0
341.1	75.505	0
340.9	86.908	0
340.7	97.252	0
340.5	106.531	0
340.3	114.767	0
340.1	121.957	0
339.9	128.119	0
339.7	133.251	0
339.5	137.369	0
339.3	140.473	0
339.1	142.574	0
338.9	143.673	0
338.7	143.778	0
338.5	143.778	0
338.3	142.891	0
338.1	139.661	0
337.9	131.805	0
337.7	120.464	0
337.5	105.645	0
337.3	89.157	0
337.1	71.536	0
336.9	52.784	0
336.7	32.893	0
336.5	11.473	0

Tabella Inviluppi Taglio Paramento

Selected Design Assumptions	Inviluppi: Taglio	Muro: Paramento
Z (m)	Lato sinistro (kN/m	Lato destro (kN/m)
348.5	0	2.596
348.3	0	8.084
348.1	0	13.868
347.9	0	19.949
347.7	0	26.327
347.5	0	33.003
347.3	0	39.975
347.1	0	47.244
346.9	0	54.81
346.7	0	62.674
346.5	0	70.836
346.3	0	79.296
346.1	0	88.054
345.9	0	97.111
345.7	0	106.464
345.5	0	116.115
345.3	0	126.064
345.1	0	136.312
344.9	0	146.857
344.7	0	157.698
344.5	0	157.698

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	n Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
A2+M2+R1	Carichi traffico	Left Wall	LEFT	51.08
A2+M2+R1	Carichi traffico	Left Wall	RIGH1	16.24

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
A2+M2+R1	Rilevato	Left Wall	LEFT	788.3
A2+M2+R1	Carichi traffico	Left Wall	RIGHT	100.04

RELAZIONE DI CALCOLO

MU06 – Verifiche terra rinforzata

Calcolo della spinta attiva con Coulomb

Il calcolo della spinta attiva con il metodo di *Coulomb* è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida.

Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione:

$$P_t = K_a \cdot \gamma_t \cdot z$$

La spinta S_t è applicata ad 1/3 H di valore

$$S_t = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_a$$

Avendo indicato con:

$$K_{a} = \frac{\text{sen}^{2}(\beta - \phi)}{\text{sen}^{2}\beta \cdot \text{sen}(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - \epsilon)}{\sin(\beta + \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

Valori limite di K_A , $\delta < (\beta - \phi - \epsilon)$ secondo Muller-Breslau:

- γ_t Peso unità di volume del terreno;
- β Inclinazione della parete interna rispetto al piano orizzontale passante per il piede;
- φ Angolo di resistenza al taglio del terreno;
- δ Angolo di attrito terra-muro;
- ε Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria;
- H Altezza della parete.

Calcolo della spinta attiva con Rankine

Se $\varepsilon = \delta = 0$ e $\beta = 90^{\circ}$ (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta *St* si semplifica nella forma:

$$S_{t} = \frac{\gamma \cdot H^{2}}{2} \frac{\left(1 - \sin \phi\right)}{\left(1 + \sin \phi\right)} = \frac{\gamma \cdot H^{2}}{2} \tan^{2} \left(45 - \frac{\phi}{2}\right)$$

che coincide con l'equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale. In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l'attrito terra-muro e la presenza di coesione. Nella sua formulazione generale l'espressione di Ka di Rankine si presenta come segue:

$$Ka = \cos \varepsilon \frac{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

Calcolo della spinta attiva con Mononobe & Okabe

Il calcolo della spinta attiva con il metodo di *Mononobe & Okabe* riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia

di calcolo nella quale l'angolo ε , di inclinazione del piano campagna rispetto al piano orizzontale, e l'angolo β , di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità θ tale che:

$$tg \theta = k_h/(1 \pm k_v)$$

con kh coefficiente sismico orizzontale e kv verticale.

Calcolo coefficienti sismici (NTC 2008)

Secondo le Nuove Norme Tecniche per le Costruzioni (NTC 2008) i coefficienti sismici k_h e k_v sono calcolati come:

$$k_h = \beta_m \cdot (a_{max} / g)$$
 $\cdot k_v = \pm 0.5 \cdot k_h$

 β_m coefficiente di riduzione dell'accelerazione massima attesa al sito; per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente β_m assume valore unitario. Per i muri liberi di traslare o ruotare intorno al piede, si può assumere che l'incremento di spinta dovuto al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si assume che tale incremento sia applicato a metà altezza del muro.

a_{max} accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{\text{max}} = S \cdot a_{g} = S_{s} \cdot S_{T} \cdot a_{g}$$

S coefficiente comprendente l'effetto di amplificazione stratigrafica S_{t} e di amplificazione topografica S_{t} . accelerazione orizzontale massima attesa su sito di riferimento rigido.

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R / ln(1 - PVR)$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Effetto dovuto alla coesione

La coesione induce delle pressioni negative costanti pari a:

$$P_{c} = -2 \cdot c \cdot \sqrt{K_{a}}$$

Non essendo possibile stabilire a priori quale sia il decremento indotto nella spinta per effetto della coesione, è stata calcolata un'altezza critica Z_{C} come segue:

$$Z_{c} = \frac{2 \cdot c}{\gamma} \cdot \frac{1}{\sqrt{K_{A}}} - \frac{Q \cdot \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \epsilon)}}{\gamma}$$

Dove:

Q Carico agente sul terrapieno;

Se Z_c < 0 è possibile sovrapporre direttamente gli effetti, con decremento pari a:

$$S_c = P_C \cdot H$$

con punto di applicazione pari a H/2.

Carico uniforme sul terrapieno

Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a:

$$P_{q} = K_{a} \cdot Q \cdot \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \varepsilon)}$$

Per integrazione, una spinta pari a S_q:

$$S_{q} = K_{a} \cdot Q \cdot H \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \varepsilon)}$$

Con punto di applicazione ad H/2, avendo indicato con Ka il coefficiente di spinta attiva secondo Muller-Breslau.

Spinta attiva in condizioni sismiche

In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da:

\

Dove:

H altezza muro

k_v coefficiente sismico verticale

peso per unità di volume del terreno

K coefficienti di spinta attiva totale (statico + dinamico)

E_{WS} spinta idrostatica dell'acqua

E_{wd} spinta idrodinamica.

Per terreni impermeabili la spinta idrodinamica $E_{wd}=0$, ma viene effettuata una correzione sulla valutazione dell'angolo θ della formula di Mononobe & Okabe così come di seguito:

$$tg\theta = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 \mp k_v}$$

Nei terreni ad elevata permeabilità in condizioni dinamiche continua a valere la correzione di cui sopra, ma la spinta idrodinamica assume la seguente espressione:

$$E_{wd} = \frac{7}{12} k_h \gamma_w H'^2$$

Con H' altezza del livello di falda misurato a partire dalla base del muro.

Spinta idrostatica

La falda con superficie distante H_W dalla base del muro induce delle pressioni idrostatiche normali alla parete che, alla profondità z, sono espresse come segue:

$$P_{w}(z) = \gamma_{w} \cdot z$$

Con risultante pari a:

$$\mathbf{S}_{\mathbf{w}} = \frac{1}{2} \cdot \mathbf{\gamma}_{\mathbf{w}} \cdot \mathbf{H}^2$$

La spinta del terreno immerso si ottiene sostituendo γ_t con γ'_t ($\gamma'_t = \gamma_{saturo} - \gamma_w$), peso efficace del materiale immerso in acqua.

Resistenza passiva

Per terreno omogeneo il diagramma delle pressioni risulta lineare del tipo:

$$P_t = K_p \cdot \gamma_t \cdot z$$

per integrazione si ottiene la spinta passiva:

$$\mathbf{S}_{p} = \frac{1}{2} \cdot \mathbf{\gamma}_{t} \cdot \mathbf{H}^{2} \cdot \mathbf{K}_{p}$$

Avendo indicato con:

$$K_p = \frac{\text{sen}^2(\phi + \beta)}{\text{sen}^2\beta \cdot \text{sen}(\beta - \delta) \cdot \left[1 - \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi + \epsilon)}{\text{sen}(\beta - \delta) \cdot \text{sen}(\beta - \epsilon)}}\right]^2}$$

(Muller-Breslau) con valori limiti di δ pari a:

$$\delta < \beta - \phi - \epsilon$$

L'espressione di K_p secondo la formulazione di Rankine assume la seguente forma:

$$Kp = \frac{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

Carico limite

Una delle prime famiglie di formule per il calcolo della capacità portate fu proposta da Terzaghi nel 1943.

$$q_{ult} = c \cdot N_c \cdot s_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$$

dove

$$N_q = \frac{a^2}{2 \cdot \cos^2(45 + \omega/2)}$$

$$a = e^{(0.75\pi - \phi/2)} \tan \phi$$

$$N_c = (N_q - 1)\cot\varphi$$

$$N_{\gamma} = \frac{\tan \varphi}{2} \cdot \left(\frac{K_{p\gamma}}{\cos^2 \varphi} - 1 \right)$$

dove $s_c=1$ e $s_{\gamma}=1$. per fondazioni nastriformi.

Brinch Hansen - Vesic - (1970)

Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza:

$$V_d \le R_d$$

Dove V_d è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici. Nella valutazione analitica del carico limite di progetto R_d si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come:

$$R/A'=(2+\pi)\cdot c_{ij}\cdot s_{c}\cdot i_{c}+q$$

Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c_u coesione non drenata

q pressione litostatica totale sul piano di posa

s_c fattore di forma

 $s_c = 0.2 \cdot (B'/L')$ per fondazioni rettangolari

i_c Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_c = 0.5 \cdot \left(1 + \sqrt{1 - H/A' \cdot c_n}\right)$$

ca aderenza alla base, pari alla coesione o ad una sua frazione.

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$R \, / \, A' = c' \cdot N_c \, \cdot s_c \cdot i_c + q' \cdot N_q \cdot s_q \cdot i_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot i_\gamma$$

dove:

$$N_{q} = e^{\pi \tan \phi'} \cdot \tan^{2} (45 + \phi'/2)$$

$$N_{c} = (N_{q} - 1) \cdot \cot \phi'$$

$$N_{\gamma} = 2 \cdot (N_{q} - 1) \cdot \tan \phi'$$

Fattori di forma

$$s_q = 1 + (B'/L') \cdot \sin \phi'$$

per forma rettangolare

$$s_{\gamma}=1-0.3\cdot(\mathrm{B'}/\mathrm{L'})$$

per forma rettangolare

$$s_c = (s_q \cdot N_q - 1)/(N_q - 1)$$

per forma rettangolare, quadrata o circolare.

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$i_{\alpha} = [1 - H/(V + A' \cdot c' \cdot \cot \phi')]^{m}$$

$$i_{\gamma} = \left[1 - H/\left(V + A' \cdot c' \cdot \cot \phi'\right)\right]^{m+1}$$

$$i_c = (i_q \cdot N_q - 1)/(N_q - 1)$$

$$m = m_B = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \quad con \quad H//B'$$

$$m = m_L = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad con \quad H//L'$$

Se H forma un angolo θ con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

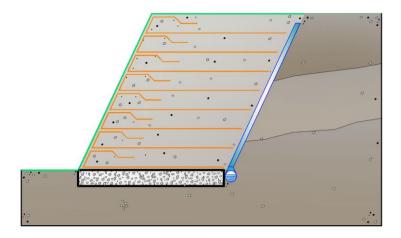
$$m = m_{\theta} = m_L \cos^2 \theta + m_B \sin^2 \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Convenzione segni

Forze verticali positive se dirette dall'alto verso il basso; Forze orizzontali positive se dirette da monte verso valle;

Coppie positive se antiorarie;
Angoli positivi se antiorari.


Terra Rinforzata

Verifiche Interne

Sono finalizzate ad analizzare i possibili meccanismi di collasso che coinvolgono parzialmente o integralmente la porzione di terreno rinforzato.

Hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, a fronte dell'introduzione di possibili cinematismi di rottura che tendono a pregiudicare la funzionalità e la sicurezza del manufatto. Le verifiche effettuate comprendono:

- Verifica di resistenza dei rinforzi (Rottura);
- Verifica allo sfilamento (Pullout).

Verifica a rottura

Si valuta l'entità della resistenza mobilitata dal rinforzo per garantire il raggiungimento di una condizione stabile dell'opera.

La sollecitazione instabilizzante è rappresentata dalla spinta a cui è sottoposto il manufatto da parte dei sistemi di carichi applicati (terreno a tergo, eventuale sovraccarico esterno ed azione del sisma).

La resistenza disponibile nel rinforzo si calcola a partire dalla sua resistenza nominale, applicando opportuni fattori di sicurezza:

$$T_{\text{allow}} = \frac{T_{\text{nom}}}{\prod\limits_{i=1}^{n} FS_i}$$

E' necessario che per ogni livello z_i , profondità a cui è collocato il rinforzo rispetto alla sommità dell'opera, venga soddisfatta la relazione:

$$\frac{T_{allow}}{T_{zi}} \ge FS_{rottura}$$

 $Avendo \ indicato \ con \ T_{Z\dot{1}} \ la \ resistenza \ richiesta, \ alla \ quota \ z_{\dot{1}}, per \ garantire \ la \ stabilità \ del \ manufatto.$

Verifica a sfilamento

La verifica a rottura, definisce l'entità della resistenza a trazione che il rinforzo deve essere in grado di mobilizzare per stabilizzare l'opera.

Il trasferimento della resistenza a trazione dal rinforzo al terreno può avvenire grazie all'interazione che si sviluppa all'interno del rinforzo in corrispondenza del tratto ancorato nella parte stabile del pendio.

In funzione della lunghezza di ancoraggio del telo, infatti, per effetto della spinta generata dalle sollecitazioni a tergo del tratto di terreno rinforzato, si sviluppa internamente al rinforzo, una resistenza che tende, per reazione, ad opporsi al movimento verso l'esterno del sistema composito.

Tale resistenza viene chiamata resistenza allo sfilamento (Pullout).

La resistenza allo sfilamento può essere determinata dalla seguente relazione:

$$T_{\text{pullout}} = 2 \cdot (L_e \cdot f_b \cdot \tan \varphi) \cdot \sigma'_v$$

dove:

T_{pollout}Resistenza mobilitata da un rinforzo ancorato per una lunghezza Le all'interno della parte stabile del terreno;

fb Coefficiente di Pullout;

σ'_V Tensioni normali applicate sulla parte del rinforzo ancorato nella zona resistente, alla quota z_i; in tale valore è incluso il contributo del sovraccarico, se presente.

La verifica a sfilamento risulta soddisfatta se:

$$\frac{T_{\text{pullout}}}{T_{\text{zi}}} \ge FS_{\text{rottura}}$$

Dove T_{zi} è la resistenza richiesta, alla quota z_i , per garantire la stabilità del manufatto.

Forze di trazione nei rinforzi

Si determinano le forze di trazione nei vari rinforzi, date dall'area del diagramma delle pressioni relative a ogni striscia. Per il diagramma triangolare relativo al terrapieno, la forza nella striscia è data dall'area dell'elemento trapezio ab'd'e viene trasformata nella pressione media q_i alla profondità della striscia Z_i mediante la relazione:

$$q_i = \gamma \cdot z_i \cdot K_a$$

La pressione q_i agisce su una area definita dalla spaziatura delle armature $h \times s$ e corrisponde a una forza di trazione nel rinforzo pari a:

$$T_i = q_i \cdot A = \gamma \cdot z_i \cdot K_a \cdot (h \cdot s)$$

Per l'equilibrio la somma delle forze di trazione deve essere pari alla componete orizzontale delle forze agenti.

$$\sum T_i = P_{ah}$$

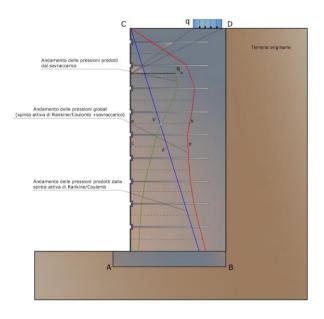


Fig. 2

Calcolo delle lunghezze efficaci Le

Si calcolano le lunghezze delle strisce Le che compaiono in Figura 3, necessarie affinché si sviluppi una forza d'attrito $F_r = T_i$. Sulla base di tali lunghezze e delle dimensioni del cuneo di Rankine, si può determinare la lunghezza globale Lo delle strisce da utilizzare. In generale, per tutta l'altezza del muro si usano strisce della stessa lunghezza. La lunghezza di ancoraggio dipende dal coefficiente d'attrito f=tan δ tra suolo e rinforzo, essendo δ un'opportuna frazione dell'angolo d'attrito interno del terreno ϕ . Se la striscia è sufficientemente scabra $\delta = \phi$, mentre per metalli lisci δ è compreso orientativamente tra 20° e 25° .

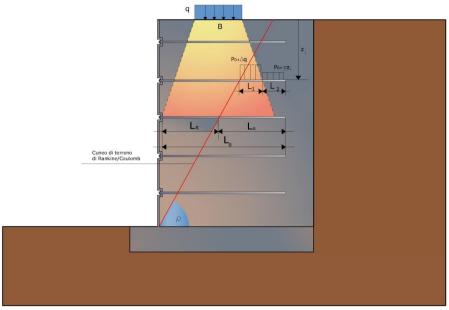


Fig. 3

Per strisce di dimensioni b x Le o per fogli di geotessile di larghezza unitaria e lunghezza Le, entrambe le facce sviluppano attrito; per barre circolari, l'attrito resistente è sviluppato lungo il perimetro. In ogni caso, l'attrito è dato dal prodotto di f per la pressione normale al rinforzo calcolata come $p_0 = \gamma z_i$ dove z_i è la distanza media dalla superficie del terreno al rinforzo. Si ha quindi:

Per strisce:

$$F_i = 2 \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (b \cdot L_e) \ge T_i$$

Per barre:
$$F_i = \pi \cdot D \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (L_e) \ge T_i$$

Per fogli:

$$F_i = 2 \cdot (\gamma \cdot z_i) \cdot \tan \delta \cdot (1 \cdot L_e) \ge T_i$$

Se nelle precedenti formule il segno ≥ è sostituito col segno di uguale, il coefficiente di sicurezza FS è pari a 1. Se si assume FS > 1, il valore di Le risulta necessariamente maggiore di quello dato da queste formule.

Si determina quindi la sezione delle armature b x t. Per barre o strisce in metallo avente sforzo ammissibile pari a fa = fy/FS si ha:

$$b \cdot t \cdot f_a > T_i$$
 oppure $\frac{\pi \cdot D^2}{4} \cdot f_a > T_i$

Nel caso di geotessili si ha il problema che la resistenza del tessuto varia a seconda del produttore; tra quelli possibili si sceglie un tessuto che:

Larghezza striscia b × resistenza per unità di larghezza ≥ Ti

Descrizione

Coefficiente azione sismica orizzontale	0,09
Coefficiente azione sismica orizzontale	0,05

Geometria

Ocometra			
Nr.	X	Y	
	(m)	(m)	
1	0,0	0,0	
2.	1.39	2.4	

3	5,39	2,4
4	4,0	0,0

Terreno rinforzo

20,0 kN/m ³ 20,0 kN/m ³ 35,0 ° 0,0 kN/m ²
23,33 °

Terreno riempimento

Peso unità di volume	$19,0 \text{ kN/m}^3$
Peso unità di volume saturo	$19,0 \text{ kN/m}^3$
Angolo di resistenza a taglio	34,0 °
Coesione	0.0 kN/m^2
Angolo di attrito terra muro	22,0 °

Terreno fondazione

Peso unità di volume	19,0 kN/m³
Peso unità di volume saturo	$19,0 \text{ kN/m}^3$
Angolo di resistenza a taglio	30,0 °
Coesione	$10,0 \text{ kN/m}^2$

Nr.	X (m)	y (m)	Tipo	Lunghez za	Lunghez za	Lunghez za non	Lunghez za	Lunghez za totale	Interass e	Fattore sicurezz	Fattore sicurezz
	(111)	(111)		ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip) (m)	(m)	(m)	(m)			to	
1	0,0	0,0		1	0,6	0	4	4		11,46	1,68
			Geogrig lie								
 2	0,35	0,6	(1)	1	0,6	0	4	4		12,52	2,22
			Geogrig lie								
3	0,7	1,2		1	0,6	0	4	4		15,07	3,33
			Geogrig lie								
4	1,04	1,8	(1)	1	0,6	0	4	4		24,33	6,75
			Geogrig lie								

Elenco rinforzi

Tipo	Descrizione	Struttura	Resistenza
		(mm)	
1	Geogriglie	Geosintetici	28,99 kN/m

Descrizione

Nr.	Confermare	X	Y	Lx	Ly	Q
	con il pulsante	(m)	(m)	(m)	(m)	(kN/m²)
	destro del					
	mouse					

1	Rilevato	2,4	2,4	3	1	20
•						

Combinazione 1 (A1+M1)

· · · · · · · · · · · · · · · · · · ·			
Nr.	Azioni	Fattore combinazione	
1	Peso muro	1,00	
2	Spinta terreno	1,30	
3	Spinta falda	1,30	
4	Spinta sismica in x	0,00	
5	Spinta sismica in y	0,00	
6	Rilevato	1,30	

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1
2	Coesione	1
3	Coesione non drenata	1
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1,4
3	Scorrimento	1,1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 2 (A2+M2)

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,00
3	Spinta falda	1,00
4	Spinta sismica in x	0,00
5	Spinta sismica in y	0,00
6	Rilevato	1,00

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1,25
2	Coesione	1,25
3	Coesione non drenata	1,4
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1
3	Scorrimento	1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 3 (EQU+M2)

Nr.	Azioni	Fattore combinazione
1	Peso muro	0,90
2	Spinta terreno	1,10
3	Spinta falda	1,10
4	Spinta sismica in x	0,00
5	Spinta sismica in y	0,00
6	Rilevato	1,10

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1,25
2	Coesione	1,25

3	Coesione non drenata	1,4
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1
3	Scorrimento	1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 4 (Sisma)

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,00
3	Spinta falda	1,00
4	Spinta sismica in x	1,00
5	Spinta sismica in y	1,00
6	Rilevato	1,00

Nr.	Parametro	Coefficienti parziali SLU
1	Tangente angolo res. taglio	1
2	Coesione	1
3	Coesione non drenata	1
4	Peso unità volume	1
	Angolo attrito terreno rinforzo	

Nr.	Parametro	Coefficiente parziale resistenza [R]
2	Carico limite	1,4
3	Scorrimento	1,1
4	Resistenza terreno	1
5	Ribaltamento	0

Combinazione 1 (A1+M1)

Nr.	X (m)	y (m)	Tipo	Lunghez za	Lunghez za	Lunghez za non	Lunghez za	Lunghez za totale	Interass e	Fattore sicurezz	Fattore sicurezz
				ripiegat ura (Lrip)	facciata (Lf) (m)	efficace (Lr) (m)	efficace (Le) (m)	(Lt) (m)	(m)	a sfilamen to	a rottura
				(EHP) (m)	(111)	(111)	(111)			ιο	
1	0,0	0,0	. ,	1	0,6	0	4	4		11,46	1,68
			Geogrig lie								
2	0,35	0,6	. ,	1	0,6	0	4	4		12,52	2,22
			Geogrig lie								
3	0,7	1,2	(1)	1	0,6	0	4	4		15,07	3,33
			Geogrig lie								
4	1,04	1,8	(1)	1	0,6	0	4	4		24,33	6,75
			Geogrig lie								

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (5,4/0,0) m Piano di rottura passante per (xr2,yr2) = (5,4/2,4) m

Centro di rotazione (xro,yro) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Qf Quota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	В	
2,4	0,0	19,0	31,0	34,0	22,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

	\mathbf{V}_{0}	V.A	Dl
μ	Na	Ku	DK
69.0	0.40	0.97	0.20
00,0	0,49	0,07	0,39

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	32,13	12,98	5,39	0,8	
Spinta attiva Coesione	0,0	0,0	5,39	1,2	
Spinta incremento sismico	0,0	0,0	5,39	0,8	
Spinta statica sovraccarico	28,18	11,39	5,39	1,2	
Spinta incr. sismico sovraccarico	0,0	0,0	5,39	1,2	
Peso muro	0.0	192.0	2.7	1.2	

Momento stabilizzante 648,77 kNm Momento ribaltante 59,52 kNm

Verifica alla traslazione

Sommatoria forze orizzontali 60,31 kN
Sommatoria forze verticali 216,37 kN
Coefficiente di attrito 0,58
Adesione 10,0 kN/m²
Forze normali al piano di scorrimento 216,37 kN
Forze parall. al piano di scorrimento 60,31 kN
Coeff. sicurezza traslazione Csd 2,49

Traslazione verificata Csd>1

Verifica al ribaltamento

Momento stabilizzante648,77 kNmMomento ribaltante59,52 kNmCoeff. sicurezza ribaltamento Csv10,9

Muro verificato a ribaltamento Csv>1

Carico limite: TERZAGHI		_
Somma forze in direzione x	60,31	kN
Somma forze in direzione y (Fy)	216,37	/ kN
Somma momenti	-589,25	5 kNm
Larghezza fondazione	4,0) m
Eccentricità su B	0,72	2 m
Peso unità di volume	19,0) kN/m ³
Angolo di resistenza al taglio	30,0) °
Coesione	10,0) kN/m ²
Terreno sulla fondazione	0,0) m
Peso terreno sul piano di posa	19,0) kN/m ³
Nq	22,46	j
Nc	37,16	j
Ng	19,73	3
sq	1,0)
sc	1,0)
sg	1,0)
Zg (Effetto inerziale in fondazione)	1,0)
iq	1,0)
ic	1,0)
ig	1,0)
Carico limite verticale (Qlim)	3203,48	3 kN
Fattore sicurezza (Csq=Qlim/Fy)	14,81	L
Carico limite verificato Csq>1		

Tensioni sul terreno

Ascissa centro sollecitazione	2,72	m
Larghezza della fondazione	4,0	m

 $\begin{array}{ll} x = 0{,}17 & Tensione... & 0{,}0 \; kN/m^2 \\ x = 4{,}0 & Tensione... & 112{,}99 \; kN/m^2 \\ \end{array}$

Combinazione 2 (A2+M2)

Nr.	X	у	Tipo	Lunghez	Lunghez	Lunghez	Lunghez	Lunghez	Interass	Fattore	Fattore
	(m)	(m)		za	za	za non	za	za totale	e	sicurezz	sicurezz
				ripiegat	facciata	efficace	efficace	(Lt)	(m)	a	a rottura
				ura	(Lf)	(Lr)	(Le)	(m)		sfilamen	
				(Lrip)	(m)	(m)	(m)			to	
				(m)							
1	0,0	0,0	(1)	1	0,6	0	4	4		6,87	1,31
			Geogrig								
			lie								
2	0,35	0,6	(1)	1	0,6	0	4	4		7,38	1,74
			Geogrig								
			lie								
3	0,7	1,2	(1)	1	0,6	0,01	3,99	4		8,6	2,6
			Geogrig								
			lie								
4	1,04	1,8	(1)	1	0,6	0,01	3,99	4		12,99	5,26
	,		Geogrig			ŕ					
			lie								

VERIFICHE GLOBALI [Condizione drenata]

Piano di rottura passante per (xr1,yr1) = (5,4/0,0) m

Piano di rottura passante per (xr2,yr2) = (5,4/2,4) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi Quota iniziale strato; Of Quota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	В	
2,4	0,0	19,0	31,0	28,35	22,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

μ	Ka	Kd	Dk
68,0	0,84	0,96	0,12

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	42,38	17,12	5,39	0,8	
Spinta attiva Coesione	0,0	0,0	5,39	1,2	
Spinta incremento sismico	0,0	0,0	5,39	0,8	
Spinta statica sovraccarico	37,18	15,02	5,39	1,2	
Spinta incr. sismico sovraccarico	0,0	0,0	5,39	1,2	
Peso muro	0,0	192,0	2,7	1,2	

Momento stabilizzante 690,69 kNm Momento ribaltante 78,51 kNm

Verifica alla traslazione

Sommatoria forze orizzontali

Sommatoria forze verticali

Coefficiente di attrito

Adesione

Forze normali al piano di scorrimento

Forze parall. al piano di scorrimento

Coeff. sicurezza traslazione Csd

Traslazione verificata Csd>1

79,56 kN

224,14 kN

79,56 kN

1,7

Verifica al ribaltamento

Momento stabilizzante 690,69 kNm Momento ribaltante 78,51 kNm Coeff. sicurezza ribaltamento Csv 8,8

Muro verificato a ribaltamento Csv>1

Carico limite: TERZAGHI		
Somma forze in direzione x	79,56	6 kN
Somma forze in direzione y (Fy)	224,14	4 kN
Somma momenti	-612,17	7 kNm
Larghezza fondazione	4,0	0 m
Eccentricità su B	0,73	3 m
Peso unità di volume	19,0	0 kN/m^3
Angolo di resistenza al taglio	24,79	9 °
Coesione	8,0	0 kN/m^2
Terreno sulla fondazione	0,0	0 m
Peso terreno sul piano di posa	19,0	0 kN/m^3
Nq	12,43	3
Nc	24,75	5
Ng	9,46	5
sq	1,0	0
sc	1,0	0
sg	1,0	0
Zg (Effetto inerziale in fondazione)	1,0	
iq	1,0)
ic	1,0	
ig	1,0	0
Carico limite verticale (Qlim)	2229,84	
Fattore sicurezza (Csq=Qlim/Fy) Carico limite verificato Csq>1	9,95	5

Tensioni sul terreno

Ascissa centro sollecitazione	2,73	m
Larghezza della fondazione	4,0	m

x = 0.19 Tensione... 0.0 kN/m^2 x = 4.0 Tensione... 117.77 kN/m^2

Combinazione 3 (EQU+M2)

Nr.	X (m)	y (m)	Tipo	Lunghez za ripiegat ura (Lrip) (m)	Lunghez za facciata (Lf) (m)	Lunghez za non efficace (Lr) (m)	za	Lunghez za totale (Lt) (m)	Interass e (m)	Fattore sicurezz a sfilamen to	Fattore sicurezz a rottura
1	0,0	0,0	(1) Geogrig lie	1	0,6	0	4	4		6,33	1,19
2	0,35	0,6	(1) Geogrig lie	1	0,6	0	4	4		6,85	1,58
3	0,7	1,2	(1) Geogrig lie	1	0,6	0,01	3,99	4		8,07	2,37
4	1,04	1,8	(1) Geogrig lie	1	0,6	0,01	3,99	4		12,45	4,78

Piano di rottura passante per (xr1,yr1) = (5,4/0,0) m Piano di rottura passante per (xr2,yr2) = (5,4/2,4) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi	Quota iniziale strato;
Of	Ouota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

ß Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	c	В	
2,4	0,0	19,0	31,0	28,35	22,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta
Ka	Coefficiente di spinta attiva,
Kd	Coefficiente di spinta dinamica,
Dk	Coefficiente di incremento dinamico,

μ	Ka	Kd	Dk
		-	
68.0	0.84	0.96	0.12

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	46,62	18,83	5,39	0,8	
Spinta attiva Coesione	0,0	0,0	5,39	1,2	
Spinta incremento sismico	0,0	0,0	5,39	0,8	
Spinta statica sovraccarico	40,89	16,52	5,39	1,2	
Spinta incr. sismico sovraccarico	0,0	0,0	5,39	1,2	
Peso muro	0,0	172,8	2,7	1,2	

Momento stabilizzante 656,27 kNm Momento ribaltante 86,37 kNm

Verifica alla traslazione

Coeff. sicurezza traslazione Csd Traslazione verificata Csd>1	1,46	
1 1	,	KI
Forze parall. al piano di scorrimento	87,51	kN
Forze normali al piano di scorrimento	208,16	kN
Adesione	8,0	kN/m^2
Coefficiente di attrito	0,46	
Sommatoria forze verticali	208,16	kN
Sommatoria forze orizzontali	87,51	kN

Verifica al ribaltamento

Coeff. sicurezza ribaltamento Csv	7,6
Momento ribaltante	86,37 kNm
Momento stabilizzante	656,27 kNm

Muro verificato a ribaltamento Csv>1

Carico limite: TERZAGHI		_
Somma forze in direzione x	87,51	l kN
Somma forze in direzione y (Fy)	208,16	5 kN
Somma momenti	-569,9	9 kNm
Larghezza fondazione	4,0	0 m
Eccentricità su B	0,74	1 m
Peso unità di volume	19,0	0 kN/m^3
Angolo di resistenza al taglio	24,79) °
Coesione	8,0	0 kN/m^2
Terreno sulla fondazione	0,0) m
Peso terreno sul piano di posa	19,0	0 kN/m^3
Nq	12,43	3
Nc	24,75	5
Ng	9,46	5
sq	1,0)
sc	1,0)
sg	1,0)
Zg (Effetto inerziale in fondazione)	1,0)
iq	1,0)
ic	1,0)
ig	1,0)
Carico limite verticale (Qlim)	2229,84	1 kN
Fattore sicurezza (Csq=Qlim/Fy)	10,71	1
Carico limite verificato Csq>1		

Tensioni sul terreno

Ascissa centro sollecitazione	2,74	m
Larghezza della fondazione	4,0	m

 $\begin{array}{ll} x=0,\!21 & \text{Tensione...} & 0,\!0 \text{ kN/m}^2 \\ x=4,\!0 & \text{Tensione...} & 109,\!95 \text{ kN/m}^2 \end{array}$

Combinazione 4 (Sisma)

Nr.	X (m)	y (m)	Tipo	Lunghez za ripiegat ura (Lrip) (m)	Lunghez za facciata (Lf) (m)	Lunghez za non efficace (Lr) (m)	Lunghez za efficace (Le) (m)	Lunghez za totale (Lt) (m)	Interass e (m)	Fattore sicurezz a sfilamen to	Fattore sicurezz a rottura
1	0,0	0,0	(1) Geogrig lie	1	0,6	0	4	4		8,57	1,31
2	0,35	0,6	(1) Geogrig lie	1	0,6	0	4	4		9,22	1,73
3	0,7	1,2	(1) Geogrig lie	1	0,6	0	4	4		10,75	2,6
4	1,04	1,8	(1) Geogrig lie	1	0,6	0	4	4		16,24	5,24

Piano di rottura passante per (xr1,yr1) = (5,4/0,0) m Piano di rottura passante per (xr2,yr2) = (5,4/2,4) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

Discretizzazione terreno

Qi	Quota iniziale strato;
Of	Ouota finale strato

P.U.V. Peso unità di volume (kN/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kN/m²);

β Angolo perpendicolare al paramento lato monte (°);

Qi	Qf	P.U.V.	Eps	Fi	Delta	С	В	
2.4	0.0	19.0	31.0	34.0	22.0	0.0	0.0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

μ	Ka	Kd	Dk
68.0	0.49	0.87	0.39

Spinte risultanti e punto di applicazione

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

	Fx	Fy	Z(Rpx)	Z(Rpy)	
Spinta attiva	24,71	9,98	5,39	0,8	
Spinta attiva Coesione	0,0	0,0	5,39	1,2	
Spinta incremento sismico	19,55	7,9	5,39	0,8	
Spinta statica sovraccarico	21,68	8,76	5,39	1,2	
Spinta incr. sismico sovraccarico	17,15	6,93	5,39	1,2	
Peso muro	17,28	192,0	2,7	1,2	

Momento stabilizzante 698,39 kNm Momento ribaltante 102,74 kNm

Verifica alla traslazione

Sommatoria forze orizzontali100,37kNSommatoria forze verticali225,57kNCoefficiente di attrito0,58Adesione10,0kN/m²Forze normali al piano di scorrimento225,57kNForze parall. al piano di scorrimento100,37kNCoeff. sicurezza traslazione Csd1,54

Verifica al ribaltamento

Traslazione verificata Csd>1

Momento stabilizzante 698,39 kNm Momento ribaltante 102,74 kNm Muro verificato a ribaltamento Csv>1

Carico limite: TERZAGHI		
Somma forze in direzione x	100,37	kN
Somma forze in direzione y (Fy)	225,57	¹ kN
Somma momenti	-595,65	5 kNm
Larghezza fondazione	4,0) m
Eccentricità su B	0,64	∤ m
Peso unità di volume	19,0) kN/m ³
Angolo di resistenza al taglio	30,0) °
Coesione	10,0) kN/m ²
Terreno sulla fondazione	0,0) m
Peso terreno sul piano di posa	19,0) kN/m ³
Nq	22,46	j
Nc	37,16	j .
Ng	19,73	}
sq	1,0)
sc	1,0)
sg	1,0)
Zg (Effetto inerziale in fondazione)	1,0)
iq	1,0)
ic	1,0)
ig	1,0)
Carico limite verticale (Qlim)	3203,48	3 kN
Fattore sicurezza (Csq=Qlim/Fy)	14,2	2
Carico limite verificato Csq>1		

Tensioni sul terreno

i chistoin sui terreno		
Ascissa centro sollecitazione	2,64 m	
Larghezza della fondazione	4,0 m	

x = 0,0	Tensione	$2,2 \text{ kN/m}^2$
x = 4.0	Tensione	$110,58 \text{ kN/m}^2$

MU06 – Verifiche di stabilità globale

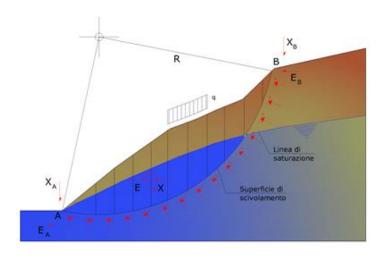
Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:


- Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (φ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ_f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

1

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N; agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali E_i agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X; agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E_i;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

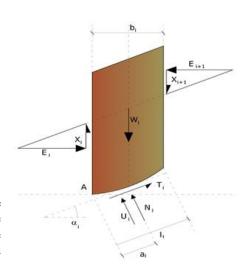
- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.


Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterio di rottura

$$F = \frac{{\Sigma \{\! {c_i} \times {b_i} + \! \left({{W_i} - {u_i} \times {b_i} + \! \Delta {X_i}} \right) \! \times \tan {\phi _i} \! \left\} \! \times \frac{{\sec \alpha _i}}{{1 + \tan \alpha _i} \times \tan {\phi _i} \mathbin{/} F}}}{{\Sigma {W_i} \times {\sin }{\alpha _i}}}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X=0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{y}W$$

Essendo:

- **F**_H e **F**_V rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- W peso concio;
- **K**_x coefficiente sismico orizzontale;
- **K**_v coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Analisi di stabilità dei pendii con: BISHOP (1955) - CONDIZIONI STATICHE

	=======================================
Calcolo eseguito secondo	NTC 2008 & Circ.
Numero di strati	4,0
Numero dei conci	50,0
Grado di sicurezza ritenuto accettabile	1,1
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	-5,0 m
Ordinata vertice sinistro inferiore yi	10,0 m
Ascissa vertice destro superiore xs	20,0 m
Ordinata vertice destro superiore ys	20,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0

Vertici profilo

F		
Nr	X	у
	(m)	(m)
1	-25,0	-3,68 -1,95
2	-12,11	-1,95
3	-9,34	-1,57
4	0,0	0,0
5	1,4	2,4

6	2,4	2,4
7	11,39	7,5
8	24,39	7,5
9	26,92	5,98
10	47,89	10,58

Falda

Nr.	X	у
	(m)	(m)
1	-25,0	-6,68
2	0,0	-2,0
3	47,89	7,58

Vertici strato1

	_	
N	X	у
	(m)	(m)
1	-25,0	-3,68
2	-12,11	-1,95
3	-9,34	-1,57
4	0,0	0,0
5	4,0	0,0
6	5,4	2,4
7	26,92	5,98
8	47,89	10,58

Vertici strato2

N	X (m)	y (m)
1	-25,0	-10,09
2	47,89	-10,09

Vertici strato3

N	X	у		
	(m)	(m)		
1	-25,0	-12,29		
2	47,89	-12,29		

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,0 1,3
Favorevoli: Permanenti, variabili 1,0 1,3

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1,25
Coesione efficace	1,25
Coesione non drenata	1,4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

Strato	Coesione (kN/m²)	Coesione non drenata (kN/m²)	Angolo resistenza al taglio (°)	Peso unità di volume (kN/m³)	Peso saturo (kN/m³)	Litologia	
1	0		35	19	19	Rilevato	
2	10		30	19	19	Aate	
3	10		26	20	20	Salt	

4	70	36	23	23	Ap	

Terra rinforzata

No	Tipologia	Tallow	Resistenza sfilamento		
		(kN)	(kN)		
1	Geogriglie	28,99	49,54669		
2	Geogriglie	28,99	40,84884		
3	Geogriglie	28,99	32,84129		
4	Geogriglie	28,99	26,11574		

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kN/m²)	
1	12,9	7,5	22,9	7,5	30	

Risultati analisi pendio [NTC 2008 & Circ.]

	==========
Fs minimo individuato	1,4
Ascissa centro superficie	0,96 m
Ordinata centro superficie	12,35 m
Raggio superficie	12,75 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 0.963 yc = 12,354 Rc = 12,748 Fs=1,403

Nr.	B m	Alfa (°)	Li m	Wi (kN)	Kh•Wi (kN)	Kv•Wi (kN)	c (kN/m²)	Fi (°)	Ui (kN)	N'i (kN)	Ti (kN)
1	0,28	-9,2	0,28	0,25	0,0	0,0	8,0	24,8	0,0	0,5	1,8
2	0,28	-7,9	0,28	0,72	0,0	0,0	8,0	24,8	0,0	1,0	1,9
3	0,28	-6,7	0,28	1,16	0,0	0,0	8,0	24,8	0,0	1,4	2,1
4	0,38	-5,2	0,38	2,23	0,0	0,0	8,0	24,8	0,0	2,5	3,0
5	0,18	-3,9	0,18	1,75	0,0	0,0	8,0	24,8	0,0	1,9	1,6
6	0,28	-2,9	0,28	4,9	0,0	0,0	8,0	24,8	0,0	5,1	3,3
7	0,28	-1,6	0,28	7,5	0,0	0,0	8,0	24,8	0,0	7,6	4,1
8	0,28	-0,4	0,28	10,07	0,0	0,0	8,0	24,8	0,0	10,1	4,9
9	0,38	1,1	0,38	17,94	0,0	0,0	8,0	24,8	0,0	17,8	8,0
10	0,18	2,4	0,18	9,27	0,0	0,0	8,0	24,8	0,0	9,1	4,0
11	0,28	3,4	0,28	14,71	0,0	0,0	8,0	24,8	0,0	14,4	6,3
12	0,28	4,6	0,28	14,61	0,0	0,0	8,0	24,8	0,0	14,1	6,3
13	0,28	5,9	0,28	14,47	0,0	0,0	8,0	24,8	0,0	13,9	6,2
14	0,28	7,2	0,28	14,76	0,0	0,0	8,0	24,8	0,0	14,1	6,2
15	0,28	8,4	0,28	15,4	0,0	0,0	8,0	24,8	0,0	14,6	6,4
16	0,28	9,7	0,28	16,0	0,0	0,0	8,0	24,8	0,0	15,1	6,6
17	0,28	11,0	0,28	16,57	0,0	0,0	8,0	24,8	0,0	15,6	6,8
18	0,28	12,3	0,29	17,11	0,0	0,0	8,0	24,8	0,0	16,0	6,9
19	0,28	13,6	0,29	17,61	0,0	0,0	8,0	24,8	0,0	16,4	7,0
20	0,28	14,8	0,29	18,07	0,0	0,0	8,0	24,8	0,0	16,8	7,2
21	0,28	16,2	0,29	18,5	0,0	0,0	8,0	24,8	0,0	17,1	7,3
22	0,28	17,5	0,29	18,9	0,0	0,0	8,0	24,8	0,0	17,5	7,4
23	0,28	18,8	0,3	19,25	0,0	0,0	8,0	24,8	0,0	17,8	7,5

24	0,28	20,1	0,3	19,57	0,0	0,0	8,0	24,8	0,0	18,0	7,6
25	0,28	21,5	0,3	19,85	0,0	0,0	8,0	24,8	0,0	18,3	7,7
26	0,28	22,8	0,3	20,08	0,0	0,0	8,0	24,8	0,0	18,5	7,8
27	0,28	24,2	0,31	20,28	0,0	0,0	8,0	24,8	0,0	18,7	7,9
28	0,28	25,6	0,31	20,43	0,0	0,0	8,0	24,8	0,0	18,8	8,0
29	0,28	27,0	0,31	20,54	0,0	0,0	8,0	24,8	0,0	19,0	8,0
30	0,28	28,4	0,32	20,61	0,0	0,0	8,0	24,8	0,0	19,1	8,1
31	0,28	29,8	0,32	20,62	0,0	0,0	8,0	24,8	0,0	19,1	8,1
32	0,28	31,3	0,33	20,59	0,0	0,0	8,0	24,8	0,0	19,1	8,2
33	0,28	32,8	0,33	20,5	0,0	0,0	8,0	24,8	0,0	19,1	8,2
34	0,28	34,3	0,34	20,36	0,0	0,0	8,0	24,8	0,0	19,0	8,2
35	0,28	35,8	0,34	20,16	0,0	0,0	8,0	24,8	0,0	18,9	8,2
36	0,28	37,4	0,35	19,9	0,0	0,0	8,0	24,8	0,0	18,8	8,2
37	0,28	39,0	0,36	19,58	0,0	0,0	8,0	24,8	0,0	18,6	8,2
38	0,28	40,6	0,37	19,18	0,0	0,0	8,0	24,8	0,0	18,3	8,1
39	0,28	42,3	0,38	18,71	0,0	0,0	8,0	24,8	0,0	18,0	8,1
40	0,28	44,0	0,39	18,17	0,0	0,0	0,0	29,3	0,0	18,2	7,3
41	0,28	45,8	0,4	17,53	0,0	0,0	0,0	29,3	0,0	17,8	7,1
42	0,28	47,6	0,41	16,8	0,0	0,0	0,0	29,3	0,0	17,3	6,9
43	0,28	49,5	0,43	15,96	0,0	0,0	0,0	29,3	0,0	16,7	6,7
44	0,28	51,5	0,45	15,0	0,0	0,0	0,0	29,3	0,0	16,0	6,4
45	0,32	53,7	0,54	15,87	0,0	0,0	0,0	29,3	0,0	17,4	6,9
46	0,24	55,9	0,42	10,4	0,0	0,0	0,0	29,3	0,0	11,7	4,7
47	0,28	58,0	0,53	10,1	0,0	0,0	0,0	29,3	0,0	11,6	4,6
48	0,28	60,5	0,57	7,61	0,0	0,0	0,0	29,3	0,0	9,1	3,6
49	0,28	63,1	0,62	4,85	0,0	0,0	0,0	29,3	0,0	6,0	2,4
50	0,28	66,1	0,69	1,73	0,0	0,0	0,0	29,3	0,0	2,2	0,9

Analisi di stabilità dei pendii con: BISHOP (1955) – CONDIZIONI SISMICHE

Calcolo eseguito secondo

NTC 2008 & Circ.

Numero di strati

4,0

Numero dei conci

50,0

Grado di sicurezza ritenuto accettabile

1,1

Coefficiente parziale resistenza

1,0

Parametri geotecnici da usare. Angolo di attrito:

Analisi

Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	-5,0 m
Ordinata vertice sinistro inferiore yi	10,0 m
Ascissa vertice destro superiore xs	20,0 m
Ordinata vertice destro superiore ys	20,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0
Coefficiente azione sismica orizzontale	0,084
Coefficiente azione sismica verticale	0,042

Vertici profilo

Nr	X	у
	(m)	(m)
1	-25,0	-3,68
2	-12,11	-1,95
3	-9,34	-1,57
4	0,0	0,0
5	1,4	2,4 2,4 7,5
6	2,4	2,4
7	11,39	7,5
8	24,39	7,5
9	26,92	5,98
10	47,89	10,58

Falda

Nr.	X	у
	(m)	(m)
1	-25,0	-6,68
2	0,0	-2,0
3	47,89	7,58

Vertici strato1

N	X	V
	(m)	(m)
1	-25,0	-3,68
2	-12,11	-1,95
3	-9,34	-1,57
4	0,0	0,0
5	4,0	0,0
6	5,4	2,4
7	26,92	5,98
8	47,89	10,58

1

Vertici strato2

N	X (m)	y (m)
1	-25,0	-10,09
2	47,89	-10,09

Vertici strato3

N	X (m)	y (m)
1	-25,0	-12,29
2	47,89	-12,29

Coefficienti parziali azioni

	========
Sfavorevoli: Permanenti, variabili	1,0 1,0
Favorevoli: Permanenti, variabili	1,0 1,0

Coefficienti parziali per i parametri geotecnici del terreno

	=========
Tangente angolo di resistenza al taglio	1,25
Coesione efficace	1,25
Coesione non drenata	1,4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

on auguana							
Strato	Coesione (kN/m²)	Coesione non drenata (kN/m²)	Angolo resistenza al taglio	Peso unità di volume (kN/m³)	Peso saturo (kN/m³)	Litologia	
1	0		35	19	19	Rilevato	
2	10		30	19	19	Aate	
3	10		26	20	20	Salt	
4	70		36	23	23	Ap	

Terra rinforzata

101101101101			
No	Tipologia	Tallow	Resistenza sfilamento
		(kN)	(kN)
1	Geogriglie	28,99	49,54669
2 Geogriglie		28,99	40,84884
3	Geogriglie	28,99	32,84129
4	Geogriglie	28,99	26,11574

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kN/m²)
1	12,9	7,5	22,9	7,5	30

Risultati analisi pendio [NTC 2008 & Circ.]

Fs minimo individuato	1,12
Ascissa centro superficie	0,96 m
Ordinata centro superficie	12,35 m
Raggio superficie	12,75 m

xc = 0.963 yc = 12,354 Rc = 12,748 Fs=1,117

Nr.	B m	Alfa (°)	Li m	Wi (kN)	Kh•Wi (kN)	Kv•Wi (kN)	$c \\ (kN/m^2)$	Fi (°)	Ui (kN)	N'i (kN)	Ti (kN)
1	0,28	-9,2	0,28	0,25	0,02	0,01	8,0	24,8	0,0	0,6	2,3
2	0,28	-7,9	0,28	0,72	0,06	0,03	8,0	24,8	0,0	1,1	2,5
3	0,28	-6,7	0,28	1,16	0,1	0,05	8,0	24,8	0,0	1,5	2,6
4	0,38	-5,2	0,38	2,23	0,19	0,09	8,0	24,8	0,0	2,6	3,8
5	0,18	-3,9	0,18	1,75	0,15	0,07	8,0	24,8	0,0	1,9	2,1
6	0,28	-2,9	0,28	4,9	0,41	0,21	8,0	24,8	0,0	5,1	4,1
7	0,28	-1,6	0,28	7,5	0,63	0,31	8,0	24,8	0,0	7,6	5,2
8	0,28	-0,4	0,28	10,07	0,85	0,42	8,0	24,8	0,0	10,1	6,2
9	0,38	1,1	0,38	17,94	1,51	0,75	8,0	24,8	0,0	17,7	10,1
10	0,18	2,4	0,18	9,27	0,78	0,39	8,0	24,8	0,0	9,1	5,0
11	0,28	3,4	0,28	14,71	1,24	0,62	8,0	24,8	0,0	14,3	7,9
12	0,28	4,6	0,28	14,61	1,23	0,61	8,0	24,8	0,0	14,0	7,8
13	0,28	5,9	0,28	14,47	1,22	0,61	8,0	24,8	0,0	13,8	7,7
14	0,28	7,2	0,28	14,76	1,24	0,62	8,0	24,8	0,0	13,9	7,8
15	0,28	8,4	0,28	15,4	1,29	0,65	8,0	24,8	0,0	14,4	8,0
16	0,28	9,7	0,28	16,0	1,34	0,67	8,0	24,8	0,0	14,8	8,2
17	0,28	11,0	0,28	16,57	1,39	0,7	8,0	24,8	0,0	15,3	8,4
18	0,28	12,3	0,29	17,11	1,44	0,72	8,0	24,8	0,0	15,7	8,5
19	0,28	13,6	0,29	17,61	1,48	0,74	8,0	24,8	0,0	16,0	8,7
20	0,28	14,8	0,29	18,07	1,52	0,76	8,0	24,8	0,0	16,4	8,8
21	0,28	16,2	0,29	18,5	1,55	0,78	8,0	24,8	0,0	16,7	9,0
22	0,28	17,5	0,29	18,9	1,59	0,79	8,0	24,8	0,0	16,9	9,1
23	0,28	18,8	0,3	19,25	1,62	0,81	8,0	24,8	0,0	17,2	9,2
24	0,28	20,1	0,3	19,57	1,64	0,82	8,0	24,8	0,0	17,4	9,3
25	0,28	21,5	0,3	19,85	1,67	0,83	8,0	24,8	0,0	17,6	9,4
26	0,28	22,8	0,3	20,08	1,69	0,84	8,0	24,8	0,0	17,8	9,5
27	0,28	24,2	0,31	20,28	1,7	0,85	8,0	24,8	0,0	17,9	9,6
28	0,28	25,6	0,31	20,43	1,72	0,86	8,0	24,8	0,0	18,0	9,7
29	0,28	27,0	0,31	20,54	1,73	0,86	8,0	24,8	0,0	18,1	9,7
30 31	0,28	28,4	0,32	20,61 20,62	1,73 1,73	0,87	8,0	24,8	0,0	18,1	9,8
32	0,28 0,28	29,8 31,3	0,32 0,33	20,62	1,73	0,87	8,0 8,0	24,8 24,8	$0,0 \\ 0,0$	18,1	9,8
33		31,3	0,33	20,39	1,73	0,86		24,8	0,0	18,1	9,8
33 34	0,28 0,28	32,8 34,3	0,33	20,36	1,72	0,86 0,86	8,0 8,0	24,8	0,0	18,0 17,9	9,8 9,8
35	0,28	35,8	0,34	20,36	1,71	0,86	8,0	24,8	0,0	17,9	9,8 9,8
	0,28	37,4	0,34	19,9	1,67	0,83	8,0	24,8	0,0	17,6	9,8
37	0,28	39,0	0,36	19,58	1,64	0,84	8,0	24,8	0,0	17,3	9,8 9,7
38	0,28	40,6	0,37	19,18	1,61	0,81	8,0	24,8	0,0	17,0	9,7
39	0,28	42,3	0,37	18,71	1,57	0,79	8,0	24,8	0,0	16,6	9,6
40	0,28	44,0	0,39	18,17	1,53	0,76	0,0	29,3	0,0	17,0	8,5
41	0,28	45,8	0,37	17,53	1,47	0,74	0,0	29,3	0,0	16,6	8,3
42	0,28	47,6	0,41	16,8	1,47	0,74	0,0	29,3	0,0	16,1	8,1
43	0,28	49,5	0,43	15,96	1,34	0,67	0,0	29,3	0,0	15,5	7,8
44	0,28	51,5	0,45	15,0	1,26	0,63	0,0	29,3	0,0	14,8	7,4
45	0,32	53,7	0,54	15,87	1,33	0,67	0,0	29,3	0,0	15,9	8,0
46	0,32	55,9	0,42	10,4	0,87	0,44	0,0	29,3	0,0	10,7	5,3
47	0,24	58,0	0,53	10,1	0,85	0,42	0,0	29,3	0,0	10,7	5,3
48	0,28	60,5	0,57	7,61	0,64	0,32	0,0	29,3	0,0	8,2	4,1
49	0,28	63,1	0,62	4,85	0,41	0,32	0,0	29,3	0,0	5,4	2,7
50	0,28	66,1	0,69	1,73	0,15	0,07	0,0	29,3	0,0	2,0	1,0
20	٥,20	00,1	0,00	1,,,	0,10	3,07	٠,٠	,-	٠,٠	_,~	1,0

2.1.3 PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 1+931 al km 2+006 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0006	REL	01	C	51 di 51

APPENDICE B

REPORT DI CALCOLO VERIFICHE STRUTTURALI

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: D1500 20fi26

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave di fondazione in combinazione sismica

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C32/40 CALCESTRUZZO -Classe:

Resis. compr. di progetto fcd: 18.8 MPa Resis. compr. ridotta fcd': MPa 9.4 Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33642.8 MPa Resis. media a trazione fctm: MPa 3.10 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: MPa 19.9 Sc limite S.L.E. comb. Frequenti: 19.9 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 14.9 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

> MPa Resist. caratt. snervam. fyk: 450.0 Resist. caratt. rottura ftk: 450.0 MPa Resist. snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo: C32/40

75.0 cm Raggio circ.: X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Ycentro Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Barre N°Gen. Xcentro Ø Ycentro Raggio 20 1 0.0 0.0 63.1 26

ARMATURE A TAGLIO

Diametro staffe: 16 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup. della sez.
Vv	Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	0.00	350.00	142.00
2	0.00	1056.00	316.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 226.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My
1 0.00 226.00 (1158.22) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My 1 0.00 226.00 (1158.22) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 10.6 cm Interferro netto minimo barre longitudinali: 17.1 cm Copriferro netto minimo staffe: 9.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa	Area armature trave [cm²l in zona toca l	Tra narentesi l'area	minima ex § 7.2.6 NTC
AS 165a	Area arriature trave p	uni-j in zona tesa. j	i i a paremesi i area	IIIIIIIIII ex g 1.2.0 N I C

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0.00	350.00	0.00	1751.32	5.00	58.4(35.3)
2	S	0.00	1056.00	0.00	1751.32	1.66	58.4(35.3)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00069	0.262	0.0	75.0	0.00047	0.0	63.1	-0.00196	0.0	-63.1
2	0.00069	0.262	0.0	75.0	0.00047	0.0	63.1	-0.00196	0.0	-63.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000019199	-0.000745039	0.262	0.768
2	0.000000000	0.000019199	-0.000745039	0.262	0.768

VERIFICHE A TAGLIO

A.Eff

Diam. Staffe: 16 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 33.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Dmed Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro.

La resistenza delle travi è calcolata assumendo il valore di 0.9 Dmed come coppia interna.

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Ved Vcd Vwd Dmed Ctg Ast A.Eff 142.00 4381.72 2128.26 120.2 124.9 2.500 1.000 1.3 20.1(0.0) S 2 S 4381.72 2128.26 316 00 120 2 124 9 2 500 1 000 30 20.1(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Ss min Minima tensione (negativa se di trazione) nell'acciaio [MPa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure													
N°Comb	Ver	Sc max	Xc max Yc	max Yc max Ss min Xs min Ys min Ac eff. As eff.									
1	S	1.34 0.0 0.0 -51.4 0.0 -63.1 2955 26.5											
COMBINA	COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]												
sr max wk Mx fes	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1 = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2] k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] sr max Massima distanza tra le fessure [mm] wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]												
Comb.	Ver	e1	e2	k2	Ø	Ct	•	e	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00029	0.00000	0.835	26.0	106		0.00015	5 (0.00015)	1182	0.182 (990.00)	1158.22	0.00
COMBINA	AZIONI	FREQUEN	TI IN ESERC	CIZIO - MA	SSIMI	E TENSI	ONI NOR	MALI ED AI	PERTURA I	FESSUF	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	1.34	0.0	0.0	-51.4	0.0	-63.1	2955	26.5				
COMBINA	AZIONI	FREQUEN	TI IN ESERC	CIZIO - API	RTU	RA FESS	URE [§ 7	.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	C1	:	e	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00029	0.00000	0.835	26.0	106		0.00015	5 (0.00015)	1182	0.182 (0.30)	1158.22	0.00
COMBINA	AZIONI	QUASI PE	RMANENTI	IN ESERCI	ZIO -	MASSIN	IE TENSI	ONI NORM	ALI ED APE	RTURA	A FESSURE (NTO	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc	max S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	1.34	0.0	0.0	-51.4	0.0	-63.1	2955	26.5				
COMBINA	AZIONI	QUASI PE	RMANENTI	IN ESERCI	ZIO - A	PERTU	RA FESS	URE [§ 7.3.	4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Ct	:	e	sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00029	0.00000	0.835	26.0	106		0.00015	5 (0.00015)	1182	0.182 (0.20)	1158.22	0.00

DATI GENERALI SEZIONE DI TRAVE DI FONDAZIONE IN C.A.

NOME SEZIONE: Muro paramento 5fi20

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento:

Tipologia sezione: Sezione predefinita di trave di fondazione in combinazione sismica

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Moderat. aggressive Condizioni Ambientali: Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

Sezione appartenente a trave di fondazione (arm.minima ex §7.2.5NTC)

MPa

14.16

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resistenza compress. di progetto fcd:

Resistenza compress. ridotta fcd': 7.08 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.56 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 15.0 MPa Sc limite S.L.E. comb. Frequenti: 15.0 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 11.3 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -Tipo: B450C

Resist. caratt. a snervamento fyk: 450.0 MPa Resist. caratt. a rottura ftk: 450.0 MPa Resist. a snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. \(\beta 1 \times \beta 2 : \) 1.00 Coeff. Aderenza differito \$1*\$2: 0.50 Comb.Rare - Sf Limite: 360.0 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 75.0 cm (15.7 cm²) Barre inferiori: 5Ø20 5Ø20 (15.7 cm²) Barre superiori: Coprif.Inf.(dal baric. barre): 7.6 cm Coprif.Sup.(dal baric. barre): 7.6 cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY

Taglio [kN] in direzione parallela all'asse Y del riferim. generale

Momento torcente [kN m] MT

N°Comb.	N	Mx	Vy	MT
1	0.00	106.00	75.00	0.00
2	0.00	287.00	158.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 $N^{\circ}Comb.$ N Mx

1 0.00 81.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 81.00 (268.76)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 81.00 (268.76)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 18.0 cm Copriferro netto minimo staffe: 5.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Coml	b Ver	N	Mx	N re	Mx re Mis.Sic.	Yn	x/d	C.Rid.	As Tesa
1	S	0.00	106.00		3.593	60.1	0.22	0.72	15.7 (15.0)
2	S	0.00	287.00		1.327	60.1	0.22	0.72	15.7 (15.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max Deform. unit. massima del calcestruzzo a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00055	75.0	0.00027	67.4	-0.00196	7.6
2	0.00055	75.0	0.00027	67.4	-0.00196	7.6

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER LE COMBINAZIONI ASSEGNATE

Diametro staffe/legature: 12 mm

[Passo massimo di normativa = 22.6 cm] Passo staffe: 20.0 cm

N.Bracci staffe: 3

Area staffe/m: 17.0 cm²/m [Area Staffe Minima NTC = 15.0 cm²/m]

VERIFICHE A TAGLIO

Ver Ved Vrd Vcd Vwd bw d Ctg Acw Ast		Taglio a Taglio a Taglio a Taglio a Larghe: Cotang Coeffic	agente [kN] ugua' resistente [kN] in compressione resi trazione resistente zza minima [cm] ente dell'angolo d iente maggiorativ	lio-tors./ N = comb. non vo e al taglio Vy di comb. (so assenza di staffe [formula stente [kN] lato calcestruz: [kN] assorbito dalle staffe sezione misurata parallelan i inclinazione dei puntoni o o della resistenza a taglio p mente necessaria per taglio	ollecit. retta) (4.1.23)NT (20) [formula ((20)	C] (4.1.28)NTC 4.1.27)NTC] eutro Altezza zzo ssione	-	zione	
N°Comb	Ver	Ved	Vrd	Vcd	Vwd	bw d	Ctg	Acw	ASt
1 2	S S	75.00 158.00	226.45 226.45	1480.95 1480.95	1006.69 1006.69	100.0 67.4 100.0 67.4	2.500 2.500		1.3 2.7

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Ye min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Ss min	Minima tensione di trazione (-) nell'acciaio [MPa]
Ys min	Ordinata in cm della barra corrisp. a Ss min (sistema rif. X,Y,O)
Dw Eff.	Spessore di calcestruzzo [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza in cm tra le barre tese efficaci.
	(D barre = 0 indica spaziatura superiore a $5(c+\emptyset/2)$ e nel calcolo di fess. si usa la $(C4.1.11)$ NTC/ (7.14) EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.54	75.0	0.00	60.3	-83.0	67.4	19.0	1900	15.7	21.2

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica el Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata K2 = 0.5 per flessione; =(e1 + e2)/(2*e2) in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC Kt fattore di durata del carico di cui alla (7.9) dell'EC2 e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es srm Distanza massima in mm tra le fessure wk Apertura delle fessure in mm fomito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite. M fess. Momento di prima fessurazione [kNm]								
N°Comb Ver	e1 e2 00047 0.00012	K2 Kt 0.50 0.60	e sm 0.000249 (0.000249)	srm 636 0.158 (99	wk 0.00)	M Fess. 268.76		

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ac Eff. As Eff. D barre N°Comb Ver Sc max Yc max Sc min Yc min Ss min Ys min Dw Eff.

1	S	1.54	75.0	0.00	60.3	-83.0	67.4	19.0	1900	15.7	21.2
COMB	INAZI	ONI FRE	QUENTI IN	N ESERCIZ	IO - VEI	RIFICA AF	PERTURA I	FESSURE (NTC/EC2))	
N°Com	b Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1	S	-0.00047	0.00012		0.50	0.60	0.000249 (0.000249)	636 0.	158 (0.30)	268.76
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI											
N°Com	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.54	75.0	0.00	60.3	-83.0	67.4	19.0	1900	15.7	21.2
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)											
N°Com	b Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1	S	-0.00047	0.00012		0.50	0.40	0.000249 (0.000249)	636 0.	158 (0.20)	268.76