

ASSE VIARIO MARCHE-UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA", TRATTO PIANELLO -VALFABBRICA
SS. 76 "VAL D'ESINO", TRATTI FOSSATO VICO - CANCELLI E ALBACINA - SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO-MUCCIA-SFERCIA.

PROGETTO ESECUTIVO DI DETTAGLIO

CONTRAENTE GENERALE:

Il Responsabile del Contraente Generale:

PROGETTAZIONE:

Partecipazioni Italia S.p.A.

IL PROGETTISTA: Dott. Ing. Salvatore Lieto Ordine degli Ingegneri Prov. di Mantova n.1147 ASSISTENZA ALLA PROGETTAZIONE:

IL PROGETTISTA: Dott. Ing. Antonio Tosiani

VISTO IL RESPONSABILE DEL PROCEDIMENTO:	IL COORDINATORE DELLA SICUREZZA IN FASE DI ESECUZIONE:	IL DIRETTORE DEI LAVORI:
Ing. Iginio Farotti	Ing. Vincenzo Pardo	Ing. Peppino Marascio

2.1.3 - PEDEMONTANA DELLE MARCHE

3° Stralcio funzionale - Castelraimondo Nord - Castelraimondo Sud 4° Stralcio funzionale - Castelraimondo Sud - Innesto SS77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Muro di sottoscarpa in Sx dal Km 5+500 al Km 5+684

Relazione di calcolo

SCALA:

DATA:

Novembre 2021

Codice Unico di Progetto (CUP) F12C03000050021 (assegnato CIPE 20.04.2015)

CODICE ELABORATO:	Opera	Tratto	Settore	CEE	WBS	Id.doc.	n* progr	Rev.
L	0 7 0 3	2 1 3]E	1 6	MU0023	R E L	0 1	В

Rev.	Data	Descrizione	Red	latto	Controllato	Approvato
Α	Marzo 2020	Emissione P.E.	Progin	M. Perrino	S. Lieto	A. Grimaldi
В	Novem. 2021	Emissione Progetto di Dettaglio	Tecnostrutture	Tecnostrutture	A. Tosiani	S. Lieto

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	1 di 247

INDICE

2. DESCRIZIONE DELL' OPERA 4 3. UNITA' DI MISURA 7 4. NORMATIVA DI RIFERIMENTO 7 5. CARATTERISTICHE DEI MATERIALI IMPIEGATI 8 5.1. CALCESTRUZZO PARAMENTO MURI C25/30 8 5.2. CALCESTRUZZO FONDAZIONE E PALI C32/40 8 5.3. ACCIAIO DI ARMATURA B450C 9 6. CARATTERIZZAZIONE GEOTECNICA 10 7. CARATTERIZZAZIONE SISMICA 11 8.1 VERIFICAE STRUTTURALI – CRITERI GENERALI 13 8.1. VERIFICAE SIE 13 8.1. VERIFICAE SIE 13 8.2.1 Pressoflessione 14 8.2.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITÀ LOCALE 18 9.1.1 Verifica al Carico limite 20 9.1.1 Verifica al Sibaltamento 2	1.	GENERALITÀ	4
4. NORMATIVA DI RIFERIMENTO 7 5. CARATTERISTICHE DEI MATERIALI IMPIEGATI 8 5.1 CALCESTRUZZO PARAMENTO MURI C25/30 8 5.2 CALCESTRUZZO FONDAZIONE E PALI C32/40 8 5.3 ACCIAIO DI ARMATURA B450C 9 6. CARATTERIZZAZIONE GEOTECNICA 10 7. CARATTERIZZAZIONE SISMICA 11 8. VERIFICHE STRUTTURALI - CRITERI GENERALI 13 8.11 Verifiche delle tensioni 13 8.12 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITÀ L'OCALE 18 9.1 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciotti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.2.5 Verifiche in fase sismic	2 .	DESCRIZIONE DELL' OPERA	4
5. CARATTERISTICHE DEI MATERIALI IMPIEGATI 8 5.1 CALCESTRUZZO PARAMENTO MURI C25/30 8 5.2 CALCESTRUZZO FONDAZIONE E PALI C32/40 8 5.3 ACCIAIO DI ARMATURA B450C 9 6. CARATTERIZZAZIONE GEOTECNICA 10 7. CARATTERIZZAZIONE SISMICA 11 8. VERIFICHE STRUTTURALI – CRITERI GENERALI 13 8.1 VERIFICA SLE 13 8.1.1 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA L'OCALE 18 9.1.1 Verifica allo scorrimento 18 9.2 VERIFICA DI STABILITÀ GOBALE 20 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 VERIF	3 .	UNITA' DI MISURA	7
5. CARATTERISTICHE DEI MATERIALI IMPIEGATI 8 5.1 CALCESTRUZZO PARAMENTO MURI C25/30 8 5.2 CALCESTRUZZO FONDAZIONE E PALI C32/40 8 5.3 ACCIAIO DI ARMATURA B450C 9 6. CARATTERIZZAZIONE GEOTECNICA 10 7. CARATTERIZZAZIONE SISMICA 11 8. VERIFICHE STRUTTURALI – CRITERI GENERALI 13 8.1 VERIFICA SLE 13 8.1.1 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA L'OCALE 18 9.1.1 Verifica allo scorrimento 18 9.2 VERIFICA DI STABILITÀ GOBALE 20 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 VERIF	4.	NORMATIVA DI RIFERIMENTO	7
5.1 CALCESTRUZZO PARAMENTO MURI C25/30	5		
5.2 CALCESTRUZZO FONDAZIONE E PALI C32/40 .8 5.3 ACCIAIO DI ARMATURA B450C .9 6. CARATTERIZZAZIONE GEOTECNICA .10 7. CARATTERIZZAZIONE SISMICA .11 8. VERIFICA SLE .13 8.1 VERIFICA SLE .13 8.1. Verifiche delle tensioni .13 8.1. Verifiche a fessurazione .14 8.2. VERIFICHE ALLO SLU .15 8.2.1 Pressoflessione .15 8.2.2 Taglio .16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO .18 9.1 VERIFICHEDI STABILITA' LOCALE .18 9.1.1 Verifica a carico limite .20 9.1.2 Verifica a carico limite .20 9.1.2 Verifica a Carico limite .20 9.2.1 Richiami teorici ed impostazione delle analisi .23 9.2.1 Richiami teorici ed impostazione delle analisi .23 9.2.2 VERIFICA DI STABILITÀ GLOBALE .25 9.2.3 Prescrizioni del DM 14-01-08 .25 9.2.5			
5.3 ACCIAIO DI ARMATURA B450C .9 6. CARATTERIZZAZIONE GEOTECNICA .10 7. CARATTERIZZAZIONE SISMICA .11 8. VERIFICHE STRUTTURALI – CRITERI GENERALI .13 8.1. VERIFICA SLE .13 8.1.1 Verifiche delle tensioni. .13 8.1.2 Verifiche a fessurazione .14 8.2 VERIFICHE ALLO SLU .15 8.2.1 Pressoflessione .15 8.2.2 Taglio .16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO .18 9.1 VERIFICA BILITA' LOCALE .18 9.1 VERIFICA BILITA' LOCALE .18 9.1.1 Verifica allo scorrimento .18 9.1.2 Verifica allo scorrimento .20 9.1.3 Verifica allo scorrimento .22 9.2.1 Verifica al Ribaltamento .22 9.2.2 VERIFICA DI STABILITÀ GLOBALE .23 9.2.1 Richiami teorici ed impostazione delle analisi .23 9.2.2			
6. CARATTERIZZAZIONE GEOTECNICA 10 7. CARATTERIZZAZIONE SISMICA 11 8. VERIFICHE STRUTTURALI – CRITERI GENERALI 13 8.1 VERIFICA SLE 13 8.1.1 Verifiche delle tensioni 13 8.1.2 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica al Ribaltamento 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP. 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali scioti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31			
7. CARATTERIZZAZIONE SISMICA 11 8. VERIFICHE STRUTTURALI – CRITERI GENERALI 13 8.1 VERIFICA SLE 13 8.1.1 Verifiche delle tensioni 13 8.1.2 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica a Carico limite 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14-01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PO			
8. VERIFICHE STRUTTURALI – CRITERI GENERALI 13 8.1 VERIFICA SLE 13 8.1.1 Verifiche delle tensioni 13 8.1.2 Verifiche delle tensioni 13 8.1.2 Verifiche delle tensioni 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica a carico limite 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AG			
8.1 VERIFICA SLE 13 8.1.1 Verifiche delle tensioni 13 8.1.2 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica al Ribaltamento 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilità di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30			
8.1.1 Verifiche delle tensioni 13 8.1.2 Verifiche a fessurazione 14 8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica al Oscorrimento 18 9.1.2 Verifica a carico limite 20 9.1.3 Verifica a carico limite 20 9.1.3 Verifica a Carico limite 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30	8.		
8.1.2 Verifiche a fessurazione			
8.2 VERIFICHE ALLO SLU 15 8.2.1 Pressoflessione 15 8.2.2 Taglio 16 9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica al carico limite 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.1.3 Verifica al Ribaltamento 22 9.2.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilità di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI			
8.2.1 Pressoflessione			
9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO 18 9.1 VERIFICHEDI STABILITA' LOCALE .18 9.1.1 Verifica allo scorrimento .18 9.1.2 Verifica al carico limite .20 9.1.3 Verifica al Ribaltamento .22 9.2 VERIFICA DI STABILITÀ GLOBALE .23 9.2.1 Richiami teorici ed impostazione delle analisi .23 9.2.2 Il metodo di BISHOP .25 9.2.3 Prescrizioni del DM 14-01-08 .25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo .25 9.2.5 Verifiche in fase sismica .26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 .28 10. ANALISI DEI PALI .30 10.1 ANALISI AGLI STATI LIMITE .30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI .31 10.3 CURVE DI CAPACITÀ PORTANTE DEI PALI .32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI .33 11. ANALISI DEI CARICHI .38 11.1 CARICHI FISSI .38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO .38 11.3 SPINTE DEL TERRENO .39			
9.1 VERIFICHEDI STABILITA' LOCALE 18 9.1.1 Verifica allo scorrimento .18 9.1.2 Verifica a carico limite .20 9.1.3 Verifica al Ribaltamento .22 9.2 VERIFICA DI STABILITÀ GLOBALE .23 9.2.1 Richiami teorici ed impostazione delle analisi .23 9.2.2 Il metodo di BISHOP .25 9.2.3 Prescrizioni del DM 14-01-08 .25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo .25 9.2.5 Verifiche in fase sismica .26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 .28 10. ANALISI DEI PALI .30 10.1 ANALISI AGLI STATI LIMITE .30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI .31 10.3 CURVE DI CAPACITÀ PORTANTE DEI PALI .32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI .38 11. ANALISI DEI CARICHI .38 11.1 CARICHI FISSI .38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO .38 <td></td> <td>8.2.2 Taglio</td> <td>16</td>		8.2.2 Taglio	16
9.1.1 Verifica allo scorrimento 18 9.1.2 Verifica a carico limite 20 9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI CAPACITA' PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39	9.	CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO	18
91.2 Verifica a carico limite 20 91.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI CAPACITÀ PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39	9.1	VERIFICHEDI STABILITA' LOCALE	18
9.1.3 Verifica al Ribaltamento 22 9.2 VERIFICA DI STABILITÀ GLOBALE 23 9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI CAPACITÀ PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39			
9.2 VERIFICA DI STABILITÀ GLOBALE			
9.2.1 Richiami teorici ed impostazione delle analisi 23 9.2.2 Il metodo di BISHOP 25 9.2.3 Prescrizioni del DM 14-01-08 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08 28 10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI CAPACITA' PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI 33 11. ANALISI DEI CARICHI 33 11. CARICHI FISSI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39			
9.2.2 II metodo di BISHOP. 25 9.2.3 Prescrizioni del DM 14-01-08. 25 9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo 25 9.2.5 Verifiche in fase sismica. 26 9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08. 28 10. ANALISI DEI PALI. 30 10.1 ANALISI AGLI STATI LIMITE. 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI. 31 10.3 CURVE DI CAPACITÀ PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI. 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO. 38 11.3 SPINTE DEL TERRENO. 39			
9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo			
9.2.5 Verifiche in fase sismica			
9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08			
10. ANALISI DEI PALI 30 10.1 ANALISI AGLI STATI LIMITE 30 10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI 31 10.3 CURVE DI CAPACITA' PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39			
10.1 ANALISI AGLI STATI LIMITE			
10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI31 10.3 CURVE DI CAPACITA' PORTANTE DEI PALI			
10.3 CURVE DI CAPACITA' PORTANTE DEI PALI 32 10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI 33 11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39			
10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI			
ORIZZONTALI			32
11. ANALISI DEI CARICHI 38 11.1 CARICHI FISSI 38 11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO 38 11.3 SPINTE DEL TERRENO 39			33
11.1 CARICHI FISSI			
11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO			
11.3 SPINTE DEL TERRENO			
		•	
		4 SOVRACCARICHI ACCIDENTALI	

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	2 di 247

11.5 AZIONE SISMICA	43
11.5.1 Forze d'inerzia	
11.5.2 Effetti sismici sulle spinte del terreno	
11.5.3 Effetti dell'Azione sismica sulla falda	
12. COMBINAZIONI DI CALCOLO	45
13. RISULTATI ANALISI E VERIFICHE	47
13.1 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=3.0M	
13.1.1 Modello di calcolo	
13.1.2 Risultati verifiche geotecniche per fondazioni su pali	
13.1.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali	
13.1.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali	
13.1.2.3 Risultati verifiche dei cedimeenti dei pali	
13.1.2.4 Verifiche di stabilità globale del muro	
13.1.3 Risultati verifiche strutturali	
13.1.3.1 Fondazione ed elevazione muro	
13.1.3.2 Pali	
13.2 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=4.0M	
13.2.1 Modello di calcolo	
13.2.2 Risultati verifiche geotecniche per fondazioni su pali	
13.2.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali	
13.2.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali	
13.2.2.3 Risultati verifiche dei cedimeenti dei pali	
13.2.2.4 Verifiche di stabilità globale del muro	
13.2.3 Risultati verifiche strutturali	
13.2.3.1 Fondazione ed elevazione muro	
13.2.3.2 Pali	
13.3 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=5.0M	
13.3.1 Modello di calcolo	
13.3.2 Risultati verifiche geotecniche per fondazioni su pali	
13.3.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali	
13.3.2.2 Risultati verifiche dei cedimeenti dei pali	
13.3.2.4 Verifiche di stabilità globale del muro	
13.3.3 Risultati verifiche strutturali	
13.3.3.1 Fondazione ed elevazione muro	
13.3.3.2 Pali	
13.4 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 3	
13.4.1 Modello di calcolo	
13.4.2 Risultati verifiche geotecniche per fondazioni su pali	
13.4.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali	
13.4.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali	
13.4.2.3 Risultati verifiche dei cedimeenti dei pali	
13.4.2.4 Verifiche di stabilità globale del muro	
13.4.3 Risultati verifiche strutturali	
13.4.3.1 Fondazione ed elevazione muro	
13.4.3.2 Pali	. 107

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	3 di 247

14. DICHIARAZIONI SECONDO N.T.C. 2008 (PUNTO 10.2)	112
14.1 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO DEI MURI	114
ALLEGATO 1	116
TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2-H=3.00M	116
ALLEGATO 2	149
TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2-H=4.00M	149
ALLEGATO 3	182
TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2- H=5.00 M	182
ALLEGATO 4	215
TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 3	215

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

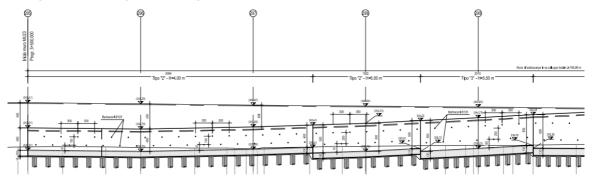
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	4 di 247

1. GENERALITÀ

Nella presente relazione vengono descritte le analisi e le verifiche strutturali relative ai muri di sostegno in c.a., ai muri di sottoscarpa in c.a. ed ai muri di controripa in c.a. che interessano gli stralci funzionali 3 e 4 di completamento del tratto della Pedemontana Marche, che si sviluppa per oltre 13 km.

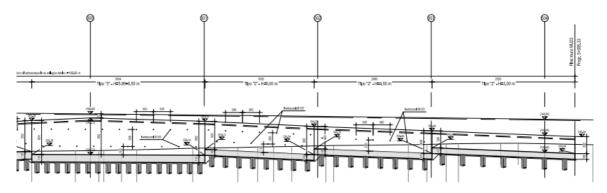

2. DESCRIZIONE DELL' OPERA

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento all' opera di sostegno MU23 situata in SX dell'asse stradale, dal km 5+500.00 al km 5+684.24, per uno svuluppo totale di 184.24 m. L'opera di sostegno è costituita da: *muri di sottoscarpa di tipo 2 e muri di sottoscarpa di tipo 3*. Le principali caratteristiche geometriche dei muri in questione sono riassunte nella tabella seguente:

Pk (km+m)		Tipo	Lunghezza opera	ALTEZZA PARAMENTO	FOND <i>A</i> SUPERI	AZIONE FICILAE	FONDAZ	IONE PR	OFONDA
Inizio	Fine		[m]	Hp [m]	h [m]	Lf [m]	n.pali allineati [-]	D [mm]	L pali [m]
5+500.00	5+550.20	2	50.20	4.0	1.0	4.6	2	800	12
5+550.20	5+570.20	2	20.00	5.0	1.0	4.6	2	800	12
5+570.20	5+590.20	3	20.00	5.5	1.3	6.5	3	800	15
5+590.20	5+620.56	3	30.36	5.94÷6.50	1.3	6.5	3	800	15
5+620.56	5+640.60	2	20.04	5.0	1.0	4.6	2	800	12
5+640.60	5+660.62	2	20.02	4.0	1.0	4.6	2	800	12
5+660.62	5+684.24	2	23.62	3.0	1.0	4.6	2	800	12

Tabella 2.1 - Caratteristiche geometriche dei muri di sottoscarpa

Di seguitosi riportano alcune immagini rappresentative delle sezioni di muro presenti. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:


 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	5 di 247

(345.50) (345.48) (342.65) (339.65)

Figura 2.2 – Sezione opera di sottoscarpa di tipo 2, Hparam=3.0 m-interasse longit.le pali pari a 3.60 m

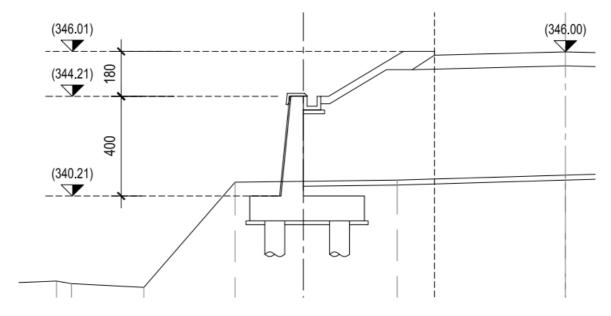


Figura 2.3 – Sezione opera di sottoscarpa di tipo 2, Hparam=4.0 m-interasse longit.le pali pari a 2.60 m

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	6 di 247

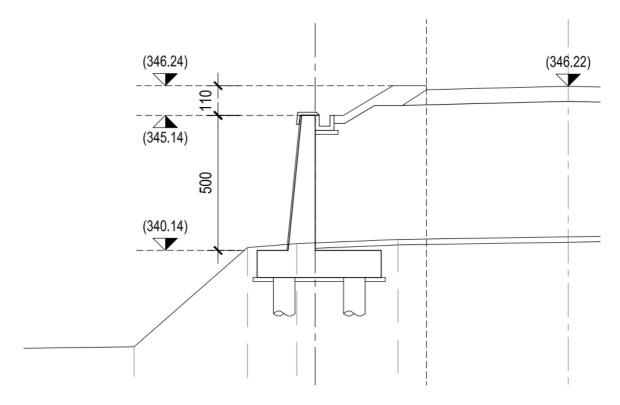


Figura 2.4 – Sezione opera di sottoscarpa di tipo 2, Hparam=5.0 m-interasse longit.le pali pari a 2.40 m

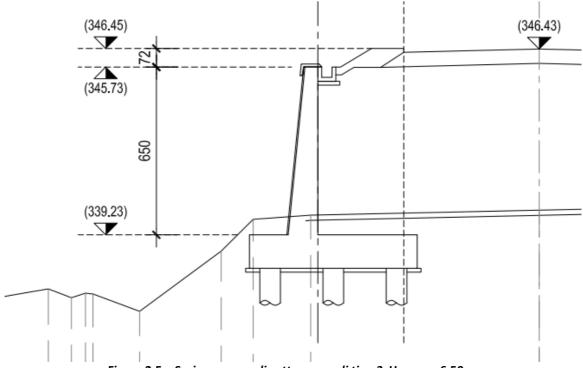


Figura 2.5 – Sezione opera di sottoscarpa di tipo 3, Hparam=6.50 m

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	7 di 247

3. UNITA' DI MISURA

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze \Rightarrow m, mm

per i carichi \Rightarrow kN, kN/m², kN/m³

 $\begin{array}{lll} \text{per le azioni di calcolo} & \Rightarrow & \text{kN, kNm} \\ \text{per le tensioni} & \Rightarrow & \text{MPa, kPa} \end{array}$

4. NORMATIVA DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

D.M. 14/01/2008.

Norme tecniche per le costruzioni (NTC).

• Circolare del02/02/2009.

Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.

UNI EN1993 -1-1.

EUROCODICE 2, parte 1.1. Progettazione delle strutture in calcestruzzo. Regole generali e regole per gli edifici.

UNI EN1993 -1-1.

EUROCODICE 3, parte 1.1. Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici.

UNI EN1993 -1-2.

EUROCODICE 3. Parte 2. Progettazione delle strutture in acciaio. Ponti di acciaio.

• UNI EN 1998-1.

EUROCODICE 8, parte 1. Progettazione delle strutture per la resistenza sismica. Regole generali, azioni sismiche e regole per gli edifici

• UNI EN 1998-2.

EUROCODICE 8, parte 2. Ponti.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	8 di 247

5. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Per la realizzazione delle strutture sono stati previsti i materiali di seguito descritti.Per i controlli si fa riferimento a quanto previsto dal DM 14/01/2008

Tabella - Calcestruzzi: classi di resistenza, classi di esposizione e specifiche

Elemento	Classe	Classe di Esposizione	a/c	Tipi di cementi	Quantitativo di cemento [kg/m³]	Classi di consistenza
Calcestruzzo per magrone di fondazione	C12/15	=	-	CEM III-IV	ı	=
Calcestruzzo per strutture in Elevazione	C25/30	XC2	0.5	CEM III-IV	300	S4
Calcestruzzo armato fondazione	C32/40	XA2	0.5	CEM III-IV	360	S4

Per le barre d'armatura del calcestruzzo si utilizza acciaio ad aderenza migliorata B450C.

5.1 CALCESTRUZZO PARAMENTO MURI C25/30

• Rck = 30 MPa resistenza caratteristica cubica a 28 giorni

• fck = 24.9 MPa resistenza caratteristica cilindrica a 28 giorni

• fcm = fck + 8 = 32.9 MPa resistenza cilindrica valore medio

• fctm = 0.30·fck2/3 = 2.56 MPa resistenza media a trazione semplice (assiale)

• fctk = 0.7·fctm =1.79 MPa resistenza caratteristica a trazione

• Ecm = 22000 [fcm/10]0.3 = 31447 MPa modulo elastico

y = 25.0 kN/m3 peso per unità di volume

Resistenze di progetto allo SLU

• fcd = 0.85·fck/yc = 14.1 MPa; yc = 1.50 resistenza di progetto a compressione

fctd = fctk/γc = 1.19 MPa
 resistenza di progetto a trazione

Resistenze di progetto allo SLE

 $\sigma_{c,r} = 0.60 \cdot fck = 14.9 \text{ MPa}$ tensione limite in comb. caratteristica (rara) $\sigma_{c,f} = 0.45 \cdot fck = 11.2 \text{ MPa}$ tensione limite in comb. quasi permanente $\sigma t = fctm/1.2 = 2.13 \text{ MPa}$ tensione limite di fessurazione (trazione)

5.2 CALCESTRUZZO FONDAZIONE E PALI C32/40

R_{ck} = 40 MPa resistenza caratteristica cubica a 28 giorni
 f_{ck} = 32 MPa resistenza caratteristica cilindrica a 28 giorni

• $f_{cm} = f_{ck} + 8 = 40 \text{ MPa}$ resistenza cilindrica valore medio

• $f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.02 \text{ MPa}$ resistenza media a trazione semplice (assiale)

• f_{ctk} = 0.7·f_{ctm} = 2.12 MPa resistenza caratteristica a trazione

 $E_{cm} = 22000 [f_{cm}/10]^{0.3} = 33346 \text{ MPa}$ modulo elastico

• $y = 25.0 \text{ kN/m}^3$ peso per unità di volume

Resistenze di progetto allo SLU

• $f_{cd} = 0.85 \cdot f_{ck}/\gamma_c = 18.1$ MPa; $\gamma_c = 1.50$ resistenza di progetto a compressione

• $f_{ctd} = f_{ctk}/\gamma_c = 1.41 \text{ MPa}$ resistenza di progetto a trazione

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	9 di 247

Resistenze di progetto allo SLE

• $\sigma_{c,r} = 0.60 \cdot f_{ck} = 19.2 \text{ MPa}$

• $\sigma_{c,f} = 0.45 \cdot f_{ck} = 14.4 \text{ MPa}$

• $\sigma_t = f_{ctm}/1.2 = 2.52 \text{ MPa}$

tensione limite in comb. caratteristica (rara) tensione limite in comb. quasi permanente tensione limite di fessurazione (trazione)

5.3 ACCIAIO DI ARMATURA B450C

• f_{yk} = 450 MPa resistenza caratteristica di snervamento

• f_{tk} = 540 MPa resistenza caratteristica a rottura

• E_s = 210000 MPa modulo elastico

Resistenza di progetto allo SLU

• $f_{yd} = f_{yk}/\gamma_s = 391$ MPa; $\gamma_s = 1.15$ resistenza di progetto a compressione

Resistenza di progetto allo SLE

• $\sigma_{s,r} = 0.80 \cdot f_{yk} = 360 \text{ MPa}$ tensione limite in comb. rara

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	10 di 247

6. CARATTERIZZAZIONE GEOTECNICA

Nel presente paragrafo si riporta la caratterizzazione geotecnica specifica per l'opera in esame. Per dettagli si rimanda alla Relazione Geotecnica Generale. Si sottolinea, comunque, che mediamente il profilo stratigrafico presenta un primo strato costituito da depositi alluvionali sabbiosi che si estendono per una profondità media di circa 10 m. Al di sotto di tale strato è presente la parte superiore alterata del substrato. Quest'ultimo è costituito substrato pelitico areanaceo.

Analizzando il profilo geologico geotecnico, con riferimento ai tratti di ubicazione dell'opera di sostegno oggetto di dimensionamento, è possibile dunque assumere cautelativamente, la seguente configurazione stratigrafica:

Tabella 6.1 - Stratigrafia di riferimento MU23

Unità geotecnica	Profondità [m] da p.c.	Descrizione	Tipo di sottosuolo
As	0 ÷ 10	Depositi sabbiosi	
Salt	10÷12	Substrato alterato argilloso	<u></u>
Sail	10÷12	limoso	
Pa	12-22	Substrato pelitico areanaceo	

Falda: La falda è riscontrata a profondità variabili. Nelle analisisi assume cautelativamenteun livello di falda prossima ad una profondità di 1.5÷2.0 metri dal piano di posa della fondazione.

I parametri geotecnici considerati per l'opera in esame sono riportati nella seguente tabella.

Tabella 6.2 – Parametri geotecnici

	γ [kN/m³]	φ' [°]	c' [kPa]	Eop [MPa]
As	19.0	33	0	50
Salt	19.0	26	10	130
Pa	22.5	27	55	135

γ = peso dell'unità di volume

 ϕ' = angolo di resistenza al taglio

c' = coesione drenata

Eop = E'o,min/3 modulo di deformazione elastico operativo

Il rinterro a tergo del muro di sostegno viene realizzato con materiale da rilevato stradale, vengono pertanto considerati i seguenti parametri caratteristici:

γ_{terr}=20 kN/m³ Peso Specifico;

φ=35° Angolo di attrito;

c=0 Coesione.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	11 di 247

7. CARATTERIZZAZIONE SISMICA

L'opera è progettata per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso III ("Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso CU = 1.5.

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F0, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- TC*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F0 descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

	Vita nominale V _N Classe d'uso	= 50 anni; = III:
		,
•	Coefficiente d'uso C _u	= 1.5;
•	Periodo di riferimento V _R	= 75 anni;
•	$T_{R,SLV}$	= 712 anni;
•	$\mathbf{a}_{g,SLV}$	= 0.220 g;
•	F _{0,SLV}	= 2.544;
•	T* _{c,SLV}	=0.333 sec.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	12 di 247

Accelerazione (ag), fattore (F₀) e periodo (T*c)

V_R	Otata Limita	PV_R	T _R	a _a	F _o	T _C *
[anni]	Stato Limite	- "	[anni]	[g]	[- <u>]</u>	[s]
75	SLO	81%	45	0.078	2.440	0.285
	SLD	63%	75	0.097	2.433	0.295
	SLV	10%	712	0.220	2.544	0.333
	SLC	5%	1462	0.277	2.584	0.343

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Categoria di suolo	С
Categoria topografica	T1
S _s , fattore stratigrafico	1.365
S _T , fattore topografico	1.0

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	13 di 247

8. VERIFICHE STRUTTURALI – CRITERI GENERALI

8.1 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

8.1.1 Verifiche delle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, quelli di seguito indicati, in accordo alle prescrizioni della normativa vigente:

Per il caso in esame risulta in particolare:

CALCESTRUZZO C32/40

$$\sigma_{\text{cmax QP}} = (0.45 \text{ f}_{\text{cK}}) = 14.94 \text{ MPa}$$
 (Combinazione di Carico Quasi Permanente)

$$\sigma_{\text{cmax R}}$$
 = (0,60 f_{cK}) = 19.92 MPa (Combinazione di Carico Caratteristica - Rara)

CALCESTRUZZO C25/30

$$\sigma_{\text{cmax OP}} = (0.45 \text{ f}_{\text{cK}}) = 11.21 \text{ MPa}$$
 (Combinazione di Carico Quasi Permanente)

$$\sigma_{\text{cmax R}}$$
 = (0,60 f_{cK}) = 14.94 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

$$\sigma_{\text{fmax}} = (0.80 \text{ f}_{\text{VK}}) = \frac{360 \text{ MPa}}{360 \text{ MPa}}$$
Combinazione di Carico

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	14 di 247

8.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

C:			/	Armatu	ra	
Gruppi di	Condizioni	Combinazione di	Sensibile		Poco sensi	bile
esigenza	ambientali	azione	Stato limite	wd	Stato limite	wd
	Oudin - vi -	frequente	ap. fessure	≤w₂	ap. fessure	≤w ₃
а	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
2	Agarassiya	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁
		quasi permanente	decompressione	-	ap. fessure	≤w ₁

Risultando in particolare: :

 $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

Nel caso in esame si ha:

- Per le strutture di fondazione:

Condizioni Ambientali: aggressive

Armature: Poco Sensibili

- Per le strutture in elevazione:

Condizioni Ambientali:Ordinarie

Armature: Poco Sensibili

Conseguentemente dovrà risultare:

Combinazione Quasi permanente : w≤0.2mm

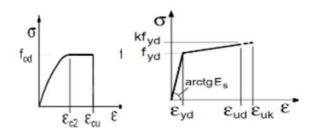
Combinazione Frequente : w≤0.3mm

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

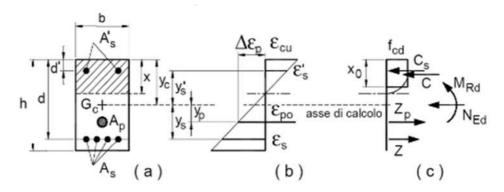
 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	15 di 247

Riguardo infine il valore di calcolo dell'ampiezza delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura prevista al punto" C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.


8.2 VERIFICHE ALLO SLU

8.2.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione

_

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	16 di 247

8.2.2 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200 / d)^{1/2} \le 2$$

- $\rho_1 = A_{sw}/(b_w * d)$
- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

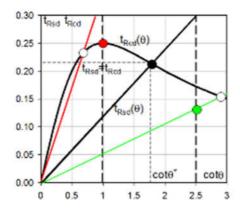
$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

$$1 \le \operatorname{ctg} \theta \le 2,5$$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \operatorname{ctg} \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$


 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	17 di 247

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato :

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

v = f'cd / fcd = 0.5

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b \, s \, f_{cd}}$$

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rcd}=V_{Rcd}=V_{Rsd}$)
- Se la $\cot \theta$ * è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una $\cot \theta = 2,5$.
- Se la $\cot \theta$ * è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e il taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	18 di 247

9. CRITERI DI ANALISI E VERIFICA DEI MURI DI SOSTEGNO

9.1 VERIFICHEDI STABILITA' LOCALE

Nei riguardi della stabilità Locale dei muri di sostegno, la normativa prevede di valutare le condizioni generali di equilbrio nei confronti dei meccanismi di scorrimento, ribaltamento e carico limite secondo quanto espsoto ai paragrafi seguenti

9.1.1 Verifica allo scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento Fr e la risultante delle forze che tendono a fare scorrere il muro Fs risulta maggiore di un determinato coefficiente di sicurezza ηs stabilito dalla Normativa Vigente, ovveroe

$F_r / F_s >= \eta_s$

Le forze che intervengono nella Fs sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δf l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con δf la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro.

In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

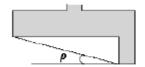
Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari 0.85*arctan(ϕ').

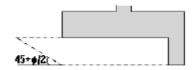
Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Per i casi del muro denominato tipo 1 (S), si è invece tentuto conto della presenza del dente previsto in fondazione nei riguardi della valutazione del meccanismo di scorrimento.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni


Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	19 di 247

Nel caso di fondazione con dente, viene calcolata la resistenza passiva sviluppatasi lungo il cuneopassante per lo spigolo inferiore del dente, inclinato dell'angolo ϱ (rispetto all'orizzontale). Talecuneo viene individuato attraverso un procedimento iterativo volto a determinare il coefficiente disicurezza a scorrimento minimo. In dipendenza della geometria della fondazione e del dente, deiparametri geotecnici del terreno e del carico risultante in fondazione, tale cuneo può avere formatriangolare o trapezoidale. Detta N la componente normale del carico agente sul piano di posadella fondazione, Q l'aliquota di carico gravante sul cuneo passivo, Sp la resistenza passiva, Lcl'ampiezza del cuneo e indicando con δ f l'angolo d'attrito terreno-fondazione, con ca l'adesioneterreno-fondazione e con δ f la larghezza della fondazione reagente, la forza resistente puòesprimersi come:

$$Fr = (N - Q) \cdot tg(\delta_t) + Sp + ca \cdot Lr$$

con Lr = Br - Lc

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	20 di 247

9.1.2 Verifica a carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Qu, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_q$$

Essendo $\eta_q >= 1.0$ e comunque stabilito dalla normativa vigente.

Per le valutazione del valore unitario del carico limite, qu, è possibile ricorrere alle espressioni di Hansen per il calcolo della capacità portante, che si differenziano a secondo se si è in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$\mathbf{q_u} = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5 B \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = 5.14c(1+s_c+d_c-i_c-g_c-b_c) + q$$

in cui:

d_c, d_q, d_γ, sono i fattori di profondità;

 s_c , s_q , s_γ , sono i fattori di forma;

 i_c , i_q , i_γ , sono i fattori di inclinazione del carico;

b_c, b_q, b_γ, sono i fattori di inclinazione del piano di posa;

 g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 1.5(N_q - 1)tg\phi$$

Risulta inoltre:

Fattori di forma

$$s_c = 0.2 \text{ B/L} \qquad \text{per } \phi = 0$$

$$s_c = 1 + (N_q/N_c) (B/L) \qquad \text{per } \phi > 0$$

$$s_q = 1 + (B/L) tg\phi$$

$$s_\gamma = 1 - 0.4 \text{ B/L}$$

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	21 di 247

Fattori di profondità

Si definisce il parametro *k* come:

$$k = D/B$$
 se $D/B \le D/B \le D/B \le D/B$

$$k = arctg(D/B)$$
 se $D/B > 1$

I vari coefficienti si esprimono come:

$$d_c = 0.4k$$
 per $\phi = 0$

$$d_c = 1 + 0.4k$$
 per $\phi > 0$

$$d_q = 1+2tg\phi(1-sin\phi)^2k$$

$$d_{\gamma} = 1$$

Fattori di inclinazione del carico

Indicando con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con Af l'area efficace della fondazione ottenuta come Af = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico $\mathbf{e}_{\mathbf{B}}$, $\mathbf{e}_{\mathbf{L}}$ dalle relazioni B' = B-2eB L' = L- 2eL) e connl'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$i_c = 0.5 [1 - \sqrt{(1 - H/(A_f c_a))}]$$
 per $\phi = 0$

$$i_c = i_q - (1 - i_q) / (N_q - 1)$$
 per $\phi > 0$

$$i_q = [1 - (0.5 H) / (V + A_f c_a ctg \phi)]^5$$

$$i_{\gamma} = [1 - (0.7 \text{ H}) / (V + A_f c_a ctg\phi)]^5$$
 per $\eta = 0$

$$i_{\gamma} = [1 - [(0.7 - \eta^{\circ}/450^{\circ})H] / (V + A_f c_a ctg\phi)]^5$$
 per $\eta > 0$

ca: adesione alla base delle fondazione

Fattori di inclinazione del piano di posa della fondazione

$$b_c = \eta^{\circ}/147^{\circ}$$
 per $\phi = 0$

$$b_c = 1 - \eta^{\circ}/147^{\circ}$$
 per ϕ >0

$$b_q = e^{-2\eta t g \phi}$$

$$b_{\gamma} = e^{-2.7\eta t g \phi}$$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	22 di 247

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

$$g_c = \beta^{\circ}/147^{\circ}$$
 per $\phi = 0$

$$g_c = 1 - \beta^{\circ}/147^{\circ}$$
 per $\phi > 0$

$$g_q = g_\gamma = (1 - 0.05 \text{ tg}\beta)^5$$

Per poter applicare la formula di Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

 $\beta \le \phi$ i_q , $i_\gamma > 0$

 $\beta + \eta <= 90^{\circ}$

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

9.1.3 Verifica al Ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .stabilito dalla normativa vigente.

Deve quindi essere verificata la seguente diseguaglianza

$$M_s / M_r >= \eta_r$$

Il momento ribaltante Mr è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

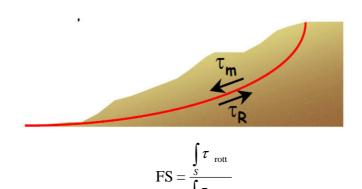
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

	· ·							
Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	23 di 247


9.2 VERIFICA DI STABILITÀ GLOBALE

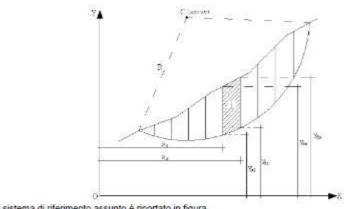
Nel presente paragrafo sono illustrati i criteri generali seguiti per l'effettuazione delle Verifiche di Stabilità Globale del complesso opera di sostegno-terrapieno.

9.2.1 Richiami teorici ed impostazione delle analisi

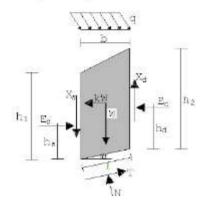
Per la analisi di stabilità globalepresentate nel presente documento, si è fatto riferimento ai metodi dell'equilibrio limite, messi a punto da diversi autori tra cui, Fellenius, Bishop, Janbu, Morgestern-Price, ecc.

In generale, ciascuno metodo va alla ricerca del potenziali superfici di scivolamento, generalmente di forma circolare, in qualche caso anche di forma diversa, rispetto a cui effettuare un equilibrio alla rotazione (o roto-traslzione) della potenziale massa di terreno coinvolta nel possibile movimento e quindi alla determinazione di un coefficiente di sicurezza coefficiente di sicurezza disponibile, espresso in via generaletra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie, ovvero:

Si procede generalmente suddividendo la massa di terreno coinvolta nella verifica in una serie di conci di dimensione b, interessati da azioni taglianti e normali sulle superfici di delimitazione dello stesso come di seguito rappresentato.


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	24 di 247

Il sistema di riferimento assunto è riportato in figura.

Per le valutazioni esposte nel presente documento, si è fatto riferimento al metodo di Bishop, di cui al successivo paragrafo sono riportati alcuni richiami teorici.

La valutazione dei coefficienti di sicurezza, come evidenziato dai risultati delle analisi esposte nel seguito, è stata effettuata in particolare rispetto a famiglie di superfici potenziali di rottura disegnate in maniera tale da non intersecare l'opera.

Si specifica infine che per il caso dei muri fondati su pali, tale verifica viene omessa in quanto non significativa.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	25 di 247

9.2.2 Il metodo di BISHOP

Il coefficiente di sicurezza nei riguardi della Stabilità Globale del complesso opera-terreno si esprime secondo il metodo di Bishop, mediante la relazione:

$$\eta = \frac{\sum_{i=1}^{n} \left(\frac{b_{i} c_{i} + W_{i} tg\phi_{i}}{m} \right)}{\sum_{i=1}^{n} W_{i} sin\alpha_{i}}$$

con

$$m = \left(1 + \frac{tg\alpha_i \ tg\phi_i}{n}\right)\cos\alpha_i$$

dove n è il numero delle strisce considerate, bi ed α i sono la larghezza e l'inclinazione della basedella striscia i-esima rispetto all'orizzontale, Wi è il peso della striscia i-esima e ci e ϕ i sono lecaratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m cheè funzione di η .

Quindi essa va risolta per successive approssimazioni assumendo un valoreiniziale per η da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincidecon il valore assunto.

9.2.3 Prescrizioni del DM 14-01-08

Il DM 14.01.08 affronta il tema della Stabilità Globale distinguendo il caso dei Pendii Naturali da quello delle opere in terra in materiali sciolti e fronti di scavo, fornendo prescrizioni differenti circa i criteri di verifica da adottare nei due casi.

Trattandosi nel caso in esame di valutare la Stabilità Globale di Opere a sostegno di scavi, , si è ritenuto di dover adottare, nelle verifiche nel seguito esposte, i criteri suggeriti dalla norma per il caso dei "Fronti di Scavo e rilevati"; nel seguito si riportano dunque, per maggiore chiarezza espositiva, le specifiche normative a riguardo, ed a seguire, i risultati delle verifiche effettuate con riferimento a diversi casi di calcolo di paratie di sostegno esaminati ai paragrafi precedenti.

9.2.4 Stabilita di opere di materiali sciolti e fronti di scavo

Il punto 6.8 delle NTC e relativa circolare applicativa, tratta l'argomento della verifica di Stabilità di Materiali Sciolti e fronti di scavo, nella fattispecie, al punto 6.8.2 "Verifiche di Sicurezza (SLU)" viene prescritto quanto di seguito:

Le verifiche devono essere effettuate secondo l'Approccio 1-Combinazione 2 (A2+M2+R2) tenendo

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	26 di 247

conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale γ _e (ο γ _e)	PQU	(A1) STR	(A2) GEO
20000000	Favorevole		0.9	1.0	1.0
Permanenti	Sfavorevole	Y61	0.9 1.1 0.0 1.5	1,3	1.0
Permanenti non strutturali (1)	Pavorevole	86771	0,0	0,0	0,0
etmanenti non strutturan	Sfavorevole	Yur	1,5	1,5	1,3
The state of the s	Favorevole		0,0	0.0	0.0
Variabili	Staverevole	You	1.5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compinisamenti definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 6.2.11 - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE VM	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tim qr' _k	Xe.	1.0	1,25
Coesione efficace	c's	W	1.0	1,25
Resistenza non drenata	c _{sb}	You	1.0	11,4
Peso dell'unità di volume	γ	76	1.0	1.0

Tabella 6.8.1 - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2
Th.	1.1

Secondo la normativa quindi i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali M2, risultando pertanto

$$c'_d = c' / 1.25;$$

 $\phi'_d = \arctan (1 / 1.25 \cdot \tan \phi').$

Il coefficiente di sicurezza Fs minimo da garantire in questo caso è pari ad 1.1 (γ_R).

9.2.5 Verifiche in fase sismica

Per ciò che concerne le verifiche in condizioni sismiche, la normativa fornisce al punto 7.11.3.5 indicazioni circa le azioni aggiuntive da considerare nell'ambito delle verifiche di Stabilità di Pendii in occasione di eventi sismici; nella fattispecie, si specifica che L'analisi delle condizioni di stabilità dei pendii in condizioni sismiche può essere eseguita mediante metodi pseudostatici, metodi degli spostamenti e metodi di analisi dinamica.

Nei metodi pseudostatici, di riferimento per le analisi esposte nel seguito del documento, l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Tale forza

dipende dallecaratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dallacapacità di tale volume di subire spostamenti senza significative riduzioni di resistenza.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	27 di 247

Nelleverifiche allo stato limite ultimo, in mancanza di studi specifici, le componenti orizzontale everticale di tali forze possono esprimersi come:

 $F_h = k_h \times W$ (azione sismica orizzontale)

 $F_v = k_v \times W$ (azione sismica verticale)

Per quanto riguarda invece il caso dei Fronti di Scavo e Rilevati, di riferimento per le analisi espsote nel presente documento, al punto 7.11.4 "Fronti di Scavo e Rilevati", si specifica che <u>Il comportamento in condizioni sismiche dei fronti di scavo e dei rilevati può essere analizzato con gli stessi metodi impiegati per i pendii naturali. Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni impiegando i coefficienti parziali di cui al § 7.11.1</u>

Riguardo i valori dei coefficienti sismici Kh e Kv, si ritiene in questo caso di dover adottare i valori già definiti in precedenza nell'ambito del paragrafo 7.1.2 dedicato alla valutazione degli effetti sismici per il dimensionamento delle opere di sostegno, trattandosi in questo caso di una verifica di stabilità di un fronte di scavo sostenuto da un'opera di sostengo, che pertanto condizione la risposta sismica locale del volume di terreno immediatamente a monte della stessa.

7.11.1 REQUISITI NEI CONFRONTI DEGLI STATI LIMITE

Sotto l'effetto dell'azione sismica di progetto, definita al Cap. 3, le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, con i requisiti di sicurezza indicati nel § 7.1.

Le verifiche agli stati limite ultimi devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.

La circolare applicativa n617 specifica ulteriormente al C7.11.4che, Le verifiche pseudostatiche di sicurezza dei fronti di scavo e dei rilevati si eseguono con la combinazione di coefficienti parziali di cui al § 6.8.2: (A2+M2+R2), utilizzando valori unitari per i coefficienti parziali A2 come specificato al § 7.11.1.

In definitiva, per il caso dei Fronti di Scavo e Rilevati, anche in fase sismica, il coefficiente di sicurezza minimo prescritto dalla Normativa è pari a $R_2=1.1$ (γ_R).

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	28 di 247

9.3 STATI LIMITE E COMBINAZIONI DI CALCOLO AI SENSI DM 14.01.08

Per i muri di sostegno o per altre strutture miste ad essi assimilabili, devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - stabilità globale del complesso opera di sostegno-terreno;
 - scorrimento sul piano di posa;
 - collasso per carico limite dell'insieme fondazione-terreno;
 - ribaltamento:
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali,

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1 - Combinazione 2: (A2+M2+R2)

Le rimanenti verifiche devono essere invece effettuate secondo uno dei seguenti approcci:

Approccio 1:

Combinazione 1: (A1+M1+R1)
 Combinazione 2: (A2+M2+R2)

Approceio 2:

(A1+M1+R3)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e della Tabelle 6.5.I e 6.8.I per ciò che concerne i coefficienti parziali sulle resistenze che di seguito si riportano per maggiore chiarezza.

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

**	•	- 27			
CARICHI	EFFETTO	Coefficiente	EQU	(A1)	(A2)
		Parziale		STR	GEO
		$\gamma_{\rm F}$ (o $\gamma_{\rm E}$)			
Permanenti	Favorevole	.,	0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
remanenti non sututuran	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
Variabili	Sfavorevole	γQi	1,5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	29 di 247

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE	(MI)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ' _k	Yo.	1,0	1,25
Coesione efficace	c'k	Ye	1,0	1,25
Resistenza non drenata	Code	You	1.0	1.4
Peso dell'unità di volume	γ	Y,	1,0	1,0

Tabella 6.5.I - Coefficienti parziali ¾ per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	PARZIALE (R3)	
Capacità portante della fondazione	$\gamma_{k} = 1.0$	y _k = 1.0	γ _E = 1.4	
Scorrimento	$\gamma_{h} = 1.0$	$\gamma_{\rm R} = 1.0$	γ _h = 1.1	
Resistenza del terreno a valle	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.4$	

Tabella 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2
Ϋ́R	1.1

Nel caso in esame si è fatto riferimento all'approccio 2 (A1+M1+R3),

Le verifiche in condizioni sismiche vanno infine effettuati con gli stessi criteri di cui sopra, ponendo pari dell'unità i coefficienti parziali sulle Azioni (A1=1), in accordo a quanto specificato al punto 7.11.1 del DM 14.01.08

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	30 di 247

10. ANALISI DEI PALI

Nel presente paragrafo si riportano le metodologie di calcolo della capacità portante per i pali trivellati di grande diametro previsti in progetto e per i pali dei muri andatori.

10.1 ANALISI AGLI STATI LIMITE

Le verifiche di capacità portante dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente (DM 14/01/2008. "Norme tecniche per le costruzioni"). La verifica della capacità portante dei pali è soddisfatta se:

Fcd < Rcd

essendo

 $Rcd = Rk / \gamma_R$

dove:

Fcd = carico assiale di compressione di progetto;

Rcd = capacità portante di progetto nei confronti dei carichi assiali;

Rk = valore caratteristico della capacità portante limite del palo.

In particolare le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vengono condotte con riferimento ad almeno uno dei due approcci:

Approccio 1:

Combinazione 1: A1 + M1 + R1

Combinazione 2 : A2 + M1 + R2

Approccio 2:

Combinazione 1: A1 + M1 + R3

tenendo conto dei coefficienti parziali di riferimento normativo.

La resistenza di progetto a compressione Rc,d è calcolata applicando al valore caratteristico della resistenza Rc,k i coefficienti parziali γ_R riportati in tabella seguente , relativi alla condizione di pali trivellati. Il valore caratteristico della resistenza Rc,k a compressione è ottenuto applicando i fattori di correlazione $\xi 3$ e $\xi 4$ (vedasi tabella seguente) alle resistenze di calcolo Rcal; tali fattori sono funzione del numero di verticali d'indagine rappresentative.

Per ogni opera verrà assunto un coefficiente $\xi 3$ in funzione delle verticali di indagine eseguite. Nella tabella si riassumono i fattori di sicurezza assunti per ciascuna opera d'arte principale.

In condizioni sismiche le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vanno condotte con riferimento all'Approccio 2 (A1+M1+R3), tenendo conto dei coefficienti parziali riportati nella successiva tabella e ponendo i coefficienti parziali sulle azioni tutti pari all'unità.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	31 di 247

Tabella 1 - Coefficienti parziali γ_R da applicare alle resistenze caratteristiche

Residence	Simbolo Pali infissi				Pi	di toivelk	ati	Pali ad alica continua		
	y _k	(RI)	(R2)	(R3)	(RI)	(R2)	(R3)	(RC)	(RI)	(R3)
Base	Th.	1,0	1,45	1,13	1,0	1,7	1,35	1,0	L.H	1,3
Laterale in	15g	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione		ļ		,			j			<u></u>
Tush (*)	75	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Leterale in	Tet	1,0	1,6	1,29	1,0	1,6	1,25	1,0	l,6	1,25
frazione							Į	,		

C) da applicare alle resistence exenteristiche dedotte dei risultati di prove di cacleo di progetto.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,col}\right)_{contin}}{\xi_3}; \frac{\left(R_{c,col}\right)_{colo}}{\xi_4} \right\}$$

$$R_{4,k} = Min \left\{ \frac{\left(R_{4,cal}\right)_{cardin}}{\xi_{3}}; \frac{\left(R_{4,cal}\right)_{min}}{\xi_{4}} \right\}$$

Tabella 2 - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
E _g	1,70	1,65	1,60	1,55	1,50	1,45	1,40
Ę.	1,76	1,55	1,48	1,42	1,34	1,28	1,21

10.2 METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI

La portata di progetto di un palo trivellato (eseguito con completa asportazione del terreno) "Qd" può essere espressa dalla seguente relazione:

$$Qd = QII / FSL + QbI / FSB - W'p$$

dove:

QII = portata laterale limite,

Qbl = portata di base limite,

W'p = peso efficace del palo (al netto del peso del terreno asportato),

FSL = fattore di sicurezza per la portata laterale (= ξ 3 · γ s).

FSB = fattore di sicurezza per la portata di base (= $\xi 3 \cdot \gamma b$).

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	32 di 247

10.3 CURVE DI CAPACITA' PORTANTE DEI PALI

Nella seguente tabella si riportano i parametri principali per il calcolo della capacità portante dei pali dell'opera in esame.

I parametri di calcolo della portanza dei pali vengono riportati nella seguente tabella:

Tabella 9 –Parametri per il calcolo della capacità portante dei pali

Approccio	verticali indagate	ξ ₃	γs	γь	F _{SL} (compressione)	F _{SL} (trazione)	F _{SB}	Quota testa palo da p.c. [m]	falda da p.c. [m]
2 (A1+M1+R3)	2	1.65	1.15	1.35	1.90	2.06	2.2	1.0	1.0

Si riporta la stratigrafia considerata per ciascun muro, dove lo spessore è indicato in metri:

ID Muro	Strato	Spessore
	As	10
MU23	Salt	2
	Pa	20

I parametri geotecnici adottati per la valutazione della portanza dei pali di fondazione vengono illustrati nella seguente tabella:

Tabella 10 -Parametri geotecnici adottati per laportanza dei pali di fondazione

	γ [kN/m³]	cu [kPa]	c' [kPa]	ф	N SPT
As	19	ı	ı	33	60
Salt	19	ı	10	26	18
Pa	22.5	-	55	27	20

 γ = peso dell'unità di volume

cu = resistenza al taglio in condizioni non drenate

c' = coesione drenata

 N_{SPT} = numero colpi SPT

φ= angolo d'attrito

Nella tabella seguenti si riportano i valori della portata di progetto (Qd) per l'opera in esame; il significato dei termini riportati è il seguente:

- L_p = Lunghezza utile del palo
- Q_L = Portata laterale limite
- Q_{L,d} = Portata laterale limite di progetto
- Q_b = Portata di base limite
- Q_{b,d} = Portata di base limite di progetto
- W_p = Peso efficace del palo
- Q_u = Portata totale limite
- Q_d = Portata di progetto = $Q_L/F_{S,l} + Q_b/F_{S,b} W_p$

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	33 di 247

10.4 CAPACITÀ PORTANTE DEI PALI NEI CONFRONTI DEI CARICHI ORIZZONTALI

Carico orizzontale limite

Il carico orizzontale limite *Hlim* è stato calcolato in accordo alla teoria proposta da Broms (1984).

Le ipotesi assunte da Broms sono le seguenti:

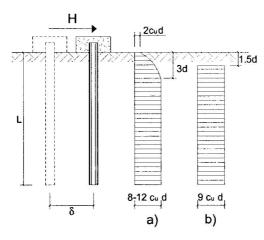
- Terreno omogeneo;
- Comportamento dell'interfaccia palo-terreno di tipo rigido-perfettamente plastico;
- La forma del palo è ininfluente e l'interazione palo-terreno è determinata solo dalla dimensione
 - caratteristica D della sezione del palo (il diametro per sezioni circolari, il lato per sezioni quadrate, etc.) misurata normalmente alla direzione del movimento;
- Il palo ha comportamento rigido-perfettamente plastico, cioè si considerano trascurabili le deformazioni elastiche del palo.

Questa ultima ipotesi comporta che il palo abbia solo moti rigidi finchè non si raggiunge il momento di plasticizzazione *My* del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua indefinitamente con momento costante.

In accordo alla condizione di vincolo dei pali nei plinti di fondazione, il palo è considerato impedito di ruotare in testa.

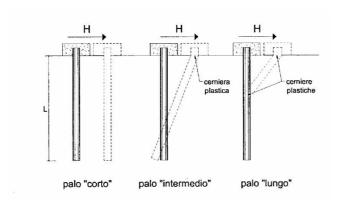
Unità a comportamento coesivo

Il diagramma di distribuzione della resistenza p offerta dal terreno lungo il fusto del palo è quello riportato nella figura seguente (a). Broms adotta al fine delle analisi una distribuzione semplificata (b) con reazione nulla fino a 1.5 D e costante con valore 9 cu D per profondità maggiori.


 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni


Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	34 di 247

distribuzione della resistenza offerta dal terreno a carichi orizzontali per pali impediti di ruotare alla testa (Broms, 1984).

I meccanismi di rottura del complesso palo-terreno sono condizionati dalla lunghezza del palo, dal momento di plasticizzazione della sezione e dalla resistenza esercitata dal terreno. I possibili meccanismi di rottura sono riportati nella figura seguente e sono solitamente indicati come "palo corto", "intermedio" e "lungo".

meccanismi di rottura del complesso palo-terreno per pali impediti di ruotare alla testa soggetti a carichi orizzontali (Broms, 1984).

Facendo ricorso a semplici equazioni di equilibrio ed imponendo la formazione di una cerniera plastica nelle sezioni che raggiungono un momento pari a My, è possibile calcolare il carico limite

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	35 di 247

orizzontale corrispondente ai tre meccanismi di rottura:

$$H \lim_{n \to \infty} 9c_n D^2 \left(\frac{L}{D} - 1.5\right)$$
 palo corto

$$H \lim = -9c_u D^2 \left(\frac{L}{D} - 1.5\right) + 9c_u D^2 \sqrt{2\left(\frac{L}{D}\right)^2 + \frac{4}{9} \frac{My}{c_u D^3} + 4.5}$$
 palo intermedio

$$H \lim = -13.5c_u D^2 + c_u D^2 \sqrt{182.25 + 36 \frac{My}{c_u D^3}}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di *Hlim* si ottiene risolvendo le seguenti equazioni:

$$H \lim_{z \to 0} = 9c_u D \times (f - 1.5D)$$

$$H \lim_{z \to 0} (d_z + f) - 4.5c_u D(f - 1.5D)^2 - 2M_y = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna
- d_s l'altezza della testa del palo rispetto al piano di campagna

Unità a comportamento incoerente

Per un terreno incoerente si assume che la resistenza opposta dal terreno alla traslazione del palo vari linearmente con la profondità con legge:

$$p = 3 k_p \gamma z D$$

essendo:

k_p il coefficiente di spinta passiva;

z la profondità da piano campagna;

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	36 di 247

γ il peso di volume del terreno, nel caso in cui il terreno sia sotto falda si assume γ'.

I valori del carico limite corrispondenti ai diversi meccanismi di rottura sono di seguito riportati:

$$H \lim = 1.5 k_p \gamma D^3 \left(\frac{L}{D}\right)^2$$
 palo corto

$$H \lim_{h \to \infty} = \frac{1}{2} k_p \gamma D^3 \left(\frac{L}{D}\right)^2 + \frac{My}{L}$$
 palo intermedio

$$H \lim_{p} = k_p \gamma D^3 \sqrt[3]{\left(3.676 \frac{My}{k_p \gamma D^4}\right)^2}$$
 palo lungo

Con riferimento ai casi in oggetto, il meccanismo di rottura è sempre quello di palo lungo.

Nel caso di palo scalzato e per il caso di palo lungo, il valore di *Hlim* si ottiene risolvendo le seguenti equazioni:

$$H \lim = 1.5k_p \gamma D f^2$$
$$f^3 + 1.5D f^2 - \left(\frac{2M_y}{\gamma k_p D}\right) = 0$$

Essendo:

- f la profondità della cerniera plastica dal piano di campagna
- ds l'altezza della testa del palo rispetto al piano di campagna

Carico orizzontale resistente

il cui valore di progetto Rd della resistenza a carichi assiali dei singoli pali si ottiene a partire dal valore caratteristico Rk applicando i coefficienti parziali γR riportati nella tabella successiva:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	37 di 247

	Coefficiente Parzial	e
R1	R2	R3
1.0	1.6	1.3

Coefficienti parziali di sicurezza per le resistenze

I coefficienti parziali di sicurezza utilizzati sono: R3.

La resistenza caratteristica Rk del singolo palo è determinata mediante metodi di calcolo analitici, dove Rk è calcolata a partire da valori caratteristici dei parametri geotecnici e/o mediante l'impiego di relazioni empiriche che utilizzano direttamente i risultati di prove in situ. La normativa vigente definisce per tali procedure, il valore caratteristico della resistenza Rc,k (o Rt,k) come il valore minore tra quelli ottenuti applicando alle resistenze calcolate Rc,calc (Rt,calc) i fattori di correlazione ξ riportati nella tabella seguente, in funzione del numero n di verticali di indagini:

$$R_{c,k} = Min \left\{ \frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{(R_{t,cal})_{media}}{\xi_{3}}; \frac{(R_{t,cal})_{min}}{\xi_{4}} \right\}$$

n	1	2	3	4	5	7	≥ 10
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21

Fattori di correlazione ξ

La campagna di indagine condotta in fase di progettazione definitiva permette di assumere in sede di calcolo un fattore di correlazione pari a $\xi 3 = \xi 4 = 1.65$.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

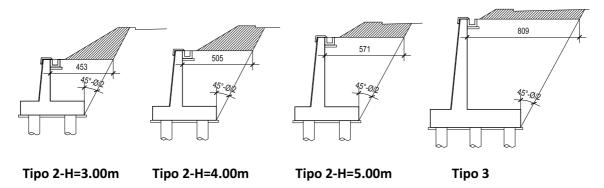
 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	38 di 247

11. ANALISI DEI CARICHI


11.1 CARICHI FISSI

Per carichi fissi si intendono le azioni associate ai pesi propri del muro e del terrapieno spingente, valutati in automatico dal foglio di calcolo utilizzato.

A tal riguardo, al calcestruzzo strutturale costituente il muro è stato assegnato un peso dell'unità di Volume γ =25 kN/m³, mentre per il terreno si è assunto γ =20 kN/m³

11.2 SOVRACCARICO EQUIVALENTE AL TERRENO A TERGO

Il terreno a tergo di ciascuna tipologia di muro di sottoscarpa (tipo1, tipo 2 e tipo3) viene considerato come un sovraccarico equivalente permanente pari al terreno che ricade all'interno del cuneo di spinta del terreno individuato dall'angolo di (45°- ϕ' /2) rispetto alla verticale con ϕ' =35°:

Schemi Carico Azioni da carico equivalente terreno

Per il tipo 2-h=3.00 m: $q_{equiv} = \gamma^* Area/L_{equiv} = 20^* 5.0/4.53 \cong 22 \text{ kN/m}$

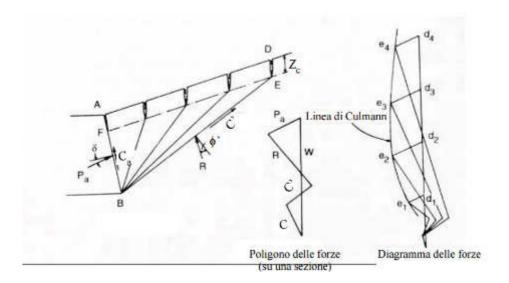
Per il tipo 2-h=4.00 m: $q_{equiv} = \gamma^* Area/L_{equiv} = 20*5.32/5.05 \cong 21 \text{ kN/m}$

Per il tipo 2-H=5.00 m. $q_{equiv} = \gamma^* Area/L_{equiv} = 20^* 4.18/5.71 \cong 15 \text{ kN/m}$

Per il tipo 3: $q_{equiv} = \gamma^* Area/L_{equiv.} = 20^* 4.85/8.09 \cong 15 \text{ kN/m}$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	39 di 247

11.3 SPINTE DEL TERRENO

Per la valutazione delle spinte del terreno in fase statica, si è fatto riferimento al metodo di Culmann, che ben si adatta a superfici di pendio a monte dell'opera di forma generica.

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb.

La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo).

Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione θ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C') e resistenza per coesione lungo la parete (C_A);
- dal poligono di equilibrio si ricava quindi il valore della spinta S sulla parete (Pa).

+

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	40 di 247

Le pressioni sulla parete di spinta si ricavano quindi derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Analogamente, nota la Spinta complessiva S, è possibile ricavare eventualmente in maniera indiretta, il valore del coefficiente di spinta Ka della nota espressione di Coulomb:

$$S=1/2 \times \gamma \times H^2 \times Ka$$

Si precisa infine che per la valutazione delle spinte al terreno di rilevato sono state assegnati i seguenti parametri fisico –meccanici:

 $\gamma = 20 \text{ KN/m}^3$

c' = 0

 $\phi' = 35$

 $\delta = 0.667 \phi'$ (attrito terra muro)

In particolare, per i muri fondati su pali la spinta è stata valutata in condizioni di riposo, essendo lo spostamento di quest'ultimi non consentito.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	41 di 247

11.4 SOVRACCARICHI ACCIDENTALI

Per la determinazione dei carichi accidentali da applicare sul terrapieno a monte delle opere di sostegno sulla zona destinata al traffico veicolare, si è fatto riferimento agli schemi di carico stabilità al punto 5.1.3.3.3 del DM 14/01/08 di cui nel seguito:

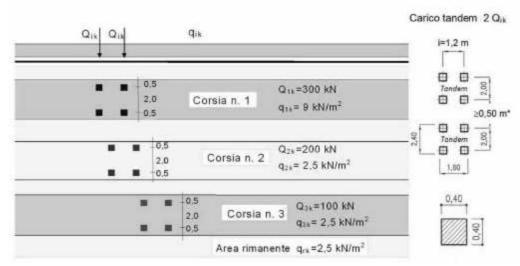


Figura 1 - Schema di carico 1

Lo schema di carico di Normativa, è in particolare costituito dalle seguenti colonne di carico:

- una colonna di carichi (ingombro = 3 m) costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k di 9 kN/m2 uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 400 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 200 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- un carico uniforme qrk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Ai fini delle analisi, si è assunto di trasformare i carichi concentrati Qik, in un carico distribuiti equivalente,

tenendo conto tuttavia dell'effetto collaborazione dei muri in direzione longitudinale, in relazione a cui si è ipotizzato che detti carichi vadano ad interessare uno sviluppo complessivo longitudinale di muro di circa 5m, corrispondente, nel caso fondazioni su pali, alla lunghezza di un tratto tipo

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

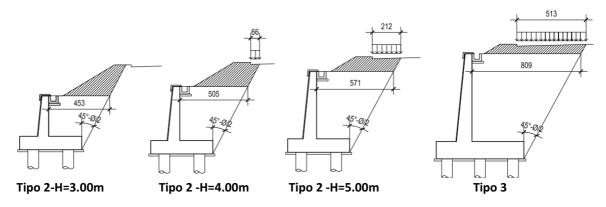
 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	42 di 247

comprendente la singola fila di pali e le due adiacenti.


In questa ipotesi risulta dunque:

 $Q1k d = 600 / 2.40x5.00 = 50 KN/m^2$

In aggiunta, sul lato corsia 1, va considerato un ulteriore carico distribuito di 9KN/m², pertanto il sovraccarico totale è pari a:

 $Qacc = 60 \text{ kN/m}^2$

In definitiva, nel disporre il sovraccarico a tergo dei muri di sottoscarpa si evidenzia come solo una parte oppure nessun valore di sovraccarico ricade all'interno del cuneo di spinta:

Schemi Carico Azioni da traffico Veicolare

Per il muro tipo 2-H=3.00m: q_{acc,equiv}= 60*0=0 kN/m²

Per il muro tipo 2-H=4.00m: $q_{acc,equiv}$ = $60*0.66/5.05 \cong 9 \text{ kN/m}^2$

Per il muro tipo 2-H=5.00m: $q_{acc,equiv}$ = 60*2.12/5.71 \cong 25 kN/m²

Per il muro tipo 3: $q_{acc,equiv} = 60*5.13/8.09 \cong 38 \text{ kN/m}^2$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	43 di 247

11.5 AZIONE SISMICA

Per la Valutazione degli effetti dell'azione sismica sulle masse e sui coefficienti di spinta del terreno, si è fatto riferimento al metodo pseudo-statico previsto al punto7.11.3.5.2 - "Metodi di Analisi" - delle NTC secondo il quale, nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_m \cdot \frac{a_{max}}{\sigma} \qquad (7.11.6)$$

$$k_v = \pm 0.5 \cdot k_h$$
 (7.11.7)

dove

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{mex}} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g} \qquad (7.11.8)$$

dove

= coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2;

 a_s = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

	Caregoria	di sottosnolo
	A	B, C, D, E
	βm	βn
$0.2 \le n_f(g) \le 0.4$	0,31	0,31
$0.1 \le a_i(g) \le 0.2$	0.29	0.24
$a_d(g) \le 0.1$	0.20	0.18

Tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso dei muri su pali) un valore del coefficiente β_m pari ad 1.0. Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso all'opera e non subisce deformazioni o movimenti relativi rispetto ad essa.

Nel caso in specie si ha:

Per i muri su fondazione diretta:

 $a_g/g = 0.220;$ amax/g=0.30 β m=0.31; Kh=0.093

Per i muri su pali:

 $a_g/g = 0.220;$ amax/g=0.30 βm=1; Kh=0.30

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Ī	Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
	L073	213	Е	16	MU0023	REL	01	В	44 di 247

11.5.1 Forze d'inerzia

Per le verifiche in fase sismica verranno pertanto applicate a tutti carichi fissi le seguenti forze d'inerzia:

 $F_h = K_h * W_i$ (Forza d'inerzia legata alla componente orizzontale del sisma)

 $F_v = \pm 0.5 K_h * W_i$ (Forza d'inerzia legata alla componente verticale del sisma)

essendo Wi il peso dell'elemento in esame o l'entità del carico fisso.

11.5.2 Effetti sismici sulle spinte del terreno

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta.

Per le verifiche in fase sismica infatti, nell'equazione risolutiva dell'equilibrio del cuneo, vengono infattiaggiunte anche le forze d'inerzia proprie del Cuneo F_h e F_v .

La superfice di rottura nel caso di sisma risulta generalmente meno inclinata della corrispondente superficie in assenza di sisma.

11.5.3 Effetti dell'Azione sismica sulla falda

Normalmente gli effetti idrodinamici considerati per il calcolo delle paratie sono calcolati con il metodo di Westergaard (Westergaard, 1931) e sono applicate sempre come pressioni esterne. La pressione idrodinamica viene calcolata come in particoalre come segue:

$$p_{\rm W} = \frac{7}{8} a_{\rm x} \gamma_{\rm W} \sqrt{z_{\rm W} H}$$

H è l'altezza del livello di falda rispetto a fondo scavo

 z_w è la profondità del punto considerato dalla superficie libera della falda

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	45 di 247

12. COMBINAZIONI DI CALCOLO

Si riporta nel seguito il riepilogo delle Combinazioni di Carico esaminate per l'Analisi e Verifica dei muri con fondazioni dirette.

Simbologia adottata

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

Y Coefficiente di partecipazione della condizione

arPsi Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Traffico	1.35	1.00	Sfavorevole

Combinazione nº 2 - STR (SISMA-M1-R3) +

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (SISMA-M1-R3) -

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - EQU

Condizione	γ	Ψ	Effetto
Peso muro	0.90		Favorevole
Peso terrapieno	0.90		Favorevole
Spinta terreno	1.10		Sfavorevole
Traffico	1.35	1.00	Sfavorevole

Combinazione nº 5 - EQU SISMA +

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 6 - EQU SISMA -

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 7 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Traffico	1.00	1.00	Sfavorevole

Combinazione nº 8 - SLEF

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	46 di 247

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Traffico	1.00	0.75	Sfavorevole

Combinazione nº 9 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Si sottolinea che per i muri con fondazioni profonde non sono state eseguite le combinazioni EQU, essendo esse prive di consistenza. Si riportano, pertanto, le combinazioni utilizzate nel caso di muri su fondazioni profonde:

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 2 - STR (SISMA-M1-R3) +

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (SISMA-M1-R3) -

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 5 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 6 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	47 di 247

13. RISULTATI ANALISI E VERIFICHE

Si riportano di seguito risultati delle analisi e verifiche delle diverse sezioni tipo dei muri

13.1 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=3.0M

13.1.1 Modello di calcolo

In figura 13.1 è illustrato lo schema di riferimento per le verifiche:

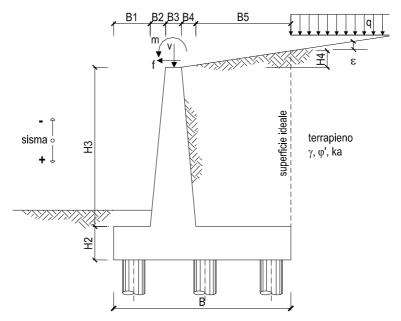
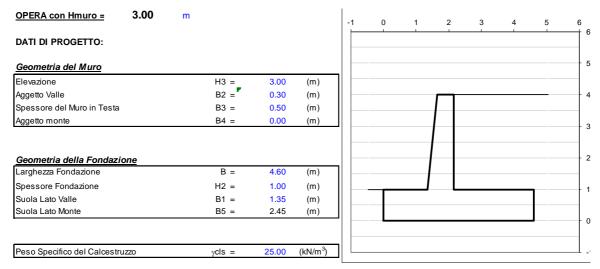



Figura 13.1 - Schema di calcolo

L'interasse longitudinale dei pali è pari a 3.60 m, mentre l'interasse trasversale è pari a 2.60 m.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	48 di 247

Determinate le azioni trasmesse a livello del piano di fondazione, viene eseguita la risoluzione della palificata, il calcolo delle massime sollecitazioni agenti sui pali di fondazione per le combinazioni più gravose, e le successive verifiche di resistenza.

Vengono determinate le azioni trasmesse in testa ai pali e successivamente i massimi valori delle caratteristiche della sollecitazione agenti sui pali. Infine, sono riportate le verifiche di resistenza secondo il metodo degli stati limite.

Il calcolo delle azioni trasmesse dal plinto di fondazione ai pali è stato svolto nell'ipotesi di zattera di fondazione infinitamente rigida secondo la formula:

Ri = N/n +
$$[(Mx)/\Sigma xi^2] \times xi + [(My)/\Sigma yi^2] \times yi$$

Essendo xi e yi le coordinate del singolo palo rispetto al baricentro della fondazione, "n" il numero totale dei pali.

Analogamente le azioni orizzontali trasmesse ai pali vengono determinate nell'ipotesi di fondazione infinitamente rigida per cui:

$$Ti = [TxI^2 + Ty^2]^{0.5}/n$$

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro e vale:

 $Mp,max = Hi x (L_0+H)/2$

Essendo Lo la lunghezza elastica del palo pari a:

 $L_0 = [4 \times Ep \times Ip/(ks \times D)]^{0.25}$

Ep il modulo di elasticità del palo; Ip il momento d'inerzia del palo;

ks costante di reazione orizzontale del terreno;

D diametro del palo.

H l'eventuale altezza non collaborante del palo di fondazione.

Per la costante di reazione orizzontale si fa riferimento alla seguente relazione proposta da Vesic:

 $ks = Es / (D*(1-v^2))$

con:

Es Modulo elastico terreno di fondazione

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	49 di 247

	ta					
3 fondazione			m	4.60		
fondazione			m	1.00		
diametro pali			m	0.80		
) =			m ⁴	0.020		
	petto alla vertica	۵	0	0.020		
			-	0.00		
		orante in caso non sismico (Scalzamento) orante in caso sismico	m			
		m	0.00			
	a cubica caratte		MPa	40		
	lasticita normale		MPa	33643		
	dio di elasticità te	erreno	MPa	50.00		
Modulo di Poi				0.25		
(h di reazi=Es	/[D*(1- _V ^2]		kN/mc	66666.67		
		Considerate toots well		NIQ- ali	0.550	
		Coordinate testa pali		N⁰pali =	0.556	. (4)
	llo n°	Xi	Yi	Di	lp .	Lo ⁽¹⁾
ur	nità	m	m	m	m ⁴	m
Ve	ert_1	1.3	0	0.80	0.020106	2.67
	ert_2	-1.3	0	0.80	0.020106	2.67
	_					
Σ.	Xi ² =	0.938888889	0	=Σ Yi ²		
<u> </u>	74 -	0.93000009	U	=2, 11		
(1) L	Lunghezza libera	d'inflessione palo				
(1) L	Lunghezza libera	d'inflessione palo				
(1) L	Lunghezza libera	DISPOSIZIONE PLANIMETRICA PALI				200
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI			1	-
(1) L	ungnezza libera	·		B B		
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI		B B		
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI		B		
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI		В		
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI		В		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		В		
(1) L	ungnezza libera	DISPOSIZIONE PLANIMETRICA PALI		В		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		В		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		8		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		8		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		B		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		B		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		B B		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		B A		
(1) L		DISPOSIZIONE PLANIMETRICA PALI		B A		

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	50 di 247

13.1.2 Risultati verifiche geotecniche per fondazioni su pali

Di seguito vengono riportati i risultati delle verifiche geotecniche in forma tabellare esplicitate nell'allegato 1:

13.1.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali

Per le modalità di verifica si veda il §10.3.

Carichi massimi e minimi sui pali:

SOLLECITAZIONE SUI PALI								
caso	caso N pali all.1 N pali all.2 N pali all.3							
	[kN]	[kN]	[kN]	[kN]	[kNm]			
SLE_RARA	526.03	743.53		174.77	233.22			
SLE_FR	526.03	743.53		174.77	233.22			
SLE_QP	526.03	743.53		174.77	233.22			
A1+M1+R3	586.90	738.62		239.61	319.73			
SISMA+M1+R3+	1124.65	363.53		503.95	672.48			
SISMA+M1+R3-	1130.25	212.86		519.99	693.88			

Dall'esame delle curve di capacità portante, riportate di seguito, si ricava la lunghezza dei pali per il muro in oggetto:

L = 12.00 m - Lunghezza pali

Nmax = 1125 kN < 1780.1 kN - Azione massima palo in compressione in sismica

Nmin = 0.0 kN - Azione massima palo in trazione in sismica

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

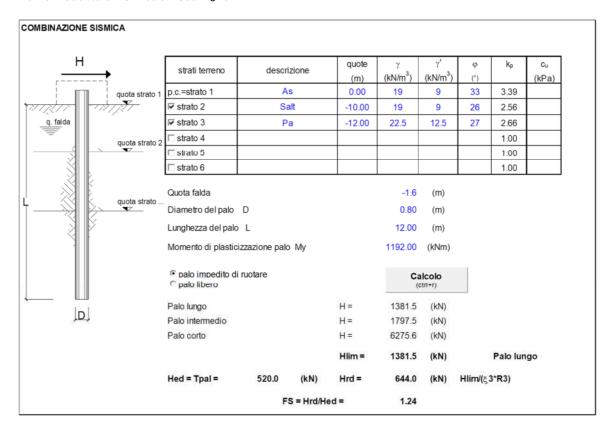
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	51 di 247

										CAPACITA	PORTANT	EPARATI	OLPALI IN	OMPRESSI										
strate	# (m)	àh(m)	2 (MW/m²)	/ (M4/m²)) (°)	tu (kPa)	o, (iPa)	o, (kita) a ah/2	qb (kPa)	Otomaxo(kPa)	и	p _i	kirtany	ri (kPa)	max (kPa)	06	qi	QL	Wpalo	QRif	:305	Ftee		z (m)
1	0.0	0.00	19.0	9.0	33.0		26.6	0.0	0.0	4000	0.4		0.5	0.0	100.0	0.0	0.0	0.0		0.0	1125.00	0.00		0.0
1	1.0	1.00	19.0	9.0	33.0	+	45.6	36.1	2736.0	4000	0.4		0.5	16.4	100.0	1375.3	41.2	41.2	3.0	636.1	1125.00	0.57		1.0
1	2.0	1.00	19.0	9.0	33.0	-	64.6	50.1	3876.0	4000	0.4		0.5	22.8	100.0	1948.3	67.2	98.5	6.0	920.5	1125.00	0.82		2.0
1	3.0	1.00	19.0	9.0	33.0	(-)	83.6	69.1	5016.0	4000	0.4		0.6	31.4	100.0	2010.6	78.9	177.4	9.0	987.1	1125.00	0.88		3.0
1	4.0	1:00	19.0	9.0	33.0		102.6	88.3	6156.0	4000	0.4		0.5	40.0	100.0	2010.6	100.7	278.1	12.1	1037.1	1125,00	0.92		4.0
1	5.0	1.00	19.0	9.0	33.0	- 2	121.6	107.1	7296 0	4000	0.4	- 2	0.5	48.7	100.0	2010.6	122.4	400.4	15.1	1098.5	1125.00	0.98		5.0
-1	6.0	1.00	19.0	9.0	33.0		140.6	125.1	8436.0	4000	0.4		0.5	57.3	100.0	2010.6	144.1	544.5	18.1	1171.5	1125.00	1.04	>1	6.0
1	7.00	1.00	19.0	9.0	33.0		159.6	145.1	9676.0	4000	0.4	+	0.5	66.0	100.0	2010.6	165.8	710.3	21.1	1255.9	1125.00	1.12	>1	7.0
1	0.0	1.00	19.0	9.0	33.0		170.6	164.1	10716.0	4000	0.4	20	0.5	74.6	100.0	2010.6	187.5	897.8	24.1	1351.7	1125.00	1.20	>1	8.0
1	9.0	1.00	19.0	9.0	33.0	+	197.6	183.1	11856.0	4000	0.4	4	0.5	83.2	100.0	2010.6	209.2	1107.0	27.1	1458.9	1125.00	1.30	>5	9.0
1	10.0	1.00	19.0	9.0	33.0	+	216.6	202.1	12996.0	4000	0.4	+	0.5	91.9	100.0	2010.6	230.9	1337.9	30.1	1577.6	1125.00	1.40	>1	10.0
2	11.0	1.00	19.0	9.0	26.0	- 43	235 6	221.1	4240.B	4000	0.4	-	0.3	75.5	100.0	2010.6	189.7	1527.6	33.2	1674.5	1125.00	1.49	>1	11.0
2	12.0	1.00	19.0	9.0	26.0	1 2	254.6	240.1	4582.8	4000	0.4		0.3	82.0	100.0	2010.6	295.0	1733.6	35.2	1780.1	1125.00	1.58	>1	12.0

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	52 di 247

13.1.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali

Per le modalità di verifica si veda il §10.4.

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	53 di 247

13.1.2.3 Risultati verifiche dei cedimeenti dei pali

2.6

(m)

CALCOLO DEL CEDIMENTO DEL PALO

OPERA:

DATI DI IMPUT:

Diametro del Palo (D): 0.80 (m) Carico sul palo (P): (kN) 1131.0 Lunghezza del Palo (L): 12.00 (m) Lunghezza Utile del Palo (Lu): 12.00 Modulo di Deformazione (E): (MPa) 50.00 Numero di pali della Palificata (n): 2 (-)

CEDIMENTO DEL PALO SINGOLO:

 $\delta = \beta * P/E* Lutile$

Spaziatura dei pali (s)

Coefficiente di forma

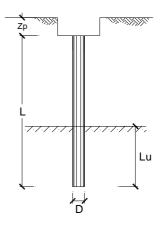
 $\beta = 0.5 + Log(Lutile / D)$: 1.68 (-)

Cedimento del palo

 $\delta = \beta * P/E* Lutile = 3.16 (mm)$

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n * Rg * \delta$


Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^2$ (Viggiani, 1999)

 $R = (n * s / L)^{0.5}$ R = 0.658

Cedimento della palificata

 δp = n * Rg * δ = ~2 * 1.06 * 3.16 = 6.70 (mm)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	54 di 247

13.1.2.4 Verifiche di stabilità globale del muro

Le verifiche di stabilità globale relative al muro tipo 2 vengono omesse in quanto sono maggiormente significative le medesime verifiche condotte sul muro tipo 3 che presenta un'altezza maggiore. Tali verifiche vengono condotte nel §13.4.2.4.

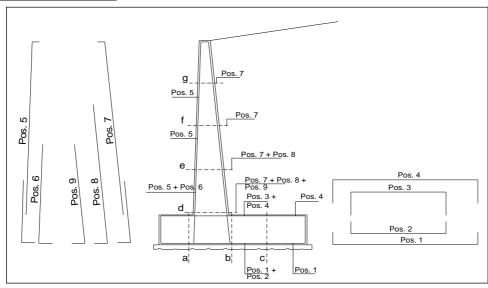
 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

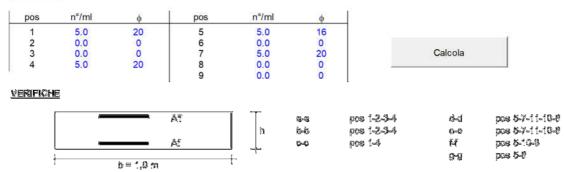
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	55 di 247


13.1.3 Risultati verifiche strutturali

Per le modalità di verifica si veda il §8.

Di seguito vengono riportati i risultati delle verifiche strutturali, nelle sezioni di calcolo riportate nello schema delle armature per ogni sezione di calcolo, in forma tabellare esplicitate nell'allegato 1:


13.1.3.1 Fondazione ed elevazione muro

SCHEMA DELLE ARMATURE

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabella precedente per le azioni.

ARMATURE

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	56 di 247

SLU – combinazione STATICA (stato limite ultimo presso-flessionale)

<u>A1+M1+R3</u>

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
a - a	34.28	0.00	129.28	1.00	15.71	15.71	558.33	0.00	264.25
b - b	-152.39	0.00	-104.63	1.00	15.71	15.71	558.33	0.00	264.25
d - d	103.95	85.25	84.57	0.80	15.71	10.05	465.91	85.25	245.88
е -е	52.03	58.12	54.84	0.73	15.71	10.05	408.65	58.12	229.98

SLU – combinazione SISMICA A1+M1+R3 (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
									<u></u>
a - a	90.52	0.00	285.27	1.00	15.71	15.71	558.33	0.00	264.25
b - b	-278.12	0.00	192.06	1.00	15.71	15.71	558.33	0.00	264.25
d - d	190.01	72.66	133.91	0.80	15.71	10.05	461.58	72.66	245.88
е -е	89.61	49.56	82.47	0.73	15.71	10.05	406.03	49.56	229.98

SLU (stato limite ultimo azione tagliante)

Verifica a taglio Sez. a	ı-a				
Verific	che allo st	ato limite	ultimo di t	taglio	
Materia	ıli (Unità N,n	nm)			
Calcestruzzo		Acc	iaio		
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezion	e da verifica	are			
Altezza trave				1000	mm
Copriferro asse barra				66	mm
Larghezza netta resistente a	a taglio			1000	mm
Diametro spille				12	1□12/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.71	mm²/mm
$\cot g\alpha$ $\alpha =$	90.00	0		0.00	
$\cot g\theta = \theta =$	21.80			2.50	
Verifiche a	ıllo s.l.u. per	r taglio		VR	,d > VEd
Taglio di calcolo V _{Ed}				285.27	kN
Vrcd				5892.34	kN
Vrsd				581.31	kN
VRd=min[Vrcd;Vrsd]			ok	581.31	kN

Verifica a taglio S	ez. b-k)				
V	erifich	ne allo st	ato limite	ultimo di	taglio	
Ma	ateriali	(Unità N,n	nm)			
Calcestr	JZZO		Acc	iaio		
Rc	k =	30	fywk =	450		
	k =	24.90	fywd =	391.3		
fc	d =	14.11				
fct	d =	1.19				
S	ezione	da verifica	are			
Altezza trave					1000	mm
Copriferro asse barra					66	mm
Larghezza netta resist	ente a ta	aglio			1000	mm
Diametro spille					12	1□12/40X40
Bracci					2.5	
Interasse					400	mm
Area staffe al millimetr	o				0.71	mm²/mm
cotga	α=	90.00	۰		0.00	
cotge	θ =	21.80	۰		2.50	
Verifi	che alle	s.l.u. per	taglio			l,d > VEd
Taglio di calcolo V _{Ed}					309.80	
Vrcd					5892.34	
Vrsd					581.31	kN
VRd=min[Vrcd;Vrsd]				ok	581.31	kN

Verifica a taglio Sez. d-c					
Verifich	ne allo sta	ato limite ul	timo di t	aglio	
	(Unità N,m				
Calcestruzzo		Acciai			
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezione	da verifica	ıre			
Altezza trave				800	mm
Copriferro asse barra				66	mm
Larghezza netta resistente a t	aglio			1000	mm
Diametro spille				12	1□12/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.71	mm²/mm
$\cot g\alpha$ $\alpha =$	90.00	0		0.00	
cotgθ θ=	21.80	0		2.50	
Verifiche all	s.l.u. per	taglio		VR	,d > VEd
Taglio di calcolo V _{Ed}				84.57	kN
Vrcd				4622.44	kN
Vrsd				456.83	kN
VRd=min[Vrcd;Vrsd]			ok	456.83	kN

Elementi senza armatura	a tracuarcala a t	anlin		-
Elementi Senza annatur	a trasversale a t	ayııo	_	-
- Verifica del conglomera	ato			
VRd =[0,18*k*(100* ρ 1*f _c	_k) ^{1/3} /γc+0,15*σcp)*bw*d =	229.98	kN
VEd =	54.84	kN	ok	
con:				
K = 1+(200/d) ^{1/2} =	1.551		≤ 2	
Rck =	30	N/mm ²		+
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.337	N/mm ²		
fck =0,83*Rck =	24.9	N/mm ²		
fcd =α _{cc} *fck/γc =	14.11	N/mm ²		
ρ1 = Asl/(bw*d) =	0.00238		≤ 0,02	
copriferro =	66	mm		+
d =	659	mm		
H=	725	mm		
OW =	1000	mm		
AsI =	1571	mm ²		
N _{Ed} =	58.12	kN		H
σ _{cn} =N _{En} /Ac =	0.080	N/mm²	≤ 0,2*fcd	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	57 di 247

SLE – combinazione RARA (stato limite ultimo di esercizio: stato tensionale)

Condizione Statica

Sez.	M	N	h	Af	A'f	σ^{C}	σf
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm²)	(N/mm²)
a - a	28.36	0.00	1.00	15.71	15.71	0.32	20.64
b - b	-112.32	0.00	1.00	15.71	15.71	1.26	81.76
d - d	74.00	75.11	0.80	15.71	10.05	1.28	47.23
e -e	36.67	51.37	0.73	7.85	10.05	0.96	44.03

SLE – combinazione FREQUENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm²)	(N/mm ²)	(mm)	(mm)
a - a	28.36	0.00	1.00	15.71	15.71	0.32	20.64	0.028	0.300
b - b	-112.32	0.00	1.00	15.71	15.71	1.26	81.76	0.112	0.300
d - d	74.00	75.11	0.80	15.71	10.05	1.28	47.23	0.060	0.300
e -e	36.67	51.37	0.73	15.71	10.05	0.75	23.47	0.028	0.300

SLE – combinazione QUASI PERMANENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

	io otatioa								
Sez.	М	N	h	Af	A'f	σ^{C}	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	28.36	0.00	1.00	15.71	15.71	0.32	20.64	0.028	0.200
b - b	-112.32	0.00	1.00	15.71	15.71	1.26	81.76	0.112	0.200
d - d	74.00	75.11	0.80	15.71	10.05	1.28	47.23	0.060	0.200
e -e	36.67	51.37	0.73	31.42	10.05	0.61	12.68	0.012	0.200

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	58 di 247

13.1.3.2 Pali

Di seguito vengono riportati i risultati delle verifiche strutturali dei pali.

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabelle precedente per le azioni.

Le sollecitazioni di verifica sono riportate nelle tabelle seguenti:

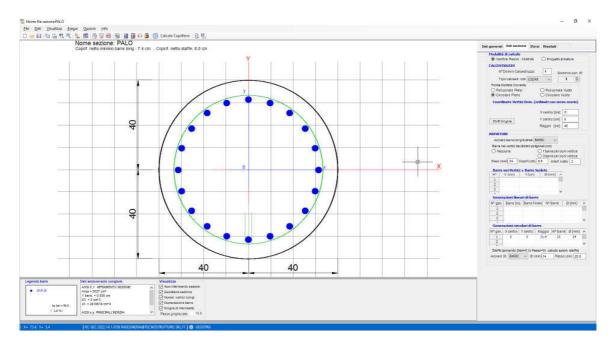
SOLLECITAZIONE SUI PALI											
caso	N pali all.1	N pali all.2	N pali all.2 N pali all.3		M pali						
	[kN]	[kN]	[kN]	[kN]	[kNm]						
SLE_RARA	526.03	743.53		174.77	233.22						
SLE_FR	526.03	743.53		174.77	233.22						
SLE_QP	526.03	743.53		174.77	233.22						
A1+M1+R3	586.90	738.62		239.61	319.73						
SISMA+M1+R3+	1124.65	363.53		503.95	672.48						
SISMA+M1+R3-	1130.25	212.86		519.99	693.88						

Caratteristiche geometriche della sezione

ф	800 cm
Armatura 1° strato Aa	$20\phi 24 = 90.5 \text{ cm}^2$
Copriferro 1° strato Aa	8.60cm
Armatura a taglio	$1\phi 14/20 = 15.4 \text{ cm}^2/\text{m}$
Copriferro armatura a taglio	6cm

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	59 di 247

Verifiche agli stati limite per presso-flessione

Di seguito si riporta il tabularo delle verifiche del palo da cui si evince che le verifiche sono soddisfatte:

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: PALO

Descrizione Sezione: Metodo di calcolo resistenza: Tipologia sezione: Normativa di riferimento: Percorso sollecitazione:

NTC A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Resis. compr. ridotta fcd':	9.4	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

Resistenze agli Stati Limite Ultimi

Sezione generica di Pilastro

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	60 di 247

Sf limite S.L.E. Comb. Rare

360.00 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo:

40.0 cm Raggio circ.: X centro circ. 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Ycentro Raggio Numero di barre generate equidist. disposte lungo la circonferenza Diametro [mm] della singola barra generata N°Barre

N°Barre N°Gen Xcentro Ycentro Raggio Ø 0.0 0.0 31.4 20 24 1

ARMATURE A TAGLIO

14 Diametro staffe: mm 20.0 Passo staffe:

Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate Vy

N°Comb Ν Mx 1130.25 693 88 519 99 212 86 693 88 519 99

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

N°Comb My 526.03 233.22 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Ν Mx Му 526.03 233.22 (272.07) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Мx

526.03 233.22 (272.07) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

cm

6.0 cm

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	61 di 247

Interferro netto minimo barre longitudinali: Copriferro netto minimo staffe

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Mx N Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res

Mis.Sic Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver Mis.Sic. As Totale 1130.25 693.88 1130.38 1172.28 90.5(15.1) 1.69 212.86 693.88 212.59 1016.91 90.5(15.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del calcestruzzo a compressione Deform, unit, massima del calcestruzzo a compressione Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) es max Deform, unit, massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	40.0	0.00239	0.0	31.4	-0.00568	0.0	-31.4
2	0.00350	0.0	40.0	0.00215	0.0	31.4	-0.00769	0.0	-31.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C Rid

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 0.000000000 0.000128536 -0.001641441 0.000156721 -0.002768826

VERIFICHE A TAGLIO

A.Eff

Ver

Ved

N°Comb

Diam. Staffe 14 mm

Passo staffe 20.0 cm [Passo massimo di normativa = 25.0 cm]

S = comb. verificata a taglio / N = comb. non verificata Ve Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]
Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vcd Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] dlz

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))
I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse)

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Ast

Tra parentesi è indicata la quota dell'area relativa alle sole legature L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta ta sulla direz, del taglio e d max= massima altezza utile nella direz, del taglio

Vwd

				•		
1 2		1343.73 1246.47	60.2 51.6 62.7 54.1			15.4(0.0) 15.4(0.0)

dlz

bw

Cta

Acw

Ast

A.Eff

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Vcd

Ver S = comb verificata/ N = comb non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

-0.00046

0.00000

0.500

24.0

74

0.00022 (0.00022)

4230.092 (0.20)

272.07

0.00

2.12PEDEMONTANA DELLE MARCHE

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	62 di 247

Xc max, Yc max	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min	Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min	Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.	Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.58	0.0	0.0	-72.4	0.0	-31.4	569	13.6

CC

COMBINAZIO	ONI RARE I	N ESERCIZIO -	APERTURA	FESSURE	[§ 7.3.	4 EC2]							
La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] kt = 0.4 per comb. quasi permanenti /= 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; = (e1 + e2)/(2²e1) per trazione eccentrica [eq.(7.13)EC2] k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali Ø Diametro [mn] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf Copriferro [mn] netto calcolato con riferimento alla barra più tesa e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] sr max Massima distanza tra le fessure [mn] wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess													
Comb. Ver	e1	e2	1	k2	Ø	Cf	6	e sm - e cm		sr max	wk	Mx fess	My fess
1 S -	-0.00046	0.00000	0.50	00	24.0	74	C	0.00022 (0.000	22)	4230.092 (990.00)	272.07	0.00
COMBINAZIO	NI FREQU	ENTI IN ESERC	IZIO - MAS	SIME TEN	SIONI N	ORMALI	ED APERT	URA FESSUR	E (NTC/EC2)				
N°Comb	Ver	Sc max	Xc max	Yc max		Ss min	Xs min	Ys min	Ac eff.	As eff.			
1 S	5.58	0.0	0.0	-72.4		0.0	-31.4	569	13.6				
COMBINAZIO	ONI FREQU	ENTI IN ESERC	IZIO - APEF	RTURA FES	SSURE	[§ 7.3.4 E	C21						
Comb.Ver	e1	e2		k2	Ø	Cf		e sm - e cm		sr max	wk	Mx fess	My fess
1 S -	-0.00046	0.00000	0.50		24.0	74).00022 (0.000	22)		92 (0.30)	272.07	0.00
		PERMANENTI II						,	,		2 (0.00)	212.01	0.00
									•	•			
N°Comb	Ver	Sc max	Xc max	Yc max		Ss min	Xs min	Ys min	Ac eff.	As eff.			
1	S	5.58	0.0	0.0		-72.4	0.0	-31.4	569	13.6			
COMBINAZIO	ONI QUASI	PERMANENTI II	N ESERCIZIO	O - APERT	URA FE	SSURE [§ 7.3.4 EC2	2]					
Comb. Ver	r e1 e2 k2 Ø Cf esm-ecm srmax wk Mx fess My fess								My fess				

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	63 di 247

13.2 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=4.0M

13.2.1 Modello di calcolo

In figura 13.2 è illustrato lo schema di riferimento per le verifiche:

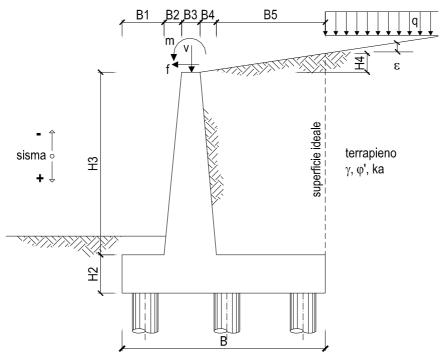
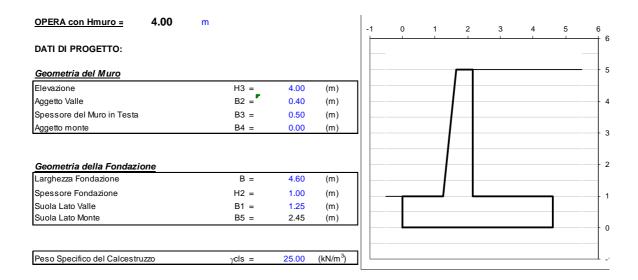



Figura 13.2 - Schema di calcolo

L'interasse longitudinale dei pali è pari a 2.60 m, mentre l'interasse trasversale è pari a 2.60 m.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	64 di 247

Determinate le azioni trasmesse a livello del piano di fondazione, viene eseguita la risoluzione della palificata, il calcolo delle massime sollecitazioni agenti sui pali di fondazione per le combinazioni più gravose, e le successive verifiche di resistenza.

Vengono determinate le azioni trasmesse in testa ai pali e successivamente i massimi valori delle caratteristiche della sollecitazione agenti sui pali. Infine, sono riportate le verifiche di resistenza secondo il metodo degli stati limite.

Il calcolo delle azioni trasmesse dal plinto di fondazione ai pali è stato svolto nell'ipotesi di zattera di fondazione infinitamente rigida secondo la formula:

Ri = N/n +
$$[(Mx)/\Sigma xi^2] \times xi + [(My)/\Sigma yi^2] \times yi$$

Essendo xi e yi le coordinate del singolo palo rispetto al baricentro della fondazione, "n" il numero totale dei pali.

Analogamente le azioni orizzontali trasmesse ai pali vengono determinate nell'ipotesi di fondazione infinitamente rigida per cui:

$$Ti = [TxI^2 + Ty^2]^{0.5}/n$$

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro e vale:

 $Mp,max = Hi \times (L_0+H)/2$

Essendo Lo la lunghezza elastica del palo pari a:

 $L_0 = [4 \times Ep \times Ip/(ks \times D)]^{0.25}$

Ep il modulo di elasticità del palo; Ip il momento d'inerzia del palo;

ks costante di reazione orizzontale del terreno;

D diametro del palo.

H l'eventuale altezza non collaborante del palo di fondazione.

Per la costante di reazione orizzontale si fa riferimento alla seguente relazione proposta da Vesic:

 $ks = Es / (D*(1-v^2))$

con:

Es Modulo elastico terreno di fondazione

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	65 di 247

Dati palificata					
Dati pallitata					
B fondazione		m	4.60		
L fondazione		m	1.00		
D diametro pali		m	0.80		
		m ⁴			
lp =	II a continula	o I	0.020		
inclinazione rispetto a			0.000		
	non collaborante in caso non sismico (Scalzamento)		0.00		
	non collaborante in caso sismico	m MPa	0.00		
Rck Resistenza cubio		1	40		
Ep Modulo di elasticita		MPa	33643		
Es Modulo medio di e v Modulo di Poisson te		MPa	50.00 0.25		
		L.NI/ma a			
Kh di reazi =Es/[D*(1-	V'Y]	kN/mc	66666.67		
	Coordinate testa pali		N°pali =	0.833	
D-1 0		\/!			Lo ⁽¹⁾
Palo n°	Xi	Yi	Di	lp	
unità	m	m	m	m ⁴	m
Vert_1	1.3	0	0.80	0.020106	2.67
Vert_2	-1.3	0	0.80	0.020106	2.67
$\Sigma Xi^2 =$	1.408333333	0	=Σ Yi²		
(1) Lunghe:	zza libera d'inflessione palo				
	DISPOSIZIONE PLANIMETRICA PAI	_I			
	С		В В	1	
	1				
	(X)				
	Ass			1	
	2				
	D				
					1
	Asse (x)				_
	Asse (x)				

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	66 di 247

13.2.2 Risultati verifiche geotecniche per fondazioni su pali

Di seguito vengono riportati i risultati delle verifiche geotecniche in forma tabellare esplicitate nell'allegato 2:

13.2.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali

Per le modalità di verifica si veda il §10.3.

Carichi massimi e minimi sui pali:

SOLLECITAZIONE SUI PALI										
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali					
	[kN]	[kN]	[kN]	[kN]	[kNm]					
SLE_RARA	562.62	603.71		203.59	271.67					
SLE_FR	553.51	607.88		197.86	264.03					
SLE_QP	526.18	620.38		180.68	241.11					
A1+M1+R3	659.63	572.61		279.93	373.55					
SISMA+M1+R3+	1268.46	111.10		510.70	681.49					
SISMA+M1+R3-	1277.21	-38.75		524.52	699.93					

Dall'esame delle curve di capacità portante, riportate di seguito, si ricava la lunghezza dei pali per il muro in oggetto:

L = 12.00 m - Lunghezza pali

Nmax = 1277.21 kN < 1780.1kN - Azione massima palo in compressione in sismica

Nmin = -38.75 kN > -564.2 kN - Azione massima palo in trazione in sismica

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	67 di 247

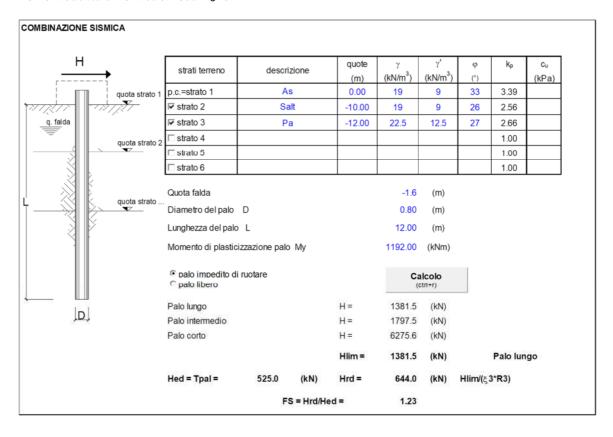
1.0 2.0 3.0 4.0 5.0 6.0 7.00 8.0 9.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0	33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0	-	83.6 102.6 121.6 140.6 159.6 178.6 197.6 216.6	69 1 88 3 107 1 126 1 145 1 164 1 183 1 202 1	5016.0 6156.0 7296.0 8436.0 9676.0 10716.0 11856.0	4000 4000 4000 4000 4000 4000 4000 400	0.4 0.4 0.4 0.4 0.4 0.4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.5 0.5 0.5 0.6 0.5 0.5	40.0 48.7 57.3 66.0 74.6 83.2 91.9	100.0 100.0 100.0 100.0 100.0 100.0 100.0	2010.6 2010.6 2010.6 2010.6 2010.6 2010.6 2010.6	100.7 122.4 144.1 165.8 187.5 209.2 230.9
1.0 2.0 3.0 4.0 5.0 6.0 7.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.0 19.0 19.0 19.0 19.0	9.0 9.0 9.0 9.0 9.0	33.0 33.0 33.0 33.0 33.0		102.6 121.6 140.6 159.6 178.6	88.1 107.1 126.1 145.1 164.1	6156.0 7296.0 8436.0 9676.0 10716.0	4000 4000 4000 4000 4000	0.4 0.4 0.4 0.4	-	0.5 0.5 0.6 0.5	40.0 48.7 57.3 66.0 74.6	100.0 100.0 100.0 100.0 100.0	2010.6 2010.6 2010.6 2010.6 2010.6	122.4 144.1 165.8 187.5
1.0 2.0 3.0 4.0 5.0 6.0 7.00	1.00 1.00 1.00 1.00 1.00 1.00	19.0 19.0 19.0 19.0 19.0	9.0 9.0 9.0 9.0	33.0 33.0 33.0 33.0	-	102.6 121.6 140.6 159.6	88.1 107.1 126.1 145.1	6156 0 7296 0 8436 0 9676 0	4000 4000 4000 4000	0.4 0.4 0.4	- 1	0.5 0.5 0.6	40.0 48.7 57.3 66.0	100.0 100.0 100.0 100.0	2010.6 2010.6 2010.6 2010.6	122.4 144.1 165.8
1.0 2.0 3.0 4.0 5.0	1.00 1.00 1.00 1.00 1.00	19.0 19.0 19.0 19.0	9.0 9.0 9.0 9.0	33.0 33.0 33.0		102.6 121.6 140.6	88.1 107.1 126.1	6156.0 7296.0 8436.0	4000 4000 4000	0.4	- 2	0.5 0.5	40.0 48.7 57.3	100.0 100.0 100.0	2010.6 2010.6 2010.6	122.4 144.1
1.0 2.0 3.0 4.0 5.0	1.00 1.00 1.00 1.00	19.0 19.0 19.0	9.0 9.0 9.0	33.0 33.0	-0-	102 6 121.6	88.1 107.1	6156.0 7296.0	4000 4000	0.4	20	0.5	40.0 48.7	100.0	2010.6 2010.6	122.4
1.0 2.0 3.0 4.0	1.00 1.00 1.00	19.0 19.0	9.0	33.0		102.6	88.1	6156.0	4000				40.0	100.0	2010.6	
2.0	1.00			33.0	(4)	83.6	69.1	5016.0								
1.0									4000	0.4	- 10	0.5	31.4	100.0	2010.6	78.9
			9.0	33.0	-	64.6	50.1	3876.0	4000	0.4	-	0.5	22.8	100.0	1948.3	67.2
0.0	1.00	19 0 19 0	9.0	33.0	-	26.6 45.6	0.0 36.1	0.0 2736.0	4000 4000	0.4		0.5	16.4	100.0	1375.3	41.2
(-10.0)	100000	**					ah/2				-	The state of the s		100000		
z (m)	ahimi	> (MM/m ²)	Cinists v	10	cu (kPa)	a. (iPa)	o, (kPa) a	dh (kPa)	QhmaxikPa)	и	6	k/ten/	of (RPa)	max (kPa)	Qb	tri-
									CAPACITA	PORTANTI	E PARATIA	DI PALI IN C	COMPRESSI	ONE		
Fattore d	nduzione	capacità portan	1.00		1	_ II fatto	re di riduzio	ne tiene co	onto dell'intera	ese dei pal	li della par	ratio				
5.0			1.65		1											
i. =			1.65]											
R1 (QI) =			1.15		Ī											
R1(QB) =			1.35		1											
N -			1278.00	MN	1											
-																
-	ste peli (z=	0) =	0.0	m	1	-							18			
Quota P.		a paro -	1.40	m	1	5						_				
0.000000	ida da test		-1.60	m	1	4	22.3	21.4		20.00		_				
Queta Ex	ida da n.c.	-	-3.0	m		3	22.5	27.0		20.00		_				
	1000		0.8	m		2	19.0	26.0		18.00		_				
Diametro				m	1	1	19.0	33.0	CL (KIT A)	69.0		_	6)			
t = Interasse Diametro	3.14					strato	+ (kN/m ³)	+(")	c _v (kPa)	Ng=						

= 3.142			strato	y (kfk/m²)	+(*)	c. (RPa)	Nq+							
Interasse pali		m	1	19.0	33.0		60.0							
Diametro palo +	0.8	m	2	19.0	26.0		18.00							
Quota Falda da p.c.=	-3.0	m:	3	22.5	27.0		20.00							
Quota Falda da testa palo =	-1.60	m:	4											
Quota P.C. =	1,40	m	5											
Quota testa poli (z=0) =	0.0	m												
N =	-38.75	ktik												
R3 (QL)=	1.25	-												
ù=	1.65													
Q=	1.65													
Fattore di riduzione capacità porta	nte 1.00		- III fattor	e di riduzion	ne tiene ce	nto dell'inter	asse dei pa	li della par	atio					

										CAPACI	TA' PORT	ANTE PARI	TIA DI PALI	IN TRAZION	E									
strate	z (m)	Δh(m)	y (M4/m²)	/ (M/m³)	¥(*)	ou (kPa)	e _v (kPa)	e, (kPa) a sh/2	qb (kPa)	Qbmax(KPa)	- 10	8	ki*tanj	1 (MPa)	max (kPa)	QЬ	a	ÓL.	Wpale	QRd	N	Fishe		z (m)
- 1	0.0	0.00	19.0	9.0	33.0	2	26.6	0.0	0.0	5800	0.4	2.5	0.3	0.0	-150.0	0.0	0.0	0.0	11.00	0.0	-38.75	0.00		0.0
1	1.0	1.00	19.0	9.0	33.0	-	45.6	36.1	2736.0	5800	0.4		0.3	11.7	150.0	0.0	29.5	29.5	3.0	11.3	-38.75	0.29		1.0
1	2.0	1.00	19.0	9.0	33.0		64.6	50.1	3876.0	5800	0.4		0.3	16.3	150.0	0.0	40.9	70.3	6.0	28.1	-38.75	0.72		2.0
1	3.0	1.00	19.0	9.0	33.0	(4)	83.6	69.1	5016.0	5800	0.4		0.3	22.4	150.0	0.0	55.4	126.7	9.0	52.4	-38.75	1.35	>1	3.8
1	4.0	1.00	19.0	9.0	33.0	- 2	102.6	88.1	5156.0	5800	0.4		0.3	28.6	150.0	0.0	71.9	198.6	12.1	84.2	-38.75	2.17	>1	4.0
- 1	5.0	1.00	19.0	9.0	33.0	-	121.6	107.1	7295.0	5800	0.4	+0	0.3	34.8	150.0	0.0	87.4	286.0	15.1	123.6	-38.75	3.19	>1	5.0
- 1	6.0	1.00	19.0	9.0	33:0	+	140.6	126.1	8436.0	5800	0.4		0.3	40.9	150.0	0.0	102 9	388.9	18.1	170.5	-38.75	4.40	>1	6.0
1	7.00	1.00	19.0	9.0	33.0		159.6	146.1	9576.0	6800	0.4		0.3	47.1	150.0	0.0	110.4	507.4	21.1	224.9	-36.75	5.80	>1	7.0
1	8.0	1.00	19.0	9.0	33.0		178.6	164.1	10715.0	5800	0.4		0.3	63.3	150.0	0.0	133.9	641.3	24.1	286.8	-38.75	7.40	>1	8.0
1	9.0	1.00	19.0	9.0	33.0	-	197 €	183.1	11856.0	5800	0.4		0.3	59.5	150.0	0.0	149.4	790.7	27.1	356.2	-30.75	9.19	51	9.0
1	10.0	1.00	19.0	9.0	33.0		216.6	202.1	12996.0	5800	0.4	- 1	0.3	65.6	150.0	0.0	164.9	955.6	30.1	433.2	-36.75	11.18	>1	10.0
2	11.0	1.00	19.0	9.0	26.0	2	235.6	221.1	4240.8	5800	0.4		0.2	53.9	-150.0	0.0	136.5	1091,1	33.2	495.9	-38.75	12 80	>d	11.0
2	12.0	1.00	19.0	9.0	26.0		254.6	240.1	4582.8	4000	0.4	-	0.2	58.6	150.0	0.0	147.2	1238.3	36.2	564.2	-38.75	14.56	>1	12.0

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	68 di 247

13.2.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali

Per le modalità di verifica si veda il §10.4.

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	69 di 247

13.2.2.3 Risultati verifiche dei cedimeenti dei pali

CALCOLO DEL CEDIMENTO DEL PALO

OPERA:

DATI DI IMPUT:		
Diametro del Palo (D):	0.80	(m)
Carico sul palo (P):	1278.0	(kN)
Lunghezza del Palo (L):	12.00	(m)
Lunghezza Utile del Palo (Lu):	12.00	(m)
Modulo di Deformazione (E):	50.00	(MPa)
Numero di pali della Palificata (n):	2	(-)
Spaziatura dei pali (s)	2.6	(m)

CEDIMENTO DEL PALO SINGOLO:

 $\delta = \beta * P/E* Lutile$

Coefficiente di forma

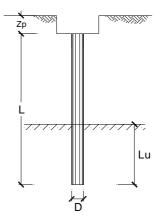
 $\beta = 0.5 + Log(Lutile / D)$: 1.68 (-)

Cedimento del palo

 δ = β * P / E * Lutile = 3.57 (mm)

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n * Rg * \delta$


Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^2$ (Viggiani, 1999)

 $R = (n * s / L)^{0.5}$ R = 0.658

Cedimento della palificata

 δp = n * Rg * δ = ~2 * 1.06 * 3.57 = 7.57 (mm)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	70 di 247

13.2.2.4 Verifiche di stabilità globale del muro

Le verifiche di stabilità globale relative al muro tipo 2 vengono omesse in quanto sono maggiormente significative le medesime verifiche condotte sul muro tipo 3 che presenta un'altezza maggiore. Tali verifiche vengono condotte nel §13.4.2.4.

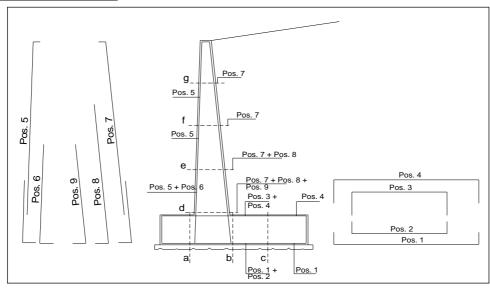
 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

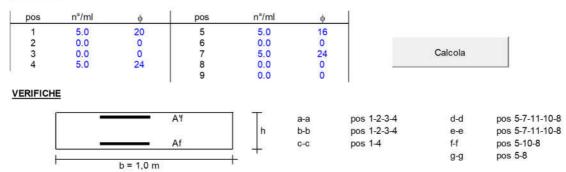
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	71 di 247


13.2.3 Risultati verifiche strutturali

Per le modalità di verifica si veda il §8.

Di seguito vengono riportati i risultati delle verifiche strutturali, nelle sezioni di calcolo riportate nello schema delle armature per ogni sezione di calcolo, in forma tabellare esplicitate nell'allegato 2:


13.2.3.1 Fondazione ed elevazione muro

SCHEMA DELLE ARMATURE

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabella precedente per le azioni.

ARMATURE

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	72 di 247

SLU – combinazione STATICA (stato limite ultimo presso-flessionale)

A1+M1+R3

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
a - a	43.89	0.00	222.45	1.00	15.71	22.62	557.39	0.00	263.97
b - b	-295.52	0.00	-188.75	1.00	22.62	15.71	793.55	0.00	298.08
d - d	249.53	135.56	151.91	0.90	22.62	15.71	757.76	135.56	300.27
e -e	125.09	91.33	98.66	0.80	22.62	15.71	647.97	91.33	276.59

SLU – combinazione SISMICA A1+M1+R3 (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
									<u></u>
a - a	106.21	0.00	464.68	1.00	15.71	22.62	557.39	0.00	263.97
b - b	-491.59	0.00	331.07	1.00	22.62	15.71	793.55	0.00	298.08
d - d	406.52	107.71	219.50	0.90	22.62	15.71	747.04	107.71	300.27
e -e	187.72	72.01	132.69	0.80	22.62	15.71	641.49	72.01	276.59

SLU (stato limite ultimo azione tagliante)

Verifica a taglio Sez. a-a	1				
Verifich	ne allo sta	ato limite ul	timo di t	aglio	
Materiali	(Unità N,m	ım)			
Calcestruzzo		Acciai	0		
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezione	da verifica	re			
Altezza trave				1000	mm
Copriferro asse barra				68	mm
Larghezza netta resistente a ta	aglio			1000	mm
Diametro spille				14	1 □ 14/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.96	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	•		0.00	
cotgθ θ =	21.80	•		2.50	
Verifiche alle	s.l.u. per	taglio		VR	l,d > VEd
Taglio di calcolo V _{Ed}				464.68	kN
Vrcd				5873.29	kN
Vrsd				789.53	kN
VRd=min[Vrcd;Vrsd]			ok	789.53	kN

Verifica a taglio Sez.	b-b				
Veri	fiche allo st	ato limite	ultimo di t	aglio	
Mater	iali (Unità N,n				
Calcestruzze)	Acc	iaio		
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezio	ne da verifica	are			
Altezza trave				1000	mm
Copriferro asse barra				68	mm
Larghezza netta resistente	a taglio			1000	mm
Diametro spille				14	1□14/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.96	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	۰		0.00	
$\cot g\theta$ $\theta =$	21.80	٥		2.50	
Verifiche	allo s.l.u. per	r taglio		VR	l,d > VEd
Taglio di calcolo V _{Ed}				408.99	kN
Vrcd				5873.29	kN
Vrsd				789.53	kN
VRd=min[Vrcd;Vrsd]			ok	789.53	kN

Verific	he allo st	ato limite u	Iltimo di 1	aglio	
Materia	li (Unità N,n	nm)			
Calcestruzzo	Accia	aio			
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezion	e da verifica	ire			
Altezza trave				900	mm
Copriferro asse barra				68	mm
Larghezza netta resistente a	taglio			1000	mm
Diametro spille				12	1 □ 12/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.71	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	0		0.00	
cotgθ θ =	21.80	0		2.50	
Verifiche a	llo s.l.u. per	taglio		VR	,d > VEd
Taglio di calcolo V _{Ed}				151.91	kN
Vrcd				5244.69	kN
Vrsd				517.83	kN
VRd=min[Vrcd;Vrsd]			ok	517.83	kN

Verifica a taglio sez.	e-e			-
Elementi senza armatura	trasversale a ta	aglio		
- Verifica del conglomerat	0			
VRd =[0,18*k*(100*p1*f _{ck})	^{1/3} /γc+0,15*σcp]*bw*d =	276.59	kN
VEd =	98.66	kN	ok	
con:				
K = 1+(200/d) ^{1/2} =	1.523		≤ 2	
Rck =	30	N/mm ²		+
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.328	N/mm ²		
fck =0,83*Rck =	24.9	N/mm ²		+
fcd =α _{cc} *fck/γc =	14.11	N/mm ²		
ρ1 = Asl/(bw*d) =	0.00309		≤ 0,02	
copriferro =	68	mm		+
d =	732	mm		
H =	800	mm		Т
bw =	1000	mm		
AsI =	2262	mm ²		\perp
N _{Ed} =	91.33	kN		
N- /Ac -	0.114	N/mm ²	< 0.2*fcd	+

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	73 di 247

SLE – combinazione RARA (stato limite ultimo di esercizio: stato tensionale)

Condizione Statica

Sez.	M	N	h	Af	A'f	σ^{C}	σf
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm²)	(N/mm²)
2 - 2	34.57	0.00	1.00	15.71	22.62	0.38	25.20
a - a				-	_		
b - b	-216.07	0.00	1.00	22.62	15.71	2.10	110.66
d - d	177.49	117.31	0.90	22.62	15.71	2.14	78.65
e -e	88.09	79.17	0.80	11.31	15.71	1.68	80.38

SLE – combinazione FREQUENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	33.69	0.00	1.00	15.71	22.62	0.37	24.57	0.034	0.300
b - b	-209.09	0.00	1.00	22.62	15.71	2.03	107.08	0.144	0.300
d - d	170.44	115.79	0.90	22.62	15.71	2.06	74.91	0.094	0.300
e -e	84.13	78.03	0.80	22.62	15.71	1.25	39.77	0.047	0.300

SLE – combinazione QUASI PERMANENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle \mathbb{C}}$	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	31.06	0.00	1.00	15.71	22.62	0.34	22.65	0.032	0.200
b - b	-188.15	0.00	1.00	22.62	15.71	1.83	96.36	0.130	0.200
d - d	177.49	117.31	0.90	22.62	15.71	2.14	78.65	0.099	0.200
e -e	88.09	79.17	0.80	45.24	15.71	1.06	22.36	0.022	0.200

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	74 di 247

13.2.3.2 Pali

Di seguito vengono riportati i risultati delle verifiche strutturali dei pali.

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabelle precedente per le azioni.

Le sollecitazioni di verifica sono riportate nelle tabelle seguenti:

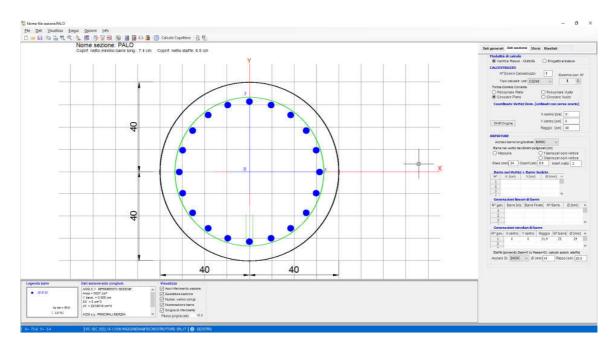
SOLLECITAZIONE SUI PALI										
caso	N pali all.1	pali all.1 N pali all.2 N pali all.3		T pali	M pali					
	[kN]	[kN]	[kN]	[kN]	[kNm]					
SLE_RARA	562.62	603.71		203.59	271.67					
SLE_FR	553.51	607.88		197.86	264.03					
SLE_QP	526.18	620.38		180.68	241.11					
A1+M1+R3	659.63	572.61		279.93	373.55					
SISMA+M1+R3+	1268.46	111.10		510.70	681.49					
SISMA+M1+R3-	1277.21	-38.75		524.52	699.93					

Caratteristiche geometriche della sezione

ф	800 cm
Armatura 1° strato Aa	$20\phi 24 = 90.5 \text{ cm}^2$
Copriferro 1° strato Aa	8.60cm
Armatura a taglio	$1\phi 14/20 = 15.4 \text{ cm}^2/\text{m}$
Copriferro armatura a taglio	6cm

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	75 di 247

Verifiche agli stati limite per presso-flessione

Di seguito si riporta il tabularo delle verifiche del palo da cui si evince che le verifiche sono soddisfatte:

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PALO

Descrizione Sezione: Metodo di calcolo resistenza: Tipologia sezione: Normativa di riferimento:

Percorso sollecitazione: Condizioni Ambientali:

A Sforzo Norm. costante Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
0/120201110220	Resis. compr. di progetto fcd:	18.8	MPa
	Resis. compr. ridotta fcd':	9.4	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis, media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

Resistenze agli Stati Limite Ultimi Sezione generica di Pilastro

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	76 di 247

Sf limite S.L.E. Comb. Rare:

360.00 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo:

40.0 cm Raggio circ.: X centro circ. 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Ycentro Raggio Numero di barre generate equidist. disposte lungo la circonferenza Diametro [mm] della singola barra generata N°Barre

N°Barre N°Gen Xcentro Ycentro Raggio Ø 0.0 0.0 31.4 20 24 1

ARMATURE A TAGLIO

14 Diametro staffe: mm 20.0 Passo staffe:

Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate Vy

N°Comb Ν Mx 1277.21 699 93 524 52 524 52 -38 75 699 93

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

N°Comb My 562.62 271.67 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Ν Mx Му 553.51 264.03 (266.25) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Мx

526.18 241.11 (269.36) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	77 di 247

Interferro netto minimo barre longitudinali: Copriferro netto minimo staffe

74 cm 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Mx N Res Momento flettente resistente [kNm] riferito all'asse x princ. G'inerzia
Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res Mis.Sic

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	1277.21	699.93	1277.50	1192.51	1.70	90.5(15.1)
2	S	-38.75	699.93	-38.81	967.24	1.38	90.5(15.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	40.0	0.00242	0.0	31.4	-0.00544	0.0	-31.4
2	0.00350	0.0	40.0	0.00208	0.0	31.4	-0.00832	0.0	-31.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C Rid

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000125243	-0.001509728		
2	0.00000000	0.000165613	-0.003124507		

VERIFICHE A TAGLIO

N°Comb

Ver

Ved

Diam. Staffe 14 mm

20.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe

S = comb. verificata a taglio / N = comb. non verificata Ver Taglio di progetto [kN] = Vy ortogonale all'asse neutro Ved

Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]
Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vcd Vwd

d|z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))
I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast A.Eff Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz, del taglio e d max= massima altezza utile nella direz, del taglio

Vwd

				•	Ü		
1 2	-	524.52 524.52	1354.39 1211.77	60.0 51.3 63.6 55.0	2.500 2.500		15.4(0.0) 15.4(0.0)

dlz

bw

Cta

Acw

Ast

A.Eff

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Vcd

S = comb verificata/ N = comb non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	78 di 247

Xc max, Yc max Ss min Xs min, Ys min Ac eff. As eff.	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.50	0.0	0.0	-89.5	0.0	-31.4	569	13.6

COMBINAZIONI RARE II	N ESERCIZIO -	APERTURA FE	SSURE [§ 7.3.	4 EC2]							
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e cm sr max wk Mx fess. My fess.	Esito della v Massima de en 1.8 per bi en 1.8 per bi en 1.5 per file en 1.5 per file en 1.5 per file en 1.425 Coe Diametro [m Coprifero [m Tra parente! Massima dis Apertura fes Components	erifica formazione unitir mrazione unitir mrazione unitar arre ad aderenza omb. quasi perm ssione; =(e1 + e eff. (in eq.(7.11) c eff. in eq.(7.11) c eff. in eq. (7.11) c eff. in eq. (3.11) c eff. in	aria di trazione ne a migliorata [eq. manenti /= 0.6 p s2)/(2*e1) per tr. come da anness come da anness delle barre tese alato con riferime aito con el come da sone si come da sone si come da sone si come da sone si come da anness delle barre tese si come da anness delle barre tese si come da anness delle barre tese si come da anness delle da cor riferime ni medie di accio o = 0.6 Smax / E sure [mm] colata = sr max* irima fessurazion	nel calcestr (7.11)EC. per comb. azione eci i nazional i nazional compresi nto alla bi aio e calc es [(7.9)	struzzo (trazio zuzzo (trazio 2] frequenti [c centrica [ec li li e nell'area e arra più tess estruzzo [(7 JEC2 e (C4.	ione -) valutata ne -) valutata fr. eq.(7.9)EC2 q.(7.13)EC2] efficace Ac eff (a a. 8)EC2 e (C4.1.8)NTC] EC2 e (C4.1.7) kNm]	eq.(7.11)EC2]	urata ata	e a fctm		
Comb. Ver e1	e2	k2	Ø	Cf		e sm - e cm		sr max	wk	Mx fess	My fess
1 S -0.00056	0.00000	0.500	24.0	74	(0.00027 (0.000)27)	4230.11	3 (990.00)	265.34	0.00
COMBINAZIONI FREQU	ENTI IN ESERCI	IZIO - MASSIN	ME TENSIONI N	ORMALI	ED APERT	URA FESSUF	RE (NTC/EC2)				
N°Comb Ver	Sc max	Xc max Yo	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.			
1 S	6.32	0.0	0.0	-86.3	0.0	-31.4	569	13.6			
COMBINAZIONI FREQU	ENTI IN ESERCI	ZIO - APERTU	IRA FESSURE	[§ 7.3.4 E	C2]						
Comb. Ver e1	e2	k2	Ø	Cf		e sm - e cm		sr max	wk	Mx fess	My fess
1 S -0.00054	0.00000	0.500	24.0	74	(0.00026 (0.000	026)	4230.10	9 (0.30)	266.25	0.00
COMBINAZIONI QUASI	PERMANENTI IN	SERCIZIO -	MASSIME TE	NSIONI N	IORMALI E	D APERTURA	FESSURE (NTC	C/EC2)			
N°Comb Ver	Sc max	Xc max Yo	c max	Ss min	Xs min	Ys min	Ac eff.	As eff.			
1 S 5.77	0.0	0.0	-76.6	0.0	-31.4	569	13.6				
COMBINAZIONI QUASI	PERMANENTI IN	N ESERCIZIO -	APERTURA FE	SSURE	[§ 7.3.4 EC	2]					

Comb	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max wk	Mx fess	My fess
1	S	-0.00048	0.00000	0.500	24.0	74	0.00023 (0.00023)	4230.097 (0.20)	269.36	0.00

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	79 di 247

13.3 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 2- H=5.0M

13.3.1 Modello di calcolo

In figura 13.3 è illustrato lo schema di riferimento per le verifiche:

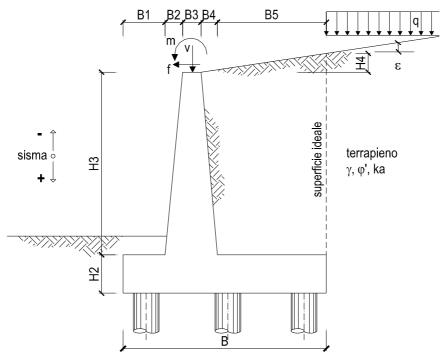
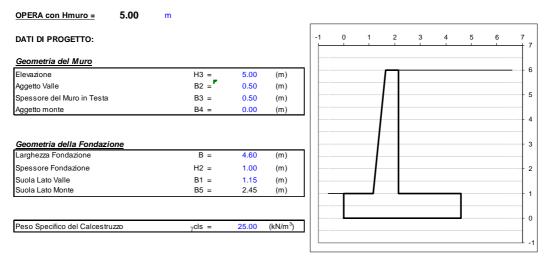



Figura 13.3 - Schema di calcolo

L'interasse longitudinale dei pali è pari a 2.40 m, mentre l'interasse trasversale è pari a 2.60 m.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	80 di 247

Determinate le azioni trasmesse a livello del piano di fondazione, viene eseguita la risoluzione della palificata, il calcolo delle massime sollecitazioni agenti sui pali di fondazione per le combinazioni più gravose, e le successive verifiche di resistenza.

Vengono determinate le azioni trasmesse in testa ai pali e successivamente i massimi valori delle caratteristiche della sollecitazione agenti sui pali. Infine, sono riportate le verifiche di resistenza secondo il metodo degli stati limite.

Il calcolo delle azioni trasmesse dal plinto di fondazione ai pali è stato svolto nell'ipotesi di zattera di fondazione infinitamente rigida secondo la formula:

Ri = N/n +
$$[(Mx)/\Sigma xi^2] \times xi + [(My)/\Sigma yi^2] \times yi$$

Essendo xi e yi le coordinate del singolo palo rispetto al baricentro della fondazione, "n" il numero totale dei pali.

Analogamente le azioni orizzontali trasmesse ai pali vengono determinate nell'ipotesi di fondazione infinitamente rigida per cui:

$$Ti = [TxI^2 + Ty^2]^{0.5}/n$$

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro e vale:

 $Mp,max = Hi x (L_0+H)/2$

Essendo Lo la lunghezza elastica del palo pari a:

 $L_0 = [4 \times Ep \times Ip/(ks \times D)]^{0.25}$

Ep il modulo di elasticità del palo; Ip il momento d'inerzia del palo;

ks costante di reazione orizzontale del terreno;

D diametro del palo.

H l'eventuale altezza non collaborante del palo di fondazione.

Per la costante di reazione orizzontale si fa riferimento alla seguente relazione proposta da Vesic:

 $ks = Es / (D*(1-v^2))$

con:

Es Modulo elastico terreno di fondazione

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	81 di 247

Dati palif	ficata						
3 fondazion	ne			m	4.60		
fondazion	ie			m	1.00		
) diametro	pali			m	0.80		
) =				m ⁴	0.020		
	rispetto a	lla vertical	e	0	0.000		
			prante in caso non sismico (Scalzamento)	m	0.00		
			prante in caso sismico	m	0.00		
		ca caratter		MPa	40		
		a normale		MPa	33643		
		lasticità te	rreno	MPa	50.00		
	Poisson t				0.25		
h di reazi	=Es/[D*(1-	ν^2]		kN/mc	66666.67		
			Coordinate testa pali		N⁰pali =	0.833	
	Palo n°		Xi	Yi	Di	lp	Lo ⁽¹⁾
	unità		m	m	m	m ⁴	m
	Vert_1		1.3	0	0.80	0.020106	2.67
	Vert_2		-1.3 -1.3	0	0.80	0.020106	2.67
	vert_2		-1.3	U	0.80	0.020106	2.07
	Σ Xi ² =		4 40022222	0	=Σ Yi ²		
	∑ ∧ =		1.408333333	0	=Σ 11		
	(1) Lunghe	zza libera	d'inflessione palo				
			DISPOSIZIONE PLANIMETRICA PAL	.i			
			C			1	
					В		
			1 1				
	1	Asse (y)				1	
		ĕ					
			2				
			2				
			2				
			2				
			D Asse(x)		A		
					A		

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	82 di 247

13.3.2 Risultati verifiche geotecniche per fondazioni su pali

Di seguito vengono riportati i risultati delle verifiche geotecniche in forma tabellare esplicitate nell'allegato 3:

13.3.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali

Per le modalità di verifica si veda il §10.3.

Carichi massimi e minimi sui pali:

	so	LLECITAZIONE	SUI PALI		
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
SLE_RARA	774.84	557.48		281.89	376.16
SLE_FR	740.04	577.08		264.27	352.65
SLE_QP	635.61	635.88		211.42	282.12
A1+M1+R3	947.45	477.35		389.01	519.10
SISMA+M1+R3+	1712.80	-145.98		614.78	820.37
SISMA+M1+R3-	1719.13	-319.44		625.72	834.97

Dall'esame delle curve di capacità portante, riportate di seguito, si ricava la lunghezza dei pali per il muro in oggetto:

L = 12.00 m - Lunghezza pali

Nmax = 1720 kN < 1780.1kN - Azione massima palo in compressione in sismica

Nmin = -320 kN > -564.2 kN - Azione massima palo in trazione in sismica

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	83 di 247

CAPACITA' PORTANTE (A1+M1+R3) PALO IN COMPRESSIONE

k = 3.14		
interasse pali		m
Diametro palo =	8.8	m
Quota Falda da p.c.=	-3.0	m
Quota Falda da testa palo =	-1.60	m
Quota P.C. =	1.40	m
Quota testa pali (z=0) =	0.0	

N =	1720.00	MN
R1(QB) =	1.35	
R1 (Qi) =	1.15	
5 *	1.65	
C. *	1.65	
Fattore di riduzione capacità portante	1.00	

strato	y (0:84/m²)	+(")	c _c (kPa)	Nq=	
. 1	19.0	33.0	×	60.0	
2	19.0	26.0		18.00	
3	22.5	27.0		20.00	
4					
5					

il fattore di riduzione tione conto dell'interasse dei pali della parati

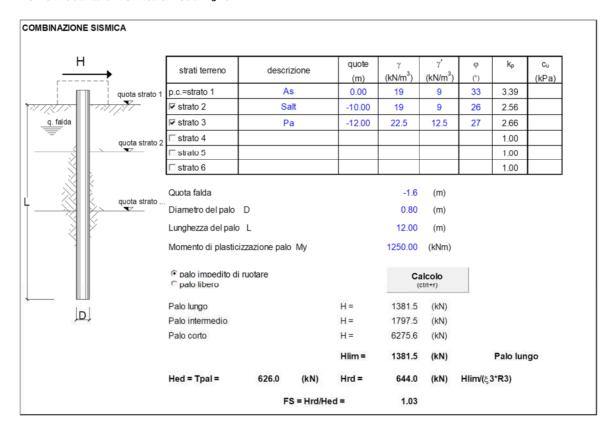
_	_				_	_		Name Address and the														_		_
stratu	z (m)	ah(m)	7 (ld4/m²)	/ (MUm ¹)	+(7)	cu (NPa)	c, (kPa)	n, (kPa) a Ah/2	qb (kPa)	Qtmax(kPa)	m	. p:	hi*tanf	≤ (kPa)	ımax (kPa)	Q6	16.	QL.	Wpini	QRd	N	Fine) (m)
1	0.0	0.00	19.0	9.0	33.0	4	26.6	0.0	0.0	4000	0.4	£9	0.5	0.0	100.0	0.0	0.0	0.0		0.0	1720.00	0.66		0.0
1	1.0	1.00	19.0	9.0	33.0	116	45.6	36.1	2736.0	4000	0.4	-	0.5	16.4	100.0	1375.3	41.2	41.2	3.0	636,1	1720.00	0.37		1.0
-1	2.0	1.00	19.0	9.0	33.0		64-6	50.1	3876.0	4000	0.4		0.5	22.8	100.0	1948.3	57.2	98.5	5.0	920.5	1720 00	0.54		2.0
1	3.0	1.00	19.0	9.0	33.0	100	83.6	69.1	5016.0	4000	0.4	+	0.5	31.4	100.0	2010.6	78.9	177.4	9.0	987.1	1720.00	0.57		3.0
1	4.0	1.00	19.0	9.0	33.0	- 1	102.6	88.1	6156.0	4000	0.4	- 4	0.5	40.0	100.0	2010.6	100.7	278.1	12.1	1037.1	1720.00	0.60		4.0
1	-5.0	1.00	19.0	9.0	33.0		121 E	107.1	7296 0	4000	0.4		0.5	48.7	100.0	2010.6	122.4	400.4	15.1	1098.6	1720.00	0.64		5.0
1	6.0	1.00	19.0	9.0	33.0	- 4	140.6	126.1	8436.0	4000	0.4	+	0.5	57.3	100.0	2010.6	144.1	544.5	18.1	1171.5	1720.00	0.68		6.0
1	7.00	1.00	19.0	9.0	33.0	Se l	159.6	145.1	9576.0	4000	0.4	4.0	0.5	66.0	100.0	2010.6	165.8	710.3	21.1	1255.9	1720.00	0.73		7.0
1	8.0	1.00	19.0	9.0	33.0		178.6	154 1	10716.0	4000	0.4		0.5	74.6	100.0	2010.6	187.5	897.8	24.1	1351.7	1720.00	0.79		8.0
4	9.0	1.00	19.0	9.0	33.0	1.0	197.6	183.1	11856.0	4000	0.4	+1	0.5	83.2	100.0	2010.6	209.2	1107.0	27.1	1458.9	1720 00	0.85		9.0
1	10.0	1.00	19.0	9.0	33.0		216.6	202.1	12996.0	4000	0.4	23	0.5	91.9	100.0	2010.6	230.9	1337.9	30.1	1577.6	1720.00	0.92		10.0
2	11.0	1.00	19.0	9.0	26.0	120	235.6	221.1	4240.8	4000	0.4		0.3	75.5	100.0	2010.6	189.7	1527.6	33.2	1674.5	1720.00	0.97		11.0
2	12.0	1.00	19.0	9.0	26.0		254.6	240.1	4582.8	4000	0.4	+ :	0.3	82.0	100.0	2010.6	206.0	1733.6	36.2	1780.1	1720.00	1.03	>1	12.0

CAPACITA' PORTAN	TE (A1+M	1+R3) PAL	O IN TRAZ	IONE							
n = 3.142			strato	7 (M/M/m ³)	+(7)	c _a (kPa)	Ng-				
Interasse pali		m	_1	19.0	33.0	-	60.0				
Diametro palo =	0.8	m	2	19.0	26.0	-	18.00				
Quota Falda da p.c.=	-3.0	m	3	22.5	27.0	- 3	20.00				
Quota Falda da testa pala =	-1.60	m	4								
Quota P.C. =	1.40	m	- 5								
Quota testa pali (z=0) =	0.0	-									
N =	320.00	kN									
R3 (QL)=	1.25	110,000,000									
G =	1.63										
5=	1.65										
Fattore di riduzione capacità porta	di riduzione capacità portante 1.00				ne tiene o	onto dell'inter	asse dei na	fi della perati			

										CAPACI	TA' PORTA	ANTE PARA	TIA DEPALI	IN TRAZION	E									
atrato	z (m)	ah(m)	2 (M4/m²)	r (MVm²)	£(7)	cu (kPa)	e, (kPa)	o _v (kPa) a Δh/2	op (iPa)	Qbmau(8Pa)	n.	0.	kitani	d (iPa)	max (kPa)	Qb	(4)	QL	Wpale .	QRd	N	Fish		z (m)
1	0.0	0.00	19.0	9.0	33.0	14	26.6	0.0	0.0	5800	0.4	2.	0.3	0.0	150.0	0.0	0.0	0.0		0.0	-320.00	0.00		0.0
1	1.0	1.00	19.0	9.0	33.0	1040	45.6	36.1	2736.0	5000	0.4		0.3	11.7	150.0	0.0	29.5	29.5	3.0	11.3	-320.00	0.04		1.0
10	2.0	1.00	19.0	9.0	33.0	1.4	64.6	50.1	3876.0	5800	0.4		0.3	16.3	150 D	0.0	40.9	70.3	6.0	28.1	-320.00	0.09		2.0
1	3.0	1.00	19.0	9.0	33:0	(147)	83.6	69.1	5016.0	5800	0.4		0.3	22.4	150.0	0.0	56.4	126.7	9.0	52.4	-320.00	0.16		3.0
1	4.0	1.00	19.0	9.0	33.0		102.6	88.1	6156.0	5800	0.4		0.3	28.6	150.0	0.0	71.9	198.6	12.1	84.2	-320.00	0.26		4.0
1	5.0	1.00	19.0	9.0	33.0		121.6	107.1	7296.0	5800	0.4		0.3	34.8	150.0	0.0	87.4	285.0	15.1	123.6	-320 00	0.39		5.0
1	6.0	1.00	19.0	9.0	33.0	(4)	140.6	126.1	8436.0	5800	0.4		0.3	40.9	150.0	0.0	102.9	388.9	18.1	170.5	-320.00	0.53		6.0
1	7.00	1.05	19.0	9.0	33.0		159 E	145.1	9576.0	5800	0.4	Y.	0.3	47.1	150.0	0.0	118.4	507.4	21.1	224.9	-320.00	0.70		7.0
- 1	8.0	1.00	19.0	9.0	33.0	14	178.6	164.1	10716.0	5800	0.4	-	0.3	53.3	150.0	0.0	133.9	641.3	24.1	286.8	-320.00	0.90		8.0
1	9.0	1.00	19.0	9.0	33.0		197.6	183.1	11856.0	5800	0.4	97	0.3	59.5	150.0	0.0	149.4	790.7	27.1	356.2	-320.00	1.11	>3	9.0
	10.0	1.00	19.0	9.0	33.0		216.6	202.1	12996.0	5800	0.4	-	0.3	65.6	150.0	0.0	164.9	955.6	30.1	433.2	-320.00	1.35	51	10.0
2	11.0	1.00	19.0	9.0	26.0	1040	236.6	221.1	4240.8	5800	0.4	/	0.2	53.9	150.0	0.0	136.5	1091.1	33.2	495.9	-320.00	1.55	>1	11.0
2	12.0	1.00	19.0	9.0	26.0		254.6	240.1	4582.8	4000	0.4	127	0.2	58.6	150.0	0.0	147.2	1238.3	36.2	564.2	320.00	1.76	>1	12.0

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	84 di 247

13.3.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali

Per le modalità di verifica si veda il §10.4.

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	85 di 247

13.3.2.3 Risultati verifiche dei cedimeenti dei pali

2.6

(m)

CALCOLO DEL CEDIMENTO DEL PALO

OPERA:

DATI DI IMPUT: Diametro del Palo (D): 0.80 (m) Carico sul palo (P): (kN) 1720.0 Lunghezza del Palo (L): 12.00 (m) Lunghezza Utile del Palo (Lu): 12.00 Modulo di Deformazione (E): (MPa) 50.00 Numero di pali della Palificata (n): 2 (-)

CEDIMENTO DEL PALO SINGOLO:

 $\delta = \beta * P/E* Lutile$

Spaziatura dei pali (s)

Coefficiente di forma

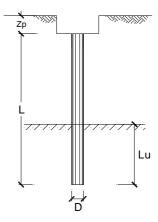
 $\beta = 0.5 + Log(Lutile / D)$: 1.68 (-)

Cedimento del palo

 $\delta = \beta * P/E* Lutile = 4.80 (mm)$

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n * Rg * \delta$


Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^2$ (Viggiani, 1999)

 $R = (n * s / L)^{0.5}$ R = 0.658

Cedimento della palificata

 δp = n * Rg * δ = ~2 * 1.06 * 4.80 = 10.18 (mm)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4º stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	86 di 247

13.3.2.4 Verifiche di stabilità globale del muro

Le verifiche di stabilità globale relative al muro tipo 2 vengono omesse in quanto sono maggiormente significative le medesime verifiche condotte sul muro tipo 3 che presenta un'altezza maggiore. Tali verifiche vengono condotte nel §13.4.2.4.

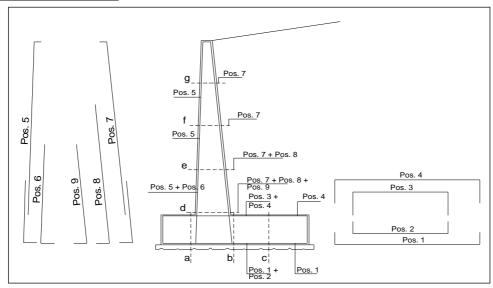
 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

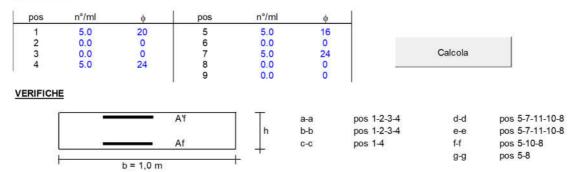
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	87 di 247


13.3.3 Risultati verifiche strutturali

Per le modalità di verifica si veda il §8.

Di seguito vengono riportati i risultati delle verifiche strutturali, nelle sezioni di calcolo riportate nello schema delle armature per ogni sezione di calcolo, in forma tabellare esplicitate nell'allegato 3:


13.3.3.1 Fondazione ed elevazione muro

SCHEMA DELLE ARMATURE

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabella precedente per le azioni.

ARMATURE

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	88 di 247

SLU – combinazione STATICA (stato limite ultimo presso-flessionale)

A1+M1+R3

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
a - a	42.68	0.00	366.02	1.00	15.71	22.62	559.26	0.00	264.54
b - b	-519.59	0.00	-320.77	1.00	22.62	15.71	797.35	0.00	298.73
d - d	505.71	199.36	244.70	1.00	22.62	10.05	884.64	199.36	326.72
е -е	254.64	133.36	159.66	0.88	22.62	10.05	737.38	133.36	296.42

SLU – combinazione SISMICA A1+M1+R3 (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
									_
a - a	93.40	0.00	691.87	1.00	15.71	22.62	559.26	0.00	264.54
b - b	-770.07	0.00	514.53	1.00	22.62	15.71	797.35	0.00	298.73
d - d	710.84	142.68	315.41	1.00	22.62	10.05	860.02	142.68	326.72
e -e	319.88	93.30	186.65	0.88	22.62	10.05	722.41	93.30	296.42

SLU (stato limite ultimo azione tagliante)

Verifica a taglio Sez. a-a	a					Verifica a taglio	Sez. b	-b	
Verific	he allo sta	to limite u	ltimo di	taglio			Verific	he allo sta	ato lii
Materiali	(Unità N,mi	n)					Materia	li (Unità N,m	ım)
Calcestruzzo	`	Accia	io			Calces	truzzo		
Rck =	30	fywk =	450			F	Rck =	30	fy
fck =	24.90	fywd =	391.3				fck =	24.90	fy
fcd =	14.11						fcd =	14.11	
fctd =	1.19					1	fctd =	1.19	
Sezione	da verificar	e					Sezion	e da verifica	ire
Altezza trave				1000	mm	Altezza trave			
Copriferro asse barra				64	mm	Copriferro asse barra	1		
Larghezza netta resistente a t	aglio			1000	mm	Larghezza netta resi	stente a	taglio	
Diametro spille				14	1 \(14/40X40	Diametro spille			
Bracci				2.5		Bracci			
Interasse				400	mm	Interasse			
Area staffe al millimetro				0.96	mm ² /mm	Area staffe al millime	etro		
$\cot g\alpha$ $\alpha =$	90.00 °			0.00		cotgα.	α=	90.00	۰
cotgθ θ =	21.80 °			2.50		cotg ₀	θ =	21.80	۰
Verifiche all	o s.l.u. per t	aglio		VR,	d > VEd	Ver	ifiche a	llo s.l.u. per	taglio
Taglio di calcolo V _{Ed}				691.87 k	κN	Taglio di calcolo V	Ed		
Vrcd				5898.69 k	(N	Vrcd			
Vrsd				792.92 k	(N	Vrsd			
VRd=min[Vrcd;Vrsd]			ok	792.92 k	ίΝ	VRd=min[Vrcd;Vrse	d]		

Verilici	ie alio si	ato illilite	uitiiiio ai t	ayııo	
Materiali	(Unità N,n	nm)			
Calcestruzzo		Acc	iaio		
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezione	da verifica	are			
Altezza trave				1000	mm
Copriferro asse barra				64	mm
Larghezza netta resistente a t			1000	mm	
Diametro spille				14	1 □ 14/40X40
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.96	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	۰		0.00	
$\cot g\theta$ $\theta =$	21.80	۰		2.50	
Verifiche all	o s.l.u. pei	r taglio		VR	l,d > VEd
Taglio di calcolo V _{Ed}				519.66	kN
Vrcd				5898.69	kN
Vrsd				792.92	kN
VRd=min[Vrcd;Vrsd]			ok	792.92	kN

Verifica a taglio Se	ez. a-a	1				
Ve	erifich	e allo st	ato limite	ultimo di t	aglio	
		(Unità N,n				
Calcestru			Acc	iaio		
Rck	=	30	fywk =	450		
fck	=	24.90	fywd =	391.3		
fcd	=	14.11				
fctd	=	1.19				
	zione (da verifica	are			
Altezza trave	_				1000	mm
Copriferro asse barra					64	mm
Larghezza netta resiste	nte a ta	aglio			1000	mm
Diametro spille					12	1□12/40X4
Bracci					2.5	
Interasse					400	mm
Area staffe al millimetro					0.71	mm²/mm
cotga o	ι=	90.00	•		0.00	
cotg⊕ () =	21.80	۰		2.50	
Verific	he allo	s.l.u. per	taglio		VF	l,d > VEd
Taglio di calcolo V _{Ed}					244.70	kN
Vrcd					5905.04	kN
Vrsd					582.55	kN
VRd=min[Vrcd;Vrsd]				ok	582.55	kN

Verifica a taglio sez.	e-e		_	-
Elementi senza armatura	trasversale a t	aglio		
- Verifica del conglomerat	0			
VRd =[0,18*k*(100*ρ1*f _{ck})	^{1/3} /γc+0,15*σcp)*bw*d =	296.42	kN
VEd =	159.66	kN	ok	
con:				
K = 1+(200/d) ^{1/2} =	1.497		≤ 2	
Rck =	30	N/mm ²		
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.320	N/mm ²		
fck =0,83*Rck =	24.9	N/mm ²		+
fcd =αcc*fck/γc =	14.11	N/mm ²		Т
ρ1 = Asl/(bw*d) =	0.00279		≤ 0,02	
copriferro =	64	mm		
d =	811	mm		
H =	875	mm		
bw =	1000	mm		
AsI =	2262	mm ²		+
N _{Ed} =	133.36	kN		
σ _{co} =N _{Ed} /Ac =	0.152	N/mm ²	≤ 0,2*fcd	+

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	89 di 247

SLE – combinazione RARA (stato limite ultimo di esercizio: stato tensionale)

Condizione Statica

Sez.	M	N	h	Af	A'f	σ^{C}	σf
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm²)	(N/mm²)
a - a	31.90	0.00	1.00	15.71	22.62	0.34	23.13
b - b	-376.78	0.00	1.00	22.62	15.71	3.63	191.96
d - d	358.89	169.79	1.00	22.62	10.05	3.68	149.22
e -e	178.93	113.56	0.88	22.62	10.05	2.32	83.34

SLE – combinazione FREQUENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	29.72	0.00	1.00	15.71	22.62	0.32	21.55	0.029	0.300
b - b	-349.41	0.00	1.00	22.62	15.71	3.37	178.02	0.231	0.300
d - d	328.30	164.51	1.00	22.62	10.05	3.37	134.71	0.173	0.300
e -e	161.73	109.60	0.88	22.62	10.05	2.10	73.99	0.089	0.300

SLE – combinazione QUASI PERMANENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

	iio otatioa								
Sez.	M	N	h	Af	A'f	σ^{C}	σf	wk	w _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	23.19	0.00	1.00	15.71	22.62	0.25	16.82	0.023	0.200
b - b	-267.31	0.00	1.00	22.62	15.71	2.57	136.19	0.177	0.200
d - d	358.89	169.79	1.00	22.62	10.05	3.68	149.22	0.192	0.200
e -e	178.93	113.56	0.88	45.24	10.05	1.85	43.88	0.042	0.200

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	90 di 247

13.3.3.2 Pali

Di seguito vengono riportati i risultati delle verifiche strutturali dei pali.

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabelle precedente per le azioni.

Le sollecitazioni di verifica sono riportate nelle tabelle seguenti:

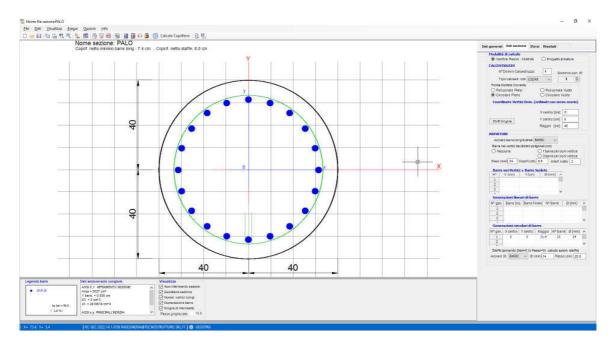
SOLLECITAZIONE SUI PALI									
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali				
	[kN]	[kN]	[kN]	[kN]	[kNm]				
SLE_RARA	774.84	557.48		281.89	376.16				
SLE_FR	740.04	577.08		264.27	352.65				
SLE_QP	635.61	635.88		211.42	282.12				
A1+M1+R3	947.45	477.35		389.01	519.10				
SISMA+M1+R3+	1712.80	-145.98		614.78	820.37				
SISMA+M1+R3-	1719.13	-319.44		625.72	834.97				

Caratteristiche geometriche della sezione

ф	800 cm
Armatura 1° strato Aa	$20\phi 24 = 90.5 \text{ cm}^2$
Copriferro 1° strato Aa	8.60cm
Armatura a taglio	$1\phi 14/20 = 15.4 \text{ cm}^2/\text{m}$
Copriferro armatura a taglio	6cm

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	91 di 247

Verifiche agli stati limite per presso-flessione

Di seguito si riporta il tabularo delle verifiche del palo da cui si evince che le verifiche sono soddisfatte:

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: PALO

Descrizione Sezione: Metodo di calcolo resistenza: Tipologia sezione: Normativa di riferimento: Percorso sollecitazione: Condizioni Ambientali:

Sezione generica di Pilastro NTC A Sforzo Norm. costante Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Resis. compr. ridotta fcd':	9.4	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

Resistenze agli Stati Limite Ultimi

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	92 di 247

Sf limite S.L.E. Comb. Rare:

360.00 MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo:

40.0 cm Raggio circ.: X centro circ. 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Ycentro Raggio Numero di barre generate equidist. disposte lungo la circonferenza Diametro [mm] della singola barra generata N°Barre

N°Barre N°Gen Xcentro Ycentro Raggio Ø 0.0 0.0 31.4 20 24 1

ARMATURE A TAGLIO

14 Diametro staffe: mm 20.0 Passo staffe:

Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate

con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate Vy

N°Comb Ν Mx 1712.80 820.37 614.78 -31944834 97 625.72

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

N°Comb My 557.48 376.16 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Ν Mx Му 577.08 352.65 (250.73) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

Мx

635.61 282.12 (271.98) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

N°Comb

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	93 di 247

Interferro netto minimo barre longitudinali: Copriferro netto minimo staffe

74 cm 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) Mx N Res Momento flettente resistente [kNm] riferito all'asse x princ. G'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res

Mis.Sic Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Cor	nb Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1	S	1712.80	820.37	1712.72	1250.21	1.52	90.5(15.1)
2	S	-319.44	834.97	-319.40	910.72	1.09	90.5(15.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	40.0	0.00250	0.0	31.4	-0.00477	0.0	-31.4
2	0.00350	0.0	40.0	0.00198	0.0	31.4	-0.00913	0.0	-31.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C Rid

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.00000000	0.000115785	-0.001131419		
2	0.00000000	0.000176840	-0.003573604		

VERIFICHE A TAGLIO

d|z

N°Comb

Ver

Ved

Diam. Staffe 14 mm

20.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe

S = comb. verificata a taglio / N = comb. non verificata Ver Taglio di progetto [kN] = Vy ortogonale all'asse neutro Ved

Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC]
Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vcd Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))
I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast A.Eff Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz, del taglio e d max= massima altezza utile nella direz, del taglio

Vwd

							-			
1					59.6 50.2					
2	S	625.72	1223.95	836.06	64.1 55.5	68.0	2.500	1.000	11.5	15.4(0.0)

d|z

bw

Ctq

Acw

Ast

A.Eff

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Vcd

S = comb verificata/ N = comb non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	94 di 247

Xc max, Yc max	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min	Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min	Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.	Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	9.00	0.0	0.0	-147.9	0.0	-31.4	718	22.6

CO

ı	5	9.00	0.0	0.0		-147.9	0.0	-31.4	/ 18	22.0				
COMBINAZ	IONI RARE I	N ESERCIZIO -	APERTURA	FESSURE	[§ 7.3.4	EC2]								
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr max wk Mx fes	e cm (:ss. :ss.	La sezione Esito della u Massima de Minima defe = 0.8 per bi = 0.4 per c = 0.5 per fle = 3.400 Coe = 0.425 Coe Diametro [r Copriferro [r Differenza that Tra parente Massima dit Apertura fes Component Component	viene assuntiverifica formazione u ormazione un ormazione un ormazione un ormo. Quasi prossione; =(e1 siff. in eq.(7.1'siff.	a sempre fe unitaria di tra itaria di tra enza miglio ibermanenti + e2)/(2*e* 1) come da 1) come da	razione rizione ne rata [eq.l.] / = 0.6 p / 1) per tra a annessi annessi rire tese riferimere e di accia smax / Em] sr max*(surazion surazion	anche ne calces I calcestri (7.11)EC2 er comb.f. azione ecci nazional i nazional compresento alla baio e calces [(7.9)] (e_sm - e_e intorno e intorno	truzzo (trazionzo) [2] [requenti [cf centrica [eq i i e nell'area e arra più tesa estruzzo [(7. EC2 e (C4.1 _cm) [(7.8)E all'asse X [k	one -) valutata r. eq.(7.9)EC .(7.13)EC2] fficace Ac eff 8)EC2 e (C4 .8)NTC] .C2 e (C4.1.7	ta in sezione fessuin sezione fessui 2] [eq.(7.11)EC2]	nite tra parentesi				
Comb. Ver	e1	e2	ŀ	k 2	Ø	Cf	е	sm - e cm		sr max	wk	Mx fess	My fess	
1 S	-0.00091	0.00000	0.50	00	24.0	74	0	.00044 (0.00	044)	3810.16	69 (990.00)	245.92	0.00	
COMBINAZ	IONI FREQU	ENTI IN ESERC	IZIO - MAS	SIME TEN	SIONI N	ORMALI	ED APERTI	JRA FESSUI	RE (NTC/EC2)					
N°Comb	Ver	Sc max	Xc max	Yc max	;	Ss min	Xs min	Ys min	Ac eff.	As eff.				
1	S	8.44	0.0	0.0		-132.6	0.0	-31.4	718	22.6				
COMBINAZ	IONI FREQU	ENTI IN ESERC	IZIO - APER	RTURA FES	SSURE [§ 7.3.4 E	C2]							
Comb. Ver	e1	e2	ŀ	κ2	Ø	Cf	е	sm - e cm		sr max	wk	Mx fess	My fess	
1 S	-0.00082	0.00000	0.50	00	24.0	74	0	.00040 (0.00	040)	3810.15	52 (0.30)	250.73	0.00	
COMBINAZ	IONI QUASI	PERMANENTI II	N ESERCIZIO	O - MASS	IME TEN	NSIONI N	ORMALI E	APERTUR/	A FESSURE (NT	C/EC2)				
N°Comb	Ver	Sc max	Xc max	Yc max	;	Ss min	Xs min	Ys min	Ac eff.	As eff.				
1	S	6.75	0.0	0.0		-87.6	0.0	-31.4	569	13.6				
COMBINAZ	IONI QUASI	PERMANENTI II	N ESERCIZIO	O - APERT	URA FE	SSURE [§ 7.3.4 EC2]						
Comb. Ver	e1	e2	ŀ	κ2	Ø	Cf	е	sm - e cm		sr max	wk	Mx fess	My fess	
1 S	-0.00055	0.00000	0.50	00	24.0	74	0	.00026 (0.00	026)	4230.11	11 (0.20)	271.98	0.00	

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	95 di 247

13.4 RISULTATI ANALISI E VERIFICHE MURO DI SOTTOSCARPA TIPO 3

13.4.1 Modello di calcolo

In figura 13.4 è illustrato lo schema di riferimento per le verifiche:

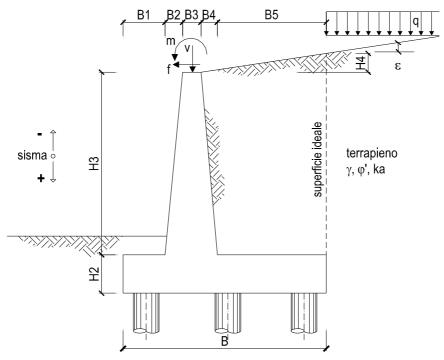
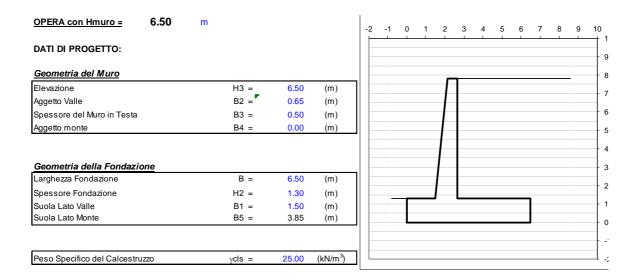



Figura 13.4 – Schema di calcolo

L'interasse longitudinale dei pali è pari a 1.82 m, mentre l'interasse trasversale è pari a 2.45 m.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4º stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	96 di 247

Determinate le azioni trasmesse a livello del piano di fondazione, viene eseguita la risoluzione della palificata, il calcolo delle massime sollecitazioni agenti sui pali di fondazione per le combinazioni più gravose, e le successive verifiche di resistenza.

Vengono determinate le azioni trasmesse in testa ai pali e successivamente i massimi valori delle caratteristiche della sollecitazione agenti sui pali. Infine, sono riportate le verifiche di resistenza secondo il metodo degli stati limite.

Il calcolo delle azioni trasmesse dal plinto di fondazione ai pali è stato svolto nell'ipotesi di zattera di fondazione infinitamente rigida secondo la formula:

Ri = N/n +
$$[(Mx)/\Sigma xi^2] \times xi + [(My)/\Sigma yi^2] \times yi$$

Essendo xi e yi le coordinate del singolo palo rispetto al baricentro della fondazione, "n" il numero totale dei pali.

Analogamente le azioni orizzontali trasmesse ai pali vengono determinate nell'ipotesi di fondazione infinitamente rigida per cui:

$$Ti = [TxI^2 + Ty^2]^{0.5}/n$$

Nell'ipotesi di palo incastrato in sommità, il momento massimo viene attinto all'incastro e vale:

 $Mp,max = Hi x (L_0+H)/2$

Essendo Lo la lunghezza elastica del palo pari a:

 $L_0 = [4 \times Ep \times Ip/(ks \times D)]^{0.25}$

Ep il modulo di elasticità del palo; Ip il momento d'inerzia del palo;

ks costante di reazione orizzontale del terreno;

D diametro del palo.

H l'eventuale altezza non collaborante del palo di fondazione.

Per la costante di reazione orizzontale si fa riferimento alla seguente relazione proposta da Vesic:

 $ks = Es / (D*(1-v^2))$

con:

Es Modulo elastico terreno di fondazione

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	97 di 247

Dati palif	icata						
3 fondazion	ie.			m	6.50		
fondazione				m	1.00		
diametro i				m	0.80		
	paii						
=				m ⁴	0.020		
	rispetto alla				0.000		
			nte in caso non sismico (Scalzamento)	m	0.00		
			nte in caso sismico	m	0.00		
ck Resist	enza cubica	caratteristi	ca cls.	MPa	40		
p Modulo o	di elasticita r	normale pal	0	MPa	33643		
	medio di elas			MPa	50.00		
	Poisson terr				0.25		
	=Es/[D*(1- _V ^2			kN/mc	66666.67		
ii di icazi -	-L3/[D (1 V 2	-)		KIVIIIC	00000.07		
			Coordinate testa pali		N⁰pali =	1.648	
	Palo n°		Xi	Yi	Di	lр	Lo ⁽¹⁾
	unità		m	m	m	m ⁴	m
_			2.45	0	0.80	0.020106	2.67
	Vert_1		0	0	0.80	0.020106	2.67
	Vert_2						
			-2.45	0	0.80	0.020106	2.67
	∑ Xi ² =		6.596153846	0	_{=Σ} Yi ²		
((1) Lunghezz	a libera d'in	iflessione palo				
			DISPOSIZIONE PLANIMETRICA PAL	I			
		_					-
			c		В В		
			- 				
			1				
	\dashv						
	_	Asse (y)	,				
	_	Ass	T				ļ
	_						
			3				
			D				
							1
			Asse (x)				
			Asse (x)				

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	98 di 247

13.4.2 Risultati verifiche geotecniche per fondazioni su pali

Di seguito vengono riportati i risultati delle verifiche geotecniche in forma tabellare esplicitate nell'allegato 4:

13.4.2.1 Risultati verifiche dei pali nei confronti dei carichi assiali

Per le modalità di verifica si veda il §10.3.

Carichi massimi e minimi sui pali:

SOLLECITAZIONE SUI PALI													
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali								
	[kN]	[kN]	[kN]	[kN]	[kNm]								
SLE_RARA	668.20	615.48	562.75	237.14	316.44								
SLE_FR	633.69	607.88	582.07	219.54	292.96								
SLE_QP	530.17	585.09	640.01	166.74	222.50								
A1+M1+R3	809.49	654.18	498.86	326.81	436.10								
SISMA+M1+R3+	1518.68	718.90	-80.89	525.22	700.86								
SISMA+M1+R3-	1512.74	630.20	-252.35	530.97	708.53								

Dall'esame delle curve di capacità portante, riportate di seguito, si ricava la lunghezza dei pali per il muro in oggetto:

L = 15.00 m - Lunghezza pali

Nmax = 1518.68 kN < 1593.1 kN - Azione massima palo in compressione in sismica

Nmin = -252.35 kN > -637.2 kN - Azione massima palo in trazione in sismica

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	99 di 247

t = 3.14			strato	+ (kN/m ³)	+(*)	c. (kPa)	Ng=	
Interasse pali	1.82	m:	11	19.0	33.0	-	69.0	
Diametro palo =	0.8	m	2	19.0	26.0		18.00	
Quota Falda da p.c.=	-3.7	m:	3	-22.5	27.0		20.00	
Quota Falda da testa palo =	-1.60	m	4.5					
Quota P.C. =	2.10	m.	5					
Quota testa pali (z=0) =	0.0	m:	-					
		1						
N =	1519.00	MN						
R1(QB) =	1.35							
R1 (QI) =	1.15							
ū.»	1.65							
	1.65							
Fattore di riduzione capacità portante	0.70			0.74		3 100	esse dei pali de	Was an annual for

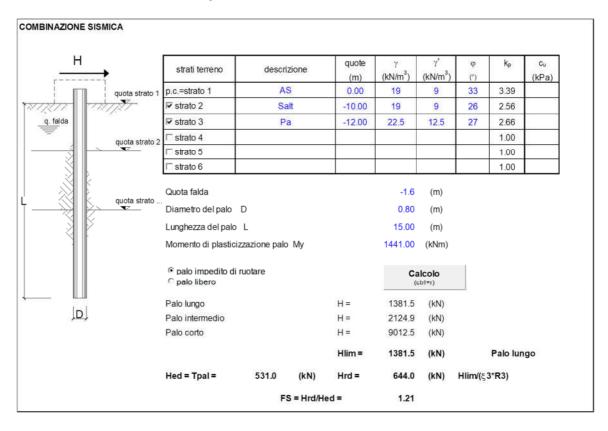
atrate.	2 (m)	ah(m)) (kN/m²).	of determin	+(1)	cu (kPa)	a, (KPa)	o, (KFa) a	qb (kPa)	Qtimax(kPa)	-	8	NO.	±0(Pa)	imax (kPa)	Q6	14	QL	Wpale	QRit	-No	Face		2 (m)
								AN/2					3000000		7							12.5 7411		
1	0.0	0.00	19.0	9.0	33.0	(8)	39.9	0.0	0.0	4000	0.4		0.5	0.0	100.0	0.0	0.0	0.0		0.0	1519.00	0.00		0:0
1	1.0	1.00	19.0	9.0	33.0	- 1	58.9	49.4	3634.0	4000	0.4		0.5	22.5	100.0	1243.5	39.5	39.5	3.0	576.0	1519.00	0.38		1.0
1	2.0	1:00	19.0	9.0	33.0	-	77.9	63.4	4674.0	4000	0.4		0.5	28.8	100.0	1407.4	50.7	90.2	E.0	673.4	1519.00	0.44		2.0
1	3.0	1.00	19.0	9.0	33.0	:	95.9	82.4	5814.0	4000	0.4	+3	0.5	37.5	100.0	1407.4	65.9	156.1	9.0	705.1	1519.00	0.46		3.0
1.	4.0	1.00	19.0	9.0	33.0	-	115.9	101.4	6954.0	4000	0.4	47	0.5	46.1	100.0	1407.4	81.1	237.2	12.1	744,8	1519.00	0.49		4.0
1	5.0	1.00	19.0	9.0	33.0		134.9	120.4	8094.0	4000	0.4		0.5	64.7	100.0	1407.4	96.3	333.5	15.1	792.5	1519.00	0.62		6.0
1	6.0	1.00	19.0	9.0	33.0		153.9	139.4	9234.0	4000	0.4		0.5	63.4	100.0	1407.4	111.5	445.0	18.1	848.3	1519.00	0.56		6.0
1	7.00	1.00	19.0	9.0	33.0	-	172.9	158.4	10374.0	4000	0.4		0.5	72.0	100.0	1407.4	126.7	571.7	21.1	912.0	1519.00	0.60		7.0
1	8.0	1.00	19.0	9.0	33.0	-	191.9	177.4	11514.0	4000	0.4		0.5	80.6	100.0	1407.4	141.9	713.5	24:1	983.8	1519.00	0.65		8.0
1	9.0	1.00	19.0	9.0	33.0	-	210.9	195.4	12654 0	4000	0.4		0.5	89.3	100.0	1407.4	157.1	870.6	27.1	1063.5	1519 00	0.70		9.0
1	10.0	1.00	19.0	9.0	33.0		229.9	215.4	13794.0	4000	0.4		0.5	97.9	100.0	1407.4	172.3	1042.9	30.1	1151.3	1519.00	0.75		10.0
2	11.0	1.00	19.0	9.0	26.0	1	248.9	234.4	4480.2	4000	0.4	- 10	0.3	80.0	100.0	1407.4	140.8	1183.7	33.2	1222.5	1519.00	0.80		11.0
2	12.0	1.00	19.0	9.0	26.0	1	267.9	263.4	4822.2	4000	0.4	- 23	0.3	86.5	100.0	1407.4	152.2	1335.9	36.2	1299.7	1519.00	0.86		12.0
3	13.0	1.00	22.5	12.5	27.0	-	290.4	274.2	5808.0	4000	0.4	+.	0.4	97.8	100.0	1407.4	172.0	1507.9	16.3	1410.2	1519:00	0.93		13.0
3	14.0	1.00	22.5	12.5	27.0	-	312.9	295 7	6258.0	4000	0.4	-	0.4	105.8	100.0	1407.4	175.9	1683.8	17.6	1501.6	1519.00	0.99		14.0
1	15.0	1:00	22.5	12.5	27.0	100	335.4	319.2	6,000.0	4000	0.4	- 22	0.4	113.8	100.0	1407.4	176.9	1859.7	18.8	1593.1	1519.00	1.05	>1	15.0

CAP	ACITA' PORTANTE	(A1+M	1+R3) PAL	O IN TRAZ	IONE											
:=	3.142			strato	y (kN/m²)	+(*)	c _u (kPa)	No.								
Interass	se pali	3.82	m	1	19.0	33.0		60.0								
Diametr	ro palo +	3.0	m	2	19.0	26.0		18.00								
Quota F	alda de p.c =	-3.7	m	3	22.5	27.0		20.00								
Queta F	alda da testa palo =	-1.60	m	4												
Quota P	P.C. =	2.10	m	5							ų.					
Quota t	esta poli (z=0) =	0.0	m.													
N =		-253.00	KN													
R3 (QL)	-	1.25														
(j =		1.65														
Ç+		1.65														
Fattore	e di riduzione capacità portante 0.70 - Il fattore di ridi						uto dell'inter	osso doi n	di della par	nela						

										CAPACI	TA' PORTA	ANTE PARA	TIA DI PALI	IN TRAZION	E									
atrate	z (m)	Δh(m)	7 (924/m ²)	+ (MWm³)	+(1)	cu (kPa)	e, (kPa)	o, (kPa) a sh/2	ob (kPa)	Qhmax(kPa)	w	8	ki*tanş'	d (IPa)	max (kPa)	Qb	d	OL.	Wpais	QRd	N.	Fau		z (m)
1	0.0	0.00	19.0	9.0	33.0		39.9	0.0	0.0	4000	0.4	- 00	0.3	0.0	100.0	0.0	0.0.	0.0		0.0	-253 00	0.00		0.0
1	1.0	1.00	19.0	9.0	33.0	1-1	58.9	49.4	3534.0	4000	0.4		0.3	16.0	100.0	0.0	28.2	28.2	3.0	10.7	-253.00	0.04		1.0
1.	2.0	1.00	19.0	9.0	33.0		77.9	63.4	4674.0	4000	0.4		0.3	20.6	100.0	0.0	36.2	64.4	6.0	25.2	-253.00	0.10		2.0
1	3.0	1.00	19.0	9.0	33.0	-	96.9	82.4	5814.0	4000	0.4		0.3	26.0	100.0	0.0	47.1	111.5	9.0	45.0	-253.00	0.18		3.0
+	4.0	1.00	19.0	9.0	33.0	-	115.9	101.4	6954.0	4000	0.4		0.3	32.9	100 0	0.0	57.9	169.4	12.1	70.1	-253.00	0.28		4.0
- 1	5.0	1.00	19.0	9.0	33.0	1-1	134.9	120.4	8094.0	4000	0.4		0.3	39.1	100.0	0.0	68.8	238.2	15.1	100.4	-253.00	0.40		5.0
1	6.0	1.00	19.0	9.0	33.0	-	153.9	139.4	9234.0	4000	0.4		0.3	45.3	100.0	0.0	79.6	317.8	18.1	136,0	-253.00	0.54		6.0
1	7.00	1.00	19.0	9.0	33.0	-	172.9	158.4	10374.0	4000	0.4		0.3	61.4	100.0	0.0	90.5	486.3	21.1	176.9	-253.00	0.70		7.0
1	8.0	1.00	19.0	9.0	33.0		191.9	177.4	11514.0	4000	0.4		0.3	57.6	100.0	0.0	101.3	509.7	24.1	223,0	-253.00	0.88		8.0
-1	9.0	1.00	19.0	9.0	33.0		210.9	196.4	12654.0	4000	0.4		0.3	63.8	100.0	0.0	112.2	621.9	27.1	274.4	-253.00	1.08	>1	9.0
1	10.0	1.00	19.0	9.0	33.0		229.9	215.4	13794.0	4000	0.4		0.3	69.9	100.0	0.0	123 0	744.9	30.1	331.0	-253.00	1.31	>1	10.0
2	11.0	1.00	19.0	9.0	26.0	100	248.9	234.4	4480.2	4000	0.4	27	0.2	57.2	100.0	0.0	100.5	845.5	33.2	376.8	-253 00	1.49	>1	11.0
2	12.0	1.00	19.0	9.0	26.0		267.9	253.4	4822.2	4000	0.4		0.2	61.8	100.0	0.0	108.7	954.2	36.2	426.5	-253.00	1.69	>1	12.0
3	13.0	1.00	22.6	12.5	27.0	-	290.4	274.2	5808.0	4000	0.4	- 12	0.3	69.8	100.0	0.0	122 9	1077.1	16.3	585.9	-253.00	2.00	>1	13.0
3	14.0	1.00	22.5	12.5	27.0	-	3129	296.7	6258.0	4000	0.4		0.3	75.6	100.0	0.0	133.0	1210.0	17.6	569.1	-253.00	2.25	>1	14.0
3	15.0	1.00	22.5	12.5	27.0	-	335.4	319.2	6708.0	4000	0.4		0.3	81.3	100.0	0.0	143.0	1353.1	18.8	637.2	-253.00	2.52	>1	15.0

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 100 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

13.4.2.2 Risultati verifiche dei pali nei confronti dei carichi orizzontali

Per le modalità di verifica si veda il §10.4.

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	101 di 247

13.4.2.3 Risultati verifiche dei cedimeenti dei pali

CALCOLO DEL CEDIMENTO DEL PALO

OPERA:

DATI DI IMPUT: Diametro del Palo (D): 0.80 (m) Carico sul palo (P): 1519.0 (kN) Lunghezza del Palo (L): 15.00 (m) Lunghezza Utile del Palo (Lu): 15.00 Modulo di Deformazione (E): 50.00 (MPa) Numero di pali della Palificata (n): 3 (-) Spaziatura dei pali (s) 2.45 (m)

CEDIMENTO DEL PALO SINGOLO:

 $\delta = \beta * P/E* Lutile$

Coefficiente di forma

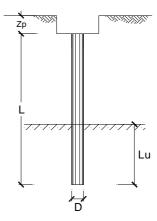
 $\beta = 0.5 + Log(Lutile / D)$: 1.77 (-)

Cedimento del palo

 $\delta = \beta * P/E* Lutile = 3.59 (mm)$

CEDIMENTO DELLA PALIFICATA:

 $\delta p = Rs * \delta = n * Rg * \delta$


Coefficiente di Gruppo

 $Rg = 0.5 / R + 0.13 / R^2$ (Viggiani, 1999)

 $R = (n * s / L)^{0.5}$ R = 0.700

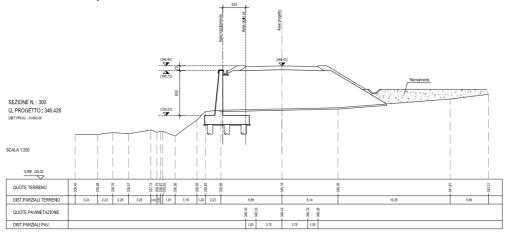
Cedimento della palificata

 δp = n * Rg * δ = $$ 3 * 0.98 * 3.59 = 10.55 (mm)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni


Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 102 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

13.4.2.4 Verifiche di stabilità globale del muro

Le verifiche vengono condotte con le modalità indicate nel § 9.2. Per le verifiche di stabilità ci si è avvalsi del software di calcolo PARATIE PLUS (Modulo VSP). Le verifiche sulla stabilità sono state condotte con il metodo dell'equilibrio limite implementato (nel software utilizzato) con la formulazione di Bishop. Le verifiche di stabilità globale sono condotte con riferimento ad una sezione indicata nella figura sotto riportata; la stratigrafia di calcolo è quella riportata nel § 6.

Considerato lo scopo dell'analisi le superfici di scorrimento indagate sono definite in modo tale da non intersecare l'opera di sostegno, limitando l'estensione del cerchio critico a tergo del muro, per circoscrivere il dominio di calcolo al solo volume significativo, evitando di verificare superfici di scivolamento che coinvolgano volumi di terreno eccessivamente grandi e non rappresentative della condizione reale. Le analisi sono condotte mediante il metodo dell'equilibrio limite implementato (nel software utilizzato) con la formulazione di Bishop.

A monte del muro è previsto un carico variabile pari a Q1 = 20 kPa per simulare la presenza veicoli. Il coefficiente per i carichi variabili Q1 in combinazione sismica (SLV) è preso uguale a 0.

Nel prospetto che segue sono riportati i coefficienti di riduzione utilizzati:

		SLU	SLV
		(A2+M2)	(A2+M2+E)
Azioni	Permanenti	1	1
AZIOIII	Variabili	1.3	1
Parametri	tan ϕ '	1.25	1.25
del	c'	1.25	1.25
terreno	C _u	1.4	1.4

Coefficienti sulle azioni e sui materiali utilizzati per l'analisi di stabilità

Le azioni sismiche pseudo-statiche sono sintetizzate nella seguente tabella:

		Parametri sismici							
Categoria sottosuolo	ag	a _{max}	в	k _h	kν				
	[g]	[g]	[-]	[-]	[-]				
С	0,22	0,300	0,31	0,093	0,0465				

Azione sismica adottata nel modello

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

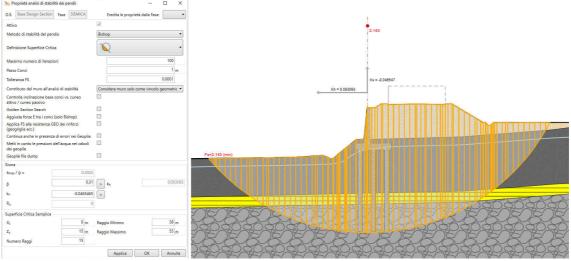
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 103 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

In tabella sono riportati i gradi di sovra resistenza (R_d/E_d) rispetto alle azioni sollecitanti di progetto E_d ($=E\cdot \gamma_E$) ottenuti secondo la formulazione di Bishop e per ciascuna combinazione delle azioni. Al fine di cogliere l'effetto derivante dalla riduzione dei parametri geotecnici di resistenza, secondo i coefficienti del gruppo M2, nel prospetto che segue sono riportati anche i risultati dell'analisi condotta con i valori caratteristici dei parametri geotecnici e delle azioni.

Combinazione	Formulazione
Combinazione	Bishop
"SLU - A2+M2"	3.413
"SLV - A2+M2+E"	2.143


Sintesi dei risultati delle analisi di stabilità globale

Eseguendo il calcolo mediante il D.M. 14/01/2008, Approccio 1 - Combinazione 2: (A2+M2+R2), il coefficiente parziale γ_R vale 1,1; quindi considerando la resistenza di progetto R_d = R/R_Y (cfr. § 6.2.3.1), risulta sempre verificata la disuguaglianza:

 $E_d \leq R_d$

per cui la verifica di stabilità globale può considerarsi soddisfatta.

Nella figura di seguito riportata è rappresentata la superficie critica di scorrimento a cui corrisponde il minor grado di sovraresistenza ($R_d/E_d = 2.143$).

Modello di calcolo e superficie di scorrimento critica

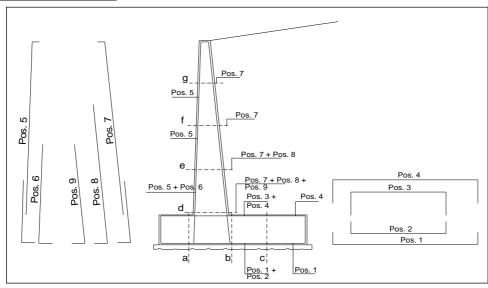
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

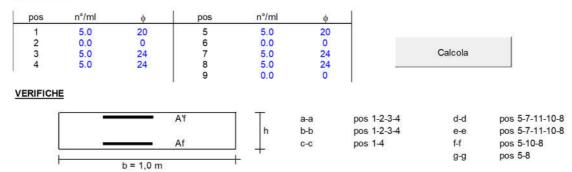
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 104 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------


13.4.3 Risultati verifiche strutturali

Per le modalità di verifica si veda il §8.

Di seguito vengono riportati i risultati delle verifiche strutturali, nelle sezioni di calcolo riportate nello schema delle armature per ogni sezione di calcolo, in forma tabellare esplicitate nell'allegato 4:


13.4.3.1 Fondazione ed elevazione muro

SCHEMA DELLE ARMATURE

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabella precedente per le azioni.

ARMATURE

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	E	16	MU0023	REL	01	B	105 di
2073	LIS	_	10	11100025	I VLL	01		247

SLU – combinazione STATICA (stato limite ultimo presso-flessionale)

A1+M1+R3

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
a - a	274.78	0.00	396.03	1.30	15.71	45.24	726.69	0.00	304.83
b - b	-1336.83	0.00	-374.74	1.30	45.24	15.71	2083.14	0.00	433.70
d - d	1086.22	309.25	405.90	1.15	45.24	15.71	1967.87	309.25	449.05
е -е	545.48	204.63	264.11	0.99	45.24	15.71	1613.80	204.63	324.63

SLU – combinazione SISMICA A1+M1+R3 (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(m)
·									
a - a	550.75	0.00	789.74	1.30	15.71	45.24	726.69	0.00	304.83
b - b	-1904.43	0.00	530.23	1.30	45.24	15.71	2083.14	0.00	433.70
d - d	1457.46	209.74	505.89	1.15	45.24	15.71	1920.52	209.74	449.05
e -e	644.12	134.13	295.09	0.99	22.62	15.71	840.23	134.13	324.63

SLU (stato limite ultimo azione tagliante)

Verifica a taglio Sez.	а-а					Verifica a taglio Sez.	b-b				
Veri	fiche allo st	ato limite	ultimo di	taglio		Veri	fiche allo sta	to limite ι	ıltimo di	taglio	
	iali (Unità N,m					Mater	iali (Unità N,m	m)			
Calcestruzzo		Acc				Calcestruzzo)	Acci	aio		
Rck =	30	fywk =	450			Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3			fck =	24.90	fywd =	391.3		
fcd =	14.11					fcd =	14.11				
fctd =	1.19					fctd =	1.19				
Sezio	ne da verifica	ıre				Sezio	ne da verifica	re			
Altezza trave				1300	mm	Altezza trave				1300	mm
Copriferro asse barra				68	mm	Copriferro asse barra				68	mm
Larghezza netta resistente	a taglio			1000	mm	Larghezza netta resistente	a taglio			1000	mm
Diametro spille				14	1□14/40X40	Diametro spille				14	1 \(14/40X4
Bracci				2.5		Bracci				2.5	
Interasse				400	mm	Interasse				400	mm
Area staffe al millimetro				0.96	mm²/mm	Area staffe al millimetro				0.96	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	•		0.00		$\cot g_{\alpha}$ $\alpha =$	90.00	•		0.00	
$\cot g\theta$ $\theta =$	21.80	•		2.50		$\cot g\theta$ $\theta =$	21.80	,		2.50	
Verifiche	allo s.l.u. per	taglio		VR,	d > VEd	Verifiche	allo s.l.u. per	taglio		VR,	d > VEd
Taglio di calcolo V _{Ed}				789.74 k	:N	Taglio di calcolo V _{Ed}				1008.27	ίN
Vrcd				7778.14 k	:N	Vrcd				7778.14	(N
Vrsd				1043.67 k	:N	Vrsd				1043.67	ίN
VRd=min[Vrcd;Vrsd]			ok	1043.67 k	:N	VRd=min[Vrcd;Vrsd]			ok	1043.67 H	ίΝ

Verifica a taglio Sez. o	l-d				
Verifi	che allo st	ato limite u	ıltimo di t	aglio	
Materia	ıli (Unità N,n	nm)			
Calcestruzzo		Accia	aio		
Rck =	30	fywk =	450		
fck =	24.90	fywd =	391.3		
fcd =	14.11				
fctd =	1.19				
Sezion	e da verifica	ıre			
Altezza trave				1150	mm
Copriferro asse barra				68	mm
Larghezza netta resistente a	taglio			1000	mm
Diametro spille				12	1 \(\text{12} \) 40 \(\text{X40} \)
Bracci				2.5	
Interasse				400	mm
Area staffe al millimetro				0.71	mm²/mm
$\cot g_{\alpha}$ $\alpha =$	90.00	•		0.00	
cotgθ θ =	21.80	•		2.50	
Verifiche a	llo s.l.u. per	taglio		VR	,d > VEd
Taglio di calcolo V _{Ed}				405.90	kN
Vrcd				6832.06	kN
Vrsd				673.42	kN
VRd=min[Vrcd;Vrsd]			ok	673.42	kN

Verifica a taglio sez	. е-е			
Elementi senza armatura	trasversale a t	aglio		
- Verifica del conglomera	to			
VRd =[0,18*k*(100*ρ1*f _{cl}	.) ^{1/3} /γc+0,15*σcp)*bw*d =	324.63	kN
VEd =	264.11	kN	ok	
con:				
K = 1+(200/d) ^{1/2} =	1.466		≤ 2	
Rck =	30	N/mm ²		
$V_{min} = 0.035*k^{3/2}*fck^{1/2} =$	0.310	N/mm ²		
fck =0,83*Rck =	24.9	N/mm ²		
fcd =α _{cc} *fck/γc =	14.11	N/mm ²		
ρ1 = Asl/(bw*d) =	0.00246		≤ 0,02	
copriferro =	68	mm		-
d =	919.5	mm		
H =	988	mm		
bw =	1000	mm		
AsI =	2262	mm ²	-	
N _{Ed} =	204.63	kN		

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 106 di
L073	213	E	16	MU0023	REL	01	В	247

SLE – combinazione RARA (stato limite ultimo di esercizio: stato tensionale)

Condizione Statica

Sez.	M	N	h	Af	A'f	σ^{C}	σf
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(N/mm²)	(N/mm²)
a - a	220.44	0.00	1.30	15.71	45.24	1.40	120.08
b - b	-996.91	0.00	1.30	45.24	15.71	4.80	195.73
d - d	771.94	260.37	1.15	45.24	15.71	4.78	148.56
e -e	383.81	171.99	0.99	22.62	15.71	3.93	164.46

SLE – combinazione FREQUENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(N/mm²)	(N/mm ²)	(mm)	(mm)
a - a	207.17	0.00	1.30	15.71	45.24	1.32	112.85	0.158	0.300
b - b	-918.84	0.00	1.30	45.24	15.71	4.43	180.40	0.171	0.300
d - d	693.36	249.94	1.15	45.24	15.71	4.30	131.94	0.125	0.300
e -e	339.62	164.17	0.99	22.62	15.71	3.48	143.15	0.175	0.300

SLE – combinazione QUASI PERMANENTE (stato limite ultimo di esercizio: fessurazione)

Condizione Statica

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle \mathbb{C}}$	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	167.35	0.00	1.30	15.71	45.24	1.06	91.16	0.128	0.200
b - b	-684.64	0.00	1.30	45.24	15.71	3.30	134.42	0.127	0.200
d - d	771.94	260.37	1.15	45.24	15.71	4.78	148.56	0.140	0.200
e -e	383.81	171.99	0.99	45.24	15.71	3.11	85.83	0.080	0.200

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 107 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

13.4.3.2 Pali

Di seguito vengono riportati i risultati delle verifiche strutturali dei pali.

Le verifiche strutturali saranno condotte secondo l'approccio del DM 14/01/2008 utilizzando i coefficienti parziali riportati nelle tabelle precedente per le azioni.

Le sollecitazioni di verifica sono riportate nelle tabelle seguenti:

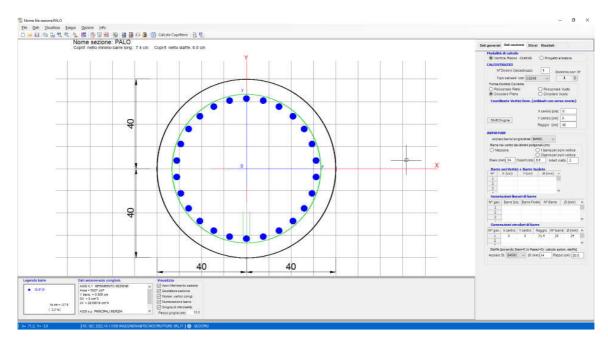
SOLLECITAZIONE SUI PALI								
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali			
	[kN]	[kN]	[kN]	[kN]	[kNm]			
SLE_RARA	668.20	615.48	562.75	237.14	316.44			
SLE_FR	633.69	607.88	582.07	219.54	292.96			
SLE_QP	530.17	585.09	640.01	166.74	222.50			
A1+M1+R3	809.49	654.18	498.86	326.81	436.10			
SISMA+M1+R3+	1518.68	718.90	-80.89	525.22	700.86			
SISMA+M1+R3-	1512.74	630.20	-252.35	530.97	708.53			

Caratteristiche geometriche della sezione

ф	800 cm
Armatura 1° strato Aa	26φ24 = 117.6 cm ²
Copriferro 1° strato Aa	8.60cm
Armatura a taglio	$1\phi 14/20 = 15.4 \text{ cm}^2/\text{m}$
Copriferro armatura a taglio	6cm

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 108 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Verifiche agli stati limite per presso-flessione

Di seguito si riporta il tabularo delle verifiche del palo da cui si evince che le verifiche sono soddisfatte:

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PALO

Descrizione Sezione:

Metodo di calcolo resistenza: Tipologia sezione: Normativa di riferimento: Percorso sollecitazione:

A Sforzo Norm. costante Moderat. aggressive Retta (asse neutro sempre parallelo all'asse X) Condizioni Ambientali: Tipo di sollecitazione:

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Resis. compr. ridotta fcd':	9.4	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis, media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	

Resistenze agli Stati Limite Ultimi

Sezione generica di Pilastro

N.T.C.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 109 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Coeff. Aderenza differito ß1*ß2: 0.50 360.00 MPa Sf limite S L F Comb Rare

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Circolare Classe Calcestruzzo: C32/40

Raggio circ.: X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Xcentro Ycentro Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Numero di barre generate equidist. disposte lungo la circonferenza Raggio N°Barre

Diametro [mm] della singola barra generata

Raggio N°Barre Ø N°Gen. Xcentro Ycentro 1 0.0 0.0 31.4 26 24

ARMATURE A TAGLIO

Diametro staffe: 14 mm 20.0 Passo staffe:

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) My Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. Ν Vy

700.86 1518 68 525 22 708.53 530.97

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Му 316.44 1 562.75 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Ν

Mx con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb 0.00 (0.00) 1 582 07 292.96 (282.82)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb Ν Mx My 530.17 222.50 (298.70) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	110 di 247

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 52 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Мх N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res Mis.Sic

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb V	er N	Mx	N Res	Mx Res	Mis.Sic.	As Totale
1 S	1518.68	700.86	1518.56	1441.68	2.06	117.6(15.1)
2 S	-252.35	708.53	-252.27	1175.20	1.66	117.6(15.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
	Deform. unit. massima del calcestruzzo a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	40.0	0.00251	0.0	31.4	-0.00472	0.0	-31.4
2	0.00350	0.0	40.0	0.00215	0.0	31.4	-0.00774	0.0	-31.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue C.Rid.

C.Rid.	x/d	С	b	b a	N°Comb
		-0.001107049	0.000115176	0.000000000	1
		-0.002799578	0.000157489	0.000000000	2

VERIFICHE A TAGLIO

Diam. Staffe 14 mm

Passo staffe 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata Ved

Taglio di progetto [kN] = Vy ortogonale all'asse neutro Taglio compressione resistente [kN] lato calcestruzzo [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna)) d|z

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. bw Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Ctg Acw Ast Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	525.22	1366.42	754.47	59.6 50.1	72.5	2.500	1.161	10.7	15.4(0.0)
2	S	530.97	1220.03	815.89	62.8 54.2	69.5	2.500	1.000	10.0	15.4(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ve S = comb. verificata/ N = comb. non verificata

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	111 di 247

Sc max	Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min	Minima tensione (negativa se di trazione) nell'acciaio [MPa]
Xs min, Ys min	Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.	Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.71	0.0	0.0	-92 1	0.0	-31.4	594	22.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi
	0

Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comi	. Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00058	0.00000	0.500	24.0	74	0.00028 (0.00028)	3590.099 (9	990.00)	275.11	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.23	0.0	0.0	-80.3	0.0	-31 4	594	22.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Com	b. Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max V	vk Mx fess	My fess
1	S	-0.00051	0.00000	0.500	24.0	74	0.00024 (0.00024)	3590.086 (0.	30) 282.82	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.75	0.0	0.0	-54.0	0.0	-31.4	594	22.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Coml	o. Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00035	0.00000	0.500	24.0	74	0.00016 (0.00016)	3590.058	(0.20)	298.70	0.00

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	112 di 247

14. DICHIARAZIONI SECONDO N.T.C. 2008 (PUNTO 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

La struttura viene discretizzata in elementi tipo travi di larghezza unitaria soggette alla spinta del terreno e sovraccarico accidentale.

L'analisi fornisce i risultati in termini di sollecitazioni nelle sezioni più significative.

Il calcolo dei muri viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno;
- Calcolo delle sollecitazioni sugli elementi strutturali (fondazione e mensola verticale);
- Progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

A riguardo si precisa che i calcoli sono state effettuati, con riferimento ad un modello di muro di lunghezza unitaria, mediante ausilio di un foglio elettronico compilato in Excel pubblicato dalla DEI "Tipografia del Genio Civile" facente parte del testo: Progetto e calcoli di Geotecnica con Excel".

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice DEI- Tipografia del Genio Cvile, ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	113 di 247

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	114 di 247

14.1 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO DEI MURI

Nell'ambito del presente paragrafo si riporta una descrizione delle caratteristiche dei Software utilizzati per l'effettuazione delle Analisi e Verifiche strutturali e geotecniche esposte nel presente documento.

Denominazione ed Estremi di Licenza del Software

Titolo Foglio di calcolo in Excel

Produttore DEI Tipografia del Genio Civile

Utente Tecnostrutture

Tipo di analisi svolta

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Se il muro è in calcestruzzo armato: Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	115 di 247

Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

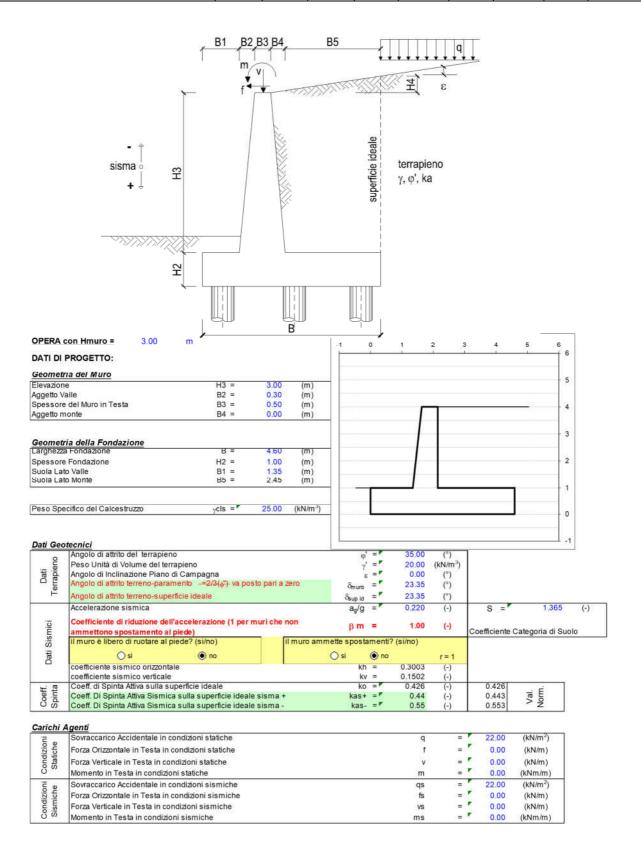
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	116 di 247

ALLEGATO 1

TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2-H=3.00m


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Tratto Settore CEE WBS ld.doc. Pag. di Pag. Opera N. prog. Rev. L073 213 Ε 16 MU0023 REL 01 В 117 di 247

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	118 di 247

coefficienti par

			azio	oni	proprietà del terreno	
		caso	permanenti	temporanee		
		0000	permanent	variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLI	•	caso A1+M1+R3	1.30	1.50	1.00	
SLD	0	sismica	1.00	1.00	1.25	
def.	0	-	1.10	1.10	1.20	

<u>Dati Geotecnici</u> (usati per verifiche di stabilità e SLU)

ſ	0	Angolo di attrito del terrapieno	φ'	=	35.00	(°)			
	i.	Peso Unità di Volume del terrapieno	γ'	=	26.00	(kN/m ³)			
	Dati rapie	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)			
	L L	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)			
		Angolo di attrito terreno-superficie ideale	$\delta_{\!$	=	23.35	(°)			
	ff.	Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.426	(-)	0.426	:	1
	Coeff. Spinta	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val	
	S	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	- Z	

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

e Di	Sovraccarico Accidentale in condizioni statiche	q	=	33.00	(kN/m ²)
izich	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
ondizioni Statiche	Forza Verticale in Testa in condizioni statiche	v	=	0.00	(kN/m)
3 0	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
	Sovraccarico Accidentale in condizioni sismiche	qs	=	33.00	(kN/m²)
5 5	Forze Orizzontele in Testa in condizioni sismiche	能	=	0.00	(kNAm)
Chandizioni	Porze Verticale in Teste in condizioni sismiche	A22	=	0.00	(siN/m)
0.00	Momento in Teste in condizioni sismiche	mz	=	0.00	(Munin)

VERIFICHE GESTECNICHE

A) FORZE VERTICALI

A1) Page	del Muro (Pm)	
Pm1 =	(B2*H3*ycls)*2	

Pm1 =	(B2*H3*yols)*2	=	11.25	(kt¥m)
Pm2 ≈	(83°H5°yole)	=	37.50	(kN/m)
Pm3≈	(84°H3°yole)/2	=	0.00	(kN/rm)
Pm4 =	(BT-127clk)	=	115.00	(ki\fm)
Prm =	Pm1 + Pm2 + Pm3 + Pm4	=	163,75	(kN/rm)
Pm4 =	(87127clk)	=	115.00	(kMm)

A2) Peso del femeno sulla scarpa di monte del muro (Pi)

Pti	\approx	(B5*H6*Y)	=	147.00	(kid/m)
PEZ	=	(0,5*(84+85)*H4*y)	=	0.00	(kivin)
PNA	=	(BATHITY)/2	=	0.00	(kN/m)
Pt	=	Pi1 + Pi2 + Pi3	=	147.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

សី ក ហ៍ =	Pm1*(21+2/3 62)	=	17.44	(kiNmim)
Mm2 =	Pm2*(81+82+0,5*83)	=	71.25	(KiNsrvan)
Mm3 =	Pm2*(E1+82+83+1/3 E4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	264,50	(Kiblervera)
Mires =	Mireri + Miro2 + Miro3 + Miro4	=	353, 19	(kNm/m)

B2) Terrepieno e terpo del muro

Miti	=	Pt1*(B1+B2+B3+B4+0,5*B5)	= 43	.13	(kiNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	= (.00	(Kirlervera)
Mt3	=	P13*(B1+B2+B3+2/3*B4)	= (00.	(kiNm/m)
Mit	=	制行 未制经未制约	= 44	.13	(kiNm/m)

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	119 di 247

CONDIZIONE STATICA

C) SPINTE DEL TERRENO E DEL SOVRACCARICO

Spinta totale condizione statica

(A1+M1+R3)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI COMPLESSIVE SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 368.20 (kN/m)

Risultante forze orizzontali (T)

T = Sth + Sqh + f = 133.11 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1113.59 (kNm/m)

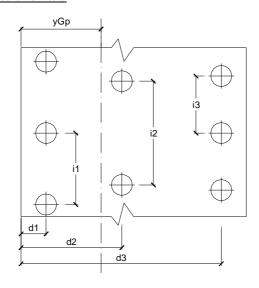
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 211.94 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 901.65 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 120 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 3.60 (m) Fila n°2 distanza asse bordo valle (d2) = 3.60 (m) interasse pali (i2) = 3.60 (m) interasse pali (i3) = Fila n°3 distanza asse bordo valle (d3) = 0.00 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

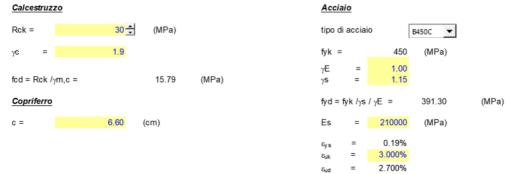
caso	Np	Mp	Тр
	[kN/m]	[kNm/m]	[kN/m]
statico	368.20	-54.79	133.11

Sollecitazioni sui pali

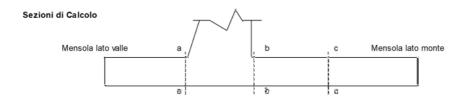
caso	N pali all.1	N pali all.2 N pa	ıli all.3 T pali	M pali
	[kN]	[kN] [kN] [kN]	[kNm]
statico	586.90	738.62	239.61	319.73

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	121 di 247

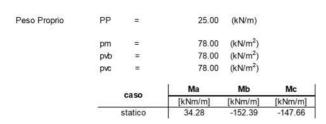
CALCOLI STATICI - Verifica allo Stato Limite Ultimo

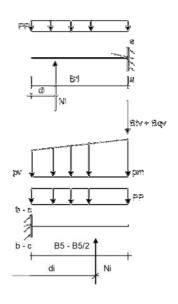
CARATTERISTICHE DEI MATERIALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Biensola Lato Valle

 $Me = \sum N_i(B1 - G) / i_i - PP^i(12kg^iB1^2/2)$


E estesa a tutti i pali presenti sulla mensola


Mensola Lato Monte

 $Mb = \sum N(95 - (B-d)y) - [PP''B5'/2 + pdr'B5'/2 + (pm - pa)''B5'/3]'(140) - (800 - 890)'' B5''/3 - (800 - 890)''$

 $\mathsf{Mo} = \sum |\mathsf{N} \backslash (\mathsf{B5}/2 + \mathsf{B} - \mathsf{A})) / (-|\mathsf{FF} \backslash (\mathsf{B5}/2)^2 / 2 + \mathsf{par} / (\mathsf{B5}/2)^2 / 2 + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{B5}/2)^2 / 2) / (-|\mathsf{E} \backslash (\mathsf{A})| + \mathsf{par} / (\mathsf{A})) / (-|\mathsf{E} \backslash$

 Σ estesa a tutti i pali presenti sulla mensola

Та	Tb
[kN]	[kN]
129 28	-104 63

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 122 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g		0.22	(-)	S	=	1.37
Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Catego	oria di Suc	olo
Dati S	il muro ammette spostamenti? (si/no)	◯ si	•) no	r = 1			
ä	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta Attiva sulla parete	ka	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Ŧ	componente orizzontale	kash+	=	0.407	(-)			
G.	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
S	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = ½ Ko* γ**h²*h/3

o ½ Ka_{orizz}* γ*(1±kv)*h²*h/2 (con sisma)

Mq = $\frac{1}{2}$ K_o*q*h² M_{ext} = m+f*h

 $\begin{array}{ll} M_{ext} &= m + f^*h \\ \\ M_{inerzia} &= \sum P m_i^* b_i^* kh \end{array} \tag{solo con sisma) \label{eq:mext}$

condizione sta

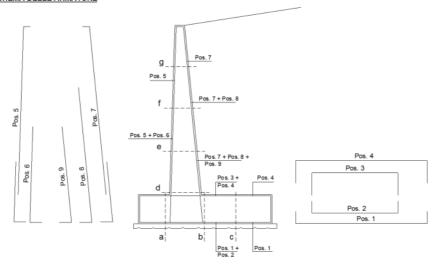
 $\begin{aligned} Nt & = 1 \% \; Ka_{vert} \; ^* \gamma^* (1 \pm k v)^* h^2 \\ Nq & = \; Ka_{vert} \; ^* q^* h \\ N_{ext} & = v \\ N_{pp * inerxa} \; ^* \Sigma Pm_i \; ^* (1 \pm k v) \end{aligned}$

sezione			. 4	rext	* 101
sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.00	45.81	38.76	0.00	84.57
е-е	2.25	25.77	29.07	0.00	54.84
f-f	1.50	11.45	19.38	0.00	30.83
g-g	0.75	2.86	9.69	0.00	12.55

condizione statica

	Contraction States													
sezione	h	h Mt [m] [kNm/m]	Mq [kNm/m]	M _{ext} [kNm/m]	M _{tot}	Nt	Nq	Next	N _{pp} [kN/m]	N _{tot}				
	[m]				[kNm/m]	[kN/m]	[kN/m]	[kN/m]		[kN/m]				
d-d	3.00	45.81	58.14	0.00	103.95	19.77	16.73	0.00	48.75	85.25				
e-e	2.25	19.32	32.70	0.00	52.03	11.12	12.55	0.00	34.45	58.12				
f-f	1.50	5.73	14.53	0.00	20.26	4.94	8.36	0.00	21,56	34.87				
g-g	0.75	0.72	3.63	0.00	4.35	1.24	4.18	0.00	10.08	15.50				

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 123 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		ф
1		5.0	-	20	5		5.0		16
2	-	0.0	-	0	6	-	0.0	-	0
3	-	0.0	-	0	7	-	5.0	-	20
4	-	5.0	-	20	8	-	0.0		0
					0		0.0		0

Calcola

VERIFICHE A

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
e-e	pos 5-7-11-10-8
f-f	pos 5-10-8
Q-II	pes 5-8

Sez.	Mag	Nazi	T\$2	h	Af	AY	Med	NRS	TRai
(-)	(siNra)	(kN)	(KN)	(in)	(csn^{2})	$\langle cm^2 \rangle$	(KANT)	(KN)	\$6)
38 ~ S	34.26	0.00	128.28	1.00	15.71	15.71	558,33	0.00	264.25
lo - is	-152.36	0.00	-104.63	1.00	15.71	15.71	558.33	0.00	264.25
ಚ - ಚ	169.95	65.25	84.57	0.90	15.71	10.05	465.91	85.25	245.88
67 -67	52.03	58.12	54.84	0.73	15.71	10.05	408.65	56.12	228.96

(n.t.). M+ tende le time d'infrantesco, M-tende le time di cotradesco)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 124 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

coefficienti parziali

			azio	oni	proprietà del terreno
	caso		permanenti	temporanee	
		0000	permanent	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1	1.30	1.50	1.00
S	0	caso A2+M1	1.00	1.30	1.00
SLV	•	Sismica+M1+R3	1.00	1.00	1.00
def.	0		1.10	1.10	1.20

<u>Dati Geotecnici</u> (usati per verifiche di stabilità e SLU)

	Angolo di attrito del terrapieno	φ	=	35.00	(°)		
e	Peso Unità di Volume del terrapieno	γ'	=	20.00	(kN/m^3)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
e e	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
-	Angolo di attrito terreno-superficie ideale	$\delta_{ extsf{sup}}$ id	=	23.35	(°)		
#: 7 <u>a</u>	Coeff. di Spinta a riposo sulla superficie ideale	ko	=	0.426	(-)	0.426	. <i>e</i>
Coeff. Spinta	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	= "	0.44	(-)	0.443	Val.
υσ	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	= "	0.55	(-)	0.553	, Z

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

in a	Sovraccarico Accidentale in condizioni statiche	q	=	22.00	(kN/m ²)
izic	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
condizion	Forza Verticale in Testa in condizioni statiche	V	= "	0.00	(kN/m)
0 %	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
- = o	Sovraccarico Accidentale in condizioni sismiche	qs	=	22.00	(kN/m ²)
izion	Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
Condizion	Forza Verticale in Testa in condizioni sismiche	VS	= "	0.00	(kN/m)
Q Q	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

A) FORZE VERTICALI

A1) Peso	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	11.25	(kN/m)
₽m2 =	(83*H3*ycls)	=	37.50	(kN/m)
ρ m3 =	(8-1*H3*yels)/2	=	0.00	(kN/m)
$= t_{MN} =$	(8*H2*yols)	=	115.00	(kN/m)
Pm =	Pm1+Pm2+Pm3+Pmvl	=	163.75	(kN/m)
A2) Peso	del terrono sulla scarpa di monte del muro (Pt)			
Pti =	(85°H3°y')	=	147.00	(kN/m)

int i	_	(Dallay)	_	1264 1202	ÉR 1511113
Pt2	=	(0,5*(84+85)*H4*y)	=	0.00	(kN/m)
Pt3	=	(84°H3°y)y2	Ħ	0.00	(kN/m)
500	:::	Pt1 + Pt2 + Pt3	123	147.00	(kN/m)

6) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Mure (Mm)	Muro	(Mm)
---------------	------	------

	* *			
Mmi =	Pm1*(51+2/3 52)	=	17.44	(kNovm)
Mm2 =	Pm2*(61+62+0,5*63)	=	71.25	(kNm/m)
Mm3 =	Pm3*(81+82+83+1/3 84)	=	0.00	(kNm/m)
Mrn4 =	Pm4*(8/2)	=	284.50	(kNm/m)
Mm≔	Mm1 + Mm2 + Mm3 + Mm4	=	353.19	(kMm/m)
52) Ten	spieno a terpo del muro			
Mti =	Pt1*(B1+B2+B3+B4+0,5*B5)	=	496,13	(kNm/m)
Mt2 =	Pt2*(81+82+83+2/3*(84+85))	=	0,00	(kNm/m)
Mt3 =	Pt3*(81+82+83+2/3*84)	=	0.00	(kNm/m)
Mt :	: Mt1 + Mt2 + Mt3	=	496.13	(kNm/m)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 125 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CONDIZIONE SISMICA +

(SISMA+M1+R3)

CONDIZIONE CICIMON (COMM		,		
C) SPINTE DEL TERRENO E DEL SOVRACCARICO				
Incremento di spinta in condizione sismica +				
$Sst1 = a_{g}/g^{*}S^{*}_{\gamma}'^{*}(H2+H3+H4)^{2}$	=	96.10	(kN/m)	
Ssq1 = qs*(H2+H3+H4)*kas*	=	38.97	(kN/m)	
,			, ,	
componente orizzontale condizione sismica +				
$Sst1h = Sst1*cos\delta$	=	88.23	(kN/m)	
$Ssq1h = Ssq1*cos\delta$	=	35.78	(kN/m)	
componente verticale condizione sismica +		20.00	(I-NI/)	
Sst1v = Sst1*sen8	=	38.08 15.44	(kN/m) (kN/m)	
Ssq1 v = Ssq1 $*$ sen δ	_	13.44	(KIN/III)	
D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVI	RACCAR	ICO		
condizione sismica +				
MSst1 = MSt1+Sst1h * (H2+H3+H4)/2	=	259.98	(kN/m)	- Momento dovuto alla spinta a riposo+Incremento sismico
MSst2 = Sst1v*B	=	175.17	(kN/m)	
$MSsq1 = Ssq1h^{2}(H2+H3+H4)/2$	=	71.57	(kN/m)	
MSsq2 = Ssq1v * B	=	71.04	(kN/m)	
INERZIA DEL MURO E DEL TERRAPIENO				
Inerzia del muro (Ps)				
Ps = Pm*kh	=	49.17	(kN/m)	
			, ,	
Inerzia orizzontale e verticale del terrapieno a tergo del muro	(Pts)			
Ptsh = Pt*kh	=	44.14	(kN/m)	
Ptsv = Pt*kv	=	22.07	(kN/m)	
1				
Incremento di momento dovuto all'inerzia del muro (MPs)		0.70	(I.N. /)	
MPs1 = kh*Pm1*(H2+H3/3) MPs2 = kh*Pm2*(H2 + H3/2)	=		(kNm/m) (kNm/m)	
MPS2 = KH PHI2 (H2 + H3/2) MPS3 = kh*Pm3*(H2+H3/3)	=		(kNm/m)	
MPs4 = kh*Pm4*(H2/2)	=		(kNm/m)	
MPs = MPs1+MPs2+MPs3+MPs4	=		(kNm/m)	
			,	
Incremento di momento dovuto all'inerzia del terrapieno (MPt	s)			
MPts1 = $kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)$	=	35.87	(kNm/m)	
(=		(kNm/m)	
MPts3 = $kh*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)$			(kNm/m)	
MPts = MPts1 + MPts2 + MPts3	=	35.87	(kNm/m)	
FORZE ESTERNE				
Momento dovuto alle Forze Esterne (Mfext)				
Mfext1 = ms	=	0.00	(kNm/m)	
Mfext2 = fs*(H3 + H2)	=		(kNm/m)	
Mfext3 = $vs*(B1 + B2 + B3/2)$	=		(kNm/m)	
AZIONI COMPLESSIVE SULLA FONDAZIONE				
Disultanta forza unticali (NI)		a ml		
Risultante forze verticali (N) N = Pm+ Pt + vs + Stv + Sst1v + Ssq1v + Ptsv	_	a ml 413.38	(kN/m)	
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + Ptsv	=	413.30	(kN/m)	
Risultante forze orizzontali (T)				
T = Sth + Sst1h + Ssq1h + fs + Ps + Ptsh	=	279.97	(kN/m)	
•			, ,	
Momento stabilizzante (Ms)				
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	1095.52	(kNm/m)	
Manager of the Manager (MAn)				
Momento ribaltante (Mr)		/40 E0	/ lcNlm /m \	
Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+Mpts =		419.59	(kNm/m)	
Risultante dei momenti rispetto al piede di valle (MM)				
MM = Ms - Mr	=	675.93	(kNm/m)	
			. ,	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

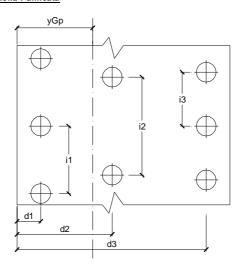
Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 126 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CONDIZIONE SISMICA-

(SISMA+M1+R3)

	E DEL TERRENO E DEL SOVRACCARICO to di spinta in condizione sismica -			
Sst2 =	a _o /g*S*γ'*(H2+H3+H4)²	=	96.10	(kN/m)
	3			
Ssq2 =	qs*(H2+H3+H4)*kas ⁻	=	48.68	(kN/m)
	nte orizzontale condizione sismica -			
	Sst2*cosδ	=	88.23	(kN/m)
Ssq2h =	Ssq2*cosδ	=	44.69	(kN/m)
componer	nte verticale condizione sismica -			
	Sst2*senδ	=	38.08	(kN/m)
Ssq2v=	Ssq2*senδ	=	19.29	(kN/m)
	ENTI DELLA SPINTA DEL TERRENO E DEL SOVRA e sismica -	CCAR	ICO	
MSst1 =	MSt1+Sst2h * (H2+H3+H4)/2	=	259.98	(kN/m)
	Sst2v* B	=	175.17	
	Ssq2h * (H2+H3+H4)/2	=	89.39	(kN/m)
MSsq2 =	Ssq2v * B	=	88.73	(kN/m)
	DEL MURO E DEL TERRAPIENO el muro (Ps)			
Ps =	Pm*kh	=	49.17	(kN/m)
Inerzia ori	izzontale e verticale del terrapieno a tergo del muro (F	ts)		
Ptsh =		=	44.14	(kN/m)
Ptsv =	Pt*kv	=	-22.07	
la a rom ont	to di momento deveto ell'inerzio del mure (MDs)			
	to di momento dowto all'inerzia del muro (MPs) kh*Pm1*(H2+H3/3)	=	6.76	(kNm/m)
	kh*Pm2*(H2 + H3/2)	=	28.15	(kNm/m)
	kh*Pm3*(H2+H3/3)	=	0.00	,
	kh*Pm4*(H2/2)	=	17.27	(kNm/m)
	MPs1+MPs2+MPs3+MPs4	=	52.18	(kNm/m)
	to di momento dovuto all'inerzia del terrapieno (MPts)			,
	kh*Pt1*((H2 + H3/2) + (B - B5/2)*0.5) =		184.85	(kNm/m)
	kh*Pt2*((H2 + H3 + H4/3) + (B - B5/3)*0.5) =		0.00	(kNm/m)
	kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*B4)*0.5) =		0.00	(kNm/m)
MPts =	MPts1 + MPts2 + MPts3	=	184.85	(kNm/m)
FORZE E	STERNE dowto alle Forze Esterne (Mfext)			
Mfext1 =		=	0.00	(kNm/m)
Mfext2 =	fs*(H3 + H2)	=	0.00	(kNm/m)
Mfext3 =	vs*(B1 +B2 + B3/2)	=	0.00	(kNm/m)
AZIONI C	COMPLESSIVE SULLA FONDAZIONE			
Risultante	e forze verticali (N)		a ml	
	Pm+ Pt + vs + Stv + Sst1v + Ssq1v + Ptsv	=	373.08	(kN/m)
	e forze orizzontali (T) Sth + Sst1h + Ssq1h + fs+Ps + Ptsh	=	288.88	(kN/m)
	stabilizzante (Ms) Mm + Mt + MSst2 + MSsq2 +Mfext3	=	1113.21	(kNm/m)
	ribaltante (Mr) MSst1+MSsq1+Mfext1+Mfext2+MPs+Mpts =		586.40	(kNm/m)
Risultante MM =	e dei momenti rispetto al piede di valle (MM) Ms - Mr	=	526.81	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 127 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = (m) interasse pali (i2) = Fila n°2 distanza asse bordo valle (d2) = 3.60 (m) 3.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00

2.300

Risultante forze verticali (Np = N)

Asse Baricentrico della Palificata (yGp)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

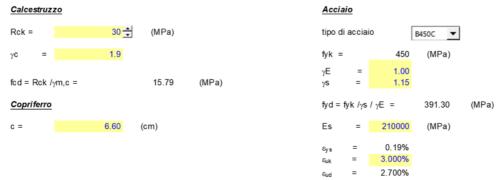
caso	Np	Мр	Тр
caso	[kN/m]	[kNm/m]	[kN/m]
sisma+	413.38	274.85	279.97
sisma-	373.08	331.28	288.88

Sollecitazioni sui pali

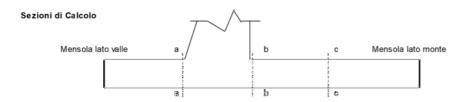
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
sisma+	1124.65	363.53		503.95	672.48
sisma-	1130.25	212.86		519.99	693.88

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 128 di
L073	213	E	16	MU0023	REL	01	В	247

CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI

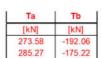
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

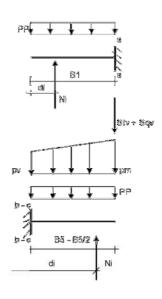
Menacia Lato Valle

 $Ma = \sum N^*(81 - 4) I - PP^*(1254)^8 1^2/2$

 Σ estesa a tutti i pali presenti sulla mensola

Manaola Lato Monta


MD = 1 N°(85-(8-4))A - [PP°85*X + pac°85*X + gan - pac)°85*X]°(12kv) - (86v*8q) ° 85

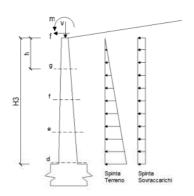

Me = 1. N/(85/2-(8-4))/1 - [PP*(85/2)//2 + pac*(85/2)//2 + gan - pac}*(85/2)//314//4 - (85/2 86/4 * 85/2

 Σ setose e tutti i peli proventi sulla mensola

12222	Ma	Mb	Mc
caso	[kNm/m]	[kNm/m]	[kNm/m]
sisma+	83.14	-278.12	-138.92
sisma-	90.52	-271.62	-124.48

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 129 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Cat	egoria di S	Suolo
ati S	il muro ammette spostamenti? (si/no)	◯ si	(no	r = 1			
ã	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
V22-11	Coeff. di Spinta a Riposo sulla parete	ka	=	0.426	(-)	0.426		
nta Ta	componente orizzontale	kah	=	0.392	(-)	100000		
Spinta	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
듣	componente orizzontale	kash+	=	0.407	(-)	2014,0050		
cie	componente verticale	kasv+	= 0	0.175	(-)			
Coefficienti di	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
8	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kas v-	=	0.219	(-)			

Mt = 1/2 K₀* y*h²*h/3

o $\frac{1}{2}$ Ko* γ *h2*h/3 + a_g/g *S* γ **h²*h/2 (con sisma)

 $\begin{array}{ll} Mq & = 1 \% \ K_o * q * h^2 \\ M_{ext} & = m + f * h \end{array}$

 $M_{inerzia} = \sum Pm_i *b_i *kh$ (solo con sisma)

Nt = $\frac{1}{2}$ Ka_{vert.} * γ *(1±kv)*h² Nq = Ka_{vert.} *q*h

N_{ext} = v

N _{pp+inerzia}= ∑Pm_i*(1±kv)

condizione sismica +

sezione	h	Tt	Tq	Text	Tinerzia	Ttot
SELIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.00	92.43	26.84	0.00	14.64	133.91
е-е	2.25	51.99	20.13	0.00	10.35	82.47
f-f	1.50	23.11	13.42	0.00	6.48	43.00
g-g	0.75	15.91	6.71	0.00	3.03	25.65

condizione sismica +

sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3.00	119.46	40.26	0.00	20.27	179.99	18.17	11.58	0.00	56.07	85.82
е-е	2.25	50.40	22.64	0.00	10.93	83.97	10.22	8.69	0.00	39.63	58.53
f-f	1.50	14.93	10.06	0.00	4.65	29.64	4.54	5.79	0.00	24.80	35.13
g-g	0.75	1.87	2.52	0.00	1.11	5.49	1.14	2.90	0.00	11.59	15.62

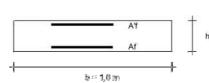
condizione sismica -

	condizione sismica -											
sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}	
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	3.00	119.46	50.28	0.00	20.27	190.01	16.77	14.47	0.00	41.43	72.66	
e-e	2.25	50.40	28.28	0.00	10.93	89.61	9.43	10.85	0.00	29.28	49.56	
f-f	1.50	14.93	12.57	0.00	4.65	32.15	4.19	7.23	0.00	18.32	29.75	
g-g	0.75	1.87	3.14	0.00	1.11	6.12	1.05	3.62	0.00	8.56	13.23	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni


Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 130 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

ARMATURE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
е-е	pos 5-7-11-10-8
f-f	pos 5-10-8
學報	poss S-8

Sur.	Missi	Plead	Test	Ís	At	典官	间形结	開門建	TRa
(-)	(kining)	(RH)	(kM)	ຢູ່ກວນູ້	(cm²)	(cna ²)	(kinn)	(kiN)	(incl)
2 - 2	90.52	0.00	255.23	1.00	15.71	15.71	556.33	0.00	28.4.25
b-b	-273.12	0.00	192.00	1.00	18.71	15.71	556.33	0.00	284.25
d d	190.01	72.60	199.91	0.50	19.71	10.08	461.50	72.68	245.60
to - cs	<i>5</i> 9.61	49.53	82.47	9.79	15.71	10.96	408.03	40.50	229.69

(n.b.: M* tondo lo litro di inimetrero, M-tordo le litro di cetradesseo)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	131 di 247

coeffic	ienti	parziali

			azio	oni	proprietà del terreno	
		caso	permanenti	temporanee		
		0030	permanenu	variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLU	0	caso A1+M1+R1	1.30	1.50	1.00	
ls	0	caso A1+M1+R3	1.30	1.50	1.00	
SLD	0	sismica	1.00	1.00	1.25	
def.	•	SLE_RARA	1.00	1.00	1.00	

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

Pm1 =	(B2*H3* _γ cls)/2	=	11.25	(kN/m)
Pm2 =	(B3*H3* _γ cls)	=	37.50	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	$(B^*H2^*\gamma cls)$	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	163.75	(kN/m)
A2) Peso	del terreno sulla scarpa di monte del muro (Pt)			
D . 4	(B =+1 lo+ l)		4.4-	// 1.1/

Pt1	=	(B5*H3* _γ ')	= 1	47.00	(kN/m)
Pt2	=	(0,5*(B4+B5)*H4* _γ ')	=	0.00	(kN/m)
Pt3	=	(B4*H3* _γ ')/2	=	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	= 1	47.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm) Mm1 - Pm1*(R1+2/3 R2)

Mm1 =	Pm1*(B1+2/3 B2)	=	17.44	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	71.25	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	264.50	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	353.19	(kNm/m)

B2) Terrapieno a tergo del muro

Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	496.13	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	496.13	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 132 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

C) SPINTE DEI	TERRENO E DEL	SOVRACCARICO
---------------	---------------	--------------

Spinta totale condizione statica

componente orizzontale condizione statica

componente verticale condizione statica

 $Stv = St^*sen\delta$ = 27.04 (kN/m) $Sqv = Sq^*sen\delta$ = 14.87 (kN/m)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 352.66 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1042.08 (kNm/m)

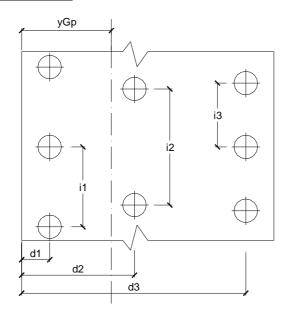
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 152.43 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 889.65 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 133 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 3.60 (m) Fila n°2 distanza asse bordo valle (d2) = 3.60 (m) interasse pali (i2) = 3.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	352.66	-78.54	97.10

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	526.03	743.53		174.77	233.22

Caratteristiche dei Materiali

2.12PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 134 di
L073	213	Е	16	MU0023	REL	01	В	247

CALCOLI STATICI

DATI DI PROGETTO:

Calcestruzzo Rck = 30 - (Mpa)

fctm = 0.48*Rck^{1/2} = 2.63 (Mpa)

Acciaio

coefficiente omogeneizzazione acciaio n = 15

Copriferro

c = 6.60 (cm) (distanza asse armatura-bordo

Copriferro minimo di normativa


c_{min} = 2.00 (cm) (ricoprimento armatura

Valore limite di apertura delle fessure

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

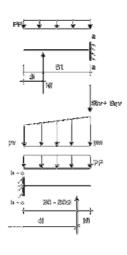
Sezioni di Calcolo

Mensola Laio Veile

Ma= E 14701-03/6-PP7(1260/10192

∑ antere e fetë i peli pravasi relle :nearde

Servela Late Sante


 $\mathrm{Ho} = \sum H_1^* \mathrm{Holo}_{\mathrm{pol}} \mathrm{diff} \cdot \mathrm{Probatic} + \mathrm{pol}_{\mathrm{pol}} \mathrm{diff} \cdot \mathrm{pol}_{\mathrm{p$

 $\mathsf{M}_{0} = \sum \mathsf{M}_{1}^{*}\mathsf{D} \mathsf{S} \mathsf{S}^{*} \mathsf{G} \mathsf{S}^{*} \mathsf{G} \mathsf{M}_{1}^{*} - [\mathsf{PP}^{*}\mathsf{D} \mathsf{S} \mathsf{S}^{*}\mathsf{S}^{*} \mathsf{S} + [\mathsf{pw}^{*}\mathsf{D} \mathsf{S} \mathsf{S}^{*}\mathsf{S}^{*} \mathsf{S} + [\mathsf{pw}^{*}\mathsf{D} \mathsf{S} \mathsf{S}^{*}\mathsf{S}^{*} \mathsf{S}^{*} \mathsf{S} \mathsf{S}^{*} \mathsf{S}^{\mathsf{S}^{*} \mathsf{S}^{*} \mathsf{S$

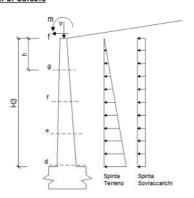
 \sum essiona a boidi i pati pressenti andu menosatu

Perso Propelo PP = 20,200 \$95(n) par = 70,200 (n/m²n²) pos = 70,000 (n/m²n²) pos = 70,000 (n/m²n²)

(15)(39)	BAss	EAFLES	Mar.
41/39/304	[in/in/in]	[silva en]	[it/im/m]
alestic c	25.36	-112.22	-86, 15

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 135 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Ca	ategoria di	Suolo
it co	il muro ammette spostamenti? (si/no)	○ si	(по	r = 1			
ä	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>.e</u>	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
Š	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 ^* \, \gamma^* h^2 ^* h/3 \qquad \qquad \text{o} \quad \frac{1}{2} \, \, \text{Ko}^* \gamma^* h 2^* h/3 \, + \, a_0 / g^* S^* \gamma^* h^2 ^* h/2 \, \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Ni = % Ka_{rad}* y*(12k9*)³

No = Ke_{ret}*ofh

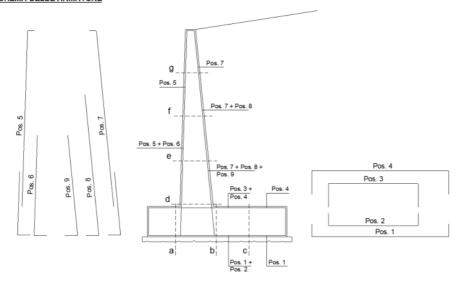
il_{ext} = y

N policean IPm 1200

condizione sintica

sezione	Ìtii	随物		Mase	Balton	No.	Mag	March	M _{ss}	Mark
enemal service	[m]	[kishretan]	[kikkasim]	[kikkreim]	[kikhaim]	[kidini]	[kiddan]	[kiklm]	[kiklm]	[kik/m]
e-e	9.00	35,24	35.76	0.00	74,00	15.21	11.15	0.00	48.75	75.11
8~8	2.25	14.07	21.80	0.00	96.07	8.55	8.38	0.00	34,45	51,37
64	1.50	4.45	9.89	0.00	14.00	3.60	5.50	0.00	21.58	30.94
G-G	0.75	0.55	2,42	0.00	2.97	0.95	2.79	0.00	10.09	13.82

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 136 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1	-	5.0	-	20.0	5	-	5.0		16.0
2	-	0.0		0.0	6		0.0		0.0
3		0.0		0.0	7	-	5.0		20.0
4	-	5.0	-	20.0	8	-	0.0		0.0
					0	-	0.0	-	0.0

Calcola

VERIFICHE

Condizione Sintica

Sol	1631	М	Вt	All	AT	626	εá	
(-)	(k Mere)	(MN)	(sie)	(cae*)	(cas)	(Water t)	(idharani)	
2-2	28,33	0.00	1.00	15.71	15.71	0.32	20.64	
ka ~ ka	-112.32	0.00	1.00	15.71	16.71	1,28	81.78	
gi - gi	74.00	75.11	0.50	15.71	10.05	1.28	47.23	
Ð-⊕	393,637	91.37	0.73	7.98	10.05	0.98	44.03	

(n.la.: M÷ terdo la fibro di intradosso, M-terdo la fibro di extradosso)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 137 di
L073	213	E	16	MU0023	REL	01	В	247

coefficienti parziali	coe	fficie	nti	par	zia li
-----------------------	-----	--------	-----	-----	--------

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		0000	permanent	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1+R1	1.30	1.50	1.00
S	0	caso A1+M1+R3	1.30	1.50	1.00
SLD	0	sismica	1.00	1.00	1.25
def.	•	SLE_FR	1.00	0.75	1.00

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Peso	del Muro (Pm)
Dm1	(D2*U2* ala\/2

Pm1 =	(B2*H3* _γ cls)/2	=	11.25	(KN/m)
Pm2 =	(B3*H3* _γ cls)	=	37.50	(kN/m)
Pm3 =	(B4*H3* _γ cls)/2	=	0.00	(kN/m)
Pm4 =	$(B^*H2^*\gamma cls)$	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	163.75	(kN/m)

A2) Peso del terreno sulla scarpa di monte del muro (Pt)

Pt1	=	(B5*H3*γ')	=	147.00	(kN/m)
Pt2	=	(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)
Pt3	=	(B4*H3* _γ ')/2	=	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	=	147.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm) Mm1 = Pm1*(B1+2/3 B2)

Mm1 =	Pm1^(B1+2/3 B2)	=	17.44	(KNM/M)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	71.25	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	264.50	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	353.19	(kNm/m)
DO) Tower	siona a targa dal mura			

B2) Terrapieno a tergo del muro

Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	496.13	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	496.13	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 138 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

Spinta totale condizione statica

St =	0,5*γ ^{'*} (H2+H3+H4)²*ko	=	68.23	(kN/m)
Sq =	q*(H2+H3+H4)*ka	=	37.53	(kN/m)

componente orizzontale condizione statica

Sth =	St*cosδ	=	62.64	(kN/m)
Sqh =	Sq*cosδ	=	34.45	(kN/m)

componente verticale condizione statica

Stv =	St*senδ	=	27.04	(kN/m)
Sqv =	Sq*senδ	=	14.87	(kN/m)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

MSt1 =	Sth*(H2+H3+H4)/3	=	83.52	(kN/m)
MSt2 =	Stv*B	=	124.37	(kN/m)
MSq1 =	Sqh*(H2+H3+H4)/2	=	68.91	(kN/m)
MSa2 =	Sav*B	=	68 40	(kN/m)

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

Mfext1 = m	=	0.00 (KNM/M)
$Mfext2 = f^*(H3 + H2)$	=	0.00 (kNm/m)
$Mfext3 = v^*(B1 + B2 + B3/2)$	=	0.00 (kNm/m)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

$$N = Pm + Pt + v + Stv + Sqv = 352.66 (kN/m)$$

Momento stabilizzante (Ms)

$$Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1042.08 (kNm/m)$$

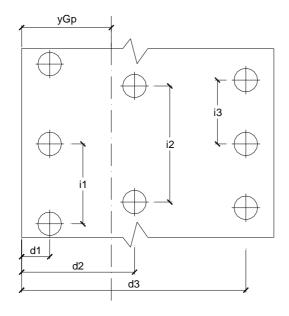
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 152.43 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 889.65 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 139 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 3.60 (m) Fila n°2 interasse pali (i2) = distanza asse bordo valle (d2) = 3.60 (m) 3.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

,	aso	Np	Mp	Тр
	a 30	[kN]	[kNm]	[kN/m]
st	atico	352.66	-78.54	97.10

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	526.03	743.53		174.77	233.22

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 140 di
L073	213	Е	16	MU0023	REL	01	В	247

CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo Rck = 30 -(Mpa) fctm = 0.48*Rck 1/2 = 2.63 (Mpa) Acciaio tipo di acciaio • B450C 450 210000 (Mpa) coefficiente omogeneizzazione acciaio n Copriferro 6.60 (cm) Copriferro minimo di normativa (cm) Valore limite di apertura delle fessure w2 = 0.3 mm

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

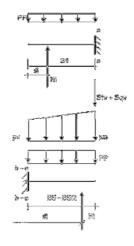
Sezioni di Calcolo

Menacia Late Valle

 $M_{\rm H} = \sum M_{\rm t}^2 (21 - \omega_0^2 / \xi - FP^2) \Delta t d^2 2 T^2$

 Σ estates a total i peli presenti salla mensoda

Mangela Lace Mense


 $000 = \sum_{i} N_i ^{i} (800 - (2 - 4) N_i - (2 - 2 - 2) N_i ^{i} (2 + 2 - 2) N_i ^{i} (2 + 2 - 2) N_i ^{i} (2 - 2) N_i ^{i} ($

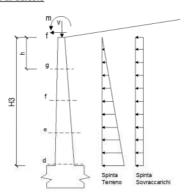
 $\mathsf{M}_{0} = \sum \mathbf{N}^{2} \mathsf{PR}(\mathbf{X}_{1}^{2}(\mathbf$

 Σ estess a tată i pali presenti salla menovia

PROSTO	Ha	Mb	38c
620003	[intimates]	[icMas/as]	(jakidenseni)
minifore	205.785	~112.82	-82.16

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	141 di 247

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)	β m =		1.00	(-)	Coefficiente Ca	ategoria di	Suolo
E C	il muro ammette spostamenti? (si/no)	○ si		по	r = 1			
Õ	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>.e</u>	componente verticale	kasv+	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
රි	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 ^* \, \gamma^* h^2 ^* h/3 \qquad \qquad \text{o} \quad \frac{1}{2} \, \, \text{Ko}^* \gamma^* h 2^* h/3 \, + \, a_0 / g^* S^* \gamma^* h^2 ^* h/2 \, \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Ni = % Ka_{rad}* y*(12k9*)³

Na = Karen again

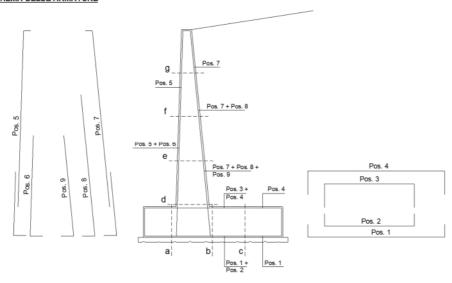
jų_{mež} = a.

N princed Tring1284

condizione sintica

	And the second s												
sezione	İtii	随		Mase	Balton	No.	Mag	March	M _{ss}	Mese			
enemal system	[m]	[kibbritan]	[kikkasim]	[kikkreim]	[kikhaim]	[kidini]	[kildm]	[kiklm]	[kkkm]	[kik/m]			
6-6	9.00	35,24	35.76	0.00	74,00	15.21	11.15	0.00	48.75	75.11			
6-6	2.25	14.07	21.80	0.00	96.07	8.55	8.38	0.00	34,45	51,37			
14	1.50	4	9.89	0.00	14.00	3.60	5.50	0.00	21.58	30.94			
G-G	0.75	0.55	2,42	0.00	2,97	0.95	2.79	0.00	10.09	13.82			

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 142 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	pos	n°/ml	6	
1	5.0	20	5	5.0	16	
2	0.0	0	6	0.0	0	
3	0.0	0	7	5.0	20	
4	5.0	20	8	0.0	0	
			Q	0.0	n	

Calcola

VERIFICHE

Condizions Statica

Ser.	an	纠	lt	A8	AT	1363	αÑ	10 m	Windows
(-)	(k:Nhrsi)	(KN)	(100)	(ome')	(000)	(PARTERY*)	(Morney)	(Crysts)	(orway)
3 - 3	28,38	0.00	1,00	15.71	15.71	0.32	20.64	0.028	0.300
b - b	-112.32	0.00	1.66	15.71	15.71	1.29	81.78	0.112	0.300
최 - 최	74.00	75.11	0.90	15.71	10.05	1.29	47.23	0.020	0.300
⊕ -⊕	36.67	91.37	0.73	45.74	10.05	0.75	28.47	0.028	0.300

(n.b.: M4 tanda la fibra di intracionno, M-tanda la fibra di autracionno)

 $\underline{\text{M.S.}}$ La condizione atalica si sasume come azione di lunga durata o ripetula $\{\underline{p}_{i}=0.5\}$,

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 143 di
L073	213	E	16	MU0023	REL	01	В	247

COB	ffic	ienti	parzia	Ιi

			azioni		proprietà del terreno	
		caso	permanenti	temporanee		
				variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLU	0	caso A1+M1+R1	1.30	1.50	1.00	
	0	caso A1+M1+R3	1.30	1.50	1.00	
SLD	0	sismica	1.00	1.00	1.25	
def.	•	SLE_QP	1.00	0.00	1.00	

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Peso	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	11.25	(kN/m)
Pm2 =	(B3*H3* _γ cls)	=	37.50	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*γcls)	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	163.75	(kN/m)
A2) Peso	del terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3* _γ ')	=	147.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)
Pt3 =	(B4*H3*γ')/2	=	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	147.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro	(Mm)
Mm1 -	Pm1*(R1+2/3 R2)

/		()			
Mm	1 =	Pm1*(B1+2/3 B2)	=	17.44	(kNm/m)
Mm	2 =	Pm2*(B1+B2+0,5*B3)	=	71.25	(kNm/m)
Mm3 =		Pm3*(B1+B2+B3+1/3 B4)		0.00	(kNm/m)
Mm	4 =	Pm4*(B/2)	=	264.50	(kNm/m)
Mm =		Mm1 + Mm2 + Mm3 + Mm4	=	353.19	(kNm/m)
B2) Terrapieno a tergo del muro					
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	496.13	(kNm/m)
Mt2	! =	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	496.13	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 144 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

componente orizzontale condizione statica
Sth = St*cosδ = =

componente verticale condizione statica

 $Stv = St^*sen\delta$ = 27.04 (kN/m) $Sqv = Sq^*sen\delta$ = 14.87 (kN/m)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 352.66 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1042.08 (kNm/m)

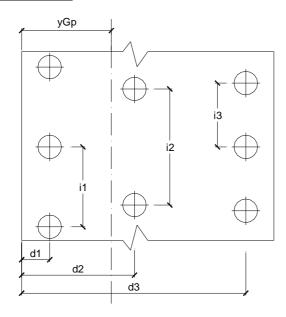
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 152.43 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 889.65 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 145 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 3.60 (m) Fila n°2 distanza asse bordo valle (d2) = interasse pali (i2) = 3.60 (m) 3.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
caso	[kN]	[kNm]	[kN/m]
statico	352.66	-78.54	97.10

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
Caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	526.03	743.53		174.77	233.22

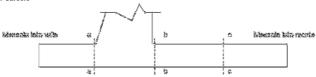
 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 146 di
L073	213	E	16	MU0023	REL	01	В	247


CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo 30 --(Mpa) fctm = 0.48*Rck1/2 = (Mpa) Acciaio tipo di acciaio fyk = (Mpa) 210000 (Mpa) Copriferro 6.60 Copriferro minimo di normativa 2.00 (ricoprimento armatura) (cm) Valore limite di apertura delle fessure

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

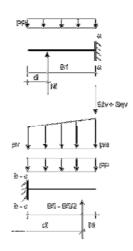
Sezioni di Calcolo

0.2 mm

Messola Loto Valle

MO = 2 N/B1 - 6)/1 - PFP(1ake)/B1/72

 Σ astasa a hali i pali presenti salla mezenta


Blancole Luis Blance

 $bb = \sum bb'(95-9-4)bb' - [FF''95-62 + pb''95-72 + (pm - pb)'95-7-2]'(146) - (pb''95-6)$

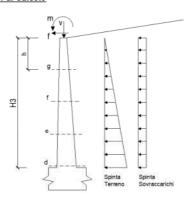
 $bic = \mathbb{Z} \, \, b / (B + 12 / B + 12 /$

 Σ setses a testi i pali presenti sella mezarola

DER WAY.	Ma	BI b	Ma
03988	(Milenier)	(a Mersen)	(Silvenier)
क्रश्तीकृष	223.35	-112.32	-52.15

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 147 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	-		0.220	(-)	S	=	1,365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm	=	1.00	(-)	Coefficiente Ca	ategoria di	Suolo
i.E	il muro ammette spostamenti? (si/no)	○ si		(on (r = 1			
ä	coefficiente sismico orizzontale	kh			0.3003	(-)			
	coefficiente sismico verticale	kv	15	-	0.1502	(-)			
	Coeff. di Spinta a Riposo sulla parete	ko			0.426	(-)	0.426		
Spinta	componente orizzontale	kah		=	0.392	(-)			
Spi	componente verticale	kav		=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	:		0.443	(-)	0.443		
Ē	componente orizzontale	kash+		=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+		=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-		• *	0.553	(-)	0.553		
රි	componente orizzontale	kash-		=	0.508	(-)			
	componente verticale	kasv-	:	=	0.219	(-)			

Mt = $\frac{1}{2} K_0^* \gamma^* h^2 h/3$ o $\frac{1}{2} Ko^* \gamma^* h^2 h/3 + a_g/g^* S^* \gamma^* h^2 h/2$ (con sisma)

 $Mq = \frac{1}{2} K_0^* q^* h^2$ $M_{ext} = m + f^* h$

M_{brodia} = EFm/fb/fda (ablo con atema)

Ni = % Ka_{yot} * y*(1:tht)*1*

Ng = Ka_{rat}*g*h

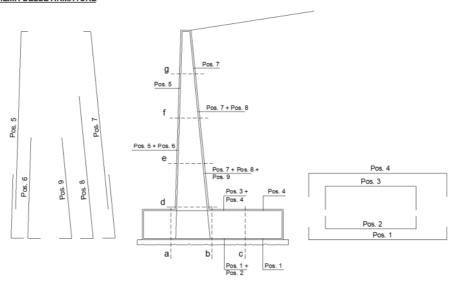
 $N_{opt} = v$

N producto = XFm (15km)

consizione statica

ടകമ്മുക	Bir	鍵	Mej	Hee	Ed _{ecol}	NE	Maj	isl _{ess}	Magaz	KO ₆₀₋₆
000000000000	្រីស្បី	[សមែលវិករៀ	[kiskości]	[kistorer]	[[k:Nura/sraj]	[kilderi]	[kiWaa]	[kishri]	[kilim]	[kî:Wazaj
없성	3.00	35.24	38.76	0,50	74,00	15.21	11.15	0.00	48.75	75.11
8:49	2.25	14.87	21.80	5.50	36.67	8,55	8.30	5.50	34,45	31.37
16-17	1.50	4.40	6768	9,50	14.00	3.60	5.56	0.00	21.56	30,64
9-9	0.75	0.55	2.42	0.00	207	0.95	2.79	0.00	10.06	13.82

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 148 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0		20	5		5.0		16
2	-	0.0	-	0	6		0.0	-	0
3	-	0.0	-	0	7		5.0	-	20
4	-	5.0	-	20	8	-	0.0		0
					9	-	0.0	-	0

Calcola

VERIFICHE

Condizione Statica

Str.	1641	ы	Ĭì	Af	桑 哲	eg@	্ৰ	WE	W 9879
(-)	(k:Mm)	(kN)	(285)	(cm²)	(can ³)	(Mirring)	(Marses)	(seases)	(mm)
3a ~ 48	26.36	0.00	1.00	15.79	15.71	0.32	20.64	0.026	0.200
ba - b	-112.32	0.00	1.00	15.71	15.71	1.26	61.76	0.112	0.200
a - 다	74.00	75.11	0.80	15.79	10.05	1.28	47.23	0.060	0.200
p-≤	36.67	51.37	0.73	31.42	10.05	0.61	12.68	0.012	0.200

(r.b.: Mr tende la fibre di intradroso, M- tende la fibre di astradroso);

 $\underline{\text{M.B.}}$ Le constitions sietice el essume como azione di lunga durete o ripetata (η_{c} =0.5),

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

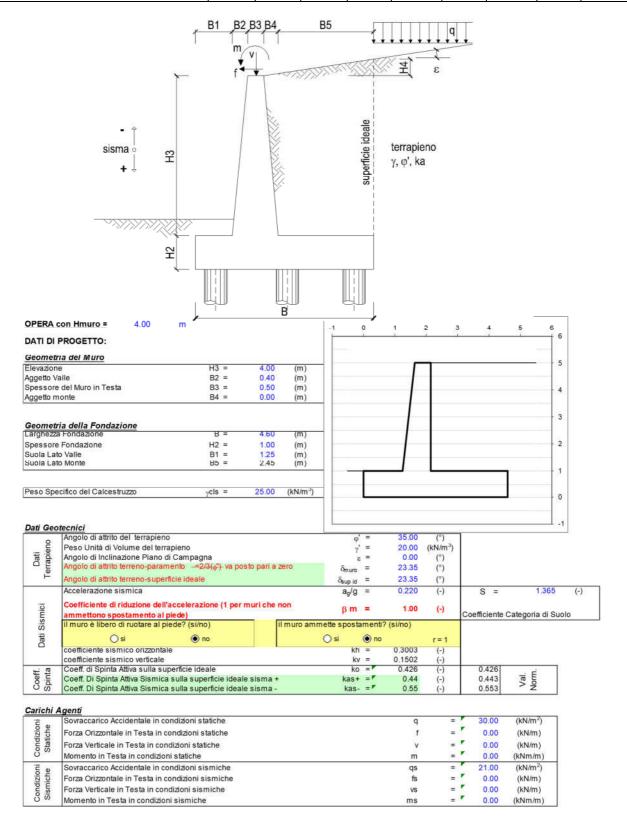
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 149 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

ALLEGATO 2

TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2-H=4.00m


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 150 di
L073	213	E	16	MU0023	REL	01	В	247

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	151 di 247

	coefficienti parziali								
			azio	oni	proprietà del terreno				
		caso	permanenti	temporanee variabili	tan _φ '				
			sfavorevoli	sfavorevoli					
SLI	•	caso A1+M1+R3	1.30	1.50	1.00				
SLD	\circ	sismica	1.00	1.00	1.25				
def.	0	-	1.10	1.10	1.20				

Dati Geotecnici	(usati per verifiche di stabilità e SLU)
	<u> </u>

Dau	(daati per verilione di stabilità e oco)						
	Angolo di attrito del terrapieno	φ'	=	35.00	(°)		
	Peso Unità di Volume del terrapieno	γ'	=	26.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
	Angolo di attrito terreno-superficie ideale	δ_{sup} id	=	23.35	(°)		
9± 5	Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.426	(-)	0.426	
Coeff.	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val. Norm
0 0	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	^ Z

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

Carronn 7	dati per verillerie di stabilità e dilo 020)				
	Sovraccarico Accidentale in condizioni statiche	q	=	45.00	(kN/m ²)
che	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
Condizioni Statiche	Forza Verticale in Testa in condizioni statiche	V	=	0.00	(kN/m)
ى ن ن	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
= 0	Sovraccarico Accidentale in condizioni sismiche	qs	=	31.50	(kN/m ²)
ich (Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
Condizioni Sismiche	Forza Verticale in Testa in condizioni sismiche	VS	=	0.00	(kN/m)
ပ္လံုအ	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

A) PORZE VERTICALI

A1) Pesa	dal Mura (Pm)
Pm1 =	(B2*H3*vels¥2

	(1127H570ls)/2	==	20.00	(kN/m)
Pm2 =	(B3745 yels)	:::	50,00	(AMm)
Pm3 =	(1347+157yols) 12	==	0.00	(kMm)
Pm4 =	(BT1270ls)	:::	115.00	(ANIm)
Pm ≔	Pm1 + Pm2 + Pm9 + Pm4	=	185.00	(AMm)

A2) Pesa del terreno sulla scerpe di mante del muro (Pf)

P11	=	(35715Y)	==	198.00	(kN/m)
Ptz	=	(0,57(84+85)1447)	==	0.00	(kN/m)
Pt3	=	(B4THSYY2	=	0.00	(kMm)
Pf	==	PH+P12+PI3	==	198.00	(kMm)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIECE DI VALLE DEL MURO

B1) Muro (Mm)

Mm1 =	Pm1*(B1+2/3 B2)	=	39.33	(labantan)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	95.00	(naknaku)
Min3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(Minima)
Mm4 =	Pm4*(B/2)	=	264.50	(labbarian)
Mm =	Min1 + Min2 + Min3 + Min4	=	369,63	(ht/hm/m)

R2) Torraniovo a torno del mum

vei	0.023346	PALOURIE AN ELOSPER MUST STRINGE			
MtT	=	P11*(B1+B2+B3+B4+0,5*B5)	= 66	31.50	(Mhnhn)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(Mhn/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(labbarian)
Mt	=	Mt1 + Mt2 + Mt3	= 66	31.50	{

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	Е	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

(A1+M1+R3)

C) SPINTE DEL TERRENO E DEL SOVRACCARICO

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI COMPLESSIVE SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 473.94 (kN/m)

Risultante forze orizzontali (T)

T = Sth + Sqh + f = 215.33 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1478.85 (kNm/m)

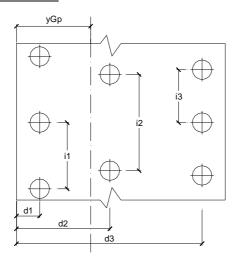
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 432.30 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1046.55 (kNm/m)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 153 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 Fila n°2 1.00 3.60 (m) (m) distanza asse bordo valle (d1) = interasse pali (i1) = (m) 2.60 distanza asse bordo valle (d2) = interasse pali (i2) = (m) distanza asse bordo valle (d3) = 0.00 interasse pali (i3) = 0.00 (m) Fila n°3 (m) Asse Baricentrico della Palificata (yGp) 2.300

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
Caso	[kN/m]	[kNm/m]	[kN/m]
statico	473.94	43.51	215.33

Sollecitazioni sui pali

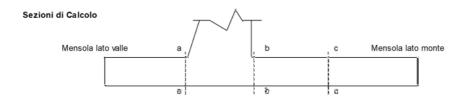
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	659.63	572.61		279.93	373.55

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 154 di
L073	213	E	16	MU0023	REL	01	В	247

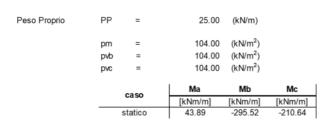
CALCOLI STATICI - Verifica allo Stato Limite Ultimo

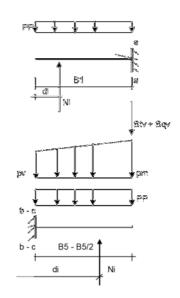
CARATTERISTICHE DEI MATERIALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Biemsola Lato Valle

 $Me = \sum N_i(B1 - G) / i_i - PP^i(12ki)^2B1^2/2$


Σ estesa a tutti i pali presenti sulla mensola


Mensola Lata Monte

 $Mb = \sum N(95 - (B-d)y) - [PP''B5'/2 + pdr'B5'/2 + (pm - pa)''B5'/3]'(140) - (800 - 890)'' B5''/3 - (800 - 890)''$

 $\mathsf{Mo} = \sum |\mathsf{N} \backslash (\mathsf{B5}/\mathsf{Z} + \mathsf{B} - \mathsf{A})) / (-|\mathsf{FF} \backslash (\mathsf{B5}/\mathsf{Z})^2 / 2 + \mathsf{par} / (\mathsf{B5}/\mathsf{Z})^2 / 2 + \mathsf{par} / (\mathsf{B5}/\mathsf{Z})^2 / 2) / (-\mathsf{E}/\mathsf{A})

 Σ estesa a tutti i pali presenti sulla mensola

(MPa)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 155 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.22	(-)	S	= .	1.37
Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Catego	oria di Suo	olo
Dati S	il muro ammette spostamenti? (si/no)	◯ si	•) no	r = 1			
ä	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
	Coeff. di Spinta Attiva sulla parete	ka	= 7	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₩	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Έ	componente orizzontale	kash+	=	0.407	(-)			
c <u>e</u> .	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
රි	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = ½ Ko* γ**h²*h/3

o ½ Ka_{orizz.}* γ*(1±kv)*h²*h/2 (con sisma)

 $Mq = \frac{1}{2} K_o^* q^* h^2$ $M_{ext} = m + f^* h$

 $\begin{array}{ll} M_{ext} &= m + f^a h \\ \\ M_{inerzia} &= \sum P m_i^a b_i^a k h \end{array} \tag{solo con sisma) \label{eq:solo}$

condizione s

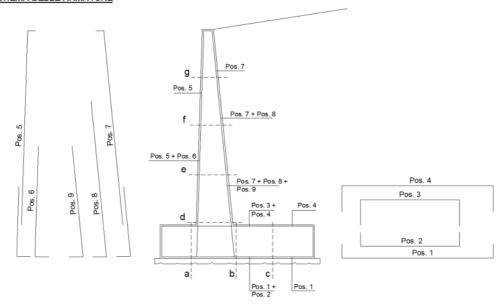
 $\begin{aligned} Nt & = \frac{1}{2} \left(Ka_{vert} * \gamma^* (1 \pm kv)^* h^2 \right. \\ Nq & = \left. Ka_{vert} * q^* h \right. \\ N_{ext} & = v \\ N_{pp+inersa} = \sum Pm_i * (1 \pm kv) \end{aligned}$

sezione			. 4	Text	* 101	
sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	4.00	81.44	70.47	0.00	151.91	Ī
е-е	3.00	45.81	52.85	0.00	98.66	
f-f	2.00	20.36	35.24	0.00	55.60	
g-g	1.00	5.09	17.62	0.00	22,71	

condizione statica

sezione	h	Mt	Mq	Mext	M _{tot}	Nt	Nq	Next	Npp	N _{tot}
Sezione -	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	108.58	140.95	0.00	249.53	35.15	30.42	0.00	70.00	135.56
е-е	3.00	45.81	79.28	0.00	125.09	19.77	22.81	0.00	48.75	91.33
f-f	2.00	13.57	35.24	0.00	48.81	8.79	15.21	0.00	30.00	53.99
g-g	1.00	1.70	8.81	0.00	10.51	2.20	7.60	0.00	13.75	23.55

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

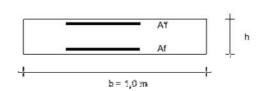

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 156 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE



ARMATURE

pos		n°/ml		ф	pos		n°/ml		ф
1		5.0	•	20	5	•	5.0	•	20
2	-	0.0	-	0	6	-	0.0		0
3	-	0.0		0	7		5.0	-	24
4	-	5.0	-	24	8		0.0	-	0
					9	-	0.0	-	0

Calcola

VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
e-e	pos 5-7-11-10-8
f-f	pos 5-10-8
g-g	pos 5-8

Sez.	Ribid	Navil	Test	h	ay	AΨ	MRsi	NIReal	TRail
(-)	(kNm)	(kN)	(kN)	(m)	(cm²)	(om²)	(kNm)	(kN)	(m)
g - 8	43.89	0.00	222.45	1.00	18.71	22.62.	357.39	0.00	263.97
6-b	-295,52	0.00	-186.75	1.00	22.52	15.71	793.00	0.00	293.06
d d	248.53	135,56	151.91	0.20	22.52	15.71	757.76	135,36	300.27
a -a	125.09	91.53	98.86	0.80	22.82	15.71	847.97	91.33	278.59

(n.b.: M+ tende le Tise di Intradosso, M- tende le Tise di estradosso)

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag. 157 di
L073	213	Е	16	MU0023	REL	01	В	247

coefficienti parziali

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		0000	permanent	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1	1.30	1.50	1.00
S	\circ	caso A2+M1	1.00	1.30	1.00
SLV	•	Sismica+M1+R3	1.00	1.00	1.00
def.	0		1.10	1.10	1.20

Dati Geotecnici (usati per verifiche di stabilità e SLU)

	(acan per remente al cialemia e cae)						
9	Angolo di attrito del terrapieno	φ'	=	35.00	(°)		
	Peso Unità di Volume del terrapieno	γ'	=	20.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
e.	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
-	Angolo di attrito terreno-superficie ideale	$\delta_{ extsf{sup}}$ id	=	23.35	(°)		
∓. ta	Coeff. di Spinta a riposo sulla superficie ideale	ko	=	0.426	(-)	0.426	≕ É
Coeff. Spinta	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val
O S	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	- 2

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

e Di	Sovraccarico Accidentale in condizioni statiche	q	=	30.00	(kN/m ²)
izior	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
ondizio	Forza Verticale in Testa in condizioni statiche	V	=	0.00	(kN/m)
3 %	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
225 48	Sceraccarico Accidentale in condizioni alamiche	रह्य	=	21.00	(kiván ^a)
8 5	Farza Orizzantale in Taxta in condizioni aismiche	(Sa	=	0.00	(kiN/m)
Candible	Farza Vantesta in Testa in condizioni sismiche	48	=	0.00	(kiN/m)
5 2	timento in Tasta in condizioni siamiche	ma	=	0.00	(Man/m)

VERIFICHE GEOTECNICHE

A) FORZE VERTICALI

A1)	Peso	앤테	Micro	(Pm)

 Pm1 =
 (B2*13**zols)/2
 =
 20.00
 (kN/m)

 Pm2 =
 (B3*H3*yols)
 =
 50.00
 (kN/m)

 Pm3 =
 (B4*H3*yols)
 =
 0.00
 (kN/m)

 Pm4 =
 (B*H2*yols)
 =
 115.00
 (kN/m)

 Pm =
 Pm1 + Pm2 + Pm3 + Pm4
 =
 185.00
 (kN/m)

A2) Peso del terreno sulla scarpa di monte del muro (Pt)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mmi =	Pm1*(S1+2/3 S2)	=	30,33	(kNovm)
Mm2 =	Pm2*(81+62+0,5*63)	=	95,00	(kNovm)
Mrn3 =	Pm3*(81+82+83+1/3 84)	=	0.00	(kNm/m)
Mrs4 =	Prn4*(8/2)	=	284.50	(kNm/m)
Mm =	Amm1 + Mm2 + Mm3 + Mm4	=	389.83	(kNm/m)
52) Terrag	vieno a tempo del muro			
Mti =	Pt1*(51+52+53+54+0,5*55)	=	661,50	(kNm/m)
9.8449	MARKET AND A COMPANIES OF A COMPANIES AS A COMPANIES.			f to A from from A

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 158 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

COND	IZIONE	CICMIC	Λ.

(SISMA+M1+R3)

CONDIZIONE SISMICA +	(SISMA+M1-	⊦R3)		
C) CRINTE DEL TERRENO E DEL COVERACCADI	00			
C) SPINTE DEL TERRENO E DEL SOVRACCARI Incremento di spinta in condizione sismica +	CO			
$Sst1 = a_0/g^*S^*\gamma'^*(H2+H3+H4)^2$	=	= 150.15	(kN/m)	
Ssq1 = qs*(H2+H3+H4)*kas+	=	= 46.50	(kN/m)	
			(' '	
componente orizzontale condizione sismica +				
$Sst1h = Sst1*cos\delta$		= 137.86	(kN/m)	
Ssq1h = Ssq1* $\cos\delta$	=	= 42.70	(kN/m)	
componente verticale condizione sismica +				
Sst1v = Sst1*sen8	=	= 59.50	(kN/m)	
Ssq1v= Ssq1*senδ	=	= 18.43	(kN/m)	
D) MOMENTI DELLA SPINTA DEL TERRENO E I	DEL SOVRACO	ARICO		
condizione sismica +	DEE GOVINAGE	Aitioo		
MSst1 = MSt1+Sst1h * (H2+H3+H4)/2	=	= 507.78	(kN/m)	- Momento dovuto alla spinta a riposo+Incremento sismico
MSst2 = Sst1v * B	=	= 273.70	(kN/m)	
$MSsq1 = Ssq1h^*(H2+H3+H4)/2$	=	= 106.74	(kN/m)	
MSsq2 = Ssq1v*B	=	= 84.77	(kN/m)	
INERZIA DEL MURO E DEL TERRAPIENO				
Inerzia del muro (Ps)				
Ps = Pm*kh	=	= 55.56	(kN/m)	
Inerzia orizzontale e verticale del terrapieno a terg	a dal mura (Pte			
Ptsh = Pt*kh) = 58.86	(kN/m)	
Ptsv = Pt*kv		= 29.43	(kN/m)	
			(
Incremento di momento dovuto all'inerzia del muro	(MPs)			
MPs1 = kh*Pm1*(H2+H3/3)			(kNm/m)	
MPs2 = kh*Pm2*(H2 + H3/2) MPs3 = kh*Pm3*(H2+H3/3)			(kNm/m) (kNm/m)	
MPs4 = $kh^*Pm4^*(H2/2)$			(kNm/m)	
MPs = MPs1+MPs2+MPs3+MPs4			(kNm/m)	
			,	
Incremento di momento dovuto all'inerzia del terrap				
MPts1 = kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5) $MPts2 = kh*Pt2*((H2 + H3/2) - (B - B5/2)*0.5)$.5) =		(kNm/m) (kNm/m)	
MPts2 = $kh^*Pt2^*((H2 + H3 + H4/3) - (B - B5/3)^*0$ MPts3 = $kh^*Pt3^*((H2+H3^*2/3)-(B1+B2+B3+2/3^*B)^*$			(kNm/m)	
MPts = MPts1 + MPts2 + MPts3			(kNm/m)	
			,	
FORZE ESTERNE				
Momento dovuto alle Forze Esterne (Mfext) Mfext1 = ms		0.00	(kNm/m)	
Mfext2 = fis Mfext2 = $fs*(H3 + H2)$			(kNm/m) (kNm/m)	
Mfext3 = vs*(B1 +B2 + B3/2)			(kNm/m)	
,			,	
AZIONI COMPLESSIVE SULLA FONDAZIONE				
Risultante forze verticali (N)		a ml		
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + F	Ptsv =	= 530.60	(kN/m)	
Risultante forze orizzontali (T)		200.05	(1-11/)	
T = Sth + Sst1h + Ssq1h + fs + Ps + Ptsh	=	= 392.85	(kN/m)	
Momento stabilizzante (Ms)				
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	:	= 1409.80	(kNm/m)	
Momento ribaltanto (Mr)				
Momento ribaltante (Mr) Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+I	Mots =	768 00	(kNm/m)	
MOOCLEMOSQLEMICALITIMICALIZEMIE STI		700.03	(10.411/111)	
Risultante dei momenti rispetto al piede di valle (M	IM)			
MM = Ms - Mr	=	= 641.70	(kNm/m)	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

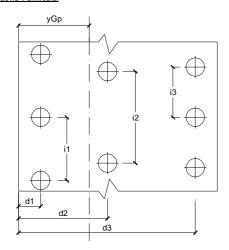
Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 159 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CONDIZIONE SISMICA-

(SISMA+M1+R3)

CONDIZIONE SISMICA -	(SISMA+M1+R3)		
C) SPINTE DEL TERRENO E DEL SOVRACCARI	co		
Incremento di spinta in condizione sismica -		450.45	0.51/ >
Sst2 = $a_g/g^*S^*\gamma'^*(H2+H3+H4)^2$	=	150.15	(kN/m)
$Ssq2 = qs^*(H2+H3+H4)^*kas^-$	=	58.08	(kN/m)
componente orizzontale condizione sismica -			
Sst2h = Sst2*cos\delta	=	137.86	(kN/m)
$Ssq2h = Ssq2*cos\delta$	=	53.33	(kN/m)
			(' '
componente verticale condizione sismica -			
$Sst2v = Sst2*sen\delta$	=	59.50	(kN/m)
Ssq2v= Ssq2*senδ	=	23.02	(kN/m)
D) MOMENTI DELLA SPINTA DEL TERRENO E I	DEL SOVRACCARIO	0	
condizione sismica -			
MSst1 = MSt1+Sst2h * (H2+H3+H4)/2	=	507.78	(kN/m)
MSst2 = Sst2v * B	=	273.70	, ,
MSsq1 = Ssq2h * (H2+H3+H4)/2	=	133.32	(kN/m)
MSsq2 = Ssq2v * B	=	105.87	(kN/m)
INERZIA DEL MURO E DEL TERRAPIENO			
Inerzia del muro (Ps)			
Ps = Pm*kh	=	55.56	(kN/m)
Inerzia orizzontale e verticale del terrapieno a tergo	. ,		
Ptsh = Pt*kh	=	58.86	(kN/m)
Ptsv = Pt*kv	=	-29.43	(kN/m)
Incremento di momento dovuto all'inerzia del muro	(MPs)		
MPs1 = kh*Pm1*(H2+H3/3)	=	14.01	(kNm/m)
MPs2 = kh*Pm2*(H2 + H3/2)	=	45.05	(kNm/m)
MPs3 = kh*Pm3*(H2+H3/3)	=	0.00	(kNm/m)
MPs4 = kh*Pm4*(H2/2)	=	17.27	(kNm/m)
MPs = MPs1+MPs2+MPs3+MPs4	=	76.33	(kNm/m)
la companya di manana da manana all'in amina da l'Arana	dens (MDIs)		
Incremento di momento dovuto all'inerzia del terrap MPts1 = kh*Pt1*((H2 + H3/2) + (B - B5/2)*0.5)	, ,	275.00	(kNm/m)
MPts2 = kh*Pt2*((H2 + H3 + H4/3) + (B - B5/3)*0.5)	=).5) =	275.90 0.00	,
MPts3 = kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*[0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3	=	275.90	(kNm/m)
			, ,
FORZE ESTERNE			
Momento dovuto alle Forze Esterne (Mfext)			
Mfext1 = ms	=	0.00	(kNm/m)
Mfext2 = $fs*(H3 + H2)$ Mfext3 = $vs*(B1 + B2 + B3/2)$	=	0.00	(kNm/m) (kNm/m)
WIEXT3 = % (BT +B2 + B3/2)	=	0.00	(KINIII/III)
AZIONI COMPLESSIVE SULLA FONDAZIONE			
Risultante forze verticali (N)		a ml	
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + P	rtsv =	476.33	(kN/m)
Bigultanta farza orizzantali (T)			
Risultante forze orizzontali (T) T = Sth + Sst1h + Ssq1h + fs+Ps + Ptsh	=	403.48	(kN/m)
1 = 3011 + 350111 + 354111 + 15475 + 7 (511	_	403.40	(KIN/III)
Momento stabilizzante (Ms)			
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	1430.90	(kNm/m)
Momento ribaltante (Mr)	Anto	000.00	(lables for S
Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+M	/lpts =	993.32	(kNm/m)
Risultante dei momenti rispetto al piede di valle (M	M)		
MM = Ms - Mr		437.58	(kNm/m)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 160 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 Fila n°1 distanza asse bordo valle (d1) = 1.00 interasse pali (i1) = 2.60 (m) distanza asse bordo valle (d2) = Fila n°2 3.60 2.60 (m) (m) (m) interasse pali (i2) = Fila n°3 distanza asse bordo valle (d3) = 0.00 interasse pali (i3) = 0.00 (m)

Asse Baricentrico della Palificata (yGp) = 2.300

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
Caso	[kN/m]	[kNm/m]	[kN/m]
sisma+	530.60	578.68	392.85
sisma-	476.33	657.98	403.48

Sollecitazioni sui pali

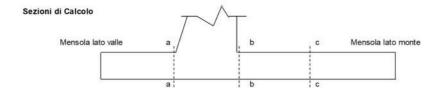
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
sisma+	1268.46	111.10		510.70	681.49
sisma-	1277.21	-38.75		524.52	699.93

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	161 di 247

CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI

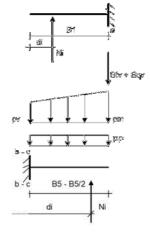
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Mensola Lato Valle

 $\mathsf{Me} = \sum |\mathbf{k}^{\mathsf{o}}(\mathbf{k})| - \mathsf{ck}^{\mathsf{o}}(\mathbf{k} - \mathsf{PP}^{\mathsf{o}}(\mathbf{k})) + \mathsf{ck}^{\mathsf{o}}(\mathbf{k})|^{\mathsf{o}}$

 Σ selece a fulfil i pali precenti culla merecha

Slamola Lato Nome


No=∑ N785-(8-4)N - [PP'85*2 + por35*12 + (pm - po)*85*/3714b(- \$5\+5\d) * 85

 $\mathsf{Mc} = \sum \mathsf{W'(B572(B-6))} + [PP'(B52)^2 2 + \mathsf{pac'(B572)}^2 2 + \mathsf{fan} - \mathsf{pac'(B52)^2} P(A26) + (B64566)^2 B52$

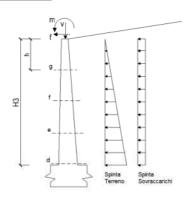
 Σ estesa a tutti i pali presenti sulla mensola

	Ma	Mb	Mc
caso	[kNm/m]	[kNm/m]	[kNm/m]
sisma+	99.50	-491.41	-186.07
sisma-	106.21	-491.59	-168.03

Та	Tb
[kN]	[kN]
451.93	-331.07
404.00	240 04

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 162 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Categoria di Su		Suolo
E S	il muro ammette spostamenti? (si/no)	◯ si	(no	r = 1			
Õ	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
V24-11	Coeff. di Spinta a Riposo sulla parete	ka	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)	100000		
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
듣	componente orizzontale	kash+	=	0.407	(-)	10/10/20		
C.e.	componente verticale	kasv+	=	0.175	(-)			
Coefficienti di	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= '	0.553	(-)	0.553		
8	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kas v-	=	0.219	(-)			

Mt = 1/2 K_o* y*h²*h/3

o $\frac{1}{2}$ Ko* γ *h2*h/3 + a_g/g *S* γ **h²*h/2 (con sisma)

 $\begin{array}{ll} Mq & = 1/2 \; K_o *q *h^2 \\ M_{ext} & = m + f *h \end{array}$

Minerzia

(solo con sisma)

Nt = $\frac{1}{2}$ Ka_{vert.} * γ *(1±kv)*h² Nq = Ka_{vert.} *q*h

= $\sum Pm_i *b_i *kh$

N_{ext} = v

N _{pp+inerzia}= ∑Pm_i*(1±kv)

cond	izio	ne	sism	ica	+
coma			-		

sezione	h	Tt	Tq	Text	Tinerzia	Ttot	
SEZIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	4.00	164.32	34.16	0.00	21.02	219.50	
е-е	3.00	92.43	25.62	0.00	14.64	132.69	
f-f	2.00	41.08	17.08	0.00	9.01	67.17	
g-g	1.00	28.29	8.54	0.00	4.13	40.96	

condizione sismica +

	Territoria diameter										
sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	283.16	68.31	0.00	38.04	389.51	32.30	14.74	0.00	80.51	127.55
e-e	3.00	119.46	38.43	0.00	20.27	178.16	18.17	11.06	0.00	56.07	85.29
f-f	2.00	35.40	17.08	0.00	8.51	60.98	8.07	7.37	0.00	34.50	49.95
g-g	1.00	4.42	4.27	0.00	2.00	10.70	2.02	3.69	0.00	15.81	21.52

condizione sismica -

sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	283.16	85.32	0.00	38.04	406.52	29.81	18.41	0.00	59.49	107.71
e-e	3.00	119.46	47.99	0.00	20.27	187.72	16.77	13.81	0.00	41.43	72.01
f-f	2.00	35.40	21.33	0.00	8.51	65.23	7.45	9.21	0.00	25.50	42.15
g-g	1.00	4.42	5.33	0.00	2.00	11.76	1.86	4.60	0.00	11.69	18.15

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 163 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

9 Pos. 7 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 1 Pos. 1 Pos. 1 Pos. 1

ARMATURE

VERIFICHE

pos		n°/ml		ф	pos		n°/ml		φ
1	•	5.0	•	20.0	5	-	5.0	-	20.0
2		0.0		0.0	6		0.0	-	0.0
3	•	0.0		0.0	7		5.0	-	24.0
4		5.0		24.0	8		0.0		0.0
					9	-	0.0	-	0.0

Calcola

A'f
 — Af

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
е-е	pos 5-7-11-10-8
f-f	pos 5-10-8
93	pans S G

Suz.	Missi	Plend	Tad	Ís	At	AT.	间形式	图形组	THO
(-)	(kiling)	(kili)	(kM)	ខ្នាក់ខ្ញុំ	(tmm²)	(cnd)	(kilderij	(kiN)	(กรา)
						Market and the			
2 - 2	102.21	0.00	404.66	1.00	18.71	72.82.	557.39	0.00	2012.00
b - b	-491.53	0.00	331.07	1.00	22.62	15.71	783.55	0.00	2003.023
다 다	406.52	107.71	210.00	0.00	22,82	15.71	747.04	107.71	38M).27
\$2 - 63	187.72	72.01	1302.488	0.20	22,82	15.71	841.49	72.91	278.50

(n.b.: M* tondo lo litro di inimetrero, M-tordo le litro di cetradesseo)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 164 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

coeffi	cienti	parziali	

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		0030	permanenu	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1+R1	1.30	1.50	1.00
S	0	caso A1+M1+R3	1.30	1.50	1.00
SLD	0	sismica	1.00	1.00	1.25
def.	•	SLE_RARA	1.00	1.00	1.00

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Pesc	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	20.00	(kN/m)
Pm2 =	(B3*H3*γcls)	=	50.00	(kN/m)
Pm3 =	(B4*H3* _γ cls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*γcls)	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	185.00	(kN/m)
A2) Boso	del terreno sulla scarpa di monte del muro (Pt)			
,				
Pt1 =	(B5*H3* _γ ')	=	196.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)
Pt3 =	(B4*H3*γ')/2	=	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	196.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro	(Mm)
Mm1 =	Pm1'

2 .,	(******)			
Mm1 =	Pm1*(B1+2/3 B2)	=	30.33	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	95.00	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	264.50	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	389.83	(kNm/m)

B2) Terrapieno a tergo del muro

=	Pt1*(B1+B2+B3+B4+0,5*B5)	= 661.	50 (kNm/m)
=	Pt2*(B1+B2+B3+2/3*(B4+B5))	= 0.	00 (kNm/m)
=	Pt3*(B1+B2+B3+2/3*B4)	= 0.	00 (kNm/m)
=	Mt1 + Mt2 + Mt3	= 661.	50 (kNm/m)
	=	= Pt1*(B1+B2+B3+B4+0,5*B5) = Pt2*(B1+B2+B3+2/3*(B4+B5)) = Pt3*(B1+B2+B3+2/3*B4) = Mt1 + Mt2 + Mt3	= Pt2*(B1+B2+B3+2/3*(B4+B5)) = 0. = Pt3*(B1+B2+B3+2/3*B4) = 0.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 165 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CONDIZIONE STATICA

C) SPINTE DEL	. TERRENO E DEL	SOVRACCARICO
---------------	-----------------	--------------

componente orizzontale condizione statica

 $Sth = St^*cos\delta = 97.88 (kN/m) \\ Sqh = Sq^*cos\delta = 58.73 (kN/m)$

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 448.59 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1362.25 (kNm/m)

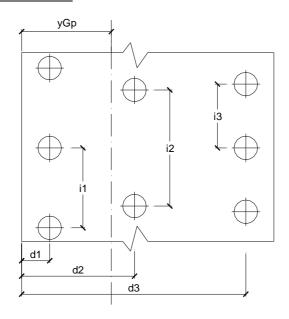
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 309.95 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1052.30 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 166 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 2.60 (m) Fila n°2 distanza asse bordo valle (d2) = interasse pali (i2) = 3.60 (m) 2.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
caso	[kN]	[kNm]	[kN/m]
statico	448.59	-20.54	156.61

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
Caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	562.62	603.71		203.59	271.67

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	Е	16	MU0023	REL	01	В	247

CALCOLI STATICI

DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo Rck = 30 ÷ (Mpa) $fctm = 0.48*Rck^{1/2} =$ 2.63 (Mpa) Acciaio tipo di acciaio • B450C 450 210000 (Mpa) Copriferro 6.80 (cm) Copriferro minimo di normativa 2.00 (cm) Valore limite di apertura delle fessure w2 **▼** = 0.3 mm

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

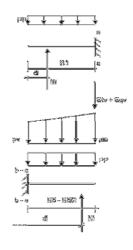
Sezioni di Calcolo

Macasia Lata Valle

Ma= E Mys1-4314-ppylaegisty2

 $\mathbb Z$ ashen a tabii i pali pressed seda meassis

Monach Low Manda


 $\mathsf{M}_{\mathsf{P}} = \mathbb{Z} \cdot \mathsf{H}^{\mathsf{G}}(\mathsf{S}, \mathsf{G}) + \mathsf{d}(\mathsf{S}, \mathsf{G}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}, \mathsf{S}) + \mathsf{D}(\mathsf{S}, \mathsf{S}, \mathsf{S}, \mathsf{S})$

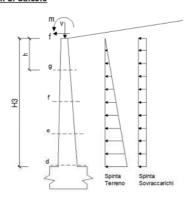
 $m_{\rm P} \sim \sum m_{\rm s} \log m_{\rm P} (\log m)^2 - \log m_{\rm P} (\log m)^2 + \log m_{\rm P} (\log m) + \log m) + \log m_{\rm P} (\log m) + \log m) + \log m_{\rm P} (\log m) + \log m_{\rm P} (\log m) + \log m) + \log m_{\rm P} (\log m) + \log m_{\rm P} (\log m) + \log$

\sum solence a initil I polit prepartit sollte manasolo

2.500	1984	18th	Mar
0390	(Selvice/see)	(%(-Yuarka)	(MANAM)
ක්ෂණ්ටල	94.57	-216.66	427.34

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 168 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.36
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)	one (1 per muri che non β m			(-)	Coefficiente Categoria di Suolo		Suolo
at S	il muro ammette spostamenti? (si/no)	○ si		по	r = 1			
	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>e</u>	componente verticale	kasv+	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
8	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h/2 \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Ni = % Ka_{rad}* y 112kg h^a

No = Ka_{keth}*of*h

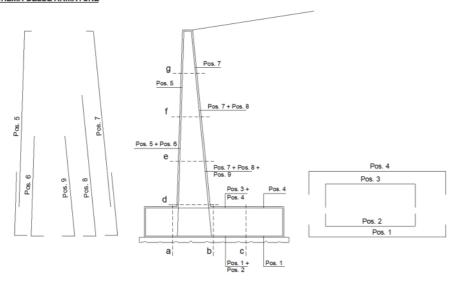
 $M^{ang} = a$

N policean IPm 1200

condizione sintica

sezione	itti	政党	Mej	Max	Mesa	NO.	Mag	Mari	M _{ss}	Mesc
encasi oran	[m]	[kidordan]	[kikkasim]	[kîdawini]	[kikhaim]	[kidm]	[ki-lima]	[kiklmj]	[kiklm]	[kîklim]
e'~e'	4.00	83,52	93, 94	0.00	177.49	27.04	20.28	0.00	70,00	117.91
ଓ ~ଓ	9.00	35,24	52,85	0.00	88.09	15.21	15.21	0.00	48.75	79,17
f4f	2.00	10.44	23.40	0.00	39.99	8.78	10.14	0.00	39.00	48.90
© -©	1.00	1.91	5,87	0.00	7.18	1,89	5.07	0.00	19.75	20.51

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 169 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0	•	20.0	5	-	5.0		20.0
2	-	0.0	-	0.0	6	-	0.0		0.0
3	-	0.0	-	0.0	7	-	5.0		24.0
4	-	5.0	-	24.0	8	-	0.0	-	0.0
					Q	-	0.0	-	0.0

Calcola

VERIFICHE

Condizione Striker

Ser.	isa	N	ħ	242	A°r	कुर्व	छीं.	
(-)	(As fallery)	(kN)	(m)	(emi')	(cm,)	(M/mm²)	(Moneto)	
26 26	34.57	0.00	1.00	15.71	22.62	0.23	25.20	
b-b	-216.07	0.00	1.98	22.62	15.71	2.16	110.66	
d d	177.40	117.31	0.50	22.62	15.71	2.14	78.65	
9-6	99.09	79.17	0.89	11.31	15.71	1.69	60.36	

(n.b.: M4 terste la litre d'Infradorso, M-terste le litre d'estradorso)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 170 di
L073	213	E	16	MU0023	REL	01	В	247

coefficienti parziali

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		Caso	permanenti	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1+R1	1.30	1.50	1.00
ls	0	caso A1+M1+R3	1.30	1.50	1.00
SLD	0	sismica	1.00	1.00	1.25
def.	•	SLE_FR	1.00	0.75	1.00

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Pesc	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	20.00	(kN/m)
Pm2 =	(B3*H3* _γ cls)	=	50.00	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2* _γ cls)	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	185.00	(kN/m)
A2) Pesc	del terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3*γ')	=	196.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4* _γ ')	=	0.00	(kN/m)
Pt3 =	(B4*H3*γ')/2	=	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	196.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) N	1uro	(Mm)			
Mm1	=	Pm1*(B1+2/3 B2)	=	30.33	(kNm/m)
Mm2	=	Pm2*(B1+B2+0,5*B3)	=	95.00	(kNm/m)
Mm3	=	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4	Mm4 = Pm4*(B/2)		=	264.50	(kNm/m)
Mm = Mm1 + Mm2 + Mm3 + Mm4		Mm1 + Mm2 + Mm3 + Mm4	=	389.83	(kNm/m)
B2) T	errap	pieno a tergo del muro			
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	661.50	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	661.50	(kNm/m)

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	171 di 247

CONDIZIONE STATICA

C) SPINTE DEL	TERRENO E DEL	SOVRACCARICO
---------------	---------------	--------------

componente orizzontale condizione statica

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 446.69 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1353.51 (kNm/m)

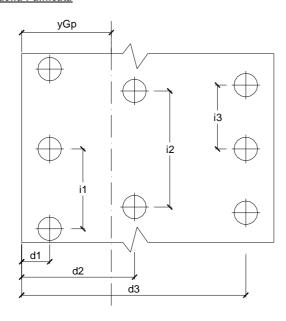
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 298.94 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = Ms - Mr = 1054.57 \quad (kNm/m)$

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 172 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro (dei pali	d	= "	0.80	(m)			
Fila n°1	distanza asse bordo v	alle (d1) =	F	1.00	(m)	interasse pali (i1) =	2.60	(m)
Fila n°2	distanza asse bordo v	alle (d2) =	F	3.60	(m)	interasse pali (i2) =	2.60	(m)
Fila n°3	distanza asse bordo v	alle (d3) =		0.00	(m)	interasse pali (i3) =	0.00	(m)
Asse Bari	centrico della Palificata	ı (yGp)		=	2.300	(m)		

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	446.69	-27.18	152.20

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	553.51	607.88		197.86	264.03

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

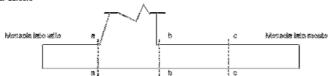
Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 173 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

Caratteristiche dei Materiali


CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

w2

Valore limite di apertura delle fessure

•

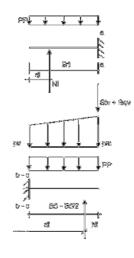
Sezioni di Calcolo

0.3 mm

Messala Lata Valla

Ma = 2 N/481 - 4075 - PFM(146)FB(142

 Σ astass a totti i pali presenti solla mansola


Massacla Lata Massa

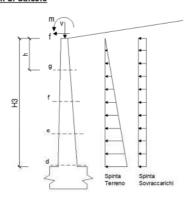
 $\mathsf{Mo} = \sum \mathsf{Material}_{\{0,1\},\{0,1\}$

 Σ estessa a tutti i pali prassavit sulta mesusuta

0090	85as	800	Mc
6250200	jbirkesitej	jkildavinij	[830auśau]
station o	33.53	-2000.000	-124.66

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 174 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Ca	ategoria di	Suolo
it co	il muro ammette spostamenti? (si/no)	○ si	(по	r = 1			
ä	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>.e</u>	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
Š	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h/2 \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massas = IPmy by th (sede cen sisme)

Ni = % Ka_{ked}* y*(1/2k/y*)²

Mg = Ke_{ret}*g*h

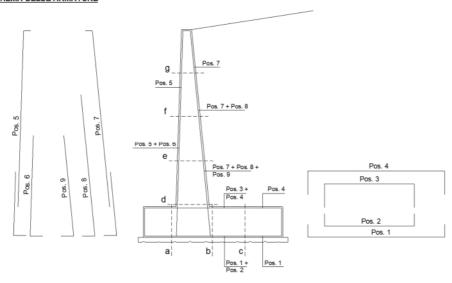
N_{ext} = y

N pointain IF The 1200

condizione sintica

sezione	itii	跳竹	Mej	$M_{\rm ext}$	Mesa	NO.	Mag	Hash	M _{ss}	Mese
	[10]	[kibbrim]	[kikkasim]	[kikkreim]	[kikhaim]	[kidm]	[ki-lima]	[kiklm]	[kiklm]	[kîklim]
e'∹e'	4.00	83,52	88,92	0.00	170.44	27.04	18.78	0.00	70.00	115,79
ଓ ~ଓ	9.00	35,24	48,89	0.00	84,18	15.21	14.07	0.00	48.75	78,00
14	2.00	10.44	21.73	0.00	32.17	8.78	9.38	0.00	391.00	48.14
© -©	1.00	1.91	5.43	0.00	6.74	1,89	4.89	0.00	19.75	20,13

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 175 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	pos	n°/ml	6
1	5.0	20	5	5.0	20
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	24
4	5.0	24	8	0.0	0
			9	0.0	0

Calcola

VERIFICHE

Condizions Sinüca

Ser.	33	纠	R	20	AT	1363	еń	3100	Windows
(-)	(k: Nara)	(NN)	(mi)	(000)	(000)	(Witten)	(Morney)	(Crysts)	(orway)
31 - 31	33.59	0.00	1.00	15.71	22.62	0.37	24.57	0.034	0.300
b - b	-200.00	0.00	1.56	22.62	15.71	2.63	107.08	0.144	0.360
ත් - ත්	170,44	115.79	0.90	22.62	15.71	2.06	74.81	0.094	0.300
# -타	84.13	78.03	0.86	22.62	45.74	1.25	39.77	0.047	0.300

(n.b.: M4 tanda la fibra di intracionno, M-tanda la fibra di autracionno)

 $\underline{\text{M.S.}}$ La condizione atalica si sasume come azione di lunga durata o ripetula $\{\underline{p}_{i}=0.5\}$,

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 176 di
L073	213	E	16	MU0023	REL	01	В	247

coefficienti parziali

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		0000	permanent	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1+R1	1.30	1.50	1.00
S	0	caso A1+M1+R3	1.30	1.50	1.00
SLD	0	sismica	1.00	1.00	1.25
def.	•	SLE_QP	1.00	0.00	1.00

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Peso	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	20.00	(kN/m)
Pm2 =	(B3*H3* _γ cls)	=	50.00	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*γcls)	=	115.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	185.00	(kN/m)
A2) Peso	del terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3* _γ ')	=	196.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4* _γ ')	=	0.00	(kN/m)
Pt3 =	(B4*H3*γ')/2	=	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	196.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro	(Mm)									
Mm1 =	Pm1*(B1+2/3 B2)	=	30.33	(kNm/m)						
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	95.00	(kNm/m)						
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)						
Mm4 =	Pm4*(B/2)	=	264.50	(kNm/m)						
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	389.83	(kNm/m)						
B2) Terra	B2) Terrapieno a tergo del muro									

Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	661.50	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
NΛt	_	M+1 + M+2 + M+3	_	661 50	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag. 177 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

componente orizzontale condizione statica

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 440.99 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1327.27 (kNm/m)

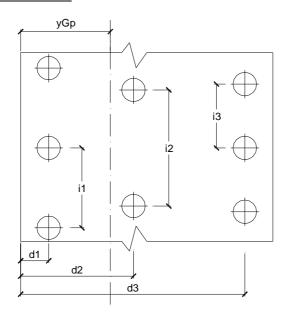
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 265.90 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1061.37 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 178 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 2.60 (m) Fila n°2 distanza asse bordo valle (d2) = interasse pali (i2) = 3.60 (m) 2.60 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

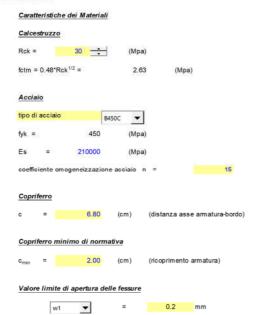
caso	Np	Mp	Тр
caso	[kN]	[kNm]	[kN/m]
statico	440.99	-47.10	138.99

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
Caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	526.18	620.38		180.68	241.11

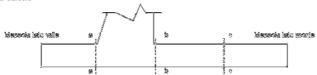
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 179 di
L073	213	E	16	MU0023	REL	01	В	247


CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

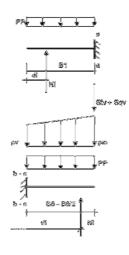
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Sezioni di Calcolo

Menasia Lata Valle

na = ∑ (4781 - 4)/ 4 - PP711244/813/2

 Σ estens a tutil i pali prenenti sulla messola


Menecia Late Meste

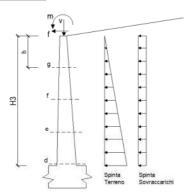
 $\label{eq:maps} \text{wid} = \sum M_1 \text{TBS-MS-MSM}_1 - \text{[PP-BS-7/2} + \text{pri-TBS-7/2} + \text{(pm. - pri-JBS-7/3]}_1 + \text{(pri-Simple - (pri-Simple -$

 Σ veinus a bitil i pali pomenti culta menanta

060849	Beau	Me	(ARI)
Cotsuser	[bitmin]	[kilimini]	[kilimin]
sekalibuto	21.05	-195.16	-1115.637

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 180 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g		=	0.220	(-)	S	=	1.36
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm	=	1.00	(-)	Coefficiente Ca	tegoria di	Suolo
i±	il muro ammette spostamenti? (si/no)	○ si		(● no	r = 1			
ũ	coefficiente sismico orizzontale	kh		=	0.3003	(-)	**		
	coefficiente sismico verticale	kv	12	= 1	0.1502	(-)			
	Coeff. di Spinta a Riposo sulla parete	ko		=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	:	=	0.392	(-)			
Spi	componente verticale	kav	:	=	0.169	(-)			
.	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	:	=	0.443	(-)	0.443		
Æ	componente orizzontale	kash+		=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+	:	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	:	- "	0.553	(-)	0.553		
රි	componente orizzontale	kash-		=	0.508	(-)			
	componente verticale	kasv-		=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \text{K}_0 \star \gamma^* h^{2*} h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \text{Ko} \star \gamma^* h 2^* h/3 \, + \, a_g/g^* S^* \gamma^* h^{2*} h/2 \, (\text{con sisma})$

Mq = $\frac{1}{2}$ K_o*q*h² M_{ext} = m+f*h

M_{brodia} = EFm/fb/fda (ablo con atema)

Ni = % Ka_{yat} ^{*} (*isks)*i*

 $Nq = Ks_{ask} q^a h$

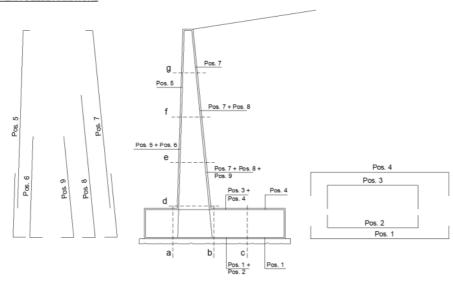
 $N_{opt} = v$

N pprinces=EFm (150n)

consizione statica

swzicze -	Bir	謎	Mej	H _{est}	Ed _{ecol}	NE	Mag	關鍵	Magaz	M ₆₆₆
000000 m 15m	្រីស្បី	[kblostoj]	[kiskoćeri]	[kîskarin]	[[k:Nura/sraj]	[kikini]	[k/Waa]	[ki-Kroj	[kilim]	[kis#waj
현소선	4.00	83,52	63,98	0.00	177.49	27.04	20,28	9,50	70.00	117,31
8:49	3.170	35, 24	52.85	5.50	88.09	15.21	15.21	5.50	48.75	79.17
¥-¥	2.00	10.44	23.49	9,50	33,63	8.76	10.14	9,90	30.00	46,00
9-9	1.00	1.31	5.67	9.50	7.18	1.89	5.07	00.00	13.75	20,51

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

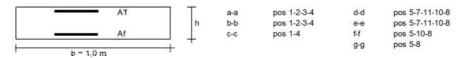

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	181 di 247

SCHEMA DELLE ARMATURE



ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ	
1		5.0		20	5		5.0		20	
2	-	0.0	-	0	6	7	0.0	-	0	
3	-	0.0	-	0	7	-	5.0	-	24	
4	-	5.0	-	24	8	-	0.0		0	
					9	-	0.0	-	0	

Calcola

VERIFICHE

Condizione Statica

St.	1641	ы	ja	Af	為哲	φ¢.	্য	we	W 95753
(-)	(kMm)	(kN)	(185)	(cm²)	(cas)	(Minne)	$(Maxes^2)$	(cencen)	(mm)
30 ~ 82	31.06	0.00	1.00	15.79	22.62	0.34	22.65	0.032	0.200
ks – ko	-1 88.15	0.00	1.00	22.62	15.71	1.63	\$6.58	0.130	0.200
월 ~ 설	177.49	117.39	0.90	22.62	95.71	2.14	78.65	0.093	0.200
⊛ ~S	86.09	79.17	0.80	45.24	15.71	1.06	22.36	0.022	0.200

(r.b.: Mr tende la fibre di intradroso, M- tende la fibre di astradroso);

 $\underline{\text{M.B.}}$ Le constitions sietice el essume como azione di lunga durete o ripetata (η_{c} =0.5),

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

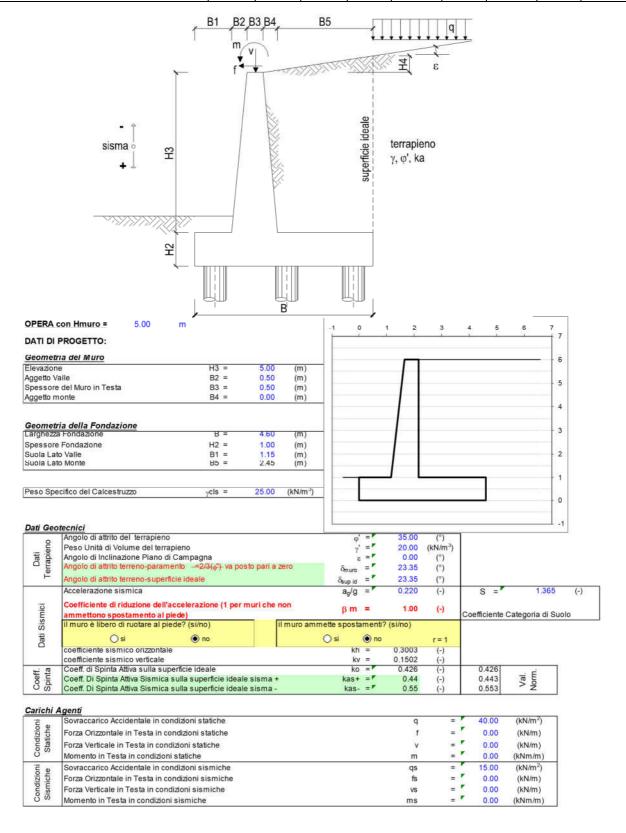
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 182 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

ALLEGATO 3

TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 2- H=5.00 m



- 3° stralcio funzionale: Castelraimondo nord Castelraimondo sud
- 4° stralcio funzionale: Castelraimondo sud innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 183 di
L073	213	E	16	MU0023	REL	ΟI	В	247

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 184 di
L073	213	Е	16	MU0023	REL	01	В	247

coefficienti	parziali

			azio	oni	proprietà del terreno						
		caso	permanenti	temporanee							
		0000	permanenu	variabili	tan φ'						
			sfavorevoli	sfavorevoli							
SLI	•	caso A1+M1+R3	1.30	1.50	1.00						
SLD	0	sismica	1.00	1.00	1.25						
def.	0	-	1.10	1.10	1.20						

<u>Dati Geotecnici</u> (usati per verifiche di stabilità e SLU)

ſ	0	Angolo di attrito del terrapieno	φ'	=	35.00	(°)			
	i.	Peso Unità di Volume del terrapieno	γ'	=	26.00	(kN/m ³)			
	Angold	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)			
		Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)			
		Angolo di attrito terreno-superficie ideale	$\delta_{\!$	=	23.35	(°)			
	Coeff. [Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.426	(-)	0.426	:	1
		Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val	
		Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	- Z	

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

e Di	Sovraccarico Accidentale in condizioni statiche	q	=	60.00	(kN/m ²)
izich	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
ondizioni Statiche	Forza Verticale in Testa in condizioni statiche	v	=	0.00	(kN/m)
3 0	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
- E as	Sovraccarico Accidentale in condizioni sismiche	qs	=	22.50	(kN/m²)
3 5	Forza Orizzantala in Teste in condizioni sismiche	96	=	0.00	(kNAm)
Chardialumi	Force Verticals in Testa in condizioni sismiche	842	=	0.00	(talVan)
€ 6	Morwanto in Tasis in condizioni sismiche	ins	=	0.00	(kikimám)

245.00 (kWm)

VERIFICHE GEOTECNICHE

A) FORZE VERTICALI

A1) Passo	del Mura (Pm)			
Pm1 =	(B2*H3*ycle)*2	=	31.25	(ki\Pm)
Pm2 ≈	(83°H3°yola)	=	62,50	(kNVm)
$\approx Em^2$	(84°+13°yola)/2	=	0.00	(kN/m)
Fm4 =	(B7-12"yele)	=	115.00	(kWm)
Pm ≈	Pm1 + Pm2 + Pm3 + Pm4	=	209.75	(kN/m)
A2) Pew	del tenero sulla scarpa di mente del muro (Pt)			
PM ≈	(B5°+KFY)	=	245.00	(kN/m)
P12 =	(0,5"(B4+B5)"H4"Y)	=	0.00	(kWm)
E253 =	(B4"H3"\)/2	=	0.00	(kWm)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mireoi =	Pm1*(B1+2/3 B2)	=	46.35	(kiblemetern)
Mm2 =	Pm2"(81+B2+0,5"B3)	=	116.75	(KiNerven)
Mm3 =	Pm2*(81+62+63+1/3 84)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	264,50	(KMaréan)
Miren ≃	Mirrott + Miroc2 + Miroc4	=	429.60	(kNm/m)

B2) Tampieno e targo del muro

= P11 + P12 + P18

Miti	=	Pt1*(B1+B2+B3+B4+0,5*B5)	= 82	.88	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	= (.00	(kblarvan)
Mt3	=	P13*(B1+B2+B3+2/3*B4)	= (1.00	(kiNm/m)
Mit	=	制计 中間经 中間銀	= 82	188	(kiNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 185 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

caso A1+M1+R3

C) SPINTE DEL TERRENO E DEL SOVRACCARICO

Spinta totale condizione statica

St = $0.5^*\gamma^*(H2+H3+H4)^2*k0$ = 199.57 (kN/m) Sq = $q^*(H2+H3+H4)^*k0$ = 153.51 (kN/m)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

 $MSt1 = Sth^*(H2+H3+H4)/3$ = 366.46 (kN/m) $MSq1 = Sqh^*(H2+H3+H4)/2$ = 422.84 (kN/m)

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI COMPLESSIVE SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 593.66 (kN/m)

Risultante forze orizzontali (T)

T = Sth + Sqh + f = 324.17 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1900.08 (kNm/m)

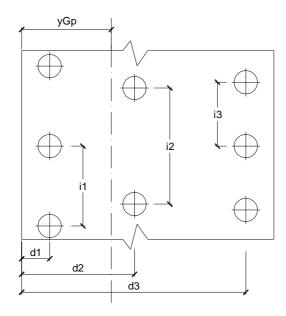
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 789.29 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1110.79 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 186 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = (m) Fila n°2 distanza asse bordo valle (d2) = 3.60 (m) interasse pali (i2) = 2.40 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m)

Asse Baricentrico della Palificata (yGp) = 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

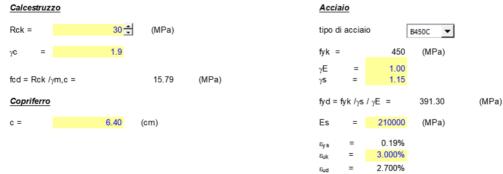
caso	Np	Mp	Тр
Caso	[kN/m]	[kNm/m]	[kN/m]
statico	593.66	254.64	324.17

Sollecitazioni sui pali

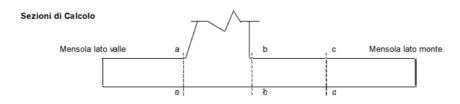
caso	N pali all.1	N pali all.2 N	pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	947.45	477.35		389.01	519.10

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 187 di
L073	213	E	16	MU0023	REL	01	В	247

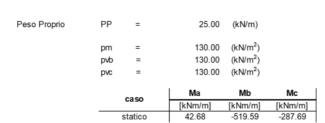
CALCOLI STATICI - Verifica allo Stato Limite Ultimo

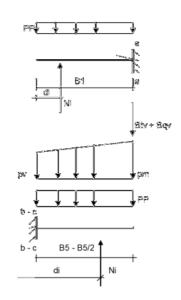
CARATTERISTICHE DEI MATERIALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Biemsola Lato Valle

 $Me = \sum N_i(B1 - G) / i_i - PP^i(12ki)^2B1^2/2$


E estesa a tutti i pali presenti sulla mensola


Mensola Lata Monte

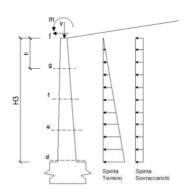
 $Mb = \sum N(95-(8-4)y) - [FF^*85^3/2 + pdr85^3/2 + (pm - pa)(85^3/3)(1444) - (844894) + 85$

 $\mathsf{Mo} = \sum |\mathsf{N} \backslash (\mathsf{B5}/\mathsf{Z} + \mathsf{B} - \mathsf{A})) / (-|\mathsf{FF} \backslash (\mathsf{B5}/\mathsf{Z})^2 / 2 + \mathsf{par} / (\mathsf{B5}/\mathsf{Z})^2 / 2 + \mathsf{par} / (\mathsf{B5}/\mathsf{Z})^2 / 2) / (-\mathsf{E}/\mathsf{A})

 Σ estesa a tutti i pali presenti sulla mensola

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 188 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	I E	0.22	(-)	S	=	1.37
Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Catego	oria di Suc	olo
Dati S	il muro ammette spostamenti? (si/no)	◯ si	•) no	r = 1			
ä	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta Attiva sulla parete	ka	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Έ	componente orizzontale	kash+	=	0.407	(-)			
.e.	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
Š	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = ½ Ko* γ**h²*h/3

o ½ Ka_{orizz}* γ*(1±kv)*h²*h/2 (con sisma)

Mq = $\frac{1}{2} K_0^* q^* h^2$

Minerzia

M_{ext} = m+f*h

= $\sum Pm_i^*b_i^*kh$ (solo con sisma)

Nt = $\frac{1}{2} \text{ Ka}_{\text{vert}}^* \gamma^* (1 \pm \text{kv})^* h^2$ Nq = $\text{Ka}_{\text{vert}}^* q^* h$

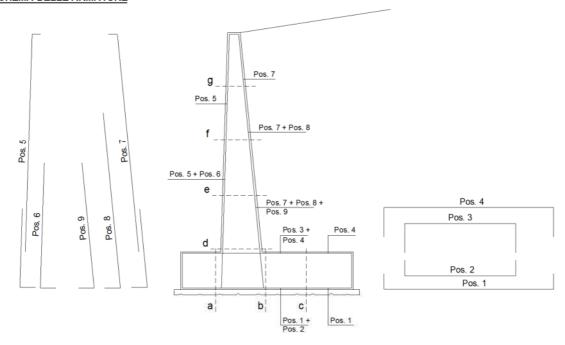
 $N_{ext} = v$ $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$

sezione	n	110	19	ext	tot
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	5.00	127.24	117.45	0.00	244.70
е-е	3.75	71.57	88.09	0.00	159,66
f-f	2.50	31.81	58.73	0.00	90.54
	1 25	7.05	20.26	0.00	27.22

condizione statica

Contained States										
sezione	h	Mt	Mq	Mext	M _{tot}	Nt	Nq	Next	N _{pp}	N _{tot}
sezione -	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	5.00	212.07	293.64	0.00	505.71	54.92	50.69	0.00	93.75	199.36
е-е	3.75	89.47	165.17	0.00	254.64	30.89	38.02	0.00	64.45	133.36
f-f	2.50	26.51	73.41	0.00	99.92	13.73	25.35	0.00	39.06	78.14
g-g	1.25	3.31	18.35	0.00	21.67	3.43	12.67	0.00	17.58	33.68

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

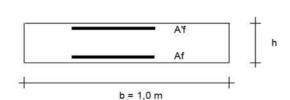

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 189 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE



ARMATURE

pos	n°/ml	ф	pos	n°/ml	ф
1	5.0	20	5	5.0	16
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	24
4	5.0	24	8	0.0	0
			9	0.0	0

Calcola

VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
c-c	pos 1-4
d-d	pos 5-7-11-10-8
е-е	pos 5-7-11-10-8
f-f	pos 5-10-8
g-g	pos 5-8

Sez.	Med	Ned	Test 1	is	Af	ΑŤ	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(om²)	(cm²)	(kNm)	(kN)	(m)
2 - 2	42.66	0.00	365.02	1.00	15.71	22.62	559.26	0.00	254.54
b ~ b	-519.59	0.00	-320.77	1.00	22.62	15.71	797.35	0.00	298.73
d - d	505.71	199.35	244.70	1.00	22.52	10.05	884.64	199.35	326.72
e -e	254.64	133.36	159.86	0.88	22.62	10.05	737.38	133.36	298.42

(n.b.: M÷ tende le fibre di intradosso, M- tende le fibre di estradosso)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 190 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

coefficienti parziali

			azio	oni	proprietà del terreno
		caso	permanenti	temporanee	
		0000	permanent	variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	0	caso A1+M1	1.30	1.50	1.00
S	0	caso A2+M1	1.00	1.30	1.00
SLV	•	Sismica+M1+R3	1.00	1.00	1.00
def.	0		1.10	1.10	1.20

<u>Dati Geotecnici</u> (usati per verifiche di stabilità e SLU)

g g	Angolo di attrito del terrapieno	φ'	=	35.00	(°)		
	Peso Unità di Volume del terrapieno	γ'	=	20.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
i	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
	Angolo di attrito terreno-superficie ideale	δ _{sup} id	=	23.35	(°)		
₩ #	Coeff. di Spinta a riposo sulla superficie ideale	ko	=	0.426	(-)	0.426	. <i>e</i>
	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val.
υσ	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	, Z

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

e Di	Sovraccarico Accidentale in condizioni statiche	q	=	40.00	(kN/m ²)	
izioni iche	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)	
condizion Statiche	Forza Verticale in Testa in condizioni statiche	V	=	0.00	(kN/m)	
3 0	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)	
T a	Sovraccarico Assidentale in condizioni aismiche	C\$25	=	15.00	(kN/m²)	
2 E	Forza Caizzontale in Tasta in condizioni sismicha	色	=	00.0	(kN/m)	
Candidoni	Forzs Varticals in Tests in condizioni sismiche	1825	=	0.00	(kN/m)	
ឌ ម	Momento in Tasta in condizioni sismiche	m#	=	0.00	(kiNm/m)	

826.99 (kNm/m)

VERIFICHE GEGTECNICHE

A) FORZE VERTICALI

A1) Pa	නය ජන්	Ballionee's	∮િલ્લાકે

Pmi≔	(B27F3*yols)/2	=	31.25	(k N/m)
Pm2 =	(B3*H3*ycls)	=	82.50	(kMm)
Pm3 ≃	(B4*H3*yols)/2	=	0.00	(kM/m)
Pm4 =	(B"H2"yols)	=	115,00	(kMm)
Pm ≅	Pm1 + Pm2 + Pm3 + Pm4	=	208,75	(kN/m)

A2) Peso del terreno sulla scarpa di monte del muro (Pt)

Pii	=	(B5"H3"y)	=	245.00	(kMm)
Pt2	=	(0,5*(84+85)*H4*y)	=	0.00	(kM/m)
Pt3	=	(B4*H3*y)/2	=	0.00	(kMm)
[2]	Ħ	Pi1 + Pi2 + Pi3	=	245.00	(kiVm)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mrn)

= Mt1 + Mt2 + Mt3

Mmi =	Pm1*(51+2/3 52)	=	46,35	(kNm/m)
Mm2 =	Pm2*(51+52+0,6*53)	=	118.75	(kNovm)
Mm3 =	Pm3*(81+82+83+1/3 84)	=	0.00	(kNm/m)
Mm4 =	Pm4*(8/2)	=	284.50	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	\equiv	429.60	(kNm/m)
52) Terraj	enum leb ognet a sneek			
Mti =	Pt1*(B1+B2+B3+B4+0,5*B5)	=	826,66	(kNm/m)
Mt2 =	Pt2*(51+52+53+2/3*(54+55))	=	0,00	(kNm/m)
M13 =	Pt3*(B1+B2+B3+2/3*B4)	=	9,99	(kNm/m)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Ε	16	MU0023	REL	01	В	191 di 247

CONDIZIONE SISMICA +

Sismica+M1+R3

CONDIZIONE SISMICA +	Sismica+M1+	·R3		
C) SPINTE DEL TERRENO E DEL SOVRACCARIO	·n			
Incremento di spinta in condizione sismica +	.0			
Sst1 = $a_0/g^*S^*\gamma^{*}(H2+H3+H4)^2$	=	216.22	(kN/m)	
93-11				
Ssq1 = qs*(H2+H3+H4)*kas*	=	39.86	(kN/m)	
componente orizzontale condizione sismica +				
Sst1h = Sst1* $\cos \delta$	=	198.52	(kN/m)	
$Ssq1h = Ssq1*cos\delta$	=	36.60	(kN/m)	
234 = 234. 3330		00.00	(,	
componente verticale condizione sismica +				
$Sst1v = Sst1*sen\delta$	=	85.68	(kN/m)	
Ssq1v= Ssq1*senδ	=	15.79	(kN/m)	
D) MOMENTI DELLA SPINTA DEL TERRENO E D	EL SOVRACC	ARICO		
condizione sismica +				
MSst1 = MSt1+Sst1h * (H2+H3+H4)/2	=	877.44	(kN/m)	- Momento dovuto alla spinta a riposo+Incremento sismico
MSst2 = Sst1v*B	=		(kN/m)	·
$MSsq1 = Ssq1h^* (H2+H3+H4)/2$	=	109.79	(kN/m)	
MSsq2 = Ssq1v * B	=	72.66	(kN/m)	
			(,	
INERZIA DEL MURO E DEL TERRAPIENO				
Inerzia del muro (Ps)		CO CO	(I.NI/)	
Ps = Pm*kh	=	62.69	(kN/m)	
Inerzia orizzontale e verticale del terrapieno a tergo	del muro (Pts)			
Ptsh = Pt*kh	=	73.57	(kN/m)	
Ptsv = Pt*kv	=	36.79	(kN/m)	
			(' '	
Incremento di momento dovuto all'inerzia del muro (MPs)			
MPs1 = kh*Pm1*(H2+H3/3)	=	25.03	(kNm/m)	
MPs2 = kh*Pm2*(H2 + H3/2)	=	65.69	(kNm/m)	
MPs3 = kh*Pm3*(H2+H3/3)	=	0.00	(kNm/m)	
MPs4 = kh*Pm4*(H2/2)	=	17.27	(kNm/m)	
MPs = MPs1+MPs2+MPs3+MPs4	=	107.98	(kNm/m)	
Incremente di momente devete all'increie del terroni	one (MDte)			
Incremento di momento dovuto all'inerzia del terrapio	eno (IVIPTS) =	122.25	(Ichles /m)	
MPts1 = $kh^*Pt1^*((H2 + H3/2) - (B - B5/2)^*0.5)$ MPts2 = $kh^*Pt2^*((H2 + H3 + H4/3) - (B - B5/3)^*0.5$			(kNm/m)	
MPts3 = $kh^*Pt3^*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)$			(kNm/m) (kNm/m)	
MPts = MPts1 + MPts2 + MPts3	= =		(kNm/m)	
WI 13 - WI 13 1 WI 132 1 WI 133	_	100.00	((((((((((((((((((((((((((((((((((((((
FORZE ESTERNE				
Momento dovuto alle Forze Esterne (Mfext)				
Mfext1 = ms	=	0.00	(kNm/m)	
Mfext2 = fs*(H3 + H2)	=	0.00	(kNm/m)	
Mfext3 = vs*(B1 + B2 + B3/2)	=	0.00	(kNm/m)	
AZIONI COMPLESSIVE SULLA FONDAZIONE				
Risultante forze verticali (N)		a ml		
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + Pt	sv =	652.84	(kN/m)	
Risultante forze orizzontali (T)		=10.00	(1.11.)	
T = Sth + Sst1h + Ssq1h + fs + Ps + Ptsh	=	512.32	(kN/m)	
Momento stabilizzante (Ms)				
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	1723.26	(kNm/m)	
Momento ribaltante (Mr)		1000 5-	/1.NL / :	
Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+M	pts =	1228.56	(kNm/m)	
Risultante dei momenti rispetto al piede di valle (MM	1)			
MM = Ms - Mr	=	494.70	(kNm/m)	
			. ,	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

237.14 (kNm/m)

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	E	16	MU0023	REL	01	В	247

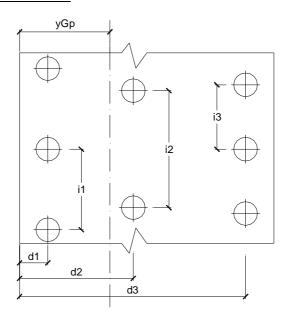
CONDIZIONE SISMICA - Sismic

CONDIZIONE SISMICA - Sismica+M1+R3			
C) SPINTE DEL TERRENO E DEL SOVRACCARICO			
Incremento di spinta in condizione sismica -		242.00	(1.11/)
$Sst2 = a_{g}/g^{*}S^{*}\gamma^{*}(H2+H3+H4)^{2}$	=		(kN/m)
$Ssq2 = qs*(H2+H3+H4)*kas^{-}$	=	49.78	(kN/m)
componente orizzontale condizione sismica -			
$Sst2h = Sst2*cos\delta$	=	198.52	(kN/m)
$Ssq2h = Ssq2*cos\delta$	=	45.71	(kN/m)
componente verticale condizione sismica -			
$Sst2v = Sst2*sen\delta$	=	85.68	(kN/m)
$Ssq2v = Ssq2*sen\delta$	=	19.73	(kN/m)
D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVI	RACC	ARICO	
condizione sismica - MSst1 = MSt1+Sst2h * (H2+H3+H4)/2	=	877.44	(kN/m)
MSst2 = Sst2v * B	=	00440	(kN/m)
MSsq1 = Ssq2h * (H2+H3+H4)/2	=	137.13	(kN/m)
MSsq2 = Ssq2v*B	=	90.75	(kN/m)
INERZIA DEL MURO E DEL TERRAPIENO			
Inerzia del muro (Ps) Ps = Pm*kh		62.60	(IcN1/m)
rs = riii kii	=	62.69	(kN/m)
Inerzia orizzontale e verticale del terrapieno a tergo del muro	o (Pts)		
Ptsh = Pt*kh	=	73.57	(kN/m)
Ptsv = Pt*kv	=	-36.79	(kN/m)
Incremento di momento dovuto all'inerzia del muro (MPs)			
MPs1 = kh*Pm1*(H2+H3/3)	=	25.03	` ,
MPs2 = kh*Pm2*(H2 + H3/2) MPs3 = kh*Pm3*(H2+H3/3)	=	00.00	,
MPs4 = kh*Pm4*(H2/2)	=	17.27	(kNm/m)
MPs = MPs1+MPs2+MPs3+MPs4	=	107.98	(kNm/m)
Incremente di momente devete all'increie del terronione (MD	to)		
Incremento di momento dovuto all'inerzia del terrapieno (MP MPts1 = kh*Pt1*((H2 + H3/2) + (B - B5/2)*0.5)	=	381.66	(kNm/m)
MPts2 = $kh*Pt2*((H2 + H3 + H4/3) + (B - B5/3)*0.5)$	=	0.00	(kNm/m)
MPts3 = kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*B4)*0.5)	=	0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3	=	381.66	(kNm/m)
FORZE ESTERNE			
Momento dovuto alle Forze Esterne (Mfext)			
Mfext1 = ms Mfext2 = $fs*(H3 + H2)$	=	0.00	,
Mfext3 = $vs*(B1 + B2 + B3/2)$	=	0.00	(kNm/m) (kNm/m)
		-	(,
AZIONI COMPLESSIVE SULLA FONDAZIONE			
Risultante forze verticali (N)		a ml	
N = Pm+ Pt + vs + Stv + Sst1v + Ssq1v + Ptsv	=		(kN/m)
			, ,
Risultante forze orizzontali (T)		E04 40	(IcN1/m)
T = Sth + Sst1h + Ssq1h + fs+Ps + Ptsh	=	521.43	(kN/m)
Momento stabilizzante (Ms)		1744.05	(kNm/m)
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	-	1741.35	(kNm/m)
Momento ribaltante (Mr)			
Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+Mpts	=	1504.21	(kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 193 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) 1.00 Fila n°1 distanza asse bordo valle (d1) = (m) interasse pali (i1) = 2.40 (m) 3.60 Fila n°2 distanza asse bordo valle (d2) = (m) interasse pali (i2) = 2.40 (m) Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) interasse pali (i3) = 0.00 (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
Caso	[kN/m]	[kNm/m]	[kN/m]
sisma+	652.84	1006.84	512.32
sisma-	583.20	1104.22	521.43

Sollecitazioni sui pali

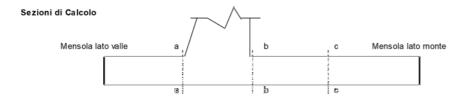
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
sisma+	1712.80	-145.98		614.78	820.37
sisma-	1719.13	-319.44		625.72	834.97

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 194 di
L073	213	Е	16	MU0023	REL	01	В	247

CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI

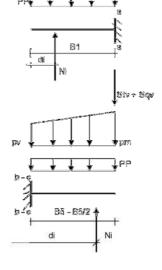
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Menacia Lato Valle

 $Ma = \sum N^*(81 - 4) I - PP^*(1254)^8 1^2 / 2$

 Σ estesa a tutti i pali presenti sulla mensola

Manaola Lato Monta


MD = 1 N°(85-(8-4))A - [PP°85*X + pac°85*X + gan - pac)°85*X]°(12kv) - (86v*8q) ° 85

Me = 1. N/(85/2-(8-4))/1 - [PP*(85/2)//2 + pac*(85/2)//2 + gan - pac}*(85/2)//314//4 - (85/2 86/4 * 85/2

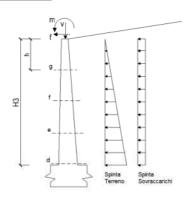
 Σ setose e tutti i peli proventi sulla mensola

	Ma	Mb	Mc
caso	[kNm/m]	[kNm/m]	[kNm/m]
sisma+	88.04	-768.29	-232.18
eiema-	93.40	-770.07	-208 83

Та	Ть
[kN]	[kN]
680.60	-514.53
691.87	_408 77

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 195 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

nici	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Cat	egoria di S	Suolo
at S	il muro ammette spostamenti? (si/no)	◯ si		no	r = 1			
ñ	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
× ton	Coeff. di Spinta a Riposo sulla parete	ka	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)	5.00 90-90		
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
듣	componente orizzontale	kash+	=	0.407	(-)	1044.535		
Coefficienti di	componente verticale	kasv+	= 0	0.175	(-)			
	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kas v-	=	0.219	(-)			

Mt = ½ K_o* γ*h²*h/3

o $\frac{1}{2}$ Ko* γ *h2*h/3 + a_g/g *S* γ **h²*h/2 (con sisma)

 $\begin{array}{ll} Mq & = 1 \% \ K_o * q * h^2 \\ M_{ext} & = m + f * h \end{array}$

 $M_{inerzia} = \sum Pm_i *b_i *kh$ (solo con sisma)

Nt = $\frac{1}{2}$ Ka_{vert.} * γ *(1±kv)*h² Nq = Ka_{vert.} *q*h

N_{ext} = v

N _{pp+inerzia}= ∑Pm_i*(1±kv)

condizione sismica +

sezione	h	Tt	Tq	Text	Tinerzia	Ttot
SCEIONC	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	5.00	256.76	30.50	0.00	28.15	315.41
е-е	3.75	144.43	22.87	0.00	19.36	186.65
f-f	2.50	64.19	15.25	0.00	11.73	91.17
g-g	1.25	44.20	7.62	0.00	5.28	57.10

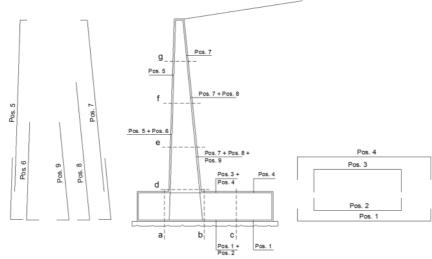
condizione sismica +

	The state of the s											
sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}	
SCZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	5.00	553.05	76.24	0.00	62.56	691.86	50.46	13.16	0.00	107.83	171.45	
e-e	3.75	233.32	42.89	0.00	32.99	309.20	28.39	9.87	0.00	74.13	112.39	
f-f	2.50	69.13	19.06	0.00	13.69	101.88	12.62	6.58	0.00	44.93	64.12	
g-g	1.25	8.64	4.77	0.00	3.18	16.58	3.15	3.29	0.00	20.22	26.66	

condizione sismica -

sezione	h	Mt	Mq	M _{ext}	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	5.00	553.05	95.23	0.00	62.56	710.84	46.57	16.44	0.00	79.67	142.68
e-e	3.75	233.32	53.57	0.00	32.99	319.88	26.20	12.33	0.00	54.78	93.30
f-f	2.50	69.13	23.81	0.00	13.69	106.62	11.64	8.22	0.00	33.20	53.06
g-g	1.25	8.64	5.95	0.00	3.18	17.77	2.91	4.11	0.00	14.94	21.96

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

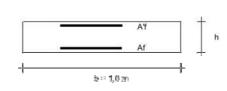

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 196 di
L073	213	E	16	MU0023	REL	01	В	247

SCHEMA DELLE ARMATURE



ARMATURE

VERIFICHE

pos		n°/ml	ф	pos		n°/ml		φ
1	•	5.0	20	5	•	5.0		16
2		0.0	0	6		0.0	-	0
3	•	0.0	0	7		5.0	-	24
4		5.0	24	8		0.0		0
				9	-	0.0	-	0

Calcola

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
е-е	pos 5-7-11-10-8
f-f	pos 5-10-8
學報	pen S-8

Sur.	Missi	Plend	Tad	Ís	Al	為管	间形式	附附出	THA
€.3	(kinho)	(kid)	(king	(រស្វ	(Enn ²)	(cnr)	(kritina)	(kM)	ผู้กราตู้
2 - 2	833.40	0.00	691.87	1.00	18.71	72.82.	539.26	0.00	264.54
b-b	-770.07	0.00	514.53	1.00	22.62	15.71	707.35	0.00	2003.73
려 너	710.84	142.60	345.44	1.00	22,82	10.08	880.02	142.68	326.72
to - cs	519.60	93.30	188.83	0.59	22,82	10.08	720.41	29.30	2016.42

(n.b.: M* tondo lo litro di inimetrero, M-tordo le litro di cetradesseo)

				azi	oni	proprietà del terreno
			caso	permanenti	temporanee variabili	tan φ'
				sfavorevoli	sfavorevoli	
	15 0	caso A1+M1+R1	1.30	1.50	1.00	
		caso A1+M1+R3	1.30	1.50	1.00	
	SLD	Ã	sismica	1.00	1.00	1.25
	def.	ě	SLE_RARA	1.00	1.00	1.00

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

46.35 (kNm/m)

826.88 (kNm/m)

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 197 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Pes	A1) Peso del Muro (Pm)											
Pm1 =	(B2*H3* _γ cls)/2	=	31.25	(kN/m)								
Pm2 =	(B3*H3* _γ cls)	=	62.50	(kN/m)								
Pm3 =	(B4*H3* _γ cls)/2	=	0.00	(kN/m)								
Pm4 =	(B*H2* _γ cls)	=	115.00	(kN/m)								
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	208.75	(kN/m)								
A2) Peso del terreno sulla scarpa di monte del muro (Pt)												
Pt1 =	: (B5*H3* _γ ')	=	245.00	(kN/m)								
Pt2 =	(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)								
Pt3 =	(- : : : = / -	=	0.00	(kN/m)								
Pt =	Pt1 + Pt2 + Pt3	=	245.00	(kN/m)								

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

D41		/ N / Loo \	
DI.	Muro (UVIIII	

Mm1 = Pm1*(B1+2/3 B2)

Mt = Mt1 + Mt2 + Mt3

Mm2	=	Pm2*(B1+B2+0,5*B3)	=	118.75	(kNm/m)
Mm3	=	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4	=	Pm4*(B/2)	=	264.50	(kNm/m)
Mm :	=	Mm1 + Mm2 + Mm3 + Mm4	=	429.60	(kNm/m)
B2) T	errap	pieno a tergo del muro			
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	826.88	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	F	16	MU0023	REL		B	198 di
1013	213	L	Ю	10100023	INLL	OI OI	D	247

CONDIZIONE STATICA

Spinta totale condizione statica

St =	0,5* _γ '*(H2+H3+H4)²*ko	=	153.51	(kN/m)
Sq =	q*(H2+H3+H4)*ka	=	102.34	(kN/m)

componente orizzontale condizione statica

componente orizzontale condizione statica							
Sth =	St*cosδ	=	140.95	(kN/m)			
Sqh =	Sq*cosδ	=	93.96	(kN/m)			
componente verticale condizione statica							

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

MSt1 =	Sth*(H2+H3+H4)/3	=	281.89	(kN/m)
MSt2 =	Stv*B	=	279.83	(kN/m)
MSq1 =	Sqh*(H2+H3+H4)/2	=	281.89	(kN/m)
MSq2 =	Sqv*B	=	186.55	(kN/m)

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

Mfext1 =	m	=	0.00	(kNm/m)
Mfext2 =	f*(H3 + H2)	=	0.00	(kNm/m)
Mfext3 =	v*(B1 +B2 + B3/2)	=	0.00	(kNm/m)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 555.14 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1722.86 (kNm/m)

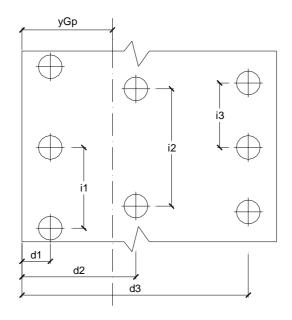
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 563.78 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1159.08 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 199 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) interasse pali (i1) = interasse pali (i2) = Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) (m) Fila n°2 2.40 3.60 distanza asse bordo valle (d2) = (m) (m) interasse pali (i3) = Fila n°3 distanza asse bordo valle (d3) = 0.00 (m) (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
caso	[kN]	[kNm]	[kN/m]
statico	555.14	117.74	234.91

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	774.84	557.48		281.89	376.16

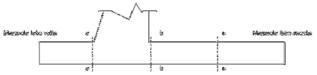
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 200 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------


CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo Rck = 30 → (Mpa) fetm = 0.48°Rck 1º2 = 2.63 (Mpa) Acciaio tipo di acciaio B450C ▼ fyk = 450 (Mpa) Es = 210000 (Mpa) coefficiente omogeneizzazione acciaio n = 15 Copriferro c = 6.40 (cm) (distanza asse armatura-bordo) Copriferro minimo di normativa c_{min} = 2.00 (cm) (ricoprimento armatura)

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Sezioni di Calcolo

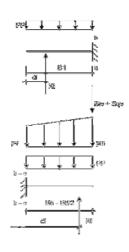
0.3 mm

tercenta Lein Valle

Main E Negation of the province of the second

 Σ entires a faith (pull proposal) so le morante.

Brownia Leto Moore


nen E nighterite till i Landerste a ingdettige a for a hopper till dettig after som en en en en en en en en en

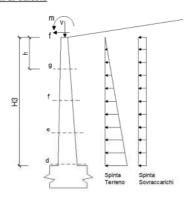
 $\mathsf{Mo} : \sum \mathsf{N}^*\mathsf{MESS} \mathsf{ALAM} - \mathsf{DP}^*\mathsf{MESS} \mathsf{ES} + \mathsf{por}^*\mathsf{DESS} \mathsf{ES} + \mathsf{pon} - \mathsf{por}^*\mathsf{DESS} \mathsf{ESS} \mathsf{ESS} + \mathsf{constant} + \mathsf{co$

 $\Sigma_{\rm c}$ and where the field 1 grad program and include the way and $\Sigma_{\rm c}$

	Me	Mis	Ma
C2888	(kikanan)	(Manan)	[k@m/m]
etalisa	31.00	-378.70	-188.23

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 201 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Ca	ategoria di	Suolo
i i	il muro ammette spostamenti? (si/no)	○ si	(no on	r = 1			
	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
S	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h^2 \, ^* h/2 \, \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Ni = % Ka_{ked}* y*(1/2k/y*)²

Mg = Ke_{ret}*g*h

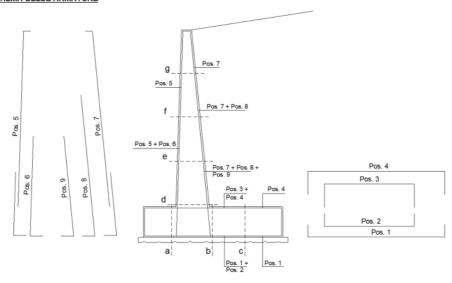
Mari = a

N princed Tring1284

condizione sintica

				\$6-46-012 (C.E.S.	COMP. ARMED COMP. 22					
sezione	İtii	随		Mase	Mari	NE	Mag	Mari	M _{ss}	Mesc
enemal or the	[m]	[kibbritan]	[kikkasim]	[kikkreim]	[kithra/m]	[kidm]	[ki-lima]	[kiklmj]	[kiklm]	[kîd/m]
6-6	5.00	189,13	195.78	0.00	355,89	42.24	39.80	0.00	99.75	189,79
6-6	9.75	88,82	110.11	0.00	178.99	23.76	25.35	0.00	64.45	113,56
14	2.50	20.39	A ()	0.00	89.39	10.58	18.90	0.00	39.08	89.52
G-G	1.25	2.55	12.28	0.00	14.78	2.84	8.45	0.00	17.59	28,87

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	E	16	MU0023	REL	01	В	202 di 247

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0	•	20.0	5	-	5.0		16.0
2	-	0.0	-	0.0	6	-	0.0		0.0
3	-	0.0	-	0.0	7	-	5.0	•	24.0
4	-	5.0	-	24.0	8	-	0.0	-	0.0
					0	-	0.0	-	0.0

Calcola

VERIFICHE

Condizione Striker

Sec.	isa	N	ħ	9A2	AT	ay G	e)Ř	
(-)	(Kritery)	(1k14)	(m)	(enf)	(cm²)	([4/mm]_)	(Monto)	
86 86	21.90	0.00	1.00	15.71	22.62	0.34	23.13	
5-5	-316.70	0.00	1.00	22.62	15.71	3.63	191.98	
ઇ! ઇ!	353.99	169.79	1.56	22.62	10.05	3.63	149,22	
9-6	170.93	113.56	0.66	22.62	19.05	2.32	63.34	

(n.b.: M4 tende la libre di Infradosso, M-tende le libre di enfradosso)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 203 di
L073	213	Е	16	MU0023	REL	01	В	247

coefficienti parziali

			azi	oni	proprietà del terreno
		caso	permanenti	temporanee variabili	tan φ'
			sfavorevoli	sfavorevoli	
SLU	\circ	caso A1+M1+R1	1.30	1.50	1.00
S	0	caso A1+M1+R3	1.30	1.50	1.00
SLD	0	sismica	1.00	1.00	1.25
def.	•	SLE_FR	1.00	0.75	1.00

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Pase del Muro (Pm)	A1)	Pesc	del	Muro	(Pm)
------------------------	-----	------	-----	------	------

Pm1 =	(B2°H3*yols)/2	=	31,25	(kN/m)
Pm2 =	(B31437yola)	=	82.50	(kN/m)
$P_{RG} =$	(B41H31yola)72	=	0.00	(kN/m)
Pm4 =	(BYHZYyole)	=	115.00	(kN/m)
$\mathbb{P}^{M} =$	Pm1 + Pm2 + Pm3 + Pm4	=	208.75	(kN/m)

A2) Paso del tarreno sulle scerpa di monta dal muro (Pt)

romay o	Casasana	desi destriction existing extensi pas del l'incritos dessi l'indire (i e)			
Pij	=	(B51H7Y)	=	245.00	(kN/m)
P12	=	(0,5°(B4+B5)°H4°y)	=	0.00	(kN/m)
Pt3	=	(B4°H3°y)/2	=	0.00	(kN/m)
Pί	=	Pt1 + Pt2 + Pt3	=	245.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISFETTO AL FIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mm1 = Pm1*(B1+2/3 B2)	=	46.35 (kNm/rr	h ĝ
Mm2 = Pm2*(81+82+0,5*B3)	=	118.75 (kNm/m	ı j
Mm3 = Pm3*(81+82+83>1/3 B4)	=	0.00 (kNm/rr	ı j
Mmel = Pmel*(Br2)	=	264.50 (kNm/rr	ı j
Mm = Mm1 ÷ Mm2 + Mm3 ÷ Mm4	=	429.60 (kNm/m	ı j

B2) Terrantieno a terror del muro

	,	brosse as another men course			
Mť	1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	= 825	3.88	(kNm/m)
ME	2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	= (00.0	(kNm⊮m)
Mit.	3 =	Pt3*(B1+B2+B3+2/3*B4)	= (00.0	(kNm/m)
ME	=	聞竹 + 開ゼ + 開稿	= 820	5.888	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 204 di
L073	213	E	16	MU0023	REL	01	В	204 di 247

CONDIZIONE STATICA

C) SPINTE DEL TERRENO E DEL SOVRACCA	RICO
--------------------------------------	------

componente orizzontale condizione statica

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 548.80 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1693.71 (kNm/m)

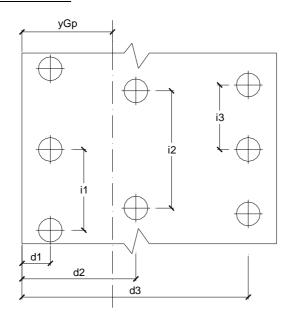
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 519.74 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = Ms - Mr = 1173.97 \quad (kNm/m)$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 205 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) interasse pali (i1) = Interasse pali (i2) = Fila n°1 distanza asse bordo valle (d1) = 1.00 (m) (m) Fila n°2 distanza asse bordo valle (d2) = 3.60 2.40 (m) (m) interasse pali (i3) = Fila n°3 distanza asse bordo valle (d3) = 0.00 0.00 (m) (m) Asse Baricentrico della Palificata (yGp) 2.300 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

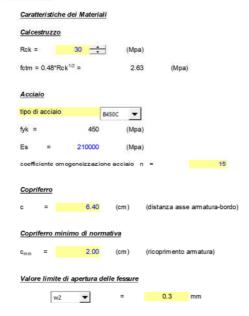
caso	Np	Мр	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	548.80	88.27	220.23

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
Caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	740.04	577.08		264.27	352.65

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore F	CEE 16	WBS MU0023	ld.doc. REL	N.prog.	Rev.	Pag.diPag. 206 di
10/3	213	L	Ю	IVIOUUZS	NLL	OI.	Б	247

CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

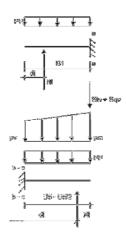
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Sezioni di Calcolo

Menaela Lete Valle

 Σ extens a fell i pull parased exita menoria

Marmola Letio Morris


 $m \times \sum M_{\rm e} \log \log \log M_{\rm e} - \log \log M_{\rm e} + \log \log M_{\rm e} + \log M_{\rm$

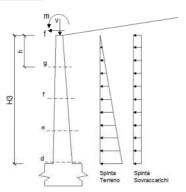
no - E prenosecije - province - portenijo - portenijo - portenijo ingrime - income

 Σ sectorar a simili i pulli provocati eclla momenta

556.69	Mas	146	M s
36360	[fishfandan]]	[kirkn An j	[kirknim]
1686650	252, 72	4999.61	~17次表演

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 207 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.36
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)	β m =		1.00	(-)	Coefficiente Ca	fficiente Categoria di Suolo	
atio	il muro ammette spostamenti? (si/no)	○ si		no 💿	r = 1			
ŭ	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	= "	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>.e</u>	componente verticale	kasv+	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
8	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h^2 \, ^* h/2 \, \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Ni = % Ka_{ked}* y 112kg h²

Na = Keren of h

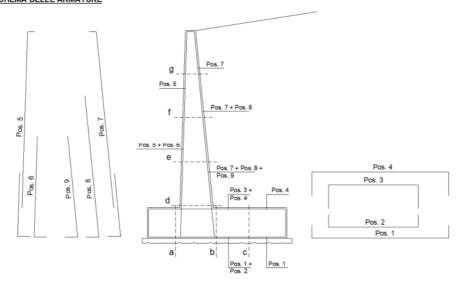
Mari = a

N princed Tring1284

condizione sintica

	Section of Comment of												
sezione	Pii	随		Mase	Mari	NE	Mag	Mari	M _{ss}	Mesc			
enemal or the	[m]	[kibbritan]	[kikkasim]	[kikkreim]	[kithra/m]	[kidm]	[ki-lima]	[kiklm]	[kkkm]	[kûl/m]			
6-6	5.00	189,13	185, 17	0.00	\$25,30	42.24	29,51	0.00	99.75	164.51			
6-6	9.75	88,82	92.91	0.00	161.78	23.76	21.39	0.00	84,45	109,60			
14	2.50	20.39	41.29	0.00	81.88	10.58	14.28	0.00	39.08	88.£8			
G-G	1.25	2.55	10.32	0.00	12.87	2.84	7.13	0.00	17.59	27.35			

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 208 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	pos	n°/ml	ø
1	5.0	20	5	5.0	16
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	24
4	5.0	24	8	0.0	0
			Q	0.0	0

Calcola

VERIFICHE

Condizione Sintica

Ser.	33	纠	R	典質	AT	1363	αÑ	18 M	Windows
(-)	gleMarsij	(NN)	(175)	(0889)	(000)	(PARTERY*)	(Morney)	(Crysts)	(orway)
3 - 3	29.72	0.00	1,00	15.71	22.82	0.32	21.55	0.029	0.300
b - b	-348.41	0.00	1.66	22.62	15.71	3.37	178.02	0.231	0.300
최 - 최	328,30	184.51	1,00	22.62	10.05	3,37	194,71	0.173	0.300
⊕ -⊕	191.73	100.60	0.88	22.62	10.05	2.10	73.99	ű.ú89	0.300

(n.b.: M4 tanda la fibra di intracionno, M-tanda la fibra di autracionno)

 $\underline{\text{M.S.}}$ La condizione atalica si sasume come azione di lunga durata o ripetula $\{\underline{p}_{i}=0.5\}$,

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 209 di
L073	213	E	16	MU0023	REL	01	В	247

826.88 (kNm/m)

coefficienti parziali

			azi	oni	proprietà del terreno		
		caso permanenti te		temporanee			
			permanenu	variabili	tan _φ '		
			sfavorevoli	sfavorevoli			
SLU	0	caso A1+M1+R1	1.30	1.50	1.00		
S	Ŏ	caso A1+M1+R3	1.30	1.50	1.00		
SLD	Õ	sismica	1.00	1.00	1.25		
def.	<u> </u>	SLE_QP	1.00	0.00	1.00		

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

Mit = Mit1 ÷ Mit2 ÷ Mit3

A1) Pe	60	del Muro (Pm)			
Fm1 =		(B2°H3°ycls)/2	=	31.25	(kWm)
Pm2 =		(B3*H3*\cls)	=	62.50	(kN/m)
Pm3 =		(B4°H3° _y cls)/2	=	0.00	(kWm)
Pm4 =		(B*H2*ycls)	=	115.00	(kN/m)
Pm =		Pm1 + Pm2 + Pm3 + Pm4	=	208.75	(kWm)
A2) Pe	80	del terreno sulla scarpa di monte del muro (Pt)			
Pt1	=	(B5*H3*\/)	=	245.00	(kN/m)
Pt2	=	(0,5°(B4+B5)°H4°γ')	=	0.00	(kN/m)
Pt3	=	(B47H3°7)/2	=	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	=	245.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm) Mm1 = Pm1*(B1+2/3 B2)46.35 (kNm/m) Mm2 = Pm2*(B1+B2+0.5*B3)= 118.75 (kNm/m) Mm3 = Pm3*(B1+B2+B3+1/3 B4)= 0.00 (kNm/m) Mm4 = Pm4*(B/2)=264.50 (kNm/m) Mm = Mm1 + Mm2 + Mm3 + Mm4 = 429.60 (kNm/m) B2) Terrapieno a tergo del muro Mt1 = Pt1*(B1+B2+B3+B4+0.5*B5)826,88 (kNm/m) $Mt2 = Pt2^{(B1+B2+B3+2/3^{\circ}(B4+B5))}$ 0.00 (kNm/m) Mt3 = Pt3*(B1+B2+B3+2/3*B4) = 0.00 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 210 di
L073	213	Е	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

C) SPINTE DEL TERRENO E DEL SOV	RACCARICO	į
---------------------------------	-----------	---

Spinta totale condizione static

 $St = 0,5^*\gamma^{1*}(H2+H3+H4)^2*ko$ = 153.51 (kN/m) $Sq = q^*(H2+H3+H4)^*ka$ = 38.38 (kN/m)

componente orizzontale condizione statica

componente verticale condizione statica

 $Stv = St^*sen\delta = 60.83$ (kN/m) $Sqv = Sq^*sen\delta = 15.21$ (kN/m)

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 529.79 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 1606.26 (kNm/m)

Momento ribaltante (Mr)

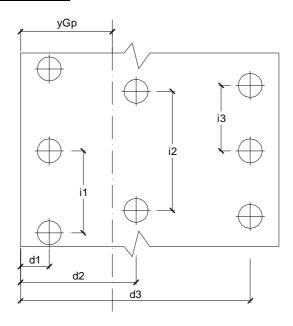
Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 387.60 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 1218.66 (kNm/m)

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	Е	16	MU0023	REL	01	В	211 di 247

(m)

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) Fila n° 1 distanza asse bordo valle (d1) = 1.00 (m) interasse pali (i1) = 2.40 (m) interasse pali (i2) = Fila n°2 distanza asse bordo valle (d2) = 3.60 2.40 (m) (m) interasse pali (i3) = distanza asse bordo valle (d3) = Fila n°3 0.00 0.00 (m) (m)

Asse Baricentrico della Palificata (yGp) = 2.300

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	529.79	-0.15	176.18

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	635.61	635.88		211.42	282.12

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	212 di 247

CALCOLI STATICI - Verifica a fessurazione


DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo Rck = 30 ---(Mpa) fctm = 0.48*Rck1/2 = 2.63 Acciaio B450C 210000 (Mpa) coefficiente omogeneizzazione acciaio n = 6.40 (cm) (distanza asse armatura-bordo) Copriferro minimo di normativa 2.00 (ricoprimento armatura) Valore limite di apertura delle fessure

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

w1 🔻

Sezioni di Calcolo

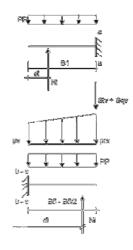
0.2 mm

Elements Late Valle

146 - Z 14681 - 674 - PPYLANESPA

 Σ exchange a tradit i qualit presented and he reconsider

Manaok Laio Moria


 $\mathsf{M} = \sum \mathsf{M}_{\mathsf{T}} \mathsf{M}_{\mathsf$

 $im = \mathbb{Z} \, \, \text{NYSS2} (S-4)$

 Σ extens a field (pail present only measure

6M25.6	ids	Mile	Ma
Gerap	[infrarentess]	[sil-tracky)]	[idhirasho]
ස්ත්රා ව	221.90	-327.31	-946.83

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 213 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm	1.00	(-)	Coefficiente C	ategoria di	Suolo
i±	il muro ammette spostamenti? (si/no)	○ si		● no	r = 1			
۵	coefficiente sismico orizzontale	kh	-	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
nta	componente orizzontale	kah	=	0.392	(-)			
Spinta	componente verticale	kav	=	0.169	(-)			
ë	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>.e</u>	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
Š	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = $\frac{1}{2} \frac{K_0^* \gamma^* h^2 h/3}{3}$ o $\frac{1}{2} \frac{K_0^* \gamma^* h^2 h/3}{3} + \frac{1}{2} \frac{g}{3} \frac{g}{3} + \frac{1}{2} \frac{h}{3} + \frac{1}{2} \frac{g}{3} \frac{g}{3} + \frac{1}{2} \frac{g}{3} + \frac{1}{2} \frac{g}{3} \frac{g}{3} + \frac{1}{2} \frac{g}{3} + \frac{1}{2} \frac{g}{3} \frac{g}{3} + \frac{1}{2} \frac{g$

 $Mq = \frac{1}{2} K_0 * q * h^2$ $M_{ext} = m + f * h$

M_{brodia} = EFm/fb/fda (ablo con atema)

 $Ni = \% Ka_{\rm vol}^* \gamma^* (1ske)^2 r^2$

Ng = Ka_{rat}*g*h

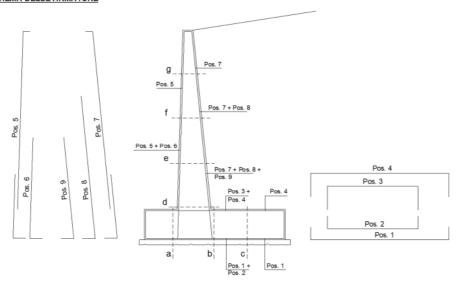
 $N_{opt} = v$

N presume IFm (15kg)

concilione statica

sezicae	Bir	鍵	Mg	Hex	BA ₆₀₄	NE	Maj	isl _{ess}	Magaz	KO ₆₀₄
000000000000000000000000000000000000000	[[60]]	[សមាល់នៅ]	[kbkwinj]	[[kiMawayay]	[[k:Nivativaj]	[kilderi]	[kiWaa]	[kiMhri]	[kivini]	[[kî#fazaj
લન્લ	5.00	168, 13	195.76	07.00	\$56,66	42.24	33.80	0.00	93.75	166.79
8-6	3.75	68.82	112.11	0.00	178.93	23,78	25.35	5.50	84,45	113.59
¥-¥	2.50	25), 369	48,84	9,50	66,33	10.56	16.90	0.00	39,06	66,52
ଷ୍ଟ-ସ	1.25	255	12.23	52,550	14.78	264	8.45	0.00	17.56	28.67

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 214 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0		20.0	5		5.0		16.0
2	-	0.0	-	0.0	6	7	0.0	-	0.0
3	-	0.0	-	0.0	7	-	5.0	-	24.0
4	-	5.0		24.0	8		0.0		0.0
					9	-	0.0	-	0.0

Calcola

VERIFICHE

Condizione Statica

őst.	1641	N	lì	Af	桑哲	QĈ	্য	we	W 9879
(-)	(kMm)	(kN)	(282)	(cm²)	(සාභ ³)	(Nimm')	$(Maxes^2)$	(resses)	(mm)
30 ~ 82	23.19	0.00	1.00	15.79	22.62	0.25	16.52	0.023	0.200
ha - h	-267.31	0.00	1.00	22.62	45.74	2.57	198.19	0.177	0.200
레 ~ 다	358.89	169.73	1.00	22.62	10.05	3.66	149.22	0.192	0.200
B ~S	178.83	113.56	0.88	45.24	10.05	1.85	43.88	0.042	0.200

(r.b.: Mr tende la fibre di intradroso, M- tende la fibre di astradroso);

 $\underline{\text{M.B.}}$ Le constitions sietice el essume como azione di lunga durete o ripetata (η_{c} =0.5),

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

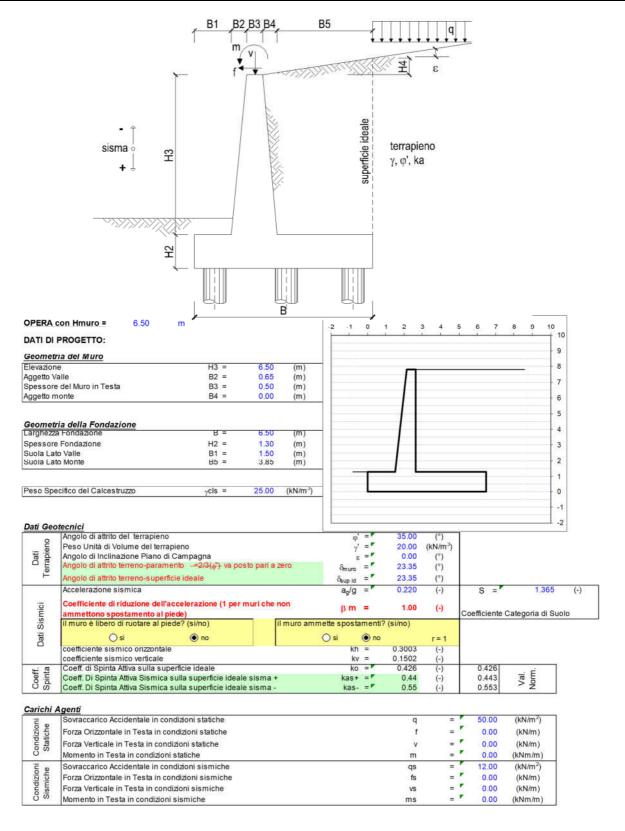
OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 215 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

ALLEGATO 4

TABULATI DI CALCOLO MURO DI SOTTOSCARPA: TIPO 3


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 216 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 217 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

				coefficienti p	arziali
			azio	oni	proprietà del terreno
		caso	permanenti	temporanee variabili	tan _φ '
			sfavorevoli	sfavorevoli	
SLI	•	caso A1+M1+R3	1.30	1.50	1.00
SLD	\circ	sismica	1.00	1.00	1.25
def.	0	-	1.10	1.10	1.20

Dati Geotecnici	(usati p	per verifiche	di stabilità	e SLU)
-----------------	----------	---------------	--------------	--------

Dau	(daati per verilione di stabilità e oco)						
	Angolo di attrito del terrapieno	φ'	=	35.00	(°)		
	Peso Unità di Volume del terrapieno	γ'	=	26.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
	Angolo di attrito terreno-superficie ideale	δ_{sup} id	=	23.35	(°)		
9± 5	Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.426	(-)	0.426	
Coeff.	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val. Norm
0 0	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	^ Z

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

	earroin /	dout per termene di stabilità e dilo ezo,				
	i e		q	=	75.00	(kN/m ²)
	izio	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
- 1	ond	Forza Orizzontale in Testa in condizioni statiche Forza Verticale in Testa in condizioni statiche Momento in Testa in condizioni statiche Sovraccarico Accidentale in condizioni sismiche	V	=	0.00	(kN/m)
	ပ္တိတိ	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
	Ē 0	Sovraccarico Accidentale in condizioni sismiche	qs	=	18.00	(kN/m ²)
1	ich	Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
	Sm	Forza Verticale in Testa in condizioni sismiche	VS	=	0.00	(kN/m)
	8 8	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

A) PORZE VERTICALI

A1)	Pess	ckil	Mura	(Pm)	
-----	------	------	------	------	--

14444 :::	(BZTDYCS)/Z	==	52.81	
Pm2 =	(B3743 yels)	==	81.25	(kMm)
Pm3 =	(B4715701s)/2	==	0.00	(kiVm)
Pm4 =	(B*HZ*yols)	==	211.25	(kiN/m)
Pm :=	Pm1 + Pm2 + Pm3 + Pm4	:::	345,31	(AMM)

P11	=	(357137)	==	500,50	(AMm)
Pt2	=	(0,5*(04+05)*14*/)	===	0.00	(AMm)
Pte	=	(HTSYYZ	:::	0.00	(kMm)
Pf		PH + PH + PH	===	500 50	(kilding)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mm1 =	Pm1*(B1+2/3 B2)	= 19	12.10	(MANANA)
Mm2 =	Pm2*(B1+B2+0,5*B3)	= 19	35.00	(mindes)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(m/md/k)
Mm4 =	Pm4*(B/2)	= 6	88.56	(m/md/ts)
Mm =	Min1 + Min2 + Min3 + Min4	= 98	33.67	(hthanism)

82) T	ena	pieno a tergo del muro			
Mil	\simeq	P11*(B1+B2+B3+B4+0,5*B5)	=	2269.79	(ht/hm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(Mississi)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(MASSING)
Mt	=	Mt1 + Mt2 + Mt3	=	2289.79	(kf/km/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag
L073	213	E	16	MU0023	REL	01	B	218 di
- 1		E	CLL	_		01	В	218 di 247

CONDIZIONE STATICA

(A1+M1+R3)

C) SPINTE DEL TERRENO E DEL SOVRACCARICO

Spinta totale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

 $MSt1 = Sth^*(H2+H3+H4)/3$ = 805.11 (kN/m) $MSq1 = Sqh^*(H2+H3+H4)/2$ = 893.24 (kN/m)

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

Mfext1 = m = 0.00 (kNm/m) Mfext2 = f*(H3 + H2) = 0.00 (kNm/m) Mfext3 = v*(B1 +B2 + B3/2) = 0.00 (kNm/m)

AZIONI COMPLESSIVE SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 1078.31 (kN/m)

Risultante forze orizzontali (T)

= Sth + Sqh + f = 538.69 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 4784.70 (kNm/m)

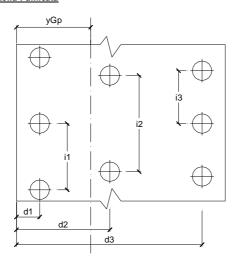
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 1698.35 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 3086.35 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 219 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 Fila n°2 0.80 3.25 distanza asse bordo valle (d1) = (m) interasse pali (i1) = (m) 1.82 interasse pali (i2) = distanza asse bordo valle (d2) = (m) (m) distanza asse bordo valle (d3) = interasse pali (i3) = Fila n°3 5.70 (m) (m) Asse Baricentrico della Palificata (yGp) 3.250

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

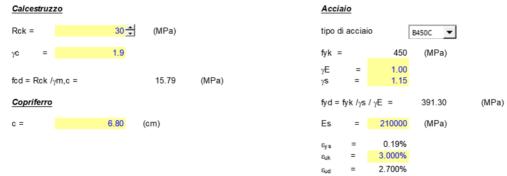
caso	Np	Мр	Тр
caso	[kN/m]	[kNm/m]	[kN/m]
statico	1078 31	418 16	538 69

Sollecitazioni sui pali

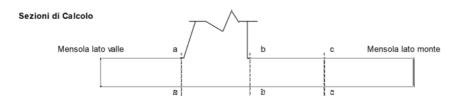
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	809.49	654.18	498.86	326.81	436.10

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

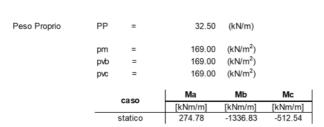

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L073	213	E	16	MU0023	REL	01	В	247

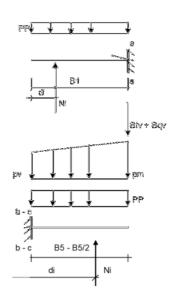
CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Mensola Lato Valle


 $Ma = \sum N_1(B1 - C_1) / \frac{1}{4} - PP^2(12N_2^2B1^2/2)$


 Σ exters a tutti i pali prezenti sulla mansola

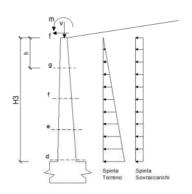
Menucia Late Mente

 $Mb = \sum N^*(85 \cdot \{8 - 4\})^*(-\{FF^*85^2/2 + par85^2/2 + (pan - par)^*85^2/2\}^*(14b)^* - (8b)^*8q)^* \cdot 85$

 Σ estesa a tutti i pali presenti sulla mensola

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 221 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

77	Accelerazione sismica	a _g /g	= ,	0.22	(-)	s	=	1.37
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Catego	oria di Suc	olo
S	il muro ammette spostamenti? (si/no)	○ si	(no	r = 1			
Ö	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta Attiva sulla parete	ka	= '	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= '	0.443	(-)	0.443		
Ħ	componente orizzontale	kash+	=	0.407	(-)			
.e.	componente verticale	kasv+	=	0.175	(-)			
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= '	0.553	(-)	0.553		
ပိ	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = ½ Ko* γ**h²*h/3

½ Ka_{orizz} * γ*(1±kv)*h²*h/2 (con sisma)

Mq = $\frac{1}{2}$ K_o*q*h² M_{ext} = m+f*h

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$ (solo con sisma)

condizio

 $Nt = \frac{1}{2} Ka_{vert} *_{\gamma} *_{(1\pm kv)} *_{h^2}$ $Nq = Ka_{vert} *_{q} *_{h}$ $N_{ext} = v$

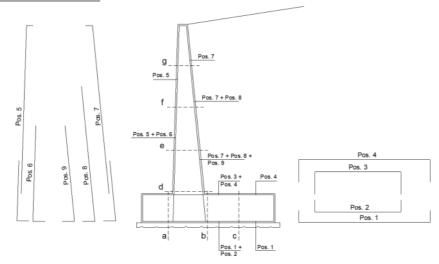
N pp+inerzia = ∑Pm;*(1±kv)

sezione	100,000		100000	- NAS	1101	- 1
SCZIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	_
d-d	6.50	215.04	190.86	0.00	405.90	
e-e	4.88	120.96	143.15	0.00	264.11	
f-f	3.25	53.76	95.43	0.00	149.19	
g-g	1.63	13.44	47.72	0.00	61.16	

condizione statica

sezione	h	Mt	Mt Mq	Mext	M _{tot}	Nt	Nq	Next	Npp	N _{tot}	
sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	6.50	465.92	620.31	0.00	1086.22	92.81	82.38	0.00	134.06	309.25	
е-е	4.88	196.56	348.92	0.00	545.48	52.21	61.78	0.00	90.64	204.63	
f-f	3.25	58.24	155.08	0.00	213.32	23.20	41.19	0.00	53.83	118.22	
g-g	1.63	7.28	38.77	0.00	46.05	5.80	20.59	0.00	23.61	50.01	

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 222 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

VERIFICHE

pos		n°/ml		ф	pos		n°/ml		φ
1	•	5.0		20	5		5.0	•	20
2	-	0.0	-	0	6	-	0.0	-	0
3	-	5.0	-	24	7	-	5.0	-	24
4	-	5.0	-	24	8	-	5.0		24
					a		5.0		0

 $b \approx 1.0 m$

Calcola

			4004
		a-a	pos 1-2-3-4
		b-b	pos 1-2-3-4
	1	C-C	pos 1-4
 A'f	T T	d-d	pos 5-7-11-10-
	h	e-e	pos 5-7-11-10-
 Af		f-f	pos 5-10-8
		Q-17	pes 5-3

\$00 m	Mag	Naci	TSZ	lts .	Af	英省	Rappag	國際到	TRai
(-)	(shire)	(KN)	(KN)	(m)	(csn^2)	(000°)	(KNATE)	(KN)	\$16)
28 ~ W	274.76	0.00	366.63	1.30	15.71	45.24	726.66	0.00	304.83
B − B	~1336.63	0.00	-374.74	1.30	45.24	15.71	2083.14	0.00	433.70
ಚ - ಚ	1090.22	308.25	405.40	1.15	45.24	15.71	1867.87	308.25	448.05
65 ~65	545.46	204.63	264.11	0.98	45.24	15.71	1613.86	204.03	324.63

(n.t.). M+ tende le time d'infrantesco, M-tende le libre di cotradesco)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 223 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

coeff	iciant	ti na i	ria li

			azio	oni	proprietà del terreno				
		caso	permanenti	temporanee					
		0000	permanent	variabili	tan φ'				
			sfavorevoli	sfavorevoli					
SLU	0	caso A1+M1	1.30	1.50	1.00				
S	0	caso A2+M1	1.00	1.30	1.00				
SLV	•	Sismica+M1+R3	1.00	1.00	1.00				
def.	0		1.10	1.10	1.20				

Dati Geotecnici (usati per verifiche di stabilità e SLU)

	(acan per remente al cialemia e cae)						
9	Angolo di attrito del terrapieno	φ'	=	35.00	(°)		
	Peso Unità di Volume del terrapieno	γ'	=	20.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	ε	=	0.00	(°)		
e.	Angolo di attrito terreno-paramento	δ_{muro}	=	23.35	(°)		
-	Angolo di attrito terreno-superficie ideale	$\delta_{ extsf{sup}}$ id	=	23.35	(°)		
∓. ta	Coeff. di Spinta a riposo sulla superficie ideale	ko	=	0.426	(-)	0.426	≕ É
Coeff. Spinta	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.44	(-)	0.443	Val
O S	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.55	(-)	0.553	- 2

Carichi Agenti (usati per verifiche di stabilità e allo SLU)

i a	Sovraccarico Accidentale in condizioni statiche	q	=	50.00	(kN/m ²)
izi	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
Condizioni Statiche	Forza Verticale in Testa in condizioni statiche	V	=	0.00	(kN/m)
2 0	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
- = o	Sovraccarico Accidentale in condizioni sismiche	qs	=	12.00	(kN/m ²)
izio	Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
Condizioni Sismiche	Forza Verticale in Testa in condizioni sismiche	VS	= "	0.00	(kN/m)
2 2	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

A) FORZE VERTICALI

A1)	Peso	del	Muro	(Pm)

Pm1 =	(B2*H3* _γ cIs)/2	=	52.81	(kN/m)
Pm2 =	(B3*H3*ycls)	=	81.25	(kN/m)
Pm3 =	(B4"H3"yols)/2	=	0.00	(kN/m)
PmM =	(B*H2*yols)	=	211.25	(kN/m)
$\rho_m =$	Pm1 + Pm2 + Pm3 + Pm1	=	345.31	(kN/m)

A2) Poso del terreno sulla scarpa di monte del muro (Pt)

Pt	=	FM1 + FM2 + FM3	=	500.50	(kN/m)
PK3	=	(B4°H3° ₄)/2	=	0.00	(kN/m)
Pt2	\equiv	(0,5"(B4+B5)"H4"Y)	=	0.00	(kN/m)
Pt1	\equiv	(B5°H3'Y)	=	500.50	(kN/m)

B) INOMENTI DELLE FORZE VERT, RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Meni =	Pm1*(51+2/3 52)	=	102.10	(kNm/m)
Mm2 =	Pm2*(51+62+0,5*63)	=	195,00	(kNm/m)
Mm3 =	Pm3*(81+82+83+1/3 84)	=	0.00	(kMm/m)
Mm4 =	Pre4*(8/2)	=	696.56	(kMm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	983.67	(kNm/m)
52) Ten	apieno a terpo del muro			
Mti =	Pt1*(51+52+53+54+0,5*55)	=	2289.79	(kNew/m)
8.86% -	「ちゃうかいちょうかったります」というない。	_	n nn	1 beliation from A

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 224 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CONDIZIONE SISMICA +

MM = Ms - Mr

(SISMA+M1+R3)

CONDIZIONE SISMICA + (SISMA+M1+R3)		
C) SPINTE DEL TERRENO E DEL SOVRACCARICO)			
Incremento di spinta in condizione sismica +				
$Sst1 = a_{q}/g^{*}S^{*}\gamma^{'*}(H2+H3+H4)^{2}$	=	365.41	(kN/m)	
$Ssq1 = qs^*(H2+H3+H4)*kas^+$	=	41.45	(kN/m)	
componente orizzontale condizione sismica +				
Sst1h = Sst1*cosδ	=	335.49	(kN/m)	
Ssq1h = Ssq1* $\cos\delta$	=	38.06	(kN/m)	
334111 = 3341 C030	_	30.00	(KIN/III)	
componente verticale condizione sismica +		444.00	(I. N.I.()	
Sst1v = Sst1*sen δ	=	144.80	(kN/m)	
Ssq1v= Ssq1*senδ	=	16.43	(kN/m)	
D) MOMENTI DELLA SPINTA DEL TERRENO E DEI	SOVEACCAR	ICO		
condizione sismica +	L SOVRACCAR	100		
MSst1 = MSt1+Sst1h * (H2+H3+H4)/2	=	1927.73	(kN/m)	- Momento dovuto alla spinta a riposo+Incremento sismico
MSst2 = Sst1v* B	=	941.19	(kN/m)	Womento dovato ana spinta a riposo finoremento sismico
MSsq1 = Ssq1h * (H2+H3+H4)/2	=	148.43	, ,	
MSsq2 = Ssq1v * B	=	106.77	(kN/m)	
100042 - 0041V D	=	100.11	(14/111)	
INERZIA DEL MURO E DEL TERRAPIENO				
Inerzia del muro (Ps)				
Ps = Pm*kh	=	103.70	(kN/m)	
Inerzia orizzontale e verticale del terrapieno a tergo de	el muro (Pts)			
Ptsh = Pt*kh	=	150.30	(kN/m)	
Ptsv = Pt*kv	=	75.15	(kN/m)	
Incremento di momento dovuto all'inerzia del muro (M	Ps)			
MPs1 = kh*Pm1*(H2+H3/3)	=	54.98	(kNm/m)	
MPs2 = kh*Pm2*(H2 + H3/2)	=		(kNm/m)	
MPs3 = kh*Pm3*(H2+H3/3)	=		(kNm/m)	
MPs4 = kh*Pm4*(H2/2)	=		(kNm/m)	
MPs = MPs1+MPs2+MPs3+MPs4	=		(kNm/m)	
Incremento di momento dovuto all'inerzia del terrapier	no (MPts)			
MPts1 = $kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)$	=	340.05	(kNm/m)	
MPts2 = $kh*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)$			(kNm/m)	
MPts3 = $kh^*Pt3^*((H2+H3^*2/3)-(B1+B2+B3+2/3^*B4)^*)$			(kNm/m)	
MPts = MPts1 + MPts2 + MPts3	=		(kNm/m)	
FORZE ESTERNE				
Momento dowto alle Forze Esterne (Mfext)				
Mfext1 = ms	=	0.00	(kNm/m)	
Mfext2 = fs*(H3 + H2)	=		(kNm/m)	
Mfext3 = $vs*(B1 + B2 + B3/2)$	=		(kNm/m)	
AZIONI COMPLESSIVE SULLA FONDAZIONE				
Risultante forze verticali (N)		a ml		
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + Ptsv	/ =	1184.99	(kN/m)	
,			. ,	
Risultante forze orizzontali (T)				
T = Sth + Sst1h + Ssq1h + fs + Ps + Ptsh	=	865.75	(kN/m)	
Momento stabilizzante (Ms)		4004 41	/ I.M / ^	
Ms = Mm + Mt + MSst2 + MSsq2 +Mfext3	=	4321.41	(kNm/m)	
Momento ribaltante (Mr)				
Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+Mpt	s =	2623.45	(kNm/m)	
Risultante dei momenti rispetto al piede di vallo (MMA)				
Risultante dei momenti rispetto al piede di valle (MM)				

1697.96 (kNm/m)

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

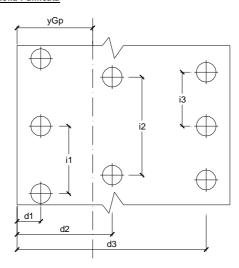
Opera L073	Tratto 213	o Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 225 di 247
---------------	---------------	----------------	-----------	---------------	----------------	----------------	-----------	------------------------------

CONDIZIONE SISMICA-

(SISMA+M1+R3)

CONDIZIONE SISINICA -	(SISWA+WITHS)		
C) SPINTE DEL TERRENO E DEL SOVRACCARIO Incremento di spinta in condizione sismica -	o		
$Sst2 = a_0/g^*S^*\gamma'^*(H2+H3+H4)^2$	=	365.41	(kN/m)
Ssq2 = qs*(H2+H3+H4)*kas	=	51.78	(kN/m)
, , , ,			(' '
componente orizzontale condizione sismica -			
$Sst2h = Sst2*cos\delta$	=	335.49	(kN/m)
$Ssq2h = Ssq2*cos\delta$	=	47.54	(kN/m)
componente verticale condizione sismica -		444.00	(1.81/)
$Sst2v = Sst2*sen\delta$	=	144.80	(kN/m)
Ssq2v = Ssq2*sen δ	=	20.52	(kN/m)
D) MOMENTI DELLA SPINTA DEL TERRENO E D condizione sismica -	EL SOVRACCARIO	0	
MSst1 = MSt1+Sst2h * (H2+H3+H4)/2	=	1927.73	(kN/m)
MSst2 = Sst2v*B	=	941.19	(kN/m)
MSsq1 = Ssq2h * (H2+H3+H4)/2	=	185.40	(kN/m)
MSsq2 = Ssq2v * B	=	133.36	(kN/m)
INERZIA DEL MURO E DEL TERRAPIENO Inerzia del muro (Ps)			
Ps = Pm*kh	=	103.70	(kN/m)
Inerzia orizzontale e verticale del terrapieno a tergo	del muro (Pts)		
Ptsh = Pt*kh	=	150.30	(kN/m)
Ptsv = Pt*kv	=	-75.15	(kN/m)
	(MD-)		
Incremento di momento dovuto all'inerzia del muro (MPs1 = kh*Pm1*(H2+H3/3)	,	E4 00	(kNm/m)
MPS1 = KII PIII (n2+n3/3) MPS2 = kh*Pm2*(H2 + H3/2)	= =	54.98 111.02	. ,
MPs3 = kh*Pm3*(H2+H3/3)	=	0.00	. ,
MPs4 = kh*Pm4*(H2/2)	_	41.23	,
MPs = MPs1+MPs2+MPs3+MPs4	=	207.23	,
6 62 66 6.		201.20	(, , ,
Incremento di momento dovuto all'inerzia del terrapi	eno (MPts)		
MPts1 = $kh*Pt1*((H2 + H3/2) + (B - B5/2)*0.5)$	=	1027.68	(kNm/m)
MPts2 = $kh*Pt2*((H2 + H3 + H4/3) + (B - B5/3)*0.$.5) =	0.00	(kNm/m)
MPts3 = kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*B)	(4)*0.5) =	0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3	=	1027.68	(kNm/m)
FORZE ESTERNE			
Momento dovuto alle Forze Esterne (Mfext) Mfext1 = ms	_	0.00	(kNm/m)
Mfext2 = fs*(H3 + H2)	= =	0.00	(kNm/m) (kNm/m)
Mfext3 = vs*(B1 + B2 + B3/2)	=	0.00	(kNm/m)
WIOXIO = 40 (B1 182 1 80/2)	_	0.00	(10.4117.111)
AZIONI COMPLESSIVE SULLA FONDAZIONE			
Risultante forze verticali (N)		a ml	
N = Pm + Pt + vs + Stv + Sst1v + Ssq1v + Pt	isv =	1038.78	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sst1h + Ssq1h + fs+Ps + Ptsh	=	875.22	(kN/m)
Manager and Programme (A.C.)			
Momento stabilizzante (Ms)		40.40.00	/ Ishlan / co. S
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	4348.00	(kNm/m)
Momento ribaltante (Mr)			
Momento ribaltante (Mr) Mr = MSst1+MSsq1+Mfext1+Mfext2+MPs+M	lpts =	3348.03	(kNm/m)
WII - WOOTT TWOOGY I TWING ALL TWIFS TW		JJ-JJ.UJ	(10.40.1/111)
Risultante dei momenti rispetto al piede di valle (MI	M)		
MM = Ms - Mr	=	999.97	(kNm/m)
			,

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 226 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 0.80 (m) interasse pali (i1) = (m) interasse pali (i2) = Fila n°2 distanza asse bordo valle (d2) = 3.25 (m) (m) Fila n°3 distanza asse bordo valle (d3) = 5.70 (m) interasse pali (i3) =

3.250

Risultante forze verticali (Np = N)

Asse Baricentrico della Palificata (yGp)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
caso	[kN/m]	[kNm/m]	[kN/m]
sisma+	1184.99	2153.26	865.75
sisma-	1038.78	2376.08	875.22

Sollecitazioni sui pali

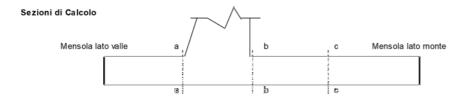
caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
	[kN]	[kN]	[kN]	[kN]	[kNm]
sisma+	1518.68	718.90	-80.89	525.22	700.86
sisma-	1512.74	630.20	-252.35	530.97	708.53

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag. 227 di
L073	213	Е	16	MU0023	REL	01	В	247 247

CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI

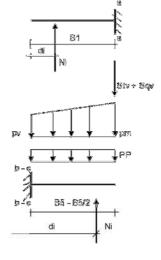
CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Menacia Lato Valle

 $Ma = \sum N^*(81 - 4) I - PP^*(1254)^8 1^2/2$

 Σ estesa a tutti i pali presenti sulla mensola

Manaola Lato Monta


MD = 1 N°(85-(8-4))A - [PP°85*X + pac°85*X + gan - pac)°85*X]°(12kv) - (86v*8q) ° 85

Me = 1. N/(85/2-(8-4))/1 - [PP*(85/2)//2 + pac*(85/2)//2 + gan - pac}*(85/2)//314//4 - (85/2 86/4 * 85/2

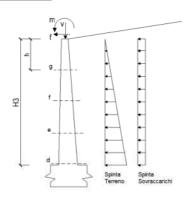
 Σ setose e tutti i peli proventi sulla mensola

	Ma	Mb	Mc
caso	[kNm/m]	[kNm/m]	[kNm/m]
sisma+	542.06	-1904.43	-706.65
eiema.	550.75	-1875 10	-730 ng

Та	ТЬ
[kN]	[kN]
778.37	-530.23
780 74	_180 30

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 228 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.365
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm =	1.00	(-)	Coefficiente Cat	egoria di S	Suolo
ati S	il muro ammette spostamenti? (si/no)	◯ si		no	r = 1			
Õ	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
1022-11	Coeff. di Spinta a Riposo sulla parete	ka	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.443	(-)	0.443		
듇	componente orizzontale	kash+	=	0.407	(-)	100/10/30		
S.	componente verticale	kasv+	= 0	0.175	(-)			
Coefficienti di	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.553	(-)	0.553		
8	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

Mt = ½ K_o* γ*h²*h/3

o $\frac{1}{2}$ Ko* γ *h2*h/3 + a_g/g *S* γ **h²*h/2 (con sisma)

 $\begin{array}{ll} Mq & = 1 \% \ K_o * q * h^2 \\ M_{ext} & = m + f * h \end{array}$

 $M_{inerzia} = \sum Pm_i *b_i *kh$ (solo con sisma)

Nt = $\frac{1}{2} \text{Ka}_{\text{vert.}} + \frac{1}{2} \frac{1 \pm \text{kv}}{h^2}$ Nq = $\text{Ka}_{\text{vert.}} + \frac{1}{2} \frac{1 \pm \text{kv}}{h}$

 $N_{\text{ext}} = v$ $N_{\text{pp+inerzia}} = \sum Pm_i^*(1\pm kv)$

cond	izione	sismica	+
-			•

sezione	h	Tt	Tq	Text	Tinerzia	Ttot
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.50	433.92	31.72	0.00	40.26	505.89
е-е	4.88	244.08	23.79	0.00	27.22	295.09
f-f	3.25	108.48	15.86	0.00	16.16	140.50
q-q	1.63	74.70	7.93	0.00	7.09	89.72

condizione sismica +

	Terrange distinct										
sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.50	1215.05	103.08	0.00	113.66	1431.79	85.28	13.69	0.00	154.19	253.16
е-е	4.88	512.60	57.98	0.00	59.10	629.68	47.97	10.27	0.00	104.25	162.49
f-f	3.25	151.88	25.77	0.00	24.12	201.77	21.32	6.84	0.00	61.91	90.08
g-g	1.63	18.99	6.44	0.00	5.49	30.92	5.33	3.42	0.00	27.16	35.91

condizione sismica -

					ondizione si	Jillou					
sezione	h	Mt	Mq	Mext	Minerzia	M _{tot}	Nt	Nq	Next	N _{pp+inerzia}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.50	1215.05	128.75	0.00	113.66	1457.46	78.71	17.10	0.00	113.93	209.74
e-e	4.88	512.60	72.42	0.00	59.10	644.12	44.27	12.82	0.00	77.03	134.13
f-f	3.25	151.88	32.19	0.00	24.12	208.19	19.68	8.55	0.00	45.75	73.97
g-g	1.63	18.99	8.05	0.00	5.49	32.52	4.92	4.27	0.00	20.07	29.26

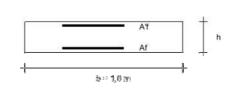
 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 229 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------


9 Pos. 7 Pos. 7 + Pos. 8 Pos. 7 + Pos. 8 + Pos. 4 Pos. 3 Pos. 3 Pos. 3 Pos. 3 Pos. 3 Pos. 4 Pos. 3 Pos. 3 Pos. 1 Pos. 1 Pos. 1 Pos. 1 Pos. 1

ARMATURE

VERIFICHE

pos		n°/ml		ф	pos		n°/ml		φ
1	•	5.0	•	20.0	5	-	5.0	-	20.0
2		0.0		0.0	6		0.0	-	0.0
3	•	5.0		24.0	7		5.0	-	24.0
4		5.0		24.0	8		5.0		24.0
					9	-	5.0	-	0.0

Calcola

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-7-11-10-8
е-е	pos 5-7-11-10-8
f-f	pos 5-10-8
93	pons S &

Ball.	Mond	Plead	Tad	Ís	At	典官	间形式	图形组	TRa
(-)	(kilinn)	(RiV)	(KM)	ខ្នែកផ្ទំ	(cm²)	(end)	(kilder)	(kiN)	(กก)
	ortings report	or mm	total tick	4 8501	ator rotat	40 PM	19795 7979	M 0101	6101 / 69F
요~ 요	550.75	0.00	768.74	1.30	15.71	45.24	7780.633	0.00	304.50
5 - B	-18854.43	0.00	530,23	1.330	45.24	15.71	20201.14	0.00	433.70
d d	1457.48	200.74	505.60	1.18	45.34	15.71	10000.000	200.74	440.05
£2 - 63	1944, 12	134, 13	205.00	0.00	22,82	15.71	840.23	134.13	334.63

(n.b.: M* tondo lo litro di inimetrero, M-tordo le litro di cetradesseo)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

0.00

500.50

(kN/m)

(kN/m)

0.00 (kNm/m)

2289.79 (kNm/m)

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 230 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

coeffi	cienti	parziali	

			azio	oni	proprietà del terreno	
		caso	permanenti	temporanee	ton -!	
				variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLU	0	caso A1+M1+R1	1.30	1.50	1.00	
₂₀ <	0	caso A1+M1+R3	1.30	1.50	1.00	
SLD	0	sismica	1.00	1.00	1.25	
def.	•	SLE_RARA	1.00	1.00	1.00	

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

Pt3 = $(B4*H3*_{\gamma}')/2$

= Pt1 + Pt2 + Pt3

Mt3 = Pt3*(B1+B2+B3+2/3*B4)

= Mt1 + Mt2 + Mt3

Pt

A1) Peso	del Muro (Pm)			
Pm1 =	(B2*H3*γcls)/2	=	52.81	(kN/m)
Pm2 =	(B3*H3* _γ cls)	=	81.25	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*γcIs)	=	211.25	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	345.31	(kN/m)
A2) Peso	del terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3* _γ ')	=	500.50	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro	(Mm)			
Mm1 =	Pm1*(B1+2/3 B2)	=	102.10	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	195.00	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	686.56	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	983.67	(kNm/m)
B2) Terrap	pieno a tergo del muro			
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	=	2289.79	(kNm/m)
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 231 di
L073	213	Е	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

C) SPINTE DEL	TERRENO E DEL	SOVRACCARICO
---------------	---------------	--------------

componente orizzontale condizione statica

 $Sth = St^*cos\delta = 238.20 (kN/m) \\ Sqh = Sq^*cos\delta = 152.69 (kN/m)$

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 1014.52 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 4370.05 (kNm/m)

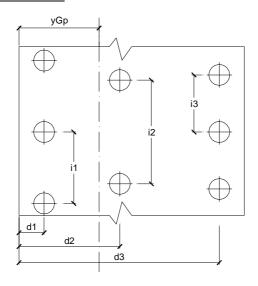
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 1214.81 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = Ms - Mr = 3155.24 \quad (kNm/m)$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 232 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

Caratteristiche della Palificata

Diametro dei pali 0.80 (m) Fila n°1 distanza asse bordo valle (d1) = 0.80 (m) interasse pali (i1) = 1.82 (m) Fila n°2 distanza asse bordo valle (d2) = 3.25 (m) interasse pali (i2) = 1.82 interasse pali (i3) = Fila n°3 distanza asse bordo valle (d3) = 5.70 1.82 (m) (m) Asse Baricentrico della Palificata (yGp) 3.250 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Мр	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	1014.52	141.95	390.89

Sollecitazioni sui pali

caso	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
Caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	668.20	615.48	562.75	237.14	316.44

Caratteristiche dei Materiali

2.12PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

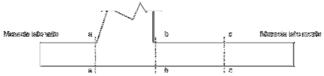
 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 233 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLI STATICI - Verifica a fessurazione


DATI DI PROGETTO:

Calcestruzzo 30 亡 (Mpa) fctm = 0.48*Rck^{1/2} = Acciaio tipo di acciaio 210000 (Mpa) Copriferro 6.80 (cm) (distanza asse armatura-bordo) Copriferro minimo di normativa 2.00 (cm) (ricoprimento armatura)

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Valore limite di apertura delle fessure

Sezioni di Calcolo

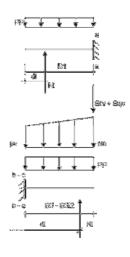
0.3 mm

Manasolu Lata Vulla

Ma=ZHPH-GH-FPMWBPFZ

 Σ natural e totif i ped palement solla mesocial

Managha Late Monte


 $m_0 = \sum |\psi(y) x - (y - y) y - (y) x$

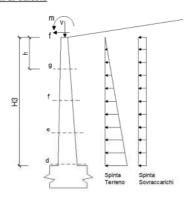
 $m = \sum |\psi| \otimes \pi \otimes (\log \log_{10} - |\psi|^{2}) \otimes \pi \otimes (\log \log^{2} 2) + (m - |\psi| \otimes (\log^{2} 2))^{2}) \otimes \pi \otimes (\log^{2} 2) + (m - |\psi| \otimes (\log^{2} 2))^{2}) \otimes \pi \otimes (\log^{2} 2) \otimes ($

 Σ webwea a telih i pali permedi sella musuoka

(25/5/8)	20ks	Mb	Me
6235700	[Sildmint]	[biNaviari]	[Elviranian)
शतिकारिक क	220,46	-985.94	-360,25

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 234 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.36
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)	β m =			(-)	Coefficiente Ca	ategoria di	Suolo
i i	il muro ammette spostamenti? (si/no)	○ si	(no 💿	r = 1			
	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
	Coeff. di Spinta a Riposo sulla parete	ko	= "	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
G	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Ę	componente orizzontale	kash+	=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+	=	0.175	(-)			
Soefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
Š	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h/2 \, (\text{con sisma})$

Mq = $\frac{1}{2}$ K_o*q*h² M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

 $M = % Ka_{rad}^* \gamma^{r} 12kg^*h^2$ $M_0 = Ka_{rad}^* \eta^{r}h$

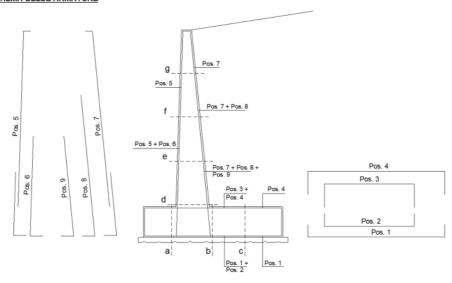
N_{ext} = y

N policean IPm 1200

condizione sintica

sezione	Ři	跳		$M_{\rm ext}$	Effect.	NE	hales	Mari	M _{ss}	Mark
	[m]	[kibbrina]	[kikkarini]	[kîdawini]	[kikhra/m]	[kidm]	[kidima]	[kiklmj]	[kiklm]	[kik/m]
e'~e'	6.50	359,40	413,54	0.00	771.94	71.38	54,92	0.00	194.00	200,97
ଡ -ଡ	4.88	151.20	232.61	0.00	983.81	40.16	41.19	0.00	90.84	171,99
W	3.25	44.80	103.38	0.00	148.18	17.85	27.48	0.00	59.89	99.14
ହ-ହ	1.83	5,60	25,85	0.00	91.45	基本發	19.73	0.00	29.81	41.80

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 235 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0	-	20.0	5	-	5.0		20.0
2	-	0.0	-	0.0	6	-	0.0		0.0
3	-	5.0	-	24.0	7	-	5.0		24.0
4	-	5.0	-	24.0	8	-	5.0	-	24.0
				PAGE TO STORY	0	-	0.0	-	0.0

Calcola

VERIFICHE

Condizione Strike

Ser.	isa isa	N	ħ	942	AT	ay©	rg#	
(-)	(fichters)	(kN)	(m)	(emf)	(cm²)	([4/mm1")	(Monto)	
86 86	220.44	0.00	1.96	15.71	45.24	1.40	120.08	
6-6	-396.91	0.00	1.39	45.24	15.71	4.80	195.73	
el el	771.96	200.37	1.15	45.24	15.71	4.78	148.50	
D-6	303.61	171.09	0.99	22.62	15.71	3.00	164.46	

(n.b.: M4 terste la litre d'Infradorso, M-terste le litre d'estradorso)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 236 di
L073	213	E	16	MU0023	REL	01	В	230 di 247

coeffic	ienti	narzia	ш

			azio	oni	proprietà del terreno	
		caso	permanenti	temporanee		
		0030	permanenu	variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLU	0	caso A1+M1+R1	1.30	1.50	1.00	
S		caso A1+M1+R3	1.30	1.50	1.00	
SLD	\circ	sismica	1.00	1.00	1.25	
def.	•	SLE_FR	1.00	0.75	1.00	

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1)	Peso del	Muro	(Pm)

(B2*H3* _γ cls)/2	=	52.81	(kN/m)
(B3*H3* _γ cls)	=	81.25	(kN/m)
(B4*H3*γcls)/2	=	0.00	(kN/m)
$(B^*H2^*\gamma cls)$	=	211.25	(kN/m)
Pm1 + Pm2 + Pm3 + Pm4	=	345.31	(kN/m)
del terreno sulla scarpa di monte del muro (Pt)			
(B5*H3* _γ ')	=	500.50	(kN/m)
(0,5*(B4+B5)*H4*γ')	=	0.00	(kN/m)
(B4*H3* _γ ')/2	=	0.00	(kN/m)
Pt1 + Pt2 + Pt3	=	500.50	(kN/m)
	(B3*H3* _{\gamma} cls) (B4*H3* _{\gamma} cls)/2 (B*H2* _{\gamma} cls)/2 (B*H2* _{\gamma} cls) Pm1 + Pm2 + Pm3 + Pm4 del terreno sulla scarpa di monte del muro (Pt) (B5*H3* _{\gamma} ') (0,5*(B4+B5)*H4* _{\gamma} ')	$\begin{array}{lll} (B3^*H3^*_{\gamma}cls) & = & \\ (B4^*H3^*_{\gamma}cls)/2 & = & \\ (B^*H2^*_{\gamma}cls)/2 & = & \\ Pm1 + Pm2 + Pm3 + Pm4 & = & \\ \\ del \ terreno \ sulla \ scarpa \ di \ monte \ del \ muro \ (Pt) \\ (B5^*H3^*_{\gamma}) & = & \\ (0.5^*(B4+B5)^*H4^*_{\gamma}) & = & \\ (B4^*H3^*_{\gamma})/2 & = & \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mm1 =	Pm1*(B1+2/3 B2)	=	102.10	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	195.00	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	686.56	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	983.67	(kNm/m)
P2\ Torro	niono a targo dal mura			

B2) Terrapieno a tergo del muro

DZ) 1	cirap	herio a tergo dei maro			
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	2289.79	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	2289.79	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 237 di
L073	213	E	16	MU0023	REL	01	В	247

CONDIZIONE STATICA

C) SPINTE DEI	TERRENO E DEL	SOVRACCARICO
---------------	---------------	--------------

Spinta totale condizione statica

componente orizzontale condizione statica

componente verticale condizione statica

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 1002.00 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 4288.66 (kNm/m)

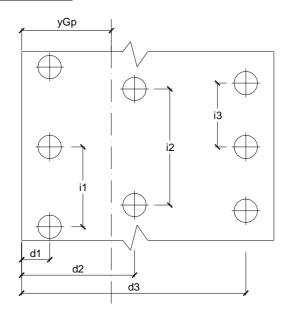
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 1101.66 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 3187.00 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.di Pag. 238 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	------------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 0.80 (m) interasse pali (i1) = 1.82 (m) Fila n°2 distanza asse bordo valle (d2) = 3.25 (m) interasse pali (i2) = 1.82 (m) Fila n°3 distanza asse bordo valle (d3) = 5.70 (m) interasse pali (i3) = 1.82 (m)

Asse Baricentrico della Palificata (yGp) = 3.250 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

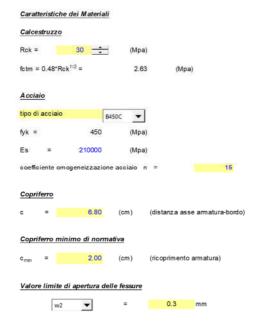
caso	Np	Mp	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	1002.00	69.50	361.88

Sollecitazioni sui pali

C350	N pali all.1	N pali all.2	N pali all.3	T pali	M pali
caso	[kN]	[kN]	[kN]	[kN]	[kNm]
statico	633.69	607.88	582.07	219.54	292.96

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 239 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

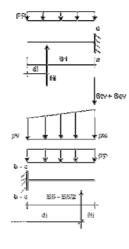
Sezioni di Calcolo

Manaola Leto Vella

Ma = 2 M/181 - 4) / 1 - PP*(1:12:4781*12

 Σ_i waters a total i pali presenti sulta remeda

Mensoole Late Mensis


 $\mathsf{Mo} = \sum \mathsf{H}_1^* \mathsf{TER}_1^* \mathsf{E} \mathsf{App}_1^* - \mathsf{PP}^* \mathsf{TER}_1^* \mathsf{E} + \mathsf{par}_2^* \mathsf{PP}_2^* \mathsf{E} \mathsf{App}_1^* - \mathsf{par}_2^* \mathsf{EP}_2^* \mathsf{EP}_1^* \mathsf{EP}_2^*

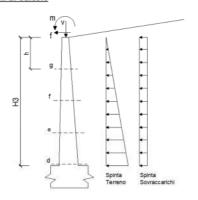
 $M_0 = Z M_1^* B V 2 B - QM_1 - (PP^* B V 2)^{1/2} + per^* B S 2)^{1/2} + Qm_1 - per^* B S 2)^{1/2} T Tring - (Shee Sep)^* B S 2$

 Σ suitant a high i pati processi a dia manuala

86000	Billion	硬腳	160c
9516346/01/-	jb/febre/mjj	[asim(as]	[669mém]
salellines	297.17	-জ্ঞান্ত ক্র	-814.21

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 240 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

	Accelerazione sismica	a _g /g	=	0.220	(-)	S	=	1.36
Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede) il muro ammette spostamenti? (si/no)		β m =			(-) Coefficiente Categoria di Sud			Suolo
i i	il muro ammette spostamenti? (si/no)	○ si	(no 💿	r = 1			
	coefficiente sismico orizzontale	kh	=	0.3003	(-)			
	coefficiente sismico verticale	kv	=	0.1502	(-)			
_	Coeff. di Spinta a Riposo sulla parete	ko	=	0.426	(-)	0.426		
Spinta	componente orizzontale	kah	=	0.392	(-)			
Spi	componente verticale	kav	=	0.169	(-)			
ē	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	= "	0.443	(-)	0.443		
Æ	componente orizzontale	kash+	=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+	=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	= "	0.553	(-)	0.553		
රි	componente orizzontale	kash-	=	0.508	(-)			
	componente verticale	kasv-	=	0.219	(-)			

 $\text{Mt} \qquad = \frac{1}{2} \, \, \text{K}_0 \, ^* \, \gamma \, ^* h^2 \, ^* h/3 \qquad \qquad \text{o} \qquad \frac{1}{2} \, \, \text{Ko} \, ^* \gamma \, ^* h \, ^2 \, ^* h/3 \, + \, a_g/g \, ^* S \, ^* \gamma \, ^* h/2 \, (\text{con sisma})$

Mq = $\frac{1}{2} K_0 * q * h^2$ M_{ext} = m+f*h

Massate = IFTY*th*kh (selecen sisme)

Na = % Ke_{red}* y*{12kg*h⁸

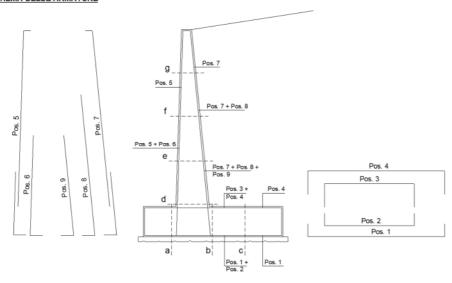
Non = Ke_{ket}*of*h Non = r

N potenzalo IFTV 11200

condizione sinten

sezione	itia	跳竹	Maj	Mass	Mari	inde	Mag	Maria	M _{ss}	Mesc
enemal service	[m]	[kibbrina]	[kikkasim]	[hîdawini]	[kikhaim]	[kidm]	[kidima]	[kiklmj]	[kiklm]	[kîklim]
e'∹e'	6.50	359,40	334, 97	0.00	693,36	71.39	44.48	0.00	194.00	249,94
ଓ ~ଓ	4.88	151.20	188.42	0.00	339,62	40.16	39,38	0.00	80.84	164.17
f4f	3.25	44.80	83.74	0.00	128.54	17.85	22.24	0.00	59.89	93.92
© -©	1.83	5.60	20.94	0.00	26.54	4.4%	11.12	0.00	29.91	39.20

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 241 di
L073	213	E	16	MU0023	REL	01	В	241 di 247

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	pos	n°/ml	
1	5.0	20	5	5.0	20
2	0.0	0	6	0.0	0
3	5.0	24	7	5.0	24
4	5.0	24	8	5.0	24
			9	0.0	0

Calcola

VERIFICHE

Condizione Statica

84Z.	j k	N	h	椭	A٣	ą¢	ςŘ	896 :	187 agara
(-)	(tichtno)	(KM)	(m)	(cm²)	(sm²)	(Mirrorri*)	(Manners)	(imma)	(irrn)
a-a	207.17	0.00	1.30	15.71	45.24	1.32	112.65	0.158	0.300
b-b	-916.84	0.00	1.36	45.24	15.71	4.43	180,40	6.171	0.300
d - d	603,36	240.04	1.15	45.24	15.71	4.30	191.94	0.125	0.300
8 -9	339.62	184.17	0.99	22.62	15.71	3.48	143.15	9.175	0.300

(n.ta.: Mr teruto le libre di intradosso, Mi-teruto le libre di estradosso)

N.R. Le confizione statica si assume come exione di tange duede o ripatule $(p_{\rm s}{=}0.5)$.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag.
L073	213	E	16	MU0023	REL	01	B	242 di
								247

coe	ffic	ienti	parziali	

			azio	oni	proprietà del terreno	
		caso	permanenti	temporanee		
		0000	permanent	variabili	tan φ'	
			sfavorevoli	sfavorevoli		
SLU	0	caso A1+M1+R1	1.30	1.50	1.00	
S	0	caso A1+M1+R3	1.30	1.50	1.00	
SLD	0	sismica	1.00	1.00	1.25	
def.	•	SLE_QP	1.00	0.00	1.00	

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

A) FORZE VERTICALI

A1) Peso	del	Muro	(Pm)
----------	-----	------	------

Pm1 =	(B2*H3* _γ cls)/2	=	52.81	(kN/m)
Pm2 =	(B3*H3*γcls)	=	81.25	(kN/m)
Pm3 =	(B4*H3*γcls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*γcls)	=	211.25	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4	=	345 31	(kN/m)

A2) Peso del terreno sulla scarpa di monte del muro (Pt)

Pt1	=	(B5*H3* _γ ')	=	500.50	(kN/m)
Pt2	=	(0,5*(B4+B5)*H4* _γ ')	=	0.00	(kN/m)
Pt3	=	(B4*H3* _γ ')/2	=	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	=	500.50	(kN/m)

B) MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

B1) Muro (Mm)

Mm1 =	Pm1*(B1+2/3 B2)	=	102.10	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	195.00	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	=	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	=	686.56	(kNm/m)
Mm =	Mm1 + Mm2 + Mm3 + Mm4	=	983.67	(kNm/m)

B2) Terrapieno a tergo del muro

Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	=	2289.79	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	=	2289.79	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 243 di
L073	213	E	16	MU0023	REL	01	В	243 di 247

CONDIZIONE STATICA

Spinta totale condizione statica

componente orizzontale condizione statica

componente verticale condizione statica

 $Stv = St^*sen\delta = 102.81 (kN/m)$ $Sqv = Sq^*sen\delta = 15.82 (kN/m)$

D) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

condizione statica

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)

AZIONI TOTALI SULLA FONDAZIONE

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv = 964.43 (kN/m)

Momento stabilizzante (Ms)

Ms = Mm + Mt + MSt2 + MSq2 + Mfext3 = 4044.50 (kNm/m)

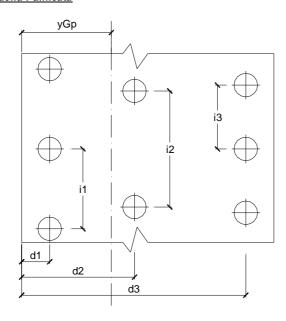
Momento ribaltante (Mr)

Mr = MSt1 + MSq1 + Mfext1 + Mfext2 = 762.23 (kNm/m)

Risultante dei momenti rispetto al piede di valle (MM)

MM = Ms - Mr = 3282.27 (kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 244 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

Caratteristiche della Palificata

0.80 Diametro dei pali (m) Fila n°1 distanza asse bordo valle (d1) = 0.80 (m) interasse pali (i1) = 1.82 (m) Fila n°2 distanza asse bordo valle (d2) = 3.25 interasse pali (i2) = 1.82 (m) (m) Fila n°3 distanza asse bordo valle (d3) = 5.70 (m) interasse pali (i3) = 1.82 (m) Asse Baricentrico della Palificata (yGp) 3.250 (m)

Risultante forze verticali (Np = N)

Risultante forze orizzontali (Tp = T)

Momento rispetto al baricentro della palificata (Mp)

Mp = yGp*Np - MM

CALCOLO DELLE SOLLECITAZIONI SUI PALI

Sollecitazioni rispetto al baricentro della palificata

caso	Np	Mp	Тр
Caso	[kN]	[kNm]	[kN/m]
statico	964.43	-147.85	274.84

Sollecitazioni sui pali

caso	N pali all.1	[kN] [kN	N pali all.3	T pali	M pali
Caso	[kN] [kN] [kN] [kNm]	[kNm]			
statico	530.17	585.09	640.01	166.74	222.50

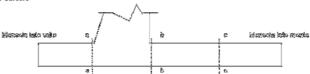
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag.diPag. 245 di
L073	213	E	16	MU0023	REL	01	В	243 di 247


CALCOLI STATICI - Verifica a fessurazione

DATI DI PROGETTO:

Caratteristiche dei Materiali Calcestruzzo Rck = 30 ---(Mpa) fctm = 0.48*Rck 1/2 = 2.63 (Mpa) Acciaio tipo di acciaio B450C • 450 210000 (Mpa) Copriferro 6.80 (cm) (distanza asse armatura-bordo) Copriferro minimo di normativa Valore limite di apertura delle fessure w1 **▼**

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

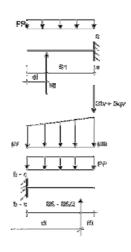
Sezioni di Calcolo

Bashballa Laka Walle

Ma = Z N/181 - 407 1 - PP*(1284/18192

 Σ and an article in a particle and the constant Σ

Marchaelm Louis Marcha


 $\mathsf{Mo} = \sum H_1^*(\mathsf{RS} - \mathsf{RS} + \mathsf{RS} + \mathsf{RS} + \mathsf{PS} + \mathsf{RS} + \mathsf{PS}

 $\mathsf{thr} = \sum \mathsf{H}_{\mathsf{T}}^{\mathsf{T}}^{\mathsf{T}} \mathsf{H}^{\mathsf{T}}^{\mathsf{T}} \mathsf{H}^{\mathsf{T}}^{\mathsf{T}} \mathsf{H}^{\mathsf{T}}^$

 \sum aschesse is held it soull present it soulls means the

com	Ne	Mts	Réso
87806254	[mkm/m]	[Minima]	[bHashn]
minimo	167.55	-684.64	-303.03

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud

 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 246 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

723	Accelerazione sismica	a _g /g	2.50	-,	0.220	(-)	S	=	1.36
Dati Sismici	Coefficiente di riduzione dell'accelerazione (1 per muri che non ammettono spostamento al piede)		βm	=	1.00	(-)	Coefficiente Ca	tegoria di	Suolo
i.E	il muro ammette spostamenti? (si/no)	○ si) no	r = 1			
ä	coefficiente sismico orizzontale	kh	-	-	0.3003	(-)	**		
	coefficiente sismico verticale	kv	15	= 1	0.1502	(-)			
	Coeff. di Spinta a Riposo sulla parete	ko		- 1	0.426	(-)	0.426		
Spinta	componente orizzontale	kah		=	0.392	(-)			
Spi	componente verticale	kav		=	0.169	(-)			
.	Coeff. Di Spinta Attiva Sismica sulla parete	kas+		- "	0.443	(-)	0.443		
Ē	componente orizzontale	kash+		=	0.407	(-)			
<u>e</u> .	componente verticale	kasv+		=	0.175	(-)			
efficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-		- "	0.553	(-)	0.553		
Š	componente orizzontale	kash-		=	0.508	(-)			
	componente verticale	kasv-		=	0.219	(-)			

Mt = $\frac{1}{2} K_0^* \gamma^* h^2 h/3$ o $\frac{1}{2} Ko^* \gamma^* h^2 h/3 + a_g/g^* S^* \gamma^* h^2 h/2$ (con sisma)

Mq = $\frac{1}{2}$ K_o*q*h² M_{ext} = m+f*h

M_{brodia} = EFm/fb/fda (ablo con atema)

Ni = % Kayat * y*(1sky)1/2

ng = Ka_{na}rgh

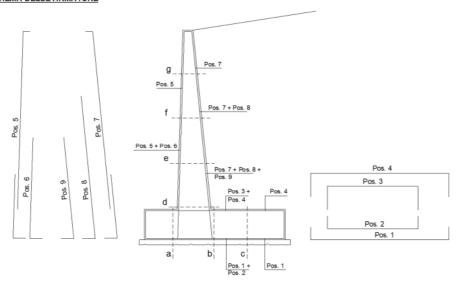
 $N_{opt} = v$

N pprinces=EFm (150c)

concisione statica

ടങ്ങ്ങള	Èir	鍵	Mg	H _{est}	Ed _{tot}	NE	Maj	isl _{ess}	Magaz	KO ₆₀₋₆
	[m]	[សមែលវិករៀ	[kbkwini]	[kb#avari]	[[k:New/waj]	[kilderi]	[kiWaa]	[kishri]	[kilim]	[kî:Wazaj
런션	6.50	356,40	413.54	0.50	771.64	71.39	54,92	0.00	134,06	260,37
80	4.88	151.20	232.81	0.00	983.81	49,18	41.19	5.50	50,34	171.99
16-17	3.25	44,60	100.36	9,50	148,18	17.85	27.48	0.00	53.63	90,14
9-9	1.63	5.60	25.65	9.00	31.45	4.42	13.73	0.00	23.61	41.80

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud


 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: Opere di sostegno e dreni

Muro di sottoscarpa in SX dal km 5+500 al km 5+684 - Relazione tecnica e di calcolo

Opera L073	Tratto 213	Settore E	CEE 16	WBS MU0023	ld.doc. REL	N. prog. 01	Rev. B	Pag.diPag. 247 di 247
---------------	---------------	--------------	-----------	---------------	----------------	----------------	-----------	-----------------------------

SCHEMA DELLE ARMATURE

ARMATURE

pos		n°/ml		ф	pos		n°/ml		φ
1		5.0		20	5		5.0		20
2	-	0.0	-	0	6		0.0	-	0
3	-	5.0	-	24	7		5.0	-	24
4	-	5.0	-	24	8	-	5.0		24
					9		5.0	-	0

Calcola

VERIFICHE

Condizione Statica

SST.	1641	ы	Ĭì	Af	A等	QC.	Á	WE	W 9579
(-)	(kMm)	(kN)	(185)	(cm²)	(ಚಾಲ ³)	(Minne)	(Marses)	(cencen)	(mm)
39 ~ AE	167.35	0.00	1.30	15.79	45.24	1.06	91.16	0.129	0.200
bs - b	-984.84	0.00	1.30	45.2%	45.74	3.30	194.42	0.127	0.200
해~ 설	779.84	260.37	1.15	45.24	15.71	4.78	148,56	0.140	0.200
9 ~S	393.51	179.33	0.33	45.24	15.71	3.11	85.83	0.090	0.200

(r.b.: Mr tende la fibre di intradroso, M- tende la fibre di astradroso);

 $\underline{\text{M.B.}}$ Le constitions sietice el essums como azione di lunga durete o ripetata (η_{c} =0.5),