

# ASSE VIARIO MARCHE – UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA: SS. 318 DI "VALFABBRICA". TRATTO PIANELLO – VALFABBRICA SS. 76 "VAL D'ESINO". TRATTI FOSSATO VICO – CANCELLI E ALBACINA – SERRA SAN QUIRICO "PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO – MUCCIA – SFERCIA

# PROGETTO ESECUTIVO DI DETTAGLIO

CONTRAENTE GENERALE IL RESPONSABILE DEL CONTRAENTE GENERALE **PROGETTAZIONE** ASSISTENZA ALLA PROGETTAZIONE Partecipazioni Italia S.p.A. IL PROGETTISTA Dott. Ing. Salvatore Lieto Ordine degli Ingegneri Prov. di Mantova n.1147 IL PROGETTISTA Ing. Valter Capata COORDINATORE IL DIRETTORE DEI LAVORI DELLA SICUREZZA IN IL RESPONSABILE DEL PROCEDIMENTO FASE DI ESECUZIONE Ing. Iginio Farotti Ing. Vincenzo Pardo Ing. Peppino Marascio SCALA: 2.1.3 PEDEMONTANA DELLE MARCHE 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia DATA: **OPERE D'ARTE MINORI: GENERALE** Luglio 2022 Muri a gabbioni in sx. da 11+048.00 a 11+068.00 Relazione tecnica e di calcolo Codice Unico di Progetto (CUP) F12C03000050021 (Assegnato CIPE 23-12-2015) WBS N. prog. Opera Tratto Settore CEE Id. doc. 0 0 RE 7 0 3 1 1 6 0 1 С Ε Codice Elaborato: REV. DATA DESCRIZIONE Redatto Controllato Approvato Settembre 2020 A Emissione PE Progin M.Tartaglia S.Lieto A.Grimaldi Gennaio 2022 Emissione PED SGS C.Agostini V.Capata S.Lieto В

SGS

C.Agostini

V.Capata

S.Lieto

Luglio 2022

Emissione a seguito istruttoria

ANAS del 18.07.2022



 $3^{\circ}$ stralcio funzionale: Castelra<br/>imondo nord – Castelra<br/>imondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 2 di 23      |

# INDICE

| 1.         | GENERALITÀ                             | 3         |
|------------|----------------------------------------|-----------|
| <b>2</b> . | DOCUMENTI DI RIFERIMENTO               | 4         |
| 2.1        | DOCUMENTI DI PROGETTO                  | 4         |
| 2.2        | NORMATIVE DI RIFERIMENTO               |           |
| 2.3        | SOFTWARE                               | 4         |
| <b>3</b> . | DESCRIZIONE DELL' OPERA                | 5         |
| 4.         | CARATTERISTICHE DEI MATERIALI          | 8         |
| 4.1        | GABBIONI                               | 8         |
| <b>5</b> . | MODELLO GEOTECNICO DI RIFERIMENTO      | 9         |
| 5.1        | LIVELLO DELLA FALDA                    | 9         |
| 5.2        | CARATTERIZZAZIONE GEOTECNICA           | 9         |
| <b>6</b> . | CARATTERIZZAZIONE SISMICA              | 10        |
| <b>7</b> . | VERIFICHE GEOTECNICHE E STRUTTURALI    | 11        |
| 7.1        | VERIFICHE GEOTECNICHE                  | 11        |
|            | 1.1 STABILITA' GLOBALE                 |           |
|            | 1.2 STABILITA' LOCALE                  |           |
| <b>8</b> . | STATI LIMITE E COMBINAZIONI DI CALCOLO |           |
| 8.1        | STATO LIMITE ULTIMO                    |           |
| 8.2        |                                        |           |
| 9.         | ANALISI DEI CARICHI                    | _         |
| 9.1        | CARICHI PERMANENTI                     |           |
| 9.2        |                                        | -         |
| 10.        | ANALISI E VERIFICHE                    |           |
| 10.1       | 322/3/1/ 5/ 6/ (2/3/2)                 |           |
| 10.2       | 2 4RISULTATI DELLE ANALISI: SEZIONE 1  |           |
|            | D.2.2 Stabilità interna                |           |
|            | 0.2.3 Stabilità globale                |           |
| 11.        | CONCLUSIONI                            | <b>22</b> |
| ΔΡΡΙ       | FNDICE A                               | 23        |



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 3 di 23      |

# 1. GENERALITÀ

Il presente documento costituisce la relazione di calcolo del Progetto Esecutivo di Dettaglio (PED) delle opere geotecniche di contenimento previste nell'ambito dei lavori di completamento degli stralci funzionali 3 - 4 del tratto della Pedemontana delle Marche.

La redazione del Progetto Esecutivo di Dettaglio ha lo scopo di ottimizzare, laddove possibile, le opere geotecniche oggetto del Progetto Esecutivo. A tal fine, sono state prese a riferimento per la ottimizzazione le valutazioni e le carattezzazioni idrogeologico, geotecniche e sismiche dei siti in esame presenti nel Progetto Esecutivo.

I calcoli e le verifiche di sicurezza sono stati invece adattati alle nuove soluzioni progettuali proposte in conformità alle norme NTC 2008.



3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 4 di 23      |

## 2. DOCUMENTI DI RIFERIMENTO

Nella redazione del progetto esecutivo di dettaglio si è fatto riferimento ai seguenti documenti.

### 2.1 DOCUMENTI DI PROGETTO

- L0703212E02GE0000REL01C Relazione geologica, geomorfologica e geoidrologica generale
- L073212E02GE0001REL01F Relazione geotecnica generale sulle opere all'aperto
- L0703212E04000000REL01C Relazione sismica
- L0703212E02GE0000PLA04C Profilo geologico
- LO703212E02GE0001PRF04E Profilo geotecnico

### 2.2 NORMATIVE DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

- D.M. 14/01/2008 "Norme tecniche per le costruzioni" (NTC08).
- Circolare del 02/02/2009. Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.
- UNI EN1990 EUROCODICE 0 Criteri generali di progettazione strutturale.
- UNI EN1991 EUROCODICE 1 Azioni sulle strutture
- UNI EN1992-1-1 EUROCODICE 2, parte 1-1 Progettazione delle strutture in calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1997-1. EUROCODICE 7, parte 1. Progettazione geotecnica. Parte 1: Regole generali
- UNI EN 1998-5. EUROCODICE 8, parte 5. Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

### 2.3 SOFTWARE

GeoStru 2021 - www.geostru.eu



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 5 di 23      |

# 3. DESCRIZIONE DELL' OPERA

Le analisi e verifiche nel seguito esposte fanno in particolare riferimento all' opera di sostegno MU33 situata in SX dell'asse stradale, dal km 11+048.30 al km 11+068.43, per uno svuluppo totale di circa 20m

Nell'ambito del Progetto Esecutivo di Dettaglio (PED), l'ottimizzazione dell'opera in oggetto prevede muri tipo a gabbione.

In Figura 1 – Pianta dell'intervento, Figura 2 – Profilo longitudinale e Figura 3 – Sezione tipo gabbioni sono rappresentate pianta, profilo e sezioni tipo dell'opera rispettivamente.

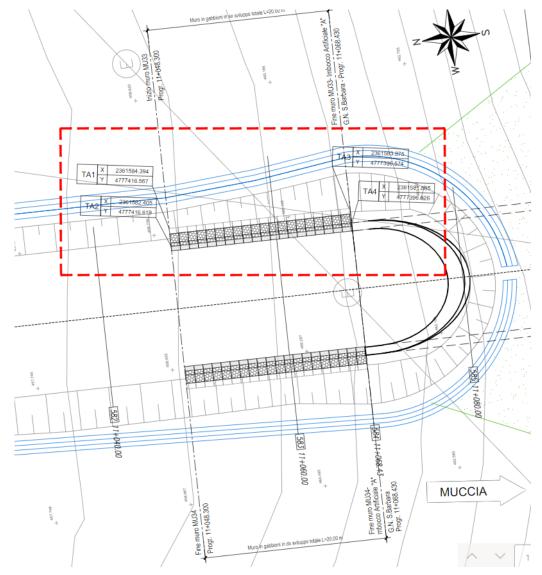



Figura 1 - Pianta dell'intervento



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 6 di 23      |

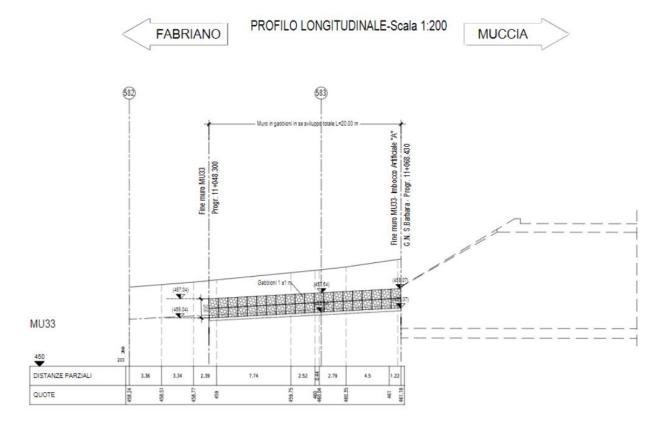



Figura 2 - Profilo longitudinale



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 7 di 23      |

SEZIONE N. : 583 Q. PROGETTO : 456.065 DIST.PROG. : 11+060.00

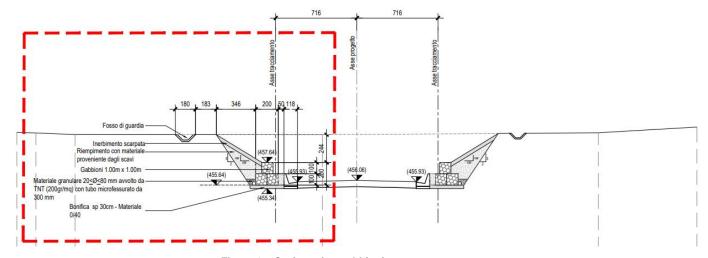



Figura 3 - Sezione tipo gabbioni

SCALA 1:200

Q.RIF. 450.00



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 8 di 23      |

# 4. CARATTERISTICHE DEI MATERIALI

### 4.1 GABBIONI

Peso di volume minimo:  $Y_{gabbioni} = 18 \text{ kN/m}^3$ 

Coesione fittizia: c<sub>gabbioni</sub>= 10 kPa (contributio equivalente

rete metallica)

Angolo di attrito fittizio:  $\phi_{gabbioni} = 40^{\circ}$ 

Il riempimento dei gabbioni viene effettuato con materiale di cava frantumato di pezzatura variabile 120mm-250mm. Tali caratteristiche verificano l'angolo di attrito di progetto usato nelle analisi.



3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 9 di 23      |

## 5. MODELLO GEOTECNICO DI RIFERIMENTO

Nel presente paragrafo si riporta la caratterizzazione geotecnica specifica per l'opera in esame. Per dettagli si rimanda alla Relazione Geotecnica Generale. Si sottolinea, comunque, che mediamente il profilo stratigrafico presenta una fascia, di spessore variabile tra 13.0 e 15.0m, costituita da depositi eluvio colluviali limoso argillosi che sovrasta il substrato alterato argilloso limoso.

Analizzando il profilo geologico geotecnico, con riferimento ai tratti di ubicazione dell'opera di sostegno oggetto di dimensionamento, è possibile dunque assumere cautelativamente, la seguente configurazione stratigrafica:

 Unità geotecnica
 Profondità dal piano campagna [m da p.c.]
 Descrizione

 Ecla
 0 ÷ 13.0
 Depositi Eluvio-colluviali limoso argillosi

 Salt
 13.0-18.0
 Substrato alterato argilloso llimoso

 Sch
 >18.0
 Formazione dello Schlier

Tabella 1 - Stratigrafia di riferimento MU33

#### 5.1 LIVELLO DELLA FALDA

La falda è riscontrata a profondità variabili. Nelle analisi si assume cautelativamente un livello di falda prossima ad una profondità di 2 metri dal piano campagna.

### 5.2 CARATTERIZZAZIONE GEOTECNICA

I parametri geotecnici considerati per l'opera in esame sono riportati nella seguente tabella e fanno riferimemento alla caratterizzazione presentata in relazione LO703213E02GE0001REL01D. In termini operativi sono stati adottati i valori caratteristici medi espressi all'interno dei range di progetto.

γ Unità [kN/m<sup>3</sup>][°] [kPa] [-] Ecla 19 25 10 0.2 Salt 20 26 10 0.2 Sch 23 31 55 0.2

Tabella 2 - Parametri geotecnici terreno in sito



 $3^{\circ}$ stralcio funzionale: Castelra<br/>imondo nord — Castelra<br/>imondo sud

 $4^{\circ}$ stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 10 di 23     |

# 6. CARATTERIZZAZIONE SISMICA

Per la caratterizzazione sismica del sito si rimanda alle considerazioni presenti nella relazione sismica (LO703213E04000000REL01D) e nella relazione di calcolo (L0703213E16MU0008REL01A).

Di seguito si riprortano i parametri di progetto adottati per le verifiche della stabilità dell'opera in caso di azione sismica.

Tabella 3 - Periodo di riferimento azione sismica

| Vita nominale<br>V <sub>N</sub> | Classe d'uso | Coefficiente<br>d'uso | Periodo di<br>riferimento V <sub>R</sub> |
|---------------------------------|--------------|-----------------------|------------------------------------------|
| 50                              | III          | 1.5                   | 75                                       |

Tabella 4 - Accelerazione (ag), fattore (F0) e periodo (T\*c)

| V <sub>R</sub><br>[anni] | Stato Limite | PV <sub>R</sub> | T <sub>R</sub><br>[anni] | a,<br>[9] | F <sub>0</sub><br>[-] | T <sub>c</sub><br>[s |
|--------------------------|--------------|-----------------|--------------------------|-----------|-----------------------|----------------------|
|                          | SLO          | 81%             | 45                       | 0.078     | 2.440                 | 0.285                |
| 75                       | SLD          | 63%             | 75                       | 0.097     | 2.433                 | 0.295                |
| 75                       | SLV          | 10%             | 712                      | 0.220     | 2.544                 | 0.333                |
|                          | SLC          | 5%              | 1462                     | 0.277     | 2.584                 | 0.343                |

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Tabella 5 - Caratterizzazione sito

| Categoria di | Categoria   | S <sub>s</sub> , fattore | St, fattore topografico |  |
|--------------|-------------|--------------------------|-------------------------|--|
| sottosuolo   | topografica | stratigrafico            |                         |  |
| С            | T1          | 1.36                     | 1.0                     |  |



3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 11 di 23     |

## 7. VERIFICHE GEOTECNICHE E STRUTTURALI

Di seguito si riassumono le verifiche condotte per la stabilità globale dell'opera in esame e le verifiche strutturali della paratia.

#### 7.1 VERIFICHE GEOTECNICHE

#### 7.1.1 STABILITA' GLOBALE

La verifica di stabilità globale del complesso opera di sostegno-terrapieno è condotta mediante l'ausilio del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

Per la verifica si fa riferimento al metodo dell'equilibrio limite di Bishop.

Per ulteriori approfondimenti teorici sul metodo di calcolo si rimanda al capitolo 10 della relazione geotecnica generale (LO703213E02GE0001REL01D).

#### 7.1.2 STABILITA' LOCALE

La verifica di stabilità dell'opera di sostegno è condotta mediante l'ausilio del modulo SLOPE/M.R.E.che fa parte del programma di calcolo SLOPE STABILITY ANALYSIS di Geostru.

La stabilità dell'opera viene verificata nel suo insieme considerandola come un corpo rigido, risulta assicurata, quando è verificata la sicurezza a:

- Ribaltamento: rappresentato dalla possibile rotazione del'opera rispetto al punto di valle;
- Scorrimento: dipende dalla possibilità che le forze parallele al piano di contatto tra fondazione e terreno siano superiori alle forze di attrito terreno-fondazione;
- Carico limite: si effettua confrontando la tensione normale massima sul piano di posa della fondazione con la tensione limite di rottura del terreno.

Per quanto riguarda la stabilità locale interna dei gabbioni, si effettuano verifiche di resistenza a scorrimento fra i blocchi dei gabbioni e a compressione della roccia nelle gabbie utilizzando le seguenti relazioni di origine empirica:

$$\sigma_{lim} = 5 \cdot \gamma_{gabbioni} - 3$$
 
$$\tau_{lim} = N \cdot tan \varphi^* + C_{gabbioni}$$

dove

- $\gamma_{gabbioni}$  è il peso di volume del riempimento, il quale dipende dalla natura litologica dello stesso e dal grado di addensamento, [t/m<sup>3</sup>
- φ\* è l'angolo d'attrito interno fittizio dei gabbioni.
- C<sub>qab</sub> è la coesione fittizia, imputabile alla presenza della rete metallica.



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 12 di 23     |

## 8. STATI LIMITE E COMBINAZIONI DI CALCOLO

#### 8.1 STATO LIMITE ULTIMO

Per le opere in materiali sciolti, come i rilevati, devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido per la verifica della stabilità globale e locale dell'opera di sostegno

Per quanto riquarda l'opera di stabilizzazione, costituita da una paratia di pali, si effettuano le verifiche con riferimento ai seguenti stati limite:

SLU di tipo strutturale (STR) per il raggiungimento della resistenza negli elementi strutturali

Secondo quanto riportato in normativa DM 14-01-2008, la verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

Combinazione 2: (A2+M2+R2)

Le rimanenti verifiche devono essere effettuate secondo almeno uno dei seguenti approcci:

#### Approccio 1:

Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2)

strutturali G2

Approccio 2:

(A1+M1+R3)

La verifica interna dei gabbioni allo SLU viene condotta utilizzando l'Approccio 2.

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni riportati in Tabella 6 ed adoperando i coefficienti parziali del gruppo (M") per il calcolo delle spinte.

I coefficienti per le azioni A, per i parametri geotecnici M e per le resistenze R sono riassunti nelle seguenti tabelle.

Coefficiente Carichi tipo Effetto Α1 **A2** parziale Favorevole 1.0 1.0 Permenenti G1  $V_{G1}$ Sfavorevole 1.3 1.0 Permanenti non Favorevole 8.0 8.0 **Y**G2

Tabella 6 - Coefficienti parziali per le azioni SLU



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 $4^{\circ}$ stralcio funzionale: Castelra<br/>imondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 13 di 23     |

|             | Sfavorevole |            | 1.5 | 1.3 |
|-------------|-------------|------------|-----|-----|
| Variabili Q | Favorevole  | v          | 0   | 0   |
|             | Sfavorevole | <b>Υ</b> α | 1.5 | 1.3 |

Tabella 7 - Coefficienti parziali per i parametri del terreno SLU

| Carichi tipo                         | ipo Coefficiente parziale M1 |     | M2   |
|--------------------------------------|------------------------------|-----|------|
| Tangente angolo resistenza al taglio | tan φ' <sub>k</sub>          | 1.0 | 1.25 |
| Coesione efficace                    | ce c' <sub>k</sub> 1.0       |     | 1.25 |
| Resistenza non drenata               | Cuk                          | 1.0 | 1.4  |
| Peso unità di volume                 | γ                            | 1.0 | 1.0  |

Tabella 8 – Coefficienti parziali resistenza R2 verifiche di opere in materiali sciolti e fronti di scavo

| Verifica          | R2                   |
|-------------------|----------------------|
| Stabilità globale | γ <sub>R</sub> = 1.1 |

Tabella 9 – Coefficienti parziali resistenza  $\gamma_{\rm R}$  per le STR e GEO di muri di sostegno

| Verifica                     | R1                   | R2                   | R3                   |
|------------------------------|----------------------|----------------------|----------------------|
| Capacità portante fondazione | γ <sub>R</sub> = 1.0 | γ <sub>R</sub> = 1.0 | γ <sub>R</sub> = 1.4 |
| Scorrimento                  | γ <sub>R</sub> = 1.0 | γ <sub>R</sub> = 1.0 | γ <sub>R</sub> = 1.1 |
| Resistenza terreno valle     | γ <sub>R</sub> = 1.0 | $\gamma_R = 1.0$     | γ <sub>R</sub> = 1.4 |

In presenza di azioni sismiche, lo stato limite ultimo considerato comprende lo Stato Limite di Salvaguardia della Vita (SLV).

I coefficienti parziali sulle azioni e parametri geotecnici sono posti pari all'unità mentre i coefficienti parziali relativi alle resistenze risultano invariati rispetto a quelli considerati per le verifiche in condizioni statiche.

#### 8.2 STATO LIMITE ESERCIZIO

Per le verifiche strutturali allo stato limite di esercizio seguenti coefficienti parziali per le azioni sono stati considerati:



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 14 di 23     |

Tabella 10 - Coefficienti parziali per le azioni SLS Freq. e QP

| Carichi tipo  | Effetto     | Υ   | Ψ |
|---------------|-------------|-----|---|
| Permanenti G1 | Sfavorevole | 1.0 | - |
| Permanenti G2 | Sfavorevole | 1.0 | - |
| Variabili Q   | Sfavorevole | 1.0 | - |

### Tabella 11 – Coefficienti parziali per le azioni SLS Rara

| Carichi tipo  | Effetto     | Υ   | Ψ    |
|---------------|-------------|-----|------|
| Permanenti G1 | Sfavorevole | 1.0 | -    |
| Permanenti G2 | Sfavorevole | 1.0 | -    |
| Traffico Q    | Sfavorevole | 1.0 | 0.75 |



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 15 di 23     |

# ANALISI DEI CARICHI

### 9.1 CARICHI PERMANENTI

Per carichi permanenti si intendono le azioni associate ai pesi propri del palo, del terrapieno spingente e dell'acqua di falda, valutati in automatico dal Software di calcolo utilizzato.

#### 9.2 AZIONE SISMICA

Per la valutazione degli effetti dell'azione sismica sulle masse e sui coefficienti di spinta del terreno, si è fatto riferimento al metodo pseudo-statico previsto al punto 7.11.3.5.2 - "Metodi di Analisi" - delle NTC2008 secondo il quale, nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_s \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

 $a_{max}$  = accelerazione orizzontale massima attesa al sito

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a_g = S_s \cdot S_t \cdot a_g$$

dove

S = coefficiente che comprende l'ieffetto dell'amplificazione stratigrafica  $(S_s)$  e dell'amplificazione topografica  $(S_t)$ .

 $a_a$ = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Di seguito sono riportati i valori di  $\beta_S$  e  $\beta_m$  consierati per i fronti di scavo (utilizzati nelle analisi globali), per i muri di sostegno, e per le paratie, in accordo a quanto indicato nella NTC2008.



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 16 di 23     |

Tabella 12 - Coefficienti dell'accelerazione massima attesa al sito - Fronti di scavo e rilevati

|                             | Categoria d | i sottosuolo |
|-----------------------------|-------------|--------------|
|                             | A           | B, C, D, E   |
|                             | βs          | βs           |
| 0.2 <a<sub>g(g)≤0.4</a<sub> | 0.3         | 0.28         |
| 0.1 <a<sub>g(g)≤0.2</a<sub> | 0.27        | 0.24         |
| a <sub>g</sub> (g)≤0.1      | 0.2         | 0.2          |

Tabella 13 - Coefficienti dell'accelerazione massima attesa al sito - Muri di sostegno

|                             | Categoria d | i sottosuolo |
|-----------------------------|-------------|--------------|
|                             | A           | B, C, D, E   |
|                             | βm          | βm           |
| 0.2 <a<sub>g(g)≤0.4</a<sub> | 0.31        | 0.31         |
| 0.1 <a<sub>g(g)≤0.2</a<sub> | 0.29        | 0.24         |
| a <sub>g</sub> (g)≤0.1      | 0.20        | 0.18         |

I parametri di progetto dell'azione sismica considerati nell'analisi dell'opera oggetto della presente relazione sono riassunti nella tabella seguente.

Tabella 14 – Parametri progetto azione sismica equivalente – Fronti di scavo e rilevati

| Ss   | S <sub>T</sub> | a <sub>g</sub> | a <sub>max</sub> | <b>k</b> <sub>h</sub> | <b>k</b> <sub>v</sub> |
|------|----------------|----------------|------------------|-----------------------|-----------------------|
| 1.36 | 1.0            | 0.22g          | 0.3g             | 0.084                 | ±0.042                |

Tabella 15 – Parametri progetto azione sismica equivalente – Muri di sostegno

| Ss   | S <sub>T</sub> | a <sub>g</sub> | a <sub>max</sub> | <b>k</b> <sub>h</sub> | <b>k</b> <sub>v</sub> |
|------|----------------|----------------|------------------|-----------------------|-----------------------|
| 1.36 | 1.0            | 0.22g          | 0.3g             | 0.1                   | ±0.05                 |



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 17 di 23     |

# 10. ANALISI E VERIFICHE

Si riportano di seguito risultati delle analisi e verifiche per le sezioni di calcolo considerate.

### 10.1 SEZIONI DI CALCOLO

È stata considerata una sezione riferita al muro in gabbioni. Il riepilogo delle sezioni analizzate e le progressive di riferimento è riportato nella seguente tabella.

Tabella 16 - Sezioni di calcolo

| ID muro | Sezione di calcolo | Lato stradale | pk     |
|---------|--------------------|---------------|--------|
| MU33    | Gabbioni           | DX            | 11+060 |

Di seguito sono sintetizzati i risulati delle analisi eseguite per le sezioni di calcolo analizzate.

Per il dettaglio delle analisi geotecniche e strutturali, fare riferimento agli ALLEGATI A e B rispettivamente.



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 $4^{\circ}$ stralcio funzionale: Castelra<br/>imondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 18 di 23     |

### 10.2 4RISULTATI DELLE ANALISI: SEZIONE 1

#### 10.2.1 Stabilità locale

I parametri di resistenza del terreno a tergo del gabbione sono stati ridotti rispetto a quanto riportato in Tabella 2 (in particolare la coesione è stata assunta nulla) per tener conto del rimaneggiamento del terreno di riporto proventiente dagli scavi.

Si riportano di seguito i risultati delle analisi di stabilità dell'opera di sostegno descritte al par. 7.1.2.

Per ulteriori dettagli si rimanda all'Appendice A "Report di calcolo e verifiche geotecniche".



Figura 4 - Modello di calcolo

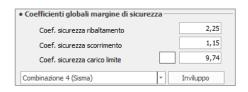



Figura 5 - Verifiche di stabilità

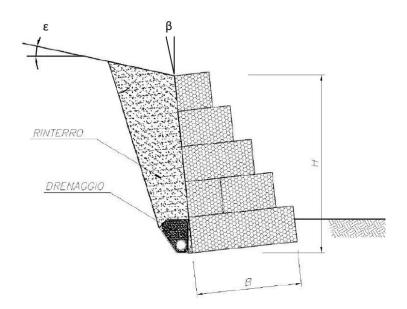


 $3^{\circ}$  stralcio funzionale: Castelra<br/>imondo nord — Castelra<br/>imondo sud

 $4^{\circ}$ stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo


| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 19 di 23     |

#### 10.2.2 Stabilità interna

Le verifiche di resistenza a scorrimento fra i blocchi dei gabbioni e a compressione della roccia nelle gabbie sono state condotte con calcolo agli stati limite come riportato al capitolo 7.

|                                       | TERI        | RENO RINTERRO   |                      |                   |
|---------------------------------------|-------------|-----------------|----------------------|-------------------|
|                                       | Ec          | la rimaneggiato |                      |                   |
|                                       | Simbolo     | Valore caratt.  | Valore progetto (M1) | Unità misura      |
| Peso volume                           | γg          | 19              | 19                   | kN/m <sup>3</sup> |
| angolo di attrito al taglio in posto  | ф           | 23              | 23                   | [°]               |
| inclinazione muro in senso antiorario | β           | 0               | 0                    | [°]               |
| pendenza terreno in posto             | ε           | 15              | 15                   | [°]               |
| "attrito" di contatto terra-muro      | δ           | 15              | 15                   | [°]               |
| "coefficiente" sismico                | θ           | 5               | 5                    | [°]               |
|                                       | PE          | SI DI VOLUME    |                      |                   |
|                                       | Simbolo     | Valore caratt.  | Valore progetto (A1) | Unità misura      |
| Peso volume gabbione                  | γ gabbione  | 18              | 23.4                 | kN/m <sup>3</sup> |
| Peso volume rinterro                  | γr          | 19              | 24.7                 | kN/m <sup>3</sup> |
| Peso volume rete gabbione             | γrete       | 0.10            | 0.13                 | kN/m <sup>3</sup> |
| CON                                   | FIGURAZIONE | GABBIONE        |                      |                   |
|                                       | Simbolo     | Valore caratt.  | Unità misura         |                   |
| Altezza blocco 1                      | H1          | 1.00            | m                    |                   |
| Altezza blocco 2                      | H2          | 1.00            | m                    |                   |
| Altezza blocco 3                      | H3          | 1.00            | m                    |                   |
| Altezza base fondazione               | H fondaz    | 0.60            | m                    |                   |
| Larghezza blocco 1                    | B1          | 1.00            | m                    |                   |
| Larghezza blocco 2                    | B2          | 2.00            | m                    |                   |
| Larghezza blocco 3                    | B3          | 3.00            | m                    |                   |
| Larghezza base fondazione             | B fondaz    | 3.00            | m                    |                   |
| H_spinta (m)                          |             | 3.60            | m                    |                   |
|                                       |             |                 |                      |                   |
|                                       | Simbolo     | Valore caratt.  | Valore progetto (M1) | Unità misura      |
| Angolo attrito fittizio               | φg          | 40              | 40                   | [°]               |
| Coesione gabbione                     | cg          | 10              | 10                   | kPa               |

| SPINTE                             |        |            |         |  |  |  |  |
|------------------------------------|--------|------------|---------|--|--|--|--|
| Spinta "STATICA" Spinta "DINAMICA" |        |            |         |  |  |  |  |
| Ka                                 | 0.516  | Ka_e       | 0.692   |  |  |  |  |
| Sa (kN/m)                          | 82.649 | Sae (kN/m) | 110.703 |  |  |  |  |
| ΔSae (kN/m)                        | 28.05  |            |         |  |  |  |  |
| kh/(1-kv)                          | 0.090  |            |         |  |  |  |  |





 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 20 di 23     |

#### VERIFICHE LOCALI di un MURO A GABBIONI

Si effettuano le verifiche di resistenza a scorrimento fra i blocchi dei gabbioni e quelle di resistenza a compressione della roccia nelle gabbie.

| gabbione 1 sul        | 2     |
|-----------------------|-------|
| forze agenti sul bloc | cco 2 |
| b1 (m)                | 1,00  |
| h1 (m)                | 1,00  |
| Sa_t (kN/m)           | 6,15  |
| Sa_n (kN/m)           | 1,69  |
| Sae_t (kN/m)          | 8,24  |
| Sae_n (kN/m)          | 2,26  |
| DSae_t (kN/m)         | 2,09  |
| DSae_n (kN/m)         | 0,57  |
| Wm_t (kN/m)           | 0,00  |
| Wm n (kN/m)           | 23,53 |

| TENSIO     | TENSIONI AGENTI al confine fra le due gabbie      |  |  |  |  |  |
|------------|---------------------------------------------------|--|--|--|--|--|
|            |                                                   |  |  |  |  |  |
| N (kN)     | 25,79                                             |  |  |  |  |  |
| M (kN m)   | 2,31                                              |  |  |  |  |  |
|            | (con polo sul baricentro della base del gabbione) |  |  |  |  |  |
|            | sezione non parzial.                              |  |  |  |  |  |
| В          | 1,00                                              |  |  |  |  |  |
| e = M/N(m) | 0,09                                              |  |  |  |  |  |
| e = B/6    | 0,17                                              |  |  |  |  |  |
| I (m4)     | 0,08                                              |  |  |  |  |  |
| y max (m)  | 0,50                                              |  |  |  |  |  |
| W (m3)     | 0,17                                              |  |  |  |  |  |

| VERIFICHE COMPRESSIONE                                                                                           |       |        |       |      |            |  |
|------------------------------------------------------------------------------------------------------------------|-------|--------|-------|------|------------|--|
| $\operatorname{\sf od}(kPa)$ $\operatorname{\sf olim}(kPa)$ $\operatorname{\sf olim}/\operatorname{\sf od}$ $R3$ |       |        |       |      |            |  |
| σ_max (kPa)                                                                                                      | 39,66 | 600,00 | 15,13 | 1,40 | verificato |  |
| σ_min (kPa)                                                                                                      | 11,91 | 600,00 | 50,36 | 1,40 | verificato |  |

| VERIFICHE SCORRIMENTO |          |            |         |      |            |  |
|-----------------------|----------|------------|---------|------|------------|--|
|                       | τd (kPa) | τlim (kPa) | τlim/τd | R3   |            |  |
| τ (kPa)               | 8,24     | 33,34      | 4,05    | 1,10 | verificato |  |

| gabbioni 1 e 2 sul 3  |       |  |  |  |
|-----------------------|-------|--|--|--|
| forze agenti sul bloc | co 3  |  |  |  |
| b1 (m)                | 1,00  |  |  |  |
| h1 (m)                | 1,00  |  |  |  |
| b2 (m)                | 2,00  |  |  |  |
| h2 (m)                | 1,00  |  |  |  |
| Sa_t (kN/m)           | 24,60 |  |  |  |
| Sa_n (kN/m)           | 6,75  |  |  |  |
| $Sae_t (kN/m)$        | 32,95 |  |  |  |
| Sae_n (kN/m)          | 9,04  |  |  |  |
| DSae_t (kN/m)         | 8,35  |  |  |  |
| DSae_n (kN/m)         | 2,29  |  |  |  |
| Wm1_t (kN/m)          | 0     |  |  |  |
| Wm1_n (kN/m)          | 23,53 |  |  |  |
| Wm2_t (kN/m)          | 0     |  |  |  |
| Wm2_n (kN/m)          | 47,06 |  |  |  |

| TENSIONI AGENTI al confine fra le due gabbie |                                                   |  |  |  |
|----------------------------------------------|---------------------------------------------------|--|--|--|
|                                              | _                                                 |  |  |  |
| N (kN)                                       | 79,63                                             |  |  |  |
| M (kN m)                                     | 6,73                                              |  |  |  |
|                                              | (con polo sul baricentro della base del gabbione) |  |  |  |
|                                              | sezione non parzial.                              |  |  |  |
| В                                            | 2,00                                              |  |  |  |
| e = M/N(m)                                   | 0,08                                              |  |  |  |
| e = B/6                                      | 0,33                                              |  |  |  |
| I (m4)                                       | 0,67                                              |  |  |  |
| y max (m)                                    | 1,00                                              |  |  |  |
| W (m3)                                       | 0,67                                              |  |  |  |

| VERIFICHE COMPRESSIONE                                                 |       |        |       |      |            |  |  |
|------------------------------------------------------------------------|-------|--------|-------|------|------------|--|--|
| $\sigma d \ (kPa)$ $\sigma lim \ (kPa)$ $\sigma lim \ / \sigma d$ $R3$ |       |        |       |      |            |  |  |
| σ_max (kPa)                                                            | 49,91 | 600,00 | 12,02 | 1,40 | verificato |  |  |
| σ_min (kPa) 29,71 600,00 20,19 1,40 verificato                         |       |        |       |      |            |  |  |

| VERIFICHE SCORRIMENTO                           |       |       |      |      |            |  |
|-------------------------------------------------|-------|-------|------|------|------------|--|
| au d (kPa) $	au lim (kPa)$ $	au lim/	au d$ $R3$ |       |       |      |      |            |  |
| τ (kPa)                                         | 16,48 | 35,40 | 2,15 | 1,10 | verificato |  |

Figura 6 - Calcolo analitico resistenza interna

# 10.2.3 Stabilità globale

Si riportano di seguito i risultati delle verifiche di stabilità globale per il muro a gabbioni in condizioni statiche e sismiche.

Nel modello adottato per l'esecuzione di tali verifiche, per lo stato di terreno più superficiale, in maniera cautelativa sono stati considerati dei parametri di resistenza ridotti tra quelli relativi al terreno vergine.



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 21 di 23     |

Dalle analisi eseguite è stato ottenuto un coefficiente di sicurezza FS, relativo alla superficie di scorrimento più critica, superiore all'unità. Considerando il valore assunto per il coefficiente parziale di resistenza che riduce la resistenza disponibile del terreno,  $\gamma_R$ , pari a 1.1, secondo quanto prescritto dalla normativa considerata, le verifiche di sicurezza risultano essere soddisfatte sia in condizioni statiche che sismiche.

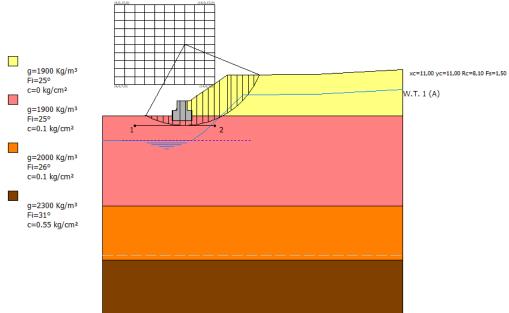



Figura 7 – Verifica di stabilità globale (SLU)

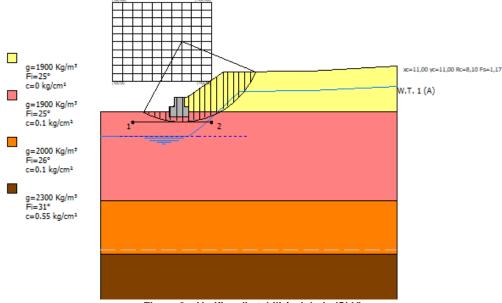



Figura 8 - Verifica di stabilità globale (SLV)



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 22 di 23     |

# 11. CONCLUSIONI

La presente relazione tecnica e di calcolo riassume i criteri di dimensionamento, le analisi e le verifiche condotte sulle opere di stabilità profonda dei terreni di fondazione del muro a gabbioni da progressiva 11+048 a progressiva 11+068 del Lotto 3-4 dell'opera Pedemontana delle Marche.

Le verifiche geotecniche e strutturali in condizioni provvisorie risultano soddisfatte per gli stati limite considerati secondo le normative di riferimento.



 $3^\circ$  stralcio funzionale: Castelraimondo nord — Castelraimondo sud $4^\circ$  stralcio funzionale: Castelraimondo sud — Innesto S.S. 77 a Muccia

Opere d'arte minori: Opere di sostegno e dreni

Muro di controripa in SX dal km 11+048 al km 11+068 - Relazione tecnica e di calcolo

| Opera | Tratto | Settore | CEE | WBS   | ld.doc. | N. prog. | Rev. | Pag. di Pag. |
|-------|--------|---------|-----|-------|---------|----------|------|--------------|
| L073  | 213    | Е       | 16  | MU033 | REL     | 01       | C    | 23 di 23     |

# **APPENDICE A**

REPORT DI CALCOLO VERIFICHE GEOTECNICHE

# MU33 – Verifiche muro a gabbioni RELAZIONE DI CALCOLO

#### Calcolo della spinta attiva con Coulomb

Il calcolo della spinta attiva con il metodo di *Coulomb* è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida.

Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione:

$$P_t = K_a \cdot \gamma_t \cdot z$$

La spinta S<sub>t</sub> è applicata ad 1/3 H di valore

$$S_t = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_a$$

Avendo indicato con:

$$K_{a} = \frac{\text{sen}^{2}(\beta - \phi)}{\text{sen}^{2}\beta \cdot \text{sen}(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - \epsilon)}{\sin(\beta + \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

Valori limite di  $K_A$  ,  $\delta < (\beta - \phi - \epsilon)$  secondo Muller-Breslau:

- γ<sub>t</sub> Peso unità di volume del terreno;
- β Inclinazione della parete interna rispetto al piano orizzontale passante per il piede;
- φ Angolo di resistenza al taglio del terreno;
- δ Angolo di attrito terra-muro;
- ε Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria;
- H Altezza della parete.

#### Calcolo della spinta attiva con Rankine

Se  $\varepsilon = \delta = 0$  e  $\beta = 90^{\circ}$  (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta *St* si semplifica nella forma:

$$S_{t} = \frac{\gamma \cdot H^{2}}{2} \frac{\left(1 - \sin \phi\right)}{\left(1 + \sin \phi\right)} = \frac{\gamma \cdot H^{2}}{2} \tan^{2} \left(45 - \frac{\phi}{2}\right)$$

che coincide con l'equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale. In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l'attrito terra-muro e la presenza di coesione. Nella sua formulazione generale l'espressione di Ka di Rankine si presenta come segue:

$$Ka = \cos \varepsilon \frac{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

#### Calcolo della spinta attiva con Mononobe & Okabe

Il calcolo della spinta attiva con il metodo di *Mononobe & Okabe* riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia

di calcolo nella quale l'angolo  $\varepsilon$ , di inclinazione del piano campagna rispetto al piano orizzontale, e l'angolo  $\beta$ , di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità  $\theta$  tale che:

$$tg \theta = k_h/(1 \pm k_v)$$

con kh coefficiente sismico orizzontale e kv verticale.

#### Calcolo coefficienti sismici (NTC 2008)

Secondo le Nuove Norme Tecniche per le Costruzioni (NTC 2008) i coefficienti sismici k<sub>h</sub> e k<sub>v</sub> sono calcolati come:

$$k_h = \beta_m \cdot (a_{max} / g)$$
  $\cdot k_v = \pm 0.5 \cdot k_h$ 

 $\beta_m$  coefficiente di riduzione dell'accelerazione massima attesa al sito; per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente  $\beta_m$  assume valore unitario. Per i muri liberi di traslare o ruotare intorno al piede, si può assumere che l'incremento di spinta dovuto al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si assume che tale incremento sia applicato a metà altezza del muro.

a<sub>max</sub> accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{\text{max}} = S \cdot a_{g} = S_{s} \cdot S_{T} \cdot a_{g}$$

S coefficiente comprendente l'effetto di amplificazione stratigrafica  $S_{T}$  e di amplificazione topografica  $S_{T}$ . accelerazione orizzontale massima attesa su sito di riferimento rigido.

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R / ln(1 - PVR)$$

Con  $V_R$  vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso  $V_R$  dovrà essere maggiore o uguale a 35 anni.

#### Calcolo coefficienti sismici (NTC 2018)

Nelle verifiche, i valori dei coefficienti sismici orizzontale  $k_h$  e verticale  $k_v$  possono essere valutati mediante le espressioni:

$$k_h = \beta_m \cdot (a_{max} / g)$$
  $\cdot k_v = \pm 0.5 \cdot k_h$ 

dove

 $\beta_{m}$  coefficiente di riduzione dell'accelerazione massima attesa al sito;

a<sub>max</sub> accelerazione orizzontale massima attesa al sito;

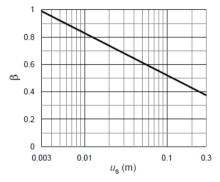
g accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = (S_s \cdot S_T) \cdot a_g$$

dove

S coefficiente comprendente l'effetto di amplificazione stratigrafica  $S_S$  e di amplificazione topografica  $S_T$ .


 $a_{f g}$  accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$  nelle verifiche allo stato limite ultimo (SLV)

 $\beta_m = 0.47$  nelle verifiche allo stato limite di esercizio (SLD).

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente  $\beta_m$  assume valore unitario. I valori del coefficiente  $\beta_m$  possono essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il seguente diagramma (Figura 7.11.3 § 7.11.6.3.2 - NTC 2018)



Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che *l'incremento di* spinta dovuta al sisma agisca nello stesso punto di quella statica.

Negli altri casi, in assenza di specifici studi, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici e utilizzando valori di  $\beta_m$  incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

#### Carico uniforme sul terrapieno

Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a:

$$P_q = K_a \cdot Q \cdot \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \varepsilon)}$$

Per integrazione, una spinta pari a  $S_{Q}$ :

$$S_{q} = K_{a} \cdot Q \cdot H \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \varepsilon)}$$

Con punto di applicazione ad H/2, avendo indicato con Ka il coefficiente di spinta attiva secondo Muller-Breslau.

#### Spinta attiva in condizioni sismiche

In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da:

Dove:

H altezza muro

k<sub>V</sub> coefficiente sismico verticale

γ peso per unità di volume del terreno

K coefficienti di spinta attiva totale (statico + dinamico)

E<sub>WS</sub> spinta idrostatica dell'acqua

E<sub>wd</sub> spinta idrodinamica.

Per terreni impermeabili la spinta idrodinamica  $E_{wd} = 0$ , ma viene effettuata una correzione sulla valutazione dell'angolo  $\theta$  della formula di Mononobe & Okabe così come di seguito:

$$tg\theta = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 \mp k_{v}}$$

Nei terreni ad elevata permeabilità in condizioni dinamiche continua a valere la correzione di cui sopra, ma la spinta idrodinamica assume la seguente espressione:

$$E_{wd} = \frac{7}{12} k_h \gamma_w H'^2$$

Con H' altezza del livello di falda misurato a partire dalla base del muro.

#### Spinta idrostatica

La falda con superficie distante  $H_W$  dalla base del muro induce delle pressioni idrostatiche normali alla parete che, alla profondità z, sono espresse come segue:

$$P_{w}(z) = \gamma_{w} \cdot z$$

Con risultante pari a:

$$S_{w} = \frac{1}{2} \cdot \gamma_{w} \cdot H^{2}$$

La spinta del terreno immerso si ottiene sostituendo  $\gamma_t$  con  $\gamma'_t$  ( $\gamma'_t = \gamma_{saturo} - \gamma_w$ ), peso efficace del materiale immerso in acqua.

#### Resistenza passiva

Per terreno omogeneo il diagramma delle pressioni risulta lineare del tipo:

$$P_t = K_p \cdot \gamma_t \cdot z$$

per integrazione si ottiene la spinta passiva:

$$S_p = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_p$$

Avendo indicato con:

$$K_p = \frac{sen^2(\phi + \beta)}{sen^2\beta \cdot sen(\beta - \delta) \cdot \left[1 - \sqrt{\frac{sin(\delta + \phi) \cdot sin(\phi + \epsilon)}{sen(\beta - \delta) \cdot sen(\beta - \epsilon)}}\right]^2}$$

(Muller-Breslau) con valori limiti di  $\delta$  pari a:

$$\delta < \beta - \phi - \epsilon$$

L'espressione di K<sub>p</sub> secondo la formulazione di Rankine assume la seguente forma:

$$Kp = \frac{\cos \varepsilon + \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}{\cos \varepsilon - \sqrt{\cos^2 \varepsilon - \cos^2 \phi}}$$

#### Carico limite

Una delle prime famiglie di formule per il calcolo della capacità portate fu proposta da Terzaghi nel 1943.

$$q_{ult} = c \cdot N_c \cdot s_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$$

dove

$$N_q = \frac{a^2}{2 \cdot \cos^2(45 + \phi/2)}$$

$$a = e^{(0.75\pi - \phi/2)} \tan \phi$$

$$N_c = (N_q - 1)\cot\varphi$$

$$N_{\gamma} = \frac{\tan \varphi}{2} \cdot \left( \frac{K_{p\gamma}}{\cos^2 \varphi} - 1 \right)$$

dove  $s_C=1$  e  $s_{\gamma}=1$ . per fondazioni nastriformi.

#### Brinch Hansen - Vesic - (1970)

Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza:

$$V_d \le R_d$$

Dove  $V_d$  è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre Rd è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici. Nella valutazione analitica del carico limite di progetto  $R_d$  si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come:

$$R/A' = (2+\pi) \cdot c_u \cdot s_c \cdot i_c + q$$

#### Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c<sub>u</sub> coesione non drenata

q pressione litostatica totale sul piano di posa

s<sub>c</sub> fattore di forma

 $s_c = 0.2 \cdot (B'/L')$  per fondazioni rettangolari

i<sub>c</sub> Fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

$$i_c = 0.5 \cdot \left(1 + \sqrt{1 - H/A' \cdot c_u}\right)$$

ca aderenza alla base, pari alla coesione o ad una sua frazione.

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$R \, / \, A' = c' \cdot N_c \, \cdot s_c \, \cdot i_c + q' \cdot N_q \, \cdot s_q \, \cdot i_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot i_\gamma$$

dove

$$N_{q} = e^{\pi \tan \varphi'} \cdot \tan^{2} \left( 45 + \varphi'/2 \right)$$

$$N_c = (N_q - 1) \cdot \cot \phi'$$

$$N_{\gamma} = 2 \cdot (N_{q} - 1) \cdot \tan \phi'$$

# Fattori di forma

$$s_q = 1 + (B'/L') \cdot \sin \phi'$$

per forma rettangolare

$$s_{\gamma} = 1 - 0.3 \cdot (B'/L')$$

per forma rettangolare

$$s_c = (s_q \cdot N_q - 1)/(N_q - 1)$$

per forma rettangolare, quadrata o circolare.

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$\boldsymbol{i}_q = \left[1 - H/\big(V + A' \cdot \boldsymbol{c}' \cdot \cot \phi'\big)\right]^m$$

$$i_{\gamma} = \left[1 - H/\left(V + A' \cdot c' \cdot \cot \phi'\right)\right]^{m+1}$$

$$i_{c} = (i_{q} \cdot N_{q} - 1)/(N_{q} - 1)$$

$$m = m_B = \frac{\left[2 + \left(\frac{B'}{L'}\right)\right]}{\left[1 + \left(\frac{B'}{L'}\right)\right]} \quad con \quad H//B'$$

$$m = m_L = \frac{\left[2 + \left(\frac{L'}{B'}\right)\right]}{\left[1 + \left(\frac{L'}{B'}\right)\right]} \quad con \quad H//L'$$

Se H forma un angolo  $\theta$  con la direzione di L', l'esponente "m" viene calcolato con la seguente espressione:

$$m = m_{\theta} = m_{L} \cos^{2} \theta + m_{B} \sin^{2} \theta$$

Oltre ai fattori correttivi di cui sopra sono considerati quelli complementari della profondità del piano di posa e dell'inclinazione del piano di posa e del piano campagna (Hansen).

Convenzione segni

Forze verticali positive se dirette dall'alto verso il basso; Forze orizzontali positive se dirette da monte verso valle;

*Coppie* positive se antiorarie;

#### Descrizione

Coefficiente azione sismica orizzontale 0,09 Coefficiente azione sismica orizzontale 0,05

Geometria

| Nr. | X   | Y   |
|-----|-----|-----|
|     | (m) | (m) |
| 1   | 0,0 | 0,0 |
| 2   | 0,0 | 1,0 |
| 3   | 0,5 | 1,0 |
| 4   | 0,5 | 2,0 |
| 5   | 1,5 | 2,0 |
| 6   | 1,5 | 1,0 |
| 7   | 2,0 | 1,0 |
| 8   | 2,0 | 0,0 |

#### Terreno rinforzo

Peso unità di volume 1800,0 Kg/m³
Peso unità di volume saturo 1800,0 Kg/m³
Angolo di resistenza a taglio 40,0 °
Coesione 0,1 kg/cm²
Angolo attrito terreno rinforzo 27,0 °

#### Terreno riempimento

Peso unità di volume
1900,0 Kg/m³
Peso unità di volume saturo
1900,0 Kg/m³
1900,0 Kg/m³
25,0 °
Coesione
0,0 kg/cm²
Angolo di attrito terra muro
16,0 °

Terreno fondazione

Peso unità di volume 1900,0 Kg/m³
Peso unità di volume saturo 1900,0 Kg/m³
Angolo di resistenza a taglio 25,0 °
Coesione 0,1 kg/cm²

Descrizione

| Nr. | Confermare      | X   | Y   | Lx  | Ly  | Q        |
|-----|-----------------|-----|-----|-----|-----|----------|
|     | con il pulsante | (m) | (m) | (m) | (m) | (kg/cm²) |
|     | destro del      | ı   |     |     |     |          |
|     | mouse           | i   |     |     |     |          |
| 1   | Rilevato        | 1,5 | 2   | 5,5 | 1   | 0,15     |

Combinazione 1 (A1+M1)

| Comomazione i (i | 11 11111) |                |                      |
|------------------|-----------|----------------|----------------------|
| N                | Jr.       | Azioni         | Fattore combinazione |
|                  | 1         | Peso muro      | 1,00                 |
|                  | 2         | Spinta terreno | 1,30                 |
|                  | 3         | Spinta falda   | 1,30                 |

| 4                       | Spinta sismica in x             | 0,00                                 |
|-------------------------|---------------------------------|--------------------------------------|
| 5                       | Spinta sismica in y             | 0,00                                 |
| 6                       | Rilevato                        | 1,30                                 |
| Nr.                     | Parametro                       | Coefficienti parziali SLU            |
| 1                       | Tangente angolo res. taglio     | 1                                    |
| 2                       | Coesione                        | 1                                    |
| 3                       | Coesione non drenata            | 1                                    |
| 4                       | Peso unità volume               | 1                                    |
|                         | Angolo attrito terreno rinforzo | •                                    |
| Nr.                     | Parametro                       | Coefficiente parziale resistenza [R] |
| 2                       | Carico limite                   | 1,4                                  |
| 3                       | Scorrimento                     | 1.1                                  |
| 4                       | Resistenza terreno              | 1,4                                  |
| 5                       | Ribaltamento                    | 0                                    |
| Combinazione 2 (A2+M2)  |                                 |                                      |
| Nr.                     | Azioni                          | Fattore combinazione                 |
| 1                       | Peso muro                       | 1,00                                 |
| 2                       | Spinta terreno                  | 1,00                                 |
| 3                       | Spinta falda                    | 1,00                                 |
| 4                       | Spinta sismica in x             | 0,00                                 |
| 5                       | Spinta sismica in y             | 0,00                                 |
| 6                       | Rilevato                        | 1,00                                 |
| Nr.                     | Parametro                       | Coefficienti parziali SLU            |
| 1                       | Tangente angolo res. taglio     | 1,25                                 |
| 2                       | Coesione                        | 1,25                                 |
| 3                       | Coesione non drenata            | 1,4                                  |
| 4                       | Peso unità volume               | 1                                    |
|                         | Angolo attrito terreno rinforzo |                                      |
| Nr.                     | Parametro                       | Coefficiente parziale resistenza [R] |
| 2                       | Carico limite                   | 1                                    |
| 3                       | Scorrimento                     | 1                                    |
| 4                       | Resistenza terreno              | 1                                    |
| 5                       | Ribaltamento                    | 0                                    |
| Combinazione 3 (EQU+M2) |                                 |                                      |
| Nr.                     | Azioni                          | Fattore combinazione                 |
| 1                       | Peso muro                       | 0,90                                 |
| 2                       | Spinta terreno                  | 1,10                                 |
| 3                       | Spinta falda                    | 1,10                                 |
| 4                       | Spinta sismica in x             | 0,00                                 |
| 5                       | Spinta sismica in y             | 0,00                                 |
| 6                       | Rilevato                        | 0,00                                 |
| Nr.                     | Parametro                       | Coefficienti parziali SLU            |
| 1                       | Tangente angolo res. taglio     | 1,25                                 |
| 2                       | Coesione                        | 1,25                                 |
| 3                       | Coesione non drenata            | 1,4                                  |
| 4                       | Peso unità volume               | 1                                    |
|                         | Angolo attrito terreno rinforzo |                                      |
| Nr.                     | Parametro                       | Coefficiente parziale resistenza [R] |
| 2                       | Carico limite                   | 1                                    |
| 3                       | Scorrimento                     | 1                                    |
| 4                       | Resistenza terreno              | 1                                    |
| 4                       | Resistenza terreno              | 1                                    |

| 5 | Ribaltamento | 0 |
|---|--------------|---|
|---|--------------|---|

Combinazione 4 (Sisma)

| comemazione (Sisma) |                     |                      |
|---------------------|---------------------|----------------------|
| Nr.                 | Azioni              | Fattore combinazione |
| 1                   | Peso muro           | 1,00                 |
| 2                   | Spinta terreno      | 1,00                 |
| 3                   | Spinta falda        | 1,00                 |
| 4                   | Spinta sismica in x | 1,00                 |
| 5                   | Spinta sismica in y | 1,00                 |
| 6                   | Rilevato            | 1,30                 |

| Nr. | Parametro                       | Coefficienti parziali SLU |
|-----|---------------------------------|---------------------------|
| 1   | Tangente angolo res. taglio     | 1                         |
| 2   | Coesione                        | 1                         |
| 3   | Coesione non drenata            | 1                         |
| 4   | Peso unità volume               | 1                         |
|     | Angolo attrito terreno rinforzo |                           |

| Nr. | Parametro          | Coefficiente parziale resistenza [R] |
|-----|--------------------|--------------------------------------|
| 2   | Carico limite      | 1,4                                  |
| 3   | Scorrimento        | 1,1                                  |
| 4   | Resistenza terreno | 1,4                                  |
| 5   | Ribaltamento       | 0                                    |

Combinazione 1 (A1+M1)

# **VERIFICHE GLOBALI [Condizione drenata]**

Piano di rottura passante per (xr1,yr1) = (2,0/0,0) m Piano di rottura passante per (xr2,yr2) = (2,0/2,0) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

# Discretizzazione terreno

Qi

| Qf     | Quota finale strato               |
|--------|-----------------------------------|
| P.U.V. | Peso unità di volume (Kg/m³);     |
| Eps    | Inclinazione dello strato (°);    |
| Fi     | Angolo di resistenza a taglio;    |
| Delta  | Angolo di attrito terra muro (°); |

Quota iniziale strato;

c Coesione (kg/cm²);

ß Angolo perpendicolare al paramento lato monte (°);

| Qi  | Qf  | P.U.V. | Eps | Fi   | Delta | c   | В   |  |
|-----|-----|--------|-----|------|-------|-----|-----|--|
| 2,0 | 0,0 | 1900,0 | 0,0 | 25,0 | 16,0  | 0,0 | 0,0 |  |

# Coefficienti di spinta ed inclinazioni

| Angolo di direzione della spinta     |
|--------------------------------------|
| Coefficiente di spinta attiva,       |
| Coefficiente di spinta dinamica,     |
| Coefficiente di incremento dinamico, |
|                                      |

| u    | Ka   | Kd   | Dk   |
|------|------|------|------|
| 74.0 | 0.36 | 0.43 | 0.07 |

# Spinte risultanti e punto di applicazione

Fx Forza in direzione x (Kg); Fy Z(Rpy) Forza in direzione y (Kg);

Ordinata punto di applicazione risultante spinta (m);

|                                       | Fx      | F         | Z(Rpx)             | Z(Rpy) |  |
|---------------------------------------|---------|-----------|--------------------|--------|--|
| Spinta attiva                         | 1717,5  | 492,48    |                    |        |  |
| Spinta attiva Coesione                | 0,0     | 0,0       | 2,0                | 1,0    |  |
| Spinta incremento sismico             | 0,0     | 0,0       | 2,0                | 0,67   |  |
| Spinta statica sovraccarico           | 1355,92 | 388,8     | 3 2,0              | 1,0    |  |
| Spinta incr. sismico sovraccarico     | 0,0     | 0,0       | 2,0                | 1,0    |  |
| Peso muro                             | 0,0     | 5400,0    | 1,0                | 0,83   |  |
| Momento stabilizzante                 |         | 7162,57   | Kgm                |        |  |
| Momento ribaltante                    |         | 2500,91   | -                  |        |  |
| Verifica alla traslazione             |         |           |                    |        |  |
| Sommatoria forze orizzontali          |         | 3073,41   | Kg                 |        |  |
| Sommatoria forze verticali            |         | 6281,29   | Kg                 |        |  |
| Coefficiente di attrito               |         | 0,47      |                    |        |  |
| Adesione                              |         | 0,1       | kg/cm <sup>2</sup> |        |  |
| Forze normali al piano di scorrimento |         | 6281,29   | Kg                 |        |  |
| Forze parall. al piano di scorrimento |         | 3073,41   | Kg                 |        |  |
| Coeff. sicurezza traslazione Csd      |         | 1,46      |                    |        |  |
| Traslazione verificata Csd>0          |         |           |                    |        |  |
| Verifica al ribaltamento              |         |           |                    |        |  |
| Momento stabilizzante                 | 71      | 62,57 Kgm |                    |        |  |
| Momento ribaltante                    |         | 00,91 Kgm |                    |        |  |
|                                       |         |           |                    |        |  |

2,86

| Carico limite: TERZAGHI              |          |                    |
|--------------------------------------|----------|--------------------|
| Somma forze in direzione x           | 3073,41  | Kg                 |
| Somma forze in direzione y (Fy)      | 6281,29  | Kg                 |
| Somma momenti                        | -4661,66 | Kgm                |
| Larghezza fondazione                 | 2,0      | m                  |
| Eccentricità su B                    | 0,26     | m                  |
| Peso unità di volume                 | 1900,0   | Kg/m³              |
| Angolo di resistenza al taglio       | 25,0     | 0                  |
| Coesione                             | 0,1      | kg/cm <sup>2</sup> |
| Terreno sulla fondazione             | 0,0      | m                  |
| Peso terreno sul piano di posa       | 1900,0   | Kg/m³              |
| Nq                                   | 12,72    |                    |
| Nc                                   | 25,13    |                    |
| Ng                                   | 9,7      |                    |
| sq                                   | 1,0      |                    |
| sc                                   | 1,0      |                    |
| sg                                   | 1,0      |                    |
| Zg (Effetto inerziale in fondazione) | 1,0      |                    |
| iq                                   | 1,0      |                    |
| ic                                   | 1,0      |                    |
| ig                                   | 1,0      |                    |
| Carico limite verticale (Qlim)       | 62239,54 | Kg                 |
| Fattore sicurezza (Csq=Qlim/Fy)      | 9,91     |                    |
| Carico limite verificato Csq>0       |          |                    |

# Tensioni sul terreno

Coeff. sicurezza ribaltamento Csv

Muro verificato a ribaltamento Csv>0

Ascissa centro sollecitazione 0,74 m Larghezza della fondazione 2,0 m

 $\begin{array}{ll} x=0,0 & \text{Tensione...} & 0,56 \text{ kg/cm}^2 \\ x=2,0 & \text{Tensione...} & 0,07 \text{ kg/cm}^2 \end{array}$ 

Combinazione 2 (A2+M2)

### **VERIFICHE GLOBALI [Condizione drenata]**

Piano di rottura passante per (xr1,yr1) = (2,0/0,0) m Piano di rottura passante per (xr2,yr2) = (2,0/2,0) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

#### Discretizzazione terreno

Qi Quota iniziale strato; Of Quota finale strato

P.U.V. Peso unità di volume (Kg/m³); Eps Inclinazione dello strato (°); Fi Angolo di resistenza a taglio; Delta Angolo di attrito terra muro (°);

c Coesione (kg/cm<sup>2</sup>);

ß Angolo perpendicolare al paramento lato monte (°);

| Qi  | Qf  | P.U.V. | Eps | Fi    | Delta | С   | В   |  |
|-----|-----|--------|-----|-------|-------|-----|-----|--|
| 2.0 | 0.0 | 1900.0 | 0.0 | 20,46 | 16.0  | 0.0 | 0.0 |  |

### Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta
 Ka Coefficiente di spinta attiva,
 Kd Coefficiente di spinta dinamica,
 Dk Coefficiente di incremento dinamico,

| Ka Kd I     | Dk  |
|-------------|-----|
| 43 0.51 0.0 | .08 |

### Spinte risultanti e punto di applicazione

Fx Forza in direzione x (Kg); Fy Forza in direzione y (Kg);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

|                                   | Fx      | Fy     | Z(Rpx) | Z(Rpy) |  |
|-----------------------------------|---------|--------|--------|--------|--|
| Spinta attiva                     | 1554,62 | 445,78 | 2,0    | 0,67   |  |
| Spinta attiva Coesione            | 0,0     | 0,0    | 2,0    | 1,0    |  |
| Spinta incremento sismico         | 0,0     | 0,0    | 2,0    | 0,67   |  |
| Spinta statica sovraccarico       | 1227,33 | 351,93 | 2,0    | 1,0    |  |
| Spinta incr. sismico sovraccarico | 0,0     | 0,0    | 2,0    | 1,0    |  |
| Peso muro                         | 0,0     | 5400,0 | 1,0    | 0,83   |  |

Momento stabilizzante 6995,43 Kgm Momento ribaltante 2263,75 Kgm

#### Verifica alla traslazione

| Sommatoria forze orizzontali | 2781,96 | Kg |
|------------------------------|---------|----|
| Sommatoria forze verticali   | 6197,71 | Kg |
| Coefficiente di attrito      | 0,37    |    |

| Adesione                              | 0,08    | kg/cm <sup>2</sup> |
|---------------------------------------|---------|--------------------|
| Forze normali al piano di scorrimento | 6197,71 | Kg                 |
| Forze parall. al piano di scorrimento | 2781,96 | Kg                 |
| Coeff. sicurezza traslazione Csd      | 1,41    |                    |
| Traslazione verificata Csd>0          |         |                    |

Verifica al ribaltamento

| Coeff. sicurezza ribaltamento Csv | 3,09        |
|-----------------------------------|-------------|
| Momento ribaltante                | 2263,75 Kgm |
| Momento stabilizzante             | 6995,43 Kgm |

Muro verificato a ribaltamento Csv>0

| Carico limite: TERZAGHI              |          |                      |
|--------------------------------------|----------|----------------------|
| Somma forze in direzione x           | 2781,96  | 5 Kg                 |
| Somma forze in direzione y (Fy)      | 6197,71  | ĕ                    |
| Somma momenti                        | -4731,68 |                      |
| Larghezza fondazione                 | 2,0      | ) m                  |
| Eccentricità su B                    | 0,24     | ↓ m                  |
| Peso unità di volume                 | 1900,0   | $Kg/m^3$             |
| Angolo di resistenza al taglio       | 20,46    | 5 °                  |
| Coesione                             | 0,08     | 3 kg/cm <sup>2</sup> |
| Terreno sulla fondazione             | 0,0      | ) m                  |
| Peso terreno sul piano di posa       | 1900,0   | $Kg/m^3$             |
| Nq                                   | 7,81     |                      |
| Nc                                   | 18,24    |                      |
| Ng                                   | 5,32     |                      |
| sq                                   | 1,0      |                      |
| sc                                   | 1,0      |                      |
| sg                                   | 1,0      |                      |
| Zg (Effetto inerziale in fondazione) | 1,0      |                      |
| iq                                   | 1,0      |                      |
| ic                                   | 1,0      |                      |
| ig                                   | 1,0      |                      |
| Carico limite verticale (Qlim)       | 49403,48 |                      |
| Fattore sicurezza (Csq=Qlim/Fy)      | 7,97     | 7                    |
| Carico limite verificato Csq>0       |          |                      |

### Tensioni sul terreno

| Ascissa centro sollecitazione | 0,76 m |
|-------------------------------|--------|
| Larghezza della fondazione    | 2,0 m  |

| x = 0.0 | Tensione | $0,53 \text{ kg/cm}^2$ |
|---------|----------|------------------------|
| x = 2,0 | Tensione | $0.09 \text{ kg/cm}^2$ |

Combinazione 3 (EQU+M2)

# **VERIFICHE GLOBALI [Condizione drenata]**

Piano di rottura passante per (xr1,yr1) = (2,0/0,0) m Piano di rottura passante per (xr2,yr2) = (2,0/2,0) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

#### Discretizzazione terreno

| Qi | Quota iniziale strato; |
|----|------------------------|
| Qf | Quota finale strato    |

P.U.V. Peso unità di volume (Kg/m³);

| Eps   | Inclinazione dello strato (°);    |
|-------|-----------------------------------|
| Fi    | Angolo di resistenza a taglio;    |
| Delta | Angolo di attrito terra muro (°); |
|       | Q . (1 / 2)                       |

c Coesione (kg/cm²);

ß Angolo perpendicolare al paramento lato monte (°);

| Qi  | Qf  | P.U.V. | Eps | Fi    | Delta | С   | В   |  |
|-----|-----|--------|-----|-------|-------|-----|-----|--|
| 2,0 | 0,0 | 1900,0 | 0,0 | 20,46 | 16,0  | 0,0 | 0,0 |  |

# Coefficienti di spinta ed inclinazioni

| μ  | Angolo di direzione della spinta     |
|----|--------------------------------------|
| Ka | Coefficiente di spinta attiva,       |
| Kd | Coefficiente di spinta dinamica,     |
| Dk | Coefficiente di incremento dinamico, |

| μ    | Ka   | Kd   | Dk   |
|------|------|------|------|
| 74.0 | 0.43 | 0.51 | 0.08 |

# Spinte risultanti e punto di applicazione

Fx Forza in direzione x (Kg); Fy Forza in direzione y (Kg);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

|                                   | Fx      | Fy     | Z(Rpx) | Z(Rpy) |
|-----------------------------------|---------|--------|--------|--------|
| Spinta attiva                     | 1710,08 | 490,36 | 2,0    | 0,67   |
| Spinta attiva Coesione            | 0,0     | 0,0    | 2,0    | 1,0    |
| Spinta incremento sismico         | 0,0     | 0,0    | 2,0    | 0,67   |
| Spinta statica sovraccarico       | 0,0     | 0,0    | 2,0    | 1,0    |
| Spinta incr. sismico sovraccarico | 0,0     | 0,0    | 2,0    | 1,0    |
| Peso muro                         | 0,0     | 4860,0 | 1,0    | 0,83   |

Momento stabilizzante 5840,72 Kgm Momento ribaltante 1140,06 Kgm

# Verifica alla traslazione

| Coeff. sicurezza traslazione Csd      | 2,1     |           |
|---------------------------------------|---------|-----------|
| Forze parall. al piano di scorrimento | 1710,09 | Kg        |
| Forze normali al piano di scorrimento | 5350,36 | Kg        |
| Adesione                              | 0,08    | $kg/cm^2$ |
| Coefficiente di attrito               | 0,37    |           |
| Sommatoria forze verticali            | 5350,36 | Kg        |
| Sommatoria forze orizzontali          | 1710,08 | Kg        |

Traslazione verificata Csd>0

# Verifica al ribaltamento

| Coeff. sicurezza ribaltamento Csv | 5,12        |
|-----------------------------------|-------------|
| Momento ribaltante                | 1140,06 Kgm |
| Momento stabilizzante             | 5840,72 Kgm |

Muro verificato a ribaltamento Csv>0

| Carico limite: TERZAGHI         |              |  |
|---------------------------------|--------------|--|
| Somma forze in direzione x      | 1710,08 Kg   |  |
| Somma forze in direzione y (Fy) | 5350,36 Kg   |  |
| Somma momenti                   | -4700,66 Kgm |  |
| Larghezza fondazione            | 2,0 m        |  |
| Eccentricità su B               | 0,12 m       |  |

| Peso unità di volume                 | 1900,0   | Kg/m³              |
|--------------------------------------|----------|--------------------|
| Angolo di resistenza al taglio       | 20,46    | 0                  |
| Coesione                             | 0,08     | kg/cm <sup>2</sup> |
| Terreno sulla fondazione             | 0,0      | m                  |
| Peso terreno sul piano di posa       | 1900,0   | Kg/m³              |
| Nq                                   | 7,81     |                    |
| Nc                                   | 18,24    |                    |
| Ng                                   | 5,32     |                    |
| sq                                   | 1,0      |                    |
| SC                                   | 1,0      |                    |
| sg                                   | 1,0      |                    |
| Zg (Effetto inerziale in fondazione) | 1,0      |                    |
| iq                                   | 1,0      |                    |
| ic                                   | 1,0      |                    |
| ig                                   | 1,0      |                    |
| Carico limite verticale (Qlim)       | 49403,48 | Kg                 |
| Fattore sicurezza (Csq=Qlim/Fy)      | 9,23     |                    |
| Carico limite verificato Csq>0       |          |                    |
|                                      |          |                    |

#### Tensioni sul terreno

| 1 011010111 0 011 0 011 0 110 |                                  |  |
|-------------------------------|----------------------------------|--|
| Ascissa centro sollecitazione | 0,88 m                           |  |
| Larghezza della fondazione    | 2,0 m                            |  |
| x = 0,0                       | Tensione 0,36 kg/cm <sup>2</sup> |  |
| x = 2,0                       | Tensione 0,17 kg/cm <sup>2</sup> |  |

Combinazione 4 (Sisma)

# **VERIFICHE GLOBALI [Condizione drenata]**

Piano di rottura passante per (xr1,yr1) = (2,0/0,0) m Piano di rottura passante per (xr2,yr2) = (2,0/2,0) m Centro di rotazione (xr0,yr0) = (0,0/0,0) m

## Discretizzazione terreno

| Qi     | Quota iniziale strato;                             |
|--------|----------------------------------------------------|
| Qf     | Quota finale strato                                |
| P.U.V. | Peso unità di volume (Kg/m³);                      |
| Eps    | Inclinazione dello strato (°);                     |
| Fi     | Angolo di resistenza a taglio;                     |
| Delta  | Angolo di attrito terra muro (°);                  |
| c      | Coesione (kg/cm²);                                 |
| ß      | Angolo perpendicolare al paramento lato monte (°); |

| Qi  | Qf  | P.U.V. | Eps | Fi   | Delta | c   | ß   |  |
|-----|-----|--------|-----|------|-------|-----|-----|--|
| 2,0 | 0,0 | 1900,0 | 0,0 | 25,0 | 16,0  | 0,0 | 0,0 |  |

# Coefficienti di spinta ed inclinazioni

| μ  | Angolo di direzione della spinta     |
|----|--------------------------------------|
| Ka | Coefficiente di spinta attiva,       |
| Kd | Coefficiente di spinta dinamica,     |
| Dk | Coefficiente di incremento dinamico, |

| μ    | Ka Kd     | Dk   |
|------|-----------|------|
| 74,0 | 0,36 0,43 | 0,07 |

# Spinte risultanti e punto di applicazione

Fx Forza in direzione x (Kg); Fy Forza in direzione y (Kg);

Z(Rpy) Ordinata punto di applicazione risultante spinta (m);

|                                   | Fx      | Fy     | Z(Rpx) | Z(Rpy) |  |
|-----------------------------------|---------|--------|--------|--------|--|
| Spinta attiva                     | 1321,15 | 378,83 | 2,0    | 0,67   |  |
| Spinta attiva Coesione            | 0,0     | 0,0    | 2,0    | 1,0    |  |
| Spinta incremento sismico         | 262,91  | 75,39  | 2,0    | 0,67   |  |
| Spinta statica sovraccarico       | 1355,92 | 388,8  | 2,0    | 1,0    |  |
| Spinta incr. sismico sovraccarico | 269,83  | 77,37  | 2,0    | 1,0    |  |
| Peso muro                         | 486,0   | 5400,0 | 1,0    | 0,83   |  |

Momento stabilizzante 7240,79 Kgm Momento ribaltante 3086,78 Kgm

## Verifica alla traslazione

| Sommatoria forze orizzontali          | 3695,8 | Kg                 |
|---------------------------------------|--------|--------------------|
| Sommatoria forze verticali            | 6320,4 | Kg                 |
| Coefficiente di attrito               | 0,47   | •                  |
| Adesione                              | 0,1    | kg/cm <sup>2</sup> |
| Forze normali al piano di scorrimento | 6320,4 | Kg                 |
| Forze parall. al piano di scorrimento | 3695,8 | Kg                 |
| Coeff. sicurezza traslazione Csd      | 1,22   | •                  |
| Traslazione verificata Csd>0          |        |                    |

## Verifica al ribaltamento

| Coeff. sicurezza ribaltamento Csv | 2,35        |
|-----------------------------------|-------------|
| Momento ribaltante                | 3086,78 Kgm |
| Momento stabilizzante             | 7240,79 Kgm |

Muro verificato a ribaltamento Csv>0

| Carica | limita                                  | TERZA | CHI |
|--------|-----------------------------------------|-------|-----|
| Carico | 111111111111111111111111111111111111111 | IDA   | THE |

| Somma forze in direzione x                                        | 3695,8   | Kg                 |
|-------------------------------------------------------------------|----------|--------------------|
| Somma forze in direzione y (Fy)                                   | 6320,4   | Kg                 |
| Somma momenti                                                     | -4154,01 | Kgm                |
| Larghezza fondazione                                              | 2,0      | m                  |
| Eccentricità su B                                                 | 0,34     | m                  |
| Peso unità di volume                                              | 1900,0   | $Kg/m^3$           |
| Angolo di resistenza al taglio                                    | 25,0     | 0                  |
| Coesione                                                          | 0,1      | kg/cm <sup>2</sup> |
| Terreno sulla fondazione                                          | 0,0      | m                  |
| Peso terreno sul piano di posa                                    | 1900,0   | $Kg/m^3$           |
| Nq                                                                | 12,72    |                    |
| Nc                                                                | 25,13    |                    |
| Ng                                                                | 9,7      |                    |
| sq                                                                | 1,0      |                    |
| sc                                                                | 1,0      |                    |
| sg                                                                | 1,0      |                    |
| Zg (Effetto inerziale in fondazione)                              | 1,0      |                    |
| iq                                                                | 1,0      |                    |
| ic                                                                | 1,0      |                    |
| ig                                                                | 1,0      |                    |
| Carico limite verticale (Qlim)                                    | 62239,54 | Kg                 |
| Fattore sicurezza (Csq=Qlim/Fy)<br>Carico limite verificato Csq>0 | 9,85     |                    |
|                                                                   |          |                    |

# Tensioni sul terreno

Ascissa centro sollecitazione 0,66 m Larghezza della fondazione 2,0 m

 $\begin{array}{ll} x=0.0 & \text{Tensione...} & 0.64 \text{ kg/cm}^2 \\ x=1.97 & \text{Tensione...} & 0.0 \text{ kg/cm}^2 \end{array}$ 

# MU33 – verifiche di stabilità globale Relazione di calcolo

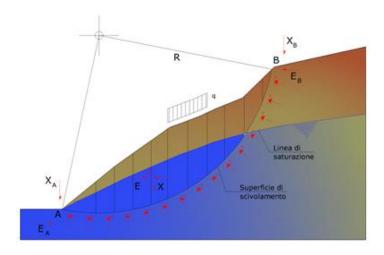
#### **Definizione**

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

#### Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:


- Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione ( c ) e angolo di resistenza al taglio (φ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

#### Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio  $(\tau)$  e confrontate con la resistenza disponibile  $(\tau_f)$ , valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.



#### Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N; agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T<sub>i</sub>;
- (n-1) forze normali E<sub>i</sub> agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X<sub>i</sub> agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E<sub>i</sub>;
- (n-1) valori della coordinata che individua il punto di applicazione delle X<sub>i</sub>;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

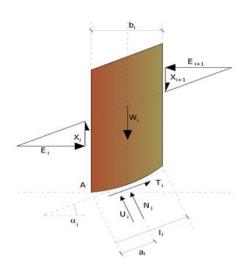
- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che  $N_i$  sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.


#### Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
,  $\sum M_0 = 0$  Criterio di rottura

$$F = \frac{\Sigma \left\{ c_{i} \times b_{i} + \left( W_{i} - u_{i} \times b_{i} + \Delta X_{i} \right) \times \tan \phi_{i} \right\} \times \frac{\sec \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \phi_{i} / F}}{\Sigma W_{i} \times \sin \alpha_{i}}$$

I valori di F e di  $\Delta X$  per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre  $\Delta X=0$  ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.



#### Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

# Analisi di stabilità dei pendii con: BISHOP (1955) – CONDIZIONI STATICHE

| Calcolo eseguito secondo                          | NTC 2008 & Circ.   |
|---------------------------------------------------|--------------------|
| Numero di strati                                  | 4,0                |
| Numero dei conci                                  | 20,0               |
| Grado di sicurezza ritenuto accettabile           | 1,1                |
| Coefficiente parziale resistenza                  | 1,0                |
| Parametri geotecnici da usare. Angolo di attrito: | Picco              |
| Analisi                                           | Condizione drenata |
| Superficie di forma circolare                     |                    |
|                                                   |                    |

\_\_\_\_\_

## Maglia dei Centri

| 4,0 m  |
|--------|
| 7,0 m  |
| 14,0 m |
| 15,0 m |
| 10,0   |
| 10,0   |
| 10,0   |
|        |

\_\_\_\_\_

Vertici profilo

| Nr | X     | у                    |
|----|-------|----------------------|
|    | (m)   | (m)                  |
| 1  | 2,81  | 3,89                 |
| 2  | 9,24  | 3,89                 |
| 3  | 9,74  | 3,89                 |
| 4  | 9,74  | 4,39                 |
| 5  | 10,12 | 4,39                 |
| 6  | 10,52 | 5,39                 |
| 7  | 11,52 | 4,39<br>5,39<br>5,39 |
| 8  | 15,27 | 7,94                 |
| 9  | 24,12 | 8,01                 |
| 10 | 32,81 | 8,51                 |

#### Falda

| Nr. | X     | y    |
|-----|-------|------|
|     | (m)   | (m)  |
| 1   | 2,81  | 1,39 |
| 2   | 9,24  | 1,39 |
| 3   | 11,74 | 1,39 |
| 4   | 13,05 | 2,39 |
| 5   | 13,05 | 2,39 |
| 6   | 16,84 |      |
| 7   | 16,84 | 5,95 |

|                | 8 | 24,18 | 6,01 |
|----------------|---|-------|------|
|                | 9 | 32,92 | 6,51 |
| Vertici strato | 1 |       |      |
| N              |   | X     | y    |
|                |   | (m)   | (m)  |
|                | 1 | 2,81  | 3,89 |
|                | 2 | 24,1  | 3,89 |
|                | 3 | 32,81 | 3,89 |
| Vertici strato | 2 |       |      |
| N              |   | X     | у    |
|                |   |       |      |

| veruer strate | 4     |       |
|---------------|-------|-------|
| N             | X     | у     |
|               | (m)   | (m)   |
| 1             | 2,81  | -5,16 |
| 2             | 16,36 | -5,16 |
| 3             | 32,81 | -5,16 |

| Vertici strato3 |       |        |  |  |  |  |  |  |
|-----------------|-------|--------|--|--|--|--|--|--|
| N               | X     | y      |  |  |  |  |  |  |
|                 | (m)   | (m)    |  |  |  |  |  |  |
| 1               | 2,81  | -10,57 |  |  |  |  |  |  |
| 2               | 2,81  | -10,57 |  |  |  |  |  |  |
| 3               | 18,86 | -10,57 |  |  |  |  |  |  |
| 4               | 32,81 | -10,57 |  |  |  |  |  |  |

# Coefficienti parziali azioni

|                                    | ======================================= |
|------------------------------------|-----------------------------------------|
| Sfavorevoli: Permanenti, variabili | 1,0 1,0                                 |
| Favorevoli: Permanenti, variabili  | 1,0 1,0                                 |
|                                    |                                         |

# Coefficienti parziali per i parametri geotecnici del terreno

|                                         | ======================================= |
|-----------------------------------------|-----------------------------------------|
| Tangente angolo di resistenza al taglio | 1,25                                    |
| Coesione efficace                       | 1,25                                    |
| Coesione non drenata                    | 1,4                                     |
| Riduzione parametri geotecnici terreno  | Si                                      |
|                                         |                                         |

Stratigrafia

| • | m augi ana |                       |              |               |               |             |           |  |
|---|------------|-----------------------|--------------|---------------|---------------|-------------|-----------|--|
| ſ | Strato     | Coesione              | Coesione non | Angolo        | Peso unità di | Peso saturo | Litologia |  |
|   |            | (kg/cm <sup>2</sup> ) | drenata      | resistenza al | volume        | $(Kg/m^3)$  |           |  |
|   |            | _                     | (kg/cm²)     | taglio        | $(Kg/m^3)$    |             |           |  |
|   |            |                       |              | (°)           |               |             |           |  |
| Ī | 1          | 0                     |              | 25            | 1900          | 1900        |           |  |
| Ī | 2          | 0.1                   |              | 25            | 1900          | 1900        |           |  |
| Ī | 3          | 0.1                   |              | 26            | 2000          | 2000        |           |  |
| Ī | 4          | 0.55                  |              | 31            | 2300          | 2300        |           |  |

# Terra rinforzata

| No Tipologia |  | Tallow | Resistenza sfilamento |
|--------------|--|--------|-----------------------|
|              |  | (Kg)   | (Kg)                  |

# Risultati analisi pendio [NTC 2008 & Circ.]

| Fs minimo individuato      | 1,5    |
|----------------------------|--------|
| Ascissa centro superficie  | 11,0 m |
| Ordinata centro superficie | 11,0 m |
| Raggio superficie          | 8,1 m  |

\_\_\_\_\_\_

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 11,00 yc = 11,00 Rc = 8,10 Fs=1,502

| Nr. | B<br>m | Alfa<br>(°) | Li<br>m | Wi<br>(Kg) | Kh•Wi<br>(Kg) | Kv•Wi<br>(Kg) | c<br>(kg/cm²) | Fi<br>(°) | Ui<br>(Kg) | N'i<br>(Kg) | Ti<br>(Kg) |
|-----|--------|-------------|---------|------------|---------------|---------------|---------------|-----------|------------|-------------|------------|
| 1   | 0,57   | -26,4       | 0,64    | 160,77     | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 396,8       | 437,5      |
| 2   | 0,57   | -22,0       | 0,61    | 437,82     | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 671,8       | 494,2      |
| 3   | 0,57   | -17,7       | 0,6     | 660,3      | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 863,2       | 533,0      |
| 4   | 0,57   | -13,5       | 0,59    | 832,5      | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 990,3       | 558,1      |
| 5   | 0,39   | -10,0       | 0,4     | 650,74     | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 730,6       | 394,6      |
| 6   | 0,73   | -6,0        | 0,73    | 2131,25    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 2242,9      | 948,5      |
| 7   | 0,58   | -1,3        | 0,58    | 2766,97    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 2791,3      | 1004,8     |
| 8   | 0,57   | 2,7         | 0,57    | 2688,82    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 2645,8      | 961,0      |
| 9   | 0,57   | 6,8         | 0,57    | 2960,57    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 2860,5      | 1016,2     |
| 10  | 0,57   | 10,9        | 0,58    | 3283,85    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 3134,9      | 1087,7     |
| 11  | 0,57   | 15,0        | 0,59    | 3561,26    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 3377,8      | 1153,2     |
| 12  | 0,57   | 19,2        | 0,6     | 3790,41    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 3591,1      | 1213,4     |
| 13  | 0,57   | 23,6        | 0,62    | 3967,92    | 0,0           | 0,0           | 0,08          | 20,5      | 0,0        | 3775,5      | 1268,9     |
| 14  | 0,75   | 28,8        | 0,85    | 5389,08    | 0,0           | 0,0           | 0,0           | 20,5      | 165,2      | 5244,8      | 1302,7     |
| 15  | 0,39   | 33,5        | 0,47    | 2750,22    | 0,0           | 0,0           | 0,0           | 20,5      | 161,7      | 2665,5      | 662,1      |
| 16  | 0,57   | 37,7        | 0,72    | 3639,18    | 0,0           | 0,0           | 0,0           | 20,5      | 298,1      | 3542,0      | 879,8      |
| 17  | 0,57   | 43,0        | 0,78    | 3120,96    | 0,0           | 0,0           | 0,0           | 20,5      | 328,6      | 3099,4      | 769,9      |
| 18  | 0,57   | 48,8        | 0,87    | 2490,84    | 0,0           | 0,0           | 0,0           | 20,5      | 165,7      | 2749,7      | 683,0      |
| 19  | 0,57   | 55,4        | 1,0     | 1706,41    | 0,0           | 0,0           | 0,0           | 20,5      | 0,0        | 2209,9      | 548,9      |
| 20  | 0,57   | 63,5        | 1,28    | 676,53     | 0,0           | 0,0           | 0,0           | 20,5      | 0,0        | 1011,7      | 251,3      |

Tiro geogriglie

| Nr. conci | Tiro |
|-----------|------|
|           | (Kg) |
| 1         |      |
| 2         |      |
| 3         |      |
| 4         |      |
| 5         |      |
| 6         |      |
| 7         |      |
| 8         |      |
| 9         |      |
| 10        |      |
| 11        |      |
| 12        |      |
| 13        |      |
| 14        |      |
| 15        |      |
| 16        |      |
| 17        |      |
| 18        |      |
| 19        |      |

# Indice

| 1.Dati generali                                                | 14 |
|----------------------------------------------------------------|----|
| 2. Vertici profilo                                             | 15 |
| 3.Falda                                                        | 15 |
| 4. Vertici strato1                                             | 15 |
| 5. Vertici strato2                                             | 15 |
| 6. Vertici strato3                                             | 16 |
| 7.Coefficienti parziali azioni                                 | 16 |
| 8.Coefficienti parziali per i parametri geotecnici del terreno | 16 |
| 9.Stratigrafia                                                 | 16 |
| 10.Terra rinforzata                                            | 16 |
| 11.Risultati analisi pendio [NTC 2008 & Circ.]                 | 16 |
| Indice                                                         | 18 |

# Analisi di stabilità dei pendii con: BISHOP (1955) – CONDIZIONI SISMICHE

Calcolo eseguito secondo
NTC 2008 & Circ.
Numero di strati
4,0
Numero dei conci
Crado di sicurezza ritenuto accettabile
Coefficiente parziale resistenza
1,0
Parametri geotecnici da usare. Angolo di attrito:
Analisi
Superficie di forma circolare

### Maglia dei Centri

| Ascissa vertice sinistro inferiore xi   | 4,0 m  |
|-----------------------------------------|--------|
| Ordinata vertice sinistro inferiore yi  | 7,0 m  |
| Ascissa vertice destro superiore xs     | 14,0 m |
| Ordinata vertice destro superiore ys    | 15,0 m |
| Passo di ricerca                        | 10,0   |
| Numero di celle lungo x                 | 10,0   |
| Numero di celle lungo y                 | 10,0   |
| Coefficiente azione sismica orizzontale | 0,084  |
| Coefficiente azione sismica verticale   | 0,042  |

Vertici profilo

| vertici promo |       |                      |
|---------------|-------|----------------------|
| Nr            | X     | y                    |
|               | (m)   | (m)                  |
| 1             | 2,81  | 3,89                 |
| 2             | 9,24  | 3,89                 |
| 3             | 9,74  | 3,89                 |
| 4             | 9,74  | 4,39                 |
| 5             | 10,12 | 4,39                 |
| 6             | 10,52 | 5,39                 |
| 7             | 11,52 | 4,39<br>5,39<br>5,39 |
| 8             | 15,27 | 7,94                 |
| 9             | 24,12 | 8,01                 |
| 10            | 32,81 | 8,51                 |

### Falda

| raiua |       |                      |
|-------|-------|----------------------|
| Nr.   | X     | у                    |
|       | (m)   | (m)                  |
| 1     | 2,81  | 1,39                 |
| 2     | 9,24  | 1,39                 |
| 3     | 11,74 | 1,39                 |
| 4     | 13,05 | 2,39                 |
| 5     | 13,05 | 2,39                 |
| 6     | 16,84 | 2,39<br>5,95<br>5,95 |
| 7     | 16,84 | 5,95                 |
| 8     | 24,18 | 6,01                 |
| 9     | 32,92 | 6,51                 |

Vertici strato ......1

| vertici strato | 1    |      |
|----------------|------|------|
| N              | X    | y    |
|                | (m)  | (m)  |
| 1              | 2,81 | 3,89 |
| 2              | 24,1 | 3,89 |

| 3              | 32,81 | 3,89  |
|----------------|-------|-------|
| Vertici strato | 2     |       |
| N              | X     | y     |
|                | (m)   | (m)   |
| 1              | 2,81  | -5,16 |
| 2              | 16,36 | -5,16 |
| 3              | 32,81 | -5,16 |
| Ventici etrote | 2     |       |

| Vertici  | strato | 3      |
|----------|--------|--------|
| V CI UCI | su aw  | •••••• |

| N | X     | y      |
|---|-------|--------|
|   | (m)   | (m)    |
| 1 | 2,81  | -10,57 |
| 2 | 2,81  | -10,57 |
| 3 | 18,86 | -10,57 |
| 4 | 32,81 | -10,57 |

# Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,0 1,0 Favorevoli: Permanenti, variabili 1,0 1,0

# Coefficienti parziali per i parametri geotecnici del terreno

| Tangente angolo di resistenza al taglio | 1,25 |
|-----------------------------------------|------|
| Coesione efficace                       | 1,25 |
| Coesione non drenata                    | 1,4  |
| Riduzione parametri geotecnici terreno  | Si   |

Stratigrafia

| Stratigrana |                       |              |               |               |             |           |  |
|-------------|-----------------------|--------------|---------------|---------------|-------------|-----------|--|
| Strato      | Coesione              | Coesione non | Angolo        | Peso unità di | Peso saturo | Litologia |  |
|             | (kg/cm <sup>2</sup> ) | drenata      | resistenza al | volume        | $(Kg/m^3)$  |           |  |
|             |                       | (kg/cm²)     | taglio        | $(Kg/m^3)$    |             |           |  |
|             |                       |              | (°)           |               |             |           |  |
| 1           | 0                     |              | 25            | 1900          | 1900        | ECLA      |  |
|             |                       |              |               |               |             | RIDOTTO   |  |
| 2           | 0.1                   |              | 25            | 1900          | 1900        | ECLA      |  |
| 3           | 0.1                   |              | 26            | 2000          | 2000        | SALT      |  |
| 4           | 0.55                  |              | 31            | 2300          | 2300        | AP        |  |

# Risultati analisi pendio [NTC 2008 & Circ.]

|                              | ====  |
|------------------------------|-------|
| Fs minimo individuato        | ,17   |
| Ascissa centro superficie 1  | 1,0 m |
| Ordinata centro superficie 1 | 1,0 m |
| Raggio superficie            | 8,1 m |

## xc = 11,00 yc = 11,00 Rc = 8,10 Fs=1,171

| Nr. | B<br>m | Alfa<br>(°) | Li<br>m | Wi<br>(Kg) | Kh•Wi<br>(Kg) | Kv•Wi<br>(Kg) | c<br>(kg/cm²) | Fi<br>(°) | Ui N'i<br>(Kg) (Kg) | Ti<br>(Kg) |
|-----|--------|-------------|---------|------------|---------------|---------------|---------------|-----------|---------------------|------------|
| 1   | 0,57   | -26,4       | 0,64    | 160,77     | 13,51         | 6,75          | 0,08          | 20,5      | 0,0 469,8           | 584,4      |
| 2   | 0,57   | -22,0       | 0,61    | 437,82     | 36,78         | 18,39         | 0,08          | 20,5      | 0,0 736,5           | 654,5      |
| 3   | 0,57   | -17,7       | 0,6     | 660,3      | 55,47         | 27,73         | 0,08          | 20,5      | 0,0 916,8           | 700,7      |
| 4   | 0,57   | -13,5       | 0,59    | 832,5      | 69,93         | 34,97         | 0,08          | 20,5      | 0,0 1031,4          | 729,0      |
| 5   | 0,39   | -10,0       | 0,4     | 650,74     | 54,66         | 27,33         | 0,08          | 20,5      | 0,0 751,5           | 512,8      |

| 6  | 0,73 | -6,0 | 0,73 2131,25 | 179,03 | 89,51  | 0,08 | 20,5 | 0,0   | 2272,1 | 1225,9 |
|----|------|------|--------------|--------|--------|------|------|-------|--------|--------|
| 7  | 0,58 | -1,3 | 0,58 2766,97 | 232,43 | 116,21 | 0,08 | 20,5 | 0,0   | 2798,0 | 1291,0 |
| 8  | 0,57 | 2,7  | 0,57 2688,82 | 225,86 | 112,93 | 0,08 | 20,5 | 0,0   | 2633,0 | 1228,6 |
| 9  | 0,57 | 6,8  | 0,57 2960,57 | 248,69 | 124,34 | 0,08 | 20,5 | 0,0   | 2827,5 | 1292,9 |
| 10 | 0,57 | 10,9 | 0,58 3283,85 | 275,84 | 137,92 | 0,08 | 20,5 | 0,0   | 3079,3 | 1377,5 |
| 11 | 0,57 | 15,0 | 0,59 3561,26 | 299,15 | 149,57 | 0,08 | 20,5 | 0,0   | 3297,3 | 1453,6 |
| 12 | 0,57 | 19,2 | 0,6 3790,41  | 318,39 | 159,2  | 0,08 | 20,5 | 0,0   | 3483,4 | 1522,1 |
| 13 | 0,57 | 23,6 | 0,62 3967,92 | 333,31 | 166,65 | 0,08 | 20,5 | 0,0   | 3638,1 | 1583,8 |
| 14 | 0,75 | 28,8 | 0,85 5389,08 | 452,68 | 226,34 | 0,0  | 20,5 | 165,2 | 5072,6 | 1616,1 |
| 15 | 0,39 | 33,5 | 0,47 2750,22 | 231,02 | 115,51 | 0,0  | 20,5 | 161,7 | 2563,3 | 816,6  |
| 16 | 0,57 | 37,7 | 0,72 3639,18 | 305,69 | 152,85 | 0,0  | 20,5 | 298,1 | 3387,9 | 1079,4 |
| 17 | 0,57 | 43,0 | 0,78 3120,96 | 262,16 | 131,08 | 0,0  | 20,5 | 328,6 | 2943,1 | 937,7  |
| 18 | 0,57 | 48,8 | 0,87 2490,84 | 209,23 | 104,62 | 0,0  | 20,5 | 165,7 | 2588,0 | 824,5  |
| 19 | 0,57 | 55,4 | 1,0 1706,41  | 143,34 | 71,67  | 0,0  | 20,5 | 0,0   | 2056,0 | 655,0  |
| 20 | 0,57 | 63,5 | 1,28 676,53  | 56,83  | 28,41  | 0,0  | 20,5 | 0,0   | 924,8  | 294,6  |
|    |      |      |              |        |        |      |      |       |        |        |