

ASSE VIARIO MARCHE-UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA MAXI LOTTO 2

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA:
SS. 318 DI "VALFABBRICA", TRATTO PIANELLO -VALFABBRICA
SS. 76 "VAL D'ESINO", TRATTI FOSSATO VICO - CANCELLI E ALBACINA - SERRA SAN QUIRICO
"PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO-MUCCIA-SFERCIA.

PROGETTO ESECUTIVO DI DETTAGLIO

CONTRAENTE GENERALE:	Il Responsabile del Contraente Generale:
DIRPA 2 s.c.a r.l.	

PROGETTAZIONE:

Partecipazioni Italia S.p.A.

IL PROGETTISTA: Dott. Ing. Salvatore Lieto Ordine degli Ingegneri Prov. di Mantova n.1147 ASSISTENZA ALLA PROGETTAZIONE:

TECNOSTRUTTURE S.r.l.

SEDE LEGALE: Piozza Regina Margherita n.27 — 00198 ROMA SEDE OPERATIVA: Via delle Querciole n. 13 — 00037 Segni (RM)

IL PROGETTISTA: Dott. Ing. Antonio Tosiani

VISTO
IL RESPONSABILE DEL PROCEDIMENTO:

IL COORDINATORE DELLA SICUREZZA IN FASE DI ESECUZIONE:

IL DIRETTORE DEI LAVORI:

Ing. Iginio Farotti

Ing. Vincenzo Pardo

Ing. Peppino Marascio

2.1.3 - PEDEMONTANA DELLE MARCHE

3º Stralcio funzionale - Castelraimondo Nord - Castelraimondo Sud

4º Stralcio funzionale - Castelraimondo Sud - Innesto SS77 a Muccia

OPERE D'ARTE MINORI: SOTTOVIA

SOTTOVIA STRADA CASALE DI MECCIANO AL Km 5+804

Relazione tecnica e di calcolo sottovia

SCALA:

DATA:

Novembre 2021

Codice Unico di Progetto (CUP) F12C03000050021 (assegnato CIPE 20.04.2015)

Rev.	Data	Descrizione	Red	atto	Controllato	Approvato
Α	Aprile 2020	Emissione P.E.	Progin	A. Mazziotti	S. Lieto	A. Grimaldi
В	Sett. 2020	Emisso a seguito istruttoria ANAS	Progin	A. Della Rocca	S. Lieto	A. Grimaldi
С	Novem. 2021	Emissione Progetto di Dettaglio	Tecnostrutture	Tecnostrutture	A. Tosiani	S. Lieto

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano $\,$ km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	1 di 78

INDICE

1. PREMESSA	3
1.1 DESCRIZIONE DELL'OPERA	
1.2 UNITÀ DI MISURA	_
2. DESCRIZIONE DELLE OPERE IN PROGETTO	6
3. NORMATIVA DI RIFERIMENTO	7
4. CARATTERISTICHE DEI MATERIALI	8
4.1 CALCESTRUZZO PER FONDAZIONE	8
4.1 CALCESTRUZZO PER ELEVAZIONE	
4.2 ACCIAIO PER ARMATURE	
4.3 COPRIFERRI	
5. INQUADRAMENTO GEOTECNICO	
5.1 MODELLO GEOTECNICO	
5.2 INTERAZIONE TERRENO-FONDAZIONE	
6. CARATTERIZZAZIONE SISMICA	
7. VERIFICHE STRUTTURALI – CRITERI GENERALI	18
7.1.1 Verifica SLE	
7.1.2 Verifiche delle tensioni	
7.1.3 Verifiche a fessurazione	
7.1.5 Pressoflessione	
7.1.6 Taglio	
8. CRITERI GENERALI DI ANALISI E VERIFICA SCATOLARI	24
8.1 ANALISI DEI CARICHI	24
8.1.1 Peso proprio	
8.1.2 Permanenti	
8.1.3 Spinta del terreno	
8.1.5 Spinta del sovraccarico	
8.1.6 Variazioni termiche della struttura	
8.1.7 Ritiro e viscosità	
8.1.9 Azione longitudinale di frenamento (Q3)	
8.1.10 Azioni Sismiche	29
8.1.11 Forze d'inerzia	=0
8.1.12 Spinta sismica terreno	
8.3 VERIFICHE GEOTECNICHE (CARICO LIMITE)	
9. ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	
10. ANALISI DELLO SCATOLARE	
10.1 AZIONI DI CARICO	
10.2 ANALISI DEI CARICHI	
10.3 AZIONI SISMICHE	
11. RISULTATI, ANALISI E VERIFICHE SCATOLARE	
THE THOOLITTIE, THE TELL TELL TOTAL CONTROLL THE THIRD T	

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano $\,$ km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	2 di 78

11.1 MODELLO DI CALCOLO	55
11.2 SOLLECITAZIONI DI CALCOLO	56
11.3 ARMATURE DI PROGETTO	60
11.4 VERIFICHE DI RESISTENZA E FESSURAZIONE	
11.4.1 Verifiche allo SLU	61
11.4.2 Verifiche a pressoflessione	62
11.4.3 Verifiche a Taglio	63
11.4.4 Verifiche allo SLE	63
11.4.5 Verifiche a fessurazione	64
11.4.6 Verifica delle tensioni	
11.4.7 Verifiche geotecniche	73
12. VERIFICA DEL CORDOLO SULLA SOLETTA DEL SOTTOVIA	74
12.1 ANALIDI DEI CARICHI	
12.1 SOLLECITAZIONI	75
12.2 VERIFICHE	75
ALLEGATO 1	77
TARIHATI DI CALCOLO SCATOLARE	77

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

O	T#-	0-4	OFF	14/DC	I-I -I	N I	D	Dog of Dog
Opera	Tratto	Settore	CEE	WBS	Ia. acc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	F	16	OM0003	REL	01	C	3 di 78
L07 00	210	_	10	CIVICOCO	IVLL	O1		J 41 7 0

1. PREMESSA

Il presente documento rientra nell'ambito della redazione degli Elaborati tecnici di Progetto di Dettaglio della strada Pedemontana Marchigiana, che costituisce l'elemento di completamento tra le due direttrici "S.S.76" Valnerina e "S.S.77" Val di Chienti, relativamente agli stralci funzionali n³ (S vincolo di Castelraimondo nord – Svincolo di Castelraimondo sud) e n⁴ (Svincolo di Castelraimondo sud - innesto con la S.S. 77 a Muccia)

Oggetto della trattazione nel seguito esposta è in particolare il dimensionamento strutturale e geotecnico del sottovia Mecciano al km 5+804.

Per i muri d'ala si rimanda alla relazione specifica.

Si riporta uno stralcio plano altimetrico dell'opera (Figura 1.1, 1.2 e 1.3):

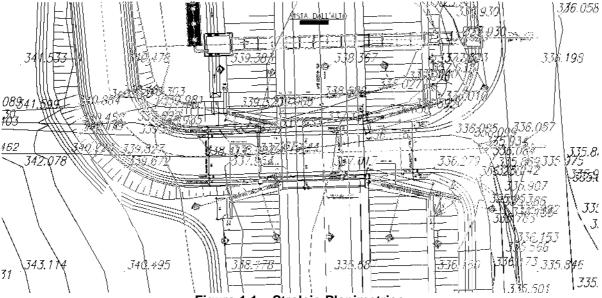


Figura 1.1 – Stralcio Planimetrico

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	4 di 78

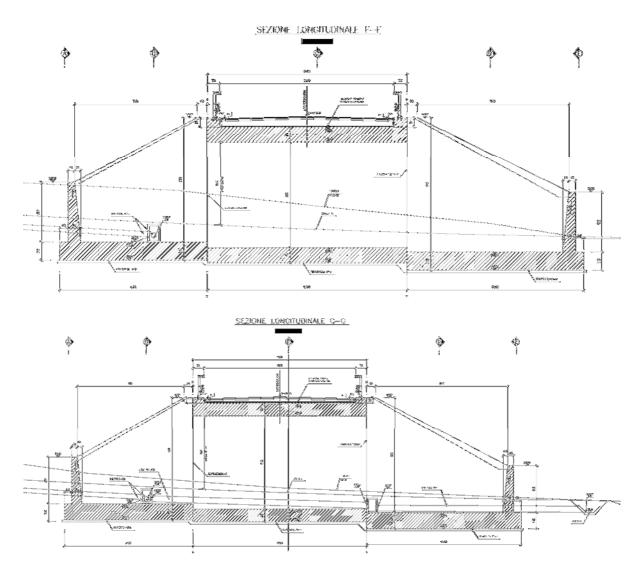


Figura 1.2 - Profilo

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Tratto Settore CEE WBS Pag. di Pag. Opera ld.doc. N. prog. Rev. L0703 213 16 OM0003 REL 5 di 78 Ε

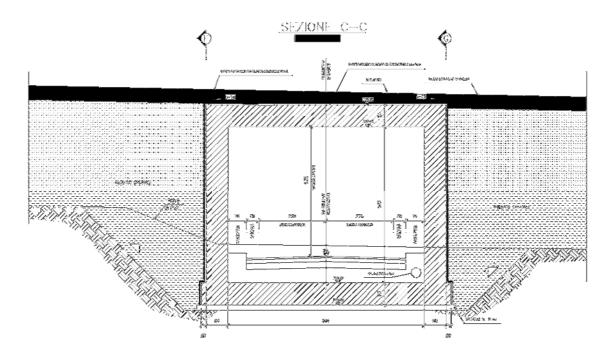


Figura 1.3 - Sezioni trasversali

1.1 DESCRIZIONE DELL'OPERA

Come detto in precedenza, l'opera è costituita da un sottovia 6.40x8.00 m con fondazione da 90 cm, piedritti con spessore 90 cm e soletta superiore anche essa spessa 90 cm.

In asse sottovia il ricoprimento in soletta varia da 0.44 m a 0.63 m.

Il sottovia ha una lunghezza complessiva di 12.00m.

Da indagini geotecniche, la falda è stata assunta al piano di posa dell'opera.

Nel seguito, dopo una breve descrizione delle opere cui si riferiscono i calcoli sviluppati, si riportano tutti i criteri generali adottati per le analisi e verifiche

 \Rightarrow kN, kN/m², kN/m³

1.2 UNITÀ DI MISURA

per i carichi

Nel seguito si adotteranno le seguenti unità di misura:

per le lunghezze ⇒ m, cm,

per le azioni di calcolo ⇒ kN, kNm

ullet per le tensioni \Rightarrow kPa, Mpa

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

O	Tueste	Cattains	CEE	WDC	اما مامم	N.I. source or	Davi	Pag. di Pag.
Opera	Tratto	Settore	CEE	WBS	Id. ddc.	N. prog.	Rev.	ray.uray.
L0703	213	F	16	OM0003	REL	01	C	6 di 78
L07 00	210	_	10	CIVICOCO	1 1	O1		0 01 7 0

2. DESCRIZIONE DELLE OPERE IN PROGETTO

I calcoli esposti nel presente documento, si riferiscono, come già anticipato in premessa, allo scatolare in c.a. ubicato alla pk 5+804:

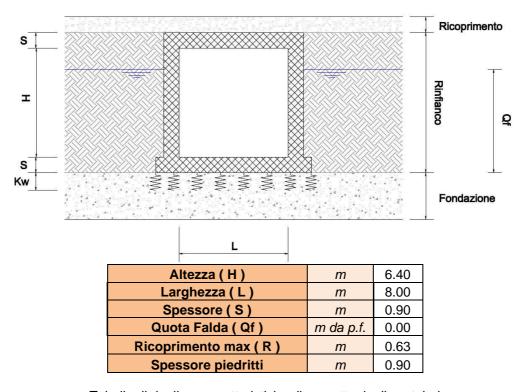


Tabella di riepilogo caratteristiche di progetto degli scatolari

Per ulteriori dettagli si rimanda agli elaborati grafici specifici.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	7 di 78

3. NORMATIVA DI RIFERIMENTO

Per la redazione del progetto strutturale e geotecnico esposto nel presente documento, si è fatto riferimento alle seguenti normative e specifiche nazionali e comunitarie:

D.M. 14/01/2008.

Norme tecniche per le costruzioni.

Circolare del 02/02/2009.

Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.

- UNI EN 206-1-2001: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- **UNI 11104-2004:** Specificazione, prestazione, produzione e conformità: Istruzioni complementari per l'applicazione della EN 206-1
- Linee Guida sul calcestruzzo strutturale Servizio Tecnico Centarale dei Lavori Pubblici dicembre 1996 (L.G.S.T.C.)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	8 di 78

4. CARATTERISTICHE DEI MATERIALI

Nei paragrafi seguenti si riportano le caratteristiche dei materiali previsti per la realizzazione dell'opera.

4.1 CALCESTRUZZO PER FONDAZIONE

Per tutte le parti strutturali in elevazione è previsto l'impiego di calcestruzzo di classe C32/40, di cui nel seguito si riportano le relative caratteristiche meccaniche valutate in accordo a quanto prescritto ai punti 4.1.2.1 e 11.2.10 del DM 14.01.08:

<u>Classe di I</u>	<u>Resistenza</u>	32/40	_					
Valore caratteristico della resistenza a compressione cubica a 28 gg:								
R _{ck} =	40	MPa						
Valore caratteristico della resistenza a compressione cilindrica a 28 gg:								
f _{ck} =	33.2	MPa	(0,83*R _{ck})					
Resistenza a con	pressione cilind	rica media:						
f _{cm} =	41.2	MPa	(fck+8)					
Resistenza a traz	ione assiale:	\neg						
f _{ctm} =	3.10	MPa	Valore medio					
f _{ctk,0,05} =	2.17	MPa	Valore caratteristico frattile 5%					
Resistenza a traz	ione per flession	e:						
f _{cfm} =	3.7	MPa	Valore medio					
f _{cfk,0,05} =	2.6	MPa	Valore caratteristico frattile 5%					
Coefficiente parz	iale per le verifici	he agli SLU:						
γ _c =	1.5	J						
Per situazioni di ca	arico eccezionali, t	ale valore va coi	nsiderato pari ad 1,0					
Resistenza di cal	colo a compressi	ione allo SLU:						
f _{cd} =	18.8	MPa	(0,85*fck/γs)					
Resistenza di cal	colo a trazione d	- iretta allo SLU:						
f _{ctd} =	1.45	MPa	(f _{ctk 0,05} / γs)					
Resistenza di cal	colo a trazione p	er flessione SL	U:					
f _{ctd f} =	1.74	MPa	1,2*fctd					
Per spessori mino	ri di 50mm e calce	struzzi ordinari,	tale valore va ridotto del 20%					
-								
Modulo di elastic	ità secante:	_						
E _{cm} =	33643	MPa						

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	9 di 78

Modulo di Po	oisson:	-	
ν=	0-0,2		
Coefficiente	di dilatazione lineare	1	
α=	0.00001	℃ -1	
		-	
Tensione di	aderenza di calcolo acc	ciaio-calcestr	uzzo
η=	1.00		
ı		1	
f _{bd} =	3.25	MPa	$(2,25*f_{ctk*}\eta/\gamma_{S})$
		•	
Nel caso di a	rmature molto addensate	e, o ancoraggi	<u>in zona tesa tale valore va diviso per 1,5</u>

4.1 CALCESTRUZZO PER ELEVAZIONE

Per tutte le parti strutturali in fondazione è previsto l'impiego di calcestruzzo di classe C25/30, di cui nel seguito si riportan le relative caratteristiche meccaniche valutate in accordo a quanto prescritto ai parg. 4.1.2.1 e 11.2.10 del DM 14.01.08:

J								
Classe di Resistenza 25/30 ▼								
Valore caratteristico della resistenza a compressione cubica a 28 gg:								
R _{ck} =	30	MPa						
Valore cara	atteristico della	a resistenza a o	compressione cilindrica a 28 gg:					
f _{ck} =	24,9	MPa	(0,83*R _{ck})					
Resistenza a compressione cilindrica media:								
f _{cm} =	32,9	MPa	(fck+8)					
Resistenza	a trazione ass	siale:						
f _{ctm} =	2,56	MPa	Valore medio					
		•						
$f_{ctk,0,05} =$	1,79	MPa	Valore caratteristico frattile 5%					
Resistenza	a trazione per	r flessione:						
f _{cfm} =	3,1	MPa	Valore medio					
		•						
f _{cfk,0,05} =	2,1	MPa	Valore caratteristico frattile 5%					
Coefficient	e parziale per	le verifiche ag	li SLU:					
γ _c =	1,5							
Per situazioni d	di carico ecceziona	li, tale valore va cor	nsiderato pari ad 1,0					
-								
Resistenza di calcolo a compressione allo SLU:								
f _{cd} =	14,1	MPa	(0,85*fck/γs)					
Resistenza	Resistenza di calcolo a trazione diretta allo SLU:							
f _{ctd} =	1,19	MPa	(f _{ctk0,05} / γs)					

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	10 di 78

Resistenza	di ca	alcolo	a tı	razione	per	tlessione	SLU:
_				l			_

Per spessori minori di 50mm e calcestruzzi ordinari, tale valore va ridotto del 20%

Modulo di elasticità secante:

E_{cm}= **31447** MPa

Modulo di Poisson:

ν= **0-0,2**

Coefficiente di dilatazione lineare

α= **0,00001** °C -1

Tensione di aderenza di calcolo acciaio-calcestruzzo

 $\eta = 1,00$

 f_{bd} = **2,69** MPa (2,25* f_{ctk} * $\eta/\gamma s$)

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE

 $\sigma_{\text{cmax QP}} = (0.45 \text{ f}_{\text{cK}}) =$ 11,21 MPa (Combinazione di Carico Quasi Permanente)

 $\sigma_{\text{cmax R}}$ = (0,60 f_{cK}) = 14,94 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

4.2 ACCIAIO PER ARMATURE

Per l'armatura delle strutture in calcestruzzo è previsto l'impiego di barre ad aderenza migliorata in acciaio tipo B450C, di cu nel seguito sono riportate le relative caratteristiche meccaniche:

(frattile al 5%)

Classe di Resistenza Tensione caratteristica di rottura: ftk= 540 MPa (frattile al 5%) Tensione caratteristica allo snervamento:

MPa

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

450

 $\varepsilon_{ud} =$

2.1.3 PEDEMONTANA DELLE MARCHE

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	11 di 78

$$k=f_{tk}/f_{yk}=$$
 1.20 MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

$$(A_{gt})_{k} = \epsilon_{uk} = 7.5$$
 %
$$0.9 \epsilon_{uk} = 6.75$$
 %

Coefficiente parziale per le verifiche agli SLU:

$$\gamma_{c} = 1.15$$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

4.3 COPRIFERRI

La scelta del copriferro minimo di progetto \mathbf{c}_{min} inteso come lo spessore minimo del ricoprimento dello strato di calcestruzzo a protezione dei ferri d'armatura è stato determinato in base a quanto indicato nella circolare Esplicativa, tenendo conto della calsse di esposizione ambientale e della classe del Calcestruzzo prevista.

Nello specifico, tenendo conto della classe di esposizione ambientale desunta dalle analisi specifiche condotte nei riguardi dell'attacco chimico, che hanno evidenziato una Classe di Esposizione XA2 e pertanto Condizioni Ambientali "Aggressive" per il solettone di fondazione. Mentre per i piedritti e il solettone superiore si ha una Classe di Esposizione XC2e pertanto Condizioni Ambientali "Ordinarie".

In relazione a quanto riportato in tabella 4.1.III del DM 14.01.08, per le classi di calcestruzzo previste è prescritto un copriferro minimo $c_{min} \ge 35$ mm per il solettone di fondazione e $c_{min} \ge 25$ mm.

In definitiva ai fini progettuali si è assunto **c=40mm** così come riportato all'interno della tabella materiali opere minori (strutture a contatto con il terreno).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab 4.1.III - DM 14.01.08

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	12 di 78

Tabella C4.1.IV Copriferri minimi in mm

		op i gerri iiii								
	barre da c.a.			bar	barre da c.a.		cavi da c.a.p.		cavi da c.a.p.	
			elementi a piastra		altri elementi		elementi a piastra		altri elementi	
C_{\min}	Co	ambiente	C≥C _o	$C_{min} \le C \le C_o$	C≥C _o	$C_{min} \le C \le C_o$	C≥C _o	$C_{m in} \le C \le C_o$	C≥C _o	$C_{min} \le C < C_o$
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
020100	000/10	orumano	10	20	20	200	20	50	50	00
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tab C4.1.IV - Circolare n°617/09

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	13 di 78

5. INQUADRAMENTO GEOTECNICO

Per la caratterizzazione geotecnica del terreno interagente con le fondazioni delle opere oggetto di dimensionamento nel presente documento, si è fatto riferimento a quanto dettagliatamente indicato nella Relazione Geotecnica e nel Profilo Geotecnico Generale di Progetto TAV. 4 DI 8 doc. 02-GE0001PRF04, da cui si evince che le formazioni più superficiali che interagiscono con le fondazioni, sono generalmente costituite dalle unità geotecniche **As, Salt** e **Pa**, di cui nel seguito si riepilogano i parametri fisico-meccanici attribuiti sulla scorta dei risultati delle indagini effettuate:

Unità As - Depositi alluvionali sabbiosi

 γ = 19.0 kN/m³ peso di volume naturale ϕ' = 33÷34° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

E_o = 150÷350 MPa modulo di deformazione elastico iniziale

Unità Salt - Substrato alterato argilloso limoso

 γ = 19.0÷21.5 kN/m³ peso di volume naturale ϕ' = 23÷30° angolo di resistenza al taglio

 $c' = 5 \div 15 \text{ kPa}$ coesione drenata

 $\phi_r' = 20 \div 22^\circ$ angolo di resistenza al taglio residuo

cr' = 0 kPa coesione drenata residua

 c_u = 50÷300 kPa resistenza al taglio in condizioni non drenate G_o = 80÷350 MPa modulo di deformazione a taglio iniziale E_o = 400÷900 MPa modulo di deformazione elastico iniziale

Unità Pa - Substrato pelitico areanaceo

 γ = 22.5 kN/m³ peso di volume naturale

 $E'_{op} = 20+5.75 \cdot z$ MPa per z< 40m modulo di deformazione elastico operativo

 $E'_{op} = 100+3.75 \cdot z \text{ MPa per } z > 40 \text{ m}$

Z [m]	c' [kPa]	φ' [°]
20	35÷80	23÷31
30	80÷120	22÷28
50	120÷150	20÷26

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	14 di 78

5.1 MODELLO GEOTECNICO

Nei dimensionamenti delle opere si è considerata dunque la seguente stratigrafia:

LITOTIPO	POTENZA in asse stdada	γ	c'	φ'	E _{op}	
		m	kN/m³	kPa	٥	MPa
Unità As – Depositi alluvionali sabbiosi	As	5.00	19	0	33	50
Unità Salt – Substrato alterato argilloso limoso	Salt	2.00	19	10	26	130
Unità Pa – Substrato pelitico arenaceo	Pa	In poi	22.5	35	23	70

La falda è posta ad intradosso fondazione.

I parametri di resistenza sopra riportati sono da intendersi in termini di tensioni efficaci, in quanto il calcolo è stato sviluppato in condizioni drenate.

Dall'analisi congiunta del profilo geologico, della relazione geologica e delle sezioni geologiche interpretative, è possibile sintetizzare alcune considerazioni sulle condizioni idrogeologiche della zona, ai fini della progettazione delle opere di sostegno in esame.

Le caratteristiche del rilevato al di sopra del p.c. sono le seguenti:

 γ =20 kN/m³ ϕ '=35°

E'=30 MPa

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	15 di 78

5.2 INTERAZIONE TERRENO-FONDAZIONE

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

-
$$s = B \cdot c_t \cdot (q - \sigma_{v0}) \cdot (1-v^2) / E$$

dove:

s = cedimento elastico totale;

B = lato minore della fondazione;

 ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

$$ct = 0.853 + 0.534 \ln(L/B)$$
 rettangolare con L/B \leq 10
 $ct = 2 + 0.0089 (L/B)$ rettangolare con L/B $>$ 10

q = pressione media agente sul terreno;

- σ_{v0} = tensione litostatica verticale alla quota di posa della fondazione;

v = coefficiente di Poisson del terreno;

E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

-
$$k_w = E / [(1-v^2) \cdot B \cdot ct]$$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per il caso in esame, sulla scorta del valore di progetto di Eattribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

$$ct = 0.853 + 0.534 \ln(L / B) = 0.940$$
 rettangolare con L / B≤10 $ct = 2 + 0.0089 (L / B) = 2.010$ rettangolare con L / B>10

Terreno	Fondazione
Tipo	Ag
E(KN/m²) =	50000
ν =	0.3
B (m) =	10.20
L (m) =	12.00
L/B =	1.18
ct =	0.940
$Kw (kN/m^2) =$	4565
Kw (MPa/cm) =	0.045

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	16 di 78

6. CARATTERIZZAZIONE SISMICA

Le opere in progetto rientrano nell'ambito dei Lavori di Realizzazione dell'Infrastruttura "Pedemontana delle Marche" progettato per una vita nominale V_N pari a $\bf 50$ anni. ed una classe d'uso $\bf III$ (Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericoloseper l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso $\bf IV$. Ponti e retiferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per leconseguenze di un loro eventuale collasso.") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso $\bf C_U = 1.5$

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste (Comune di Camerino), descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco a_g (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione S_e(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici. In particolare, si può notare come F_0 descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica.

Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

Vita nominale V_N = 50 anni;

Classe d'uso = III;

• Coefficiente d'uso C_u = 1.5;

Periodo di riferimento V_R = 75 anni;

• $T_{R, SLV}$ = 712 anni;

A partire dai dati di cui in precedenza, si determinano i valori dei parametri di pericolosità sismica riferiti ai diversi stati limite di verifica previsti dalla Normativa nei riguardi delle azioni sismiche:

Vp	Stato	PV⊳	T⊳	a _a	Fa	T_C^*

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	17 di 78

[anni]	Limite	-	[anni]	[g]	[-]	[s]
	SLO	81%	45	0.0073	2.450	0.286
75	SLD	63%	75	0.097	2.433	0.295
75	SLV	10%	712	0.220	2.544	0.333
	SLC	5%	1462	0.262	2.555	0.339

Tabella di riepilogo Parametri di pericolosità di Progetto

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	18 di 78

7. VERIFICHE STRUTTURALI – CRITERI GENERALI

7.1.1 Verifica SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

7.1.2 Verifiche delle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, quelli di seguito indicati, in accordo alle prescrizioni della normativa vigente:

Per il caso in esame risulta in particolare:

CALCESTRUZZO PER ELEVAZIONE C25/30

$$\sigma_{\text{cmax QP}}$$
 = (0,45 f_{cK}) = 11.25 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{\text{cmax R}}$$
 = (0,60 f_{cK}) = 15 MPa Rara)

CALCESTRUZZO PER FONDAZIONE C32/40

$$\sigma_{cmax\ QP}$$
 = (0,45 f_{cK}) = 14.94 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,60 f_{cK}) = 19.92 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

$$\sigma_{\text{fmax}}$$
 = $(0.80 \text{ f}_{\text{yK}})$ = $\frac{\text{Combinazione di Carico}}{\text{MPa}}$ Caratteristica(Rara)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	19 di 78

7.1.3 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di	Armatura							
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile					
Gr			Stato limite	wk	Stato limite	$\mathbf{w}_{\mathbf{k}}$				
	Outionsis	frequente	apertura fessure	≤ W ₂	apertura fessure	≤ W ₃				
A	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂				
В	Aggregative	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂				
D	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁				
С	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁				
	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁				

Nel caso in esame si ha:

- Per il solettone di fondazione:

Condizioni Ambientali: aggressive

Armature: Poco Sensibili

Conseguentemente dovrà risultare:

Combinazione Quasi permanente: w≤0.2mm

Combinazione Frequente: w≤0.3mm

- Per il solettone superiore e per i piedritti:

Condizioni Ambientali: Ordinarie

Armature: Poco Sensibili

Conseguentemente dovrà risultare:

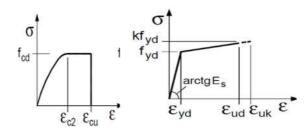
Combinazione Quasi permanente: w≤0.3mm

Combinazione Frequente: w≤0.4mm

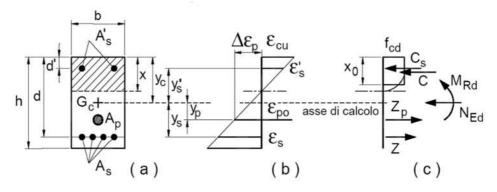
 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	20 di 78

Riguardo infine il valore di calcolo dell'ampiezza delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto" C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.


7.1.4 Verifiche allo SLU

7.1.5 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	21 di 78

7.1.6 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{\min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200 / d)^{1/2} \le 2$$
;

•
$$\rho_1=A_{sw}/(b_w*d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd} :

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

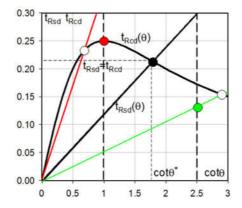
$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

 $1 \le \operatorname{ctg} \theta \le 2,5$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.3.5.2 delle NTC18, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \operatorname{ctg} \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$



 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	22 di 78

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

v = f'cd / fcd = 0.5

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 α_c coefficiente maggiorativo pari a 1 per membrature non compresse

$$1 + \sigma_{cp}/f_{cd}$$
 per $0 \le \sigma_{cp} < 0.25 f_{cd}$
1.25 per $0.25 f_{cd} \le \sigma_{cp} \le 0.5 f_{cd}$

$$2.5 (1 - \sigma_{cp}/f_{cd})$$
 per $0.5 f_{cd} < \sigma_{cp} < f_{cd}$

ωsw: Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b \, s \, f_{cd}}$$

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	23 di 78

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rcd}=V_{Rcd}=V_{Rsd}$
- Se la \cot θ * è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una \cot θ = 2,5.
- Se la $\cot \theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e il taglio resistente $V_{Rcd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

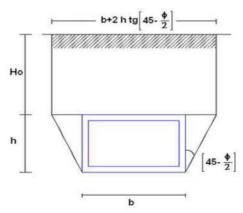
OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	24 di 78

8. CRITERI GENERALI DI ANALISI E VERIFICA SCATOLARI

Nell'ambito del presente paragrafo, si descrivono i criteri generali adottati per l'Analisi e relative verifiche strutturali e geotecniche delle opere oggetto di dimensionamento


8.1 ANALISI DEI CARICHI

8.1.1 Peso proprio

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ cls = 25 KN/m³.

8.1.2 Permanenti

Per la valutazione del carico permanente in copertura, si è fatto riferimento al metodo di **Terzagh**i secondo il quale, il carico sul traverso si manifesta come semplice peso di una massa parabolica o ellittica di distacco.

Più in dettaglio Terzaghi fornisce due espressioni differenti della pressione a seconda della maggiore o minore altezza del ricoprimento, H_0 .

Facendo riferimento ai simboli della figura precedente, ed indicando con $\bf C$ la coesione, con ϕ l'angolo di attrito e con γ il peso di volume del terreno di ricoprimento, le due espressioni sono le seguenti:

$$p_{v} = \frac{\gamma B_{1} - C}{K tg\varphi} \left(1 - e^{-K \frac{H_{0}}{B_{1}} tg\varphi} \right)$$

nella quale K è un coefficiente sperimentale, che, secondo misure eseguite dallo stesso **Terzaghi** è circa uguale ad 1, mentre il coefficiente B1, si ricava attraverso la seguente espressione:

$$B_1 = \frac{b}{2} + h \, tg \left(45^{\circ} - \frac{\varphi}{2} \right)$$

nella quale φè l'angolo di attrito dello strato di rinfianco.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA - Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	25 di 78

8.1.3 Spinta del terreno

Per lavalutazione delle Spinte del terreno sui piedritti, si è fatto riferimento alla teoria di Coluomb.

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare, Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente) :

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_a$$

Ka rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come:

$$K_{a} = \frac{\sin^{2}(\alpha + \phi)}{\sin^{2}\alpha \cdot \sin(\alpha - \delta) \cdot \left[1 + \frac{\sqrt{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}}{\sqrt{\sin(\alpha - \delta) \cdot \sin(\alpha + \beta)}}\right]^{2}}$$

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale ($\alpha = 90^{\circ}$ per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto.

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete). L'espressione di Ka perde di significato per $\beta > \varphi$.

Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso di terreno dotato di attrito e coesione c l'espressione della pressione del terreno ad una generica profondità z vale:

$$\sigma_a = \gamma \cdot z \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$$

Nel caso in esame tuttavia, in considerazione della ridotta capacità de formativa dell'opera, si è assunto che sui piedritti agisca la spinta calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione:

$$K_0 = 1 - \sin \phi$$

dove *φ* rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	26 di 78

$$\begin{split} & \sigma = \gamma \cdot z \cdot K_0 + p_v \cdot K_0 \\ & S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_v \cdot K_0 \cdot H \end{split}$$

dove pv è la pressione verticale agente in corrispondenza della calotta.

Per il rilevato stradale sono stati assunti i seguenti valori dei parametri fisico meccanici geotecnici di progetto:

- peso di volume $\gamma = 20 \text{ KN/mc}$
- angolo di attrito φ ' = 35°
- coesione efficace c' = 0.

8.1.4 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa, al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ sat è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ w è il peso di volume dell'acqua.

Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

8.1.5 Spinta del sovraccarico

La spinta del carico accidentale si considera agente solo sul ritto di sinistra ed ha un valore costante con la profondità pari a:

$$s_{accSX} = k_0 \times q \text{ [kN/m}^2\text{]}$$

8.1.6 Variazioni termiche della struttura

Si è tenuto conto di eventuali effetti termici dovuti a variazioni di temperatura sull'opera, applicando sul traverso superiore una variazione termica variabile linearmente da - 2.5°C all'estradosso della soletta superiore, a + 2.5°C all'intradosso della s oletta superiore più una variazione termica uniforme di 15°,

8.1.7 Ritiro e viscosità

Gli effetti del ritiro del calcestruzzo e della viscosità sono assimilati ad una variazione termica uniforme

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	27 di 78

della soletta superiore.

Nello specifico, si è assunto di modellare la deformazione da ritiro totale comprensiva anche degli effetti da deformazione viscosa, attraverso l'introduzione di un carico termico uniforme nella soletta superiore di -10℃.

8.1.8 Azioni variabili da traffico (Q1)

Per la determinazione dei carichi accidentali da traffico da considerare sul piano della pavimentazione, si è fatto riferimento agli schemi di carico stabilità al punto 5.1.3.3.3 del DM 14/01/08 di cui nel seguito:

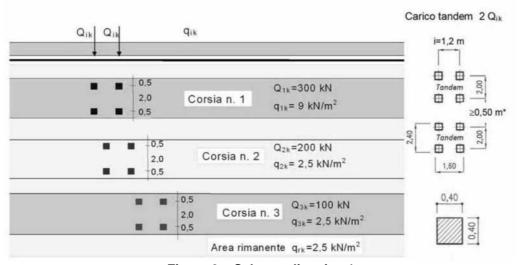


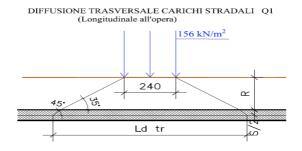
Figura 3 - Schema di carico 1

Lo schema di carico da Normativa, è in particolare costituito dalle seguenti colonne di carico:

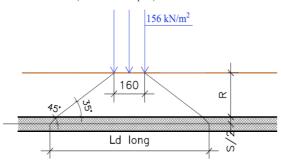
- una colonna di carichi (ingombro = 3 m) costituita da un automezzo convenzionale Q1k di 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k di 9 kN/m²uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 400 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 200 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- un carico uniforme qrk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Ai fini delle analisi, si è assunto di trasformare i carichi concentrati Q1k, in un carico distribuito equivalente, che, con riferimento alla colonna di carico 1, risulta il seguente:

Q1k $d = 600 / (2.40x1.60) = 156 KN/m^2$


 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI


SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore				N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	28 di 78

Si è assunto inoltre di diffondere il carico valutato in precedenza fino al piano medio della soletta, secondo quanto riportato negli schemi grafici di figura seguente:

DIFFUSIONE LONGITUDINALE CARICHI STRADALI Q1 (Trasversale all'opera)

Schema di diffusione in soletta carichi Q1

In definitiva, sul piano medio della soletta, agirà un carico uniforme distribuito pari a :

Q1k d '= 600 / (Ld tr x Ld long)

Nell'ambito della modellazione effettuata tuttavia, si è fatto riferimento, come di norma, <u>ad un modulo di scatolare di lunghezza unitaria;</u> nel programma di Calcolo Utilizzato secondo i criteri definiti in precedenza, il carico inserito nel modello di analisi sul piano limite stradale, è stato già opportunamente ridotto per tener conto di tale effetto; in definitiva, il carico di progetto utile alla simulazione del carico Q1(assi) è stato valutato come di seguito:

Q1 prog = $600 / (Ld_{tr} x Ld_{long})$

Se Ld $_{\rm tr}$ risulta maggiore di 3.00 m, a Q1prog dovuto alla prima colonna di carico va aggiunto una seconda colonna di carico per tener conto della zona di sovrapposizione dei carichi, il carico della seconda colonna è pari a:

Q2 prog = $400 / (Ld_{tr} x Ld_{long})$

tenendo comunque presente l'effetto della collaborazione strutturale in direzione longitudinale all'opera stessa.

Si veda l'analisi dei carichi per il calcolo del carico Q1k ripartito.

In aggiunta, si è considerato agente sul piano stradale l'ulteriore carico uniforme di **9KN/m²**, trascurando cautelativamente gli effetti di diffusione.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	29 di 78

8.1.9 Azione longitudinale di frenamento (Q3)

L'azione di frenamento, con riferimento al par. 5.1.3.5 delle NTC el 2018, è assunta pari a:

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Essa è, a vantaggio di sicurezza, sempre assunta agente sulla larghezza della sede stradale che ricade sul sottovia, pari a 9.80 m.

q₃ (kN)	Q _{1k} (kN)	w ₁ (m)	L (m)
386.46	300	3	9.80

8.1.10 Azioni Sismiche

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

8.1.11 Forze d'inerzia

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_V = k_V^* W$

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

$$k_h = \frac{a_{max}}{g} S_s S_t \beta_m$$

$$k_v = \pm 0.5 k_h$$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S a = S_s S_t a_g$$

Nel caso specifico, in accordo a quanto già riportato al precedente paragrafo risulta:

 $T_{R, SLV} = 712 \text{ anni;}$

a_{g, SLV} = 0.220 g;
 F_{0, SLV} = 2.544;

• T*c. s.v =0.333 sec.

Potendo considerare generalmente sottosuoli di **tipo C** per l'intero lotto in progetto, risulta nel caso in esame:

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	30 di 78

8.1.12 Spinta sismica terreno

Le spinte del terreno in fase sismica, sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = K_h \gamma H^2$$

8.2 COMBINAZIONI DI CARICO

Per la combinazione dei diversi carichi previsti sulla struttura di cui al precedente paragrafo 7, si è fatto riferimento a quanto specificato in merito al par. 2.5.3 del DM 14.01.18, secondo cui le combinazioni di carico da considerare nei riguardi dei diversi stati limite di verifica SLU, SLE e sisma sono le seguenti:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA - Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	31 di 78

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con Ey e Ez rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichiy e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γ_{Qi}	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU,

eccezionali e sismica (da DM 14/01/2008)

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2. IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	32 di 78

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente \(\psi_1 \) (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
traffico (Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
••	SLU e SLE	0,0	0,0	0,0
Neve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Tabella 5.1.VI- Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)

In definitiva, con riferimento ai carichi di tipo variabile previsti nel caso in esame, sono stati assunti i seguenti coefficienti di partecipazione Ψ :

Carichi stradali (Variabili da traffico)

 Ψ o = 0.75 Ψ 1=0.75 Ψ 2=0.00

Azioni Termiche (Term)

 Ψ o = 0.60 Ψ 1=0.60 Ψ 2=0.50

Si sottolinea che, stante la simmetria e la bidimensionalità del problema il numero di combinazioni analizzate è stato significativamente ridotto, considerando il sisma e la forza di frenamento agenti in un'unica direzione e verso.

In definitiva, sono state analizzate un totale di 69 Combinazioni di calcolo di cui 34 riferite al CasoSLU statico, 4 sismiche e 31 di SLE (Rara, Frequente e Quasi Permanante).

Si riportano le combinazioni utilizzate.

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

0	pera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L	0703	213	E	16	OM0003		01	С	33 di 78

Simbol	loaia	adot	tata

γG1sfav	Coefficiente parziale sfavorevole sulle azioni permanenti
YG1fav	Coefficiente parziale favorevole sulle azioni permanenti

YG2sfav Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali YG2fav Coefficiente parziale favorevole sulle azioni permanenti non strutturali

γ_Q Coefficiente parziale sulle azioni variabili

 $\begin{array}{ll} \gamma_{tan\phi} & \text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{c} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{cu} & \text{Coefficiente parziale di riduzione della coesione non drenata} \\ \gamma_{qu} & \text{Coefficiente parziale di riduzione del carico ultimo} \end{array}$

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:				
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.35	1.00
Permanenti non strutturali Permanenti non strutturali	Favorevole Sfavorevole	γG2fav	0.00	0.00
Variabili	Favorevole	γG2sfav	1.50 0.00	1.30 0.00
Variabili	Sfavorevole	γQifav	1.50	1.30
Variabili da traffico	Favorevole	γQisfav γQfav	0.00	0.00
Variabili da traffico	Sfavorevole	/ Qtav γ Qsfav	1.35	1.15
Termici	Favorevole	γefav	0.00	0.00
Termici	Sfavorevole	γεsfav	1.20	1.20
		103104		
Coefficienti parziali per i parametri geotecnici del terreno:				
Parametri			M1	M2
Tangente dell'angolo di attrito		γtanφ'	1.00	1.25
Coesione efficace		γ _{c'}	1.00	1.25
Resistenza non drenata		γcu	1.00	1.40
Resistenza a compressione uniassiale		γ _{qu}	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
		.,		
Coefficienti di partecipazione combinazioni sismiche				
Coefficienti parziali per le azioni o per l'effetto delle azioni:				
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav γG1sfav	1.00	1.00
Permanenti	Favorevole	γG2fav	0.00	0.00
Permanenti	Sfavorevole	γG2sfav γG2sfav	1.00	1.00
Variabili	Favorevole	γQifav	0.00	0.00
Variabili	Sfavorevole	γQisfav	1.00	1.00
Variabili da traffico	Favorevole	γQfav	0.00	0.00
Variabili da traffico	Sfavorevole	γosfav	1.00	1.00
Termici	Favorevole	γ _{εfav}	0.00	0.00
Termici	Sfavorevole	γ _{esfav}	1.00	1.00
Coefficienti parziali per i parametri geotecnici del terreno:				
Parametri			M1	M2
Tangente dell'angolo di attrito		γtanφ'	1.00	1.25
Coesione efficace		γ _{c'}	1.00	1.25
Resistenza non drenata		γcu	1.00	1.40
Resistenza a compressione uniassiale		γ_{qu}	1.00	1.60
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Combinazione n° 1 SLU (Caso A1-M1)	Effetto	~	Ψ	С
Peso Proprio	Sfavorevole	γ 1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
Combinazione n° 2 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Combinazione n° 3 SLU (Caso A1-M1)				
David Branch	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Pag.diPag.
L0703	213	E	16	OM0003	REL	01	34 di 78
					I.		

Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Acc_Soletta_Camp	Sfavorevole	1.35	1.00	1.35
Variazione_Termica_Uniforme	Sfavorevole	1.20	0.60	0.72
Variazione termica a farfalla	Sfavorevole	1.20	0.60	0.72
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Millo Haveiso	Sidvorevoic	1.20	0.00	0.72
Combinazione n° 4 SLU (Caso A2-M2)			\ 	_
Dana Dramaia	Effetto Sfavorevole	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Acc_Soletta_Camp	Sfavorevole	1.15	1.00	1.15
Variazione_Termica_Uniforme	Sfavorevole	1.13	0.60	0.60
Variazione termica a farfalla	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Combinazione n° 5 SLU (Caso A1-M1)	Effetto		Ψ	с
Paca Propria	Sfavorevole	γ 1.35	1.00	1.35
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.35 1.35	1.00	1.35 1.35
Spinta terreno sinistra Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Acc_Soletta_Camp	Sfavorevole	1.35	1.00	1.35
Variazione_Termica_Uniforme	Sfavorevole	1.20	1.00	1.20
Variazione termica a farfalla	Sfavorevole	1.20	0.60	0.72
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Combinazione n° 6 SLU (Caso A2-M2)	Effetto		Ψ	с
Dana Dramaia	Sfavorevole	γ 1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Spaces	Stavorevole	1.15	1.00	1.13
Acc_Soletta_Camp	Sfavorevole	1.15	1.00	1.15
Variazione_Termica_Uniforme	Sfavorevole	1.00	1.00	1.00
Variazione termica a farfalla Ritiro Traverso	Sfavorevole Sfavorevole	1.00 1.00	0.60 0.60	0.60 0.60
Millo Haveiso	Stavorevole	1.00	0.00	0.00
Combinazione n° 7 SLU (Caso A1-M1)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Acc_Soletta_Camp	Sfavorevole	1.35	1.00	1.35
Variazione_Termica_Uniforme	Sfavorevole	1.20	0.60	0.72
Variazione termica a farfalla	Sfavorevole	1.20	1.00	1.20
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Combinazione n° 8 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Acc_Soletta_Camp	Sfavorevole	1.15	1.00	1.15
Variazione_Termica_Uniforme	Sfavorevole	1.00	0.60	0.60
Variazione termica a farfalla	Sfavorevole	1.00	1.00	1.00
	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso				
Combinazione n° 9 SLU (Caso A1-M1)	Effort-		w	_
Combinazione n° 9 SLU (Caso A1-M1)	Effetto Sfavorevole	γ 1.35	Ψ 1.00	c 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio	Effetto Sfavorevole Sfavorevole	1.35	1.00	1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.35 1.35	1.00 1.00	1.35 1.35
Combinazione nº 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra	Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35	1.00 1.00 1.00	1.35 1.35 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni	Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00	1.35 1.35 1.35 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35	1.00 1.00 1.00	1.35 1.35 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAcCSx Acc_Soletta_Camp	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00	1.35 1.35 1.35 1.35 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 1.00	1.35 1.35 1.35 1.35 1.35 1.35
Combinazione n° 9 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Acc_Soletta_Camp Variazione_Termica_Uniforme	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.35 1.35 1.35 1.35 1.35 1.35 1.20	1.00 1.00 1.00 1.00 1.00 1.00 0.60	1.35 1.35 1.35 1.35 1.35 1.35 0.72

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	35 di 78

6 1:				
Combinazione n° 10 SLU (Caso A2-M2)	Effetto		Ψ	С
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
	Sfavorevole	1.00		1.00
Spinta terreno destra	Sfavorevole	1.00	1.00 1.00	1.00
Permanenti_Interni	Sfavorevole			
SpAccSx		1.15	1.00	1.15
Acc_Soletta_Camp	Sfavorevole	1.15	1.00	1.15
Variazione_Termica_Uniforme	Sfavorevole	1.00	0.60	0.60
Variazione termica a farfalla	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
0 1: : 044 0111 (0 44 444)				
Combinazione n° 11 SLU (Caso A1-M1)			177	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termica farfalla (-)	Sfavorevole	1.20	0.60	0.72
Variazione_Termica_Uniforme (-)	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_Camp_	Sfavorevole	1.35	1.00	1.35
Combinazione n° 12 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.15	1.00	1.15
Acc_soletta_camp_	Sidvoicvoic	1.15	1.00	1.15
Combinazione n° 13 SLU (Caso A1-M1)				
COMBINAZIONE II 15 5EO (CASO AT IVIL)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra				
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	1.00	1.20
Variazione termica farfalla (-)	Sfavorevole	1.20	0.60	0.72
Variazione_Termica_Uniforme (-)	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_Camp_	Sfavorevole	1.35	1.00	1.35
0 1: : 0445111(0 40440)				
Combinazione n° 14 SLU (Caso A2-M2)			177	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.15	1.00	1.15
Combinazione n° 15 SLU (Caso A1-M1)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termica farfalla (-)	Sfavorevole	1.20	1.00	1.20
Variazione_Termica_Uniforme (-)	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_Camp_	Sfavorevole	1.35	1.00	1.35
Combinazione n° 16 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termica farfalla (-)	Sfavorevole	1.00	1.00	1.00
ranazione terrinea iariana ()	5.3.5764016	2.00	1.00	1.00

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	36 di 78

Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.15	1.00	1.15
/ Not_boletta_camp_	Sidverevoic	1.13	2.00	1.10
Combinazione n° 17 SLU (Caso A1-M1)				
demandatione in 17 see (edso /12 ini2)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termica farfalla (-)	Sfavorevole	1.20	0.60	0.72
Variazione_Termica_Uniforme (-)	Sfavorevole	1.20	1.00	1.20
Acc_Soletta_Camp_	Sfavorevole	1.35	1.00	1.35
···=····				
Combinazione n° 18 SLU (Caso A2-M2)				
	Effetto	~	Ψ	С
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
· · · · · · · · · · · · · · · · · · ·				
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_Camp_	Sfavorevole	1.15	1.00	1.15
Acc_soletta_camp_	Siavoievole	1.13	1.00	1.13
Combinazione nº 10 CILL/Coce A1 M11				
Combinazione n° 19 SLU (Caso A1-M1)			17/	_
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_App	Sfavorevole	1.35	1.00	1.35
Variazione_Termica uniforme	Sfavorevole	1.20	0.60	0.72
variazione termina farfalla	Sfavorevole	1.20	0.60	0.72
Combinazione n° 20 SLU (Caso A2-M2)				
<u>,</u>	Effetto	γ	Ψ	С
	Effetto Sfavorevole	γ 1.00		C 1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra	Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni	Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00	1.00 1.00 1.00 1.00 1.15 0.60 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60	1.00 1.00 1.00 1.00 1.15 0.60 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAcSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1)	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60 c 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 c 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 c 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 c 1.35 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 c 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 c 1.35 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 0.72 0.72
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 0.72 0.72
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.100 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra	Sfavorevole	1.00 1.00 1.00 1.00 1.10 1.15 1.00 1.15 1.00 1.15 1.00 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.20 1.20 1.20 1.20	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 1.20 1.35 0.72 0.72 C 1.00 1.00
Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAcSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra Permanenti_Interni	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno destra Spinta terreno destra Permanenti_Interni SpAccSx	Sfavorevole	1.00 1.00 1.00 1.00 1.10 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 1.37 1.20 1.38 0.72 0.72 0.72 C 1.00 1.00 1.00 1.00 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso	Sfavorevole	1.00 1.00 1.00 1.00 1.10 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 1.15 1.35 1.35 1.35 1.35 1.35 1.20 1.35 0.72 0.72 0.72
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App AccSx Ritiro Traverso Acc_Soletta_App AccSx Ritiro Traverso Acc_Soletta_App	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 c 1.35 1.35 1.35 1.35 1.35 1.35 0.72 0.72 c 1.00 1.00 1.00 1.00 1.15 1.00 1.15
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Spinta terreno destra Permanenti_Interni SpAccSx Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso	Sfavorevole	1.00 1.00 1.00 1.00 1.10 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 1.15 1.35 1.35 1.35 1.35 1.35 1.20 1.35 0.72 0.72 0.72
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App AccSx Ritiro Traverso Acc_Soletta_App AccSx Ritiro Traverso Acc_Soletta_App	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme Variazione_Termica Uniforme SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica Uniforme	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 c 1.35 1.35 1.35 1.35 1.35 1.35 0.72 0.72 c 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.15 0.60 0.60 c 1.35 1.35 1.35 1.35 1.35 1.35 0.72 0.72 c 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 0.60 1.15 0.60 0.60
Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 21 SLU (Caso A1-M1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla Combinazione n° 22 SLU (Caso A2-M2) Peso Proprio Spinta terreno sinistra Spinta terreno destra Permanenti_Interni SpAccSx Ritiro Traverso Acc_Soletta_App Variazione_Termica uniforme variazione termina farfalla	Sfavorevole	1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.15 1.00 1.15 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.60 0.6	1.00 1.00 1.00 1.00 1.00 1.15 0.60 1.15 0.60 0.60 C 1.35 1.35 1.35 1.35 1.35 1.20 1.35 0.72 0.72 C 1.00 1.00 1.00 1.00 1.15 1.00 0.60

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera Tratto Settore CEE WBS Id. doc. N. prog. Rev. Pag. di Pag.

	L0703	213	Е	16	OM0003	REL	01	С	37 di 78
erreno destra	Sfavorevo	ole			1.35	1.00		1.35	

Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_App	Sfavorevole	1.35	1.00	1.35
Variazione_Termica uniforme	Sfavorevole	1.20	1.00	1.20
variazione termina farfalla	Sfavorevole	1.20	0.60	0.72
Combinazione n° 24 SLU (Caso A2-M2)				
eemanazione n' 21020 (easo /iz mz/	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx Ritiro Traverso	Sfavorevole Sfavorevole	1.15 1.00	1.00 0.60	1.15 0.60
Acc_Soletta_App	Sfavorevole	1.15	1.00	1.15
Variazione_Termica uniforme	Sfavorevole	1.00	1.00	1.00
variazione termina farfalla	Sfavorevole	1.00	0.60	0.60
Combinazione n° 25 SLU (Caso A1-M1)	Effetto	24	Ψ	С
Peso Proprio	Sfavorevole	γ 1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_App	Sfavorevole	1.35	1.00	1.35
Variazione_Termica uniforme	Sfavorevole Sfavorevole	1.20	0.60	0.72
variazione termina farfalla	Stavorevole	1.20	1.00	1.20
Combinazione n° 26 SLU (Caso A2-M2)				
· ·	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole Sfavorevole	1.00	1.00 1.00	1.00 1.15
SpAccSx Ritiro Traverso	Sfavorevole	1.15 1.00	0.60	0.60
Acc_Soletta_App	Sfavorevole	1.15	1.00	1.15
Variazione_Termica uniforme	Sfavorevole	1.00	0.60	0.60
variazione termina farfalla	Sfavorevole	1.00	1.00	1.00
0 1:				
Combinazione n° 27 SLU (Caso A1-M1)	Effetto		Ψ	С
Peso Proprio	Sfavorevole	γ 1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termina uniforme(-)	Sfavorevole	1.20	0.60	0.72
variazione termica farfalla (-) Acc Soletta App	Sfavorevole Sfavorevole	1.20 1.35	0.60 1.00	0.72 1.35
ACC_SOJECTA_APP_	Stavorevole	1.55	1.00	1.55
Combinazione n° 28 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole	1.00 1.15	1.00 1.00	1.00 1.15
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_App_	Sfavorevole	1.15	1.00	1.15
Combinazione n° 29 SLU (Caso A1-M1)				
Compiliatione II 25 3to (Caso AT-IVIT)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
Permanenti_Interni	Sfavorevole	1.35	1.00	1.35
SpAccSx Bitira Traverse	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	1.00	1.20

Permanenti_Interni Sisma da sinistra

Peso Proprio

Combinazione n° 36 SLU (Caso A1-M1) - Sisma Vert. positivo

2.1.3 PEDEMONTANA DELLE MARCHE

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

WBS

OM0003

ld.doc.

REL

N. prog.

Rev.

С

1.00 1.00

1.00

Ψ 1.00

γ 1.00

Pag. di Pag.

38 di 78

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo CEE

16

Variazione termina uniforme(-)	Sfavorevole	1.20	0.60	0.72
variazione termica farfalla (-)	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_App_	Sfavorevole	1.35	1.00	1.35
Combinazione n° 30 SLU (Caso A2-M2)				
Peso Proprio	Effetto Sfavorevole	γ 1.00	Ψ 1.00	C 1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
variazione termica farfalla (-)	Sfavorevole Sfavorevole	1.00 1.15	0.60 1.00	0.60 1.15
Acc_Soletta_App_	Stavorevole	1.15	1.00	1.15
Combinazione n° 31 SLU (Caso A1-M1)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole Sfavorevole	1.35	1.00	1.35
Spinta terreno destra Permanenti Interni	Sfavorevole Sfavorevole	1.35 1.35	1.00 1.00	1.35 1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termina uniforme(-)	Sfavorevole	1.20	1.00	1.20
variazione termica farfalla (-)	Sfavorevole	1.20	0.60	0.72
Acc_Soletta_App_	Sfavorevole	1.35	1.00	1.35
Combinazione n° 32 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Spinta terreno destra Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.15	1.00	1.15
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	1.00	1.00
variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_App_	Sfavorevole	1.15	1.00	1.15
Combinazione n° 33 SLU (Caso A1-M1)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra Permanenti Interni	Sfavorevole Sfavorevole	1.35 1.35	1.00 1.00	1.35 1.35
SpAccSx	Sfavorevole	1.35	1.00	1.35
Ritiro Traverso	Sfavorevole	1.20	0.60	0.72
Variazione termina uniforme(-)	Sfavorevole	1.20	0.60	0.72
variazione termica farfalla (-)	Sfavorevole	1.20	1.00	1.20
Acc_Soletta_App_	Sfavorevole	1.35	1.00	1.35
Combinazione n° 34 SLU (Caso A2-M2)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole	1.00 1.15	1.00 1.00	1.00 1.15
Ritiro Traverso	Sfavorevole	1.15	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
variazione termica farfalla (-)	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_App_	Sfavorevole	1.15	1.00	1.15
Combinazione n° 35 SLU (Caso A1-M1) - Sisma Veri	:. negativo			
	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti Interni	Sfavorevole	1.00	1.00	1.00

Sfavorevole

Sfavorevole

Effetto

Sfavorevole

Opera

L0703

Tratto

213

Settore

Ε

2.1.3 PEDEMONTANA DELLE MARCHE

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

WBS

OM0003

ld.doc.

REL

N. prog.

Rev.

Pag. di Pag.

39 di 78

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo CEE

16

Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 37 SLU (Caso A2-M2) - Sisma Ve	urt positivo			
COMBINAZIONE II 37 3EO (Caso Az-Wiz) - Sisma Ve	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 38 SLU (Caso A2-M2) - Sisma Ve	ert. negativo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Cambinations of 20 SLE (Dans)				
Combinazione n° 39 SLE (Rara)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_Camp	Sfavorevole	1.00	1.00	1.00
Variazione_Termica_Uniforme	Sfavorevole Sfavorevole	1.00	0.60	0.60
Variazione termica a farfalla Ritiro Traverso	Sfavorevole	1.00 1.00	0.60 0.60	0.60 0.60
Millo Haveiso	Sidvorcvoic	1.00	0.00	0.00
Combinazione n° 40 SLE (Frequente))T/	
Daga Duannia	Effetto Sfavorevole	γ 1.00	Ψ	C 1.00
Peso Proprio Spinta terreno sinistra	Sfavorevole	1.00	1.00 1.00	1.00 1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	0.75	0.75
Combinazione n° 41 SLE (Quasi Permanente)				
combinations in 12 set (quasir ermanente)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Combinazione n° 42 SLE (Frequente)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00	1.00
Spinta terreno destra Permanenti_Interni	Sfavorevole	1.00	1.00 1.00	1.00 1.00
Acc_Soletta_Camp	Sfavorevole	1.00	0.75	0.75
Combinazione nº 42 SLE (Para)				
Combinazione n° 43 SLE (Rara)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx Acc Soletta Camp	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Acc_Soletta_Camp Variazione_Termica_Uniforme	Sfavorevole	1.00	1.00	1.00
Variazione_rermica_officime Variazione termica a farfalla	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Combinazione n° 44 SLE (Frequente)				
Compinazione ii 44 des (Frequente)	Effetto	γ	Ψ	с
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00

Opera

L0703

Tratto

213

Settore

Е

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	40 di 78

Variazione_Termica_Uniforme	Sfavorevole	1.00	0.50	0.50
Combinazione n° 45 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole Sfavorevole	1.00	1.00 1.00	1.00 1.00
Acc_Soletta_Camp	Sfavorevole	1.00 1.00	0.60	0.60
Variazione_Termica_Uniforme Variazione termica a farfalla	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Millo Haveiso	Stavorevole	1.00	0.00	0.00
Combinazione n° 46 SLE (Frequente)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Variazione termica a farfalla	Sfavorevole	1.00	0.50	0.50
Combinations n° 47 CLF (Page)				
Combinazione n° 47 SLE (Rara)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_Camp	Sfavorevole	1.00	1.00	1.00
Variazione_Termica_Uniforme	Sfavorevole	1.00	0.60	0.60
Variazione termica a farfalla	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
Combinazione n° 48 SLE (Frequente)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.50	0.50
Combinazione n° 49 SLE (Rara)			177	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
SpAccSx	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.00	1.00	1.00
nec_soletta_eamp_	Sidvoicvoic	1.00	1.00	1.00
Combinazione n° 50 SLE (Rara)				
COMMINATIONE II SO SEE (Raid)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.00	1.00	1.00
Combinazione n° 51 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termica farfalla (-)	Sfavorevole	1.00	1.00	1.00

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	41 di 78

Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_Camp_	Sfavorevole	1.00	1.00	1.00
Combinazione n° 52 SLE (Frequente)				
	Effetto	γ	Ψ	C
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Spinta terreno dinistra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Variazione termica farfalla (-)	Sfavorevole	1.00	0.50	0.50
Combinazione nº E2 SLE (Para)				
Combinazione n° 53 SLE (Rara)	Effetto	γ	Ψ	с
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione_Termica_Uniforme (-)	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_Camp_	Sfavorevole	1.00	1.00	1.00
Combinazione n° 54 SLE (Frequente)				
combinazione ii 34 see (Frequence)	Effetto	γ	Ψ	с
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole Sfavorevole	1.00 1.00	1.00 0.50	1.00
Variazione_Termica_Uniforme (-)	Stavorevole	1.00	0.30	0.50
Combinazione n° 55 SLE (Frequente)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno dostra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Spinta terreno destra Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_Camp_	Sfavorevole	1.00	0.75	0.75
Combinazione n° 56 SLE (Rara)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx Ritiro Traverso	Sfavorevole Sfavorevole	1.00 1.00	1.00 0.60	1.00 0.60
Acc_Soletta_App	Sfavorevole	1.00	1.00	1.00
Variazione_Termica uniforme	Sfavorevole	1.00	0.60	0.60
variazione termina farfalla	Sfavorevole	1.00	0.60	0.60
Combinazione n° 57 SLE (Rara)	Effetto		Ψ	с
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso Acc_Soletta_App	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Variazione_Termica uniforme	Sfavorevole	1.00	0.60	0.60
variazione termina farfalla	Sfavorevole	1.00	0.60	0.60
Combinazione n° 58 SLE (Frequente)	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra Permanenti Interni	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Acc_Soletta_App	Sfavorevole	1.00	0.75	0.75
Combinazione n° 59 SLE (Rara)				
Doco Brancia	Effetto	γ	Ψ	C 1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	42 di 78

	Effetto	γ	Ψ	С
Combinazione n° 66 SLE (Frequente)				
Acc_Soletta_App_	Sfavorevole	1.00	1.00	1.00
variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Permanenti_Interni SpAccSx	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00
	Effetto	γ	Ψ	C
Combinazione n° 65 SLE (Rara)				
Acc_Soletta_App_	Sfavorevole	1.00	1.00	1.00
variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorevole Sfavorevole	1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Paca Brancia	Effetto	γ	Ψ	C 1.00
Combinazione n° 64 SLE (Rara)	ret		177	_
Combination of St. St. St. St.				
Acc_Soletta_App_	Sfavorevole	1.00	1.00	1.00
variazione termica farfalla (-)	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
SpAccSx	Sfavorevole Sfavorevole	1.00	1.00	1.00
Spinta terreno destra Permanenti_Interni	Stavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Spinta terreno destra	Sfavorevole Sfavorevole	1.00	1.00	1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Dana Buancia	Effetto	γ	Ψ	C
Combinazione n° 63 SLE (Rara)				
	2.2.2.300	2.00		0.50
variazione termina farfalla	Sfavorevole	1.00	0.50	0.50
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Peco Proprio	Effetto Sfavorevole	γ 1.00	Ψ 1.00	C
Combinazione n° 62 SLE (Frequente)	F#Fart -		VI/	_
Combination and C2 C15 /5				
variazione termina farfalla	Sfavorevole	1.00	1.00	1.00
Variazione_Termica uniforme	Sfavorevole	1.00	0.60	0.60
Acc_Soletta_App	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
SpAccSx	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00
COMMUNICIONE II OF SEE (Mara)	Effetto	γ	Ψ	С
Combinazione n° 61 SLE (Rara)				
Variazione_Termica uniforme	Sfavorevole	1.00	0.50	0.50
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Peso Proprio	Sfavorevole	1.00	1.00	1.00
	Effetto	γ	Ψ	С
Combinazione n° 60 SLE (Frequente)				
variazione termina farfalla	Sfavorevole	1.00	0.60	0.60
Variazione_Termica uniforme	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_App	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
SpAccSx	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo Opera Tratto Settore CEE WBS Id. doc. N. prog.

Opera L0703	213	Settore E	_	_		43 di 78

Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Variazione termina uniforme(-)	Sfavorevole	1.00	0.50	0.50
Combinazione n° 67 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
SpAccSx	Sfavorevole	1.00	1.00	1.00
Ritiro Traverso	Sfavorevole	1.00	0.60	0.60
Variazione termina uniforme(-)	Sfavorevole	1.00	0.60	0.60
variazione termica farfalla (-)	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_App_	Sfavorevole	1.00	1.00	1.00
Combinazione n° 68 SLE (Frequente)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
variazione termica farfalla (-)	Sfavorevole	1.00	0.50	0.50
Combinazione n° 69 SLE (Frequente)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Permanenti_Interni	Sfavorevole	1.00	1.00	1.00
Acc_Soletta_App_	Sfavorevole	1.00	0.75	0.75

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	44 di 78

8.3 VERIFICHE GEOTECNICHE (CARICO LIMITE)

Per la verifica della capacità portante delle Fondazioni superficiali, si è fatto ricorso alla teoria di Meyerhof secondo la quale, il carico limite di una fondazione superficiale, è valutabile attraverso le seguenti espressioni:

$$Q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c + \gamma_1 \cdot D \cdot N_q \cdot s_q \cdot d_q + \frac{1}{2} \gamma_2 \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \quad \text{(Caso di Carico Verticale)}$$

$$Q_{\text{lim}} = c \cdot N_c \cdot d_c \cdot i_c + \gamma_1 \cdot D \cdot N_q \cdot d_q \cdot i_q + \frac{1}{2} \gamma_2 \cdot B \cdot N_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \quad \text{(Caso di Carico Inclinato)}$$

dove:

Il prodotto γ_1 **D** presente nel 2° termine. corrisponde al valore della pressione efficace sul piano di appoggio della fondazione che quindi nel caso più generale di falda tra piano campagna e piano di posa fondazione, corrisponde a:

$$\gamma_1 h_w + \gamma_1 (D - h_w)$$

con la specifica inoltre che in tal caso, alla formula trinomia va aggiunto l'ulteriore termine $\gamma_w h_w$

Allo stesso modo, per falda presente nel volume di terreno potenzialmente interessato dal meccanismo di rottura, il γ_2 del terzo termine della trinomia corrisponde al peso di volume efficace del terreno di fondazione γ_2 '

γ2= peso di volume dello strato di fondazione;

γw = peso di volume falda

hw = quota falda rispetto al piano di posa della fondazione

e = eccentricità del carico rispetto al baricentro della fondazione

B' = larghezza efficace della fondazione B' = B - 2e

L' = lunghezza efficace della fondazione L' = L - 2e;

c = coesione efficacedello strato di fondazione;

 N_c , N_q , N_y = fattori di capacità portante;

 \mathbf{s}_{c} , \mathbf{s}_{q} , \mathbf{s}_{v} = fattori di forma della fondazione;

 d_c , d_q , d_y = fattori di profondità del piano di posa della fondazione.

 i_c , i_q , i_y = fattori di inclinazione del carico;

Per la teoria di Meyerhof i coefficienti sopra definiti assumono le espressioni che seguono:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	45 di 78

$$\begin{split} N_{c} &= \left(N_{q} - 1\right) \cdot ctg \, \phi \; ; \quad N_{q} = tg^{2} \left(45^{o} + \frac{\phi}{2}\right) \cdot e^{(\pi \cdot tg \phi)}; \quad N_{\gamma} = \left(N_{q} - 1\right) \cdot tg \, \left(1.4 \cdot \phi\right) \\ s_{c} &= 1 + 0.2 \cdot Kp \cdot \frac{B}{L}; \quad s_{q} = 1 + 0.1 \cdot tg^{2} \left(45^{o} + \frac{\phi}{2}\right) \cdot \frac{B}{L}; \quad s_{\gamma q} = s_{q} \\ d_{c} &= 1 + 0.2 \cdot tg \left(45^{o} + \frac{\phi}{2}\right) \cdot \frac{D}{B_{f}}; \quad d_{q} = 1 + 0.1 \cdot tg \left(45^{o} + \frac{\phi}{2}\right) \cdot \frac{D}{B_{f}}; \quad d_{\gamma} = d_{q} \\ i_{c} &= \left(1 - \frac{\theta^{o}}{90^{o}}\right)^{2}; \quad i_{q} = i_{c}; \quad i_{\gamma} = \left(1 - \frac{\theta^{o}}{\phi^{o}}\right)^{2} \end{split}$$

nelle quali si sono considerati i seguenti dati:

φ= angolo di attrito dello strato di fondazione;

 θ = inclinazione della risultante sulla verticale;

D = profondità della fondazione.

^{**} nel caso di terreno eminentemente coesivo (ϕ = 0) si assume: s_q = 1; s_γ = 1; d_q = 1; d_γ = 1; d_γ = 1; d_γ = 0.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

ı	Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
ı	L0703	213	Е	16	OM0003		01	С	46 di 78

9. ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

Nell'ambito del presente paragrafo si riporta una descrizione delle caratteristiche dei Software utilizzati per l'effettuazione delle Analisi e Verifiche strutturali e geotecniche esposte nel presente documento.

Denominazione ed Estremi di Licenza del Software

Titolo SCAT - Analisi Strutture Scatolari

Versione 11.0

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Utente TECNOSTRUTTURE S.R.L.

Licenza AIU3163LJ

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

La struttura viene discretizzata in elementi tipo trave. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione

L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

Il calcolo degli scatolari viene eseguito secondo le seguenti fasi:

- Calcolo delle pressioni in calotta (per gli scatolari ricoperti da terreno);
- Calcolo della spinta del terreno;
- Calcolo delle sollecitazioni sugli elementi strutturali (fondazione, piedritti e traverso);
- Progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codice di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

Giudizio motivato di accettabilità dei risultati

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

ı	Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
	L0703	213	Е	16	OM0003		01	С	47 di 78

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	48 di 78

10. ANALISI DELLO SCATOLARE

10.1 AZIONI DI CARICO

I calcoli sono stati effettuati considerando la struttura sottoposta alle azioni indotte da:

- Peso proprio
- Carichi permanenti interni
- Carichi permanenti esterni
- Spinte del terreno
- Carichi mobili in soletta
- Spinta del sovraccarico
- Azioni dovute a variazione termica uniforme
- Azioni dovute a differenza di temperatura tra estradosso ed intradosso
- Azione dovuta al ritiro differenziale
- Azioni sismiche

Si precisa che le sollecitazioni sono calcolate con riferimento ad un concio di 1 metro di manufatto e che a tale porzione di struttura sono quindi riportate tutte le azioni di calcolo (analisi a telaio piano).

10.2 ANALISI DEI CARICHI

Carichi permanenti

Peso Proprio Elementi Strutturali:

I pesi degli elementi strutturali sono dedotti automaticamente dal programma di calcolo utilizzato (SCAT11) in base al peso specifico del materiale (calcestruzzo).

Carichi Permanenti agenti sulla soletta superiore:

In soletta si ha il carico dovuto appa presenza della pavimentazione stradale più il misto stabilizzato. Pertanto, il carico permanente sarà pari a:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	49 di 78

 $P = 0.98*20 = 19.6 \text{ kN/m}^2$

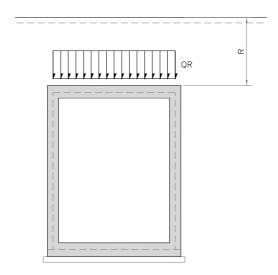


Figura 4 – Peso proprio del ricoprimento

Carichi Permanenti agenti in fondazione :

In fondazione non si considera la presenza dei permanenti portati perché riducono lo stato sollecitativo della fondazione

Spinte Laterali Carichi Permanenti (spinta simmetrica, spinta asimmetrica, spinta idraulica):

Le spinte nel terreno sono valutate nelle diverse condizioni:

Ko = coefficiente di spinta a riposo

Ka = coefficiente di spinta attiva

Ks = coefficiente di spinta in condizioni sismiche

I valori dei coefficienti sono riportati nei paragrafi successivi.

Considerando che il terreno di riempimento ed il suo relativo grado di compattazione determineranno il regime delle spinte verticali ed orizzontali sui ritti dello scatolarea, valutando inoltre la possibilità che il materiale di scavo venga parzialmente recuperato, almeno per le frazioni di migliore qualità, per tale riempimento, si adottano i seguenti parametri geotecnici medi del terreno di riempimento:

angolo di attrito interno φ' = 35°

coesione c' = 0

peso di volume del terreno $\gamma = 20.0 \text{ kN/m}^3$

Si utilizzerà, per la determinazione delle spinte orizzontali, il coefficiente di spinta a riposo k0 determinato come segue:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	50 di 78

$$k0 = 1 - sen \phi = 0.426$$

Tale assunzione deriva dalla considerazione che nel terreno circostante la struttura in esame, che si prevede costipato a rullo con le usuali modalità, non possa mobilitarsi la spinta attiva in quanto la notevole rigidezza della struttura non consente la produzione degli spostamenti necessari alla sua attivazione.

La spinta a riposo del terreno sui piedritti è calcolata in automatico dal programma di calcolo.

La pressione del terreno agente alle profondità degli assi baricentrici delle solette vale:

pt1 = Ko x
$$\gamma$$
t x (R + ST / 2) [kN/m²]
pt2 = Ko x γ t x (R + ST + B + SF / 2) [kN/m²]

Tali forze vengono computate automaticamente nel modello.

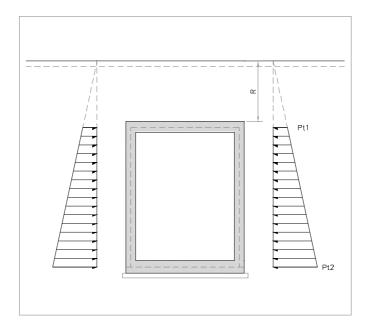


Figura 5 - Spinta laterale del terreno

Carichi mobili in copertura

Carichi mobili esterni

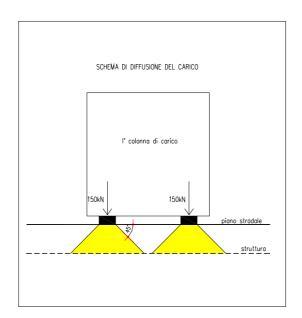
Come carico accidentale gravante sulla soletta superiore si assume il carico di normativa Q1.k, ossia il mezzo convenzionale da 600kN a due assi da 300 kN ognuno (carico tandem), interassati di 1.20m lungo il senso di marcia e di larghezza 2.40m, comprese le dimensioni delle impronte e ove possibile, il carico ripartito q1,k da 9 kN/m².

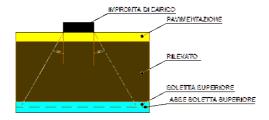
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	51 di 78

Tale carico viene posizionato ortogonalmente all'asse del sottopasso e considerato ripartito, sia in direzione longitudinale che trasversale, con un angolo di diffusione di 35° nel rilevato e a 45° sino al piano medio della soletta superiore.


In direzione trasversale, quale base collaborante viene considerato un valore pari alla larghezza di ingombro del carico uguale a 2.40 m aumentata dello spessore di diffusione del carico.


Essendoci in soletta un ricoprimento di 63 cm, si ha:

Base collaborante trasversale:

BT = Ld
$$_{tr}$$
 = 2.40+2*(0.63*Tag35°+0.90/2) = 4.18 m

Essendo Ld $_{\rm tr}$ di poco superiore a 3.00 m, si considera anche la presenza della seconda colonna di carico.

Ingombro longitudinale:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	52 di 78

 $L_L=Ld_{long} = 1.60+2*(0.63*Tag35°+0.90/2) = 3.38 m$

Pertanto, essendo Ld tr maggiore di 3.00 m si ha:

 $Q1k = 600/(4.18*3.38) + 400/(4.18*3.38) = 70.78 \text{ kN/m}^2$

Stesa di carico uniforme: q1k,dis = 9 kN/m²

(Acc_Soletta_Camp e Acc_Soletta_App)

Il carico mobile verrà posizionato una volta in campata e una dal lato del piedritto sinistro per massimizzare sia i momenti in mezzeria che all'incastro.

Frenatura

Il carico frenante di normativa q3 funzione del carico verticale totale agente sulla corsia convenzionale n.1, si ripartisce sulla intera soletta (Acc_soletta):

Carico frenante q3 = 0.60*(2*300)+0.10*q1k*wl*L = 386.46 kN

Con:

L_{frenatura} = 9.80 m - Lunghezza dello scatolare caricato dal sovraccarico stradale

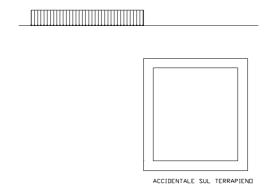
Questa azione si assume agente sulla larghezza della sede stradale pari a 4.18 m e ripartita sulla lunghezza del modello di calcolo:

Ffrenatura equivalente = $386.46/(9.80x4.18) = 9.43 \text{ kN/m}^2$

Spinta del sovraccarico accidentale

La spinta del carico accidentale (SpAccSx) si considera agente solo sul ritto di sinistra ed ha un valore costante con la profondità pari a:

$$s_{accSX} = k_0 \times q = 0.426 \times 20 = 8.52 \text{ kN/m}^2$$

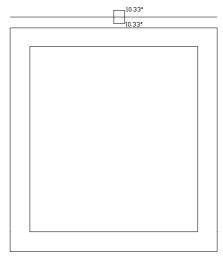


 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	53 di 78



Carichi variabili in fondazione

In fondazione si trascura la presenza del sovraccarico perché in favore di sicurezza.

Azione dovuta al ritiro differenziale in soletta

Come detto in precedenza, si considera un valore di ΔT equivalente pari a $1/3\Delta T=10.33$ °C.

RITIRO TRAVERSO

Azione dovuta a variazione termica uniforme

Come detto in precedenza, in soletta si considera una variazione uniforme di temperatura pari a 15°

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA - Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	54 di 78

Azioni dovute a differenza di temperatura tra estradosso ed intradosso

Come detto in precedenza, in soletta si considera una differenza di temperatura tra estradosso ed intradosso pari a \div 2.5°.

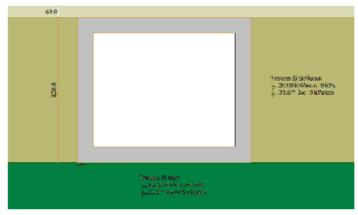
10.3 AZIONI SISMICHE

Per le azioni sismiche si veda il vedano i paragrafi 8.1.9; 8.1.10 e 8.1.

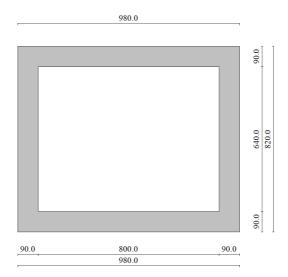
Queste azioni vengono calcolate in automatico dal codice di calcolo SCAT11.

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo


Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	55 di 78

11. RISULTATI, ANALISI E VERIFICHE SCATOLARE


Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.14 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate.

11.1 MODELLO DI CALCOLO

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento.

Modello Geometrico Geotecnico di Riferimento – 1/2

Modello Geometrico Geotecnico di Riferimento - 2/2

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	56 di 78

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

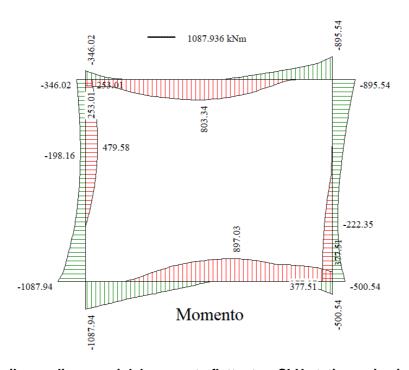
$$K \cdot u = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

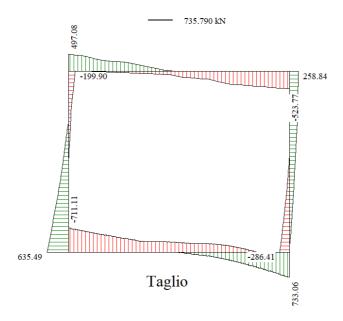
$$u = K^{-1} p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.


11.2 SOLLECITAZIONI DI CALCOLO

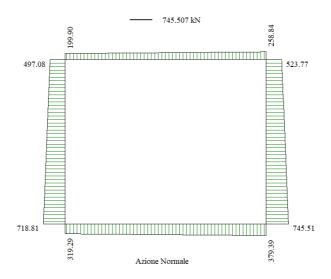
Si riportano, di seguito, i diagrammi di inviluppo delle caratteristiche delle sollecitazioni di Flessione, Taglio e Sforzo Normale; le unità di misura dei grafici sono i KN e m.



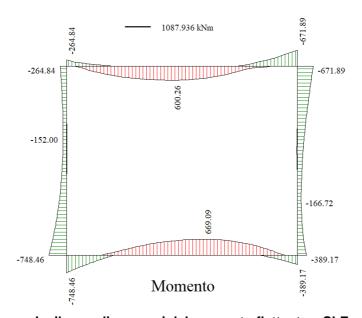
 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01	С	57 di 78

Inviluppo diagrammi del momento flettente - SLU statico e sismico



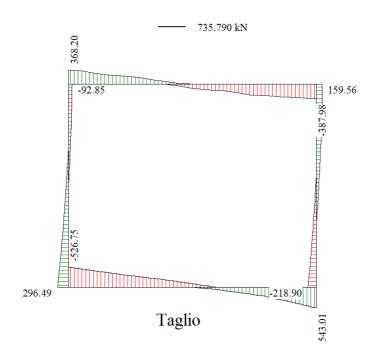
Inviluppo diagrammi del taglio - SLU statico e sismico

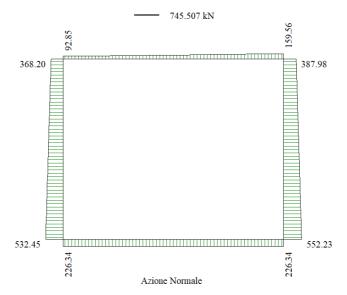


 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	58 di 78

Inviluppo diagrammi dello sforzo normale - SLU statico e sismico


Inviluppo diagrammi del momento flettente – SLE


 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA - Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003		01	С	59 di 78

Inviluppo diagrammi del taglio - SLE

Inviluppo diagrammi dello sforzo normale - SLE

Si precisa nuovamente che, la non simmetria del diagramma è legata all'aver considerato combinazioni di carico emisimmetriche.

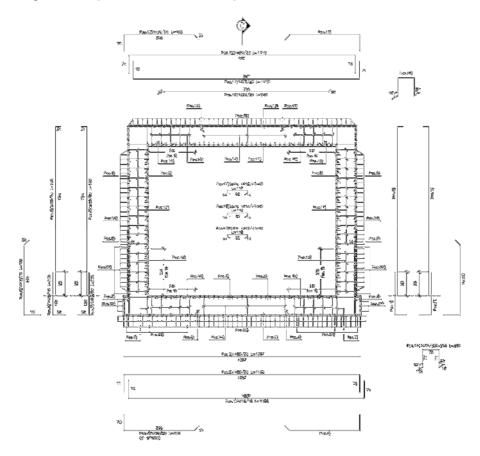
 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	60 di 78

11.3 ARMATURE DI PROGETTO


Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armatura	a flessione	Armatura a taglio
Elemento	Af 1 (contro terra)	Af 2 (interna)	Aft
TRAVERSO INCASTRO	1\phi20/20+1\phi20/20	1φ20/20	Spilli φ14/40x40 (per 2 metri alle estremità)
TRAVERSO CAMPATA	1φ20/20	1\phi20/20+1\phi20/20	3 Distanziatori φ14/200
PIEDRITTI TESTA	1φ20/10	1\psi 20/20	Spilli φ12/40x40
PIEDRITTI MEZZERIA	1\psi 20/10	1\psi 20/20	Spilli φ12/40x40
PIEDRITTI PIEDE	1\phi20/10+1\phi16/20	1\psi 20/20	Spilli φ14/40x40
FONDAZIONE INCASTRO	1\phi16/10+1\phi20/20	1\psi 20/10	Spilli φ16/40x40 (per 2 metri alle estremità)
FONDAZIONE CAMPATA	1φ16/10	1φ20/10	3 Distanziatori φ14/200

Af1: Armatura lato esterno (terreno)

Af2 : Armatura lato interno Aft: Armatura lato interno

Nella figura seguente si riporta uno schema semplificato delle armature.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	61 di 78

Ai fini delle verifiche si è fatto riferimento ad un copriferro di calcolo (filo esterno armature) pari a 4 cm.

11.4 VERIFICHE DI RESISTENZA E FESSURAZIONE

Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite di esercizio. Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 8.

Le verifiche cautelativamente vengono effettuate <u>in asse</u> agli elementi strutturali; come origine del riferimento si sceglie lo spigolo inferiore sinistro dello scatolare:

Figura 6 - Sezioni di verifica

11.4.1 Verifiche allo SLU

Si mostrano, nelle seguenti tabelle, le verifiche SLU nei confronti della pressoflessione. Si riportano per semplicità le verifiche più gravose per la struttura.

Si fà presente, che in misura cautelativa è stato assunto nel modello di calcolo anche per la soletta di fondazione, così come per la struttura in elevazione costituita dai piedritti e fondazione superiore, una classe di calcestruzzo C25/30 facendo comunque distinzione tra condizioni ordinarie e aggressive definite nei paragrafi precedenti.

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003			С	62 di 78

11.4.2 Verifiche a pressoflessione

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione	B = 100 cm		
Altezza sezione	H = 90.00 cm		
x	A _{fi}	A_{fs}	cs
0.45	35.81	31.42	1.16
2.66	20.11	31.42	1.09
4.90	20.11	31.42	1.24
7.10	20.11	31.42	1.24
9.35	35.81	31.42	1.27

Verifica sezioni traverso (Inviluppo)

Base sezione	B = 100 cm		
Altezza sezione	H = 90.00 cm		
x	Afi	A_{fs}	cs
0.45	15.71	31.42	1.44
2.62	31.42	15.71	1.39
4.90	31.42	15.71	1.31
7.18	31.42	15.71	1.53
9.35	15.71	31.42	1.20

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 90.00 cm		
Υ	$A_{\rm fi}$	A_{fs}	cs
0.45	15.71	41.47	1.28
4.10	15.71	31.42	1.13
7.75	15.71	31.42	1.32

Verifica sezioni piedritto destro (Inviluppo)

B = 100 cm

Base sezione

Altezza sezione	H = 90.00 cm		
Υ	A_{fi}	A_{fs}	cs
0.45	15.71	41.47	2.21
4.10	15.71	31.42	5.39
7.75	15.71	31.42	1.38

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	63 di 78

11.4.3 Verifiche a Taglio

I risultati ottenuti dalle verifiche delle sezioni maggiormente sollecitate (a filo pareti) per la struttura in esame sono riepilogati nella seguente tabella. L'armatura a taglio prevista è costituita da spilli, secondo quanto riportato nella tabella sottostrante:

Elemento	Armatura a taglio
Traverso	Spilli φ14/40x40 (per 2 metri alle estremità)
Piedritti Testa	Spilli φ12/40x40
Piedritti Piede	Spilli φ14/40x40
Fondazione	Spilli φ16/40x40 (per 2 metri alle estremità)

Nelle restanti parti, la resistenza a taglio è garantita dal solo calcestruzzo.

Sezione	V _{Ed}	b	h	V _{RSd} *	Verificato
[-]	[kN]	[cm]	[cm]	[kN]	[-]
Fondazione	735.79	100	90	925.01	SI
Piedritti Testa	286.41	100	90	520.32	SI
Piedritti Piede	635.49	100	90	708.21	SI
Traversi	523.77	100	90	708.21	SI

^{*} la resistenza a taglio V_{RSd} è stata calcolata utilizzando il traliccio ad inclinazione variabile secondo quanto riportato nelle NTC08.

11.4.4 Verifiche allo SLE

Nel seguente paragrafo si riportano le verifiche allo stato limite di apertura delle fessure e le verifiche delle alle tensioni per il calcestruzzo e per l'acciaio di armatura.

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

 A_{fi} Area armatura inferiore, espressa in cmq A_{fs} Area armatura superiore, espressa in cmq

 $\sigma_{\!f\!i}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa $\sigma_{\!f\!s}$ Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa

 σ_{c} Tensione nel calcestruzzo, espresse in kPa

 au_c Tensione tangenziale nel calcestruzzo, espresse in kPa A_{sw} Area armature trasversali nella sezione, espressa in cmq

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	64 di 78

0.30

0.30

144.22 0.000024

141.74 0.000019

0.000000

0.00

11.4.5 Verifiche a fessurazione

L'ampiezza delle fessure è sempre al di sotto dei limiti sopra descritti, pertanto le verifiche si possono ritenere soddisfatte. Nella seguente figura vengono riportati lo schema con indicazione delle zone della struttura ove si innesca il processo di fessurazione. Per i relativi valori di ampiezza delle fessure ricavati per la combinazione frequente e quasi permanente riferirsi al tabulato in allegato:

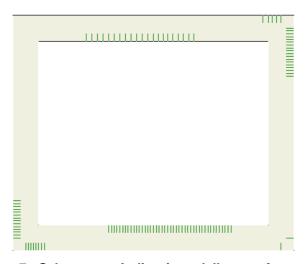


Figura 7 - Schema con indicazione delle zone fessurate

Verifiche fessurazione

Simbologia adottata ed unità di misura Indice sezione Xi Ascissa/Ordinata sezione, espresso in m M_p Momento, espresse in kNm M Momento, espresse in kNm Wk Ampiezza fessure, espresse in mm Apertura limite fessure, espresse in mm Distanza media tra le fessure, espresse in mm Deformazione nelle fessure, espresse in [%] Verifica fessurazione fondazione [Combinazione n° 40 - SLE (Frequente)] 31.42 0.45 35.81 409.63 -404.20 422.09 0.06 20.11 31.42 384.96 0.00 2.66 -398.87 -109.88 384.96 384.96 -323.04 -190.63 0.00 4.90 20.11 31.42 -398.87

381.20

2	2.00	20.11	31.42	304.30	-330.07	-103.00	0.00	0.50	0.00	0.000000
3	4.90	20.11	31.42	384.96	-398.87	-323.04	0.00	0.30	0.00	0.000000
4	7.10	20.11	31.42	384.96	-398.87	-190.63	0.00	0.30	0.00	0.000000
5	9.35	35.81	31.42	409.63	-404.20	331.17	0.00	0.30	0.00	0.000000
		[Cbi	-! 40 CIE	(F						
verifica	i tessurazione tr	averso [Combina:	zione n° 40 - SLE	(Frequente))						
N°	X	Afi	A_{fs}	Мр	Mn	M	w	Wlim	Sm	ϵ_{sm}
1	0.45	15.71	31.42	378.03	-397.32	-147.56	0.00	0.30	0.00	0.000000
2	2.62	31.42	15.71	397.32	-378.03	90.14	0.00	0.30	0.00	0.000000
3	4.90	31.42	15.71	397.32	-378.03	164.19	0.00	0.30	0.00	0.000000
4	7.18	31.42	15.71	397.32	-378.03	57.87	0.00	0.30	0.00	0.000000
5	9.35	15.71	31.42	378.03	-397.32	-210.52	0.00	0.30	0.00	0.000000
Verifica	fessurazione pi	iedritto sinistro [C	Combinazione n°	40 - SLE (Frequente)	1					

-412.92

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo Onera | Tratto | Settore | CEE | WBS | Id. doc. | N. prog. |

	Marcha Ur	noria 5.p. <i>A</i>	la .	SOTTO	VIA – M	lecciano k	cm 5+804	- Relazion	e tecnica	e di calcolo)	
•				Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
				L0703	213	E	16	OM0003	REL	01	С	65 di 78
2	4.10	15.71	31.42	378.03		-397.32	22	.36	0.00	0.30	0.00	0.000000
3	7.75	15.71	31.42	378.03		397.32	-147		0.00	0.30	0.00	0.000000
Verifica	a fessurazione pi	iedritto destro [C	ombinazione n°	10 - SLE (Freque	nte)]							
N°	x	\mathbf{A}_{fi}	A _{fs}	Мр		Mn		М	w	Wlim	Sm	Esm
1	0.45	15.71	41.47	381.20		412.92	-331		0.00	0.30	0.00	0.000000
2 3	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03		-397.32 -397.32	-2 -210		0.00 0.00	0.30 0.30	0.00 0.00	0.000000 0.000000
Verifica	fessurazione fo	ondazione [Combi	nazione nº 41 - 9	I F (Quasi Parm	anente\1							
					anentejj							
N° 1	X 0.45	A fi 35.81	A fs 31.42	Mp 409.63		Mn -404.20	370	M .77	w 0.00	W lim 0.20	S _m 0.00	ε _{sm} 0.000000
2	2.66	20.11	31.42	384.96		398.87	-152	.84	0.00	0.20	0.00	0.000000
3	4.90	20.11	31.42	384.96		398.87	-328		0.00	0.20	0.00	0.000000
4 5	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63		-398.87 -404.20	-159 370		0.00 0.00	0.20 0.20	0.00	0.000000 0.000000
Vorifica	o foccuraziono tr	averso [Combina	riono nº 41 SIE	(Quasi Bormano	nto)]							
					:iite <u>ji</u>							
N° 1	X 0.45	A fi 15.71	A _{fs} 31.42	Mp 378.03		Mn -397.32	-173	M 28	w 0.00	w _{lim} 0.20	s _m 0.00	ϵ_{sm} 0.000000
2	2.62	31.42	15.71	397.32		378.03	79		0.00	0.20	0.00	0.000000
3	4.90	31.42	15.71	397.32		378.03	169		0.00	0.20	0.00	0.000000
4 5	7.18 9.35	31.42 15.71	15.71 31.42	397.32 378.03		·378.03 ·397.32	79 -173		0.00 0.00	0.20 0.20	0.00	0.000000 0.000000
3	3.33	13.71	31.42	376.03		-357.32	-1/3	.20	0.00	0.20	0.00	0.000000
Verifica	a fessurazione pi	iedritto sinistro [C	Combinazione n°	41 - SLE (Quasi	Permanente)	l						
N°	X	A _{fi}	Afs	Mp		Mn	270	M	w	Wlim	Sm	E _{sm}
1 2	0.45 4.10	15.71 15.71	41.47 31.42	381.20 378.03		412.92 397.32	-370 -3		0.00 0.00	0.20 0.20	0.00	0.000000 0.000000
3	7.75	15.71	31.42	378.03		397.32	-173		0.00	0.20	0.00	0.000000
Verifica	a fessurazione pi	iedritto destro [Co	ombinazione n° 4	41 - SLE (Quasi P	ermanente)]							
N°	x	\mathbf{A}_{fi}	Afs	Мр		Mn		М	w	Wlim	Sm	Esm
1	0.45	15.71	41.47	381.20		412.92	-370		0.00	0.20	0.00	0.000000
2	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03		·397.32 ·397.32	-3 -173		0.00 0.00	0.20 0.20	0.00	0.000000 0.000000
-												
Vorifies	fossuraziono fo	ondazione [Combi	inaziono nº 43	TE (Eroquonto)]								
<u>-</u>												
N° 1	X 0.45	A fi 35.81	A _{fs} 31.42	Mp 409.63		Mn -404.20	584	M 56	w 0.15	w _{lim} 0.30	S _m 144 22	ε _{sm} 0.000061
2	2.66	20.11	31.42	384.96		398.87	-180		0.00	0.30	0.00	0.000000
3	4.90	20.11	31.42	384.96		398.87	-530		0.17	0.30	168.31	0.000058
4 5	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63		-398.87 -404.20	-384 367		0.00 0.00	0.30 0.30	0.00	
Verifica	a fossurazione tr	averso [Combina	zione nº 12 - SIE	(Eraguanta)]								
		-										
N° 1	X 0.45	A fi 15.71	A _{fs} 31.42	Mp 378.03		Mn ·397.32	-210	M .09	w 0.00	w _{lim} 0.30	s _m 0.00	ϵ_{sm} 0.000000
2	2.62	31.42	15.71	397.32		378.03	273		0.00	0.30		0.000000
3	4.90	31.42	15.71	397.32		378.03	456		0.14	0.30	168.31	
4 5	7.18 9.35	31.42 15.71	15.71 31.42	397.32 378.03		·378.03 ·397.32	149 -452		0.00 0.13	0.30 0.30	0.00 168.31	
3	5.55	15.71	51.42	3,0.03		-57.52	-432			5.50	100.31	0000 ++
				aa a = 10								
· · ·	a tessurazione pi	iedritto sinistro [C	Combinazione n°	42 - SLE (Freque	ente)]							
N° 1	X 0.45	A fi 15.71	A fs 41.47	Mp 381.20		Mn -412.92	-584	M 56	w 0.10	W lim 0.30	s _m 141.74	ε _{sm} 0.000039
2	4.10	15.71	31.42	378.03		397.32	-128		0.00	0.30	0.00	0.000000
3	7.75	15.71	31.42	378.03	-	397.32	-210	.09	0.00	0.30	0.00	0.000000

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	66 di 78

N°	х	$A_{\rm fi}$	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€sn
1	0.45	15.71	41.47	381.20	-412.92	-367.39	0.00	0.30	0.00	0.00000
2	4.10	15.71	31.42	378.03	-397.32	-141.19	0.00	0.30	0.00	0.00000
3	7.75	15.71	31.42	378.03	-397.32	-452.42	0.08	0.30	168.31	0.00002
erifica	fessurazione fo	ondazione [Combi	nazione n° 44 - S	LE (Frequente)]						
N°	x	Afi	A_{fs}	Мр	Mn	М	w	Wlim	Sm	ες
1	0.45	35.81	31.42	409.63	-404.20	352.37	0.00	0.30	0.00	0.00000
2	2.66	20.11	31.42	384.96	-398.87	-170.85	0.00	0.30	0.00	0.00000
3 4	4.90 7.10	20.11 20.11	31.42 31.42	384.96 384.96	-398.87 -398.87	-346.37 -177.68	0.00 0.00	0.30 0.30	0.00	0.00000
5	9.35	35.81	31.42	409.63	-404.20	352.37	0.00	0.30	0.00	0.00000
/erifica	fessurazione tr	averso [Combina:	zione n° 44 - SLE ([Frequente)]						
N°	x	A _{fi}	${\sf A}_{\sf fs}$	Мр	Mn	М	w	Wlim	Sm	εs
1	0.45	15.71	31.42	378.03	-397.32	-191.47	0.00	0.30	0.00	0.00000
2	2.62 4.90	31.42 31.42	15.71 15.71	397.32 397.32	-378.03 -378.03	61.58 151.76	0.00 0.00	0.30 0.30	0.00	0.00000
4	7.18	31.42	15.71	397.32 397.32	-378.03 -378.03	61.58	0.00	0.30	0.00	0.00000
5	9.35	15.71	31.42	378.03	-397.32	-191.47	0.00	0.30	0.00	0.00000
Verifica	fessurazione pi	iedritto sinistro [C	Combinazione n°	44 - SLE (Frequente)	l					
٧°	x	A _{fi}	\mathbf{A}_{fs}	Мр	Mn	М	w	W _{lim}	Sm	ες
1	0.45	15.71	41.47	381.20	-412.92	-352.37	0.00	0.30	0.00	0.00000
	4.10	15.71	31.42	378.03	-397.32	-3.21	0.00	0.30	0.00	0.00000
3	7.75	15.71	31.42	378.03 4 - SLE (Frequente)]	-397.32	-191.47	0.00	0.30	0.00	0.000000
3 Verifica N°	7.75 fessurazione pi	iedritto destro [Co	ombinazione n° 4 A _{fs}	<u>4 - SLE (Frequente)]</u> Mp	-397.32 Mn	М	w	0.30 W _{lim}	0.00 S _m	ϵ_{s_i}
3 Verifica N° 1	7.75 fessurazione pi X 0.45	iedritto destro [Co A _{fi} 15.71	ombinazione n° 4 A _{fs} 41.47	<u>4 - SLE (Frequente)]</u> Mp 381.20	-397.32 Mn -412.92	M -352.37	w 0.00	0.30 W lim 0.30	0.00 s _m 0.00	0.000000 \$\varepsilon_{ss}\$ 0.000000
Verifica N° 1 2	7.75 fessurazione pi	iedritto destro [Co	ombinazione n° 4 A _{fs}	<u>4 - SLE (Frequente)]</u> Mp	-397.32 Mn	М	w	0.30 W _{lim}	0.00 S _m	ε _{s1}
N° 1 2 3 3	7.75 fessurazione pi X 0.45 4.10 7.75	iedritto destro [Co A _{fi} 15.71 15.71	A _{fs} 41.47 31.42 31.42	4 - SLE (Frequente)] Mp 381.20 378.03 378.03	-397.32 Mn -412.92 -397.32	M -352.37 -3.21	w 0.00 0.00	0.30 W _{lim} 0.30 0.30	0.00 s _m 0.00 0.00	ε _{sı}
3 Verifica N° 1 2 3 Verifica	7.75 Sessurazione pi X 0.45 4.10 7.75	edritto destro [Co A _{fi} 15.71 15.71 15.71 0.000 pondazione [Combi	A ₆ 41.47 31.42 31.42 31.42 Anazione n° 46 - Si	4 - SLE (Frequente)] Mp 381.20 378.03 378.03	-397.32 Mn -412.92 -397.32 -397.32	M -352.37 -3.21 -191.47	w 0.00 0.00 0.00	0.30 W _{lim} 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00	£ _{st} 0.000000 0.000000 0.0000000
Verifica N° 1 2 3 Verifica N° 1	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45	iedritto destro [Co A _{fi} 15.71 15.71 15.71 15.71 2000 A _{fi} 35.81	A ₄₅ 41.47 31.42 31.42 31.42 Anazione n° 46 - Si A ₄₅ 31.42	4 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE [Frequente]] Mp 409.63	-397.32 Mn -412.92 -397.32 -397.32	M -352.37 -3.21 -191.47 M 378.17	w 0.00 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30 0.30	\$ _m 0.00 0.00 0.00 0.00 \$ _m 0.00	\$\varepsilon_{\substack} \varepsilon_{\substack} \vare
Verifica N° 1 2 3 Verifica N° 1 2	7.75 x 0.45 4.10 7.75 fessurazione fo x 0.45 2.66	ndazione [Combi A _{fi} 15.71 15.71 15.71 20.00000000000000000000000000000000000	A ₄₅ 41.47 31.42 31.42 31.42 nazione n° 46 - Si A ₄₅ 31.42 31.42	4 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63 384.96	-397.32 Mn -412.92 -397.32 -397.32 Mn -404.20 -398.87	M -352.37 -3.21 -191.47 M 378.17 -145.59	w 0.00 0.00 0.00 0.00	Wilm 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00	E ₃₁ 0.000000 0.0000000 0.0000000000000000
3 Verifica N° 1 2 3 Verifica N° 1 2 3	7.75 X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90	A _{fi} 15.71 15.71 15.71 15.71 0ndazione [Combi A _{fi} 35.81 20.11	A ₄₅ 41.47 31.42 31.42 31.42 A ₅ 42 431.42 31.42 31.42 31.42 31.42	4 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63 384.96 384.96	-397.32 Mn -412.92 -397.32 -397.32 Mn -404.20 -398.87 -398.87	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56	w 0.00 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00 0.00	£ ₃₁ 0.000000 0.0000000 0.0000000 0.0000000 0.000000
3 Verifica 1 2 3 Verifica 1 2 1 1 2 3	7.75 x 0.45 4.10 7.75 fessurazione fo x 0.45 2.66	ndazione [Combi A _{fi} 15.71 15.71 15.71 20.00000000000000000000000000000000000	A ₄₅ 41.47 31.42 31.42 31.42 nazione n° 46 - Si A ₄₅ 31.42 31.42	4 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63 384.96	-397.32 Mn -412.92 -397.32 -397.32 Mn -404.20 -398.87	M -352.37 -3.21 -191.47 M 378.17 -145.59	w 0.00 0.00 0.00 0.00	Wilm 0.30 0.30 0.30 0.30	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E ₅ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Werifica Verifica Verifica Verifica Verifica Verifica Verifica	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35	An 15.71 15.71 15.71 15.71 20.00 [Combi An 35.81 20.11 20.11	A ₄₅ 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	4-SLE (Frequente)] Mp 381.20 378.03 378.03 LE [Frequente]] Mp 409.63 384.96 384.96 384.96 409.63	Mn -412.92 -397.32 -397.32 -398.87 -398.87 -398.87	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E ₅ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Werifica N° 1 2 3 Werifica N° 1 2 3 4 5 Werifica N°	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X X X X X X X X X	A _{fi} 15.71 15.71 15.71 15.71 20.00 A _{fi} 35.81 20.11 20.11 35.81 A _{fi} A _{fi}	A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	## A - SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -398.87 -398.87 -404.20	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	\$\varepsilon_{\sigma_{\sigma}} \varepsilon_{\sigma_{\sigma}} \varepsilon_{\sigma} \text{0.00000} \\ 0.00000 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.0000 \\ 0.00000 \\ 0.000 \\ 0.000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0
3 Werifica N° 1 2 3 3 Werifica N° 1 5 Werifica N° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	A _{fi} 15.71 15.71 15.71 15.71 20.11 20.11 20.11 35.81 20.11 20.11 35.81	A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	## A- SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -397.32 Mn -404.20 -398.87 -398.87 -398.87 -404.20	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E _{st} 0.00000 0.000000 0.000000 0.000000 0.000000
3 Verifica N° 1 2 3 Verifica N° 1 2 2 3 Verifica N° 1 2 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62	A _{fi} 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 averso [Combina: A _{fi} 15.71 31.42	A ₆ 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	## A-SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 Mn -397.32 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	\$\varepsilon_{\sigma_1}\$\$ 0.000000 0.000000 0.000000 0.000000 0.000000
3 Verifica Verifica Verifica Verifica Verifica Verifica	7.75 x 0.45 4.10 7.75 fessurazione fo x 0.45 2.66 4.90 7.10 9.35 fessurazione tr x 0.45 2.65 4.90 7.10 9.35	An 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.81 20.11 20.11 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.	A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.57 15.71	## A - SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -397.32 -398.87 -398.87 -404.20 Mn -397.32 -378.03 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17 M -131.50 121.55 211.73	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E ₃₁ 0.00000 0.000000 0.000000 0.000000 0.000000
3 Verifica Verifica	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62	A _{fi} 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 averso [Combina: A _{fi} 15.71 31.42	A ₆ 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	## A-SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 Mn -397.32 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E ₃ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 Verifica Verifica 3 Verifica 3 Verifica 1 2 3 4 5 1 2 3 4 5 1	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35	A _{fi} 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 35.81 averso [Combina: A _{fi} 15.71 31.42 31.42 31.42 15.71	A ₆ 41.47 31.42	## A-SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 Mn -397.32 -378.03 -378.03 -378.03 -378.03 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17 M -131.50 121.55 211.73 121.55	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E ₃ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 Verifica Verifica Verifica Verifica Verifica Verifica Verifica Verifica	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35 fessurazione pi X X X X X X X X X	A _{fi} 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 35.81 averso [Combina: A _{fi} 15.71 31.42 31.42 31.42 15.71	A ₆ 41.47 31.42	## A- SLE (Frequente)] Mp	Mn -412.92 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 Mn -397.32 -378.03 -378.03 -378.03 -378.03 -378.03 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17 M -131.50 121.55 211.73 121.55 -131.49	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wlim 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E ₃ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 Verifica N° 1 2 3 Verifica N° 1 2 3 4 5 Verifica 3 4 5	7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35 1.8	A _{fi} 15.71 15.71 15.71 15.71 15.71 15.71 15.71 A _{fi} 35.81 20.11 20.11 35.81 averso [Combination of Combination of Combinat	A _{fs} 41.47 31.42	## A - SLE (Frequente) Mp	Mn -412.92 -397.32 -397.32 -397.32 -398.87 -398.87 -404.20 Mn -397.32 -378.03 -378.03 -378.03 -378.03 -378.03	M -352.37 -3.21 -191.47 M 378.17 -145.59 -321.56 -152.44 378.17 M -131.50 121.55 211.73 121.55 -131.49	w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Wilm 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	s _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	E ₁ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003		01		67 di 78

3	7.75	15.71	31.42	378.03	-397.32	-131.50	0.00	0.30	0.00 0.000000
				c 015/5					
/erifica	tessurazione p	edritto destro [Co	ombinazione n° 4	6 - SLE (Frequente)]					
۱°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{w}_{lim}	$s_m \qquad \epsilon_{sm}$
<u>.</u>	0.45	15.71	41.47	381.20	-412.92	-378.17	0.00	0.30	0.00 0.000000 0.00 0.000000
	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.32 -397.32	13.88 -131.49	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
/erifica	fessurazione fo	ondazione [Combi	nazione n° 48 - Si	LE (Frequente)]					
N° L	x	Afi	A_{fs}	Мр	Mn	M	w	Wlim	$s_m \qquad \epsilon_{sm}$
	0.45	35.81	31.42	409.63	-404.20 -398.87	358.10 -165.24	0.00	0.30	0.00 0.000000
	2.66 4.90	20.11 20.11	31.42 31.42	384.96 384.96	-398.87 -398.87	-165.24 -340.87	0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
	7.10	20.11	31.42	384.96	-398.87	-172.07	0.00	0.30	0.00 0.000000
	9.35	35.81	31.42	409.63	-404.20	358.10	0.00	0.30	0.00 0.000000
'erifica	fessurazione tr	averso [Combina:	zione n° 48 - SLE ([Frequente)]					
۱°	X	A fi	A _{fs}	Mp	Mn	M	w	Wlim	S _m E _{Sm}
	0.45	15.71	31.42	378.03	-397.32	-185.80 67.25	0.00	0.30	0.00 0.000000
	2.62 4.90	31.42 31.42	15.71 15.71	397.32 397.32	-378.03 -378.03	67.25 157.43	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
	7.18	31.42	15.71	397.32	-378.03	67.25	0.00	0.30	0.00 0.000000
	9.35	15.71	31.42	378.03	-397.32	-185.80	0.00	0.30	0.00 0.000000
/erifica	fessurazione p	iedritto sinistro [C	Combinazione n°	48 - SLE (Frequente)	Ĺ				
٧°	X	A fi	A _{fs}	Mp	Mn -412.92	M	w 0.00	W lim 0.30	S _m ε _{sm}
	0.45	15.71	41.47						0.00 0.000000
				381.20 378.03		-358.10 -3.24			
2	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.32 -397.32	-3.24 -185.80	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
2	4.10 7.75	15.71 15.71	31.42 31.42	378.03	-397.32	-3.24	0.00	0.30	0.00 0.000000
/erifica	4.10 7.75 fessurazione pi	15.71 15.71 iedritto destro [Co	31.42 31.42 ombinazione n° 4 A _{fs}	378.03 378.03 8 - SLE (Frequente)] Mp	-397.32 -397.32 Mn	-3.24 -185.80 M	0.00 0.00	0.30 0.30 W _{lim}	0.00 0.000000 0.00 0.000000 s _m E _{sm}
erifica	4.10 7.75 • fessurazione pi X 0.45	15.71 15.71 iedritto destro [Co A _{fi} 15.71	31.42 31.42 ombinazione n° 4 A _{fs} 41.47	378.03 378.03 8 - SLE (Frequente)] Mp 381.20	-397.32 -397.32 Mn -412.92	-3.24 -185.80 M -358.10	0.00 0.00 w 0.00	0.30 0.30 W _{lim} 0.30	0.00 0.000000 0.00 0.0000000 s _m E _{sm} 0.00 0.000000
2 3 Verifica N° L	4.10 7.75 fessurazione pi	15.71 15.71 iedritto destro [Co	31.42 31.42 ombinazione n° 4 A _{fs}	378.03 378.03 8 - SLE (Frequente)] Mp	-397.32 -397.32 Mn	-3.24 -185.80 M	0.00 0.00	0.30 0.30 W _{lim}	0.00 0.000000 0.00 0.000000 s _m E _{sm}
/erifica	4.10 7.75 ** fessurazione pi	15.71 15.71 iedritto destro [Co A _{fi} 15.71 15.71	31.42 31.42 ombinazione n° 4 A ₆ 41.47 31.42 31.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03	-397.32 -397.32 Mn -412.92 -397.32	-3.24 -185.80 M -358.10 -3.24	0.00 0.00 w 0.00 0.00	0.30 0.30 W _{ilm} 0.30 0.30	0.00 0.000000 0.00 0.000000 s _m E _{sm} 0.00 0.000000 0.00 0.000000
/erifica	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo	15.71 15.71 iedritto destro [Co A _{fi} 15.71 15.71 15.71 ondazione [Combi	31.42 31.42 20mbinazione n° 4 A ₆ 41.47 31.42 31.42 21.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03	-397.32 -397.32 Mn -412.92 -397.32 -397.32	-3.24 -185.80 M -358.10 -3.24 -185.80	0.00 0.00 w 0.00 0.00 0.00	0.30 0.30 W _{lim} 0.30 0.30 0.30	0.00 0.000000 0.00 0.0000000 s _m ε _{sm} 0.00 0.000000 0.00 0.000000 0.00 0.000000
'erifica '° 'erifica	4.10 7.75 **Market 1.00 1	15.71 15.71 iedritto destro [Co A _{fi} 15.71 15.71 15.71 ondazione [Combi	31.42 31.42 20mbinazione n° 4 A ₆ 41.47 31.42 31.42 31.42 20mazione n° 52 - Si	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -Mn -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37	0.00 0.00 w 0.00 0.00 0.00	0.30 0.30 Willim 0.30 0.30 0.30	\$m Esm 0.00 0.000000 \$ 0.00 0.000000 \$ 0.00 0.00
'erifica 'erifica	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66	15.71 15.71 iedritto destro [Co A _{fi} 15.71 15.71 15.71 0ndazione [Combi A _{fi} 35.81 20.11	31.42 31.42 20mbinazione n° 4 A ₆ 41.47 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 478.03 48.09 49.63 384.96	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08	0.00 0.00 w 0.00 0.00 0.00	0.30 0.30 W _{lim} 0.30 0.30 0.30	\$ _m ε _{sm} 0.00 0.000000 0.00 0.000000 0.000000 0.000000
<u>'erifica</u> °	4.10 7.75 **Market 1.00 1	15.71 15.71 iedritto destro [Co A _{fi} 15.71 15.71 15.71 ondazione [Combi	31.42 31.42 20mbinazione n° 4 A ₆ 41.47 31.42 31.42 31.42 20mazione n° 52 - Si	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -Mn -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37	0.00 0.00 w 0.00 0.00 0.00	0.30 0.30 Willim 0.30 0.30 0.30	\$m Esm 0.00 0.000000 \$ 0.00 0.000000 \$ 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000
erifica o erifica	4.10 7.75 **Mark	15.71 15.71 sedritto destro [Co A _{fi} 15.71 15.71 15.71 ondazione [Combi A _{fi} 35.81 20.11 20.11	31.42 31.42 20mbinazione n° 4 A ₆ 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 38-SLE (Frequente)] Mp 381.20 378.03 378.03 48.03 49.63 384.96 384.96	-397.32 -397.32 -397.32 -397.32 -397.32 -398.37	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80	0.00 0.00 w 0.00 0.00 0.00 0.00	0.30 0.30 W _{lim} 0.30 0.30 0.30 0.30	\$m Esm 0.00 0.000000 \$ 0.00 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.000000 \$ 0.00000000 \$ 0.00000000
2 3 4/erifica 1 2 3 3 4 5	4.10 7.75 **Surazione pi X 0.45 4.10 7.75 **Surazione fo X 0.45 2.66 4.90 7.10 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.00 (Combination of Combination	31.42 31.42 31.42 20mbinazione n° 4 A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 378.03 LE (Frequente)] Mp 409.63 384.96 384.96 384.96 384.96 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -398.37 -398.87 -398.87 -398.87	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92		W _{lim} 0.30 0.30 W _{lim} 0.30 0.30 0.30 0.30 0.30	\$m Esm 0.00 0.000000 \$m 0.000000 \$m 0.000000 0.00 0.000000 0.00 0.000000 \$m 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000
erifica	4.10 7.75 x 0.45 4.10 7.75 fessurazione fo x 0.45 2.66 4.90 7.10 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81	31.42 31.42 2mbinazione n° 4 A ₆ 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63 384.96 384.96 384.96 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37	.000 0.000 .000 0.000 0.000 0.000 0.000 0.000 0.000	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	sm εsm 0.00 0.000000 sm εsm 0.00 0.000000 0.00 0.000000 0.00 0.000000 sm εsm 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000
'erifica	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 20.11 35.81	31.42 31.42 31.42 2mbinazione n° 4 A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 LE (Frequente)] Mp 409.63 384.96 384.96 384.96 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000 \$
erifica erifica	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.66	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 averso [Combina:	31.42 31.42 31.42 2mbinazione n° 4 A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 384.96 384.96 384.96 384.96 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.30 0.30 .30 .30 .30 0.30 0.30 0.30 0.3	\$m \$\varepsilon_{\text{sim}}\$0.00 0.000000 \$\begin{array}{cccccccccccccccccccccccccccccccccccc
erifica erifica erifica	4.10 7.75 **Messurazione pi **X 0.45 4.10 7.75 **Messurazione fo **X 0.45 2.66 4.90 7.10 9.35 **Messurazione tr **X 0.45 2.66 4.90 7.10 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 averso [Combina:	31.42 31.42 31.42 A ₆ 41.47 31.42	378.03 378.03 38-SLE [Frequente]] Mp 381.20 378.03 378.03 378.03 LE [Frequente]] Mp 409.63 384.96 384.96 384.96 409.63 [Frequente]] Mp 378.03 397.32	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 -398.87 -398.87 -398.87 -398.87 -398.87 -397.32 -378.03 -378.03 -378.03	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37		W _{lim} 0.30 0.30 W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000 \$m 0.000000 \$m 0.000000 \$m 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000
erifica	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fo X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.66	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 averso [Combina:	31.42 31.42 31.42 2mbinazione n° 4 A _{fs} 41.47 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42 31.42	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 384.96 384.96 384.96 384.96 409.63	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.30 0.30 .30 .30 .30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000 0.00 0.000000 \$
2 3 Verifica 1 2 3 3 4 5 5	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 20.11 20.11 35.81	31.42 31.42 31.42 A ₆ 41.47 31.42	378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 378.03 LE (Frequente)] Mp 409.63 384.96 384.96 384.96 409.63 [Frequente)] Mp 378.03 397.32 397.32 397.32	Mn -412.92 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 -404.20 -398.87	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37 M -215.06 37.99 128.17 37.99	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	W _{lim} 0.30 0.30 W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000 0.00 0.000000 \$m Esm 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000 0.00 0.0000000
2 3 Verifica 1 2 3 4 5 1 2 2 3 4 4 5 1 2 2 3 4 5 5	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 20.11 20.11 35.81	31.42 31.42 31.42 A ₆ 41.47 31.42 31.	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 378.03 384.96 384.96 384.96 384.96 384.96 387.32 397.32 397.32 397.32 397.32 397.32 378.03	Mn -412.92 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 -404.20 -398.87	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37 M -215.06 37.99 128.17 37.99	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Wilm 0.30 0.30 Wilm 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000
erifica //erifica //erifica //erifica //erifica	4.10 7.75 **Mark	15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 35.81	31.42 31.42 31.42 A ₆ 41.47 31.42	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 378.03 384.96 384.96 384.96 384.96 384.96 387.32 397.32 397.32 397.32 397.32 397.32 378.03	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37 M -215.06 37.99 128.17 37.99 -215.06	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	W _{lim} 0.30 0.30 W _{lim} 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	\$m Esm 0.00 0.000000 0.00 0.000000 \$
2 3 Werifica N° 1 2 3 3 Werifica N° 1 1 2 2 3 4 4 5	4.10 7.75 fessurazione pi X 0.45 4.10 7.75 fessurazione fc X 0.45 2.66 4.90 7.10 9.35 fessurazione tr X 0.45 2.62 4.90 7.18 9.35	15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 15.71 20.11 20.11 20.11 20.11 35.81 20.11 20.11 35.81 20.11 20.11 20.11 20.11 35.81	31.42 31.42 31.42 A _{fs} 41.47 31.42 31	378.03 378.03 378.03 8 - SLE (Frequente)] Mp 381.20 378.03 378.03 378.03 384.96 384.96 384.96 384.96 409.63 [Frequente)] Mp 378.03 397.32 397.32 397.32 397.32 378.03	-397.32 -397.32 -397.32 -397.32 -397.32 -398.87 -398.87 -398.87 -404.20 -398.87 -39	-3.24 -185.80 M -358.10 -3.24 -185.80 M 363.37 -160.08 -335.80 -166.92 363.37 M -215.06 37.99 128.17 37.99 -215.06	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Wilm 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	S _m E _{sm} 0.00 0.000000 0.00 0.000000 S _m E _{sm} 0.00 0.000000

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	68 di 78

	0.45	Afi	Afs	Mp	Mn	M	w	Wlim	S _m ε
		15.71	41.47	381.20	-412.92	-363.37	0.00	0.30	0.00 0.00000
	4.10	15.71	31.42	378.03	-397.32	-20.50	0.00	0.30	0.00 0.00000
	7.75	15.71	31.42	378.03	-397.32	-215.06	0.00	0.30	0.00 0.00000
erifica f	essurazione fo	ndazione [Combi	nazione n° 54 - S	LE (Frequente)]					
	X	A fi	A fs	Mp	Mn	M	w	W _{lim}	S _m &
	0.45 2.66	35.81 20.11	31.42 31.42	409.63 384.96	-404.20 -398.87	389.17 -134.83	0.00 0.00	0.30 0.30	0.00 0.00000 0.00 0.00000
	4.90	20.11	31.42	384.96	-398.87	-310.98	0.00	0.30	0.00 0.00000
	7.10	20.11	31.42	384.96	-398.87	-141.68	0.00	0.30	0.00 0.00000
	9.35	35.81	31.42	409.63	-404.20	389.17	0.00	0.30	0.00 0.00000
erifica f	essurazione tr	averso [Combina:	zione n° 54 - SLE ([Frequente]]					
	x	$A_{\rm fi}$	${\sf A}_{\sf fs}$	Мр	Mn	М	w	W _{lim}	s _m ε
	0.45	15.71	31.42	378.03	-397.32	-155.09	0.00	0.30	0.00 0.00000
	2.62	31.42	15.71	397.32	-378.03	97.96	0.00	0.30	0.00 0.00000
	4.90 7.18	31.42 31.42	15.71 15.71	397.32 397.32	-378.03 -378.03	188.14 97.96	0.00 0.00	0.30 0.30	0.00 0.00000 0.00 0.00000
	9.35	15.71	31.42	378.03	-397.32	-155.08	0.00	0.30	0.00 0.00000
erifica f	essurazione pi	edritto sinistro [C	Combinazione n°	54 - SLE (Frequente)	1				
	x	\mathbf{A}_{fi}	\mathbf{A}_{fs}	Мр	Mn	М	w	W _{lim}	s _m ε
	0.45	15.71	41.47	381.20	-412.92	-389.17	0.00	0.30	0.00 0.00000
	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.32 -397.32	-3.41 -155.09	0.00 0.00	0.30 0.30	0.00 0.00000 0.00 0.00000
erifica f	essurazione pi	edritto destro [Co	ombinazione n° 5	4 - SLE (Frequente)]					
•	X	A _{fi}	A _{fs}	Mp	Mn	M	w	Wlim	S _m &
	0.45 4.10	15.71 15.71	41.47 31.42	381.20 378.03	-412.92 -397.32	-389.17 -3.41	0.00 0.00	0.30 0.30	0.00 0.00000 0.00 0.00000
	7.75	15.71	31.42	378.03	-397.32	-155.08	0.00	0.30	0.00 0.00000
erifica f	essurazione fo	ondazione [Combi	nazione n° 55 - S	LE (Frequente)]					
•	х	\mathbf{A}_{fi}	${\sf A}_{\sf fs}$	Мр	Mn	М	w	\mathbf{w}_{lim}	s _m ε
	0.45	35.81	31.42	409.63	-404.20	584.56	0.15	0.30	144.22 0.00006
	2.66	20.11	31.42	384.96	-398.87	-180.63 -530.84	0.00	0.30	0.00 0.00000 168.31 0.00005
	4.90 7.10	20.11 20.11	31.42 31.42	384.96 384.96	-398.87 -398.87	-384.17	0.17 0.00	0.30 0.30	168.31 0.00005 0.00 0.00000
	9.35	35.81	31.42	409.63	-404.20	367.39	0.00	0.30	0.00 0.00000
erifica f	essurazione tr	averso [Combina:	zione n° 55 - SLE ([Frequente]]					
	x	Afi	A_{fs}	Мр	Mn	М	w	W _{lim}	s _m ε
	0.45	15.71	31.42	378.03	-397.32	-210.09	0.00	0.30	0.00 0.00000
	2.62	31.42	15.71						0.00 0.00000
									168.31 0.00004 0.00 0.00000
	9.35	15.71	31.42	397.32 378.03	-378.03 -397.32	-452.42	0.13	0.30	0.00 0.00000 168.31 0.00004
					_				
erifica f	essurazione pi	edritto sinistro [C	Combinazione n°	55 - SLE (Frequente)					
erifica f	essurazione pi	edritto sinistro [C	Combinazione n°	55 - SLE (Frequente) Mp	<u>l</u> Mn	М	w	W _{lim}	S _m ε
	X 0.45	A fi 15.71	A fs 41.47	Mp 381.20	Mn -412.92	-584.56	0.10	0.30	141.74 0.00003
	х	Afi	A_{fs}	Мр	Mn				
	X 0.45 2.62 4.90 7.18	A _{fi} 15.71 31.42 31.42 31.42	A _{fs} 31.42 15.71 15.71 15.71	Mp 378.03 397.32 397.32 397.32 378.03	-397.32 -378.03 -378.03 -378.03 -397.32	-210.09 273.82 456.58 149.60	0.00 0.00 0.14 0.00	0.30 0.30 0.30 0.30	16

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Ε	16	OM0003	REL	01	С	69 di 78

N°	Χ	A _{fi}	Afs	Mp	Mn	M	w	Wlim	S _m E _{sm}
1 2	0.45	15.71	41.47	381.20	-412.92	-367.39	0.00	0.30	0.00 0.000000
2 3	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.32 -397.32	-141.19 -452.42	0.00 0.08	0.30 0.30	0.00 0.000000 168.31 0.000027
•	7.73	15.71	31.42	376.03	-337.32	-432.42	0.00	0.30	100.31 0.000027
Verifica	ı fessurazione fo	ondazione [Combi	inazione n° 58 - S	LE (Frequente)]					
N°	x	\mathbf{A}_{fi}	\mathbf{A}_{fs}	Мр	Mn	М	w	W _{lim}	$s_m \qquad \epsilon_{sm}$
1	0.45	35.81	31.42	409.63	-404.20	604.59	0.16	0.30	144.22 0.000065
2	2.66	20.11	31.42	384.96	-398.87	-207.69	0.00	0.30	0.00 0.000000
3	4.90	20.11	31.42	384.96	-398.87 -398.87	-525.68	0.16	0.30	168.31 0.000056 0.00 0.000000
4 5	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63	-404.20	-346.73 358.09	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
<u>Verifica</u>	ı fessurazione tr	averso [Combina	zione n° 58 - SLE	(Frequente)]					
N°	х	Afi	۸.	Mn	Mn	М		146	
1	0.45	15.71	A fs 31.42	Mp 378.03	-397.32	-194.46	w 0.00	W lim 0.30	S_m ε_{sm} 0.00 0.000000
2	2.62	31.42	15.71	397.32	-378.03	321.45	0.00	0.30	0.00 0.000000
3	4.90	31.42	15.71	397.32	-378.03	390.05	0.00	0.30	0.00 0.000000
4	7.18	31.42	15.71	397.32	-378.03	84.12	0.00	0.30	0.00 0.000000
5	9.35	15.71	31.42	378.03	-397.32	-407.47	0.09	0.30	168.31 0.000032
<u>Verifica</u>	ı fessurazione p	iedritto sinistro [(Combinazione n°	58 - SLE (Frequente)	1				
N°	x	Afi	A_{fs}	Мр	Mn	М	w	Wlim	S _m E _{sm}
1	0.45	15.71	41.47	381.20	-412.92	-604.59	0.10	0.30	141.74 0.000040
2	4.10	15.71	31.42	378.03	-397.32	-130.81	0.00	0.30	0.00 0.000000
3	7.75	15.71	31.42	378.03	-397.32	-194.46	0.00	0.30	0.00 0.000000
N° 1 2 3	X 0.45 4.10 7.75	A fi 15.71 15.71 15.71	A _{fs} 41.47 31.42 31.42	Mp 381.20 378.03 378.03	Mn -412.92 -397.32 -397.32	M -358.09 -114.06 -407.47	w 0.00 0.00 0.07	W lim 0.30 0.30 0.30	\$m \$Esm 0.00 0.000000 0.00 0.000000 168.31 0.000025
Verifica	ı fessurazione fo	ondazione [Combi	inazione n° 60 - S	LE (Frequente)]					
N°	x	A _{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	s_m ϵ_{sm}
1	0.45	35.81	31.42	409.63	-404.20	352.37	0.00	0.30	0.00 0.000000
2	2.66	20.11	31.42	384.96	-398.87	-170.85	0.00	0.30	0.00 0.000000
3	4.90	20.11	31.42	384.96	-398.87	-346.37	0.00	0.30	0.00 0.000000
4 5	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63	-398.87 -404.20	-177.68 352.37	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
Vouities	. faaaaaiaaa t	avana Kambina	riono nº 60. SIF	/Francounts)]					
		averso [Combina							
N°	X	A _{fi}	A _{fs}	Mp	Mn	M	w	Wlim	Sm Esm
1	0.45	15.71	31.42	378.03	-397.32	-191.47	0.00	0.30	0.00 0.000000 0.00 0.000000
2	2.62	31.42	15.71	397.32	-378.03	61.58	0.00	0.30	
3 4	4.90 7.18	31.42	15.71 15.71	397.32	-378.03 -378.03	151.76 61.58	0.00 0.00	0.30 0.30	0.00 0.000000 0.00 0.000000
5	9.35	31.42 15.71	31.42	397.32 378.03	-397.32	-191.47	0.00	0.30	0.00 0.000000
<u>Verifica</u>	ı fessurazione pi	iedritto sinistro [C	Combinazione n°	60 - SLE (Frequente)	1				
N°	x	\mathbf{A}_{fi}	A_{fs}	Мр	Mn	М	w	Wlim	S _m E _{sm}
1	0.45	15.71	41.47	381.20	-412.92	-352.37	0.00	0.30	0.00 0.000000
2	4.10	15.71	31.42	378.03	-397.32	-3.21	0.00	0.30	0.00 0.000000
3	7.75	15.71	31.42	378.03	-397.32	-191.47	0.00	0.30	0.00 0.000000
<u>Ver</u> ifica	ı fessurazione p	i <u>edritto d</u> estro [C	ombinazione n° 6	60 - SLE (Frequente)]	L				
N°		_				NA.		146.	6. ~
IV	Х	Afi	Afs	Мр	Mn	М	w	Wlim	S _m E _{sm}

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

						1ano km 5+80					T
				Opera L0703	Tratto S 213	ettore CEE E 16	WBS OM0003	ld.doc. REL	N. prog. 01	Rev. C	Pag.diPag. 70 di 78
							·I				
1	0.45	15.71	41.47	381.20	-412.9	25	2.37	0.00	0.30	0.00	0.000000
2	4.10 7.75	15.71 15.71 15.71	31.42 31.42	378.03 378.03	-397.3 -397.3	32 -	3.21	0.00 0.00	0.30 0.30 0.30	0.00	0.000000 0.000000 0.000000
,	7.73	15.71	31.42	376.03	337.5	,, 13		0.00	0.30	0.00	0.000000
		ondazione [Combi				_					
N° 1	X 0.45	A fi 35.81	A fs 31.42	Mp 409.63	-404.2			w 0.00	W lim 0.30	s _m 0.00	E _{sm} 0.000000
2	2.66 4.90	20.11 20.11	31.42 31.42	384.96 384.96	-398.8 -398.8			0.00	0.30 0.30	0.00	0.000000 0.000000
4	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63	-398.8 -404.2	37 -15	2.44	0.00	0.30 0.30	0.00	0.000000 0.000000
3	5.55	33.81	31.42	403.03	-404.2	20 371	5.17	0.00	0.30	0.00	0.000000
		averso [Combina:		<u> </u>							
N° 1	X 0.45	A fi 15.71	A _{fs} 31.42	Mp 378.03	-397.3	In 32 -13:	M L.50	w 0.00	W lim 0.30	s _m 0.00	ε _{sm} 0.000000
2	2.62	31.42	15.71	397.32	-378.0	03 12	L.55	0.00	0.30	0.00	0.000000
3 4	4.90 7.18	31.42 31.42	15.71 15.71	397.32 397.32	-378.0 -378.0			0.00	0.30 0.30	0.00	0.000000 0.000000
5	9.35	15.71	31.42	378.03	-397.3			0.00	0.30		0.000000
<u>Verifica</u>	fessurazione pi	iedritto sinistro [C	Combinazione n°	° 62 - SLE (Frequ	ente)]						
N°	х	\mathbf{A}_{fi}	A_{fs}	Мр	N	1n	М	w	W _{lim}	S _m	$\epsilon_{\sf sm}$
1	0.45	15.71	41.47	381.20	-412.9 -397.3			0.00	0.30	0.00	0.000000
2 3	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.3 -397.3			0.00	0.30 0.30	0.00	0.000000 0.000000
<u>Verifica</u>	fessurazione pi	iedritto destro [Co	ombinazione n°	62 - SLE (Freque	nte)]						
N°	х	A_{fi}	Afs	Мр	N	1n	м	w	Wlim	Sm	Esm
1	0.45	15.71	41.47	381.20	-412.9	92 -378	3.17	0.00	0.30	0.00	0.000000
2 3	4.10 7.75	15.71 15.71	31.42 31.42	378.03 378.03	-397.3 -397.3			0.00	0.30 0.30	0.00	0.000000 0.000000
Vanifiaa	f	undaniana (Cambi	i° 66	CLF (Franciscopts)]							
N°	X	ondazione [Combi A _{fi}	A _{fs}	Mp		1n	м	w	Wlim	Sm	Esm
1	0.45	35.81	31.42	409.63	-404.2	20 389	9.17	0.00	0.30	0.00	0.000000
2	2.66 4.90	20.11 20.11	31.42 31.42	384.96 384.96	-398.8 -398.8			0.00	0.30 0.30	0.00	0.000000 0.000000
4	7.10	20.11	31.42	384.96	-398.8			0.00	0.30	0.00	0.000000
5	9.35	35.81	31.42	409.63	-404.2	20 38	9.17	0.00	0.30	0.00	0.000000
<u>Verifica</u>	fessurazione tr	averso [Combina:	zione n° 66 - SLE	(Frequente)]							
N°	x	Afi	\mathbf{A}_{fs}	Мр		1n	М	w	W _{lim}	Sm	$\epsilon_{\sf sm}$
1 2	0.45 2.62	15.71 31.42	31.42 15.71	378.03 397.32	-397.3 -378.0			0.00	0.30 0.30		0.000000 0.000000
3	4.90	31.42	15.71	397.32	-378.0			0.00	0.30	0.00	0.000000
4 5	7.18 9.35	31.42 15.71	15.71 31.42	397.32 378.03	-378.0 -397.3			0.00 0.00	0.30 0.30	0.00	0.000000 0.00000
5	3.33	15.71	31.42	376.63	337.5	, 13.		0.00	0.30	0.00	0.000000
		iedritto sinistro [C				_					
N° 1	X 0.45	A fi 15.71	A fs 41.47	Mp 381.20	-412.9	In 92 -389	M 9.17	w 0.00	W lim 0.30	s _m 0.00	ε _{sm} 0.000000
2	4.10	15.71	31.42	378.03	-397.3	32 -	3.41	0.00	0.30	0.00	0.000000
3	7.75	15.71	31.42	378.03	-397.3	32 -15	5.09	0.00	0.30	0.00	0.000000
Verifica	fessurazione pi	iedritto destro [Co	ombinazione n°	66 - SLE (Freque	nte)]						
N° 1	X 0.45	A fi 15.71	A fs 41.47	Mp 381.20	N -412.9	In 22 -389	M 9.17	w 0.00	w _{lim} 0.30	s _m 0.00	ϵ_{sm} 0.000000
2	4.10	15.71	31.42	378.03	-412.5 -397.3			0.00	0.30		0.000000
3	7.75	15.71	31.42	378.03	-397.3			0.00	0.30	0.00	0.000000
		ondazione [Combi				_					
N°	х	Afi	A _{fs}	Мр	N	1n	М	w	W _{lim}	Sm	Esm

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelra
imondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo Onera | Tratto | Settore | CEE | WBS | Id. doc. | N. prog. |

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo												
•				Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag
				L0703	213	E	16	OM0003	REL	01	С	71 di 78
	0.45	25.04	24.42	400.50			252			0.00	2.22	0.00000
1	0.45	35.81	31.42	409.63		104.20	363.3		0.00	0.30	0.00	0.000000
2	2.66	20.11	31.42	384.96		398.87	-160.0		0.00	0.30	0.00	0.000000
3	4.90	20.11	31.42	384.96		398.87	-335.8		0.00	0.30	0.00	0.000000
4	7.10	20.11	31.42	384.96		398.87	-166.9		0.00	0.30	0.00	0.000000
5	9.35	35.81	31.42	409.63	-4	104.20	363.3	57	0.00	0.30	0.00	0.000000
Verifica	a fessurazione tr	raverso [Combina	zione n° 68 - SLE	(Frequente)]								
N°	х	Afi	A _{fs}	Мр		Mn		М	w	Wlim	Sm	Esm
1	0.45	15.71	31.42	378.03	-3	397.32	-215.0	06	0.00	0.30	0.00	0.000000
2	2.62	31.42	15.71	397.32	-3	378.03	37.9	99	0.00	0.30	0.00	0.000000
3	4.90	31.42	15.71	397.32	-3	378.03	128.3	17	0.00	0.30	0.00	0.000000
l.	7.18	31.42	15.71	397.32	-3	378.03	37.9	99	0.00	0.30	0.00	0.000000
5	9.35	15.71	31.42	378.03		397.32	-215.0	06	0.00	0.30	0.00	0.000000
Verifica	a fessurazione n	iedritto sinistro [(Combinazione n	68 - SLF (Freque	ente)]							
					<u></u>							
N° L	X 0.45	A _{fi}	A _{fs}	Mp		Mn		M	w	W _{lim}	S _m	8 _{sm}
	0.45	15.71	41.47	381.20		112.92	-363.3		0.00	0.30	0.00	0.000000
	4.10	15.71	31.42	378.03		397.32	-20.5		0.00	0.30	0.00	0.000000
	7.75	15.71	31.42	378.03	-3	397.32	-215.0	J6	0.00	0.30	0.00	0.000000
/erifica	a fessurazione p	iedritto destro [Co	ombinazione n°	68 - SLE (Freque	nte)]							
ı°	х	$A_{\rm fi}$	A_{fs}	Мр		Mn		М	w	W _{lim}	s _m	$\epsilon_{\sf sm}$
	0.45	15.71	41.47	381.20	-4	112.92	-363.3	37	0.00	0.30	0.00	0.000000
	4.10	15.71	31.42	378.03	-3	397.32	-20.5	50	0.00	0.30	0.00	0.000000
3	7.75	15.71	31.42	378.03	-3	397.32	-215.0	06	0.00	0.30	0.00	0.000000
Verifica	a fessurazione fo	ondazione [Combi	inazione n° 69 - :	SLE (Frequente)]								
N°						84		B.4				
1	X 0.45	A _{fi}	A _{fs}	Mp	,	Mn 104.20	593.3	M	W	W _{lim}	Sm 144 22	ε _{sm} 0.000063
		35.81	31.42	409.63					0.16	0.30		
!	2.66	20.11	31.42	384.96		398.87	-217.9		0.00	0.30	0.00	0.000000
	4.90	20.11	31.42	384.96		398.87	-525.6		0.16	0.30	168.31	0.000056
ļ ;	7.10 9.35	20.11 35.81	31.42 31.42	384.96 409.63		398.87 104.20	-336.6 369.4		0.00	0.30 0.30	0.00	0.000000 0.000000
,	5.55	55.61	31.42	405.03		104.20	305.	43	0.00	0.30	0.00	0.00000
erifica/	a fessurazione tr	raverso [Combina	zione n° 69 - SLE	(Frequente)]								
۱°	х	Afi	\mathbf{A}_{fs}	Мр		Mn		М	w	Wlim	Sm	ϵ_{sm}
	0.45	15.71	31.42	378.03		397.32	-207.3		0.00	0.30	0.00	0.000000
	2.62	31.42	15.71	397.32		378.03	314.9		0.00	0.30	0.00	0.000000
	4.90	31.42	15.71	397.32	-3	378.03	390.0	05	0.00	0.30	0.00	0.000000
	7.18	31.42	15.71	397.32	-3	378.03	90.6	64	0.00	0.30	0.00	0.000000
	9.35	15.71	31.42	378.03	-3	397.32	-394.7	74	0.00	0.30	0.00	0.000000
/erifica	a fessurazione p	iedritto sinistro [(Combinazione n	69 - SLE (Freque	ente)]							
۷°	x	A_{fi}	Afs	Мр		Mn		М	w	Wlim	Sm	Esm
1	0.45	15.71	41.47	381.20	-4	112.92	-593.3		0.09	0.30		0.000038
	4.10	15.71	31.42	378.03		397.32	-131.4		0.00	0.30		0.000000
	7.75	15.71	31.42	378.03		397.32	-207.3		0.00	0.30		0.000000
/erifica	a fessurazione p	iedritto destro [Co	ombinazione n°	69 - SLE (Freque	nte)]							
٧°	x	Afi	A _{fs}	Мр		Mn		М	w	Wlim	Sm	Esm
1	0.45	15.71	41.47	381.20	-4	112.92	-369.4		0.00	0.30	0.00	0.000000
2	4.10	15.71	31.42	378.03		397.32	-113.4		0.00	0.30	0.00	0.000000
3	7.75	15.71	31.42	378.03		397.32	-394.7		0.00	0.30	0.00	

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	72 di 78

11.4.6 Verifica delle tensioni

Nella seguente tabella sono riportati i risultati delle verifiche allo SLE dei limiti tensionali di lavoro nel calcestruzzo e nelle barre di armatura.

Tali tensioni risultano sempre al di sotto dei limiti indicati dalla normativa, pertanto le verifiche si possono ritenere soddisfatte. Vengono riportate le verifiche più gravose.

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

4.10

7.75

15.71

15.71

31.42

31.42

2.388

7.018

31.416

84.360

33.115

222.329

		L			
Base sezione	B = 100 cm				
Altezza sezione	H = 90.00 cm				
х	Afi	A_{fs}	σα	σ_{fi}	σfs
0.45	35.81	31.42	6.725	241.625	79.020
2.66	20.11	31.42	2.268	27.967	60.742
4.90	20.11	31.42	6.325	74.168	229.543
7.10	20.11	31.42	5.452	64.258	192.802
9.35	35.81	31.42	3.580	113.203	43.049
Verifica sezioni tra	averso (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 90.00 cm				
х	Afi	A_{fs}	σα	$\sigma_{\rm fi}$	σ_{fs}
0.45	15.71	31.42	2.705	31.710	98.224
2.62	31.42	15.71	4.668	179.603	54.091
4.90	31.42	15.71	5.974	228.516	69.299
7.18	31.42	15.71	1.998	61.089	24.158
9.35	15.71	31.42	6.831	79.737	253.708
Verifica sezioni pi	edritto sinistro (Invil	luppo)			
Base sezione	B = 100 cm				
Altezza sezione	H = 90.00 cm				
Υ	Afi	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.45	15.71	41.47	7.233	89.980	185.024
4.10	15.71	31.42	1.894	25.337	24.397
7.75	15.71	31.42	2.839	35.799	69.101
Verifica sezioni pi	edritto destro (Invilu	ıppo)			
		<u></u>			
Base sezione	B = 100 cm				
Altezza sezione	H = 90.00 cm				
Y	Afi	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.45	15.71	41.47	3.790	47.456	90.427

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OM0003	REL	01	С	73 di 78

11.4.7 Verifiche geotecniche

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Meyerhof, come già specificato in precedenza; nel seguito si riportano i risultati ottenuti per il caso in esame:

Simbologia adottata

 $egin{array}{ll} \it{IC} & Indice della combinazione \\ \it{Nc, Nq, N_g} & Fattori di capacità portante \\ \end{array}$

NC, NQ, NQ Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc. Portanza ultima del terreno, espressa in [N/mmq]

Portanza ultima del terreno, espressa in [N/mmq] Q_U Portanza ultima del terreno, espressa in [kN]/m Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Ng	N'c	N'q	N'g	qu	QU	QY	FS
1	38.64	26.09	26.17	79.97	38.85	38.96	10.488	102781.63	1130.32	90.93
2	24.76	13.86	10.21	46.33	19.45	14.32	4.767	46719.54	837.27	55.80
3	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
4	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
5	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
6	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
7	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
8	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
9	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
10	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
11	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
12	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
13	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
14	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
15	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
16	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
17	38.64	26.09	26.17	44.20	26.13	19.54	5.481	53709.88	1637.86	32.79
18	24.76	13.86	10.21	26.78	13.28	6.01	2.407	23586.44	1269.63	18.58
19	38.64	26.09	26.17	44.20	26.13	19.54	6.092	59703.45	1637.86	36.45
20	24.76	13.86	10.21	26.78	13.28	6.01	2.710	26559.60	1269.63	20.92
21	38.64	26.09	26.17	44.20	26.13	19.54	6.092	59703.45	1637.86	36.45
22	24.76	13.86	10.21	26.78	13.28	6.01	2.710	26559.60	1269.63	20.92
23	38.64	26.09	26.17	44.20	26.13	19.54	6.092	59703.45	1637.86	36.45
24	24.76	13.86	10.21	26.78	13.28	6.01	2.710	26559.60	1269.63	20.92
25	38.64	26.09	26.17	44.20	26.13	19.54	6.092	59703.45	1637.86	36.45
26	24.76	13.86	10.21	26.78	13.28	6.01	2.710	26559.60	1269.63	20.92
27	38.64	26.09	26.17	44.64	26.39	20.15	6.264	61391.72	1637.86	37.48
28	24.76	13.86	10.21	27.08	13.43	6.28	2.796	27396.87	1269.63	21.58
29	38.64	26.09	26.17	44.64	26.39	20.15	6.264	61391.72	1637.86	37.48
30	24.76	13.86	10.21	27.08	13.43	6.28	2.796	27396.87	1269.63	21.58
31	38.64	26.09	26.17	44.64	26.39	20.15	6.264	61391.72	1637.86	37.48
32	24.76	13.86	10.21	27.08	13.43	6.28	2.796	27396.87	1269.63	21.58
33	38.64	26.09	26.17	44.64	26.39	20.15	6.264	61391.72	1637.86	37.48
34	24.76	13.86	10.21	27.08	13.43	6.28	2.796	27396.87	1269.63	21.58
35	38.64	26.09	26.17	15.28	9.04	1.77	0.484	4746.18	728.46	6.52
36	38.64	26.09	26.17	20.10	11.88	0.02	0.928	9093.51	946.09	9.61
37	24.76	13.86	10.21	12.54	6.22	0.62	0.511	5004.47	946.09	5.29
38	24.76	13.86	10.21	9.54	4.73	2.83	0.302	2962.63	728.46	4.07

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	74 di 78

12. VERIFICA DEL CORDOLO SULLA SOLETTA DEL SOTTOVIA

In questo paragrafo sono riportati i risultati ottenuti dalle verifiche locali del cordolo che ospitare la barriera di sicurezza. Lo schema di calcolo è quello di mensola incastrata alla base sulla soletta del sottovia.

Le azioni di progetto sono state definite secondo le indicazioni normative contenute nel DM 2008 e sono le seguenti:

12.1 ANALIDI DEI CARICHI

Per la verifica del cordolo si assume, in favore di sicurezza, l'altezza massimo del cordolo che risulta essere pari a 0.57 m nei calcoli si assume 0.60 m.

Pretanto, si ha:

Peso proprio

 $Pp = \gamma_{cls} * s * h = 25 * 0.75 * 0.57 = 10.69 \text{ kN/m}$

Spinta rilevato (γ t=20 kN/m³; ϕ '=35°)

 $Sr = ka*\gamma t*h^2/2=0.27*20*0.60^2/2 = 0.97 kN/m$

Spinta accidentale

 $Sa = ka*q_{acc}*h=0.27*20*0.60 = 3.24 kN/m$

Sisma

Ka'= 0.326

Kf = 0.294g

Fi = kh*Pp=3.14 kN/m

 $Ss = ka'*\gamma t*h^2/2 = 0.326*20*0.60^2/2 = 1.17 kN/m$

Urto

Nel progetto strutturale si può tener conto delle forze causate da collisioni accidentali sulle barriere di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Essa è trasferita da un veicolo al cordolo per mezzo delle barriere di sicurezza rigide e deve essere applicata agente trasversalmente ed orizzontalmente a 100 mm sotto la sommità della barriera o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. Nel caso in esame si assume una forza agente ad una distanza d=1.00 m dalla base della barriera.

La forza orizzontale F viene considerata diffusa lungo l'interasse dei montanti pari a 1.50 m ed applicata in testa al cordolo:

Fu = F/i = 100/1.5 = 66.67 KN/m

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	75 di 78

 $Mu = Fu^*(1.00+0.60) = 106.67 \text{ KNm/m}$

COMBINAZIONE DEI CARICHI

SLE: 1.0*Pp+1.0*Sr+1.0*Sa

SLU: 1.35*Pp+1.35*Sr+1.35*Sa

ECC: 1.0*Pp+1.0*Sr+1.0*Sa+1.0*Urto

12.1 SOLLECITAZIONI

SLE:

N=10.69 KN/m

M = 0.97*0.60/3+3.24*0.60/2 = 1.17 KNm/m

T = 0.97 + 3.24 = 4.21 KN/m

SLU:

N=10.69*1.35 =14.43 KN/m

M = 0.97*0.60/3*1.35+3.24*0.60/2*1.35 = 1.71 KNm/m

T = 0.97*1.35+3.24*1.35 = 5.68 KN/m

SISMA:

N=10.69 KN/m

M = 1.17*0.60/3+3.14*0.60/2 = 1.18 KNm/m

T = 1.17 + 3.14 = 4.31 KN/m

ECC:

N=10.69 KN/m

M = 0.97*0.60/3+3.24*0.60/2+106.67 = 107.84 KNm/m

T = 0.97 + 3.24 + 66.67 = 70.88 KN/m

12.2 VERIFICHE

 3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

0	pera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L	0703	213	Е	16	OM0003		01	С	76 di 78

B=100 cm

H=75 cm

 $Aa = 10.05 \text{ cm}^2 (1\phi 16/20)$

Aa' = $10.05 \text{ cm}^2 (1\phi 16/20)$

Verifica allo stato limite ultimo

In favore di sicurezza si assume N = 0.00 kN, da cui:

MRd = 107.84 KNm > MEd = 144.48 KNm

Verifica allo stato limite di esercizio

M = 1.17 kNm

sc = 0.03 MPa < 19.92 MPa

sf = 1.81 MPa < 360 MPa

w = 0.00 mm < 0.2 mm

Verifica a taglio ultimo

Verifica a taglio				
Elementi senza armatura	trasversale a ta	aglio		
- Verifica del conglomerato	0			
$VRd = [0,18*k*(100*_{\rho}1*f_{ck})]$	^{1/3} / _γ c+0,15* _σ cp]*bw*d =	195.43	kN
VEd =	70.88	kN	ok	
con:				
$K = 1 + (200/d)^{1/2} =$	1.539		≤ 2	
Rck =	30	N/mm ²		
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.333	N/mm ²		
fck =0,83*Rck =	24.9	N/mm ²		
$fcd = \alpha_{cc} * fck/\gamma c =$	14.11	N/mm ²		
ρ1 = Asl/(bw*d) =	0.00146		≤ 0,02	
d =	688	mm		
H =	750	mm		
bw =	1000	mm		
AsI =	1005	mm ²	(1 _{\phi} 16/20))	
N _{Ed} =	0.00	kN		
σ _{cp} =N _{Ed} /Ac =	0.000	N/mm ²	≤ 0,2*fcd	

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	77 di 78

ALLEGATO 1

TABULATI DI CALCOLO SCATOLARE

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI

SOTTOVIA – Mecciano km 5+804 - Relazione tecnica e di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OM0003	REL	01	С	78 di 78

Calcolo del carico sulla calotta

Pressione Geostatica

In questo caso la pressione in calotta viene calcolata come prodotto tra il peso di volume del terreno per l'altezza del ricoprimento (Spessore dello strato di terreno superiore). Quindi la pressione in calotta è fornita dalla seguente relazione:

$$P_v = \gamma H$$

Se sul profilo del piano campagna sono presenti dei sovraccarichi, concentrati e/o distribuiti, la diffusione di questi nel terreno avviene secondo un angolo, rispetto alla verticale, pari a 35.00°.

Spinta sui piedritti

Spinta attiva - Metodo di Coulomb

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ, su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente)

$$S = 1/2\gamma H^2 K_a$$

 K_a rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come

$$K_{a} = \frac{\sin(\alpha + \phi)}{\sqrt{\left[\sin(\phi + \delta)\sin(\phi - \beta)\right]}}$$

$$\sin^{2}\alpha \sin(\alpha - \delta) \left[1 + \frac{\sqrt{\left[\sin(\alpha - \delta)\sin(\alpha + \beta)\right]}}{\sqrt{\left[\sin(\alpha - \delta)\sin(\alpha + \beta)\right]}}\right]^{2}$$

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale ($\alpha = 90^{\circ}$ per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto. Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete). L'espressione di K_a perde di significato per $\beta > \phi$. Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso di terreno dotato di attrito e coesione c l'espressione della pressione del terreno ad una generica profondità z vale

$$\sigma_a = \gamma z K_a - 2 c \sqrt{K_a}$$

Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat}$$
 - γ_v

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Spinta a Riposo

Si assume che sui piedritti agisca la spinta calcolata in condizioni di riposo. Il coefficiente di spinta a riposo è espresso dalla relazione