

ASSE VIARIO MARCHE-UMBRIA E QUADRILATERO DI PENETRAZIONE INTERNA **MAXILOTTO 2**

LAVORI DI COMPLETAMENTO DELLA DIRETTRICE PERUGIA ANCONA: SS. 318 DI "VALFABBRICA", TRATTO PIANELLO -VALFABBRICA SS. 76 "VAL D'ESINO", TRATTI FOSSATO VICO - CANCELLI E ALBACINA - SERRA SAN QUIRICO "PEDEMONTANA DELLE MARCHE", TRATTO FABRIANO-MUCCIA-SFERCIA.

PROGETTO ESECUTIVO DI DETTAGLIO

Il Dagmangahila dal Cantmanta Cananala

CONTRAENTE GENERALE: DIRPA 2 s.c.a r.l.	Il Responsabile del Contraente Generale:	
PROGETTAZIONE: Partecipazioni Italia S.p.A. IL PROGETTISTA: Dott. Ing. Salvatore Lieto Ordine degli Ingegneri Prov. di Mantova n.1147	ASSISTENZA ALLA PROGETTAZIONE: TECNOSTRUTTURE S.I. SEDE LEGALE: Piozza Regina Morgherita n.27 - 00198 ROW SEDE OPERATIVA: Via delle Querciole n. 13 - 00037 Segni (RM IL PROGETTISTA: Dott. Ing. Antonio Tosiani	MA
VISTO IL RESPONSABILE DEL PROCEDIMENTO:	IL COORDINATORE DELLA SICUREZZA IN FASE DI ESECUZIONE:	IL DIRETTORE DEI LAVORI:

2.1.3 - PEDEMONTANA DELLE MARCHE

3º Stralcio funzionale - Castelraimondo Nord - Castelraimondo Sud

Ing. Iginio Farotti

4º Stralcio funzionale - Castelraimondo Sud - Innesto SS77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore - Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Ing. Vincenzo Pardo

SCALA:

Ing. Peppino Marascio

DATA:

Novembre 2021

Codice Unico di Progetto (CUP) F12C03000050021 (assegnato CIPE 20.04.2015)

$CODICE\ ELABORATO:$	Opera	Tratto	Settore CEE	WBS	Id.doc.	n° progr	Rev.
	LO703	2 1 3	E 1 6	O S 0 0 2 7	REL	0 1	A

Rev.	Data	Descrizione	Red	atto	Controllato	Approvato
А	Novem. 2021	Emissione Progetto di Dettaglio	Tecnostrutture	Tecnostrutture	A. Tosiani	S. Lieto

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera		_		WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	REL	Ü	А	1 di 83

INDICE

1.	PREMESSA	
1.1	UNITÀ DI MISURA	3
2 .	DESCRIZIONE DELLE OPERE	4
3 .	NORMATIVA DI RIFERIMENTO	6
4 .	CARATTERISTICHE DEI MATERIALI	7
4.1	CALCESTRUZZO C32/40 PER FONDAZIONI	7
4.2		
4.3 4.4	ACCIAIO PER ARMATURE	
	INQUADRAMENTO GEOTECNICO	
5 .		
6 .	MODELLO GEOTECNICO	
7 .	CARATTERIZZAZIONE SISMICA	
8.	VERIFICHE STRUTTURALI – CRITERI GENERALI	
8.1	VERIFICA SLE	
8	1.2 Verifiche a fessurazione	18
	VERIFICHE ALLO SLU	
-	2.1 Pressoflessione2.2 Taglio	19
9.	MURI DI SOSTEGNO	22
10 .	VERIFICA AGLI STATI LIMITI	24
10.	1 STATO LIMITE ULTIMO E DI SALVAGUARDIA DELLA VITA	26
10.	2 STATI LIMITE DI ESERCIZIO	27
11.	VERIFICHE	29
	1 VERIFICA A RIBALTAMENTO	
11.		
	2 VERIFICA A CARICO LIMITE	
11.	3 VERIFICA A CARICO LIMITE	29
11. 11.	3 VERIFICA A CARICO LIMITE	29 30 30
11. 11. 1	3 VERIFICA A CARICO LIMITE	29 30 30
11. 11. 1	3 VERIFICA A CARICO LIMITE	29 30 31 32
11. 11. 1 1	VERIFICA A CARICO LIMITE	29 30 31 32 34
11. 11. 1 1 1	3 VERIFICA A CARICO LIMITE 4 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI 1.4.1 Verifiche per gli stati limite ultimi	29 30 31 32 34 34
11. 11. 1 1 1 1 11.	VERIFICA A CARICO LIMITE	29 30 31 32 34 34 35
11. 11. 1 1 1 11.	VERIFICA A CARICO LIMITE	2930313234343535
11. 11. 1 1 1 11. 1	3 VERIFICA A CARICO LIMITE 4 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI 1.4.1 Verifiche per gli stati limite ultimi 1.4.2 Verifica agli stati limite ultimi a taglio 1.4.3 Verifica agli stati limite d'esercizio 1.4.4 Metodo di analisi - calcolo muro 11.4.4.1 Descrizione modello di calcolo 5 ANALISI DEI CARICHI 1.5.1 Pesi propri	2930313234353535

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore		WBS OS0027	ld. doc.	N. prog.	Rev.	Pag. di Pag. 2 di 83
LU/US	213	_	10	C3002/	RFI	UI	A	2 UI 03

12.1 SCHEMA DI CALCOLO	20
12.1 SCHEMA DI CALCOLO	37
12.2 RISULTATI VERIFICHE GEOTECNICHE	40
12.2.1 Sezione H1 = 2.50 m	40
12.3 RISULTATI VERIFICHE STRUTTURALI	41
12.3.1 Sezione H= 2.50 m	42
ALLEGATO 1	46
TABULATI DI CALCOLO DEL MURO	46
1.1 TABULATI MURO SEZIONE H= 2.50 M	47

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	aoc. REL	01	Α	3 di 83

1. PREMESSA

Il presente documento rientra nell'ambito della redazione degli Elaborati tecnici di Progetto di Dettaglio della strada Pedemontana Marchigiana, che costituisce l'elemento di completamento tra le due direttrici "S.S.76" Valnerina e "S.S.77" Val di Chienti, relativamente agli stralci funzionali n°3 (Svincolo di Castelraimondo nord – Svincolo di Castelraimondo sud) e n°4 (Svincolo di Castelraimondo sud - innesto con la S.S. 77 a Muccia)

Nell'ambito dei lavori di realizzazione del sottovia al km 9+697.08 per il ripristino della strada in località Pianello si è reso necessario ripristinare l'accesso al depuratore esistente in tale località.

La falda è assunta al di sotto della quota del piano di fondazione.

Nel seguito, dopo una breve descrizione delle opere cui si riferiscono i calcoli sviluppati, si riportano tutti i criteri generali adottati per le analisi e verifiche strutturali, ed a seguire, tutti i risultati ottenuti nei vari casi.

1.1 UNITÀ DI MISURA

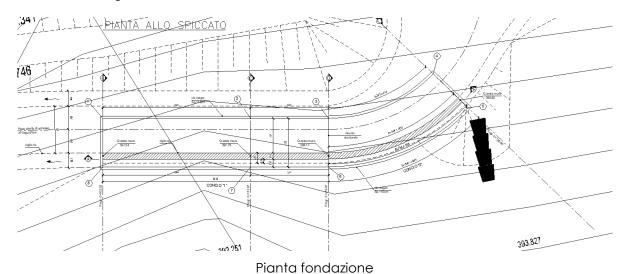
Nel seguito si adotteranno le seguenti unità di misura:

• per le lunghezze \Rightarrow m, cm,

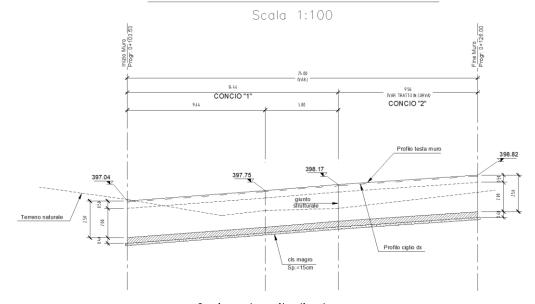
• per i carichi \Rightarrow kN, kN/m², kN/m³

per le azioni di calcolo⇒ kN, kNmper le tensioni⇒ MPa

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI


Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

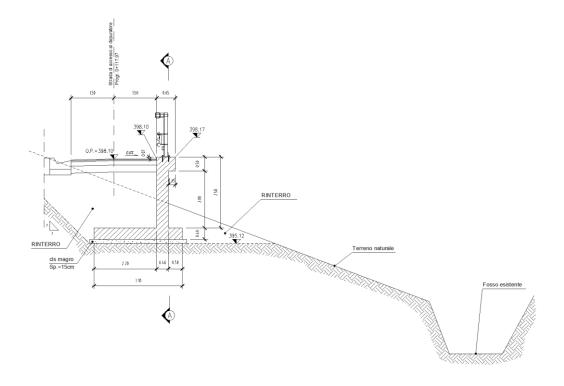
Relazione di calcolo


Opera L0703		Settore E		WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag. di Pag. 4 di 83
10/00	213	L	10	C3002/	REL	UI UI	^	4 UI 03

2. DESCRIZIONE DELLE OPERE

Come detto in precedenza il muro di sostegno viene realizzato sulla strada di accesso al depuratore esistente, nel seguito sono riportate la disposizione in pianta e le principali caratteristiche geometriche:

PROFILO LONGITUDINALE A-A


Sezione longitudinale

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Visibilità di pagagga al depuratora. Mura in a a. de Pr. 0+103 a Pr. 0+126

Viabilità di accesso al depuratore — Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01		5 di 83

<u>Sezioni trasversali</u>

Per ulteriori dettagli si rimanda agli elaborati grafici specifici.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	doc. REL	01	Α	6 di 83

3. NORMATIVA DI RIFERIMENTO

Per la redazione del progetto strutturale e geotecnico esposto nel presente documento, si è fatto riferimento alle seguenti normative e specifiche nazionali e comunitarie:

- D.M. 14/01/2008.
 - Norme tecniche per le costruzioni.
- Circolare del 02/02/2009.
 - Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 14/01/2008.
- **UNI EN 206-1-2001**: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- **UNI 11104-2004:** Specificazione, prestazione, produzione e conformità: Istruzioni complementari per l'applicazione della EN 206-1
- Linee Guida sul calcestruzzo strutturale Servizio Tecnico Centarale dei Lavori Pubblici
 Dicembre 1996 (L.G.S.T.C.)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E	CEE 16	WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag.diPag. 7 di 83
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	-----------------------

4. CARATTERISTICHE DEI MATERIALI

Nei paragrafi seguenti si riportano le caratteristiche dei materiali previsti per la realizzazione dell'opera

4.1 CALCESTRUZZO C32/40 PER FONDAZIONI

Per tutte le strutture a diretto contatto col terreno (Plinto di Fondazione), è previsto l'impiego di calcestruzzo di classe C32/40, di cui nel seguito si riportan le relative caratteristiche meccaniche valutate in accordo a quanto prescritto ai parg. 4.1.2.1 e 11.2.10 del DM 14.01.08:

<u>c</u>	lasse di Res	<u>istenza</u>	32/40	▼.					
Valore c	arat <u>teristico</u>	della resistenz	a a compressi	one cubica a 28 gg:					
R	C _{ck} =	40	MPa						
Valore c	Valore caratteristico della resistenza a compressione cilindrica a 28 gg:								
1	f _{ck} =	33.2	MPa	(0,83*R _{ck})					
Resister	nza a compre	essione cilindri	ca media:						
f,	cm=	41.2	MPa	(fck+8)					
Resister	nza <u>a trazion</u>	e assiale:	1						
f	_{etm} =	3.10	MPa	Valore medio					
			1						
f _{ctk,0}	.05=	2.17	MPa	Valore caratteristico frattile 5%					
Resister	Resistenza a trazione per flessione:								
f	_{efm} =	3.7	MPa	Valore medio					
			•						
f _{cfk,0}	,05=	2.6	MPa	Valore caratteristico frattile 5%					
Coefficie	ente parziale	per le verifiche	e agli SLU:						
	γ _c =	1.5							
Per situa	zioni di carico	o eccezionali, ta	<u>le valore va con</u>	siderato pari ad 1,0					
_									
		o a compressio							
1	cd=	18.8	MPa	(0,85*fck/γs)					
Resister	nza di calcolo	o a trazione dir	etta allo SLU:						
f	ctd=	1.45	MPa	$(f_{ctk0,05}/\gamma s)$					
Resister	nza di calcolo	o a trazione pe	r flessione SLU	<i>!</i> :					
fct	nd f=	1.74	MPa	1,2*fctd					
Par snas	eori minori di	50mm e calces	truzzi ordinari te	ale valore va ridotto del 20%					

<u>Per spessori minori di 50mm e caicestruzzi ordinari, tale valore va ridotto del 20%</u>

_

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		8 di 83

Modulo di ela	sticità secante:			
E _{cm} =	33643	MPa		
Modulo di Poi	sson: 0-0,2			
Coefficiente d	li dilatazione lineare			
α=	0.00001	°C ⁻¹		
Tensione di a	derenza di calcolo a 1.00	cciaio-calcestru	IZZO	
f _{bd} =	3.25	MPa	$(2,25^*f_{ctk^*}\eta/\gamma_S)$	
Nel caso di arn	nature molto addensa	te, o ancoraggi i	n zona tesa tale v	ralore va diviso per 1,5
Tensioni mas	sime per la verifica a	agli SLE		
σ _{cmax QP} =	$(0,45 f_{cK}) =$	14.94	MPa	(Combinazione di Carico Quasi Permanente)
σ _{cmax R} =	$(0,60 \; f_{cK}) =$	19.92	MPa	(Combinazione di Carico Caratteristica - Rara)
Per spessori m	ninori di 50mm e calce	estruzzi ordinari,	tale valori vanno r	ridotti del 20%

4.2 CALCESTRUZZO C25/30 PER ELEVAZIONI

Per tutte le parti strutturali dei muri in progetto in elevazione (Paramento) è previsto l'impiego di calcestruzzo di classe C25/30, di cui nel seguito si riportan le relative caratteristiche meccaniche valutate in accordo a quanto prescritto ai parg. 4.1.2.1 e 11.2.10 del DM 14.01.08:

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E	WBS OS0027	acc.	N.prog. 01	Rev. A	Pag.diPag. 9 di 83
				REL			

f _{cfm} =	3,1	MPa	Valore medio							
f _{cfk,0,05} =	2,1	MPa	Valore caratteristico frattile 5%							
Coefficiente parziale per le verifiche agli SLU:										
γ c=	1,5									
<u>Per situazioni </u>	<u>di carico ecceziona</u>	<u>li, tale valore va con</u>	siderato pari ad 1,0							
- Resistenza	Resistenza di calcolo a compressione allo SLU:									
f _{cd} =		MPa	(0,85*fck/γs)							
Resistenza di calcolo a trazione diretta allo SLU:										
f_{ctd} =	1,19	MPa	(f _{ctk 0,05} / γs)							
Resistenza di calcolo a trazione per flessione SLU:										
$f_{ctd f} =$	1,43	MPa	1,2*fctd							
-	ninori di 50mm e ca elasticità secal		ale valore va ridotto del 20%							
E _{cm} =	31447	MPa								
E_{cm} = 31447 MPa Modulo di Poisson: $v = 0-0,2$ \Box Coefficiente di dilatazione lineare $\alpha = 0,00001$ °C-1										
Tensione o	Tensione di aderenza di calcolo acciaio-calcestruzzo									
η=	1,00									
f _{bd} =	2,69	MPa	(2,25* $f_{ctk*}\eta/\gamma_S$)							

Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5

Tensioni massime per la verifica agli SLE

$$\sigma_{cmax\ QP}$$
 = (0,45 f_{cK}) = 11,21 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,60 f_{cK}) = 14,94 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

In favore di sicurezza il calcolo dell'intero muro viene effettuato considerando un calcestruzzo di classe C25/30.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01		10 di 83

4.3 ACCIAIO PER ARMATURE

Per l'armatura delle strutture in calcestruzzo è previsto l'impiego di barre ad aderenza migliorata in acciaio tipo B450C, di cu nel seguito sono riportate le relative caratteristiche meccaniche:

Classe di Resistenza
Tensione caratteristica di rottura: $f_{tk} = \begin{array}{ c c c }\hline 540 & \text{MPa} & \text{(frattile al 5\%)} \\\hline \end{array}$
Tensione caratteristica allo snervamento: $\mathbf{f}_{yk} = \boxed{ 450 } \text{MPa} \qquad \text{(frattile al 5\%)}$
Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento) $\mathbf{k=f_{tk}/f_{yk}=1.20} \text{MPa}$
Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento) (Agt)k= 8uk = 7.5 %
$\varepsilon_{\text{ud}} = 0.9 \ \varepsilon_{\text{uk}} = 6.75$ %
Coefficiente parziale per le verifiche agli SLU:
γ _c = 1.15
Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0
Resistenza di calcolo allo SLU: $f_{yd} = \boxed{ 391.3 } \text{ MPa} \qquad (f_{yk}/\gamma_s)$
Modulo di elasticità : E _i = 210000 MPa

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	11 di 83

4.4 COPRIFERRI

La scelta del copriferro minimo di progetto **c**_{min} inteso come lo spessore minimo del ricoprimento dello strato di calcestruzzo a protezione dei ferri d'armatura è stato determinato in base a quanto indicato nella Tab. C4.1.IV della Circolare Esplicativa NTC n.617/09, tenendo conto della calsse di espsoizione ambientale e della classe del Calcestruzzo prevista

Nello specifico, tenendo conto della classe di esposizione ambientale desunta dalle analisi specifiche condotte nei riguardi dell'attacco chimico, che hanno evidenziato una Classe di Esposizione XA2 e pertanto Condizioni Ambientali "Aggressive" per il solettone di fondazione. Mentre per i piedritti e il solettone superiore si ha una Classe di Esposizione XC2 e pertanto Condizioni Ambientali "Ordinarie".

In relazione a quanto riportato in tabella 4.1.III del DM 14.01.08, per le classi di calcestruzzo previste è prescritto un copriferro minimo $c_{\text{min}} \ge 35 \text{mm}$ per il solettone di fondazione e $c_{\text{min}} \ge 25 \text{mm}$.

In definitiva ai fini progettuali si è assunto **c=40mm** così come riportato all'interno della tabella materiali opere minori (strutture a contatto con il terreno).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab 4.1.III - DM 14.01.08

Tabella C4.1.IV Copriferri minimi in mm

				re da c.a.	barre da c.a. altri elementi			vi da c.a.p. enti a piastra		cavi da c.a.p.		
(C _{min}	Co	ambiente	C≥C _o	$C_{min} \!\! \leq \!\! C \!\! < \!\! C_o$	C≥C _o	$\geq C_o$ $C_{min} \leq C \leq C_o$ $C \geq C_o$		C _{m in} ≤C <c< td=""><td>。 C≥</td><td>C_o C_{min}≤C</td><td><c<sub>o</c<sub></td></c<>	。 C≥	C _o C _{min} ≤C	<c<sub>o</c<sub>
	C25/3	0 C35/4	5 ordinario	15	20	20	25	25	30	30	35	
	C28/3	5 C40/5	0 aggressivo	25	30	30	35	35	40	40	45	
	C35/4	5 C45/5	5 molto ag.	35	40	40	45	45	50	50	50	

Tab C4.1.IV – Circolare n617/09

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera		Settore		WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	REL	01	Α	12 di 83

5. INQUADRAMENTO GEOTECNICO

Per la caratterizzazione geotecnica del terreno interagente con le fondazioni delle opere oggetto di dimensionamento nel presente documento, si è fatto riferimento a quanto dettagliatamente indicato nella Relazione Geotecnica, alla carta geologica tav. 3 di 4 doc. 02-GE000PLA03 e nel Profilo Geotecnico Generale di Progetto TAV. 6 DI 8 doc. 02-GE0001PRF06, da cui si evince che le formazioni più superficiali che interagiscono con le fondazioni degli scatolari, sono generalmente costituite dalle unità geotecniche **Salt** e **Sch**, di cui nel seguito si riepilogano i parametri fisicomeccanici attribuiti sulla scorta dei risultati delle indagini effettuate:

Relazione di calcolo

Unità R - Terreno di riporto e coltre vegetale

 $\gamma = 19.0 \div 20.0 \text{ kN/m}^3 \text{ peso di volume naturale}$

 $\phi' = 27 \div 30^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

E_o = 200÷300 MPa modulo di deformazione elastico iniziale

Unità Ecla - Depositi eluvio colluviali limoso argillosi

 γ = 18.5÷20.5 kN/m³ peso di volume naturale ϕ' = 23÷28° angolo di resistenza al taglio

c' = 5÷15 kPa coesione drenata

 $\phi_r' = 14^{\circ} \div 21^{\circ}$ angolo di resistenza al taglio residuo

c_r' = 0 kPa coesione drenata residua

 c_u = 50÷220 kPa resistenza al taglio in condizioni non drenate G_o = 20÷160 MPa modulo di deformazione a taglio iniziale E_o = 60÷400 MPa modulo di deformazione elastico iniziale

Unità a – Coltri in frana

 γ = 19 kN/m³ peso di volume naturale ϕ' = 22÷28° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

 ϕ_r' = 18° angolo di resistenza al taglio residuo

 $c_r' = 0$ kPa coesione drenata residua

 $\begin{array}{ll} c_u = 20 \div 120 \; \text{kPa} & \text{resistenza al taglio in condizioni non drenate} \\ E_o = 60 \div 300 \; \text{MPa} & \text{modulo di deformazione elastico iniziale} \end{array}$

Unità Salt – Substrato alterato argilloso limoso

 γ = 19.0÷21.5 kN/m³ peso di volume naturale ϕ ' = 23÷30° angolo di resistenza al taglio

 $c' = 5 \div 15$ kPa coesione drenata

 $\phi_r' = 20 \div 22^\circ$ angolo di resistenza al taglio residuo

c_r' = 0 kPa coesione drenata residua

 c_u = 50÷300 kPa resistenza al taglio in condizioni non drenate G_o = 80÷350 MPa modulo di deformazione a taglio iniziale

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	aoc. REL	01		13 di 83

 $E_0 = 400 \div 900 \text{ MPa}$

modulo di deformazione elastico iniziale

Relazione di calcolo

Unità Sch – Formazione dello Schlier

 $\gamma = 22.0 \div 24.0 \text{ kN/m}^3$

peso di volume naturale

 $E'_{op} = 20+5.75 \cdot z$ MPa per z< 40 m

modulo di deformazione elastico operativo

 $E'_{op} = 100+3.75 \cdot z \text{ MPa per } z > 40 \text{ m}$

Z [m]	c' [kPa]	φ' [°]
20	55÷70	29÷33
30	70÷90	27÷31
50	90÷250	25÷30

6. MODELLO GEOTECNICO

Nei dimensionamenti delle opere si è considerata dunque la seguente stratigrafia:

LITOTIPO	POTENZA	γ	c'	φ'	Evc	Eur	
LITOTIFO	m	kN/m³	kPa	۰	MPa	MPa	
Unità Salt – Substrato alterato argilloso limoso	Salt	Circa 3.00	20	10	25	35	55
Unità Sch – Formazione dello Schlier	Sch	=	22	55	27	130	210

La falda è posta 391.35 m sl.m.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	14 di 83

7. CARATTERIZZAZIONE SISMICA

Le opere in progetto rientrano nell'ambito dei Lavori di Realizzazione dell'Infrastruttura "Pedemontana delle Marche" progettato per una vita nominale V_N pari a $\bf 50$ anni. ed una classe d'uso III (Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericoloseper l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e retiferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per leconseguenze di un loro eventuale collasso.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso $\bf C_U = 1.5$

Relazione di calcolo

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco a_g (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione $S_e(T)$;
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- aa, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F_0 descriva la pericolosità sismica locale del sito (<u>Comune di Camerino</u>) su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica.

Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

= 50 anni; Vita nominale V_N Classe d'uso = |||:Coefficiente d'uso Cu = 1.5;Periodo di riferimento V_R = 75 anni; = 712 anni;T_R,SLV Comune = Camerino; = 0.220 g;a_{g,SLV} = 2.544; F_{0.SLV} T*c,SLV = 0.333 sec.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	15 di 83

Tabella 1 - Accelerazione (ag), fattore (F0) e periodo (T*c) per comune di riferimento: Camerino

V _R	Stato Limite	PV _R	T _R	a _q	F _o	T _c *
[anni]	Stato Limite	-	[anni]	[g]	[-]	[s]
	SLO	81%	45	0.078	2.44	0.285
75	SLD	63%	75	0.097	2.433	0.295
/5	SLV	10%	712	0.220	2.544	0.333
	SLC	5%	1462	0.277	2.584	0.343

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

•	Categoria di suolo	= C;
•	Categoria topografica	= T1;
•	S _s , fattore stratigrafico	= 1.364;
•	S _T , fattore topografico	= 1.00;
•	C _c , fattore correttivo del periodo T _c *	= 1.510.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703		Settore F		WBS OS0027	acc.	N. prog.		Pag. di Pag. 16 di 83
10/00	210	L	10	C3002/	REL	Oi	/ \	10 01 00

8. VERIFICHE STRUTTURALI - CRITERI GENERALI

8.1 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle Combinazioni di Calcolo allo SLE, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure nel calcestruzzo attesa, secondo quanto di seguito specificato:

8.1.1 Verifiche delle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, quelli di seguito indicati, in accordo alle prescrizioni della normativa vigente:

Per il caso in esame risulta in particolare:

CALCESTRUZZO PER FONDAZIONE C32/40

$$\sigma_{cmax\ QP}$$
 = (0,45 f_{cK}) = 14.94 MPa (Combinazione di Carico Quasi Permanente) (Combinazione di Carico Caratteristica - $\sigma_{cmax\ R}$ = (0,60 f_{cK}) = 19.92 MPa Rara)

CALCESTRUZZO PER ELEVAZIONE C25/30

$$\sigma_{cmax\ QP}$$
 = (0,45 f_{cK}) = 11.21 MPa (Combinazione di Carico Quasi Permanente) (Combinazione di Carico Caratteristica - $\sigma_{cmax\ R}$ = (0,60 f_{cK}) = 14.94 MPa Rara)

ACCIAIO

$$\sigma_{fmax}$$
 = (0,80 f_{yK}) = $\frac{360}{}$ MPa Caratteristica(Rara)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	RFI	01	Α	17 di 83

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	acc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027		01	A	18 di 83
20/00	210	_	10	00002/	REL	01	, ,	10 01 00

8.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

			Armatura					
Gruppi di	Condizioni ambientali	Combinazione di	Sensibile	Poco sensibile				
esigenza		azione	Stato limite	wd	Stato limite	wd		
	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃		
a Ordinarie	Ordinane	quasi permanente	ap. fessure	≤w₁	ap. fessure	≤w ₂		
la	A susua soius	frequente	ap. fessure	≤w₁	ap. fessure	≤w ₂		
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤wı		
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤wı		
	Mollo Agglessive	quasi permanente	decompressione	-	ap. fessure	≤wı		

Risultando in particolare::

 $w_1 = 0.2 \text{ mmw}_2 = 0.3 \text{ mmw}_3 = 0.4 \text{ mm}$

Nel caso in esame si ha:

- Per il calcestruzzo di strutture interrate:

Condizioni Ambientali: aggressive

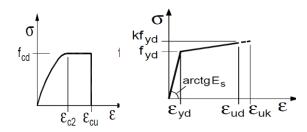
Armature: Poco Sensibili

Conseguentemente dovrà risultare:

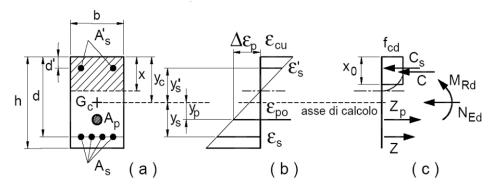
Combinazione Quasi permanente: w≤0.2mm

Combinazione Frequente: w≤0.3mm

infine riguardo il valore di calcolo dell'ampiezza delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera Tratto	Settore	CEE	WBS	doc.	N.prog.	Rev.	Pag.diPag.
	E	16	OS0027	RFI	01	A	19 di 83


8.2 VERIFICHE ALLO SLU

8.2.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione aenerica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag.diPag
L0703	213	E	16	OS0027	doc.	01	A	20 di 83
10/00	210	_	10	C3002/	REL	01	/ \	20 ai 00

8.2.2 Taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}}\right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

•
$$\rho_1 = A_{sw}/(b_w * d)$$

- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

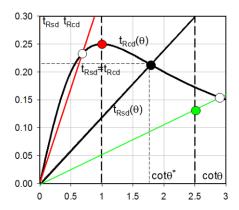
$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}^{'} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

 $1 \le ctg \theta \le 2.5$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.


$$1 \le \text{ctg } \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratora. Muro in c.a. da Pr. 0+103 a Pr. 0+126

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore E	WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag.diPag. 21 di 83
				KEL			

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato .

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature)

dove

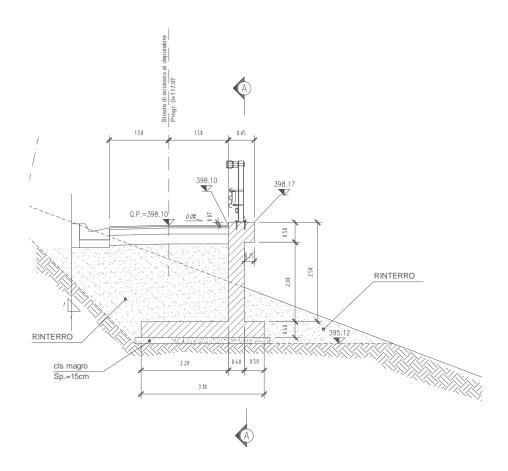
$$v = f'cd / fcd = 0.5$$

f'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{SW} f_{yd}}{b \, s \, f_{cd}}$$


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera Tratto Settore CEE WBS doc. N.prog. Rev. Pag	Opera
L0703 213 E 16 OS0027 REL 01 A 22	L0703

- Se la $\cot \theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rcd}(=V_{Rcd}=V_{Rsd})$
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la $\cot \theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e il taglio resistente $V_{Rcd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

9. MURI DI SOSTEGNO

Di seguito si riportano i calcoli e le verifica dei muri di sostegno dell'opera in oggetto. Come detto in premessa, il muro in oggetto ha un' altezza costante pari a 2.50m da estradosso fondazione, di seguito si riportano le dimensioni geometriche del muro oggetto di studio:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		23 di 83

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore F		WBS OS0027	acc.	N. prog.	Rev. A	Pag. di Pag. 24 di 83
L0/00	210	L	10	C3002/	REL	Oi	/ \	24 UI 03

10. VERIFICA AGLI STATI LIMITI

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 14 gennaio 2008.

L'analisi mira a garantire la sicurezza e le prestazioni attese attraverso il conseguimento dei seguenti requisiti:

- sicurezza nei confronti degli Stati Limite di Esercizio.
- sicurezza nei confronti degli Stati Limite Ultimi

Tali verifiche devono essere effettuate prevedento, per le combinazioni di coefficienti, almeno uno dei seguenti approcci:

Approccio 1

Combinazione 1: A1+M1+R1Combinazione 2: A2+M2+R2

Approccio 2

- A1+M1+R3

A queste combinazioni si aggiunge la combinazione che prevede l'urto del veicolo in svio in testa al muro (ECC) con coefficienti unitari di combinazione dei carichi permanenti e degli accidentali e coefficiente di sicurezza anch'esso unitario.

Considerando i coefficienti parziali riportati nelle tab delle NTC 2008.

Nelle condizioni di esercizio gli spostamenti dell'opera sono stati valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza delle opere adiacenti.

In particolare, in condizioni sismiche devono essere condotte verifiche nei confronti dello stato limite di danno. Gli spostamenti permanenti indotti dal sisma devono essere compatibili con la funzionalità dell'opera e con quella di eventuali strutture o infrastrutture interagenti con essa.

Nel nostro caso trattasi di muri di sostegno di limitata altezza tali verifiche sono state omesse.

In particolare, sono stati verificati i seguenti stati limiti ultimi:

Verifica del muro di sostegno

SLU di tipo geotecnico (GEO-ECC) e di equilbrio di corpo rigido (EQU)

- stabilità globale del complesso opera di sostegno-terreno;
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento.

SLU di tipo strutturale (STR-ECC)

raggiungimento della resistenza negli elementi strutturali;

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'approccio 1:

- Combinazione 2: A2+M2+R2 (GEO).

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni e adoperando coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

16

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo ld. Tratto Settore Pag. di Pag. Opera CEE **WBS** N. prog. Rev. doc. 25 di 83

REL

01

OS0027

Le rimanenti verifiche devono essere effettuate applicando almeno uno dei due approcci progettuale riportati in precedenza.

Ε

Nel caso in esame è stato adottato l'approccio 2 che prevede la seguente combinazione di coefficienti:

213

L0703

Approccio 2 : A1+M1+R3

Considerando i coefficienti parziali riportati nelle NTC 2008, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Lo stato limite di ribaltamento non prevede la mobilitazione della resistenza del terreno di fondazione e deve essere trattato come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i coefficienti parziali sulle azioni della tabella 2.6.I e adoperando coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	24	0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
remanenti non situttuan	Sfavorevole	$\gamma_{\rm G2}$	1,5	1,5	1,3
Variabili	Favorevole	.,	0,0	0,0	0,0
V allaulii	Sfavorevole	γQi	1,5	1,5	1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

	Talan per i parametri geoleemet ae.			
PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25
resistenza al taglio				
Coesione efficace	c′ _k	γe′	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 6.5.I - Coefficienti parziali YR per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
VERIFICA	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante della fondazione	$\gamma_R = 1.0$	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.4$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R}=1.0$	$\gamma_{R} = 1,1$
Resistenza del terreno a valle	$\gamma_R = 1.0$	$\gamma_R = 1.0$	$\gamma_R = 1.4$

Le verifiche agli stati limite ultimi devono essere effettuate ponendo pari all'unità i coefficienti parziali sulle azioni e impiegando i parametri geotecnici e le resistenze di progetto, con i valori dei coefficienti parziali indicati nel Cap. 6.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E	CEE 16	WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag. di Pag. 26 di 83
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	--------------------------

10.1 STATO LIMITE ULTIMO E DI SALVAGUARDIA DELLA VITA

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti. Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

$$\gamma_{G_1} \cdot G_1 + \gamma_{G_2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O_1} \cdot Q_{k_1} + \gamma_{O_2} \cdot \psi_{O_2} \cdot Q_{k_2} + \gamma_{O_3} \cdot \psi_{O_3} \cdot Q_{k_3} + \dots$$

dove:

G1 rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);

G2 rappresenta il peso proprio di tutti gli elementi non strutturali;

rappresenta pretensione e precompressione;

azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:

di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;

di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura; Qki rappresenta il valore caratteristico della i-esima azione variabile;

γ_G, γ_Q , γ_P coefficienti parziali come definiti nella Tab. 6.2.I del DM 14 gennaio 2008;

 Ψ_{0i} sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Q_{k1} nella formula precedente).

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati tabulati di calcolo.

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

$$G_1 + G_2 + P + E + \sum_i \psi_{2i} \cdot Q_{ki}$$

Dove:

E azione sismica per lo stato limite e per la classe di importanza in esame;

G₁ rappresenta peso proprio di tutti gli elementi strutturali;

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P_k rappresenta pretensione e precompressione;

 ψ_{2i} coefficiente di combinazione delle azioni variabili Q_i ;

Q_{ki} valore caratteristico dell'azione variabile Q_i

I valori dei coefficienti Ψ_{2i} sono riportati nella seguente tabella:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag.diPag.
L0703	213	E	16	OS0027	doc.	01	A	27 di 83
10/03	213	⊏	16	OS002/	RFI	UI	А	2/ al 83

Categoria/Azione	ψ 2i
Categoria A – Ambienti ad uso residenziale	0,3
Categoria B – Uffici	0,3
Categoria C – Ambienti suscettibili di affollamento	0,6
Categoria D – Ambienti ad uso commerciale	0,6
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale	0,8
Categoria F – Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,6
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,3
Categoria H – Coperture accessibili per sola manutenzione	0,0
Categoria I – Coperture praticabili	da valutarsi caso per caso
Vento	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,0
Neve (a quota > 1000 m s.l.m.)	0,2
Variazioni termiche	0,0

Nel nostro caso Ψ2i=0

10.2 STATI LIMITE DI ESERCIZIO

Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 14 gennaio 2008 - Norme tecniche per le costruzioni - al punto 2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:

combinazione caratteristica o rara
$$F_d = \sum_{j=1}^m \left(G_{\mathit{K}_j}\right) + Q_{\mathit{k}1} + \sum_{i=2}^n \left(\psi_{0\mathit{i}} \cdot Q_{\mathit{k}i}\right) + \sum_{\mathit{h}=1}^\mathit{l} \left(P_{\mathit{k}\mathit{h}}\right)$$

combinazione
$$F_d = \sum_{j=1}^m \left(G_{\mathit{K}\!\mathit{j}}\right) + \psi_{11} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{2i} \cdot Q_{ki}\right) + \sum_{h=1}^l \left(P_{kh}\right)$$
 frequente

combinazione quasi
$$F_d = \sum_{j=1}^m \left(G_{\mathit{K}\!\mathit{j}}\right) + \psi_{21} \cdot Q_{\mathit{k}1} + \sum_{i=2}^n \left(\psi_{2i} \cdot Q_{\mathit{k}i}\right) + \sum_{h=1}^l \left(P_{\mathit{k}\!h}\right)$$
 permanente

Dove:

Gki valore caratteristico della j-esima azione permanente;

Pkh valore caratteristico della h-esima deformazione impressa;

Qk1 valore caratteristico dell'azione variabile di base di ogni combinazione;

Qki valore caratteristico della i-esima azione variabile;

 Ψ_{0i} coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della possibile concomitanza con altre azioni variabili;

 Ψ_{1i} coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;

 Ψ_{2i} coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei.

Ai coefficienti Ψ_{1i} , Ψ_{2i} , Ψ_{2i} sono attribuiti i seguenti valori:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore		WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	28 di 83

Tabella 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ _{0j}	ψ_{1j}	Ψ2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico variabile è stata considerata sollecitazione di base, con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento, sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).

Negli allegati tabulati di calcolo sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "Quasi Permanente", "Frequente" e "Rara".

Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	29 di 83

11. VERIFICHE

11.1 VERIFICA A RIBALTAMENTO

Nella verifica a ribaltamento è stato scelto come punto di rotazione il vertice in basso a valle della fondazione.

- 1 Il Momento Ribaltante è dovuto alla componente orizzontale della spinta, all'incremento sismico di essa e ad eventuali carichi esterni che possono contribuire al ribaltamento.
- 2 Il Momento Stabilizzante è dovuto al peso proprio del muro, del terreno su esso agente, ad eventuali carichi esterni che possono contribuire alla stabilità.

Il coefficiente di sicurezza è dato dal rapporto Momento Stabilizzante/Momento Ribaltante. Tale valore è stato calcolato per tutte le combinazioni di carico previste dall'approccio adottato, considerando il sistema come un corpo rigido.

11.2 VERIFICA A SCORRIMENTO

Nella verifica a scorrimento sono state prese in considerazione tutte le forze agenti che innescano un meccanismo di traslazione lungo il piano di posa della fondazione per superamento dei limiti di attrito e coesione, tenendo conto dell'inclinazione del piano di posa e dell'eventuale presenza di speroni.

La **Forza Agente** è la spinta con i suoi incrementi sismici ed eventuali forze esterne che agiscono nello stesso verso

La **Forza Resistente** è rappresentata dall'attrito e dalla coesione agente sulla fondazione, dalla presenza di tiranti e di pali, da particolari costruttivi quali gli speroni che servono ad aumentare la resistenza allo scorrimento oltre ad eventuali forze esterne che agiscono nello stesso verso.

Il coefficiente di sicurezza è dato dal rapporto Forza Resistente/Forza Agente. Tale valore è stato calcolato per tutte le combinazioni di carico previste dall'approccio adottato e il rapporto più gravoso, in relazione al corrispondente coefficiente R, dipendente dall'approccio e dalla combinazione considerata, è stato riportato come Coefficiente di Sicurezza a Scorrimento.

11.3 VERIFICA A CARICO LIMITE

È stato calcolato il carico limite secondo la metodologia dovuta a Brinch-Hansen, 1970, considerando la profondità d'interramento della fondazione, la stratigrafia degli strati sotto la fondazione, l'eventuale presenza della falda idrica, l'inclinazione del piano di posa della fondazione, l'inclinazione e l'eccentricità dei carichi esterni. Il coefficiente di sicurezza è dato dal rapporto Carico Limite / Carichi Agenti. Tale valore è stato calcolato per tutte le combinazioni di carico previste dall'approccio adottato e il rapporto più gravoso, in relazione al corrispondente coefficiente R, dipendente dall'approccio e dalla combinazione considerata, è stato

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore F		WBS OS0027	acc.	N. prog.	Rev.	Pag. di Pag. 30 di 83
10/00	210	L	10	C3002/	REL	01	/ \	30 di 03

riportato come Coefficiente di Sicurezza a Carico Limite.

11.4 PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- · verifiche per gli stati limite di esercizio.

11.4.1 Verifiche per gli stati limite ultimi

Le sollecitazioni per le successive verifiche vengono calcolate in una serie di sezioni predefinite sia sul paramento che sulla fondazione a monte ed a valle (muri a mensola).

Esse sono in genere a passo costante, ma se esistono delle singolarità, come ad es. gradoni, speroni, mensole esse vengono opportunamente posizionate in corrispondenza di tali punti.

La verifica degli elementi allo SLU avviene col seguente procedimento:

- si costruiscono le combinazioni in base al D.M. 14 gennaio 2008, ottenendo un insieme di sollecitazioni;
- si combinano tali sollecitazioni con quelle dovute all'eventuale azione del sisma.
- per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con
 cui progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione
 retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò
 si individua quella che ha originato il minimo coefficiente di sicurezza.

Per quanto concerne il progetto degli elementi in c.a. illustriamo in dettaglio il procedimento seguito in presenza di pressoflessione retta, utilizzato per verificare le seguenti sezioni:

- Paramento: attacco con la fondazione.
- Fondazione: le due sezioni, rispettivamente a valle e a monte, di attacco con il Paramento.

Viene ipotizzata un'armatura iniziale che rispetti i minimi normativi, quindi per tutte le coppie (N, Mx), individuate secondo la modalità precedentemente illustrata, si calcola il momento ultimo in funzione di N, quindi il coefficiente di sicurezza rapportando tale momento ultimo a Mx.

Se per almeno una di queste coppie il coefficiente di sicurezza risulta inferiore a 1 si incrementa l'armatura e si ripete il procedimento fino a che per tutte le coppie (N, Mx) il coefficiente di sicurezza risulta al più pari a 1.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	aoc. REL	01	Α	31 di 83

Nei tabulati di calcolo, per brevità, non potendo riportare una così grossa mole di dati, si riporta la coppia (N, Mx) che ha dato luogo al minimo coefficiente di sicurezza.

Relazione di calcolo

Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni entro i massimi valori previsti.

Successivamente si procede alle verifiche alla deformazione, quando richiesto, ed alla fessurazione che, come è noto, sono tese ad assicurare la durabilità dell'opera nel tempo.

11.4.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dalla norma UNI EN 1992-1-1:2005, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

$$\bullet \quad V_{\text{Rd,c}} = \text{max} \left\{ \left[\frac{0.18}{\gamma_{\text{c}}} \cdot k \cdot \left(100 \cdot \rho_{\text{l}} \cdot f_{\text{ck}} \right)^{1/3} + 0.15 \cdot \sigma_{\text{cp}} \right] \cdot b_{\text{w}} \cdot d; \left(v_{\text{min}} + 0.15 \cdot \sigma_{\text{cp}} \right) \cdot b_{\text{w}} \cdot d \right\},$$

resistenza di calcolo dell'elemento privo di armatura a taglio

- $\quad V_{Rd,s} = 0.9 \cdot \frac{A_{sw}}{s} \cdot z \cdot f_{ywd} \cdot (\cot \alpha + \cot \theta) \cdot sen\alpha \text{ , valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento$
- $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'}(\cot \alpha + \cot \beta)/(1 + \cot^2 \beta)$, valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse. Nelle espressioni precedenti, i simboli hanno i seguenti significati:
- $\bullet \quad k = 1 + \sqrt{\frac{200}{d}} \le 2 \text{ con d in mm};$
- $\bullet \quad \rho_1 = \frac{A_{sl}}{b \cdot d} \le 0.02;$
- \bullet A_{sl} è l'area dell'armatura tesa;
- $\bullet \quad b_{w} \,$ è la larghezza minima della sezione in zona tesa;
- $\bullet \quad \sigma_{cp} = \frac{N_{\text{Ed}}}{A} < 0.2 \cdot f_{\text{cd}} \, ;$
- $\bullet \quad N_{Ed} \,\, \grave{\text{e}}$ la forza assiale nella sezione dovuta ai carichi;
- $\bullet \quad A_c \,\,$ è l'area della sezione di calcestruzzo;
- $v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$;
- $1 \le \cot \theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	32 di 83

- ullet A_{sw} è l'area della sezione trasversale dell'armatura a taglio;
- s è il passo delle staffe;
- $f^{'}_{cd}=0.5\cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;
- $\alpha_{_{\it CW}}=1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

11.4.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- · stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensioni-deformazioni di tipo lineare. In particolare, si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

- $\sigma_c < 0.45 f_{ck}$ per combinazione quasi permanenti;
- $\sigma_s < 0.80 f_{vk}$.

La verifica a fessurazione è stata svolta secondo il metodo proposto della NTC 2008.

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Commit di	Condinioni	Combinazione	Armatura						
Gruppi di esigenze	Condizioni ambientali	di azioni	Sensibile	Poco sensibile					
	amoientan	di azioni	Stato limite	$\mathbf{w}_{\mathbf{d}}$	Stato limite	$\mathbf{w}_{\mathbf{d}}$			
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	$\leq w_3$			
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	≤ w ₂			
b	Accession	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			
	Malta accusacione	frequente	formazione fessure	-	ap. fessure	$\leq w_1$			
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			

Nel nostro caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano aggressive e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	33 di 83

 $\bullet \quad w_{_1} = 0.3 \, mm \quad \text{-combinazione frequente,}$

 $\bullet \quad w_{_1} = 0.2 \, mm \quad \ \text{-combinazione quasi permanente}$

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	REL	Ü	А	34 di 83

11.4.4 Metodo di analisi - calcolo muro

11.4.4.1 Descrizione modello di calcolo

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli elettronici di comprovata validità

In tali fogli vengono implementate tutte le caratteristiche geometriche dei muri insieme agli angoli di attrito tra paramento e terreno e tra fondazione e terreno.

Per quanto riguarda l'angolo di attrito tra paramento e terreno si può assumere $\delta = 0.667 \phi'$.

Nel valutare la stabilità di un muro di sostegno è opportuno che la verifica allo scorrimento della fondazione del muro sia effettuata con riferimento al valore a volume costante o allo stato critivo dell'angolo di resistenza al taglio, poichè il meccanismo di scorrimento, che coinvolge spessori molto modesti di terreno e l'inevitabile disturbo connesso con la preparazione del piano di posa della fondazione, possono comportare modifiche significative dei parametri di resistenza. Per questo stesso motivo, nelle analisi svolte in termini di tensioni efficaci, è opportuno trascurare ogni contributo della coesione nelle verifiche allo scorrimento (paragrafo 6.2.2 della circolare 2 febbraio 2009, n. 617 C.S.LL.PP.)

Inoltre, nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Considerazioni diverse, invece, devono, essere svolte con riferimento al calcolo della capacità portante della fondazione del muro che, per l'elevato volume di terreno indisturbato coinvolto, comporta il riferimento al valore di picco dell'angolo di resistenza al taglio, senza trascurare il contributo della coesione efficace del terreno.

Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a $\phi'_{cv} = \arctan(0.85 * \tan \phi')$.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera		Settore			ld. doc.	N. prog.		Pag. di Pag.
L0703	213	E	16	OS0027	REL	Ü	А	35 di 83

11.5 ANALISI DEI CARICHI

11.5.1 Pesi propri

 γ = 25 kN/m³ - Pesi propri della struttura γ t= 20 kN/m³ - Pesi propri del terreno a monte

Relazione di calcolo

11.5.2 Spinta del terreno

Come detto in precedenza, per il terreno si è considerata una spinta attiva valutata ricorrendo alla teoria di Coulomb.

11.5.3 Spinta passiva e peso del terreno sulla ciabatta di fondazione di valle

Nelle verifiche geotecniche si trascurano cautelativamente i contributi stabilizzanti dovuti alla spinta passiva della terra ed al peso del terreno sovrastante la ciabatta di fondazione di valle.

11.5.4 Azione dovuto all'urto del veicolo in svio

Essendo presente il sicurvia in testa al muro occorre tener conto di un eventuale veicolo in svio.

Pertanto, come da norma (3.6.3.3.2 Traffico veicolare sopra i ponti) si considera una forza di collisione pari a 100 kN.

Dale forza viene considerata agente trasversalmente ed orizzontalmente a un 1,0 m sopra il livello del piano di marcia.

Considerando la diffusione a 45° di tale forza lungo l'altezza del muro e fino allo spiccato fondazione, in favore di sicurezza, si ha:

Bdiff= 250*2+0.3 = 5.30 m

Fo = 100/Bdiff = 100/5.30 = 18.87 kN/m - forza ripartita

Mo = 18.87*1.00 = 18.87 kNm/m - Momento in testa al muro

Mo, f = 100*(1.00+5.30) = 66.03 kNm/m - Momento allo spiccato elevazione

11.5.5 Valutazione dell'azione sismica

La valutazione della spinta del terreno in zona sismica, secondo quanto prevede il D.M. 14 gennaio 2008

"Norme tecniche per le Costruzioni" al § 3.2.3 e al § 7.11.6.2.1, è stata eseguita utilizzando metodi *pseudo-statici*.

In particolare, il procedimento per la definizione dei parametri sismici di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:

 Definizione della Vita Nominale e della Classe d'Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell'azione sismica.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	doc.	01	A	36 di 83
LU/US	213	_	10	C3C02/	RFI	UI	$\overline{}$	36 UI 63

- Individuazione, tramite latitudine e longitudine, dei parametri sismici di base ag, F₀ e T*_c per tutti e quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio.
- Determinazione dei coefficienti d'amplificazione stratigrafica e topografica.
- Calcolo del periodo T_c corrispondente all'inizio del tratto a velocità costante dello Spettro.

L'utilizzo di metodi pseudo-statici consente di ricondurre l'azione sismica, che è un'azione dinamica variabile nel tempo e nello spazio, ad un insieme di forze statiche equivalenti, orizzontali e verticali, mediante l'utilizzo di coefficienti sismici, che dipendono dalla zona sismica, dalle condizioni locali e dall'entità degli spostamenti ammessi per l'opera considerata. Tali coefficienti vengono utilizzati, oltre che per valutare le forze di inerzia sull'opera, anche per determinare la spinta retrostante il muro, mediante l'utilizzo della teoria di Mononobe Okabe.

Come specificato al § 7.11.6.2.1, in assenza di studi specifici, i coefficienti sismici orizzontale k_h e verticale k_v , devono essere calcolati come:

$$k_h = \beta_m \cdot \frac{a_{\text{max}}}{g}$$
 [7.11.6]

$$k_{v} = \pm \frac{1}{2} \cdot k_{h}$$
 [7.11.7]

dove:

 a_{max} = accelerazione orizzontale massima attesa al sito.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima è valutata con la relazione:

$$a_{\text{max}} = S_T \cdot S_S \cdot a_{g}$$
 [7.11.8]

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (SS) e dell'amplificazione topografica (S_T), di cui al §3.2.3.2;

a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente βm di riduzione dell'accelerazione massima attesa al sito che assume I valori riportati in Tab. 7.11-II del DM 14/01/2008:

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo ld. Tratto Settore CEE Pag. di Pag. Opera **WBS** N. prog. Rev. doc. 37 di 83 L0703 213 Ε 16 OS0027 01 Α

REL

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al situ

	Categoria d	i sottosuolo
	A	B, C, D, E
	β_{m}	β_{m}
$0.2 < a_{\rm g}(g) \le 0.4$	0,31	0,31
$0.1 \le a_{\rm g}(g) \le 0.2$	0,29	0,24
$a_{g}(g) \leq 0,1$	0,20	0,18

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente βm assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

Pertanto, i parametri sismici sono pari a:

La vita nominale (V_N) dell'opera è stata assunta pari a 50 anni.

La classe d'uso assunta è la III

→ Cu = 1.5

Il periodo di riferimento (VR) per l'azione sismica, data la vita nominale e la classe d'uso vale:

V_R= V_N⋅C_u=75 anni

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

 $P_{VR}(SLV)=10\%$

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_{R}(SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 712 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma, è possibile definire i valori di a_g , F_0 , T^*_c .

- $a_g \rightarrow$ accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- $T^*_c \rightarrow$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- $S \rightarrow coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St).

<u>Visto che l'azione sismica varia al variare delle coordinate geografiche, per i comuni di interesse, si sono assunti nei calcoli i valori massimi presenti nella tratta interessata, considerando che le accelerazioni massime nei comuni di riferimento corrispondono circa ai valori sotto indicati (Marche, Comune di Camerino):</u>

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	DD	01	Α	38 di 83

$$a_g / g = 0.220$$

Per il sottosuolo si è adottata una categoria C e si considera l'opera ubicata in pianura, per cui:

L'accelerazione massima risulterebbe quindi:

$$a_{max}(SLV) = S \cdot a_g = Ss \cdot a_g = 1.364*0.220 g = 0.30 g$$

$$\beta$$
m = 0.31 nelle verifiche allo stato limite ultimo (SLV)

Pertanto, i due coefficienti sismici valgono:

(SLV)
$$k_h = \beta_m \cdot \frac{a \max}{g} = 0.0933$$
 $k_v = \pm 0.5* k_h = 0.0466$

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piedem come nel caso in esame, si assume che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica.

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera L0703	Tratto 213	Settore E	CEE 16	WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag.diPag. 39 di 83
----------------	---------------	--------------	-----------	---------------	--------------------	---------------	-----------	------------------------

12. ANALISI DEI MURI

12.1 SCHEMA DI CALCOLO

In Figura 7 è illustrato lo schema di riferimento per le verifiche geotecniche:

Relazione di calcolo

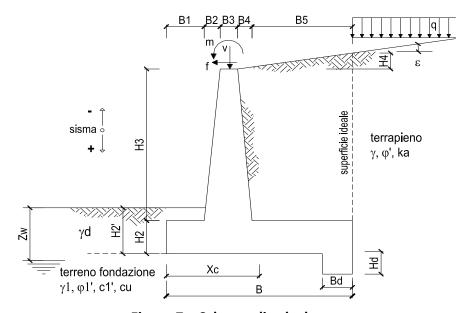


Figura 7 - Schema di calcolo

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	doc.	01	A	40 di 83
					REL			

12.2 RISULTATI VERIFICHE GEOTECNICHE

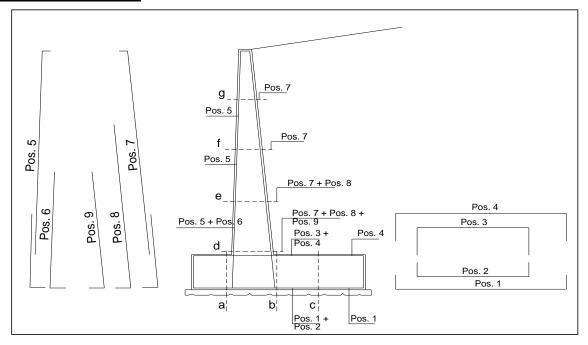
Di seguito vengono riportati i risultati delle verifiche geotecniche in forma tabellare esplicitate negli allegati:

12.2.1 Sezione H1 = 2.50 m

12.2.1 Sezione H1 =	2.50 m						
		SLI	E di tipo geotec	nico			
	Scorrimento	S _{cr,Max}	Ribaltamento	R _{ib,Max}	Capacità portante	C _{ap.} P _{ort,Max}	Cedimento della fondazione (mm)
SLE	-	-	-	-	-	-	3.97
	SLU di	i tipo geotec	nico e di equilil	orio del corpo	rigido	1	1
	Scorrimento	S _{cr,Max}	Ribaltamento	R _{ib,Max}	Capacità portante	C _{ap.} P _{ort,Max}	Cedimento della fondazione (mm)
caso A1+M1+R3	1.12	> 1.10	4.37	> 1.10	5.27	> 1.40	-
caso A1+M1+R3+URTO	1.49	> 1.10	3.09	> 1.10	5.40	> 1.40	-
CONDIZIONE SISMICA +	1.43	> 1.10	6.90	> 1.10	4.22	> 1.40	-
CONDIZIONE SISMICA -	1.41	> 1.10	4.91	> 1.10	4.41	> 1.40	-
EQU+M2+R2	-	-	3.50	> 1.00	-	-	-

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126


Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	acc.	N. prog.		Pag. di Pag. 41 di 83
LO/CO	210	L	10	C3002/	REL	O1	/ \	41 0100

12.3 RISULTATI VERIFICHE STRUTTURALI

Di seguito vengono riportati i risultati delle verifiche strutturali, nelle sezioni di calcolo riportate nello schema delle armature per ogni sezione di calcolo, in forma tabellare esplicitate nell'allegato:

SCHEMA DELLE ARMATURE

Le verifiche strutturali saranno condotte secondo l'approccio del DM 08 utilizzando i coefficienti parziali riportati nelle tabella precedente per le azioni.

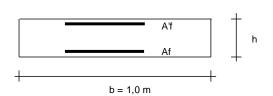
 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	acc.	N.prog. 01	Rev. A	Pag.diPag.diPag.di 8
LU/US	213		10	O3002/	REL	UI	А	42 UI


12.3.1 Sezione H= 2.50 m

ARMATURE

pos	n°/ml	ф	pos	n°/ml	ф
1 2 3 4	5.0 0.0 0.0 5.0	16 0 0 16	5 6 7 8 9	5.0 0.0 5.0 0.0 0.0	12 0 16 0

Calcola

VERIFICHE

a-a pos 1-2-3-4 b-b pos 1-2-3-4 c-c pos 1-4 d-d pos 5-6-7-8-9 e-e pos 5-7 g-g pos 5-7

A1+M1+R3

SLU - combinazione STATICA (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(kN)
a - a	5.34	0.00	26.42	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-103.89	0.00	-60.65	0.40	10.05	10.05	129.53	0.00	140.25
C - C	-40.35	0.00	-30.32	0.40	10.05	10.05	129.53	0.00	140.25
d - d	55.80	41.18	54.00	0.40	10.05	5.65	135.23	41.18	145.50
е -е	28.10	29.31	35.24	0.40	10.05	5.65	133.46	29.31	143.98

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

A1+M1+R3 CON URTO

SLU – combinazione STATICA CON URTO (stato limite ultimo presso-flessionale)

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(kN)
a - a	6.85	0.00	33.53	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-80.43	0.00	-37.81	0.40	10.05	10.05	129.53	0.00	140.25
c - c	-31.85	0.00	-18.91	0.40	10.05	10.05	129.53	0.00	140.25
d - d	84.04	31.47	40.47	0.40	10.05	5.65	133.78	31.47	145.50
е -е	61.84	22.39	31.02	0.40	10.05	5.65	132.43	22.39	143.98

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

SISMICA

SLU – combinazione SISMICA (stato limite ultimo presso-flessionale)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	doc.	01	A	43 di 83
LU/US	213		10	C3C02/	RFI	UI		45 UI 05

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(kN)
a - a	4.71	0.00	22.60	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-44.45	0.00	-19.41	0.40	10.05	10.05	129.53	0.00	140.25
C - C	-18.94	0.00	-9.71	0.40	10.05	10.05	129.53	0.00	140.25
d - d	36.44	34.20	2.33	0.40	10.05	5.65	134.19	34.20	145.50
e -e	15.78	24.14	1.74	0.40	10.05	5.65	132.69	24.14	143.98

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

SLU (stato limite ultimo azione tagliante)

VERIFICA FONDAZIONE

Verifica a taglio sez.	a-a			+		
Elementi senza armatura	trasversale a ta	aglio				
- Verifica del conglomerate	0					
VRd =[0,18*k*(100*ρ1*f _{ck})	^{1/3} /γc+0,15*σcp]*bw*d =	140.25	kN		
VEd =	33.53	kN	ok			
con:						
K = 1+(200/d) ^{1/2} =	1.767		≤ 2			
Rck =	30	N/mm ²				
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.410	N/mm ²				
fck =0,83*Rck =	24.9	N/mm ²				
$fcd = \alpha_{cc} * fck/\gamma c =$	14.11	N/mm ²				
ρ1 = Asl/(bw*d) =	0.00296		≤ 0,02			
copriferro =	60.00	mm				
d =	340	mm				
H =	400.00	mm				
bw =	1000	mm				
AsI =	1005	mm ²		5	ф	16
N _{Ed} =	0.00	kN				
σ _{cp} =N _{Ed} /Ac =	0.000	N/mm ²	≤ 0,2*fcd			

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	44 di 83

Verifica a taglio sez.	b-b					
Elementi senza armatura	trasversale a ta	aglio				
- Verifica del conglomerate	0					
$VRd = [0,18*k*(100*\rho 1*f_{ck})]$	^{1/3} /γc+0,15*σcp]*bw*d =	140.25	kN		
VEd =	60.65	kN	ok	<u> </u>		
con:						
K = 1+(200/d) ^{1/2} =	1.767		≤ 2			
Rck =	30	N/mm ²				
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.410	N/mm ²				
fck =0,83*Rck =	24.9	N/mm ²				
$fcd = \alpha_{cc} * fck/\gamma c =$	14.11	N/mm ²				
ρ1 = Asl/(bw*d) =	0.00296		≤ 0,02			
copriferro =	60.00	mm				
d =	340	mm				
H =	400.00	mm				
bw =	1000	mm				
AsI =	1005	mm ²	;	5	ф	16
N _{Ed} =	0.00	kN				
σ _{cp} =N _{Ed} /Ac =	0.000	N/mm ²	≤ 0,2*fcd			

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

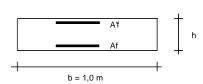
Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		45 di 83

VERIFICA ELEVAZIONE

Verifica a taglio sez.	d-d				
Elementi senza armatura	trasversale a ta	aglio			
- Verifica del conglomerat	0				
VRd =[0,18*k*(100*ρ1*f _{ck})	 ^{1/3} /γc+0,15*σcp]*bw*d =	145.50	kN	
VEd =	54.00	kN	ok		
con:					
$K = 1 + (200/d)^{1/2} =$	1.767		≤ 2		
Rck =	30	N/mm ²			
$v_{min} = 0.035*k^{3/2}*fck^{1/2} =$	0.410	N/mm ²			
fck =0,83*Rck =	24.9	N/mm ²			
$fcd = \alpha_{cc} * fck/\gamma c =$	14.11	N/mm ²			
ρ1 = Asl/(bw*d) =	0.00296		≤ 0,02		
copriferro =	60.00	mm			
d =	340	mm			
H =	400.00	mm			
bw =	1000	mm			
AsI =	1005	mm ²		5 ф	16
N _{Ed} =	41.18	kN			
$\sigma_{cd} = N_{Ed}/Ac =$	0.103	N/mm ²	≤ 0,2*fcd		


SLE – combinazione STATICA (stato limite ultimo di esercizio e fessurazione)

<u>ARMATURE</u>

pos	n°/ml	ф	pos	n°/ml	ф
1	5.0	16	5	5.0	12
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	16
4	5.0	16	8	0.0	0
			9	0.0	0

Calcola

VERIFICHE

pos 1-2-3-4
pos 1-2-3-4
pos 1-4
pos 5-6-7-8-9
pos 5-7-8
pos 5-7
pos 5-7

Condizione Statica

Sez.	M	N	h	Af	A'f	σα	σf	wk	Wamm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	4.55	0.00	0.40	10.05	10.05	0.32	14.63	0.016	0.200
b - b	-44.19	0.00	0.40	10.05	10.05	3.10	142.21	0.154	0.200
c - c	-20.74	0.00	0.40	10.05	10.05	1.45	66.75	0.072	0.200
d - d	39.60	36.65	0.40	10.05	5.65	2.85	108.84	0.116	0.200
e -e	19.75	26.27	0.40	10.05	5.65	1.42	50.36	0.053	0.200
f - f	7.65	16.71	0.40	10.05	5.65	0.55	16.42	0.017	0.200

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

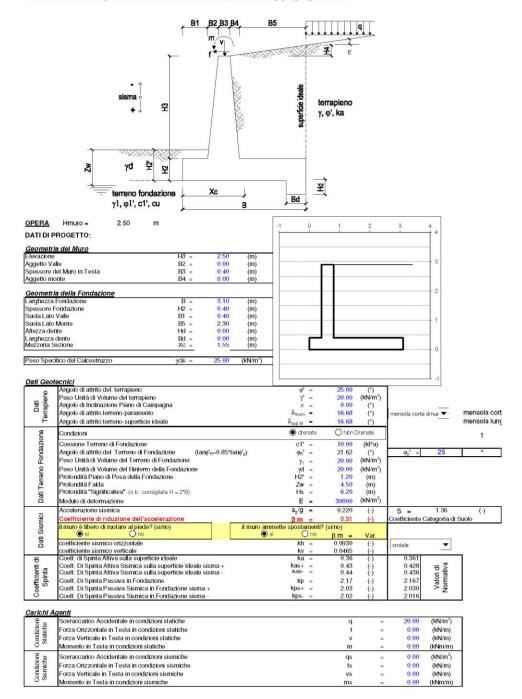
Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	46 di 83

ALLEGATO 1

TABULATI DI CALCOLO DEL MURO

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI


Viabilità di accesso al depuratore — Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		47 di 83

1.1 TABULATI MURO SEZIONE H= 2.50 M

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\\Debenantana\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

SLU A1-M1-R3 1 Muri H 2.50 Solo A1+M1+R3.xis

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera Tratto L0703 213	Settore E		WBS OS0027	id. doc. REL	N. prog. 01	Rev. A	Pag.diPag. 48 di 83
---------------------------	--------------	--	---------------	--------------------	----------------	-----------	------------------------

 $C.\label{lem:condition} C.\label{lem:condition} C.\label{lem:condition} \label{lem:condition} C.\label{lem:condition} A substitution and the condition of the$

				coefficienti pa	ırziali						
			azioni		proprietà del terreno			Уя			
		caso	permanenti	temporanee variabili	tan φ'	c'	Cu	Cap. portante	Scorriment o	Res.Terreno Valle	
			stavorevoli	stavorevoli	- 5			Ye	Ув	YΒ	
5	•	caso A1+M1+R3	1.30	1.50	1.00	1.00	1.00	1.40	1.10	1.40	
SLI	0	caso A2+M2+R2	1.00	1.30	1.25	1.25	1.40	1.00	1.00	1.00	
SLD	0	**	1.00	1.00	1.25	1.25	1.40	1.00	1.00	1.00	
def.	0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

0	Angolo di attrito del terrapieno	φ'	=	25.00	(°)		
- E	Peso Unità di Volume del terrapieno	γ*		26.00	(kN/m ³)		
E An	Angolo di Inclinazione Piano di Campagna	8		0.00	(°)		
	Angolo di attrito terreno-paramento	$\delta_{ m muro}$	=	16.68	(°)		
	Angolo di attrito terreno-superficie ideale	$\delta_{sup\;id}$		16.68	(°)		
oue eu	Coesione Terreno di Fondazione	c1'		10.00	(kN/m ²)		
	Angolo di attrito del Terreno di Fondazione	ϕ_1	=	21.62	(°)		
	Peso Unità di Volume del Terreno di Fondazione	Υ1	=	20.00	(kN/m³)		
	Peso Unità di Volume del Rinterro della Fondazione	γd	9	20.00	(kN/m³)		
Por	Protondità Piano di Posa della Fondazione	H2'		1.20	(m)		
	Profondità Falda	Zw	=	4.50	(m)		
₽	Coeff. di Spinta Attiva sulla superficie ideale	ka	-	0.36	(-)	0.361	
	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	-	0.43	(-)	0.428	77
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.44	(-)	0.436	Valori di
S di	Coeff. Di Spinta Passiva in Fondazione	kp	=	2.17	(-)	2.167	Valori di
0	Coeff. Di Spinta Passiva Sismica in Fondazione	kps+	-	2.03	(-)	2.030	>
O	Coeff. Di Spinta Passiva Sismica in Fondazione	kps-	=	2.02	(-)	2.016	

oni e	Sovraccarico Accidentale in condizioni statiche	q	=	30.00	(kN/m^2)
izi ich ich	Forza Orizzontale in Testa in condizioni statiche	ï	=	0.00	(kN/m)
on day	Forza Verticale in Testa in condizioni statiche	V	*	0.00	(kN/m)
20	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
zioni	Sovraccarico Accidentale in condizioni sismiche	qs	=	0.00	(kN/m ²)
lizio	Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
9.78	Forza Verticale in Testa in condizioni sismiche	vs	=	0.00	(kN/m)
	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

- Peso del Muro (Pm)

Pm1	=	(B2*H3*γcls)/2	=	0.00	(kN/m)
Pm2	-	(R3-H3-jcis)	-	25.00	(kN/m)
Pm3	-	(B4*H3*γcls)/2	-	0.00	(kN/m)
Pm4	$m4 = (B^*H2^*\gamma cls)$		-	31.00	(kN/m)
Pm5	-	(Bd*Hd*γcls)	-	0.00	(kN/m)
Pm	=	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	-	56.00	(kN/m)
- Pes	so de	l terreno sulla scarpa di monte del muro (Pt)			
Pt1	-	(B5*H3*γ')	-	115.00	(kN/m)
Pt2	-	(0,5*(B4+B5)*H4*γ)	-	0.00	(kN/m)
Pt3	-	(B4*H3*γ)/2	-	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	-	115.00	(kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Mur	ro (M	lm)			
Mm1	-	Pm1*(B1+2/3 B2)	-	0.00	(kNm/m)
Mm2	-	Pm2*(B1+B2+0,5*B3)	-	15.00	(kNm/m)
Mm3	Vlm3 = Pm3*(B1+B2+B3+1/3 B4)		-	0.00	(kNm/m)
Mm4	Mm4 = Pm4*(B/2)		-	48.05	(kNm/m)
Mm5	-	Pm5*(B - Bd/2)	-	0.00	(kNm/m)
Mm	-	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	-	63.05	(kNm/m)
- Ter	rapie	no a tergo del muro			
Mt1	-	Pt1*(B1+B2+B3+B4+0,5*B5)	-	224.25	(kNm/m)
Mt2	-	Pt2*(B1+B2+B3+2/3*(B4+B5))	-	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	-	0.00	(kNm/m)
Mt	-	Mt1 + Mt2 + Mt3	-	224.25	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore	_	WBS OS0027	ld. doc.	N. prog.	Rev.	Pag. di Pag. 49 di 83
10/05	213		10	CSU02/	REL	UI	А	49 UI 03

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CONDI	ZIONE STATICA (SLU) (caso A1+M1-	⊾B3	\			
		JUSU A ITIVI I	-110	,			
	DEL TERRENO E DEL SOVRACCARICO otale condizione statica						
St =	0,5*γ*(H2+H3+H4+Hd)²*ka	*	39.45	(kN/m)			
Sq =	q*(H2+H3+H4+Hd)*ka	-	31.39	(kN/m)			
	ente orizzontale condizione statica		07.70	(LALI)			
Sth = Sqh =	St*cos∂ Sq*cos∂	=	37.79 30.07	(kN/m) (kN/m)			
- Compor	ente verticale condizione statica						
Stv =	St*senδ	=	11.32	(kN/m)			
Sqv =	Sq*sen∂	=	9.01	(kN/m)			
- Spinta p Sp =	assiva sul dente ½*71"*Hd ² *kp+(2*c ₁ "*kp ^{0.5} +71"*kp*H2")*Hd	_	0.00	(kN/m)			
3p =	72 /1 Tid NP+(2 01 NP +/1 NP TiZ) Tid	-	0.00	(KIWIII)			
MOMEN	TI DELLA SPINTA DEL TERRENO E DEL SO	VRACCARICO					
- Condizio	one statica						
MSt1 = MSt2 =	Sth*((H2+H3+H4+Hd)/3-Hd) Stv*B	=	36.53 35.09	(kN/m) (kN/m)			
MSq1 = MSq2 =	Sqh*((H2+H3+H4+Hd)/2-Hd) Sqv*B	=	43.60 27.92	(kN/m) (kN/m)			
MSp =	γ_1 '*Hd ³ *kp/3+(2*c1'*kp0.5+g1'*kp*H2')*Hd ² /2	-	0.00	(kN/m)			
MOMEN	TI DOVUTI ALLE FORZE ESTERNE						
Mfext1 =	m	¥	0.00	(kNm/m)			
	f*(H3 + H2) v*(B1 +B2 + B3/2)	=		(kNm/m) (kNm/m)			
	(= 1 , = = 1 , = 5, = 7)			(<u>/</u>			
VERIFICA	A ALLO SCORRIMENTO (caso A1+M	1+R3)			
Risultante	forze verticali (N)						
N =	Pm + Pt + v + Stv + Sqv	=	191.33	(kN/m)			
	e forze orizzontali (T)		5000000000	W11000 W1			
Τ =	Sth + Sqh + f	=	67.86	(kN/m)			
Coefficier	nte di attrito alla base (f)		0.40	()			
	tg⊕1'	-		(-)			
Fs =	(N*f + Sp) / T	=	1.12	(-)	>	1.1	
VERIFICA	A AL RIBALTAMENTO (caso A1+M	1.R3	١			
		OGSO ATTIII	14110	1			
Ms =	stabilizzante (Ms) Mm + Mt + MSt2 + MSq2 + Mfext3	_	350.31	(kNm/m)			
Momento	ribaltante (Mr)						
Mr =	MSt1 + MSq1 + Mfext1+ Mfext2 + MSp	=	80.13	(kNm/m)			
Fr =	Ms / Mr	=	4.37	(-)	>	1	
VERIFICA	A DELLA FONDAZIONE (caso A1+M	1+R3)			
Risultante	forze verticali (N)						
N =	Pm + Pt + v + Stv + Sqv	*	191.33	(kN/m)			
	forze orizzontali (T)		07.00	(Lab Down)			
T =	Sth + Sqh + f - Sp	=	67.86	(kN/m)			
Risultante MM =	dei momenti rispetto al piede di valle (MM) Ms - Mr	_	270 10	(kNm/m)			
		-	210.10	(Mannin)			
Momento M =	rispetto al baricentro della fondazione (M) Xc*N - MM	~	26.37	(kNm/m)			
	ere er tredf		_5.51	, .a)			

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

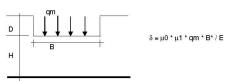
Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.		Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	50 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)


Fondazione Nastriforme

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$

c1' coesione terreno di fondaz.	=	10.00	(kPa)
φ1' angolo di attrito terreno di fondaz.	=	25.00	(°)
γ_1 peso unità di volume terreno fondaz.	=	20.00	(kN/m³)
$q_0 = \gamma d^* H 2^* \ \ sovraccarico \ stabilizzante$	=	24.00	(kN/m^2)
e = M / N eccentricità	-	0.14	(m)
B*= B - 2e larghezza equivalente	=	2.82	(m)
l valori di Nc, Nq e Ng sono stati valutati con le espressioni	suggerite da \	/esic (1975)	
Nq = $tg^2(45 + \phi/2)^*e^{(\pi^*tg(\phi))}$ (1 in cond. nd)	-	10.66	(-)
$Nc = (Nq - 1)/tg(\phi') \qquad (2+\pi \text{ in cond. nd})$	=	20.72	(-)
$N\gamma = 2^*(Nq + 1)^*tg(\varphi') \qquad \qquad (0 \text{ in cond. nd})$	-	10.88	(-)
l valori di ic, iq e i γ sono stati valutati con le espressioni sug	gerite da Vesi	c (1975)	
$iq = (1 - T/(N + B*c'cotg\phi'))^m$ (1 in cond. nd)	-	0.53	(-)
ic = iq - (1 - iq)/(Nq - 1)	=	0.49	(-)
$i\gamma = (1 - T/(N + B^*c'\cot g\phi'))^{m+1}$	=	0.39	(-)
(fondazione nastriforme m = 2)			
qlim (carico limite unitario)	-	357.00	(kN/m^2)

CEDIMENTO DELLA FONDAZIONE

F = qlim*B*/N

(Christian e Carrier, 1976)

Profondità Piano di Posa della Fondazione	D = D/B* = H/B* =	1.20 0.42 2.20	(m) (m) (m)
Carico unitario medio (qm)	qm = N / (B - 2*e) = N / B* =	67.74	(kN/mq)
Coefficiente di forma $\mu 0 = f(D/B)$	μ0 =	0.942	(-)
Coefficiente di profondità $\mu 1 = f(H/B)$	μ1 =	0.70	(-)
Cedimento della fondazione	$\delta = \mu 0 * \mu 1 * qm * B* / E =$	4.22	(mm)

 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

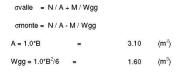
OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

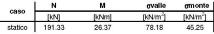
Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

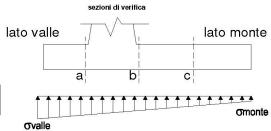
Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		51 di 83

C.\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls


CALCOLI STATICI - Verifica allo Stato Limite Ultimo


CARATTERISTICHE DEI MATERIALI


<u>Calcestruzzo</u>				<u>Acciaio</u>	2		
Rck =	30	(MPa)		tipo di a	ecialo	B450C ▼	
γc =	2.1			fyk =	45	0 (MPa)	
				γΕ	= 1.0		
fed = Rek /γm,c =		14.11	(MPa)	γs	= 1.1	5	
<u>Copriferro</u>				fyd = fyk		391.30	(MPa)
C =	6.00	(cm)		Es	= 21000	0 (MPa)	
				$arepsilon_{ m ys}$ =	0.199	6	
				$arepsilon_{uk}$ =	= 7.5009	6	
				$arepsilon_{ m ud}$:	= 6.7509	6	

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

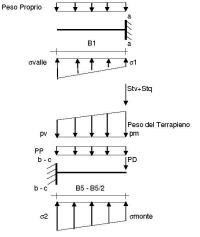
Reazione del terreno

Mensola Lato Valle

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

	σvalle [kN/m²]	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	78.18	73.93	5.34

ì	Ta	I
	[kN]	l
	26.42	1


Mensola Lato Monte

PP	=	10.00	(kN/m^2)	peso proprio soletta fondazione
PD	-	0.00	(kN/m)	peso proprio dente
pm	-	65.00	(kN/m ²)	
pvb	=	65.00	(kN/m²)	
рус	=	65.00	(kN/m²)	

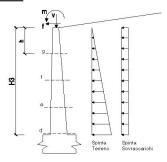
 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/3 + (\sigma 2b - \sigma_{monte})$ $-(Stv + Sqv)^*B5 - PD^*(1 \pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2$

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma_2c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (pm - pvc)^*(B5/2)^2/3 + (pm - pvc)^2/3 + (pm - pvc)^2$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

	omonte	σ2b	Mb	62 c	Mc	Tb
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]	[kN]
statico	45.25	69.69	-103.89	57.47	-40.35	-60.65

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo


Kelazioi	ic ui	caice	ш

Opera L0703	Tratto 213	Settore E		WBS OS0027	aoc.	N. prog.		Pag. di Pag. 52 di 83
LO/CO	210	L	10	C3002/	REL	O1	/ \	32 di 03

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

70	Accelerazione sismica	a _g /g	=	0.22	(-)	S	1.30
i Sismic	Coefficiente di riduzione dell'accelerazione	βm	=	0.31	(-)	Categoria di suolo	
	il muro ammette spostamenti? (si/no)	si		O no	bm = var		
	coefficiente sismico orizzontale	kh	-	0.0930	(-)		
	coefficiente sismico verticale	kv	=	0.0465	(-)		
100	Coeff. di Spinta Attiva sulla parete	ka	=	0.36	(-)	0.361	
di Spinta	componente orizzontale	kah	=	0.346	(-)		
혅	componente verticale	kav	=	0.10	(-)		
ë	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	=	0.43	(-)	0.428	
	componente orizzontale	kash+	=	0.41	(-)		
픙	componente verticale	kasv+	=	0.12	(-)		
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	=	0.44	(-)	0.436	
ΙÄ	componente orizzontale	kash-	=	0.42	(-)		
~	componente verticale	kasv-	=	0.12	(-)		

Mt = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3 o $\frac{1}{2}$ Ka_{orizz.*} $\gamma^*(1\pm kv)^*h^{2*}h/2$ (con sisma)

= $\frac{1}{2}$ Ka_{orizz}*q*h²

 M_{ext} = m+f*h

 $M_{inerzia} = \Sigma P m_i^* b_i^* kh$ (solo con sisma)

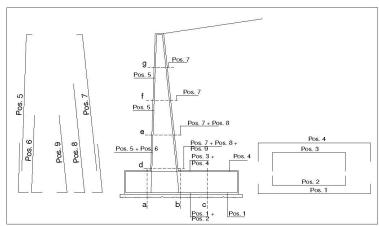
= $\frac{1}{2} \text{Ka}_{\text{vert.}}^{*} \gamma^{*} (1 \pm \text{kv})^{*} h^{2}$ Nt $Nq = Ka_{vert} * q * h$ $N_{ext} = V$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

	Link	ficiacitif	[KIWIII]	ligrating	[retwitt]
d-d	2.50	28.08	25.92	0.00	54.00
е-е	1.88	15.80	19.44	0.00	35.24
f-f	1.25	7.02	12.96	0.00	19.98
g-g	0.63	1.76	6.48	0.00	8.24

condizione statica										
sezione	h	Mt	Mq	M _{ext}	M _{tot}	Nt	Nq	N _{ext}	N _{pp}	N _{tot}
sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	23.40	32.40	0.00	55.80	8.41	7.76	0.00	25.00	41.18
e-e	1.88	9.87	18.23	0.00	28.10	4.73	5.82	0.00	18.75	29.31
f-f	1.25	2.93	8.10	0.00	11.03	2.10	3.88	0.00	12.50	18.49
n-a	0.63	0.37	2 03	0.00	2 39	0.53	1 94	0.00	6.25	8 72

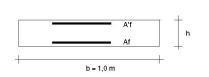
3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI


Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore			ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	53 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls


SCHEMA DELLE ARMATURE

ARMATURE

l	pos	nº/ml	ф	pos	nº/ml	φ
ı	1	5.0	16	5	5.0	12
ı	2	0.0	0	6	0.0	0
ı	3	0.0	0	7	5.0	16
ı	4	5.0	16	8	0.0	0
1				٩	0.0	0

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
e-e	pos 5-7-8
f-f	pos 5-7
g-g	pos 5-7

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm²)	(kNm)	(kN)	(kN)
a - a	5.34	0.00	26.42	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-103.89	0.00	-60.65	0.40	10.05	10.05	129.53	0.00	140.25
C-C	-40.35	0.00	-30.32	0.40	10.05	10.05	129.53	0.00	140.25
d-d	55.80	41.18	54.00	0.40	10.05	5.65	135.23	41.18	145.50
e -e	28.10	29.31	35.24	0.40	10.05	5.65	133.46	29.31	143.98

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

	Tratto 213	Settore E		WBS OS0027	acc.	N. prog.	Rev.	Pag. di Pag. 54 di 83
10/00	213		10	C3002/	REL	01	$\overline{}$	34 UI 03

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

				coefficienti parziali				~		
				azioni	pro	prietà del terre	no		Ϋ́R	
		caso	permanenti	temporanee variabili	tan φ'	c'	Cu	Cap. portante	Scorriment o	Res.Terreno Valle
			sfavorevoli	sfavorevoli				Ye	Ϋ́R	Ye.
_	0	caso A1+M1+R1	1.30	1.50	1.00	1.00	1.00	1.00	1.00	1.00
S	0	aso A1+M1+R3+URT	1.30	1.50	1.00	1.00	1.00	1.40	1.10	1.40
SLD	0		1.00	1.00	1.25	1.25	1.40	1.00	1.00	1.00
def.	•	URTO	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

0	Angolo di attrito del terrapieno	φ'	-	25.00	(°)		
Dati errapieno	Peso Unità di Volume del terrapieno	7'		20.00	(kN/m³)		
Dati	Angolo di Indinazione Piano di Campagna	8	-	0.00	(°)		
- H	Angolo di attrito terreno-paramento	δ_{muro}	100	16.68	(°)		
-	Angolo di attrito terreno-superficie ideale	δ _{sup id}	191	16.68	(°)		
	Coesione Terreno di Fondazione	c1'	-	10.00	(kN/m²)		
and and	Angolo di attrito del Terreno di Fondazione (tanφ' _R =tanφ' _p)	φ _R ' =		21.62	(°)		
Terreno dazione	Peso Unità di Volume del Terreno di Fondazione	Υı	-	20.00	(kN/m³)		
Dati Terreno Fondazione	Peso Unità di Volume del Rinterro della Fondazione	γd	140	20.00	(kN/m³)		
Pont	Profondità Piano di Posa della Fondazione	H2"	100	1.20	(m)		
X 152.2.3	Profondità Falda	Zw	-	4.50	(m)		
di	Coeff. di Spinta Attiva sulla superficie ideale	ka	-	0.36	(-)	0.361	
ě.	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	150	0.43	(-)	0.428	± δ
ie ei	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	100	0.44	(-)	0.436	Valori di Normativa
Spie	Coeff. Di Spinta Passiva in Fondazione	kp	100	2.17	(-)	2.167	ĕ ≣
Coefficienti Spinta	Coeff. Di Spinta Passiva Sismica in Fondazione	kps+	-	2.03	(-)	2.030	> ž
0	Coeff. Di Spinta Passiva Sismica in Fondazione	kps-	1-0	2.02	(-)	2.016	

E	Sovraccarico Accidentale in condizioni statiche	q	=	0.00	(kN/m²)
izio G	Forza Orizzontale in Testa in condizioni statiche	f	-	18.87	(kN/m)
Statiche	Forza Verticale in Testa in condizioni statiche	l y	-	0.00	(kN/m)
800	Momento in Testa in condizioni statiche	m	-	18.87	(kNm/m
oni 9L	Sovraccarico Accidentale in condizioni sismiche	qs	-	0.00	(kN/m²)
지호	Forza Orizzontale in Testa in condizioni sismiche	fs	-	0.00	(kN/m)
Sism	Forza Verticale in Testa in condizioni sismiche	vs		0.00	(kN/m)
800	Momento in Testa in condizioni sismiche	ms	-	0.00	(kNm/m

VERIFICHE GEOTECNICHE

FORZE VERTICALI

- Peso de	l Muro (Pm)			
Pm1 =	(B2*H3*ycls)/2	=	0.00	(kN/m)
Pm2 =	(B3°H3°ýCIS)	=	25.00	(kN/m)
Pm3 =	(B4*H3*ycls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*ycls)	=	31.00	(kN/m)
Pm5 =	(Bd*Hd*ycls)	=	0.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	=	56.00	(kN/m)
- Peso de	l terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3*γ*)	-	115.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*y")	=	0.00	(kN/m)
Pt3 =	(B4*H3*γ')/2	=	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	115.00	(kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Mun	o (M	m)			
Mm1	= `	Pm1*(B1+2/3 B2)	= 0	.00	(kNm/m)
Mm2	=	Pm2*(B1+B2+0,5*B3)	= 15	.00	(kNm/m)
Mm3	=	Pm3*(B1+B2+B3+1/3 B4)	= 0	.00	(kNm/m)
Mm4	= :	Pm4*(B/2)	= 48	.05	(kNm/m)
Mm5	=	Pm5*(B - Bd/2)	= 0	.00	(kNm/m)
Mm =	=	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	= 63	.05	(kNm/m)
- Tem	apie	noa tergo del muro			
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	= 224	.25	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	= 0	.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	= 0	.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	= 224	.25	(kNm/m)

SLU_A1+M1+R3_URTO 8 Muri_H_2.50_Sob_A1+M1+R3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E	WBS OS0027	aoc.	N.prog. 01	Pag.diPag 55 di 83
L0703		_		doc. REL	01	_

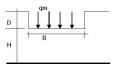
C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CONDIZIONE STA	TICA (SLU)	(URTO)			
	O E DEL SOVRACCARICO							
- Spinta totale condizion								
	l3+H4+Hd)²*ka		=	30.34	(kN/m)			
$Sq = q^*(H2+H3+F$	и+на) ка		=	0.00	(kN/m)			
- Componente orizzonta	le condizione statica							
$Sth = St^*cos\delta$ $Sqh = Sq^*cos\delta$			=	29.07 0.00	(kN/m) (kN/m)			
Squ = Sq cosc				0.00	(KIVIII)			
- Componente verticale	condizione statica		=	0.71	(LAI(out)			
$Stv = St^*sen\delta$ $Sqv = Sq^*sen\delta$			=	8.71 0.00	(kN/m) (kN/m)			
 Spinta passiva sul den Sp = ½*γ₁**Hd²*kp 	re ++(2*c₁**kp ^{0.5} +γ1**kp*H2*)*Hd	=		0.00	(kN/m)			
op = oz ij na iq	(Colin thinking)			0.00	(ideni)			
MOMENTI DELLA SDI	NTA DEL TERRENO E DEL S	OVERCAR	ICO.					
- Condizione statica	NIA DEL TENNENO E DEL S	OVNACCANI	CO					
MSt1 = Sth*((H2+H3	3+H4+Hd)/3-Hd)		=	28.10	(kN/m)			
$MSt2 = Stv^*B$ $MSq1 = Sqh^*((H2+H)$	3+H4+Hd)/2-Hd)		=	26.99	(kN/m) (kN/m)			
MSq2 = Sqv*B			=	0.00	(kN/m)			
$MSp = \gamma_1^{**}Hd^{3*}kp/3$	+(2*c1*kp0.5+g1*kp*H2*)*Hd²/	2 =		0.00	(kN/m)			
MOMENTI DOVUTI AL	LE FORZE ESTERNE							
Mfext1 = m	LET ONEE COTEMINE		=	18.87	(kNm/m)			
$Mfext2 = f^*(H3 + H2)$			=		(kNm/m)			
$Mfext3 = v^*(B1 + B2 +$	B3/2)		=	0.00	(kNm/m)			
VERIFICA ALLO SCOP	RRIMENTO	7	URTO		\			
		1			,			
Risultante forze verticali N = Pm + Pt + v			=	179.71	(kN/m)			
Risultante forze orizzont								
T = Sth + Sqh +	f		=:	47.93	(kN/m)			
Coefficiente di attrito alla	a base (f)							
$f = tg\phi 1'$			= 1	0.40	(-)			
Fs = (N*f + Sp)/	т		=	1.49	(-)	>	1	
(.,			
VERIFICA AL RIBALTA	MENTO	1	URTO					
		(UNIU)			
Momento stabilizzante /	Me\	(UNIO)			
Momento stabilizzante (Ms = Mm + Mt + M	Ms) //St2 + MSq2 + Mfext3	(=		(kNm/m)			
Ms = Mm + Mt + Mt	MSt2 + MSq2 + Mfext3	(
Ms = Mm + Mt + M Momento ribaltante (Mr)	MSt2 + MSq2 + Mfext3	=		314.29				
Ms = Mm + Mt + M Momento ribaltante (Mr) Mr = MSt1 + MSq	MSt2 + MSq2 + Mfext3		=	314.29 101.68	(KNm/m)			
Ms = Mm + Mt + M Momento ribaltante (Mr)	MSt2 + MSq2 + Mfext3			314.29	(kNm/m)	>	1	
Ms = Mm + Mt + M Momento ribaltante (Mr) Mr = MSt1 + MSq	//St2 + MSq2 + Mfext3 / 1 + Mfext1+ Mfext2 + MSp		=	314.29 101.68	(KNm/m)	>	1	
MS = Mm + Mt + M Momento ribaltante (Mr) Mr = MSt1 + MSq Fr = Ms / Mr VERIFICA DELLA FON	JIS12 + MISq2 + MIext3 1 + MIext1+ MIext2 + MSp DAZIONE		=	314.29 101.68	(KNm/m)	>	1	
Ms = Mm + Mt + M Momento ribaltante (Mr) Mr = MSt1 + MSq Fr = Ms / Mr	// // // // // // // // // // // // //		=	314.29 101.68	(KNm/m)	>	1	
MS = Mm + Mt + B Momento ribaltante (Mr) Mr = MSt1 + MSq Fr = Ms / Mr VERIFICA DELLA FON Risultante forze verticali N = Pm + Pt + v	// // // // // // // // // // // // //		= = URTO	314.29 101.68 3.09	(kNm/m) (kNm/m) (-)	>	1	
MS = Mm + Mt + B Momento ribaltante (Mr) Mr = MSt1 + MSq Fr = Ms / Mr VERIFICA DELLA FON Risultante forze verticali N = Pm + P1 + V Risultante forze orizzoni	### ### ##############################		= = URTO	314.29 101.68 3.09	(kNm/m) (kNm/m) (-) (kN/m)	×	1	
MS = Mm + Mt + B Momento ribalante (Mr) Mr = Mr = MS11 + MSq Fr = Ms / Mr VERIFICA DELLA FON Risultante forze vertical N = N = Pm + Pt + V Risultante forze orizzont T = Sth + Sqh + Sth + Sqh +	1 + Mfext1 + Mfext2 + Mfext3		= URTO =	314.29 101.68 3.09	(kNm/m) (kNm/m) (-)	>	1	
MS = Mm + Mt + B Momento ribaltante (Mr) Mr = Mr = MS11 + MSq Fr = Ms / Mr VERIFICA DELLA FON Pisultante forze vertical N = Pm + P1 + v Risultante forze orizzont T = Stisultante forze orizzont T = Stisultante dei momenti i Stisultante dei momenti i	### ### ##############################		= URTO	314.29 101.68 3.09 179.71 47.93	(kNm/m) (kNm/m) (-) (kN/m) (kN/m)		1	
MS = Mm + Mt + B Mormentor ribalante (Mr) Mr = Mr = MS11 + MSq Fr = Ms / Mr VERIFICA DELLA FON Risultante forze verticali N = Pm + Pt + V Risultante forze verticali T = Sth + Sqh + Sth + Sqh +	1 + Mfext1 + Mfext2 + Mfext3		= URTO =	314.29 101.68 3.09 179.71 47.93	(kNm/m) (kNm/m) (-) (kN/m)	>	1	
MS = Mm + Mt + B Momento ribaltante (Mr) Mr = Mr = MS11 + MSq Fr = Ms / Mr VERIFICA DELLA FON Risultante forze vertical N = Pm + P1 + v Risultante forze vertical T = Statutante forze vertical T = Statutante dei momenti MM = MM = Ms - Mr	1 + Mfext1 + Mfext2 + Mfext3		= URTO	314.29 101.68 3.09 179.71 47.93 212.61	(kNm/m) (kNm/m) (-) (kN/m) (kN/m)	×	1	

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo


Opera		Settore			ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	56 di 83

 $C. \label{lem:condition} C. \label{lem:condition}$

Fondazione Nastriforme				
qlim = c'Nc*ic + q ₀ *Nq*i	q + 0,5*q1*B*Ny*iy			
c1' coesione terr	eno di fondaz.	=	10.00	(kPa)
φ1′ angolo di attri	to terreno di fondaz.	=	25.00	(°)
peso unità di	volume terreno fondaz.	=	20.00	(kN/m ³)
q _{o≕γ} d*H2'sovraccarico	stabilizzante	=	24.00	(kN/m ²)
e = M / N eccentricità		=	0.37	(m)
B*= B - 2e larghezza eq	uivalente	=	2.37	(m)
valoridiNc,Nqe Ngso	no stati valutati con le espression	isuggenite da Vesio	(1975)	
$Nq = tg^2(45 + \phi'/2)^*e^{(tc^*tg)/2}$	(1 in cond. nd)	=	10.66	(-)
$Nc = (Nq - 1)/tg(\phi')$	(2+π in cond. nd)		20.72	(-)
$l\gamma = 2^*(Nq + 1)^*tg(\varphi')$	(O in cond. nd)	=	10.88	(-)
valori di ic, iq e iγ sono s	stati valutati con le espressioni su	ggerite da Vesic (19	975)	
iq = (1 - T/(N + B*c*cotgq	")) ^m (1 in cond. nd)	=	0.63	(-)
c = iq - (1 - iq)/(Nq - 1)	****	=	0.59	(-)
y = (1 - T/(N + B*c'cotgφ)) ^{m+1}	=	0.50	(-)
ondazione nastriforme i	n = 2)			
ılim (carico limite)	unitario)	=	410 33	/kN/m²\

CEDIMENTO DELLA FONDAZIONE

F = qlim*B*/ N

 $\delta = \mu 0 * \mu 1 * qm * B* / E$

(Christian e Carrier, 1976)

5.40 (-)

Profondità Piano di Posa della Fondazione	D =	1.20	(m)
	D/B* =	0.51	(m)
	H/B* =	2.62	(m)
Carico unitario medio (qm)	$qm = N / (B - 2^{+}e) = N / B^{+} =$	75.95	(kN/mq)
Coefficiente di forma $\mu 0 = f(D/B)$	μ0 =	0.938	(-)
Coefficiente di profondità $\mu 1 = f(H/B)$	μ1 =	0.78	(-)
Cerlimento della fondazione	8 = u0 * u1 * am * B* / E =	4 41	(mm)

CONDIZIONE SISMICA +

SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta totale condizione sismisa + Sst1 = 0.57*("1.kv)*(*P£2+H3-H4+Hd)*kas* = 37.68 (kN/m) Ssq1 = qs*(H2+H3-H4+Hd)*kas* = 0.00 (kN/m) - Componente orizzontale condizione sismica + Sst1 = Sst1*cos8 = 36.10 (kN/m) Ssq1 = Sq1*cos8 = 0.00 (kN/m) - Componente verticale condizione sismica + Sst1 = Sst1*cen8 = 10.81 (kN/m) Sq1 = Sq1*cos8 = 0.00 (kN/m) - Spinta passiva sul dente - Spinta passiva sul dente Sp=k*r*y(1-kv) +d*kps*-42*c-1*kps*05*-y*1*(1+kv) kps**+12*)*Hd = 0.00 (kN/m) MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica + MSst1 = Sst1* (H2+H3+H4+Hd)/3-Hd) = 34.89 (kN/m) MSsq1 = Sst1* (H2+H3+H4+Hd)/3-Hd) = 35.2 (kN/m) MSsq2 = Ssq1* (H2+H3+H4+Hd)/2-Hd) = 0.00 (kN/m) MSp = n*Hd*kps*/3-4(2*c1*kps*65*-y*1*kps**H2*)*Hd*p1/2 = 0.00 (kN/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Visibilità di cassas al decumentame. Municipa del Pr. 0.102 a Pr. 0.126

Viabilità di accesso al depuratore — Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	ld. doc. REL	N. prog. 01	Rev. A	Pag.diPag. 57 di 83
----------------	---------------	--------------	--	---------------	--------------------	----------------	-----------	------------------------

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

INERZIA DEL MURO E DEL TERRAPIENO - Inerzia del muro (Ps)					
Ps = Pm*kh	=	5.21	(kN/m)		
- Inerzia orizzontale e verticale del terrapieno a tergo del muro (Pts)					
Ptsh = Pt*kh Ptsv = Pt*kv	= 1	10.70 5.35	(kN/m) (kN/m)		
- Incremento di momento dovuto all'inerzia del muro (MPs)					
$MPs1 = kh^{*}Pm1^{*}(H2+H3/3)$	=	0.00	(kNm/m)		
MPs2 = kh*Pm2*(H2 + H3/2) MPs3 = kh*Pm3*(H2+H3/3)	-	3.84	(kNm/m) (kNm/m)		
MPs4 = kh*Pm4*(H2/2)	=	0.58	(kNm/m)		
MPs5 = -kh*Pm5*(Hd/2) MPs = MPs1+MPs2+MPs3+MPs4+MPs5	=	0.00 4.41	(kNm/m)		
	=	4.41	(KINIIVIII)		
- Incremento di momento dovuto all'inerzia del terrapieno (MPts) MPts1 = kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5) =		7.22	(kNm/m)		
$MPts2 = kh^{*}Pt2^{*}((H2 + H3 + H4/3) - (B - B5/3)^{*}0.5) =$		0.00	(kNm/m)		
MPts3 = $kh^*Pt3^*((H2+H3^*2/3)-(B1+B2+B3+2/3^*B4)^*0.5) =$		0.00	(kNm/m)		
MPts = MPts1 + MPts2 + MPts3	=	7.22	(kNm/m)		
MOMENTI DOVUTI ALLE FORZE ESTERNE Mfext1 = ms	=	0.00	(kNm/m)		
$Mfext2 = fs^*(H3 + H2)$	=	0.00			
Mfext3 = vs*(B1 +B2 + B3/2)	= 1		(kNm/m)		
VERIFICA ALLO SCORRIMENTO					
Risultante forze verticali (N)					
N = Pm+Pt + vs + Sst1v + Ssq1v + Ptsv	=	187.16	(kN/m)		
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fs +Ps + Ptsh	_	52.00	(kN/m)		
Coefficiente di attrito alla base (f)			()		
$f = tg\phi 1'$	= 1	0.40	(-)		
$Fs = (N^*f + Sp) / T$	=	1.43	(-)	>	1
VERIFICA AL RIBALTAMENTO					
Momento stabilizzante (Ms)					
Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	320.82	(kNm/m)		
Momento ribaltante (Mr) Mr = MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts =		46.53	(kNm/m)		
Fr = Ms/Mr	=	6.90	(-)	>	1
			**		
YERIFICA DELLA FONDAZIONE					
Risultante forze verticali (N) N = Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	187.16	(kN/m)		
Risultante forze orizzontali (T)					
T = Sst1h + Ssq1h + fs +Ps + Ptsh - Sp	=	52.00	(kN/m)		
Risultante dei momenti rispetto al piede di valle (MM) MM = Ms - Mr		074.00			
	=	2/4.29	(kNm/m)		
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	=	15.81	(kNm/m)		
Formula Generale per il Calcolo del Carico Limite Unitrario (Brin	nch-Hans	en, 1970)			
Fondazione Nastriforme					
$qlim = c'Nc^*ic + q_0^*Nq^*iq + 0.5^*\gamma 1^*B^*N\gamma^*i\gamma$					
c1' coesione terreno di fondaz.	=	10.00	(kN/mq)		
φ1' angolo di attrito terreno di fondaz.	-	21.62	(°)		
γ ₁ peso unità di volume terreno fondaz.	=	20.00	(kN/m³)		
q _o =γd*H2' sovraccarico stabilizzante	=	24.00	(kN/m ²)		
e = M / N eccentricità B*= B - 2e larghezza equivalente	=	0.08 2.93	(m) (m)		
	= do Voci-		(11)		
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite	ua vesio				
Nq = $tg^2(45 + \phi^{1/2})^*e^{(x^*tg(\phi))}$ (1 in cond. nd)	=	7.53	(-)		
$ \begin{aligned} &Nc = (Nq-1)^{n} g(\phi') & (2+\pi \text{ in cond. nd}) \\ &N\gamma = 2^{n} (Nq+1)^{n} g(\phi') & (0 \text{ in cond. nd}) \end{aligned} $	=	16.47 6.76	(-)		
$ a = c had \pm 1/4g(\phi)$ (o in cond. iid)	-	0.76	(7)		

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	REL	OI	Α	58 di 83

C/tarchivic/Arch -Lavorc/A194_Quadrilatero-Astaldi/PEDEMANTANA/Lotto 3-4/Sottovia Pianello/Muri_H_2.50_Solo_A1+M1+R3.xls

I valori di ic, iq e iγ sono stati valutati con le espressioni su	iggerite da Vesic (19:	75)				
$iq = (1 - T/(N + B^*c'\cot g\phi'))^m$ (1 in cond. nd)	=	0.64	(-)			
ic = iq - (1 - iq)/(Nq - 1)	=	0.59	(-)			
$i\gamma = (1 - T/(N + B^*c'colg\phi'))^{m+1}$	=	0.51	(-)			
(fondazione nastriforme m = 2)						
qlim (carico limite unitario)	=1	314.18	(kN/m^2)			
F = glim*B*/ N	_	4.92	(-)	>	1	

CEDIMENTO DELLA FONDAZIONE

Profondità Piano di Posa della Fondazione

MOMENTI DOVUTI ALLE FORZE ESTERNE
Mfext1 = ms
Mfext2 = fs*(H3 + H2)
Mfext3 = vs*(B1 + B2 + B3/2)

(Christian e Carrier, 1976)

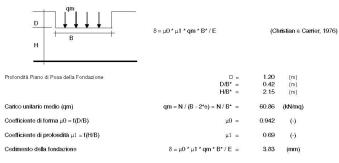
	H/B*	2.12	(m)	
Carico unitario medio (qm)	$qm = N / (B - 2^{*}e) = N / B^{*} =$	63.85	(kN/mq)	
Coefficiente di forma $\mu O = f(D/B)$	μ0 =	0.942	(-)	
Coefficiente di profondità $\mu 1 = f(H/B)$	μ1 =	0.69	(-)	
Codimento della fondazione	\$ - u0 + u1 + am + P+ / E -	4.04	(mm)	

Cedimento della fondazione		$\delta = \mu 0 + \mu 1 + qm$	* B* / E =	4.04
CONDIZIONE SISMICA -				
SPINTE DEL TERRENO E DEL SO	OVBACCABICO			
- Spinta totale condizione sismica -				
Sst2 = $0.5*\gamma'*(1-kv)*(H2+H3+H4$	+Hd)²*kas`	=	34.93	(kN/m)
Ssq2 = qs*(H2+H3+H4+Hd)*kas		=	0.00	(kN/m)
- Componente orizzontale condizione	e sismica -			
Sst2h = Sst2*cosδ		=	33.46	(kN/m)
Ssq2h = Ssq2*cosδ		=	0.00	(kN/m)
- Componente verticale condizione s	ismica -			
Sst2v = Sst2*senδ		=	10.02	(kN/m)
Ssq2v = Ssq2*senδ		=	0.00	(kN/m)
- Spinta passiva sul dente				
$Sp=\frac{1}{2}y_1''(1-kv) Hd^2kps'+(2*c_1'*kps^{0.5}+1)$	1' (1-kv) kps*H2')*Hd =		0.00	(kN/m)
MOMENTI DELLA SPINTA DEL TI - Condizione sismica -	ERRENO E DEL SOVRA	CCARICO		
- Condizione sistilica - MSst1 = Sst2h * ((H2+H3+H4+Hd	(/O LIA)		32.34	(kN/m)
MSst2 = Sst2v * B	<i>p</i> 5-1 kg	=	31.07	(kN/m)
MSsq1 = Ssq2h * ((H2+H3+H4+H	4)/9 H <i>d</i> ()	_	0.00	(kN/m)
MSsq2 = Ssq2v * B	1) 2110)	-	0.00	(kN/m)
$MSp = \gamma_1^* Hd^3 * kps'/3 + (2*c1**kps^{0.5})$	+γ1*kps*H2')*Hd²/2 =		0.00	(kN/m)
INERZIA DEL MURO E DEL TERR - Inerzia del muro (Ps)	APIENO			
Ps = Pm*kh		=	5.21	(kN/m)
rs = riii Ni		=	5.21	(MAIII)
 Inerzia orizzontale e verticale del te 	rrapieno a tergo del muro			
Ptsh = Pt*kh		=	10.70	(kN/m)
Ptsv = Pt*kv		=	-5.35	(kN/m)
- Incremento di momento dovuto all'i	nerzia del muro (MPs)			
$MPs1 = kh^{+}Pm1^{+}(H2+H3/3)$		=	0.00	(kNm/m)
MPs2 = kh*Pm2*(H2 + H3/2)		=	3.84	(kNm/m)
MPs3 = kh*Pm3*(H2+H3/3)		=	0.00	
MPs4 = kh*Pm4*(H2/2)		=	0.58	(kNm/m)
$MPs5 = -kh^*Pm5^*(Hd/2)$		=	0.00	(kNm/m)
MPs = MPs1+MPs2+MPs3+MP	s4+MPs5	=	4.41	(kNm/m)
- Incremento di momento dovuto all'i		s)		
$MPts1 = kh^{+}Pt1^{+}((H2 + H3/2) + (B$			28.08	
MPts2 = kh*Pt2*((H2 + H3 + H4/3)			0.00	(kNm/m)
MPts3 = kh*Pt3*((H2+H3*2/3)+(B			0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3		=	28.08	(kNm/m)

SLU_A1+M1+B3_URTO 12 Muri_H_2.50_Sob_A1+M1+B3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126


Relazione di calcolo

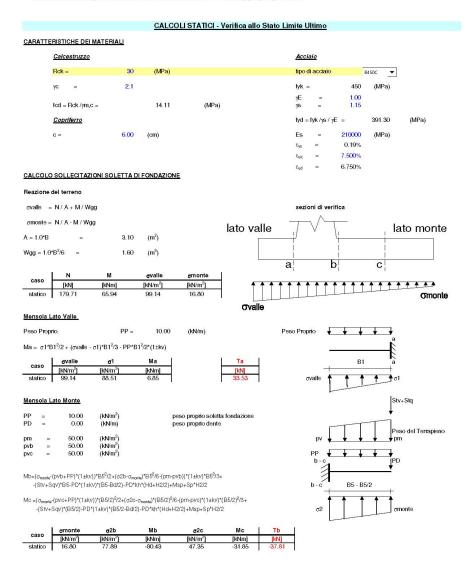
Opera		Settore			ld. doc.	N. prog.		Pag. di Pag.
L0703	213	E	16	OS0027	REL	01	Α	59 di 83

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

VERIFICA ALLO SCORRIMENTO					
Risultante forze verticali (N) N = Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	175.67	(kN/m)		
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fs+Ps + Ptsh	=	49.37	(kN/m)		
Coefficiente di attrito alla base (f) f = tgφ!		0.40	(-)		
$Fs = (N^*f + Sp)/T$	=	1.41	(-)	>	1
VERIFICA AL RIBALTAMENTO					
Momento stabilizzante (Ms) Ms = Mm + Mt + MSst2 + MSsq2 + Mfext3	=	318 37	(kNm/m)		
Momento ribaltante (Mr)					
Mr = MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts =			(kNm/m)		
Fr = Ms/Mr	=	4.91	(-)	>	1
VERIFICA DELLA FONDAZIONE					
Risultante forze verticali (N) N = Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	175.67	(kN/m)		
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fs+Ps + Ptsh - Sp	=	49.37	(kN/m)		
Risultante dei momenti rispetto al piede di valle (MM) MM = Ms - Mr	=	253.53	(kNm/m)		
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	=	18.76	(kNm/m)		
Formula Generale per il Calcolo del Carico Limite Unitrari	o (Brinch-Han	sen 1970)			
Fondazione Nastriforme	- (,			
qlim = c'No*ic + q ₀ *Nq*iq + 0,5*y1*B*Ny*iy					
c1' coesione terreno di fondaz.	=	10.00	(kN/mq)		
φ1' angolo di attrito terreno di fondaz.	=	21.62	(°) (kN/m³)		
γ ₁ peso unità di volume terreno fondaz.	=	20.00	* 2		
q _o ⇒yd"H2' sovraccarico stabilizzante	=	24.00	(kN/m ²)		
e = M / N eccentricità B*= B - 2e larghezza equivalente	=	0.11 2.89	(m) (m)		
l valori di Nc, Nq e Ng sono stati valutati con le espressioni su	ggenite da Vesi	ic (1975)			
Nq = $tg^2(45 + \phi'/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)	=	7.53	(-)		
$Nc = (Nq - 1)^t (g(\phi'))$ (2+ π in cond. nd) $N\gamma = 2^t (Nq + 1)^t (g(\phi'))$ (0 in cond. nd)	=	16.47 6.76	(-) (-)		
I valori di ic, iq e iγ sono stati valutati con le espressioni sugge	rite da Vesic (1	975)	5.4		
$iq = (1 - T/(N + B^*c'\cot g\phi'))^m$ (1 in cond. nd)		0.64	(-)		
ic = iq - (1 - iq)/(Nq - 1)	=	0.59	(-)		
$i\gamma = (1 - T/(N + B^*c \cos (g\phi'))^{m+1}$ (fondazione nastriforme m = 2)	=	0.51	(-)		
qlim (carico limite unitario)	_	313.12	(kN/m ²)		
F = qlim*B*/ N	_	5.14	10 000	>	1
r = quin o / i4	=	5.14	(-)	>	- 1

CEDIMENTO DELLA FONDAZIONE

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703		Settore E		WBS OS0027	ld. doc. REL	N. prog. 01		Pag.diPag. 60 di 83
----------------	--	--------------	--	---------------	--------------------	----------------	--	------------------------

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126


Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.		Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	61 di 83

 ${\tt C. \! Aarohiviol \! Arch-Lavorol \! A194_Quadrilatero-Astaldi \! PEDEMANTANA \! Lotto 3-4 \! ^1 \! Sottovia Pianello \! Muri_H_2.50_Solo_A1+M1+R3.x \! / Solo_A1+M1+R3.x \!$

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

77	Accelerazione sismica	a _g /g	-	0.22	(-)	S	1.36
Ĕ	Coefficiente di riduzione dell'accelerazione	fficiente di riduzione dell'accelerazione ß m					
Dati Sismici	il muro ammette spostamenti? (si/no)	O si		Ono	bm = var.		
ati	coefficiente sismico orizzontale	kh -		0.0930	(-)		
_	coefficiente sismico verticale	kv	- 2	0.0465	(-)		
-	Coeff. di Spinta Attiva sulla parete	ka	-	0.36	(-)	0.361	
Spinta	componente orizzontale	kah	-	0.346	(-)		
S	componente verticale	kav	2	0.10	(-)		
₽	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	-	0.43	(-)	0.428	
Ξ	componente orizzontale	kash+	=	0.41	(-)		
-8	componente verticale	kasv+	-	0.12	(-)		
Coefficienti di	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	-	0.44	(-)	0.436	
Š	componente orizzontale	kash-	-	0.42	(-)		
-	componente verticale	kasv-	-	0.12	(-)		

 $\begin{array}{ll} Mt &= \frac{1}{2} Ka_{\alpha\alpha z}^{*} \gamma^{*}(1\pm kv)^{*}h^{2} h/3 \\ Mq &= \frac{1}{2} Ka_{\alpha\alpha z}^{*}q^{*}h^{2} \\ M_{\alpha t} &= m+t^{*}h \\ M_{n\alpha zh} &= \Sigma Pm_{t}^{*}b_{t}^{*}h h \end{array}$

o $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²*h/2 (con sisma)

 $N_{pp+inerzin} = \Sigma P m_i^* (1\pm kv)$

(solo con sisma)

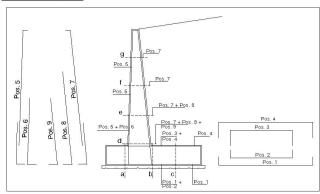
= ½ Ka_{vert}* γ*(1±kv)*h² = Ka_{vert}*q*h = v

condizione statica

	11	1.0	19	ext .	tot
sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	21.60	0.00	18.87	40.47
e-e	1.88	12.15	0.00	18.87	31.02
f-f	1.25	5.40	0.00	18.87	24.27
g-g	0.63	1.35	0.00	18.87	20.22

	condizione statica									
sezione	h	Mt	Mq	Mext	M _{tot}	Nt	Nq	N _{ext}	N _{ob}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	18.00	0.00	66.04	84.04	6.47	0.00	0.00	25.00	31.47
е-е	1.88	7.59	0.00	54.25	61.84	3.64	0.00	0.00	18.75	22.39
f-f	1.25	2.25	0.00	42.45	44.70	1.62	0.00	0.00	12.50	14.12
g-g	0.63	0.28	0.00	30.66	30.94	0.40	0.00	0.00	6.25	6.65

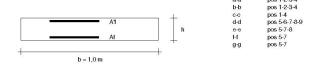
SLU_A1+M1+R3_URTO 15 Muri_H_2.50_Solo_A1+M1+R3.xls


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	62 di 83

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xds


SCHEMA DELLE ARMATURE

ARMATURE

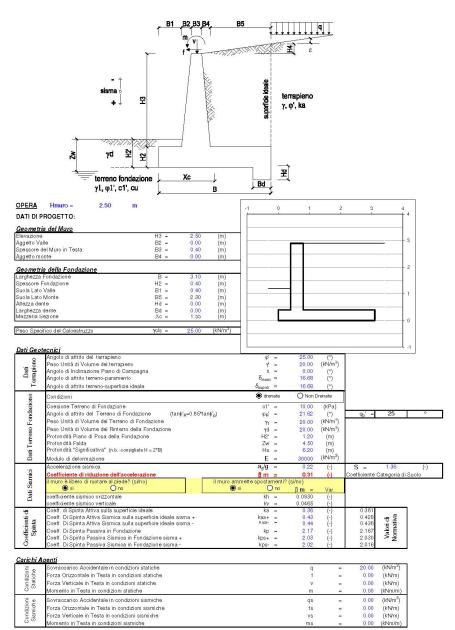
pos	nº/ml	ф	pos	n°/ml	φ
1	5.0	16	5	5.0	12
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	16
4	5.0	16	8	0.0	0

VERIFICHE

Sez.	IVISO	NSG	ısa	n	AI	AT	MHa	NHa	IHa
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(kN)
a-a	6.85	0.00	33.53	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-80.43	0.00	-37.81	0.40	10.05	10.05	129.53	0.00	140.25
C-C	-31.85	0.00	-18.91	0.40	10.05	10.05	129.53	0.00	140.25
d - d	84.04	31.47	40.47	0.40	10.05	5.65	133.78	31.47	145.50
e -e	61.84	22.39	31.02	0.40	10.05	5.65	132.43	22.39	143.98
d - d	84.04	31.47	40.47	0.40	10.05	5.65	133.78		31.47

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

SLU_A1+M1+R3_URTO 16 Muri_H_2.50_Sob_A1+M1+R3.xls


 3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	doc. RFI	01	Α	63 di 83

C.\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianelo\Muri_H_2.50_Solo_A1+M1+R3.xls

Sismica+M1+R3 17 Muri_H_2.50_Solo_A1+M1+R3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

lazione		

Opera Tratto L0703 213	Settore E		WBS OS0027	id. doc. REL	N. prog. 01	Rev. A	Pag. di Pag. 64 di 83
---------------------------	--------------	--	---------------	--------------------	----------------	-----------	--------------------------

C \archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianelo\Muri_H_2.50_Solo_A1+M1+R3.xls

			azi	oni	pro	proprietà del terreno			Ϋ́R			
		caso	permanenti	temporanee variabili	tan φ'	c'	Cu	Cap. portante	Scorriment o	Res.Terren o Valle		
			sfavorevoli	sfavorevoli	- 10			Ϋ́B	Ϋ́B	Ϋ́B		
_	0	caso A1+M1+R1	1.30	1.50	1.00	1.00	1.00	1.00	1.00	1.00		
SLU	0	caso A2+M2+R2	1.00	1.30	1.25	1.25	1.40	1.00	1.00	1.00		
SLD	•	Sismica	1.00	1.00	1.00	1.00	1.00	1.40	1.10	1.40		
def.	0	1.55	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

0	Angolo di attrito del terrapieno	φ'	- 3	25.00	(°)		
Dati errapieno	Peso Unità di Volume del terrapieno	4	-	20.00	(kN/m³)		
Dati	Angolo di Indinazione Piano di Campagna	8	-	0.00	(°)		
1 10	Angolo di attrito terreno-paramento	δ_{muro}	-	16.68	(°)		
-	Angolo di attrito terreno-superficie ideale	$\delta_{\text{sup}\text{id}}$	-	16.68	(°)		
	Coesione Terreno di Fondazione	c1'	-	10.00	(kN/m ²)		
erreno azione	Angolo di attrito del Terreno di Fondazione	φ_1	-	21.62	(°)		
E iZ	Peso Unità di Volume del Terreno di Fondazione	Yı	-	20.00	(kN/m ³)		
H + +5	Peso Unità di Volume del Rinterro della Fondazione	γd		20.00	(kN/m³)		
Dati	Profondità Piano di Posa della Fondazione	H21	-	1.20	(m)		
	Profondità Falda	Zw	-	4.50	(m)		
₽	Coeff. di Spinta Attiva sulla superficie ideale	ka		0.36	(-)	0.361	
ě.	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	-	0.43	(-)	0.428	- §
ng ge	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	-	0.44	(-)	0.436	a ii
Coefficienti c Spinta	Coeff. Di Spinta Passiva in Fondazione	kp	-	2.17	(-)	2.167	Valori di Normativa
Ř	Coeff. Di Spinta Passiva Sismica in Fondazione	kps+	-	2.03	(-)	2.030	Ž
0	Coeff. Di Spinta Passiva Sismica in Fondazione	kps-	-	2.02	(-)	2.016	

Caricin	Agenta (usati per veriliche di stabilità e allo Sco)				
Έφ	Sovraccarico Accidentale in condizioni sismiche	qs	-	0.00	(kN/m²)
ndizioni	Forza Orizzontale in Testa in condizioni sismiche	fs	-1	0.00	(kN/m)
5 8	Forza Verticale in Testa in condizioni sismiche	vs	= 1	0.00	(kN/m)
00	Momento in Testa in condizioni sismiche	ms	-	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

FORZE VERTICALI

- Peso de	el Muro (Pm)
Pm1 =	(B2*H3*ycls)/
Pm2 =	(B3.H3.Acis)

i Muro (P/m)
(B2*H3*ycls)/2
(B3*H3*ycls)/2
(B3*H3*ycls)/2
(B4*H3*ycls)/2
(B1*H2*ycls)
(B4*H4*ycls)
(B4*H4*ycls)
Pm1 + Pm2 + Pm3 + Pm4 + Pm5 (kN/m) (kN/m) (kN/m) (kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

| MUNICATION | MIN 0.00 (kNm/m) 15.00 (kNm/m) 0.00 (kNm/m) 48.05 (kNm/m) 0.00 (kNm/m) 63.05 (kNm/m)

-Terrapieno a tergo del muro Mt1 = P11*G1+B2+B3+B4-0,5*B5) Mt2 = P12*(B1+B2+B3+2/3*(B4+B5)) Mt3 = P13*(B1+B2+B3+2/3*B4) Mt1 = Mt1 + Mt2 + Mt3

Sismica+M1+R3 18 Muri_H_2.50_Solo_A1+M1+R3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	aoc.	N. prog. 01		Pag. di Pag. 65 di 83
20700	210	_	10	C0002/	REL	01	, ,	00 01 00

C:\tarchivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CONDIZ	ZIONE SISMICA +					
PINTE	DEL TERRENO E DEL SOVRACCARICO					
pinta to	stale condizione sismica +					
=	0,5*y**(1+kv)*(H2+H3+H4+Hd)2*kas*	=	37.68	(kN/m)		
=	qs*(H2+H3+H4+Hd)*kas*	=	0.00	(kN/m)		
	ente orizzontale condizione sismica +					
h = h =	Sst1*cos8	=	36.10	(kN/m)		
n =	Ssq1*cosδ	=	0.00	(kN/m)		
	ente verticale condizione sismica +					
t1v =	Sst1*sen8	=	10.81	(kN/m)		
q1v =	Ssq1*sen∂	-	0.00	(kN/m)		
	assiva sul dente					
=½*γ ₁ '(+kv) Hd^{2} kps*+ $(2*c_1'*kps*^{0.5}+\gamma 1'(1+kv) kps**H2')*Hd =$		0.00	(kN/m)		
	TI DELLA SPINTA DEL TERRENO E DEL SOVRACO	CARICO				
	one sismica + - Sst1h * ((H2+H3+H4+Hd)/3-Hd)	=	34.89	(kN/m)		
	Sst1v *B	=	33.52	(kN/m)		
sq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	=	0.00	(kN/m)		
	Ssq1v * B	=	0.00	(kN/m)		
p =	γ_1 '*Hd ³ *kps*/3+(2*c1'*kps* ^{0.5} + γ_1 '*kps**H2')*Hd ² /2 =		0.00	(kN/m)		
	DEL MURO E DEL TERRAPIENO					
erzia c	lel muro (Ps) Pm*kh	=	5.21	(kN/m)		
		1907 IN	0.21	,		
	rizzontale e verticale del terrapieno a tergo del muro		10.70	/LNI/e->		
h = v =	Pt*kh Pt*kv	=	10.70 5.35	(kN/m) (kN/m)		
-		-	3.33	(ideall)		
	nto di momento dovuto all'inerzia del muro (MPs)		20.000			
s1 =	kh*Pm1*(H2+H3/3)	=	0.00			
s2 = s3 =	kh*Pm2*(H2 + H3/2) kh*Pm3*(H2+H3/3)	=	3.84 0.00	(kNm/m) (kNm/m)		
	kh*Pm4*(H2/2)	=		(KNm/m)		
s5 =		=		(kNm/m)		
s =	MPs1+MPs2+MPs3+MPs4+MPs5	=	4.41	(kNm/m)		
reme	nto di momento dovuto all'inerzia del terrapieno (MPt:	s)				
	kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5) =	-,	7.22	(kNm/m)		
ts2 =	$kh^*Pt2^*((H2 + H3 + H4/3) - (B - B5/3)^*0.5) =$		0.00	(kNm/m)		
	kh*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5) =		0.00	(kNm/m)		
s =	MPts1 + MPts2 + MPts3	=	7.22	(kNm/m)		
MEN.	II DOVUTI ALLE FORZE ESTERNE					
ext1 =	ms	=		(kNm/m)		
	fs*(H3 + H2)	=		(kNm/m)		
i3 =	vs*(B1 +B2 + B3/2)	=	0.00	(kNm/m)		
EIC	ALLO SCORRIMENTO					
101	ALLO SCORRIMENTO					
	forze verticali (N)					
=	Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	187.16	(kN/m)		
	forze orizzontali (T)					
=	Sst1h + Ssq1h + fs +Ps + Ptsh	=	52.00	(kN/m)		
fficier	te di attrito alla base (f)					
=	tgφ1'	=	0.40	(-)		
=	(N*f + Sp) / T	=	1.43	(-)	>	
IFIC.	AL RIBALTAMENTO					
ento	stabilizzante (Ms)					
=	Mm + Mt + MSst2 + MSsq2 +Mfext3	=	320.82	(kNm/m)		
mont-	12 No. 10 No. 10					
mento =	ribaltante (Mr) MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts =		46.53	(kNm/m)		
=	Ms / Mr	=	6.90	(-)	>	1

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

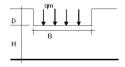
Opera	Tratto	Settore			ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	66 di 83

C:\archivic\Arch-Lavorc\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

VERIFICA DELLA FONDAZIONE

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme


alim = c'Nc*ic + a.*Na*ia + 0 5**1*B*N**i*

q _b =rd'H2' sovraccarico stabilizzante = 24,00 (kN/n e = M / N eccentricità = 0.08 (m) B'= B - 2e larghezza equivalente = 2.93 (m) I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)	c1' coesione terrene	o di fondaz.	-	10.00	(kN/mq	
q ₀ =rd"H2" sovraccarico stabilizzante = 24,00 (kN/n e = M / N eccentricità = 0.08 (m) B"= B - 2e larghezza equivalente = 2.93 (m) I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)	φ1' angolo di attrito	terreno di fondaz.	=	20.01	(°)	
e = M / N eccentricità = 0.08 (m) B= B - 2e larghezza equivalente = 2.93 (m) I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)	γ ₁ peso unità di vo	lume terreno fondaz.	=	20.00	(kN/m ³	
B*= B - 2e larghezza equivalente = 2.93 (m) I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)	q _o =γd*H2' sovraccarico sta	abilizzante	=	24.00	(kN/m ²)	
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)	e = M / N eccentricità			0.08	(m)	
2 Newtonius V	B*= B - 2e larghezza equiv	valente	=	2.93	(m)	
	i valori di No, Niq e Ng solio	stati valutati con le espressio	m saggeme aa	V 0510 (1975)		
	Nq = $tg^2(45 + \phi'/2)^*e^{(x^*tg(\phi'))}$	(1 in cond. nd)	=	6.41	(-)	
	$\begin{aligned} Nq &= tg^2(45 + \phi'/2)^* e^{\frac{(x''g(\phi''))}{4}} \\ Nc &= (Nq - 1)/tg(\phi') \\ N\gamma &= 2^*(Nq + 1)^*tg(\phi') \end{aligned}$	(1 in cond. nd)	= = =	6.41 14.84 5.39		
in (1 T/M Distortant) (1 in cond not)	$\begin{aligned} Nq &= tg^2(45 + \phi'/2)^*e^{(x^*tg(\phi^*))} \\ Nc &= (Nq - 1)^t(g(\phi^*)) \\ N\gamma &= 2^*(Nq + 1)^*tg(\phi^*) \\ I \ valori \ di \ ic, \ iq \ e \ i\gamma \ sono \ sta \end{aligned}$	(1 in cond. nd) (2+π in cond. nd) (0 in cond. nd) ti valutati con le espressioni s	= = = suggerite da Ves	6.41 14.84 5.39 ic (1975)	(-) (-) (-)	
$iq = (1 - T/(N + B^*c^*cotg\varphi^*))^m$ (1 in cond. nd) = 0.65 (.)	$\begin{split} Nq &= tg^2(45 + \phi'/2)^* e^{K^* g(\pi^*)} \\ Nc &= (Nq - 1)/tg(\phi^*) \\ N\gamma &= 2^*(Nq + 1)^* tg(\phi^*) \\ I valori di ic, iq e i y sono sta \\ iq &= (1 - T/(N + B^* e^* cotg\phi^*))^* \end{split}$	(1 in cond. nd) (2+π in cond. nd) (0 in cond. nd) ti valutati con le espressioni s	= = = suggerite da Ves =	6.41 14.84 5.39 ic (1975)	(-) (-) (-)	
$iq = (1 - T/(N + B^*c^*cotg\phi^*))^m$ (1 in cond. nd) = 0.65 (·) $ic = iq - (1 - iq)^*(Nq - 1)$ = 0.58 (·) $i\gamma = (1 - T/(N + B^*c^*cotg\phi^*))^{m-1}$ = 0.52 (·)	$\begin{split} Nq &= tg^2(45 + \phi'/2)^* e^{(x^*q(\phi^*))} \\ Nc &= (Nq - 1)/(g(\phi^*)) \\ N\gamma &= 2^*(Nq + 1)^* tg(\phi^*) \\ I \ valori \ di \ ic, \ iq \ e \ i\gamma \ sono \ sta \\ iq &= (1 - T/(N + B^*e^*cotg\phi^*))^* \\ ic &= iq \cdot (1 - iq)/(Nq - 1) \end{split}$	(1 in cond. nd) (2+π in cond. nd) (0 in cond. nd) ti valutati con le espressioni s (1 in cond. nd)	= = = suggerite da Ves = =	6.41 14.84 5.39 ic (1975) 0.65 0.58	(-) (-) (-) (-)	

CEDIMENTO DELLA FONDAZIONE

qlim (carico limite unitario)

F = qlim*B*/N

 $\delta = \mu 0 * \mu 1 * qm * B* / E$

269.22 (kN/m²)

(Christian e Carrier, 1976)

D/B* H/B* Profondità Piano di Posa della Fondazione 0.41 2.12 $qm = N / (B - 2^{*}e) = N / B^{*} =$ Carico unitario medio (qm) 63.85 (kN/ma) Coefficiente di forma µ0 = f(D/B) μ0 = 0.942 (-) Coefficiente di profondità µ1 = f(H/B) $\mu 1 =$ 0.69 (-) Cedimento della fondazione $\delta = \mu 0 + \mu 1 + qm + B + / E =$ 4.04 (mm)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore E	WBS OS0027	ld. doc. REL	N.prog. 01	Rev. A	Pag. di Pag. 67 di 83
				KCL			

C:\tarchivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CONDIZIONE SISMICA -			
SPINTE DEL TERRENO E DEL SOVRACCARICO			
- Spinta totale condizione sismica -			
$Sst2 = 0.5^*\gamma^*(1-kv)^*(H2+H3+H4+Hd)^2*kas$	=	34.93	(kN/m)
Ssq2 = qs*(H2+H3+H4+Hd)*kas	=	0.00	(kN/m)
- Componente orizzontale condizione sismica - Sst2h = Sst2*cosδ		33.46	(kN/m)
Ssq2h = Ssq2*cosδ	=	0.00	(kN/m)
Sagzii = Sagz coso	=	0.00	(Melli)
- Componente verticale condizione sismica -			
Sst2v = Sst2*senδ	=	10.02	(kN/m)
Ssq2v = Ssq2*senδ	=	0.00	(kN/m)
817 1017			
- Spinta passiva sul dente Sp=½**γ1* (1-kv) Hd²*kps;+(2*c;**kps* ^{0.5} +γ1* (1-kv) kps**H2*)*Hd =		0.00	/I.N.I/\
$Sp=\frac{1}{2}\gamma_1^{-1}(1-kv) Hd^{-1}kps + (2^{-1}kps^{-1}+\gamma_1^{-1}(1-kv) kps^{-1}Hd) =$		0.00	(kN/m)
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRA	CCARICO		
- Condizione sismica -			
MSst1 = Sst2h * ((H2+H3+H4+Hd)/3-Hd)	-	32.34	(kN/m)
MSst2 = Sst2v * B	=	31.07	(kN/m)
MSsq1 = Ssq2h * ((H2+H3+H4+Hd)/2-Hd)	=	0.00	(kN/m)
MSsq2 = Ssq2v * B	=	0.00	(kN/m)
$MSp = \gamma_1'' + Hd^{3} + (2*c'' + kps^{0.5} + \gamma_1'' + kps'' + H2') + Hd^{2}/2 =$		0.00	(kN/m)
INERZIA DEL MURO E DEL TERRAPIENO			
- Inerzia del muro (Ps)			
Ps = Pm*kh		5.21	(kN/m)
			S. C.
 Inerzia orizzontale e verticale del terrapieno a tergo del mu 	ro (Pts)		
Ptsh = Pt*kh		10.70	(kN/m)
Ptsv = Pt*kv	=	-5.35	(kN/m)
- Incremento di momento dovuto all'inerzia del muro (MPs)			
MPs1 = kh*Pm1*(H2+H3/3)	_	0.00	(kNm/m)
MPs2 = kh*Pm2*(H2 + H3/2)	-	3.84	
MPs3 = kh*Pm3*(H2+H3/3)	=		(kNm/m)
$MPs4 = kh^*Pm4^*(H2/2)$	_	0.58	
$MPs5 = -kh^{+}Pm5^{+}(Hd/2)$	=	0.00	(kNm/m)
MPs = MPs1+MPs2+MPs3+MPs4+MPs5	=	4.41	(kNm/m)
 Incremento di momento dovuto all'inerzia del terrapieno (M 	Pts)		
$MPts1 = kh^*Pt1^*((H2 + H3/2) + (B - B5/2)^*0.5) =$		28.08	(kNm/m)
$MPts2 = kh^*Pt2^*((H2 + H3 + H4/3) + (B - B5/3)^*0.5) =$		0.00	(kNm/m)
MPts3 = kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*B4)*0.5)=		0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3	=	28.08	(kNm/m)
MOMENTI DOVUTI ALLE FORZE ESTERNE			
Miext = ms	-	0.00	(kNm/m)
Wfext2 = fs*(H3 + H2)	=	0.00	(kNm/m)
Mfext3 = vs*(B1 +B2 + B3/2)	=		(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera	Tratto	Settore	CEE	WBS	ld.	N.prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	doc. RFI	01	Α	68 di 83

C3arohiviolAroh-LavorolA194_Quadrilatero-AstaldNPEDEMANTANA/Lotto 3-4\Sottovia PianellolMuri_H_2.50_Solo_A1+M1+R3.xls

VER	IFIC.	ALLO SCORRIMENTO						
Risu	Itante	forze verticali (N)						
N		Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	175.67	(kN/m)			
Risu	ltante	forze orizzontali (T)						
T	=	Sst1h + Ssq1h + fs+Ps + Ptsh	=	49.37	(kN/m)			
Coef	ficien	te di attrito alla base (f)						
f	=	tg\phi1'	=	0.40	(-)			
Fs	=	(N*f + Sp) / T	=	1.41	(-)	>	1.1	
VER	IFICA	AL RIBALTAMENTO						
(3)		· · · · · · · · · · · · · · · · · · ·						
Mom	nento	stabilizzante (Ms) Mm + Mt + MSst2 + MSsq2 +Mfext3	=	318.37	(kNm/m)			
Mon	ento	ribaltante (Mr)						
Mr	=	MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts =		64.84	(kNm/m)			
Fr	=	Ms / Mr	=	4.91	(-)	>	1	
VER	IFICA	DELLA FONDAZIONE						
100								
Risu N		forze verticali (N) Pm+ Pt + vs + Sst1v + Ssq1v + Ptsv	=	175.67	(kN/m)			
_								
Risu T		forze orizzontali (T) Sst1h + Ssq1h + fs+Ps + Ptsh - Sp	=	49.37	(kN/m)			
		*						
	ltante =	dei momenti rispetto al piede di valle (MM) Ms - Mr	=	253.53	(kNm/m)			
Morr	ento	rispetto al baricentro della fondazione (M)						
М	=	Xc*N - MM	=	18.76	(kNm/m)			

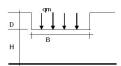
Relazione di calcolo

 3° stralcio funzionale: Castelra
imondo nord — Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Kelazioi	ic ui	caice	лО

Opera L0703		Settore E		WBS OS0027	ld. doc. REL	N.prog. 01		Pag.diPag. 69 di 83
----------------	--	--------------	--	---------------	--------------------	---------------	--	------------------------


C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q ₀ *Nq*iq	+ 0,5*y1*B*Ny*iy					
c1' coesione terren	o di fondaz.	=	10.00	(kN/mg)		
φ1' angolo di attrito	terreno di fondaz.	-	20.01	(°)		
	olume terreno fondaz.	=	20.00	(kN/m ³)		
q _o =yd*H2' sovraccarico s	$q_o = \gamma d'H2'$ sovraccarico stabilizzante			(kN/m^2)		
e = M / N eccentricità		-	0.11	(m)		
B*= B - 2e larghezza equi	=	2.89	(m)			
Ivalori di Nc, Nq e Ng sono	o stati valutati con le espressio	oni suggerite da \	Vesic (1975)			
$Nq = tg^2(45 + \phi'/2)^*e^{(x^*tg(\phi'))}$	(1 in cond. nd)	=	6.41	(-)		
$Nc = (Nq - 1)/tq(\phi')$	(2+π in cond. nd)	=	14.84	(-)		
$N\gamma = 2^*(Nq + 1)^*tg(\phi^*)$	(0 in cond. nd)	=	5.39	(-)		
Ivaloridiic, iq e iγ sono sta	ati valutati con le espressioni s	suggerite da Vesi	ic (1975)			
ig = (1 - T/(N + B*c'cotgφ'))	m (1 in cond. nd)	=	0.65	(-)		
ic = iq - (1 - iq)/(Nq - 1)		=	0.59	(-)		
$i\gamma = (1 - T/(N + B*c*cotg\phi*))$	m+1	=	0.52	(-)		
(fondazione nastriforme m	= 2)					
qlim (carico limite ur	nitario)	=	268.51	(kN/m^2)		
F = qlim*B*/ N		=	4.41	(-)	>	1.4

CEDIMENTO DELLA FONDAZIONE

 $\delta = \mu 0 + \mu 1 + qm + B + / E$

(Christian e Carrier, 1976)

D =	1.20	(m)
D/B* =	0.42	(m)
H/B* =	2.15	(m)
$qm = N / (B - 2^{+}e) = N / B^{+} =$	60.86	(kN/mq)
μ0 =	0.942	(-)
μ1 =	0.69	(-)
$\delta = \mu 0 + \mu 1 + qm + B + / E =$	3.83	(mm)
	$D/B^{*}=H/B^{*}=$ $qm=N/\left(B-2^{*}e\right)=N/B^{*}=$ $\mu 0=$ $\mu 1=$	$\begin{array}{ccc} D(B^*) = & 0.42 \\ H(B^*) = & 2.15 \\ \\ qm = N/(B-2^*e) = N/B^* = & 60.86 \\ \\ \mu 0 = & 0.942 \\ \\ \mu 1 = & 0.69 \end{array}$

Sismica+M1+R3 Muri_H_2.50_Solo_A1+M1+R3.xls 23

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud

4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

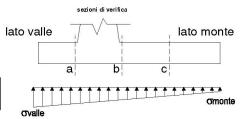
Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		70 di 83

violArch-LavorolA194_Quadrilatero-AstaldNPEDEMANTANA/Lotto 3-4\Sottovia PianellolMuri_H_2.50_Solo_A1+M1+R3.xls

CALCOLI STATICI - Verifica allo Stato Limite Ultimo

CARATTERISTICHE DEI MATERIALI


Calcestruzzo				Accia	io			
Rck =	30	(MPa)		tipo di	acciai)	B450C ▼	
γс =	2.1			fyk =		450	(MPa)	
				γE	=	1.00		
fed = Rek /γm,c =		14.11	(MPa)	γs	=	1.15		
<u>Copriferro</u>				fyd = f	yk/γs/	γE =	391.30	(MPa)
c =	6.00	(cm)		Es	=	210000	(MPa)	
				ϵ_{ys}	=	0.19%		
				ϵ_{uk}	=	7.500%		
				Eur	=	6.750%		

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

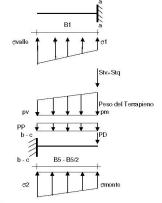
	N	M	⊘ valle	amonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
sisma+	187.16	15.81	70.25	50.50
sisma-	175.67	18.76	68.38	44.95

Mensola Lato Valle Peso Proprio.

 $Ma = \sigma 1^*B1^2/2 + (\sigma valle - \sigma 1)^*B1^2/3 - PP^*B1^2/2^*(1\pm kv)$

00000	orvalle .	6 1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
sisma+	70.25	67.70	4.71
sisma-	68.38	65.36	4.63

1	Ta	
Г	[kN]	
Г	23.40	
1	22 73	


10.00 (kN/m)

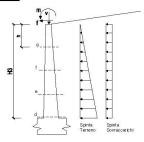
$$\label{eq:mbe_def} \begin{split} Mb &= (\sigma_{monke}^*(pvb+PP)^*(1\pm kv))^*B5^2/2 + (\sigma_2b-\sigma_{monke})^*B5^2/6 - (pm-pvb))^*(1\pm kv)^*B5^2/3 + \\ &- (Stv+Sqv)^*B5-PD^*(1\pm kv)^*(B5-Bd/2)-PD^*kh^*(Hd+H2/2) + Msp+Sp^*H2/2 \end{split}$$

$$\begin{split} \text{Mc} = & (\sigma_{\text{month}^*}(\text{pvc+PP})^*(1\,\text{tkv}))^*(B5/2)^2/2 + (\sigma2c-\sigma_{\text{month}})^*(B5/2)^2/6 + (\text{pm-pvc})^*(1\,\text{tkv})^*(B5/2)^2/3 + (\text{Siv+Sqv})^*(B5/2) + D^*(1\,\text{tkv})^*(B5/2) + D^*(h^*(\text{Hd}+\text{Hd}/2)) + \text{Msp+Sp*} + \text{Sp*} + \text{Hd}/2) \end{split}$$

200000000	gmonte	o2b	Mb	g2c	Mc	Tb
caso	[kN/m²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]	[kN]
sisma+	50.50	65.15	-44.45	57.83	-18.94	-22.23
sisma-	44.95	62.34	-40.14	53.65	-17.71	-18.22

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126


Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.		Pag. di Pag.
L0703	213	E	16	OS0027	REL.	01	Α	71 di 83

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Dati Sismic	Accelerazione sismica Coefficiente di riduzione dell'accelerazione	a _y /g <mark>ß m</mark>	-	0.22 0.31	(-) (-)	S 1.36 Categoria di suolo
	il muro ammette spostamenti? (si/no)	si		O no	bm = var	
	coefficiente sismico orizzontale coefficiente sismico verticale	kh kv	-	0.0930 0.0465	(-) (-)	
Spinta	Coeff. di Spinta Attiva sulla parete	ka	-	0.36	(-)	0.361
	componente orizzontale	kah	100	0.346	(-)	
G.	componente verticale	kav	100	0.10	(-)	
9	Coeff. Di Spinta Attiva Sismica sulla parete	kas+	-	0.43	(-)	0.428
	componente orizzontale	kash+	121	0.41	(-)	
Coefficienti	componente verticale	kasv+	100	0.12	(-)	
	Coeff. Di Spinta Attiva Sismica sulla parete	kas-	-	0.44	(-)	0.436
Š	componente orizzontale	kash-	120	0.42	(-)	
_	componente verticale	kasv-	(=)	0.12	(-)	

 $\begin{array}{lll} Mt &=& 1/\epsilon \; K a_{critz} \; \; \gamma^* (1\pm kv)^* h^{2*} h/3 \\ Mq &=& 1/\epsilon \; K a_{critz} \; \; q^* h^2 \\ M_{ext} &=& m+l^* h \\ M_{noczh} &=& \Sigma P m_l^* b_l^* k h \end{array}$

 $Nt = \frac{1}{2} Ka_{vert}^* \gamma^* (1\pm kv)^* h^2$ $Nq = Ka_{vart} \dot{q}^{\dagger}h$ $N_{oxt} = v$ $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$

ο ½ Ka_{orizz}* γ*(1±kv)*h²*h/2 (con sisma)

(solo con sisma)

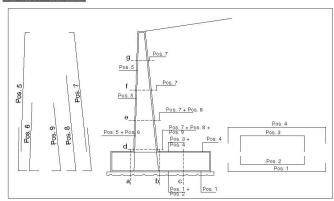
condizione sismica +

10001-070200	h	Tt Tq		Text	Tinerzia	Ttot	
sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	2.50	26.83	0.00	0.00	2.33	29.15	
е-е	1.88	15.09	0.00	0.00	1.74	16.83	
f-f	1.25	6.71	0.00	0.00	1.16	7.87	
g-g	0.63	1.68	0.00	0.00	0.58	2.26	

condizione sismica +

sezione	h	Mt	Mq	M _{ext}	Minerzia	M _{tot}	Nt	Nq	N _{ext}	N _{pp+inerzia}	N _{tot}	
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
	d-d	2.50	33.53	0.00	0.00	2.91	36.44	8.04	0.00	0.00	26.16	34.20
	6-6	1.88	14.15	0.00	0.00	1.64	15.78	4.52	0.00	0.00	19.62	24 14

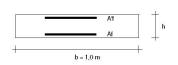
·	COTIGIZIONE SISTRICA -										
sezione	h	Mt	Mq	M _{ext}	M _{inerzia}	M _{tot}	Nt	Nq	N _{ext}	N _{pp+inerzia}	N _{tot}
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	31.08	0.00	0.00	2.91	33.99	7.45	0.00	0.00	23.84	31.29
e-e	1.88	13.11	0.00	0.00	1.64	14.75	4.19	0.00	0.00	17.88	22.07
f-f	1.25	3.89	0.00	0.00	0.73	4.61	1.86	0.00	0.00	11.92	13.78
a-a	0.63	0.49	0.00	0.00	0.18	0.67	0.47	0.00	0.00	5.96	6.42


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di geogge al depumptora. Mura in can da Pr. 0+103 a Pr. 0+126

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01		72 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls


SCHEMA DELLE ARMATURE

ARMATURE

pos	nº/ml	ф	pos	nº/ml	φ
1	5.0	16	5	5.0	12
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	16
4	5.0	16	8	0.0	0
			9	0.0	0

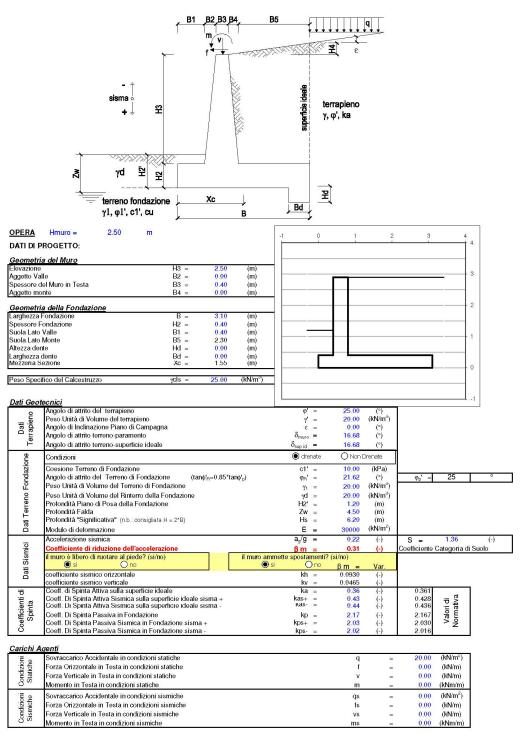
VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
e-e	pos 5-7-8
f-f	pos 5-7
g-g	pos 5-7

Sez.	Msd	Nsd	Tsd	h	Af	A'f	MRd	NRd	TRd
(-)	(kNm)	(kN)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(kN)	(kN)
a-a	4.71	0.00	22.60	0.40	10.05	10.05	129.53	0.00	140.25
b - b	-44.45	0.00	-19.41	0.40	10.05	10.05	129.53	0.00	140.25
c-c	-18.94	0.00	-9.71	0.40	10.05	10.05	129.53	0.00	140.25
d-d	36.44	34.20	2.33	0.40	10.05	5.65	134.19	34.20	145.50
e -e	15.78	24.14	1.74	0.40	10.05	5.65	132.69	24.14	143.98

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

3° stralcio funzionale: Castelraimondo nord — Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud — innesto S.S. 77 a Muccia


OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore			ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	73 di 83

C\archivio\Arch-Lavoro\A194 Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri H 2.50 Solo A1+M1+R3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera		Settore			ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	E	16	OS0027	REL	OI.	А	74 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

	coefficienti parziali											
			azio	oni	pro	proprietà del terreno			ÝR			
		caso	permanenti	temporanee variabili	tan φ'	c' cu	Cu	Cap. portante	Scorriment 0	Res.Terren o Valle		
			sfavorevoli	sfavorevoli				YΒ	YΒ	Ϋ́B		
_	0	caso A1+M1+R1	1.30	1.50	1.00	1.00	1.00	1.00	1.00	1.00		
SLU		EQU+M2+R2	1.10	1.50	1.25	1.25	1.40	1.00	1.00	1.00		
SLD	0		1.00	1.00	1.25	1.25	1.40	1.00	1.00	1.00		
def.	0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Dati Geot	ecnici (usati per verifiche di stabilità e SLU)						
0	Angolo di attrito del terrapieno	φ'	=	20.46	(°)		
<u>.</u> .	Peso Unità di Volume del terrapieno	γ'		22.00	(kN/m ³)		
Dati Terrapieno	Angolo di Inclinazione Piano di Campagna	3	=	0.00	(°)		
	Angolo di attrito terreno-paramento	$\delta_{ m muro}$		13.65	(°)		
-	Angolo di attrito terreno-superficie ideale	$\delta_{\text{sup id}}$	=	13.65	(°)		
Terreno dazione	Coesione Terreno di Fondazione	c1'	H	8.00	(kN/m ²)		
	Angolo di attrito del Terreno di Fondazione	ϕ_1	=	17.59	(°)		
Zic	Peso Unità di Volume del Terreno di Fondazione	γ1	=	20.00	(kN/m ³)		
Jati Terreno Fondazione	Peso Unità di Volume del Rinterro della Fondazione	γd	=	20.00	(kN/m^3)		
Pati	Profondità Piano di Posa della Fondazione	H2'	H	1.20	(m)		
	Profondità Falda	Zw	-	4.50	(m)		
75	Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.43	(-)	0.430	
Ę.	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.51	(-)	0.506	ĕ. d i
ng iei	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	=	0.51	(-)	0.514	ati di
Coefficienti di Spinta	Coeff. Di Spinta Passiva in Fondazione	kp	=	1.87	(-)	1.866	Valori di Normativa
	Coeff. Di Spinta Passiva Sismica in Fondazione	kps+	-	1.74	(-)	1.737	> ž
U	Coeff, Di Spinta Passiva Sismica in Fondazione	kps-	=	1.72	(-)	1.724	

Carichi A	genti (usati per verifiche di stabilità e allo SLU)				
'E 0	Sovraccarico Accidentale in condizioni statiche	q	=	30.00	(kN/m ²)
izi ch	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
Condizioni Statiche	Forza Verticale in Testa in condizioni statiche	V	=	0.00	(kN/m)
30	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
ie ai	Sovraccarico Accidentale in condizioni sismiche	qs	=1	0.00	(kN/m ²)
izio	Forza Orizzontale in Testa in condizioni sismiche	fs	=	0.00	(kN/m)
	Forza Verticale in Testa in condizioni sismiche	Vs	=	0.00	(kN/m)
	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

VERIFICHE GEOTECNICHE

Pm1 = Pm2 =	Muro (Pm) (B2*H3*;cls)/2 (B3*H3*;cls)	=	0.00 25.00	(kN/m) (kN/m)
Pm3 =	(B4*H3*γcls)/2	-	0.00	(kN/m)
Pm4 =	(B*H2*ncls)	-	31.00	(kN/m)
Pm5 =	(Bd*Hd*)cls)	=	0.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	-	56.00	(kN/m)
- Peso de	I terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3*γ)	1=1	115.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*γ')	1-1	0.00	(kN/m)
Pt3 =	(B4*H3*γ)/2	7	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	-	115.00	(kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro	(Mr	n)			
Mm1 =		Pm1*(B1+2/3 B2)	-	0.00	(kNm/m)
Mm2 =	-	Pm2*(B1+B2+0,5*B3)	=	15.00	(kNm/m)
Mm3 =	-	Pm3*(B1+B2+B3+1/3 B4)		0.00	(kNm/m)
Mm4 =	-	Pm4*(B/2)	2.	48.05	(kNm/m)
Mm5 =	-	Pm5*(B - Bd/2)	7=7	0.00	(kNm/m)
Mm =		Mm1 + Mm2 + Mm3 + Mm4 + Mm5	=	63.05	(kNm/m)
- Terra	pier	no a tergo del muro			
Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	-	224.25	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	7=1	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	7=7	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	-	224.25	(kNm/m)

 3° stralcio funzionale: Castelra
imondo nord – Castelra
imondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

L0703 213 E 16 OS0027 COC. 01 A 75 di 8	Opera L0703		Settore E			aoc.	N.prog. 01		Pag.diPag 75 di 83
---	----------------	--	--------------	--	--	------	---------------	--	-----------------------

 $C.\label{eq:carchivio-Arch-Lavoro-A194_Quadrilatero-Astaldi} PEDEMANTANA \label{eq:carchivio-Arch-Lavoro-A194_Quadrilatero-Astaldi} PEDEMANTANA \label{eq:carchivio-A194_Quadrilatero-A19$

CONDIZ	IONE STATICA (SLU)	(EQU+M2+R2)			
SPINTE	DEL TERRENO E DEL SOVRACCARICO						
	otale condizione statica						
St =	0,5*γ*(H2+H3+H4+Hd)2*ka	7=7	39.80	(kN/m)			
Sq =	q*(H2+H3+H4+Hd)*ka	-	37.43	(kN/m)			
- Compon	ente orizzontale condizione statica						
Sth =	St*cosδ	=	38.67	(kN/m)			
Sqh =	Sq*cosδ	.=	36.37	(kN/m)			
	ente verticale condizione statica						
Stv =	St*senδ	=	9.39	(kN/m)			
Sqv =	Sq*senδ	=	8.83	(kN/m)			
- Spinta p	assiva sul dente						
Sp =	$\frac{1}{2}$ * γ_1 '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + γ 1'*kp*H2')*Hd	-	0.00	(kN/m)			
- Condizio MSt1 = MSt2 = MSq1 = MSq2 = MSp = MOMEN Mfext1 = Mfext2 = Mfext3 =	f*(H3 + H2) v*(B1 +B2 + B3/2)	:	37.39 29.11 52.74 27.37 0.00 0.00 0.00 0.00	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m) (kN/m)			
VERIFICA	A AL RIBALTAMENTO	(EQU+M2+I	R2)			
Momento Ms =	stabilizzante (Ms) Mm + Mt + MSt2 + MSq2 + Mfext3	=	315.05	(kNm/m)			
Momento Mr =	ribaltante (Mr) MSt1 + MSq1 + Mfext1+ Mfext2 + MSp	=	90.12	(kNm/m)			
Fr =	Ms / Mr	=	3.50	(-)	>	11	

29

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo

Opera	Tratto	Settore			ld. doc.	N. prog.	Rev.	Pag.diPag.
L0703	213	Е	16	OS0027	REL	01	Α	76 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

				coefficienti p	arziali					
			azio	oni	pro	prietà del terrei	no		ÝΒ	
		caso	permanenti	temporanee variabili	tan φ'	c'	c _u	Cap. portante	Scorriment o	Res.Terren o Valle
			sfavorevoli	sfavorevoli				YΒ	YΒ	ÝΒ
	0	caso A1+M1+R1	1.30	1.50	1.00	1.00	1.00	1.00	1.00	1.00
S	0	EQU+M2	1.10	1.50	1.25	1.25	1.40	1.00	1.00	1.00

۰	Angolo di attrito del terrapieno	φ'	-	25.00	(°)		
Dati Terrapieno	Peso Unità di Volume del terrapieno	γ'		20.00	(kN/m ³)		
Dati	Angolo di Inclinazione Piano di Campagna	8	=	0.00	(°)		
_ = =	Angolo di attrito terreno-paramento	$\delta_{ m muro}$	=	16.68	(°)		
Е	Angolo di attrito terreno-superficie ideale	$\delta_{ m sup}$ id	=	16.68	(°)		
12	Coesione Terreno di Fondazione	c1'	=	10.00	(kN/m^2)		
e e	Angolo di attrito del Terreno di Fondazione	φ_1	=	21.62	(°)		
erreno azione	Peso Unità di Volume del Terreno di Fondazione	Ϋ́1	=	20.00	(kN/m³)		
F 0	Peso Unità di Volume del Rinterro della Fondazione	γd	=	20.00	(kN/m ³)		
Pati	Profondità Piano di Posa della Fondazione	H2'	-	1.20	(m)		
	Profondità Falda	Zw	-	4.50	(m)		
75	Coeff. di Spinta Attiva sulla superficie ideale	ka	=	0.36	(-)	0.361	
₹	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas+	=	0.43	(-)	0.428	≔
in se	Coeff. Di Spinta Attiva Sismica sulla superficie ideale	kas-	1=1	0.44	(-)	0.436	Ë
efficient Spinta	Coeff. Di Spinta Passiva in Fondazione	kp	=	2.17	(-)	2.167	Valori
Coefficienti di Spinta	Coeff. Di Spinta Passiva Sismica in Fondazione	kps+	=	2.03	(-)	2.030	Valori di
\sim	Cooff, Di Spinta Passiva Sismica in Fondazione	kns-	-	2.02	(-)	2.016	

in e	Sovraccarico Accidentale in condizioni statiche	q	=	20.00	(kN/m^2)
izici	Forza Orizzontale in Testa in condizioni statiche	f	=	0.00	(kN/m)
Statiche	Forza Verticale in Testa in condizioni statiche	v	=	0.00	(kN/m)
30	Momento in Testa in condizioni statiche	m	=	0.00	(kNm/m)
E D	Sovraccarico Accidentale in condizioni sismiche	qs	=	0.00	(kN/m ²)
ndizion miche	Forza Orizzontale in Testa in condizioni sismiche	fs	=1	0.00	(kN/m)
Sism	Forza Verticale in Testa in condizioni sismiche	Vs	=	0.00	(kN/m)
20	Momento in Testa in condizioni sismiche	ms	=	0.00	(kNm/m)

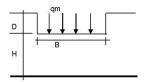
VERIFICHE GEOTECNICHE

FORZE VERTICALI

- Peso de	l Muro (Pm)			
Pm1 =	(B2*H3*ncls)/2		0.00	(kN/m)
Pm2 =	(B3°H3°/cis)	=	25.00	(kN/m)
Pm3 =	(B4*H3*ncls)/2	-	0.00	(kN/m)
Pm4 =	(B*H2*)cls)	=	31.00	(kN/m)
Pm5 =	(Bd*Hd*ycls)	-	0.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	=	56.00	(kN/m)
- Peso de	l terreno sulla scarpa di monte del muro (Pt)			
Pt1 =	(B5*H3* _Y)	1=1	115.00	(kN/m)
Pt2 =	(0,5*(B4+B5)*H4*γ')		0.00	(kN/m)
Pt3 =	(B4*H3*γ)/2	-	0.00	(kN/m)
Pt =	Pt1 + Pt2 + Pt3	=	115.00	(kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

_	Mur	o (Mi	m)			
N	VIm1	= `	Pm1*(B1+2/3 B2)	-	0.00	(kNm/m)
N	VIm2	=	Pm2*(B1+B2+0,5*B3)	-	15.00	(kNm/m)
N	vim3	=	Pm3*(B1+B2+B3+1/3 B4)		0.00	(kNm/m)
Ν	VIm4	=	Pm4*(B/2)	. = .	48.05	(kNm/m)
Ν	Mm5	=	Pm5*(B - Bd/2)	=	0.00	(kNm/m)
N	vim =	-	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	=	63.05	(KNm/m)
-	Terr	apie	no a tergo del muro			
Ν	VIt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	. = .	224.25	(kNm/m)
٨	VIt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	7-7	0.00	(kNm/m)
٨	VIt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
N	۷lt	-	Mt1 + Mt2 + Mt3	-	224.25	(kNm/m)



3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazion	ne di calco	olo						
Opera L0703	Tratto 213	Settore E	CEE 16	WBS OS0027	ld. doc. REL	N. prog. 01	Rev. A	Pag.diPag. 77 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3:xls

CEDIMENTO DELLA FONDAZIONE

 δ = $\mu0$ * $\mu1$ * qm * B* / E

(Christian e Carrier, 1976)

Profondità Piano di Posa della Fondazione

D = 1.20 (m) $D/B^* = 0.40$ (m) $H/B^* = 2.09$ (m)

Carico unitario medio (qm)

 $qm = N / (B - 2^*e) = N / B^* = 62.54 (kN/mq)$

Coefficiente di forma $\mu 0 = f(D/B)$

 $\mu 0 = 0.943$ (-)

Coefficiente di profondità μ1 = f(H/B)

 $\mu 1 = 0.68$ (-)

Cedimento della fondazione

31

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	78 di 83

C:\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

VERIFICA A FESSURAZIONE - CALCOLO SOLLECITAZIONI

EO	070	VE	DTI	CAL	1

- Peso del Muro (Pm)

Pm1 =	(B2*H3*ycls)/2	1 =	0.00	(kN/m)
Pm2 =	(B3*H3*γcls)		25.00	(kN/m)
Pm3 =	(B4*H3*ycls)/2	=	0.00	(kN/m)
Pm4 =	(B*H2*ycls)		31.00	(kN/m)
Pm5 =	(Bd*Hd*γcls)		0.00	(kN/m)
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	=	56.00	(kN/m)

- Peso del terreno sulla scarpa di monte del muro (Pt)

Pt1	=	(B5*H3*y*)	:=	115.00	(kN/m)
Pt2	=	(0,5*(B4+B5)*H4*γ')	1=	0.00	(kN/m)
Pt3	=	(B4*H3*y*)/2	=	0.00	(kN/m)
Pt	=	Pt1 + Pt2 + Pt3	=	115.00	(kN/m)

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)

Mm1 =	Pm1*(B1+2/3 B2)	.=	0.00	(kNm/m)
Mm2 =	Pm2*(B1+B2+0,5*B3)	=	15.00	(kNm/m)
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	1 =	0.00	(kNm/m)
Mm4 =	Pm4*(B/2)	1=	48.05	(kNm/m)
Mm5 =	Pm5*(B - Bd/2)	=	0.00	(kNm/m)
Mm -	Mm1 . Mm2 . Mm2 . Mm4 . Mm5		63.05	(kNm/m)

- Terrapieno a tergo del muro

Mt1	=	Pt1*(B1+B2+B3+B4+0,5*B5)	1=	224.25	(kNm/m)
Mt2	=	Pt2*(B1+B2+B3+2/3*(B4+B5))	=	0.00	(kNm/m)
Mt3	=	Pt3*(B1+B2+B3+2/3*B4)	=	0.00	(kNm/m)
Mt	=	Mt1 + Mt2 + Mt3	1=	224.25	(kNm/m)

CONDIZIONE STATICA (SLE e FESSURAZIONE)

SPINTE DEL TERRENO E DEL SOVRACCARICO Spinta totale condizione statica St = $0.5^{\circ}\gamma^{\omega}(H2+H3+H4+Hd)^{2\omega}$ ka Sq = $q^{*}(H2+H3+H4+Hd)^{*}$ ka

St =	0,5*γ"(H2+H3+H4+Hd)2*ka	=	30.34	(kN/m)
Sq=	q*(H2+H3+H4+Hd)*ka	=	20.93	(kN/m)
compone	ente orizzontale condizione statica			
Sth =	St*cos8	=	29.07	(kN/m)

Spinta passiva sul dente $Sp = \frac{1/2^4 \gamma_1 ''' H d^2 * kp + (2^* c_1 '' kp^{0.5} + \gamma 1''' kp^* H 2)'' H d}{2^4 kp + (2^* c_1 ''' kp^{0.5} + \gamma 1''' kp^* H 2)'' H d} = 0$ 0.00 (kN/m)

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO

sianca			
Sth*((H2+H3+H4+Hd)/3-Hd)	=	28.10	(kN/m)
Stv*B	-	26.99	(kN/m)
Sqh*((H2+H3+H4+Hd)/2-Hd)	1 =	29.07	(kN/m)
Sqv*B	=	18.61	(kN/m)
η ₁ "Hd ⁸ "kp/3+(2*c1"kp0.5+g1"kp*H2")*Hd ² /2	=	0.00	(kN/m)
	ssatora Sth"(HR2+H3+H4+Hd)/3-Hd) Stp"(HR2+H3+H4+Hd)/2-Hd) Sqp"(HR2+H3+H4+Hd)/2-Hd) Sqp"B "; "Hd ⁰ "kp/3+(2"c1"kp0.5+g1"kp"H2")"Hd ⁰ /2	Sth*((H2+H3+H4+Hd)/3-Hd) = Stv*B = Sqh*((H2+H3+H4+Hd)/2-Hd) =	Sth*((H2+H3+H4+Hd)/3-Hd) = 28.10 Stv*B = 26.99 Sqh*((H2+H3+H4+Hd)/2-Hd) = 29.07 Sqv*B = 18.61

FORZE ESTERNE

Momento dovuto alle Forze Esterne (Mfext)		
Mfext1 = m		0.00 (kNm/m)
$Mfext2 = f^*(H3 + H2)$		0.00 (kNm/m)
$Mfext3 = v^{*}(B1 + B2 + B3/2)$	=	0.00 (kNm/m)

AZIONI TOTALI SULLA FONDAZIONE

90				
Risultant	e forze verticali (N)			
N =	Pm + Pt + v + Stv + Sqv		185.71	(kN/m)
Momento	o stabilizzante (Ms)			
Ms =	Mm + Mt + MSt2 + MSq2 + Mfext3		332.91	(kNm/m)
Momento	o ribaltante (Mr)			
Mr =	MSt1 + MSq1 + Mfext1+ Mfext2 + MSp	=	57.17	(kNm/m)
Risultant	e dei momenti rispetto al piede di valle (MM)			
MM =	Ms - Mr	,	275.74	(kNm/m)
Momento	o rispetto al baricentro della fondazione (M)			
M =	Xc*N - MM		12.11	(kNm/m)

fessurazione 32 Muri_H_2.50_Solo_A1+M1+R3.xls

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Opera	Tratto	Settore	CEE	WBS	ld. doc.	N. prog.	Rev.	Pag. di Pag.
L0703	213	Е	16	OS0027	REL	01	Α	79 di 83

C3arohiviolAroh-LavorolA194_Quadrilatero-AstaldNPEDEMANTANA/Lotto 3-4\Sottovia PianellolMuri_H_2.50_Solo_A1+M1+R3.xls

Relazione di calcolo

COI	ADIE	-101	 JIO IVII	VA	т

Spinta tota	EL TERRENO E DEL SOVRACCARICO le condizione sismica + 0,5°7"(1+kv)*(H2+H3+H4+Hd)²"kas*	=	38.71	(kN/m)
	THE STATE OF THE STATE OF	=	0.00	(kN/m)
	e orizzontale condizione sismica +			# P 1/03
Sst1h = Ssq1h =		=	37.08 0.00	(kN/m) (kN/m)
	e verticale condizione sismica +			
Sst1v = Ssq1v =	Sst1*senő Ssq1*senő	=	11.11 0.00	(kN/m) (kN/m)
	siva sul dente			
Sp=½*γ ₁ ' (1-	+kv) $Hd^{2*}kps^{+}+(2*c_{1}'*kps^{+0.5}+\gamma 1'(1+kv)kps^{+*}H2')*Hd =$		0.00	(kN/m)
	DELLA SPINTA DEL TERRENO E DEL SOVRA	CCARIC	0	
	Sst1h * ((H2+H3+H4+Hd)/3-Hd)	=	35.84	(kN/m)
MSst2 =		=	34.43	(kN/m) (kN/m)
MSsq1 = MSsq2 =	Ssq1v * B	=	0.00	(kN/m)
MSp =	γ_1 '*Hd3*kps*/3+(2*c1'*kps*0.5+ γ 1'*kps**H2')*Hd2/2=		0.00	(kN/m)
	EL MURO E DEL TERRAPIENO			
Inerzia del Ps =	muro (Ps) Pm*kh	=	8.40	(kN/m)
	zontale e verticale del terrapieno a tergo del muro	(Pts)		
Ptsh =	Pt*kh	=	10.70	(kN/m)
Ptsv =	Pt*kv	=	5.35	(kN/m)
	di momento dovuto all'inerzia del muro (MPs)		0.00	(IAI /)
MPs1 = MPs2 =	kh*Pm1*(H2+H3/3) kh*Pm2*(H2 + H3/2)	=	3.84	(kNm/m) (kNm/m)
MPs3 =	kh*Pm3*(H2+H3/3)	=	0.00	(kNm/m)
MPs4 =	kh*Pm4*(H2/2)	=	0.58	
MPs5 = MPs =	-kh*Pm5*(Hd/2)	=		(kNm/m)
MPs =	MPs1+MPs2+MPs3+MPs4+MPs5	-	4.41	(kNm/m)
Incremento	di momento dovuto all'inerzia del terrapieno (MP	ts)		
	kh*Pt1*((H2 + H3/2) - (B - B5/2)*0.5) =		7.22	(kNm/m)
MPts2 = MPts3 =	$ kh^*Pt2^*((H2 + H3 + H4/3) - (B - B5/3)^*0.5) = kh^*Pt3^*((H2 + H3^*2/3) - (B1 + B2 + B3 + 2/3^*B4)^*0.5) = $		0.00	(kNm/m) (kNm/m)
MPts =	MPts1 + MPts2 + MPts3	=	7.22	(kNm/m)
FORZE ES				
Mfext1 =	lovuto alle Forze Esterne (Mfext) ms	=	0.00	(kNm/m)
Mfext2 =	fs*(H3 + H2)	=	0.00	(kNm/m)
Mfext3 =	vs*(B1 +B2 + B3/2)	=	0.00	(kNm/m)
AZIONI TO	TALI SULLA FONDAZIONE			
Risultante i	forze verticali (N)			
	This it is to a country country to	=	187.46	(kN/m)
Momento s Ms =	tabilizzante (Ms) Mm + Mt + MSst2 + MSsq2 +Mfext3	=	321.73	(kNm/m)
Momento r	ibaltante (Mr)			
	MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts =		47.48	(kNm/m)
	dei momenti rispetto al piede di valle (MM)		074.05	(11) ()
MM =	Ms - Mr	=	2/4.25	(kNm/m)
	ispetto al baricentro della fondazione (M) Xc*N - MM	=	16.30	(kNm/m)
CONDIZI	ONE SISMICA -			
SPINTE D	EL TERRENO E DEL SOVRACCARICO			
	le condizione sismica -			
Sst2 =	0,5*γ**(H2+H3+H4+Hd)2*kas*	=	33.88	(kN/m)
Ssq2 =	qs*(H2+H3+H4+Hd)*kas*	=	0.00	(kN/m)
component	e orizzontale condizione sismica -			
Sst2h =	Sst2*cosδ	=	32.46	(kN/m)
Ssq2h =	a state of	=	0.00	(kN/m)
component	e verticale condizione sismica -			
Sst2v =	Sst2*senδ	=	9.72	(kN/m)
Ssq2v =	Ssq2*senδ	=	0.00	(kN/m)
Spinta pas:	siva sul dente			
	$^{1.5}$ kv) $^{1.5}$ kps'+ $^{1.5}$ kps $^{0.5}$ + 1 ' (1-kv) kps'*H2')*Hd =		0.00	(kN/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore E	WBS OS0027	acc.	N.prog. 01	Rev. A	Pag.diPag. 80 di 83
		_	 	REL			00000

C:\tarchivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

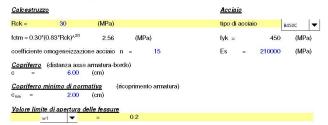
MOMENTI DELLA SPINTA DEL TERRENO E DEL SO	WDACCAD!	~~	
condizione sismica -	VNACCANI		
		04.00	(I.N16)
MSst1 = Sst2h * ((H2+H3+H4+Hd)/3-Hd)	=	31.38	(kN/m)
MSst2 = Sst2v * B	=	30.14	(kN/m)
MSsq1 = Ssq2h * ((H2+H3+H4+Hd)/2-Hd)	1 =	0.00	(kN/m)
MSsq2 = Ssq2v * B	=	0.00	(kN/m)
$MSp = \eta'^*Hd^3*kps/3 + (2*c1*kps^{0.5} + \gamma 1*kps^*H2')^*Hd^2/2$		0.00	(kN/m)
INERZIA DEL MURO E DEL TERRAPIENO			
Inerzia del muro (Ps)			
Ps = Pm*kh	100	5.21	(kN/m)
			(
Inerzia orizzontale e verticale del terrapieno a tergo del	muro (Pts)		
Ptsh = Pt*kh	=	10.70	(kN/m)
Ptsv = Pt*kv	=	-5.35	
Incremento di momento dovuto all'inerzia del muro (MP:	s)		
$MPs1 = kh^*Pm1^*(H2+H3/3)$	=	0.00	(kNm/m)
$MPs2 = kh^*Pm2^*(H2 + H3/2)$	100	3.84	(kNm/m)
$MPs3 = kh^{+}Pm3^{+}(H2+H3/3)$	-	0.00	(kNm/m)
$MPs4 = kh^*Pm4^*(H2/2)$	F=	0.58	(kNm/m)
MPs5 = -kh*Pm5*(Hd/2)	=	0.00	(kNm/m)
MPs = MPs1+MPs2+MPs3+MPs4+MPs5	1=	4.41	(kNm/m)
Incremento di momento dovuto all'inerzia del terrapieno	(MPts)		
$MPts1 = kh^{+}Pt1^{+}((H2 + H3/2) + (B - B5/2)^{+}0.5)$	=	28.08	(kNm/m)
MPts2 = $kh^*Pt2^*((H2 + H3 + H4/3) + (B - B5/3)^*0.5)$	1=	0.00	(kNm/m)
MPts3 = $kh*Pt3*((H2+H3*2/3)+(B1+B2+B3+2/3*B4)*(B1+B3+2/3*B4)*(B1+B3+2/3*B4)*(B1+B3+2/3*A4)*(B1+B3+2/3*A4)*(B1+B3+2/3*A$	0.5)=	0.00	(kNm/m)
MPts = MPts1 + MPts2 + MPts3	· =	28.08	(kNm/m)
FORZE ESTERNE			
Momento dovuto alle Forze Esterne (Mfext)			
Mfext1 = ms	=		(kNm/m)
$Mfext2 = fs^*(H3 + H2)$	=	0.00	(kNm/m)
Mfext3 = vs*(B1 + B2 + B3/2)	=	0.00	(kNm/m)
AZIONI TOTALI SULLA FONDAZIONE			
Risultante forze verticali (N)			
		17E 07	(LAT/AL)
N = Pm + Pt + vs + Sst1v + Ssq1v + Ptsv	1.5	175.37	(kN/m)
Momento stabilizzante (Ms)			
Ms = Mm + Mt + MSst2 + MSsq2 +Mfext3	1=	317.44	(kNm/m)
MIS = MITH + MI + MIDSLE + MIDSQL + MITERIO	-	317.44	(MAINTIN)
Momento ribaltante (Mr)			
Mr = MSst1+MSsq1+Mfext1+Mfext2+MSp+MPs+Mpts		63.87	(kNm/m)
	1000	55.57	,,
Risultante dei momenti rispetto al piede di valle (MM)			
MM = Ms - Mr	=	253.57	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
$M = Xc^*N - MM$	=	18.26	(kNm/m)

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia

OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126

Relazione di calcolo


Opera L0703	Tratto 213	Settore E		WBS OS0027	acc.	N.prog. 01		Pag.diPag. 81 di 83
10/03	213	E	16	OSU02/	REL	UI	А	81 0183

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

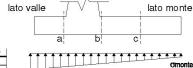
CALCOLI STATICI

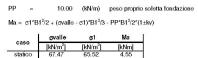
DATI DI PROGETTO:

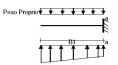
Caratteristiche dei Materiali

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

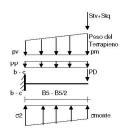

statico sisma+ sisma+ 187.46 sisma- 175.37


16.30 18.26


70.65 67.97

50.29 45.17

Mensola Lato Valle - Schema Statico


Mensola Lato Monte - Schema Statico

PP PD	=	10.00	(kN/m²) (kN/m)	peso proprio soletta fondazione peso proprio dente
pm	=	50.00	(kN/m²)	
pvb	=	50.00	(kN/m²)	
D) 10	0.07	50.00	(IdNI/m²)	

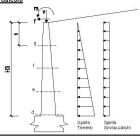
$$\label{eq:money} \begin{split} Mb &= (\sigma_{money}(pvb+PP)^*(1\pm kv))^*BS^2/2 + (\sigma 2b \cdot \sigma_{mone})^*BS^2/6 + (pm-pvb))^*(1\pm kv)^*BS^2/3 + \\ &- (Stv+Sqv)^*BS-PD^*(1\pm kv)^*(BS-Bd/2) + PD^*kh^*(Hd+H2/2) + Msp+Sp^*H2/2 \end{split}$$

$$\begin{split} &\text{Mc} = &(\sigma_{\text{month}}^*(\text{pvc+PP})^*(1\pm kv))^*(B5/2)^2/2 + (c2 \circ \sigma_{\text{month}})^*(B5/2)^2/6 + (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + \\ &- &(Stv+Sqv)^*(B5/2) + PD^*(1\pm kv)^*(B5/2) + DD^*(h)^*(Hd+H2/2) + Msp+Sp^*H2/2 \end{split}$$

	gmonte	g2b	Mb	o 2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
statico	52.34	63.57	-44.19	57.96	-20.74

3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126


Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	aoc.	N.prog. 01		Pag.diPag 82 di 83
L0703	213	Е	16	OS0027	REL	01	Α	82 di 8

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astaldi\PEDEMANTANA\Lotto 3-4\Sottovia Pianello\Muri_H_2.50_Solo_A1+M1+R3.xls

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Sismici	Accelerazione sismica Coefficiente di riduzione dell'accelerazione		a _g /g 8 m		0.22	(-) (-)	S Categoria di suolo	-	1.3
SS	il muro ammette spostamenti? (si/no)	si	On	0		bm = var.			
Dati	coefficiente sismico orizzontale coefficiente sismico verticale		kh kv	-	0.0930 0.0465	(-) (-)			
Spinta	Coeff. di Spinta Attiva sulla parete componente orizzontale componente verticale		ka kah kav	-	0.36 0.35 0.10	(-) (-) (-)	0.361		
⊕	Coeff. Di Spinta Attiva Sismica sulla parete componente orizzontale componente verticale		kas+ kash+ kasv+	-	0.43 0.41 0.12	(-) (-) (-)	0.428		
Coefficienti	Coeff. Di Spinta Attiva Sismica sulla parete componente orizzontale componente verticale		kas- kash- kasv-	-	0.44 0.42 0.12	(-) (-)	0.436		

o ½ Ka_{orizz}* γ*(1±kv)*h²*h/2 (con sisma)

(solo con sisma)

= $\frac{1}{2} \text{Ka}_{\text{vort}}^{*} \gamma^{*} (1 \pm \text{kv})^{*} h^{2}$ $\begin{array}{lll} Nq & = & Ka_{\text{vert}}{}^{*}q^{*}h \\ N_{\text{ext}} & = & v \end{array}$ $N_{pp+inerzin} = \Sigma Pm_i^*(1\pm kv)$

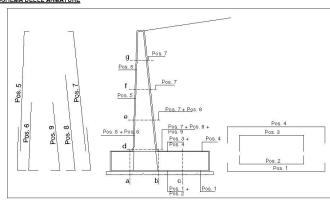
condizione statica

				Conta	ZIONE Statica	1				
	h	Mt	Mq	M _{ext}	M _{tot}	Nt	Nq	N _{ext}	N _{pp}	N _{tot}
sezione -	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	18.00	21.60	0.00	39.60	6.47	5.18	0.00	25.00	36.65
e-e	1.88	7.59	12.15	0.00	19.75	3.64	3.88	0.00	18.75	26.27
f-f	1.25	2.25	5.40	0.00	7.65	1.62	2.59	0.00	12.50	16.71
g-g	0.63	0.28	1.35	0.00	1.63	0.40	1.29	0.00	6.25	7.95

condizione sismica +

				C	official office of	Sillica +					
and and	h	Mt	Mq	M _{ext}	M _{inerzia}	M _{tot}	Nt	Nq	N _{ext}	N _{pp+inerzia}	N _{tot}
sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	33.53	0.00	0.00	2.91	36.44	8.04	0.00	0.00	26.16	34.20
e-e	1.88	14.15	0.00	0.00	1.64	15.78	4.52	0.00	0.00	19.62	24.14
f-f	1.25	4.19	0.00	0.00	0.73	4.92	2.01	0.00	0.00	13.08	15.09
g-g	0.63	0.52	0.00	0.00	0.18	0.71	0.50	0.00	0.00	6.54	7.04

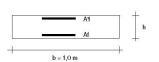
				·	Uliuizione si	Sillica -					
sezione	h	Mt	Mq	M _{ext}	M _{inerzia}	M _{tot}	Nt	Nq	N _{ext}	N _{pp+inerzia}	N _{tot}
sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.50	31.08	0.00	0.00	2.91	33.99	7.45	0.00	0.00	23.84	31.29
e-e	1.88	13.11	0.00	0.00	1.64	14.75	4.19	0.00	0.00	17.88	22.07
f-f	1.25	3.89	0.00	0.00	0.73	4.61	1.86	0.00	0.00	11.92	13.78
q-q	0.63	0.49	0.00	0.00	0.18	0.67	0.47	0.00	0.00	5.96	6.42


3° stralcio funzionale: Castelraimondo nord – Castelraimondo sud 4° stralcio funzionale: Castelraimondo sud – innesto S.S. 77 a Muccia OPERE D'ARTE MINORI: OPERE DI SOSTEGNO E DRENI

Viabilità di accesso al depuratore – Muro in c.a. da Pr. 0+103 a Pr. 0+126 Relazione di calcolo

Opera L0703	Tratto 213	Settore E		WBS OS0027	ld. doc. REL	N. prog. 01	Rev. A	Pag.diPag. 83 di 83
----------------	---------------	--------------	--	---------------	--------------------	----------------	-----------	------------------------

C\archivio\Arch-Lavoro\A194_Quadrilatero-Astald\PEDEMANTANA\Lotto 3.4\Sottovia PianellolMuri_H_2.50_Solo_A1+M1+R3.xls


SCHEMA DELLE ARMATURE

ARMATURE

pos	n °/ml	ф	pos	nº/ml	ф
1	5.0	16	5	5.0	12
2	0.0	0	6	0.0	0
3	0.0	0	7	5.0	16
4	5.0	16	8	0.0	0
			0	0.0	0

VERIFICHE

pos 1-2-3-4
pos 1-2-3-4
pos 1-4
pos 5-6-7-8-9
pos 5-7-8
pos 5-7
pos 5-7

Condizione Statica

Sez.	M	N	h	Af	A'f	O.C.	cf	wk	Wemm
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a-a	4.55	0.00	0.40	10.05	10.05	0.32	14.63	0.016	0.200
b - b	-44.19	0.00	0.40	10.05	10.05	3.10	142.21	0.154	0.200
c-c	-20.74	0.00	0.40	10.05	10.05	1.45	66.75	0.072	0.200
d-d	39.60	36.65	0.40	10.05	5.65	2.85	108.84	0.116	0.200
e -e	19.75	26.27	0.40	10.05	5.65	1.42	50.36	0.053	0.200
f _ f	7.65	16.71	0.40	10.05	5.65	0.55	10 40	0.017	0.200

fessurazione 37 Muri_H_2.50_Solo_A1+M1+R3.xls