

MARZO 2023

SOLAR INVEST 3 S.r.l.

IMPIANTO INTEGRATO AGRIVOLTAICO
COLLEGATO ALLA RTN

POTENZA NOMINALE 78,40 MW

COMUNE DI SAN GIOVANNI ROTONDO (FG) E SAN MARCO IN LAMIS (FG)

PROGETTO DEFINITIVO IMPIANTO INTEGRATO AGRIVOLTAICO Relazione campi elettromagnetici

Progettisti (o coordinamento)

Ing. Laura Maria Conti n. ordine Ing. Pavia 1726

Codice elaborato

2748_5285_SG-SM_VIA_R21_Rev0_Relazione campi elettromagnetici

Memorandum delle revisioni

Cod. Documento	Data	Tipo revisione	Redatto	Verificato	Approvato
2748_5285_SG- SM_VIA_R21_Rev0_Relazione campi elettromagnetici	03/2023	Prima emissione	AD/MP	СР	L.Conti

Gruppo di lavoro

Nome e cognome	Ruolo nel gruppo di lavoro	N° ordine	
Laura Maria Conti	Direzione Tecnica	Ordine Ing. Pavia 1726	
Corrado Pluchino	Project Manager	Ord. Ing. Milano A27174	
Riccardo Festante	Progettazione Elettrica, Rumore e Comunicazioni	Tecnico acustico/ambientale n. 71	
Daniele Crespi	Coordinamento SIA		
Giulia Peirano	Architetto	Ordine Arch. Milano n. 20208	
Marco Corrù	Architetto		
Fabio Lassini	Ingegnere Idraulico	Ordine Ing. Milano A29719	
Mauro Aires	Ingegnere strutturista	Ordine Ing. Torino 9583J	
Matteo Lana	Ingegnere Ambientale		
Elena Comi	Biologo		
Sergio Alifano	Architetto		
Paola Scaccabarozzi	Ingegnere Idraulico		
Andrea Delussu	Ingegnere Elettrico		
Luca Morelli	Ingegnere Ambientale		

Nome e cognome	Ruolo nel gruppo di lavoro	N° ordine	
Matteo Cuda	Naturista		
Graziella Cusmano	Architetto		
Christian Leonardi	Laureato in Scienze Ambientali		
Matthew Piscedda	Perito Elettrotecnico		
Vincenzo Ferrante	Ingegnere strutturista		
Michele Pecorelli (Studio Geodue)	Geologo - Indagini Geotecniche Geodue	Ordine Geologi Puglia n. 327	
Nazzario D'Errico	Agronomo	Ordine Agronomi di Foggia n. 382	
Felice Stoico	Archeologo		
Marianna Denora	Architetto - Acustica	Ordine Architetti Bari, Sez. A n. 2521	

INDICE

1.	PREMESSA	5
2.	IDENTIFICAZIONE DELL'INTERVENTO	7
	DESCRIZIONE SINTETICA DELL'IMPIANTO FOTOVOLTAICO	
2.2	CONFIGURAZIONE IMPIANTO	8
3.	RIFERIMENTI NORMATIVI	11
4.	DEFINIZIONI	13
5.	CALCOLO DELLE DPA	17
5.1	CALCOLO DELLE DPA PER LE CABINE ELETTRICHE	17
5.1.1	Cabina generale MT	17
5.1.2	Cabine di raccolta	17
5.1.3	Cabine di campo	18
5.2	CALCOLO DELLE DPA PER GLI ELETTRODOTTI DI CONNESSIONE A 30 KV INTERNE ALL'AREA D'IMPIANTO	18
5.2.1	Elettrodotto 30 kv	18

1. PREMESSA

La popolazione, in generale, è esposta a campi elettromagnetici prodotti da una grande varietà di sorgenti che utilizzano l'energia elettrica a varie frequenze.

Tali campi, variabili nel tempo, occupano la parte dello spettro che si estende dai campi statici alle radiazioni infrarosse. In questa gamma di frequenze (0 Hz – 300 GHz) i fenomeni di ionizzazione nel mezzo interessato dai campi sono trascurabili: pertanto le radiazioni associate a queste frequenze rientrano in quelle cosiddette radiazioni non-ionizzanti.

Alle più basse frequenze, quando i campi sono caratterizzati da variazioni lente nel tempo, per esempio alle frequenze industriali di 50/60 Hz, o, più in generale, quando l'esposizione ai campi elettromagnetici avviene a distanze dalla sorgente piccole rispetto alla lunghezza d'onda, i campi elettrici e i campi magnetici possono essere considerati indipendentemente.

Alle frequenze più alte o, più in generale, a distanze elevate rispetto alla lunghezza d'onda, i campi elettrici e i campi magnetici sono strettamente correlati tra di loro: dalla misura di uno di essi si può in genere risalire all'altro.

Contrariamente a quanto succede con le radiazioni ionizzanti, per le quali il contributo delle sorgenti naturali rappresenta la porzione più elevata dell'esposizione della popolazione, per le radiazioni nonionizzanti le sorgenti di campi elettromagnetici realizzati dall'uomo tendono a diventare sempre più predominanti rispetto alle sorgenti naturali.

Negli ultimi decenni l'uso dell'elettricità è aumentato considerevolmente, sia per la distribuzione dell'energia elettrica sia per lo sviluppo dei sistemi di telecomunicazione, con conseguente aumento dell'esposizione della popolazione ai campi elettromagnetici.

I campi variabili nel tempo più comuni a cui le persone sono permanentemente esposte sono quelli derivanti dai sistemi di generazione, trasmissione, distribuzione ed utilizzazione dell'energia elettrica a 50/60 Hz, dai sistemi di trazione ferroviaria, dai sistemi di trasporto pubblico (da 0 Hz a 3 kHz) e dai sistemi di telecomunicazioni (trasmettitori radiofonici e televisivi, ponti radio a microonde, stazioni radio base per telefonia mobile, radar, ecc.).

I campi generati dalle diverse sorgenti possono essere di vario tipo. La forma d'onda può essere sinusoidale, modulata in ampiezza (AM) o in frequenza (FM) nel caso di comunicazioni radio, o modulata ad impulsi come nei radar dove l'energia delle microonde viene trasmessa in brevi pacchetti di impulsi della durata di microsecondi.

L'esposizione umana dipende non solo dall'intensità dei campi elettromagnetici generati, ma anche dalla distanza dalla sorgente e, nel caso di antenne direzionali, quali quelle dei sistemi di comunicazione radar o satellitari, anche dalla vicinanza dal fascio principale di radiazione.

La maggior parte delle persone è esposta ai campi prodotti dai trasmettitori a radiofrequenza di bassa potenza, quali quelli delle stazioni base della telefonia cellulare, e dai sistemi di sicurezza e di controllo degli accessi, dove i campi possono provocare un'esposizione non uniforme del corpo. Generalmente le intensità dei campi prodotti da queste sorgenti decrescono rapidamente con la distanza.

Per proteggere la popolazione dagli eventuali effetti nocivi dell'esposizione ai campi elettromagnetici prodotti da tali sorgenti, sono stati sviluppati in ambiti nazionali e internazionali diversi tipi di lineeguida: esse sono generalmente basate sull'individuazione di valori da non superare per alcune grandezze di base, derivanti da valutazioni biologiche (grandezze interne al corpo, quali la densità di corrente e la sovratemperatura corporea), cui corrispondono altre grandezze derivate esterne, facilmente misurabili, quali il campo elettrico e il campo magnetico.

Il presente documento è finalizzato alla esecuzione della valutazione dei campi elettromagnetici e relative fasce di rispetto, generati dall'esercizio di un impianto fotovoltaico di produzione di energia da fonte solare, di potenza di picco complessiva pari a 78,40 MWp, da realizzare in alcuni terreni ricadenti nei territori comunali di San Giovanni Rotondo e San Marco in Lamis entrambi comuni della provincia

Foggia. L'impianto si estende un'area catastale di circa 109 ettari complessivi di cui 89,6 ha recintati per la realizzazione dell'impianto.

La tecnologia impiantistica prevede l'installazione di moduli fotovoltaici bifacciali che saranno installati su strutture mobili (tracker) di tipo monoassiale mediante palo infisso nel terreno.

Le strutture saranno posizionate in maniera da consentire lo sfruttamento agricolo ottimale del terreno. I pali di sostegno sono distanti tra loro 9,00 metri per consentire la coltivazione e garantire la giusta illuminazione al terreno, mentre i pannelli sono distribuiti in maniera da limitare al massimo l'ombreggiamento. Saranno utilizzate due tipologie di strutture, una da 28 moduli (Tipo 1) e l'altra da 14 moduli (Tipo 2).

Infine, l'impianto fotovoltaico sarà collegato in antenna a 150 kV su una nuova Stazione Elettrica (SE) di Trasformazione 380/150 kV della RTN da inserire in entra-esce alla linea RTN a 380 kV "Foggia – San Severo".

L'impianto sarà essenzialmente costituito da:

- n. 1 Cabina generale MT, il cui allestimento sarà completo di tutti gli apparati di controllo e regolazione richiesti dal gestore della rete di trasmissione nazionale, dei quadri di arrivo da SE TERNA e partenza verso Cabine di Campo e Cabine di Raccolta;
- n. 2 Cabine di Raccolta;
- n. 20 Cabine di Campo a esercite a 30 kV, con potenze nominali comprese tra 3200 kVA e 4480 kVA.
- n. 7 rami in totale per il collegamento delle Cabine di Campo alla Cabina generale MT e alle Cabine di Raccolta.

La distribuzione interna all'impianto sarà a 30 kV.

2. IDENTIFICAZIONE DELL'INTERVENTO

Il progetto in esame è ubicato nel territorio comunale di San Giovanni Rotondo e San Marco in Lamis, entrambi in Provincia di Foggia. L'area di progetto è divisa in 3 siti, A, B e C. L'area interessata dall'impianto fotovoltaico nel punto baricentrico dell'impianto dista circa 16 km da Foggia e 16 km circa da San Giovanni Rotondo.

L'area A è collocata a Nord del progetto ed è la sezione più vicina al torrente Candelaro al quale dista circa 7,5 km ad ovest del centro abitato di Foggia ed è situata a lungo il lato sud della Strada Provinciale n.117 (SP117), a nord del Torrente Candelaro e a circa 350 metri. L'area B è collocata nella parte sud ovest del progetto confina con la stradella interpoderale, che costeggia il confine sud ed est dell'impianto. L'area C è collocata a sud est del progetto e confina con la S.P. 74 e nord a circa 600 con il torrente Candelaro.

Nello specifico i siti sono così identificati:

- Area A: estensione area recintata pari a circa 31,78 ettari;
- Area B: estensione area recintata pari a circa 30,76 ettari;
- Area C: estensione area recintata pari a circa 44,96 ettari.

L'area di intervento complessivamente risulta essere pari a circa 131 ettari complessivi di cui circa 107 ettari recintati.

Figura 2.1: Localizzazione dell'area d'intervento. In rosso le sottoaree di progetto.

L'impianto di produzione da fonte solare si connetterà a 150 kV su una nuova Stazione Elettrica (SE) di Trasformazione 380/150 kV della RTN da inserire in entra-esce alla linea RTN a 380 kV "Foggia – San Severo".

L'area deputata all'installazione dell'impianto fotovoltaico in oggetto risulta essere adatta allo scopo presentando una buona esposizione ed è facilmente raggiungibile ed accessibile attraverso le vie di comunicazione esistenti.

Attraverso la valutazione delle ombre si è cercato di minimizzare e ove possibile eliminare l'effetto di ombreggiamento, così da garantire una perdita pressoché nulla del rendimento annuo in termini di produttività dell'impianto fotovoltaico in oggetto.

Si rimanda alla tavola "2748_5285_SG-SM_VIA_TO1_RevO_Stato di Fatto" per la visione in dettaglio dello stato di fatto dell'area d'interesse dell'impianto.

2.1 DESCRIZIONE SINTETICA DELL'IMPIANTO FOTOVOLTAICO

L'impianto fotovoltaico con potenza nominale di picco pari a 78,40 MWp è così costituito da:

- n.1 cabina di Utenza. Il collegamento alla RTN necessita della realizzazione di una stazione MT/AT di utenza che serve ad elevare la tensione di impianto di 30 kV al livello di 150 kV, per il successivo collegamento alla stazione di Terna;
- n.1 Cabina di Raccolta Finale. La Cabina di Raccolta finale dell'impianto sarà posizionata in adiacenza alla nuova SE di Trasformazione di Terna di riferimento;
- n.2 Cabine di Raccolta 30 kV di Campo. Nella stessa area all'interno della cabina sarà presente il quadro QMT1 contenente i dispositivi generali DG di interfaccia DDI e gli apparati SCADA e telecontrollo;
- n. 20 Cabine di Campo. Le Cabine di Campo avranno la duplice funzione di convertire l'energia elettrica da corrente continua a corrente alternata ed elevare la tensione da bassa a media tensione; esse saranno collegate tra di loro in configurazione radiale e in posizione più possibile baricentrica rispetto ai sottocampi fotovoltaici in cui saranno convogliati i cavi provenienti dalle String Box che a loro volta raccoglieranno i cavi provenienti dai raggruppamenti delle stringhe dei moduli fotovoltaici collegati in serie;
- n.13 Uffici e n.13 Magazzini ad uso del personale, installati in coppie (ufficio + magazzino) in ogni sezione dell'impianto;
- i moduli fotovoltaici saranno installati su apposite strutture metalliche di sostegno tipo tracker fondate su pali infissi nel terreno;
- L'impianto è completato da:
 - o tutte le infrastrutture tecniche necessarie alla conversione DC/AC della potenza generata dall'impianto e dalla sua consegna alla rete di distribuzione nazionale;
 - o opere accessorie, quali: impianti di illuminazione, videosorveglianza, monitoraggio, cancelli e recinzioni.

L'impianto dovrà essere in grado di alimentare dalla rete tutti i carichi rilevanti (ad esempio: quadri di alimentazione, illuminazione).

Inoltre, in mancanza di alimentazione dalla rete, tutti i carichi di emergenza verranno alimentati da un generatore temporaneo di emergenza, che si ipotizza possa essere rappresentato da un generatore diesel.

L'impianto elettrico a 30 kV è stato previsto con distribuzione radiale. L'impianto di bassa tensione prevederà la realizzazione di una sezione in corrente alternata e una in corrente continua.

Lo schema unifilare di cui agli elaborati: "2748_5285_SG-SM_VIA_T19_Rev0_Schema elettrico unifilare impianto FV" riportano in dettaglio i principali componenti di impianto nonché la rappresentazione delle linee a 30 kV. Ulteriori dettagli sono rilevabili nei seguenti elaborati relativi all'impianto di terra e alla distribuzione:

• "2748_5285_SG-SM_VIA_T17_Rev0_Percorso cavi MT"

2.2 CONFIGURAZIONE IMPIANTO

L'impianto è collegato alla rete elettrica nazionale con connessione trifase a 30 kV; ha una potenza pari a **78,40** MWp, suddivisa in **20** Cabine di Campo, derivante da **113.624** moduli. Tali moduli sono

ricompresi all'interno di un'area di proprietà recintata avente una superficie di circa 26,26 ha recintati. Di seguito si riporta una tabella riepilogativa della configurazione di impianto:

Tabella 2.1: Dati di progetto

ITEM	DESCRIZIONE				
Richiedente	SOLAR INVEST 3 S.R.L.				
Luogo di installazione:	SAN GIOVANNI ROTONDO	O (FG) E SAN MARCO IN LAMIS	(FG)		
Denominazione impianto:	Siena 2				
Potenza di picco (MW _p):	78,40 MWp				
Informazioni generali del sito:	Sito ben raggiungibile, caratterizzato da strade esistenti, idonee alle esigenze legate alla realizzazione dell'impianto e di facile accesso. La morfologia è piuttosto regolare.				
Connessione:	Interfacciamento alla rete mediante soggetto privato nel rispetto delle norme CEI				
Tipo strutture di sostegno:	Strutture metalliche in acciaio zincato tipo Tracker fissate a terra su pali				
Inclinazione piano dei moduli:	+55° - 55°				
Azimut di installazione:	0°				
Cabine di Campo:	n. 20 cabine distribuite in	n. 20 cabine distribuite in campo			
Cabine di Raccolta:	n. 2 cabine interne ai campi FV				
Cabina generale MT:	n. 1				
Rete di collegamento:	150 kV				
Coordinate	A (Stazione Utente)	B (Cabina di smistamento)	C (Cabina di smistamento)		
geografiche:	Latitudine: 41.5723°N Longitudine: 15.6479°E	Latitudine: 41.5684°N Longitudine: 15.6776°E	Latitudine: 41.5607°N; Longitudine: 15.6673°E		

Come riportato nello schema unifilare, la distribuzione elettrica prevede la realizzazione di 7 rami che collegano in Entra-Esci le Cabine di Campo in 7 gruppi:

Ogni ramo alimenta le relative Cabine di Campo collegate reciprocamente tra loro in configurazione Entra-Esci.

Di seguito si riporta una tabella riepilogativa delle cabine di campo e dei relativi rami di connessione.

Tabella 2.2: Configurazione cabine di conversione "Cabine di campo"

N. PROG	RAMO	CABINA	POTENZA AC (KVA)
1	1	A1.1	4480
2		A1.2	4480
3		A1.3	4480
4	2	A1.4	3200
5		A3.1	3200
6		A4.1	3200
	В	CABINA RACCOLTA B	
7	3	B2.1	3200
8		B2.2	3200
9		B2.3	3200
10	4	B4.1	4480
11		B4.2	3200
12		B3.1	3200
	С	CABINA RACCOLTA C	
13	5	C1.1	3200
14		C1.2	3200
15		C1.3	3200
16	6	C4.1	3200
17		C5.1	3200
18		C6.1	3200
19	7	C3.1	3200
20		C7.1	3200

Si rimanda alle tavole di dettaglio per un'ulteriore comprensione ed inquadramento planimetrico delle aree d'impianto. Dalla lettura dello schema unifilare del presente progetto, è possibile riscontrare le informazioni e le caratteristiche impiantistiche dell'impianto fotovoltaico nonché dei suoi elementi.

I vari sottocampi fotovoltaici, nel quale è elettricamente suddiviso l'intero impianto, saranno connessi alle Cabine di Raccolta a 30 kV (aree B e C) e alla Cabina generale MT a 30 kV (area A) site all'interno dell'area di impianto tramite linee interrate costituite da cavi in alluminio tipo ARG7H1R 18/30 kV come indicato nei dettagli negli elaborati di progetto.

3. RIFERIMENTI NORMATIVI

I principali riferimenti normativi vengono riportati nella tabella che segue:

Tabella 3.1 - Riferimenti normativi

RIFERIA	MENTI NORMATIVI
L. n. 36 del 22.02.2001	Legge Quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici.
D.P.C.M. 08.07.2003	Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti
Raccomandazione del Consiglio dell'Unione europea del 12 luglio 1999, pubblicata nella G.U.C.E. n. 199 del 30 luglio 1999	Limitazione dell'esposizione della popolazione ai campi elettromagnetici da OHz a 300Ghz
Decreto Min. Amb. 29.05.2008	Approvazione delle procedure di misura e valutazione dell'induzione magnetica
DM 21 marzo 1988, n. 449	Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne" e s.m.i.
CEI 11-60	Portata al limite termico delle linee elettriche esterne con tensione maggiore di 100kV
CEI 11-17	Impianti di produzione, trasmissione, distribuzione pubblica di energia elettrica - Linee in cavo
CEI 106-11	Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6). Parte l
CEI 211-4	Guida ai metodi di calcolo dei campi elettrici e magnetici generati dalle linee e da stazioni elettriche
ENEL - Linea Guida per l'applicazione del § 5.1.3 dell'Allegato al DM 29.05.08	Distanza di prima approssimazione (DPA) da linee e cabine elettriche
Linee guida ICNIRP	Linee guida per la limitazione dell'esposizione a campi elettrici e magnetici variabili nel tempo ed a campi elettromagnetici (fino a 300 GHz)
Circolare del Ministero dell'Ambiente del 15/11/2004	la Protezione della popolazione dall'esposizione ai campi elettrici, magnetici ed elettromagnetici. Determinazione fasce di rispetto

La Legge Quadro ha demandato la definizione dei limiti di esposizione per la popolazione al decreto attuativo DPCM 8 luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti".

Tabella 3.2: Limiti di esposizione – DPCM 8 Luglio 2003

	Intensità di campo elettrico E	Induzione Magnetica B
	(kV/m)	(μΤ)
Limite di esposizione *		
	5 ***	100
(da non superare mai)		
Valore di attenzione **		
(da non superare in ambienti abitativi e comunque nei luoghi adibiti a permanenze non inferiori a 4 ore)	-	10
Obiettivo di qualità **		
(da non superare per i nuovi elettrodotti o le nuove abitazioni in prossimità di elettrodotti esistenti)	-	3

Note:

Come indicato dalla Legge 36/2001, il limite di esposizione non deve essere superato in alcuna condizione di esposizione, mentre il valore di attenzione e l'obiettivo di qualità si intendono riferiti alla mediana giornaliera dei valori in condizioni di normale esercizio.

Inoltre, il valore di attenzione si riferisce ai luoghi tutelati esistenti nei pressi di elettrodotti esistenti; l'obiettivo di qualità si riferisce, invece, alla progettazione di nuovi elettrodotti in prossimità di luoghi tutelati esistenti o alla progettazione di nuovi luoghi tutelati nei pressi di elettrodotti esistenti.

II DPCM 8 luglio 2003, all'art. 6, in attuazione della Legge 36/2001 (art. 4 c. 1 lettera h), introduce la metodologia di calcolo delle fasce di rispetto, definita nell'allegato al Decreto 29 maggio 2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti".

Detta fascia comprende tutti i punti nei quali, in normali condizioni di esercizio, il valore di induzione magnetica può essere maggiore o uguale all'obiettivo di qualità.

La suddetta metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti prevede una procedura semplificata di valutazione con l'introduzione della Distanza di Prima Approssimazione (DPA): per le linee è la distanza, in pianta sul livello del suolo, dalla proiezione del centro linea che garantisce che ogni punto la cui proiezione al suolo disti dalla proiezione del centro linea più di DPA si trovi all'esterno delle fasce di rispetto. Per le cabine è la distanza, in pianta sul livello del suolo, da tutte le pareti della cabina stessa che garantisce i requisiti di cui sopra.

Detta DPA, nel rispetto dell'obiettivo di qualità di 3 μT del campo magnetico (art. 4 del DPCM 8 luglio 2003), si applica nel caso di:

- realizzazione di nuovi elettrodotti (inclusi potenziamenti) in prossimità di luoghi tutelati;
- progettazione di nuovi luoghi tutelati in prossimità di elettrodotti esistenti.

Valori efficaci

^{**} Mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio

^{***} Il campo elettrico al suolo in prossimità di elettrodotti a tensione uguale o inferiore a 150 kV, come da misure e valutazioni, non supera mai il limite di esposizione per la popolazione di 5 kV/m.

4. **DEFINIZIONI**

Campo magnetico

Il campo magnetico può essere definito come una perturbazione di una certa regione spaziale determinata dalla presenza nell'intorno di una distribuzione di corrente elettrica o di massa magnetica.

Tale perturbazione si può verificare constatando che ponendo in tale regione spaziale un corpo magnetizzato, questo risulta soggetto ad una forza. L'unità di misura del campo magnetico è l'A/m.

L'induzione magnetica è una grandezza vettoriale (B) che determina una forza agente sulle cariche in movimento ed è espressa in tesla (T). Nello spazio libero e nei materiali biologici l'induzione magnetica e l'intensità del campo magnetico si ricavano in base all'equazione: $1A/m = 4\pi \ 10-7 \ T$.

Campo elettrico

Il campo elettrico può essere definito come una perturbazione di una certa regione spaziale determinata dalla presenza nell'intorno di una distribuzione di carica elettrica. Tale perturbazione si può verificare constatando che ponendo in tale regione spaziale una carica elettrica, questa risulta soggetta ad una forza. L'unità di misura del campo elettrico è il V/m.

Campo elettromagnetico

Un campo elettrico variabile nel tempo genera, in direzione perpendicolare a se stesso, un campo magnetico pure variabile che, a sua volta, influisce sul campo elettrico stesso. Questi campi concatenati determinano nello spazio la propagazione di un campo elettromagnetico. È importante la distinzione tra campo vicino e campo lontano. La differenza consiste essenzialmente nel fatto che in prossimità della sorgente irradiante, cioè in condizioni di campo vicino, il campo elettrico ed il campo magnetico assumono rapporti variabili con la distanza, mentre ad una certa distanza, cioè in campo lontano, il rapporto tra campo elettrico e campo magnetico rimane costante.

ELF è la terminologia anglosassone per definire i campi elettromagnetici a frequenze estremamente basse, comprese tra 30 Hz e 300 Hz.

L'esposizione a campi ELF dovuta ad una determinata sorgente è valutabile misurando separatamente l'entità del campo elettrico e del campo magnetico. Questo perché alle frequenze estremamente basse, le caratteristiche fisiche dei campi sono più simili a quelle dei campi statici, piuttosto che a quelle dei campi elettromagnetici veri e propri. I campi ELF sono quindi caratterizzati da due entità distinte: il campo elettrico, generato dalla presenza di cariche elettriche o tensioni, ed il campo magnetico, generato invece dalle correnti elettriche.

Intensità di corrente (J).

È definita come il flusso di corrente attraverso una sezione unitaria perpendicolare alla sua direzione in un volume conduttore quale il corpo umano o una sua parte. È espressa in ampere per metro quadro (A/m2).

Intensità di campo elettrico

È una grandezza vettoriale (E) che corrisponde alla forza esercitata su una particella carica indipendentemente dal suo movimento nello spazio. È espressa in Volt per metro (V/m).

Intensità di campo magnetico

È una grandezza vettoriale (H) che, assieme all'induzione magnetica, specifica un campo magnetico in qualunque punto dello spazio. È espressa in Ampere per metro (A/m).

Induzione magnetica

È una grandezza vettoriale (B) che determina una forza agente sulle cariche in movimento. È espressa in Tesla (T). Nello spazio libero e nei materiali biologici l'induzione magnetica e l'intensità del campo magnetico sono legate dall'equazione $1A m-1 = 4\pi 10-7 T$.

Impianto integrato Agrivoltaico collegato alla RTN 78,40 MW

Relazione campi elettromagnetici

Densità di potenza (S).

Questa grandezza si impiega nel caso delle frequenze molto alte, per le quali la profondità di penetrazione nel corpo è modesta. Si tratta della potenza radiante incidente perpendicolarmente a una superficie, divisa per l'area della superficie in questione ed è espressa in watt per metro quadro (W/m2).

Assorbimento specifico di energia (SA).

Si definisce mediante l'energia assorbita per unità di massa di tessuto biologico e si esprime in joule per chilogrammo (J/kg). Nella presente raccomandazione il termine si impiega per limitare gli effetti non termici derivanti da esposizioni a microonde pulsate.

Tasso di assorbimento specifico di energia (SAR).

Si tratta del valore mediato su tutto il corpo o su alcune parti di esso, del tasso di assorbimento di energia per unità di massa del tessuto corporeo ed è espresso in watt per chilogrammo (W/kg). Il SAR riferito a tutto il corpo è una misura ampiamente accettata per porre in rapporto gli effetti termici nocivi all'esposizione a RF. Oltre al valore del SAR mediato su tutto il corpo, sono necessari anche valori locali del SAR per valutare e limitare la deposizione eccessiva di energia in parti piccole del corpo conseguenti a speciali condizioni di esposizione, quali ad esempio il caso di un individuo in contatto con la terra, esposto a RF nella gamma inferiore di MHz e di individui esposti nel campo vicino di un'antenna.

Linea

Le linee corrispondono ai collegamenti con conduttori elettrici aerei o in cavo, delimitati da organi di manovra, che permettono di unire due o più impianti allo stesso livello di tensione. Le linee a tre o a più estremi sono sempre definite come più tronchi di linea a due stremi. Gli organi di manovra connettono tra loro componenti delle reti (es. interruttori, sezionatori, ecc.) e permettono di interrompere il passaggio di corrente.

Elettrodotto

È l'insieme delle linee elettriche, delle sottostazioni e delle cabine di trasformazione;

Tronco

I tronchi di linea corrispondono ai collegamenti metallici che permettono di unire fra loro due impianti gestiti allo stesso livello di tensione (compresi gli allacciamenti). Si definisce tronco fittizio il tronco che unisce due impianti adiacenti.

Tratta

La tratta è una porzione di tronco di linea, composto da una sequenza di campate contigue, avente caratteristiche omogenee di tipo elettrico, di tipo meccanico (es. tipologia del conduttore, configurazione spaziale dei conduttori sui tralicci, tratta singola, doppia, ammazzettata, ecc.) e relative alla proprietà e appartenenza alla RTN (Rete di Trasmissione Nazionale). Ad ogni variazione delle caratteristiche si individua una nuova tratta.

Campata

La campata è l'elemento minimo di una linea elettrica; è sottesa tra due sostegni o tra un sostegno e un portale (ultimo sostegno già all'interno dell'impianto).

Sostegni

Il sostegno è l'elemento di supporto meccanico della linea aerea in conduttori nudi o in cavo. I sostegni, i sostegni porta terminali ed i portali possono essere costituiti da pali o tralicci.

Impianto

Nell'ambito di una rete elettrica l'impianto corrisponde ad un'officina elettrica destinata, simultaneamente o separatamente, alla produzione, allo smistamento, alla regolazione e alla modifica

Impianto integrato Agrivoltaico collegato alla RTN 78,40 MW

Relazione campi elettromagnetici

(trasformazione e/o conversione) dell'energia elettrica transitante in modo da renderla adatta a soddisfare le richieste della successiva fase di destinazione. Gli impianti possono essere: Centrali di produzione, Stazioni elettriche, Cabine di trasformazione primarie e secondarie, Cabine Utente MT. Inoltre rientrano in questa categoria anche quelle stazioni talvolta chiamate di Allacciamento.

Corrente

Valore efficace dell'intensità di corrente elettrica.

Portata in corrente in servizio normale

È la corrente che può essere sopportata da un conduttore per il 100% del tempo con limiti accettabili del rischio di scarica sugli oggetti mobili e sulle opere attraversate e dell'invecchiamento. Essa è definita nella norma CEI 11-60 par. 2.6 e sue successive modifiche e integrazioni.

Portata in regime permanente

Massimo valore della corrente che, in regime permanente e in condizioni specificate, il conduttore può trasmettere senza che la sua temperatura superi un valore specificato (secondo CEI 11-17 par. 1.2.05).

Fascia di rispetto

È lo spazio circostante un elettrodotto, che comprende tutti i punti, al di sopra e al di sotto del livello del suolo, caratterizzati da un'induzione magnetica di intensità maggiore o uguale all'obiettivo di qualità. Come prescritto dall'articolo 4, comma I lettera h della Legge Quadro n. 36 del 22 febbraio 2001, all'interno delle fasce di rispetto non è consentita alcuna destinazione di edifici ad uso residenziale, scolastico, sanitario ovvero ad uso che comporti una permanenza non inferiore a quattro ore.

Distanza di prima approssimazione (Dpa)

Per le linee è la distanza, in pianta sul livello del suolo, dalla proiezione del centro linea che garantisce che ogni punto la cui proiezione al suolo disti dalla proiezione del centro linea più di Dpa si trovi all'esterno delle fasce di rispetto. Per le cabine è la distanza, in pianta sul livello del suolo, da tutte le pareti della cabina stessa che garantisce i requisiti di cui sopra.

Esposizione

È la condizione di una persona soggetta a campi elettrici, magnetici, elettromagnetici, o a correnti di contatto, di origine artificiale;

Limite di esposizione

È il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della salute da effetti acuti, che non deve essere superato in alcuna condizione di esposizione della popolazione. I valori limite di esposizione per la popolazione sono invece richiamati dalla Legge Quadro, e sono stati indicati con apposito decreto D.P.C.M. 08.07.2003, che prevede il rispetto dei seguenti valori: nel caso di esposizione a campi elettrici e magnetici alla frequenza di 50 Hz generati da elettrodotti, non deve essere superato il limite di esposizione di $100~\mu T$ per l'induzione magnetica e 5~kV/m per il campo elettrico, intesi come valori efficaci.

Valore di attenzione

È il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, che non deve essere, superato negli ambienti abitativi, scolastici e nei luoghi adibiti a permanenze prolungate. Esso costituisce misura di cautela ai fini della protezione da possibili effetti a lungo termine e deve essere raggiunto nei tempi e nei modi previsti dalla legge;

Obiettivi di qualità

Sono i criteri localizzativi, gli standard urbanistici, le prescrizioni e le incentivazioni per l'utilizzo delle migliori tecnologie disponibili, indicati dalle leggi regionali secondo le competenze definite dall'articolo

8 della L. 36/2001; sono anche i valori di campo elettrico, magnetico ed elettromagnetico, definiti dallo Stato secondo le previsioni di cui all'articolo 4, comma 1, lettera a) della medesima legge, ai fini della progressiva minimizzazione dell'esposizione ai campi medesimi;

Limiti di base

Le limitazioni all'esposizione ai campi elettrici magnetici ed elettro-magnetici variabili nel tempo, che si fondano direttamente su effetti accertati sulla salute e su considerazioni di ordine biologico, sono denominate «limiti di base». In base alla frequenza del campo, le quantità fisiche impiegate per specificare tali limitazioni sono: la densità di flusso magnetico (B), la densità di corrente (J), il tasso di assorbimento specifico di energia (SAR), e la densità di potenza (S). La densità di flusso magnetico e la densità di potenza negli individui esposti possono essere misurate rapidamente.

Livelli di riferimento.

Questi livelli sono indicati a fini pratici di valutazione dell'esposizione in modo da determinare se siano probabili eventuali superamenti dei limiti di base. Alcuni livelli di riferimento sono derivati dai limiti di base fondamentali attraverso misurazioni e/o tecniche informatiche e alcuni livelli di riferimento si riferiscono alla percezione e agli effetti nocivi indiretti dell'esposizione ai campi elettromagnetici. Le quantità derivate sono: l'intensità di campo elettrico (E), l'intensità di campo magnetico (H), la densità del flusso magnetico (B), la densità di potenza (S) e la corrente su un arto (IL). Le grandezze che si riferiscono alla percezione e agli altri effetti indiretti sono la corrente (di contatto) (Ic) e, per i campi pulsati, l'assorbimento specifico di energia (SA). In qualunque situazione particolare di esposizione, i valori misurati o calcolati di una delle quantità sopra citate possono essere raffrontati al livello di riferimento appropriato. L'osservanza del livello di riferimento garantirà il rispetto delle restrizioni fondamentali corrispondenti. Se il valore misurato supera il livello di riferimento, non ne consegue necessariamente che sia superata la restrizione fondamentale. In tali circostanze, tuttavia, vi è la necessità di definire se il limite di base sia o meno rispettato.

5. CALCOLO DELLE DPA

Si è proceduto al calcolo della Distanze di Prima Approssimazione (DPA) dalle linee elettriche di impianto e dai cabinati di trasformazione e smistamento, quali la Cabina Generale MT, le Cabine di Raccolta e le Cabine di Campo.

Gli elementi sopra descritti sono tutti caratterizzati da una tensione massima nominale di 30 kV in AC e, per la sezione BT, 0,6 kVac e 1,5 kVdc. Tale valutazione si riferisce esclusivamente alla fase di esercizio dell'impianto in quanto durante la realizzazione e dismissione i campi daranno nulli data l'assenza di tensione nei circuiti.

5.1 CALCOLO DELLE DPA PER LE CABINE ELETTRICHE

In merito alla valutazione delle distanze di prima approssimazione, nella cabina elettriche si è considerata la distanza da ciascuna delle pareti (tetto, pavimento e pareti laterali) della cabina stessa in quanto le stesse al loro interno non sono considerate luogo di lavoro stabile ma occupato dal personale tecnico in modo saltuario durante la manutenzione che, perlopiù, avverranno in assenza di tensione.

Tali DPA sono state valutate impiegando la formula semplificata indicata nell'Allegato al Decreto 29 maggio 2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti". La DPA va quindi calcolata simulando una linea trifase, con cavi paralleli, percorsa dalla corrente nominale in bassa tensione in uscita dal trasformatore (I) e con distanza tra le fasi pari al diametro reale (conduttore + isolante) del cavo (x) mediante la seguente formula di calcolo:

$$Dpa = 0.40942 * x^{0.5241} * \sqrt{I}$$

Per le cabine a 30 kV, come nel caso della cabina generale di sezionamento e nelle cabine di raccolta, la DPA da considerare è quella relativa alla linea a 30 kV entrante/uscente dalla stessa.

5.1.1 Cabina generale MT

Per tale cabina è stato preso come riferimento un diametro equivalente del cavo pari a circa 100 mm e una corrente massima a 30 kV pari a circa 1330 A.

Dalla applicazione della equazione sopra riportata si desume una DPA di circa 4.5 m, all'esterno della quale il campo di induzione magnetica è sicuramente inferiore all'obiettivo di qualità di 3 μ T.

All'interno della fascia introdotta dalla DPA intorno alla cabina generale MT non si rilevano presenti recettori sensibili e non è in alcun modo prevista la presenza di personale per un periodo superiore alla 4 ore giornaliere.

5.1.2 Cabine di raccolta

È stata considerata la cabina di raccolta che, tra le 2 esistenti in progetto, presenta le condizioni più gravose. Per tale cabina è stato preso come riferimento un diametro equivalente del cavo pari a circa 100 mm e una corrente massima a 30 kV pari a circa 492 A.

Dalla applicazione della equazione sopra riportata si desume una DPA di circa 3 m, all'esterno della quale il campo di induzione magnetica è sicuramente inferiore all'obiettivo di qualità di 3 μ T.

All'interno della fascia introdotta dalla DPA intorno alla cabina generale di raccolta non si rilevano presenti recettori sensibili e non è in alcun modo prevista la presenza di personale per un periodo superiore alla 4 ore giornaliere.

5.1.3 Cabine di campo

In riferimento alle cabine di campo si è preso come riferimento il diametro equivalente reale del cavo al secondario dei trasformatori pari a circa 120 mm e la corrente massima in BT, pari a 3850 A (riferita alla massima corrente BT erogabile dal trasformatore MT/BT, considerando un livello di tensione BT pari a 0,6 kV).

Dalla applicazione della equazione sopra riportata si desume una DPA di circa 8 m, all'esterno della quale il campo di induzione magnetica è sicuramente inferiore all'obiettivo di qualità di 3 μ T.

5.2 CALCOLO DELLE DPA PER GLI ELETTRODOTTI DI CONNESSIONE A 30 KV INTERNE ALL'AREA D'IMPIANTO

La stima delle DPA per le linee a 30 kV è stata valutata secondo il DM 29 maggio 2008 preliminarmente attraverso l'utilizzo del metodo semplificato riportato al paragrafo 6.2 della norma CEI 106-11.

Il metodo semplificato per il calcolo dell'induzione magnetica per linee in cavo interrato a semplice terna, riportato al paragrafo 6.2.3 della norma CEI 106-11, prevede l'utilizzo della seguente relazione (specifica per cavi interrati a trifoglio):

$$B = 0.1 \cdot \sqrt{6} \cdot \frac{S \cdot I}{R^2} \quad [\mu T]$$

Da tale formula si ricava il valore della distanza per la quale è garantita un'induzione magnetica inferiore ai 3 μT che coincide con l'obiettivo di qualità imposto dalla norma per gli effetti a lungo termine:

$$R' = 0.286 \cdot \sqrt{S \cdot I}$$
 [m]

Per cavi interrati il valore del raggio a induzione magnetica costante pari a 3 μ T calcolato al livello del suolo è pari a:

$$R_0 = \sqrt{0.082 \cdot S \cdot I - d^2} \quad [m]$$

Le premesse al calcolo sono:

- La corrente considerata è quella massima di erogazione dell'impianto fotovoltaico alla tensione di esercizio nominale
- La profondità di posa (d) è quella di progetto 1 m
- Le correnti si considerano equilibrate tra loro

Nella sono riepilogate le linee elettriche descritte per tipologia di posa, formazione, designazione e corrente nominale di impianto quali elementi considerati nella verifica delle DPA.

Come riferimento per il calcolo sono stati scelti gli elettrodotti con le condizioni di esercizio più gravose:

- l'elettrodotto in arrivo alla Cabina di Campo A1.1 dalla Cabina Generale MT;
- l'elettrodotto situato nel tratto iniziale della sezione A, individuabile nella tavola percorso cavi 30 kV denominata "2748_5285_SG-SM_VIA_T17_Rev0_Percorso cavi MT" caratterizzato da n.2 terna di cavo.

I tratti considerati sono quelli attraversati dalla maggior intensità di corrente e pertanto sono rappresentativi di tutte le linee elettriche a 30 kV presenti all'interno del parco fotovoltaico.

5.2.1 Elettrodotto 30 kv

In riferimento agli elettrodotti interni al campo si è preso come riferimento il tratto più caricato, ovvero il tratto che collega la Cabina di Campo A1.1 alla Cabina Generale MT considerando il diametro

equivalente reale del cavo al secondario dei trasformatori pari a circa 100 mm e la corrente massima in MT, pari a circa 304 A.

Dalla applicazione della equazione sopra riportata si desume una DPA di circa 1,5 m, all'esterno della quale il campo di induzione magnetica è sicuramente inferiore all'obiettivo di qualità di 3 μ T.

Nella *Tabella 5.1* sono riepilogati i dati di calcolo e i risultati relativi all'elettrodotto preso in considerazione.

Tabella 5.1: Riepilogo linee elettriche 30 kV

COLLEGAMENTO DA	TENSIONE NOMINALE [KV]	DISTANZA TRA LE FASI [MM]	INTENSITÀ DI CORRENTE [A]	PROFONDITÀ DEI CAVI DAL PIANO DI CALPESTIO [M]	RO [M]
Elettrodotto 30 kV di arrivo a cabina generale MT	30	50	304	1	1,5

Lungo i tratti di interconnessione tra le sezioni di impianto non si prevede la presenza continuativa di potenziali recettori sensibili e/o personale al lavoro per un periodo superiore alle 4 ore/giorno. È esclusa pertanto l'eventuale esposizione ai campi elettromagnetici.

In ogni caso l'impianto fotovoltaico durante l'esercizio ordinario non prevede la presenza continuativa di personale di sorveglianza o addetto alla manutenzione ordinaria. È esclusa pertanto l'eventuale esposizione ai campi elettromagnetici.