

REGIONE PUGLIA

Provincia di BT (Barletta-Andria-Trani)

TRINITAPOLI

GETTC

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI TRINITAPOLI IN LOCALITA' CHIAVICELLA GRANDE

COMMITTENTE

PROGETTAZIONE

Q-ENERGY RENEWABLES 2 S.r.l.

Via Vittor Pisani, 8/a - 20124 Milano (MI) PEC: q-energyrenewables2srl@legalmail.it P.IVA: 12490070963

Codice Commessa PHEEDRA: 23_06_EO_TRT

PHEEDRA S.r.I. Via Lago di Nemi, 90
74121 - Taranto
Tel. 099.7722302 - Fax 099.9870285
e-mail: info@pheedra.it - web: www.pheedra.it

Direttore Tecnico: Dott. Ing. Angelo Micolucci

ORDINE INGEGNERI PROVINCIA TARANTO

Sezione A

Settore
Civile Ambientale
Industriale
Infermazione

01	GIUGNO 2023	PRIMA EMISSIONE	MS	АМ	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APPROVATO

OGGETTO DELL'ELABORATO

RELAZIONE IDROLOGICA

FORMATO	SCALA		CODICE DOCUMENTO		NOME FILE	FOGLI		
Λ 4	-	SOC.	DISC.	TIPO DOC.	PROG.	REV.	TRT-CIV-REL-024 01	
A4		TRT	CIV	REL	024	01	1RT-CIV-REL-024_01	

Committente: **Q-Energy Renewables 2 S.r.I.** Via Vittor Pisani 8/a 20124 Milano (MI)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI TRINITAPOLI (BT) IN LOCALITA' "CHIAVICELLA GRANDE"

Nome del file:

TRT-CIV-REL-024_01

SOMMARIO

1.	PARC	O EOLICO	2
		Premessa	
2.	INQU	ADRAMENTO INTERVENTO	4
	2.1.	Individuazione del bacino imbrifero	8
	2.2.	Calcolo delle portate di piena	9
	2.3.	Metodo del Curve Number	. 13
3	CONC	CLUSIONI	19

Nome del file:

TRT-CIV-REL-024 01

1. PARCO EOLICO

1.1. PREMESSA

La presente relazione descrive un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

Il progetto riguarda la realizzazione di un impianto eolico composto da 7 aerogeneratori ognuno da 7,2 MW da installare nel comune di Trinitapoli (BT) in località "Chiavicella Grande" con opere di connessione ricadenti nei Comuni di Trinitapoli (BT) e Cerignola (FG), commissionato dalla società Q-Energy Renewables 2 Srl.

Gli aerogeneratori saranno collegati tra di loro mediante un cavidotto in media tensione interrato che collegherà l'impianto alla Sottostazione elettrica di progetto prevista sul territorio di Cerignola (FG).

La sottostazione elettrica 30/150 kV, è oggetto del presente progetto e sarà realizzata, così come meglio esplicitato negli elaborati specifici allegati, in località "La Riserva" nel Comune di Cerignola (FG).

La seguente relazione espone gli aspetti idrologici legati al territorio; in quanto, l'Autorità di Bacino della Puglia, attraverso la Carta Idrogeomorfologica, ha definito l'andamento e lo sviluppo del reticolo idrografico dell'area in esame.

La Carta Idrogeomorfologica, a partire dalle informazioni di ordine idrologico contenute in cartografie più antiche (I.G.M. in scala 1: 25.000) ed utilizzando dati topografici e morfologici di più recente acquisizione, fornisce un quadro conoscitivo di elevato dettaglio inerente al reale sviluppo del reticolo idrografico nel territorio di competenza dell'AdB Puglia. Tale strumento è utilizzato come elemento conoscitivo essenziale anche per la redazione dei P.U.G. e costituisce una delle cartografie di riferimento del PPTR.

In assenza di studi idraulici che definiscano in dettaglio gli sviluppi planimetrici degli *alvei in modellamento attivo* e delle *aree golenali* di ciascuna linea di deflusso, per il reticolo idrografico identificato dalla Carta Idrogeomorfologica vigono **le misure di salvaguardia**, ai sensi dell'art.6 comma 8 e dell'art.10 comma 3 delle NTA del P.A.I. Inoltre, il reale comportamento idraulico del reticolo idrografico dell'area, così come definito dalla carta Idrogeomorfologica, è stato per lunghi tratti studiato attraverso specifica modellazione sino a definire perimetrazioni di dettaglio (aree AP, MP e BP) riportate sul P.A.I vigente. Come indicato in precedenza, l'Autorità di Bacino della Puglia, attraverso la Carta Idrogeomorfologica, ha definito l'andamento e lo sviluppo del reticolo idrografico dell'area in esame, rispetto a quanto riportato sulle vecchie cartografie I.G.M., riducendo la frammentazione del reticolo osservabile sulle cartografie degli anni '60.

Per l'accertamento della posizione delle opere in progetto rispetto alle previsioni delle N.T.A. del P.A.I per la tutela delle aree AP, MP e BP e del reticolo idrografico, si è proceduto a verifiche cartografiche, eseguite su due livelli di scala sulla cartografia IGM e sulla CTR regionale e ortofoto.

Per la definizione delle fasce di rispetto dei reticoli idrografici si è fatto riferimento al reticolo aggiornato dall' Unit of Management Regionale Puglia e interregionale Ofanto - euUoMCode ITR161I020 bacino idrografico Ofanto, già bacino interregionale; bacini idrografici della Puglia, già bacini regionali.

20124 Milano (MI)

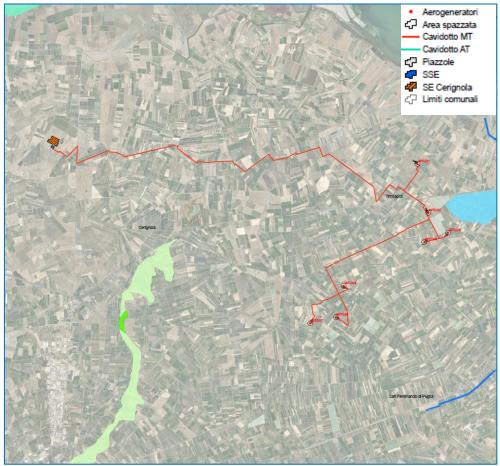


Figura 1 - Inquadramento su P.A.I.

Gli aerogeneratori sono localizzabili alle seguenti coordinate, espresse con datum WGS84 e proiezione UTM 33 N:

TURBINA	E (UTM WGS84 33N) [m]	N (UTM WGS84 33N) [m]
WTG01	586127	4579164
WTG02	586465	4577633
WTG03	587085	4577003
WTG04	586338	4576720
WTG05	583820	4575356
WTG06	583574	4574372
WTG07	582777	4574184

Le turbine sono identificate ai seguenti estremi catastali:

TURBINA	COMUNE	FOGLIO	PARTICELLA
WTG01	TRINITAPOLI	102	428

PHEEDRA SrI Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285	RELAZIONE IDROLOGICA	Pag. 3 di 20
Email: info@pheedra.it – web: www.pheedra.it		

TURBINA	COMUNE	FOGLIO	PARTICELLA
WTG02	TRINITAPOLI	89	259
WTG03	TRINITAPOLI	90	206
WTG04	TRINITAPOLI	90	105
WTG05	TRINITAPOLI	3	160
WTG06	TRINITAPOLI	96	288
WTG07	TRINITAPOLI	96	247

La Sottostazione 30/150 kV è localizzabile alle seguenti coordinate: 574725 E, 4579692 N, identificabile al foglio 93 e particella 336 e 337; e al foglio 91 e particella 206 e 207 del Comune di Cerignola (FG).

La Futura Stazione Elettrica RTN 150/380 kV è invece localizzabile alle seguenti coordinate: 574768 E, 4579888 N, identificabile a livello catastale al Foglio 91 - Particella 196 e Foglio 93 – Particella 333 del Comune di Cerignola (FG).

2. INQUADRAMENTO INTERVENTO

Gli aerogeneratori di progetto ricadono nel territorio comunale di Trinitapoli (BT), in località "Chiavicella Grande" su un'area posta a sud – ovest del centro urbano del Comune di Trinitapoli (BT) ad una distanza di circa 3,5 km, a nord - ovest dal Comune di San Ferdinando di Puglia (BT) ad una distanza di circa 5,6 km e a nord – est dal Comune di Cerignola (FG) ad una distanza di circa 7,8 km in linea d'aria.

Il tracciato del cavidotto esterno attraversa il territorio dell'agro di Trinitapoli (BT) e dell'agro di Cerignola (FG). La sottostazione di trasformazione ricade sul territorio di Cerignola (FG).

Le aree d'impianto sono servite dalla viabilità esistente costituita da strade statali, provinciali, comunali e da strade interpoderali e sterrate.

Il parco eolico è circoscritto dalle seguenti strade provinciali, regionali e statali:

- SP 62 Strada Provinciale 62
- SP 65 Strada Provinciale 65
- SS 544 Strada Statale 544
- SP 77 Strada Provinciale 77
- SS 16 Strada Statale 16 Adriatica
- Strade comunali

L'accesso alle torri è garantito in particolare dalle Strade Provinciali SP 65, SP 62, SC esterna Tratturello e strade comunali. La viabilità da realizzare non prevede opere di impermeabilizzazione. Sono inoltre previste piazzole in prossimità degli aerogeneratori.

PHEEDRA SrI		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy)	RELAZIONE IDROLOGICA	Pag. 4 di 20
Tel. +39.099.7722302 – Fax: +39.099.9870285		

Per la costruzione degli aerogeneratori è prevista la realizzazione di piazzole temporanee per lo stoccaggio e il montaggio. Tali aree saranno dismesse e ripristinate nella condizione ante-operam.

La precisa localizzazione del sito si evince dagli allegati elaborati cartografici TRT-CIV-TAV-003 -Inquadramento geografico e TRT-CIV-TAV-004 - Inquadramento territoriale.

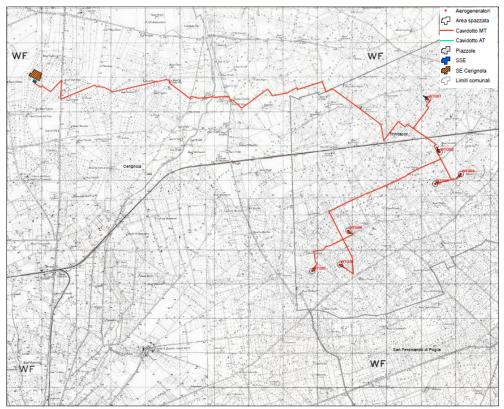


Figura 2 - Inquadramento impianto su Stralcio IGM 1:25.000

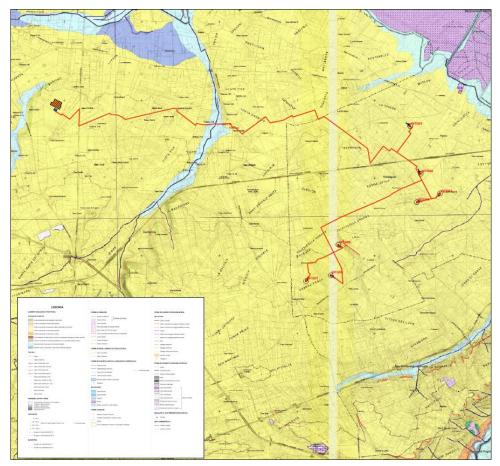


Figura 3 - Inquadramento su Carta Idrogeomorfologica

Come indicato in precedenza, l'Autorità di Bacino della Puglia, attraverso la Carta Idrogeomorfologica, ha definito l'andamento e lo sviluppo del reticolo idrografico dell'area in esame.

Al fine di non creare squilibri alla rete idrografica esistente, si sono effettuati degli studi idrologici, atti a computare le portate al colmo di piena e dimensionare le opere idrauliche, di attraversamento stradale di nuova realizzazione, interferenti con l'idrografia superficiale.

Per l'accertamento della posizione delle opere in progetto rispetto alle previsioni delle N.T.A. del P.A.I per la tutela delle aree AP, MP e BP e del reticolo idrografico, si è proceduto ad accertamenti in sito, ed a verifiche cartografiche, eseguite su due livelli di scala sulla cartografia IGM e sulla CTR regionale.

Con riferimento all'intervento oggetto di studio, nessuna nuova strada interessa il reticolo idrografico. Si specifica che le nuove strade e l'adeguamento delle strade esistenti, verranno realizzate in Macadam, costituita da una massicciata di pietrisco sabbia e acqua, costipata e spianata ripetutamente da rullo compressore, integrata da un sottofondo di pietrame di grossa pezzatura, quindi senza ulteriore incremento di superfici impermeabili atte ad aumentare il deflusso idrico superficiale.

Per l'impianto in esame non si sono riscontrate interferenze tra le strade di nuova realizzazione e il reticolo idrografico come definito dalla cartografia ufficiale. Per lo studio dell'area si sono comunque definiti i riferimenti idrologici, Bacini e Curva di possibilità pluviometrica.

Committente: **Q-Energy Renewables 2 S.r.l.** Via Vittor Pisani 8/a 20124 Milano (MI)

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI TRINITAPOLI (BT) IN LOCALITA' "CHIAVICELLA GRANDE" Nome del file:

TRT-CIV-REL-024_01

Per ciò che concerne il cavidotto intercetta il reticolo idrografico in più punti di intersezione, tuttavia, si evidenzia che tutte le intersezioni avvengono su strada esistente, già provviste quindi di strutture di attraversamento (tombini circolari, scatolari, ecc), che tutte le modalità di superamento dell'Intersezione saranno affrontate tramite tecnologia TOC come evidenziato nella tavola TRT-CIV-TAV-017 – Studio delle interferenze.

Nome del file:

TRT-CIV-REL-024 01

2.1. INDIVIDUAZIONE DEL BACINO IMBRIFERO

Dopo l'acquisizione dei dati territoriali e cartografici di base, si è proceduto alla delimitazione e caratterizzazione dei bacini di interesse con l'ausilio di QGIS, sistema geografico informatizzato che consente di ottenere carte tematiche interattive utili al fine della valutazione del rischio.

Con l'utilizzo di QGis è stato possibile tracciare i confini geografici (linea di displuvio) del bacino in base ad una prefissata sezione di chiusura e determinare le relative informazioni geometriche (area, perimetro, altitudine), geologiche e di uso del territorio.

È necessario individuare e caratterizzare il bacino per determinare la portata che defluisce attraverso la sezione in esame. Si elencano le operazioni eseguite, attivando, di volta in volta, l'ultimo tema creato:

- 1) si è caricato il DEM per la zona interessata, ottenuto dal SIT puglia;
- 2) ottenuto il DEM si è attivata la funzione <u>Fill sinks</u>, che permette di eseguire l'interpolazione dei dati altimetrici immessi attraverso il grid, in maniera da ottenere continuità nel modello del terreno;
- 3) attraverso la funzione <u>Catchment area</u> si sono individuate le flow direction (direzioni di scorrimento delle acque superficiali: fiumi, torrenti, lame etc.) e le flow accumulation (aree contribuenti);
- **4)** si è applicata la funzione <u>Channel network</u> che permette di determinare il reticolo idrografico, con diversi gradi di risoluzione;
- 5) con la funzione Watershed basins si sono determinati tutti i bacini della mappa;
- 6) Infine, con la funzione <u>Upslow area</u>, inserendo le coordinate del punto appartenente alla sezione di chiusura di interesse per la lama, si è determinato bacino sotteso alla sezione di chiusura; infatti, scegliendo come sezione di chiusura la foce del corso d'acqua si ottiene il bacino principale; se invece la sezione di chiusura è una qualunque sezione fluviale posta a monte della foce, si individua il bacino secondario o sottobacino;
- 7) Con la funzione Raster Layer statistic si sono determinate le caratteristiche morfologiche, area, perimetro e altitudine media del sottobacino sotteso alla sezione di chiusura.

Tel. +39.099.7722302 – Fax: +39.099.987028 Email: info@pheedra.it – web: <u>www.pheedra.i</u>

I parametri geomorfologici caratteristici dei bacini idrografici sono indicati nelle tabelle seguenti:

DATI GEOMORFOLOGICI BACINO 1		
Superficie (kmq)	1,92	
Altezza media del bacino (m)	65,50	
Altezza massima asta principale (m)	114,00	
Altezza minima asta principale (m)	82,00	
Pendenza media del bacino (%)	0,52	
Lunghezza asta principale (km)	4,80	
Lunghezza asta principale (m)	4800,00	
Pendenza media asta principale	0,67	

Per completare lo studio del bacino si sono ricavati i dati relativi al tipo di suolo caricando le mappe della permeabilità e dell'uso del suolo. Con il comando geoprocessing intersezione, sono state effettuate le seguenti intersezioni: tema del bacino - mappa della permeabilità, tema del bacino - mappa dell'uso del suolo, tema del bacino - mappa della litologia; tale elaborazione ha fornito, i dati necessari all'applicazione del metodo del Curve Number.

Gli elementi forniti dal programma hanno consentito l'avvio dello studio idrologico volto alla determinazione delle portate al colmo di piena associate a tempi di ritorno di 30, 200 anni.

A parità d'intensità e di altre condizioni è la precipitazione della durata uguale al tempo di corrivazione a determinare la massima portata in un bacino; se viene superato il tempo di corrivazione, la pioggia continua a cadere, con la stessa intensità, la portata si mantiene costante sul valore massimo, per poi cominciare a decrescere non appena la pioggia cessa, o comunque, si riduce d'intensità.

Se per contro la durata della precipitazione è inferiore al tempo di corrivazione, l'acqua proveniente dalle zone più lontane del bacino raggiunge la sezione terminale quando già ha avuto inizio la fase decrescente, giacché le aree più vicine hanno già cessato di dare il loro contributo.

2.2. CALCOLO DELLE PORTATE DI PIENA

Per il calcolo delle portate di piena, rispetto alle quali verificare le sezioni del canale in prossimità delle opere di progetto, possono essere adottate diverse metodologie di calcolo, tra cui la procedura di calcolo delle portate di piena proposta nel Va.Pi. e la procedura del Curve Number del Soil Conservation Service. Queste metodologie di calcolo sono le più utilizzate per i bacini idrografici della Puglia.

Data l'estensione limitata dei bacini in esame, l'utilizzo del metodo Va.Pi. comporta un sovradimensionamento delle portate, che va comunque a vantaggio di sicurezza nella progettazione e nella verifica delle opere.

La grandezza idrologica di interesse da definire in questo caso è il massimo valore della portata in corrispondenza delle sezioni di chiusura del bacino idrografico.

Per il calcolo delle portate di piena è stato condotto uno studio conforme a quanto prescritto dalle Norme tecniche di attuazione del PAI ed in particolare a quanto previsto dal progetto Valutazione delle Piene (VaPi) del Gruppo Nazionale di Difesa dalle Catastrofi Idrogeologiche (GNDCI). In particolare, le portate sono state stimate sulla base delle curve di possibilità pluviometrica calcolate con il metodo VAPI-Puglia del G.N.D.C.I..

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 - Taranto (Italy)
Tal ±30 000 7722302 - Fav: ±30 000 0870

La metodologia adottata nel progetto Vapi. fa riferimento ad un approccio probabilistico a doppia componente (TCEV) che interpreta gli eventi massimi annuali come il risultato di una miscela di due popolazioni distinte: la prima produce gli eventi massimi ordinari, più frequenti ma meno intensi; la seconda produce gli eventi massimi straordinari, meno frequenti ma spesso catastrofici.

I diversi parametri del modello probabilistico sono valutati a scale regionali differenti, in funzione dell'ordine statistico del parametro stesso; in pratica l'analisi regionale degli estremi idrologici massimi (massimi annuali delle precipitazioni e massimi annuali delle portate fluviali) è condotta suddividendo l'area di studio in zone geografiche che possono considerarsi omogenee nei confronti dei parametri statistici della distribuzione di probabilità che si è deciso di adottare, e che sono via via più ampie man mano che l'ordine dei parametri aumenta.

La regionalizzazione che ne consegue è di tipo gerarchico, basata su livelli successivi di indagine, in modo tale da ottimizzare l'informazione ricavabile dai dati e dal numero disponibili di stazioni della zona studiata.

I° Livello: Regione Puglia

II° Livello: Puglia settentrionale Puglia centro – meridionale

III° Livello:

Zona 1 Gargano

Zona 2 Tavoliere

Zona 3 Murge

Zona 4 Subappennino

Zona 5 Nord Barese - Murgia centrale

Zona 6 Penisola salentina

In definitiva il territorio pugliese è stato suddiviso in 6 aree pluviometriche omogenee (fig.9), per ognuna delle quali è possibile calcolare la Curva di Possibilità Pluviometrica ottenendo così anche in siti sprovvisti di stazioni di misura o con serie storica di lunghezza ridotta i valori medi dei massimi annuali delle precipitazioni di diversa durata t.

Per stimare le portate di piena con tempo di ritorno di 200 anni, è necessario valutare gli afflussi meteorici che le generano, desumibili dalla "Curva di possibilità pluviometrica"; tale curva può essere ricavata dai risultati della regionalizzazione eseguita dal CNR-GNDCI, che suddivide il territorio di competenza dell'Autorità di Bacino della Puglia in sei aree omogenee pluviometriche, per ognuna delle quali è possibile calcolarla sulla base delle seguenti equazioni:

 $X(t, z) = 28.66 t^{(0.000503z+0.720/3.178)}$ Zona 1:

Zona 2: $X (t, z) = 22.23 t^{0.247}$

(0.696+0.000531z) / 3.178 Zona 3: X(t, z) = 25.325 t

Zona 4: $X (t, z) = 24.70 t^{0.256}$

 $X (t, z) = 28.2 t^{(0.628+0.0002z)/3.178}$ Zona 5:

 $X (t, z) = 33.7 t^{(0.488+0.0022z)/3.178}$ Zona 6:

dove t = durata della precipitazione e z = altezza media del bacino considerato.

I bacini idrografici dell'area di studio ricadono internamente nella zona omogenea 2

PHEEDRA Srl

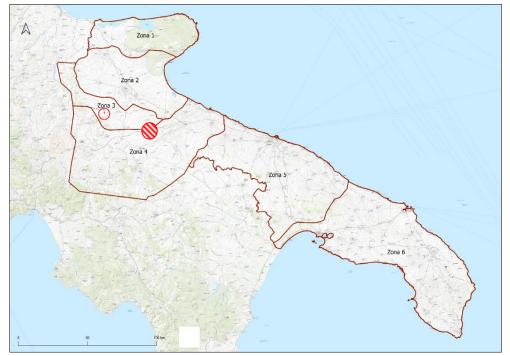
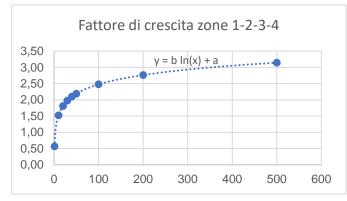


Figura 4 - Livello di regionalizzazione della Regione Puglia

Andando quindi a considerare la formulazione prevista per tale zona:

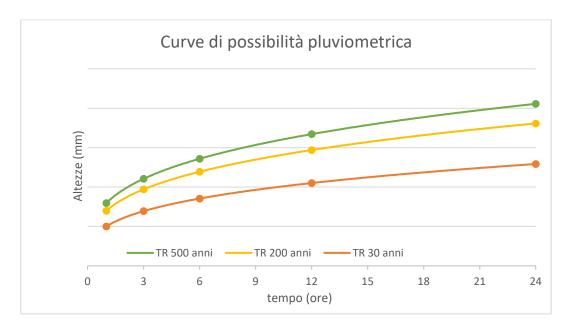

 $X (t, z) = 22.23 t^{0.247}$ Zona 2:

Si è determinato il fattore di crescita delle portate Kt funzione del tempo di ritorno che ci consente di

differenziare la portata secondo i tempi di ritorno prescelti:

$$KT = KT = 0.415 \ln T + 0.5648$$
 (zone 1-2-3-4)

fattori di crescita				
K	(T30)	1,98		
K	(T200)	2,76		
K	(T500)	3,14		



Committente: Q-Energy Renewables 2 S.r.l. Via Vittor Pisani 8/a	PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO NEL COMUNE DI TRINITAPOLI	Nome del file:
20124 Milano (MI)	(BT) IN LOCALITA' "CHIAVICELLA GRANDE"	TRT-CIV-REL-024 01

Si sono così determinate le altezze di pioggia relative al tempo di ritorno:

KT	1,98	2,76	3,14				
	ALTEZZE DI PIOGGIA						
Tempo (ore)	TR30 h (mm)	TR200 h (mm)	TR500 h (mm)				
1	43,93	61,43	69,89				
3	54,33	84,34	99,88				
6	64,19	108,19	132,23				
12	78,25	145,38	184,48				
24	98,98	206,45	273,88				

Da cui derivano le curve di possibilità pluviometriche relative a 30 200 e 500 anni:

2.3. METODO DEL CURVE NUMBER

Il calcolo è stato eseguito con il metodo del Curve Number, proposto dal Soil Conservation Service del Dipartimento dell'Agricoltura degli Stati Uniti. La formulazione usata permette di ricavare la pioggia netta depurata in base all'espressione:

$$h_{netta} = \frac{\left(h_{lorda} - I\right)^2}{\left(h_{lorda} + S - I\right)}$$

dove h_{lorda} è la pioggia stimata per assegnata distribuzione di probabilità, S (in mm) rappresenta l'assorbimento del bacino, espresso dalla relazione:

$$S = 254 \cdot \left(\frac{100}{CN} - 1\right)$$

ed I è l'assorbimento iniziale, legato empiricamente al parametro S dalla relazione Ia= 0,2 \cdot S.

In particolare, il metodo del CN sintetizza le caratteristiche idrologiche di un bacino attraverso un unico parametro CN che definisce la relazione precipitazione-volume di deflusso in bacini idrografici di cui è nota, oltre che la morfologia, la copertura vegetale e il tipo idrologico di suolo presenti nelle carte tematiche.

Il parametro CN, ricavato dall'analisi qualitativa delle carte tematiche, rappresenta la capacità di una porzione di terreno del bacino imbrifero di produrre deflusso ed è stato calcolato sulla base delle caratteristiche geopedologiche e vegetazionali del bacino stesso.

Il valore del CN si ottiene per incrocio delle caratteristiche del suolo (quattro tipi A, B, C, D) a permeabilità decrescente e delle caratteristiche di uso prevalente.

- Gruppo A: suoli aventi scarsa potenzialità di deflusso e capacità di infiltrazione, in condizioni di saturazione, molto levata; comprende sabbie profonde, con bassa percentuale di limi e argille molto permeabili.
- Gruppo B: suoli aventi moderata potenzialità di deflusso e capacità di infiltrazione, anche in condizioni di saturazione, elevata; comprende la maggior parte dei suoli sabbiosi meno profondi rispetto al gruppo A;
- Gruppo C: suoli aventi potenzialità di deflusso moderatamente alta e scarsa capacità di infiltrazione e saturazione; comprende suoli contenenti considerevoli quantità di argille e colloidi.
- Gruppo D: Suoli aventi potenzialità di deflusso molto elevate e scarsissima capacità di infiltrazione a saturazione; comprende argille ad elevata capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché impermeabili in vicinanza della superficie.

I valori del CN normalmente utilizzati per i tipi di suolo A, B, C e D e per una condizione standard di umidità del terreno agli inizi dell'evento di pioggia ("AMC", Antecedent Moisture Condition, di classe II) sono riportati nella seguente tabella.

Tipo di	Descrizione		
suolo			
A deflusso superficiale potenziale basso	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) basso, ed è alta la permeabilità. Sono caratterizzati da avere meno del 10% di argilla e oltre il 90% di sabbia e/o ghiaia e la tessitura è sabbiosa o ghiaiosa. La conducibilità idraulica (Ksat) è maggiore di 14,4 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm. Appartengono a questo gruppo anche le rocce con alta permeabilità per fratturazione e/o carsismo		
B deflusso superficiale potenziale moderatamente basso	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) moderatamente basso, e l'acqua attraversa il suolo senza impedimenti. Sono caratterizzati da avere tra il 10% e il 20% di argilla e tra il 50 e il 90% di sabbia e la tessitura è sabbioso-franca, franco-sabbiosa. La conducibilità idraulica (Ksat) varia tra 3,6 e 14,4 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm. Appartengono a questo gruppo anche le rocce con permeabilità, medio-alta e media, per fratturazione e/o carsismo		
C deflusso superficiale potenziale moderatamente alto	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) moderatamente alto, e l'acqua attraversa il suolo con qualche limitazione. Sono caratterizzati da avere tra il 20% e il 40% di argilla e meno del 50% di sabbia e la tessitura è prevalentemente franca, franco-limosa, franco-argilloso-sabbioso, franco-argillosa, e franco-argilloso-limosa. La conducibilità idraulica (Ksat) varia tra 0,36 e 3,6 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è maggiore di 50 cm, e la profondità della falda superficiale è superiore a 60 cm Appartengono a questo gruppo anche le rocce con bassa e medio-bassa permeabilità per fratturazione e/o carsismo		
D deflusso superficiale potenziale alto	I suoli di questo gruppo, quando sono completamente saturi, hanno deflusso superficiale potenziale (runoff) alto, e l'acqua attraversa il suolo con forti limitazioni. Sono caratterizzati da avere oltre il 40% di argilla e meno del 50% di sabbia e la tessitura è argillosa, talvolta anche espandibili. La conducibilità idraulica (Ksat) è ≤ 0,36 cm/h per tutta la profondità, la profondità dell'orizzonte impermeabile è compresa tra 50 cm e 100 cm, e la profondità della falda superficiale è entro i 60 cm Appartengono a questo gruppo anche le rocce con permeabilità molto bassa, le rocce impermeabili e le aree non rilevate o non classificate.		

Tabella 1 - Tabella che descrive le diverse classi in funzione dei gruppi di Tipo di suolo

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
AREE PORTUALI	123	98	98	98	98
AREE AEROPORTUALI ED ELIPORTI	124	92	93	94	95
AREE ESTRATTIVE	131	89	92	94	95
DISCARICHE E DEPOSITI DI ROTTAMI	132	90	92	94	95
CANTIERI	133	90	92	94	95
AREE VERDI URBANE	141	65	74	81	84
CIMITERI	143	57	77	85	89
VIGNETI	221	72	81	88	91
FRUTTETI E FRUTTI MINORI	222	67	78	85	89
OLIVETI	223	72	81	88	91
ARBORICOLTURA CON ESSENZE	223	12	61	- 00	91
FORESTALI	224	67	78	85	89
PRATI STABILI	231	67	71	81	89
COLTURE TEMPORANEE ASSOCIATE A	2,71	07	,1	- 01	0,7
COLTURE PERMANENTI	241	59	74	82	86
SISTEMI COLTURALI E PARTICELLARI	241	33	/4	02	- 60
COMPLESSI	242	63	73	82	88
AREE PREVALENTEMENTE OCCUPATE DA	242	0.5	13	02	00
COLTURA AGRARIE CON PRESENZA DI					
SPAZI NATURALI IMPORTANTI	243	62	71	78	81
AREE AGROFORESTALI	243	45	66	77	83
BOSCHI MISTI DI CONIFERE E LATIFOGLIE	313	39	51	63	70
AREE A PASCOLO NATURALE	321	67	71	81	89
SPIAGGE DUNE E SABBIE	331	56	73	82	86
PARETI ROCCIOSE E FALESIE	332	98	98	98	98
AREE CON VEGETAZIONE RADA	333	70	75	84	90
PALUDI INTERNE	411	100	100	100	100
PALUDI SALMASTRE	421	100	100	100	100
SALINE	422	100	100	100	100
ZONE INTERTIDALI	423	98	98	98	98
LAGUNE, LAGHI E STAGNE COSTIERI	521	100	100	100	100
MARI	523	100	100	100	100
TESSUTO RESIDENZIALE COMPATTO E					
DENSO	1111	89	92	94	96
TESSUTO RESIDENZIALE RADO	1112	78	80	85	87
TESSUTO RESIDENZIALE RADO E					
NUCLEIFORME A CARATTERE					
RESIDENZIALE E SUBURBANO	1121	74	75	78	80
TESSUTO AGRO-RESIDENZIALE SPARSO E					
FABBRICATI RURALI A CARATTERE					
TIPICAMENTE AGRICOLO O RURALE	1122	65	67	70	72
INSEDIAMENTI INDUSTRIALI/ARTIG. E				ا. ي	
COMM. E SPAZI ANNESSI	1211	89	92	94	95
INSEDIAMENTO DI GRANDI IMPIANTI DI					
SERVIZI	1212	89	92	94	95
RETI STRADALI E SPAZI ACCESSORI					
(SVINCOLI, STAZIONI DI SERVIZIO, AREE		-			
DI PARCHEGGIO ECC.)	1221	98	98	98	98
RETI FERROVIARIE COMPRESE LE					
SUPERFICI ANNESSE (STAZIONI,					
SMISTAMENTI, DEPOSITI ECC.)	1222	96	96	96	96
GRANDI IMPIANTI DI CONCENTRAMENTO					
E SMISTAMENTO MERCI (INTERPORTI E					
SIMILI)	1223	92	93	94	95
IMPIANTI A SERVIZIO DELLE RETI DI					
DISTRIBUZIONE					
(TELECOMUNICAZIONI/ENERGIA/IDRICHE)	1224	92	93	94	95

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 - Taranto (Italy)
Tel. +39.099.7722302 - Fax: +39.099.9870285
Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
DISCARICHE	1321	90	92	94	95
DEPOSITI DI ROTTAMI A CIELO APERTO,	1,721				,,,
CIMITERI DI AUTOVEICOLI	1322	90	92	94	95
AREE RICREATIVE E SPORTIVE	1421	70	78	83	88
AREE ARCHEOLOGICHE	1421	49	69	79	84
SEMINATIVI IN AREE NON IRRIGUE	2111	58	72	81	85
	2111	36	12	61	63
PRATI ARTIFICIALI. COLTURE					
FOR AGGERE OVE SI PUÒ RICONOSCERE UNA SORTA DI AVVICENDAMENTO CON I					
SEMINATIVI E UNA CERTA					
PRODUTTIVITÀ, SONO SEMPRE					
POTENZIALMENTE RICONVERTITI A					
SEMINATIVO, POSSONO ESSERE					
RICONOSCIBILI MURETTI O MANUFATTI	2112	67	71	81	89
SEMINATIVI SEMPLICI E COLTURE	2112	07	/1	0.1	09
	2121		77	85	90
ORTICOLE A PIENO CAMPO	2121	66			89
RISAIE	2122	98	98	98	98
VIVAI	2123	66	77	85	89
COLTURA IN SERRA	2124	98	98	98	98
COLTURE TEMPORANEE ASSOCIATE					
ALL'OLIVO	2411	59	74	82	86
COLTURE TEMPORANEE ASSOCIATE AL					
VIGNETO	2412	59	74	82	86
COLTURE TEMPORANEE ASSOCIATE AD					
ALTRE COLTURE PERMANENTI (PASCOLI					
E SEMINATIVI ARBORATI CON					
COPERTURA DELLA SUGHERA DAL 5 AL					
25%)	2413	59	74	82	86
BOSCO DI LATIFOGLIE	3111	39	51	63	70
ARBORICOLTURA CON ESSENZE					
FORESTALI (LATIFOGLIE)	3112	39	51	63	70
BOSCHI DI CONIFERE	3121	39	51	63	70
CONIFERE A RAPIDO ACCRESCIMENTO	3122	39	51	63	70
FORMAZIONI VEGETALI BASSE E CHIUSE,					
STABILI, COMPOSTE PRINCIPALMENTE DI					
CESPUGLI, ARBUSTI E PIANTE ERBACEE					
(ERICHE, ROVI, GINESTRE, GINEPRI NANI					
ECC.)	3221	51	58	73	80
FORMAZIONI DI RIPA NON ARBOREE	3222	51	58	73	80
MACCHIA MEDITERRANEA	3231	51	58	73	80
GARIGA	3232	51	58	73	80
AREE A RICOLONIZZAZIONE NATURALE	3241	45	55	68	75
AREE A RICOLONIZZAZIONE ARTIFICIALE	3242	45	55	68	75
SPIAGGE DI AMPIEZZA SUPERIORE A 25M	3311	56	73	82	86
AREE DUNALI NON COPERTE DA					
VEGETAZIONE DI AMPIEZZA SUPERIORE					
A 25M	3312	56	73	82	86
AREE DUNALI CON COPERTURA	5512	50	,,,	- 02	
VEGETALE CON AMPIEZZA SUPERIORE A					
25 M	3313	56	73	82	86
LETTI ASCIUTTI DI TORRENTI DI	0.010		7.0		
AMPIEZZA SUPERIORE A 25M	3315	56	73	82	86
FIUMI, TORRENTI E FOSSI	5111	100	100	100	100
CANALI E IDROVIE	5112	100	100	100	100
BACINI NATURALI	5112	100	100	100	100
BACINI ARTIFICIALI	5122	100	100	100	100
LAGUNE, LAGHI E STAGNE COSTIERI A	5211	100	100	100	100
PRODUZIONE ITTICA NATURALE	5211	100	100	100	100

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 - Taranto (Italy)
Tel. +39.099.7722302 - Fax: +39.099.9870285
Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it

Codice Uso del Suolo (UDS)	UDS	A	В	С	D
ACQUACOLTURE IN LAGUNE, LAGHI E					
STAGNI COSTIERI	5212	100	100	100	100
ESTUARI E DELTA	5213	100	100	100	100
AREE MARINE A PRODUZ. ITTICA					
NATURALE	5231	100	100	100	100
ACQUACOLTURE IN MARE LIBERO	5232	100	100	100	100
PIOPPETI, SALICETI, EUCALITTETI ECC.					
ANCHE IN FORMAZIONI MISTE	31121	39	51	63	70
SUGHERETE	31122	39	51	63	70
CASTAGNETI DA FRUTTO	31123	39	51	63	70
ALTRO	31124	39	51	63	70

Tabella 2 - Valore del Curve Number in funzione dell'uso del suolo (Corine) e del tipo di suolo

Dalla combinazione della attribuzione della classe di tipo di suolo e dell'uso del suolo, tramite la Tabella 3 sopra riportata è stato possibile ricavare il valore del CN-II medio dell'intera area che nel caso di specie ha condotto allo stesso valore:

CN II = 82

Nella presente trattazione si sono ipotizzate, a seconda delle caratteristiche dei bacini oggetto di studio, condizioni AMC tipo III (Antecedent Moisture Conditions) che prevede l'assunzione di un unico valore CN III, determinato a partire dal valore di CN II attraverso la seguente formulazione:

$$CN III = \frac{CNII}{0.43 + 0.0057 \cdot CNII} = 91.38$$

Con riferimento al calcolo della portata al colmo Q_p (m³/s) il metodo SCS-CN considera un idrogramma approssimato di forma triangolare che ha una fase crescente di durata t_a (tempo di accumulo) e una fase di esaurimento di durata t_e (tempo di esaurimento) e il cui volume, espresso in m³, ha la seguente espressione:

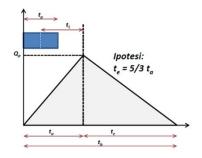
$$V = \frac{Q_p}{2}(t_a + t_e) = \frac{Q_p \cdot t_b}{2}$$

avendo indicato con to la durata dell'evento di piena.

Poiché è stato stabilito sperimentalmente che nella fase crescente dell'idrogramma defluisce un volume idrico che è pari al 37.5% del volume totale V di deflusso, ne consegue che la durata della fase crescente è pari a 0,375 volte la durata dell'evento di piena t_0 e pertanto:

$$t_b = 2,67 t_a$$

Utilizzando le formule di cui sopra, esprimendo il volume di deflusso V in mm, il tempo t_a in ore, l'area A del bacino in Km² si ottiene:


$$Qp = 0.208 \frac{VA}{t_a}$$

La determinazione di ta, nell'ipotesi di precipitazione di intensità costante di durata tp e indicando con TL il tempo di ritardo, calcolato con la formula di Mokus:

$$T_L = 0.342 \frac{L^{0.8}}{s^{0.5}} (\frac{1000}{CN} - 9)^{0.7}$$

in cui s è la pendenza del bacino espressa in %, L è la lunghezza dell'asta principale prolungata fino alla displuviale espressa in km.

PHEEDRA SrI Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285	RELAZIONE IDROLOGICA	Pag. 17 di 20
Fmail: info@pheedra it – web: www.pheedra it		

Per la determinazione della durata di pioggia si è determinato:

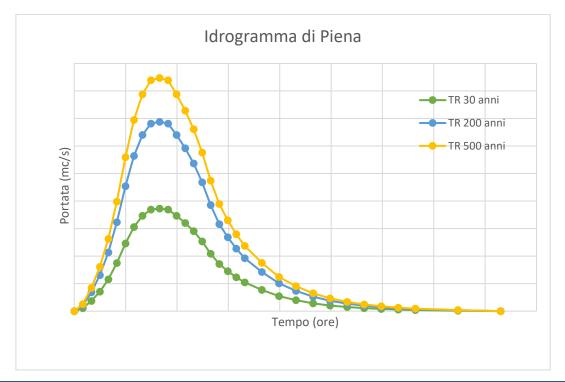
ta= 0,5 Tc+ T_L - tb= 8/3 ta

Si è infine determinato il tempo di corrivazione 0,6 T_{L} ottenendo un valore del tempo di corrivazione ${f Tc.}$

Si sono così determinate le portate al colmo per i tempi di ritorno di 30 e 200 e 500 anni.

I risultati possono essere così sintetizzati:

METODO SCS CN (DETERMINAZIONE PORTATA AL COLMO)						
Curve Number						
CN(II)	82,00					
CN(III)	91,38					
Tempi						
TL (Mokus)	2,65	Tempo di ritardo				
Tc (0,6*TL)	1,59	Tempo di corrivazione				
ta (ore)	3,44	Tempo di accumulo				
tb (ore)	9,17	Durata totale				
Determinazione per	rdite per	r infiltrazione				
S	23,96	Volume specifico di saturazione				
la	4,79	Perdite iniziali				
Altezza di Pioggia re	elativa al	tempo di corrivazione				
Нс	27,80					
Altezze di pioggia re	elative a	i tempi di ritorno				
H 30 (mm)	43,93	Pioggia lorda (TR 30 anni)				
H 200 (mm)	61,43	Pioggia lorda (TR 200 anni)				
H 500 (mm)	69,89	Pioggia Lorda (TR 500 anni)				
Altezza di pioggia n	Altezza di pioggia netta					
Pe netta 30 (mm)	16,13	Pioggia netta (TR 30 anni)				
Pe netta 200 (mm)	33,63	Pioggia netta (TR 200 anni)				
Pe netta 500 (mm)	42,08	Pioggia netta (TR 500 anni)				


PHEEDRA SrI	
Servizi di Ingegneria Integrata	
Via Lago di Nemi, 90	
74121 - Taranto (Italy)	

Portate al colmo di piena				
Q 30 (mc/s)	1,87			
Q 200 (mc/s)	3,89			
Q 500 (mc/s)	4,87			

L'idrogramma unitario SCS relativo ad un volume di deflusso V pari a un millimetro, si costruisce a partire dall'idrogramma adimensionale di Mockus che è una curva adimensionale, ricavata da numerosi idrogrammi unitari ottenuti da idrogrammi di piena registrati in bacini di differente estensione e posizione geografica, che mette in relazione il rapporto tra la generica portata Q all'istante t e la portata al colmo Qp che si verifica all'istante ta (durata della fase di crescita) con la variabile adimensionale t/ta.

Per il suddetto idrogramma unitario il 37,5% del volume totale di deflusso, che corrisponde ovviamente all'intera area ricadente tra l'idrogramma e l'asse delle ascisse t/ta, si verifica in corrispondenza della sola fase ascendente dell'idrogramma stesso. In altri termini il volume di deflusso corrispondente alla fase crescente dell'idrogramma è pari al 37,5% del volume totale di deflusso.

Si sono determinati gli idrogrammi di piena dei bacini sulla base della formulazione dell'idrogramma di Mockus:

3. CONCLUSIONI

A seguito di un accurato studio idrologico, sono stati valutati gli eventi di piena caratteristici dei bacini idrografici che interessano le aree in progetto e se ne sono determinate oltre che le portate al colmo riferite ai tempi di ritorno di 30, 200, 500 anni anche gli idrogramma di piena ottenuti con il metodo di Mockus.