SORGENIA RENEWABLES S.R.L.

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO IN LOCALITA' "POGGIO DELL'ORO" NEL COMUNE DI TUSCANIA (VT) E OPERE CONNESSE ANCHE NEL COMUNE DI TARQUINIA (VT)

Via Degli Arredatori, 8 70026 Modugno (BA) - Italy www.bfpgroup.net - info@bfpgroup.net tel. (+39) 0805046361

Azienda con Sistema di Gestione Certificato UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 UNI ISO 45001:2018

Tecnico

ing, Danilo POMPONIO

Collaborazioni

- ing. Milena MIGLIONICO
- ing. Giulia CARELLA
- ing. Tommaso MANCINI
- ing. Martino LAPENNA
- ing. Mariano MARSEGLIA
- ing. Giuseppe Federico ZINGARELLI
- ing. Dionisio STAFFIERI

Responsabile Commessa

ing. Danilo POMPONIO

ELABORATO		TITOLO	COMMES	SA	TI	POLOGIA			
			23035			D			
E02		CALCOLI PRELIMINARI DEGLI IMPIANTI	COI	ATO					
			D	C2303	5D-EC	5D-E02			
REV	ISIONE	Tutte le informazioni tecniche contenute nel presente documento sono di proprietà	SOSTITUISCE S			SOSTITUITO DA			
		esclusiva della Studio Tecnico BFP S.r.l e non possono essere riprodotte, divulgate o comunque utilizzate senza la sua preventiva autorizzazione scritta. All technical information	ı			-			
	00	contained in this document is the exclusive property of Studio Tecnico BFP S.r.l. and may	NOME FI	NOME FILE		PAGINE			
		neither be used nor disclosed without its prior written consent. (art. 2575 c.c.)	DC23035-E0	2.doc	21 + copertina				
REV	DATA	MODIFICA	Elaborato	Contr	ollato	Approvato			
00	28/04/23	Emissione	Lapenna	Man	ncini	Pomponio			
01									
02									
03									
04					•				
05					•				
06					•				

Elaborato realizzato con sistema WORD. E' vietata la modifica manuale.

Mod. P-19 Rev. 4 18.12.2020

1.	PREMESSA	2
2.	GENERALITA'	2
	2.1.Oggetto	2
	2.2.Caratteristiche generali del campo eolico	2
	2.3.Caratteristiche dell'aerogeneratore	3
	2.4.Sistema di accumulo	4
	2.5.Principali scelte progettuali relative all'impianto elettrico	6
3.	NORME E DOCUMENTAZIONE DI RIFERIMENTO	7
4.	RETE A MEDIA TENSIONE DI RACCOLTA	8
	4.1.Descrizione	8
	4.2.Cavi elettrici	9
	4.3.Segnalazione della presenza dei cavi	12
	4.4.Coesistenza tra i cavi MT e i sottoservizi	13
	4.5.Coesistenza tra cavi di energia e telecomunicazione	13
	4.6.Coesistenza tra cavi di energia e tubazioni o serbatoi metalli interrati	13
	4.7.Coesistenza tra cavi di energia e gasdotti	14
	4.8.Serbatoi di liquidi e gas infiammabili	14
5.	FIBRA OTTICA	15
6.	SOTTOSTAZIONE DI TRASFORMAZIONE E IMPIANTO DI CONSEGNA	16
	6.1.Generalità	16
	6.2.Descrizione Generale	
	6.3.Rete di terra	17
	6.4.RTU della sottostazione e dell'impianto AT di consegna	17
	6.5.SCADA	18
	6.6.Apparecchiature di misura in sottostazione	18
	6.7.Protezione lato MT	18
	6.8.Protezione di interfaccia	18
	6.9.Protezione del trasformatore AT/MT	19
	6.10. Cavidotto AT	19
	6.11. Impianto di illuminazione e videosorveglianza	20

1. PREMESSA

La presente relazione tecnica è relativa alla redazione del progetto per la realizzazione di un parco eolico con annesso un impianto di accumulo proposto dalla società **SORGENIA RENEWABLES S.R.L.**

La proposta progettuale è finalizzata alla realizzazione di un impianto eolico per la produzione di energia elettrica da fonte rinnovabile eolica costituito da n. 9 aerogeneratori, ciascuno di potenza pari a 6,2 MW, per una potenza complessiva di 55,8 MW e di un sistema di accumulo pari a 15 MW di potenza utile, da realizzarsi nel comune di Tuscania (VT), in cui insistono gli aerogeneratori, mentre il sistema di accumulo e le relative opere di connessione coinvolgeranno il territorio del comune di Tarquinia (VT) per il collegamento al futuro ampliamento della Stazione Elettrica (SE) di Trasformazione della RTN a 380/150 kV di "Tuscania".

2. GENERALITA'

2.1. Oggetto

Oggetto della presente è la progettazione elettrica definitiva relativa ad un nuovo impianto di produzione di energia elettrica da fonte eolica della potenza di 55,8 MW, equivalenti all'installazione di n. 9 aerogeneratori della potenza pari al valore di 6,2 MW, e di un sistema di accumulo di potenza utile pari a 15 MW.

Gli impianti ed opere da eseguire sono quelli sinteticamente sotto raggruppati:

- rete di distribuzione interna a MT (30 kV) in cavo interrato per la interconnessione degli aerogeneratori costituenti il parco eolico e per la connessione degli stessi e del sistema di accumulo alla sottostazione di trasformazione AT/MT;
- sottostazione di trasformazione AT/MT sita nei pressi del punto di consegna AT;
- raccordo AT (150 kV) in cavo interrato dalla sottostazione AT/MT al punto di consegna AT nel nuovo ampliamento da realizzare della stazione TERNA 380/150 kV di "Tuscania";
- rete di monitoraggio in fibra ottica tra le torri eoliche e la sottostazione.
- impianti di messa a terra.

2.2. <u>Caratteristiche generali del campo eolico</u>

L'impianto eolico per la produzione di energia elettrica avrà le seguenti caratteristiche generali:

 nº 9 aerogeneratori della potenza di circa 6,2 MW ciascuno ed avente generatore di tipo asincrono con diametro del rotore pari a 170 m, altezza mozzo pari a 125 m, per un'altezza massima al tip (punta della pala) pari a 210 m, comprensivi al loro interno di cabine elettriche di trasformazione MT/BT;

- rete elettrica interrata a 30 kV per l'interconnessione tra gli aerogeneratori e la sottostazione e il sistema di accumulo BESS e la sottostazione;
- sistema di accumulo BESS nelle immediate vicinanze della sottostazione 150/30 kV;
- nº 1 sottostazione elettrica di trasformazione 150/30 kV nei pressi del futuro ampliamento della Stazione Elettrica (SE) 380/150 kV della RTN denominata "Tuscania";
- raccordo AT 150 kV in cavo interrato tra la sottostazione e il punto di consegna nel futuro ampliamento della Stazione Elettrica (SE) 380/150 kV della RTN denominata "Tuscania";
- rete telematica di monitoraggio in fibra ottica per il controllo dell'impianto eolico mediante trasmissione dati via modem o satellitare.

2.3. <u>Caratteristiche dell'aerogeneratore</u>

In particolare, trattasi di aerogeneratori trifase con potenza di 6200 kW e tensione nominale di 690 V.

Le pale della macchina sono fissate su un mozzo e nell'insieme costituiscono il rotore che ha diametro massimo di 170 m; il mozzo a sua volta viene collegato ad un sistema di alberi e moltiplicatori di giri per permettere la connessione al generatore elettrico, da cui si dipartono i cavi elettrici di potenza, in bassa tensione verso il trasformatore MT/BT.

Tutti i componenti su menzionati, ad eccezione del rotore, sono ubicati in una cabina, detta navicella, la quale a sua volta, è posta su un supporto cuscinetto in modo da essere facilmente orientabile secondo la direzione del vento. L'intera navicella (realizzata in materiale plastico rinforzato con fibra di vetro) viene posta su di una torre tronco-conica tubolare.

Oltre ai componenti prima detti, vi è un sistema di controllo che esegue diverse funzioni:

- ✓ il controllo della potenza, che viene eseguito ruotando le pale intorno al proprio asse principale in maniera da aumentare o ridurre la superficie esposta al vento, in base al profilo delle pale;
- ✓ il controllo della navicella, detto controllo dell'imbardata, che serve ad inseguire la direzione del vento, ma che può essere anche utilizzato per il controllo della potenza;
- ✓ l'avviamento della macchina allorché è presente un vento di velocità sufficiente, e la fermata della macchina, quando vi è un vento di velocità superiore a quella massima per la quale la macchina è stata progettata.

L'intera navicella viene posta su di una torre avente forma conica tubolare. La velocità del vento di avviamento è la minima velocità del vento che dà la potenza corrispondente al massimo rendimento aerodinamico del rotore. Quando la velocità del vento supera il valore corrispondente alla velocità di avviamento la potenza cresce al crescere della velocità del vento.

La potenza cresce fino alla velocità nominale e poi si mantiene costante fino alla velocità di *Cut-out wind speed* (fuori servizio).

Per ragioni di sicurezza a partire dalla velocità nominale la turbina si regola automaticamente e l'aerogeneratore fornirà la potenza nominale servendosi dei suoi meccanismi di controllo.

L'aerogeneratore si avvicinerà al valore della potenza nominale a seconda delle caratteristiche costruttive della turbina montata: passo fisso, passo variabile, velocità variabile, etc.

	Diametro max	170 m						
	Numero di pale	3						
	Materiale	GRP (CRP) materiale plastico						
ROTORE	Materiale	rinforzato con fibra di vetro						
	Velocità nominale	-						
	Senso di rotazione	orario						
	Posizione rotore	Sopra vento						
	Potenza	6.200 kW						
SISTEMA	Tipe generatore	Asincrono a 4 poli, doppia						
ELETTRICO	Tipo generatore	alimentazione, collettore ad anelli						
LLLTINICO	Classe di protezione	IP 54						
	Tensione di uscita	690 V						
	Frequenza	50 Hz						
TORRE IN ACCIAIO	Altezza al mozzo (in ogni caso non si	125 m						
TOTAL IN ACCIAIO	supererà l'altezza complessiva di 150 m)	123 111						
SISTEMA DI	Tipo	Microprocessore						
CONTROLLO	11,00	i iici opi occissore						
	Trasmissione segnale	Fibra ottica						
	Controllo remoto	PC-modem, interfaccia grafica						

Tabella 1 - Scheda tecnica dell'aerogeneratore tipo

2.4. Sistema di accumulo

L'impianto BESS (Battery Energy Storage System), è costituito da quattro blocchi, per un totale di 15MW. Ogni blocco è caratterizzato da un gruppo inverter/trasformatore di potenza pari a 4,5 MW per la conversione da corrente continua a corrente alternata a 30 kV.

Un sistema di accumulo, o BESS, comprende come apparecchiature minime:

- BAT: batteria di accumulatori elettrochimici, del tipo agli ioni di Litio;
- BMS: il sistema di controllo di batteria (Battery Management System);
- BPU: le protezioni di batteria (Battery Protection Unit);
- PCS: il convertitore bidirezionale caricabatterie-inverter (Power Conversion
- System);
- EMS: il sistema di controllo EMS (Energy management system);

• AUX: gli ausiliari (HVAC, antincendio, ecc.).

Oltre ai blocchi su citati, nell'impianto BESS, sarà presente anche una cabina per i servizi ausiliari e una cabina di raccolta di media tensione.

Le unità di conversione e trasformazione sono costituite da un sistema che combina inverter, trasformatore MT/BT e quadro MT in un singolo skid preassemblato, e con un grado di protezione che permette l'installazione dei componenti elettrici direttamente all'esterno, riducendo di conseguenza le volumetrie da realizzare. Queste unità di conversione e trasformazione saranno connesse alla cabina di raccolta MT, presente all'interno dell'area dell'impianto BESS, a formare 4 linee MT alla tensione di 30 kV.

Il BESS sarà costituito da batterie agli ioni di litio, i moduli delle celle e i rack per contenere i moduli stessi.

La tecnologia delle batterie agli ioni di litio è attualmente lo stato dell'arte per efficienza, compattezza e flessibilità di utilizzo.

Il collegamento del BESS alla rete avviene mediante un trasformatore innalzatore MT/BT e un quadro di parallelo dotato di protezioni di interfaccia. I principali ausiliari sono costituiti alla ventilazione e raffreddamento degli apparati.

Il sistema di stoccaggio è costituito, come in parte già anticipato, dai seguenti dispositivi:

- Sistema di conversione bidirezionale DC /AC (PCS);
- Trasformatori di potenza MV / LV;
- Quadri elettrici MV;
- Sistema locale di gestione e controllo dell'assemblaggio della batteria (Sistema di gestione della batteria "BMS");
- Sistema locale di gestione e controllo integrato dell'impianto (Impianto SCADA);
- Apparecchiature elettriche (quadri elettrici, trasformatori) per il collegamento alla rete elettrica.

L'inverter e le protezioni sono regolamentati dalla norma nazionale CEI 0-16.

I sistemi di Energy Storage, con tecnologia al litio, sono caratterizzati da stringhe di batterie costituite dalla serie di diversi moduli batterie, al cui interno sono disposte serie e paralleli delle celle elementari.

Infine, a capo dei moduli posti in serie all'interno dei rack vi è la Battery Protection Unit (BPU) responsabile della protezione dell'intero rack contro i corto circuiti, il sezionamento del rack per eseguire la manutenzione in sicurezza, e la raccolta di tutte le informazioni provenienti dai vari moduli (temperature, correnti, tensioni, stato di carica etc).

Dal momento che i rack batterie sono caratterizzati da grandezze elettriche continue, al fine di poter connettere tali dispositivi alla rete elettrica vi è la necessità di convertire tali grandezze continue in alternate. A tal fine il sistema di conversione solitamente utilizzato in

applicazioni Energy Storage è un convertitore bidirezionale monostadio caratterizzato da un unico inverter AC/DC direttamente collegato al sistema di accumulo.

Tali convertitori possono essere installati direttamente all'interno di container. Il convertitore sarà connesso ad un trasformatore elevatore MT/BT al fine di trasportare l'energia in maniera più efficiente.

I container sono progettati per ospitare le apparecchiature elettriche, garantendo idonee segregazioni per le vie cavi (canalizzazioni e pavimento flottante), isolamento termico e separazione degli ambienti, spazi di manutenzione e accessibilità dall'esterno.

I container batterie e inverter saranno appoggiati su una struttura in cemento armato, tipicamente costituita da una platea di fondazione appositamente dimensionata in base all'attuale normativa.

Si prevede che il percorso di accesso ai container potrà essere pavimentato in brecciato.

Le interconnessioni tra i container saranno realizzate con tubi interrati, tipo corrugato doppia parete; nei punti di ingresso/uscita attraverso i basamenti dei container o tubi che saranno annegati nel calcestruzzo o tramite cavidotti. Potranno inoltre essere previsti pozzetti intermedi in cemento armato con coperchio carrabile.

Tutti gli impianti elettrici saranno realizzati a regola d'arte, progettati e certificati ai sensi delle norme CEI EN vigenti. Le sezioni dell'impianto di accumulo saranno collegate all'impianto di terra tramite appositi dispersori.

2.5. Principali scelte progettuali relative all'impianto elettrico

Partendo dalle condizioni al contorno individuate nel paragrafo precedente, si sono studiate le caratteristiche dell'impianto elettrico con l'obiettivo di rendere funzionale e flessibile l'intero parco eolico.

- ✓ Gli aerogeneratori sono stati collegati con soluzione "entra-esce" raggruppandoli anche in funzione del percorso delle linee in cavo da installare, evitando sprechi di materiale, contenendo le perdite ed ottimizzando la scelta delle sezioni dei cavi stessi. Si sono così individuati tre sottocampi da tre turbine.
- ✓ La sottostazione di trasformazione AT/MT è stata ubicata nei pressi del punto di connessione presso l'ampliamento della stazione TERNA da realizzare e raccoglie le linee MT di interconnessione del parco eolico e del sistema di accumulo, consentendo poi la trasmissione dell'intera potenza del parco eolico al punto di consegna AT mediante un raccordo in cavo interrato AT (150 kV);

- ✓ I percorsi delle linee, illustrati nei disegni, potranno essere meglio definiti in fase di progettazione di dettaglio e costruttiva. All'atto dell'esecuzione dei lavori, i percorsi delle linee elettriche saranno accuratamente verificati e definiti in modo da:
 - evitare interferenze con strutture, travi, parti di altri impianti ed effetti di qualunque genere;
 - evitare curve inutili e percorsi tortuosi;
 - assicurare una facile posa o infilaggio delle condutture;
 - effettuare una posa ordinata e ripristinare la condizione ante-operam.

3. NORME E DOCUMENTAZIONE DI RIFERIMENTO

Il progetto elettrico oggetto della presente relazione tecnica è stato realizzato nel rispetto dei più moderni criteri della tecnica impiantistica, nel rispetto della "regola dell'arte", nonché delle leggi, norme e disposizioni vigenti, con particolare riferimento a:

- Legge sulla prevenzione degli infortuni sul lavoro: D. Lgs 81/08
- Legge n. 186 del 1/3/1968 Costruzione di impianti a regola d'arte;
- DM 24/11/1984 (Norme relative ai gasdotti);
- D.Lgs. 17/2010 (Direttiva Macchine);
- DM 05/08/1998 Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche aeree esterne;
- Norme del Comitato Elettrotecnico Italiano (CEI), meglio specificate nelle relazioni specifiche (CEI EN 61936, CEI 11-17, ecc.).
- Norme e Raccomandazioni IEC;
- Prescrizioni e raccomandazioni Terna Spa: guide e specifiche tecniche;
- Prescrizioni e raccomandazioni della Struttura Pubblica di Controllo Competente (ASL/INAIL);
- Norme di unificazione UNI, UNEL, TERNA.
- Direttive europee.

Il rispetto della normativa sopra specificata sarà inteso nel modo più restrittivo, nel senso che non solo la progettazione sarà adeguata a quanto stabilito dai suddetti criteri, ma vi sarà un'analoga rispondenza alle normative da parte di tutti i materiali ed apparecchiature che saranno impiegati. Con preciso riferimento a quanto prescritto dalle Norme d'installazione degli impianti elettrici, saranno scelti materiali provvisti di marchio CE e Marchio Italiano di Qualità (I.M.Q.) per tutti i prodotti per i quali il marchio è esistente e ammesso. Saranno, comunque, rispettate le prescrizioni delle presenti specifiche, ove sono previsti dimensionamenti in lieve misura eccedenti i limiti minimi consentiti dalle Norme.

Gli impianti dovranno rispondere ai seguenti requisiti generali:

- Sicurezza ed affidabilità;
- Capacità di ampliamento;
- Accessibilità;
- Facilità di gestione.

4. RETE A MEDIA TENSIONE DI RACCOLTA

4.1. Descrizione

La rete elettrica a 30 kV interrata assicurerà il collegamento dei trasformatori di torre degli aerogeneratori e dei trasformatori del sistema di accumulo alla sottostazione di trasformazione.

La rete MT di raccolta ha schema radiale ed è costituita da linee in cavo interrato collegate in entra-esce attraverso le cabine MT di torre, determinando tre sottocampi ciascuno composto da tre aerogeneratori.

Ciascuna delle suddette linee, a partire dall'ultimo aerogeneratore del ramo, provvede, con un percorso interrato, al trasporto dell'energia prodotta dalla relativa sezione del parco fino all'ingresso del quadro elettrico di raccolta, nella sottostazione di trasformazione AT/MT.

Per il sistema di accumulo, costituito da 4 blocchi, ci saranno 4 linee MT a 30 kV che confluiranno prima in una cabina di raccolta per poi raggiungere da questa, attraverso un'unica linea MT a 30 kV interrata, il quadro elettrico di raccolta MT presente in sottostazione.

I percorsi delle linee, illustrati negli elaborati grafici, potranno essere meglio definiti in fase costruttiva. Pertanto si possono identificare le seguenti sezioni della rete MT:

- ➤ la rete di raccolta dell'energia prodotta suddivisa in 3 sottocampi eolici costituiti da linee che collegano i quadri MT delle torri in configurazione entra-esce;
- ➤ la rete di vettoriamento che collega l'ultimo aerogeneratore di ciascun sottocampo alla sottostazione di trasformazione AT/MT;
- ➤ La rete di raccolta dei 4 blocchi del sistema di accumulo che confluiranno nella cabina di raccolta BESS;
- ➤ La rete di vettoriamento che collega la cabina di raccolta BESS alla sottostazione di trasformazione AT/MT

Il percorso di ciascuna linea della rete di raccolta è stato individuato sulla base dei seguenti criteri:

- minima distanza;
- massimo sfruttamento degli scavi delle infrastrutture di collegamento da realizzare;
 migliore condizione di posa (ossia, in presenza di forti dislivelli tra i due lati della strada,

contenendo, comunque, il numero di attraversamenti, si è cercato di evitare la posa dei cavi elettrici dal lato più soggetto a frane e smottamenti).

Per le reti non è previsto alcun passaggio aereo.

All'atto dell'esecuzione dei lavori, i percorsi delle linee elettriche saranno accuratamente verificati e definiti in modo da:

- evitare interferenze con strutture, altri impianti ed effetti di qualunque genere;
- evitare curve inutili e percorsi tortuosi;
- assicurare una facile posa o infilaggio del cavo;
- effettuare una posa ordinata e ripristinare la condizione ante-operam.

4.2. Cavi elettrici

I collegamenti elettrici saranno tutti realizzati direttamente interrati mediante terna di conduttori unipolari, disposti a trifoglio, a corda rigida compatta in alluminio, isolati in gomma etilenpropilenica (EPR), tipo Eprotenax DHV o in alternativa isolati in XLPE, per un una tensione di 18/30 kV, dotati di schermo metallico, protezione meccanica in materiale polimerico (Air Bag, consentendo la posa direttamente interrata senza ulteriore protezione meccanica). Il cavo sarà del tipo **ARP1H5(AR)E**¹, o similare.

La potenza elettrica raccolta dall'area di produzione (MT) è trasferita in elettrodotto, in esecuzione completamente interrata, fino alla sottostazione di trasformazione/consegna (AT/MT).

L'elettrodotto si compone delle seguenti sezioni fondamentali:

- il collegamento delle diverse torri tra di loro;
- il collegamento dei diversi blocchi del sistema di accumulo alla cabina di raccolta BESS;
- 3. il collegamento dei gruppi di macchine e della cabina di raccolta BESS con la sottostazione di consegna (SSE).

Per il collegamento delle torri si prevede la realizzazione di linee MT costituite da collegamenti del tipo entra-esce. Le linee raccolgono, pertanto, l'energia prodotta dai generatori. Il percorso dell'elettrodotto di collegamento dei trasformatori (posti, come si è detto, all'interno delle torri e in ciascun blocco BESS) è rappresentato nelle tavole allegate.

Il percorso del collegamento del campo eolico e del sistema di accumulo BESS alla SSE è stato scelto tenendo conto:

della necessità di utilizzare quanto più possibile la viabilità esistente;

¹ Per quanto riguarda i cavi non "CPR", se immessi sul mercato dopo il 01/07/2017, dovranno essere sostituiti con cavi "CPR" corrispondenti, qualora disponibili sul mercato prima dell'esecuzione dell'impianto (<u>**D.lgs n 106 del 16/06/2017**</u>)

 dell'esigenza di limitare al minimo i percorsi da realizzare su strade pubbliche accreditate di un discreto traffico veicolare.

Risultato progettuale è che tutto l'elettrodotto è per la maggior parte su viabilità rurale esistente. Il tracciato dei cavidotti dovrà essere quanto più rettilineo possibile e parallelo all'asse della strada.

I cavi saranno direttamente interrati tranne nei casi in cui sia necessaria una maggiore protezione meccanica, realizzata con tubazioni in PVC. Le eventuali tubazioni saranno a loro volta rinfiancate con sabbia (o terra vagliata) e lo scavo sarà riempito con terreno argilloso per 60 cm e materiale di risulta la parte restante (salvo diversa prescrizione dell'Ente Proprietario della strada).

Il cavo direttamente interrato garantisce una maggiore portata a parità di sezione rispetto al caso di cavo in tubo.

L'impiego di pozzetti o camerette deve essere limitato ai casi di reale necessità, ad esempio per facilitare la posa dei cavi lungo un percorso tortuoso o per la ispezionabilità dei giunti.

La scelta delle sezioni dei cavi è stata fatta considerando le correnti di impiego e le portate dei cavi per la tipologia di posa considerando anche che devono essere minimizzate le perdite.

Sono state utilizzate preliminarmente sezioni da 95 e 630 mm² con tensione nominale 18/30 kV. Per il cavidotto di vettoriamento relativo al campo eolico la linea è stata suddivisa in n. 3 terne che saranno posate nello stesso scavo per il tracciato condiviso.

Nella tabella seguente sono riportati i risultati dei calcoli delle correnti di impiego (a tensione e potenza nominale e $\cos \phi$ 0,95), la scelta delle sezioni e la portata dei cavi MT per la posa interrata. I coefficienti di calcolo sono stati assunti secondo le seguenti ipotesi:

- resistività termica del terreno pari a 2 K•m/W (coefficiente C_i);
- temperatura terreno pari a 20° C (coefficiente Ca);
- fattori di riduzione quando nello scavo sono presenti più condutture (coefficiente C_g);
- profondità di posa pari a 1,20 m (coefficiente C_d)
- condizioni di posa con la situazione termica più critica.

La scelta della sezione è stata effettuata considerando che il cavo deve avere una portata Iz uguale o superiore alla corrente di impiego Ib del circuito. Sono stati così dimensionati i vari tratti di elettrodotto in base al numero di terne affiancate nello stesso scavo. Per il cavidotto di vettoriamento, la scelta del numero di cavi e della sezione tiene conto anche della caduta di tensione sulla linea.

Informazioni di Linea Parametri Elettrici							Cavo: tipologia e portata													Caduta di Tensione			
Sottocampi	Origine Linea	Arrivo Linea	Lunghezza (m)	S (kVA)	фѕоо	U (V)	I (A)	Sezione (mm²)	N. Cond	Caratteristiche del cavo			Formazione del cavo	Iz (A)	K1 (Tmp)	K2 (Group)	K3 (Depth)	K4 (Th R)	I'z (IEC) (A)	Fattore di carico del cavo (I/l'z)	ΔV (%)	ΔV cumul. (%)	
	WTG01	WTG03	1553	6.200	0,95	30.000	125,6	630	1	XLPE or EPR	1-CORE	ARM	Al 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	31%	0,122%	
1	WTG02	WTG03	2168	6.200	0,95	30.000	125,6	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	31%	0,170%	3,51%
	WTG03	SSE	14519	18.600	0,95	30.000	376,8	630	1	XLPE or EPR	1-CORE	ARM	Al 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	93%	3,223%	
	WTG04	WTG06	835	6.200	0,95	30.000	125,6	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	31%	0,065%	
2	WTG05	WTG06	5894	6.200	0,95	30.000	125,6	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	31%	0,461%	3,53%
	WTG06	SSE	13519	18.600	0,95	30.000	376,8	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	93%	3,001%	
	WTG08	WTG007	1565	6.200	0,95	30.000	125,6	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	31%	0,122%	
3	WTG07	WTG09	4885	12.400	0,95	30.000	251,2	630	1	XLPE or EPR	1-CORE	ARM	Al 3F	3x1cx630 mm²	633,8	1,000	0,760	0,954	0,880	404,4	62%	0,748%	2,67%
	WTG09	SSE	8111	18.600	0,95	30.000	376,8	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm ²	633,8	1,000	0,760	0,954	0,880	404,4	93%	1,800%	
BESS	BESS	SSE	125	15.000	1,00	30.000	288,7	630	1	XLPE or EPR	1-CORE	ARM	AI 3F	3x1cx630 mm²	633,8	1,000	1,000	0,954	0,880	532,1	54%	0,017%	0,02%
												IIN	0,02%	0,02%									
																					AX	3,22%	3,53%
																				,	W	0,97%	2,43%

Tabella 2 - Calcoli preliminari

4.3. Segnalazione della presenza dei cavi

Al fine di evitare danneggiamenti nel caso di scavo da parte di terzi, lungo il percorso dei cavi dovrà essere posato sotto la pavimentazione, un nastro di segnalazione in polietilene.

Nell'attraversamento di aree private fino all'imbocco delle strade pubbliche dovrà essere segnalata la presenza dell'elettrodotto interrato posizionando opportuna segnaletica.

Su viabilità pubblica si dovranno apporre in superficie opportune paline segnaletiche con l'indicazione della tensione di esercizio e con i riferimenti della Società responsabile dell'esercizio della rete MT.

Successivamente alle operazioni di posa e comunque prima della messa in servizio, l'isolamento dei cavi a MT, dei giunti e dei terminali, sarà verificato attraverso opportune misurazioni secondo le norme CEI 11-17.

La curvatura dei cavi deve essere tale da non provocare danni agli stessi.

Le condizioni ambientali (temperatura, umidità) durante la posa dei cavi dovranno essere nel range fissato dal fabbricante dei cavi.

Per quanto riguarda le minime profondità di posa tra il piano di appoggio del cavo e la superficie del suolo si terrà conto di quanto seque:

- per cavi appartenenti a sistemi di Categoria 0 e 1: 0,5 m;
- per cavi appartenenti a sistemi di Categoria 2: 0,6 o 0,8 m;
- per cavi appartenenti a sistemi di Categoria 3: 1,0 o 1,2 m.

Nei tratti in cui si attraverseranno terreni rocciosi o in altre circostanze eccezionali in cui non potranno essere rispettate le profondità minime sopra indicate, dovranno essere predisposte adequate protezioni.

In caso di attraversamenti sia longitudinali che trasversali di strade pubbliche con occupazione della carreggiata saranno rispettate le prescrizioni del regolamento di esecuzione e di attuazione del nuovo codice della strada (D.P.R. 16.12.1992, n. 495, art. 66, comma 3) e, se emanate, le disposizioni dell'Ente proprietario della strada, pertanto la profondità minima misurata dal piano viabile di rotolamento non sarà inferiore a 1 m.

Canalizzazioni ad altezza ridotta su strada pubblica sono ammesse soltanto previa accordo con l'Ente proprietario della strada ed a seguito di comprovate necessità di eseguire incroci e/o parallelismi con altri servizi che non possano essere realizzati aumentando la profondità di posa dei cavi.

4.4. <u>Coesistenza tra i cavi MT e i sottoservizi</u>

Lungo il percorso del cavidotto si potrebbero riscontrare interferenze con dei sottoservizi (acquedotto, gas, telecomunicazione ecc.); a tal proposito saranno verificate, in sede di conferenza di servizio, eventuali interferenze con i gestori dei sottoservizi. Di seguito sono state indicate le distanze da mantenere da eventuali sottoservizi secondo quanto indicato dalla norma CEI 11-17.

4.5. <u>Coesistenza tra cavi di energia e telecomunicazione</u>

Nei percorsi dove vi potrebbe essere l'incrocio con cavi di telecomunicazioni, la tubazione dei cavi di energia dovrà essere posto al di sotto del cavo di telecomunicazioni ad una distanza non inferiore di 0,30 m.

Nei percorsi paralleli, i cavi di energia ed i cavi di telecomunicazione devono essere posati alla maggiore possibile distanza tra loro; nel caso in cui, per giustificate esigenze tecniche, non possa essere rispettato tale criterio, bisognerà mantenere, fra essi, una distanza minima, in proiezione su di un piano orizzontale, non inferiore a 0,30 m. Nel caso in cui i cavi di energia e di telecomunicazione dovranno essere posati nello stesso manufatto, occorrerà posare i cavi in tubazioni distinte in modo tale da evitare che possano venire a diretto contatto fra loro.

4.6. <u>Coesistenza tra cavi di energia e tubazioni o serbatoi metalli interrati</u>

L'incrocio fra cavi di energia e tubazioni metalliche adibite al trasporto e alla distribuzione di fluidi (acquedotti, oleodotti e simili) non deve effettuarsi sulla proiezione verticale di giunti non saldati delle tubazioni metalliche stesse. Non si dovranno effettuare giunti sui cavi di energia a distanza inferiore a 1 m dal punto di incrocio. In ogni caso la distanza minima, misurata fra le superfici esterne di cavi di energia e di tubazioni metalliche o fra quelle di eventuali loro manufatti di protezione dovrà essere di 0,50 m. Tale distanza può essere ridotta fino ad un minimo di 0,30 m, quando una delle strutture di incrocio è contenuta in manufatto di protezione non metallico, prolungato per almeno 0,30 m per parte rispetto all'ingombro in pianta dell'altra struttura oppure quando fra le strutture che si incrociano venga interposto un elemento separatore non metallico; questo elemento dovrà coprire, oltre alla superficie di sovrapposizione in pianta delle strutture che si incrociano, quella di una striscia di circa 0,30 m di larghezza ad essa periferica. Le distanze di cui sopra possono essere ulteriormente ridotte, previo accordo con gli Enti proprietari o Concessionari, se entrambe le strutture sono contenute in manufatto di protezione non metallico.

Per quanto riguarda i parallelismi tra cavi di energia e le tubazioni metalliche si dovrà osservare una distanza minima di 0,30 m, misurata in proiezione orizzontale fra le superfici

esterne di essi o di eventuali loro manufatti di protezione. Tuttavia sarà possibile derogare tale prescrizione, previo accordo con gli esercenti, nei seguenti casi:

- a) quando la differenza di quota fra le superfici esterne delle strutture interessate è superiore a 0,50 m:
- b) quando tale differenza è compresa tra 0,30 m e 0,50 m, ma si interpongono fra le due strutture elementi separatori non metallici, nei tratti in cui la tubazione non è contenuta in un manufatto di protezione non metallico.

Non dovranno mai essere disposti nello stesso manufatto di protezione cavi di energia e tubazioni convoglianti fluidi infiammabili; per le tubazioni per altro uso, tale tipo di posa sarà consentito, purché il cavo di energia e le tubazioni non siano posti a diretto contatto fra loro.

4.7. Coesistenza tra cavi di energia e gasdotti

Nei parallelismi tra linee elettriche posate in tubi interrati e condotte di metano (energia e segnale) non dovrà essere inferiore:

- alla profondità di posa adottata per il tubo del metano per le condotte di 1^a, 2^a e 3^a specie;
- a 0,5 m per condotte di 4a e 5a specie, UNI 9165, art. 6.7.3;
- alla distanza che consenta di eseguire gli eventuali interventi di manutenzione su entrambi i servizi interrati, per le condotte di 6^a e 7^a specie, UNI 9165, art. 6.7.3.

La distanza va misurata tra le due superfici affacciate.

Negli incroci tra linee elettriche posate in tubi interrati e condotte di la distanza di sicurezza tra condotte di metano non drenate (1^a, 2^a, 3^a specie) e le tubazioni per cavi elettrici (energia e segnale) nel caso in cui vi sia un incrocio dovrà essere almeno 1,5 m (Secondo il Dm 17/04/08, All. A, art. 2.7). Per le altre condotte si dovrà avere una distanza:

- di 0,5 m per le condotte di 4^a e 5^a specie;
- tale da consentire l'esecuzione di eventuali interventi di manutenzione su entrambi i servizi interrati per le condotte di 6^a e 7^a specie.

La distanza va misurata in senso verticale tra le due superfici affacciate.

4.8. Serbatoi di liquidi e gas infiammabili

I cavidotti contenenti cavi di energia dovranno distare almeno 1 m dalle superfici esterne di serbatoi contenenti liquidi e gas infiammabili.

5. FIBRA OTTICA

L'intero parco sarà dotato di una rete dati in Fibra Ottica che verrà messa in opera all'interno di un tubo in PEAD di diametro pari a 50 mm, posato all'interno dello scavo dei cavidotti.

Le caratteristiche del cavo a fibre ottiche saranno:

- Numero delle fibre 12
- Tipo di fibra multimodale 62.5/125 μm
- Diametro cavo 11,7 mm
- Lunghezza d'onda 1300 nm
- Banda ≥ 500 MHz/Km
- Peso del cavo 130 kg/km circa
- Massima trazione a lungo termine 3000 N
- Massima trazione a breve termine 4000 N
- Minimo raggio di curvatura in installazione 20 cm
- Minimo raggio di curvatura in servizio 10 cm

Il collegamento dei singoli aerogeneratori con il sistema di controllo avverrà secondo il seguente schema:

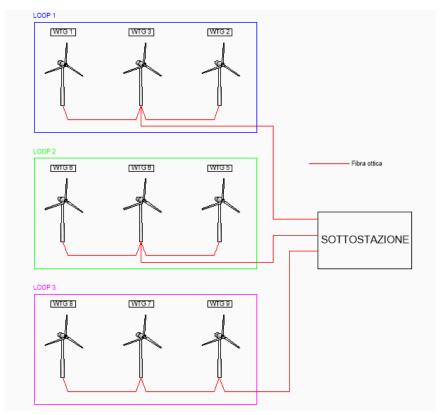


Figura 1 - Schema fibra ottica

6. SOTTOSTAZIONE DI TRASFORMAZIONE E IMPIANTO DI CONSEGNA

6.1. Generalità

La sottostazione AT/MT, da realizzarsi nei pressi del punto di consegna, è il punto di raccolta e trasformazione del livello di tensione da 30 kV a 150 kV per consentire il trasporto dell'energia prodotta fino al punto di consegna alla rete di trasmissione nazionale e riceve l'energia prodotta dagli aerogeneratori e quella immagazzinata dal sistema di accumulo attraverso la rete di raccolta a 30 kV. Nella sottostazione la tensione viene innalzata da 30 kV a 150 kV e consegnata alla rete mediante breve linea in cavo interrato a 150 kV che si attesterà ad uno stallo di protezione AT, per la connessione in antenna al futuro ampliamento della stazione elettrica (SE) TERNA di trasformazione 380/150 kV "Tuscania".

6.2. Descrizione Generale

La sottostazione AT/MT comprenderà un montante AT per l'impianto in oggetto, che sarà principalmente costituito da due stalli trasformatore, da una terna di sbarre e uno stallo linea. Il singolo stallo trasformatore AT/MT sarà composto da:

- trasformatore di potenza AT/MT;
- terna di scaricatori 150 kV;
- terna di TA 150 kV;
- terna di TV induttivi 150 kV;
- interruttore tripolare 150 kV;
- terna di TV capacitivi 150 kV;
- sezionatore tripolare orizzontale con lame di terra 150 kV.

Lo stallo di linea condiviso invece sarà formato da:

- sezionatore tripolare orizzontale con lame di terra 150 kV.
- terna di TV capacitivi 150 kV;
- terna di TA 150 kV;
- interruttore tripolare 150 kV;
- sezionatore tripolare orizzontale 150 kV con lame di terra;
- terna di scaricatori 150 kV;
- terna di terminali per il raccordo in cavo interrato con il punto di consegna.

All'interno dell'area recintata della sottostazione elettrica di competenza della società SORGENIA RENEWABLES S.R.L. sarà ubicato un fabbricato suddiviso in vari locali che a seconda dell'utilizzo ospiteranno i quadri MT, gli impianti BT e di controllo, gli apparecchi di misura, i servizi igienici, ecc.

In ottemperanza alle indicazioni TERNA la sottostazione prevedrà la possibilità di aggiungere ulteriori stalli produttore per eventuali nuovi utenti futuri.

Lo Stallo Condiviso consentirà di disalimentare le sbarre per eventuali interventi di manutenzione o per interventi automatici del sistema di protezione, comando e controllo senza interessare in alcun modo lo stallo arrivo produttore in Stazione Elettrica RTN.

6.3. Rete di terra

L'impianto di terra sarà costituito, conformemente alle prescrizioni della Norma CEI EN 50522 ed alle prescrizioni della Guida CEI 99-5, da una maglia di terra realizzata con conduttori nudi in rame elettrolitico di sezione pari a 120 mm², interrati ad una profondità di almeno 0,7 m. Per le connessioni agli armadi verranno impiegati conduttori di sezione pari a 70 mm². La scelta finale deriverà dai calcoli effettuati in fase di progettazione esecutiva.

In base alle prescrizioni di TERNA potrà essere necessario anche un collegamento dell'impianto di terra della sottostazione con quello dell'impianto di consegna AT.

Potrà essere posata nello scavo degli elettrodotti MT una eventuale corda di terra in rame elettrolitico di sezione di 50 mm² per collegare l'impianto di terra della sottostazione con gli impianti di terra della centrale (torri eoliche e cabine elettriche). La scelta finale deriverà dai calcoli effettuati in fase di progettazione esecutiva.

6.4. RTU della sottostazione e dell'impianto AT di consegna

Tale sistema deve rispondere alle specifiche TERNA S.p.A. Le caratteristiche degli apparati periferici RTU devono essere tali da rispondere ai requisiti di affidabilità e disponibilità richiesti e possono variare in funzione della rilevanza dell'impianto.

La RTU dovrà svolgere i seguenti compiti:

- Interrogazione delle protezioni della sottostazione, per l'acquisizione di segnali e misure attraverso le linee di comunicazione;
- Comando della sezione AT e MT della sottostazione;
- Acquisizione di segnali generali di tutta la rete elettrica;
- Trasmettere a TERNA S.p.A. i dati richiesti dal Regolamento di Esercizio, secondo i criteri e le specifiche dei documenti Terna.

La RTU sarà comandabile in locale dalla sottostazione tramite un quadro sinottico che riporterà lo stato degli organi di manovra di tutta la rete MT e AT, i comandi, gli allarmi, le misure delle grandezze elettriche.

6.5. SCADA

Il sistema SCADA (Supervisory Control And Data Acquisition) deve essere modulare e configurabile secondo le necessità e configurazione basata su PC locale con WebServer per l'accesso remoto.

La struttura delle pagine video del sistema SCADA deve includere:

- Schema generale di impianto;
- Pagina allarmi con finestra di pre-view;
- Schemi dettagliati di stallo.

Lo SCADA dovrà acquisire, gestire e archiviare ogni informazione significativa per l'esercizio e la manutenzione, nonché i tracciati oscilloperturbografici generati dalle protezioni.

6.6. Apparecchiature di misura in sottostazione

La misura dell'energia avverrà:

- sul lato AT (150 kV) in sottostazione di trasformazione (con apparecchiature ridondanti);
- nel quadro MT in sottostazione;
- nella cabina di raccolta BESS
- eventualmente sul lato BT in corrispondenza dei servizi ausiliari in sottostazione.

La sottostazione AT/MT sarà conforme alle prescrizioni della normativa TERNA e alle norme CEI già citate. Tutti i componenti sono stati dimensionati in base ai calcoli effettuati sulla producibilità massima dell'impianto eolico, con i dovuti margini di sicurezza, e in base ai criteri generali di sicurezza elettrica.

6.7. Protezione lato MT

La sottostazione sarà dotata di interruttori automatici MT per le linee di vettoriamento, sezionatori di terra, lampade di presenza rete ad accoppiamento capacitivo, trasformatori di misura. Gli interruttori MT (con azionamento motorizzato) forniranno tramite relè indiretto la protezione dai corto circuiti, dai sovraccarichi, dai guasti a terra.

Potrà essere presente anche un trasformatore MT/BT per l'alimentazione dei servizi ausiliari di sottostazione (qualora non venga richiesta fornitura BT o MT dedicata). L'energia assorbita da tali utenze sarà misurata attraverso apposito misuratore ai fini fiscali.

6.8. Protezione di interfaccia

Tale protezione ha lo scopo di separare i gruppi di generazione a MT dalla rete di trasmissione ad alta tensione in caso di malfunzionamento della rete.

Sarà realizzata tramite rilevatori di minima e massima tensione, minima e massima frequenza, minima tensione omopolare. La protezione agirà sugli interruttori delle linee in partenza verso i

gruppi di generazione e sarà realizzata anche una protezione di rincalzo nei confronti dell'interruttore MT del trasformatore AT/MT (protezione di macchina) per mancato intervento dei primi dispositivi di interfaccia.

6.9. Protezione del trasformatore AT/MT

La protezione di macchina è costituita da due interruttori automatici, uno sul lato MT, l'altro sul lato AT, corredati di relativi sezionatori e sezionatori di terra, lampade di presenza tensione ad accoppiamento capacitivo, scaricatori di sovratensione, trasformatori di misura e di rilevazione guasti. Sarà così realizzata sia la protezione dai corto-circuiti e dai sovraccarichi che la protezione differenziale.

6.10. Cavidotto AT

Sarà impiegata una terna di cavi disposta a trifoglio, di sezione pari a 2500 mm² per il collegamento tra la sottostazione condivisa ed il futuro ampliamento della stazione elettrica Terna 380/150 kV denominata "Tuscania".

Il conduttore sarà a corda rotonda compatta di alluminio, isolamento in XLPE, adatto ad una temperatura di esercizio massima continuativa del conduttore pari a 90 °C, schermo a fili di rame con sovrapposizione di una guaina in alluminio saldato e guaina esterna in PE grafitato, qualità ST7, con livello di isolamento verso terra e tra le fasi pari a U₀/U = 87/150 kV. Lo schermo metallico è dimensionato per sopportare la corrente di corto circuito per la durata specificata. Il rivestimento esterno del cavo ha la funzione di proteggere la guaina metallica dalla corrosione. Lo strato di grafite è necessario per effettuare le prove elettriche dopo la posa, in accordo a quanto previsto dalla norma IEC 62067.

I cavi posati in trincea saranno con disposizione a "trifoglio", ad una profondità 1,5 m (quota piano di posa) su di un letto di sabbia dello spessore di 10 cm circa. I cavi saranno ricoperti sempre di sabbia per uno strato di 70 cm, sopra il quale sarà posata una lastra in cemento armato avente funzione di protezione meccanica dei cavi. Con funzione di segnalazione, poco sopra la lastra sarà posata una rete rossa in PVC tipo Tenax e, a circa 50 cm di profondità, un nastro di segnalazione in PVC, riportante la dicitura "ELETTRODOTTO A.T. 150.000 V". All'interno della trincea è prevista l'installazione di n°1 tubo PEHD Ø 50 mm entro il quale sarà eventualmente posato n°1 cavo Fibra Ottica, oltre a un cavo unipolare in rame con guaina in PVC a protezione del cavo AT.

I relativi valori di corrente considerati per il dimensionamento del cavo AT risultano molto sovradimensionati rispetto ai valori di corrente generati dalla presenza del solo impianto eolico, per tenere in considerazione eventuali ampliamenti futuri e la connessione di ulteriori produttori alla stessa sottostazione 150/30 kV. La sezione del cavo scelta permetterà comunque di trasportare una potenza massima di 225 MW.

Nella Tabella più avanti sono riportati i risultati della scelta delle sezioni e la portata del cavo AT per la posa interrata.

I coefficienti di calcolo per la portata dei cavi (profondità di posa, condizioni termiche, ecc.) sono stati assunti secondo le seguenti ipotesi:

- C_i: resistività termica del terreno pari a 2°K m/W (in fase di progettazione esecutiva sarà effettuata una misura di resistività termica del terreno lungo il tracciato previsto, in modo tale da effettuare una correzione del valore se risultasse più alto);
- C_a: temperatura terreno pari a 20° C;
- Cd: coefficiente relativo alla profondità di posa (1,5 m);
- Cg: coefficiente relativo alla distanza tra i conduttori.

La scelta della sezione è stata effettuata considerando che il cavo deve avere una portata Iz uguale o superiore alla corrente di impiego Ib del circuito.

LINE	LINE Total Dist. Power Cad (m) (kW)		Power (kW)	U (V)	I (A)	Section (mm2)	Docian	Nominal Capacity (A)	Ca Tmp	Cc buried	Cd Deph	Cg Group	Ci Ther res	Cs Th R	Iz (A)	ΔV (%)
Tratto SSE-SE TERNA	635	559	225.000	150.000	911,6	2500	3x1cx2500 mm2	1470	1	1	0,95	1,00	0,73	1	1019	0,02%

Tabella 3 - Tabella di dimensionamento cavi AT

6.11. Impianto di illuminazione e videosorveglianza

L'impianto di illuminazione esterno sarà realizzato con corpi illuminanti opportunamente distanziati dalle parti in tensione ed in posizione tale da non ostacolare la circolazione dei mezzi. L'impianto di illuminazione sarà alimentato con linee in derivazione trifase con neutro a 400/230 V 50 Hz a mezzo di specifico quadro di consegna, comando e protezione.

Le linee di alimentazione saranno tutte interrate ed i cavi posati entro tubo corrugato flessibile. I cavi saranno costituiti da conduttori a corda rotonda flessibile di rame rosso, formazione flessibile, classe 5, isolati in Gomma di qualità G16, che conferisce al cavo elevate caratteristiche elettriche, meccaniche e termiche, riempitivo termoplastico penetrante tra le anime (solo nei cavi multipolari), guaina in PVC speciale di qualità R16, conforme alle norme CEI 20-13, IEC 60502-1, CEI UNEL 35318, EN 50575:2014+A1:2016, conforme ai requisiti previsti dalla Normativa Europea Prodotti da Costruzione (CPR UE 305/11), classe di reazione al fuoco "Cca-s3,d1,a3", tensione di esercizio 0,6/1 kV, tensione massima di esercizio 1,2 kV, sigla commerciale FG16(O)R16.

Il dimensionamento dei cavi terrà conto dell'intervento delle protezioni in caso di corto circuito sia all'inizio che a fine linea, limitando le cadute di tensione in linea a meno del prescritto 4% della tensione nominale. La protezione dai contatti diretti sarà garantita dalla protezione di tutte

le parti attive dei componenti elettrici mediante isolamento o mediante barriere o involucri per impedire contatti diretti. Se uno sportello, pur apribile con chiave o attrezzo, è posto a meno di 2,5 m dal suolo e dà accesso alle parti attive, queste devono essere inaccessibili al dito di prova (IPXXB) o devono essere protette da un ulteriore schermo con uguale grado di protezione. Le lampade degli apparecchi di illuminazione non devono diventare accessibili se non dopo aver rimosso un involucro o una barriera per mezzo di un attrezzo, a meno che l'apparecchio non si trovi ad una altezza superiore a 2,8 m (in questo caso i pali avranno un'altezza di circa 8 m).

La protezione contro i contatti indiretti sarà garantita mediante l'utilizzo di dispositivi a corrente differenziale all'origine dell'impianto di illuminazione. Nel caso in cui si utilizzino componenti elettrici di classe seconda non sarà previsto alcun conduttore di protezione e le parti conduttrici, separate dalle parti attive con isolamento doppio o rinforzato, non dovranno essere collegate intenzionalmente all'impianto di terra.

Gli organi di protezione dovranno essere dimensionati in modo da garantire la protezione contro i cortocircuiti dell'intero impianto secondo la norma CEI 64-8.

L'area utente sarà dotata di impianto di videosorveglianza, con funzione di video analisi e trasmissione allarme con immagini (tipo Viasys "PV Protect" o similare), in modo da integrare le due funzioni in un unico sistema. Il sistema sarà costituito principalmente da:

- PC industriale dotato di software di elaborazione immagini e riconoscimento video, in grado di individuare intrusioni e solo in questo caso di inviare le immagini catturate ai supervisori autorizzati;
- modulo elaborazione video e videoregistrazione con capacità di stoccaggio immagini per almeno 24h;
- · modulo comunicazione;
- · modulo switch;
- software per accesso video da remoto;
- video camere diurne/notturne;
- illuminatori LED e infrarossi accoppiati alle videocamere;
- cablaggi in cavo UTP e alimentazione elettrica (FG16OR16);
- armadio rack 19" dotato di UPS, ventilazione.

Tutti i componenti dovranno essere conformi alle Norme CEI EN 50131. Il sistema sarà progettato conformemente alla Norma CEI 79-3, in modo da raggiungere un grado di sicurezza almeno di livello 3.