Integrale ricostruzione dell'impianto eolico VRG-040

Progetto definitivo

Oggetto:

040-22 - Relazione di calcolo preliminare delle fondazioni

Proponente:

VRG Wind 040 S.r.l. Via Algardi 4 Milano (MI) Progettista:

Stantec S.p.A. Centro Direzionale Milano 2, Palazzo Canova Segrate (Milano)

Rev. N.	Data	Descrizione modifiche		Redatto da	Rivisto da	Approvato da
00	01/07/2022	Prima Emissione		A. Filiberti	A. Filiberti	P. Polinelli
Fase progetto: Definitivo					Formato ela	borato: <mark>A4</mark>

Nome File: 040-22.00-Relazione di calcolo preliminare delle fondazioni.docx

Indice

1	PREM	NESSA	5
	1.1	Descrizione del proponente	5
	1.2	Contenuti della relazione	6
2	INQU	JADRAMENTO TERRITORIALE	7
3	NOR/	MATIVA DI RIFERIMENTO E FONTI CONSULTATE	9
4	DESC	CRIZIONE DELLE OPERE	10
5	PARA	AMETRI GEOTECNICI	11
6	CARI	ICHI DI PROGETTO	12
	6.1	Carichi permanenti	12
		6.1.1 Pesi permanenti strutturali (G1)	12
		6.1.2 Pesi permanenti non strutturali (G2)	12
	6.2	Sovraccarichi (Q)	12
		6.2.1 Carichi indotti dal vento (W)	12
	6.3	Azione sismica (E)	13
		6.3.1 Spettri di progetto	14
		6.3.2 Determinazione della forzante sismica	16
7	MATE	ERIALI	18
	7.1	Calcestruzzo armato	18
		7.1.1 Magrone	18
		7.1.2 Pali 18	
		7.1.3 Basamento	18
		7.1.4 Colletto di innesto	19
		7.1.5 Acciaio di armatura	19
8	SOFT	WARE IMPIEGATO PER LE ANALISI FEM	20
	8.1	Sistemi di riferimento	20
	8.2	Elementi beam	20
	8.3	Output delle azioni interne	21
	8.4	Elementi plate	21
	8.5	Gradi di libertà degli elementi e ECS	22
	8.6	Output delle azioni interne	23
9	ANA	LISI STRUTTURALE E VERIFICHE	27

9.1	Analisi strutturale tramite modello FEM	27
	9.1.1 Geometria del modello	27
	9.1.2 Vincoli 29	
	9.1.3 Casi di di carico	29
	9.1.4 Combinazioni di carico	32
	9.1.5 Giudizio motivato accettabilità dei risultati	34
9.2	Risultati del modello FEM	36
	9.2.1 Direzioni fissate per gli assi locali degli elementi	36
	9.2.2 Azioni assiali sui pali	38
	9.2.3 Azioni sul basamento	40
	9.2.4 Verifica degli elementi strutturali	60
	9.2.5 Verifica strutturale del palo	60
	9.2.6 Verifica a flessione platea	64
	9.2.7 Verifica a taglio platea	73
	9.2.8 Verifica a punzonamento platea	76
	9.2.9 Verifiche tensionali in esercizio	77
9.3	Calcolo rigidezza alla rotazione	77

Indice delle figure

Figura 2-1: Inquadramento territoriale dell'impianto VRG-040	7
Figura 2-2: Inquadramento su ortofoto dell'area dell'impianto VRG-040 nel suo stato di fatto e nello stato di progetto	8
Figura 3: Sezione opere in progetto	10
Figura 4: Definizione degli elementi beam e rispettivi ECS	21
Figura 5: Definizione degli elementi plate e rispettivi ECS	23
Figura 6: Convenzione dei segni per le forze nodali degli elementi plate	24
Figura 7: Convenzione dei segni per l'output delle forze per unità di lunghezza	24
Figura 8: Convenzione dei segni per le azioni flessionali fuori dal piano	25
Figura 9: Convenzione dei segni per le tensioni agenti	25
Figura 10: Determinazione delle principali componenti di tensione	26
Figura 11: Nodo master per lapplicazione dei carichi provenienti dalla torre	28
Figura 12: Modello FEM, vista prospettica	28
Figura 13: Modello FEM, vista dall'alto	29
Figura 14: Caso di carico G2_terreno	30
Figura 15: Caso di carico G2_WGT	30
Figura 16: Caso di carico W_Characteristic	30
Figura 17: Caso di carico W_Quasi-Permanent	31
Figura 18: Caso di carico W_Extreme	31
Figura 19: Caso di carico W_frequent	31
Figura 20: Caso di carico E	32
Figura 21: Reazioni verticali su modello FEM	34
Figura 22: Reazioni verticali foglio di calcolo Excel	35
Figura 23: Assi di riferimento locali su elementi plate	36
Figura 24: Assi di riferimento delle armature	37
Figura 25: Reazioni verticali massime riportate alla punta del palo	39
Figura 26: SLUenv: Momento direzione radiale, Bottom	40
Figura 27: SLUenv: Momento direzione circonferenziale, Bottom	41
Figura 28: SLUenv: Momento direzione radiale, Top	42

Stantec

Figura 29: SLUenv: Momento direzione Circonferenziale, Top	43
Figura 30: SLUenv: Taglio Vxx	44
Figura 31: SLUenv: Taglio Vyy	45
Figura 32: SLV2: Momento direzione radiale, Bottom	46
Figura 33: SLV2: Momento direzione circonferenziale, Bottom	47
Figura 34: SLV2: Momento direzione radiale, Top	48
Figura 35: SLV2: Momento direzione circonferenziale, Top	49
Figura 36: SLV2: Taglio Vxx	50
Figura 37: SLV2: Taglio Vyy	51
Figura 38: SLEr: Momento direzione radiale, Bottom	52
Figura 39: SLEr: Momento direzione circonferenziale, Bottom	53
Figura 40: SLEr: Momento direzione radiale, Top	54
Figura 41: SLEr: Momento direzione circonferenziale, Top	55
Figura 42: SLEqp: Momento direzione radiale, Bottom	56
Figura 43: SLEqp: Momento direzione circonferenziale, Bottom	57
Figura 44: SLEqp: Momento direzione radiale, Top	58
Figura 45: SLEqp: Momento direzione circonferenziale, Top	59
Figura 46: Sezione rettangolare equivalente	61
Figura 47: Identificazione nodi	77

1 PREMESSA

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Sorgenia S.p.A. di redigere il progetto definitivo per il potenziamento dell'esistente impianto eolico ubicato nei Comuni di Compofelice di Fitalia (PA), Villafrati (PA) e Ciminna (PA), costituito da 35 aerogeneratori di potenza 0,85 MW ciascuno, con una potenza complessiva dell'impianto pari a 29,75 MW installati.

L'energia elettrica prodotta dagli aerogeneratori dell'impianto viene convogliata tramite cavidotto interrato MT da 20 kV, alla Sottostazione Utente, ubicata nel comune di Ciminna. L' allacciamento dell'impianto alla Rete di Trasmissione Nazionale (RTN) avviene attraverso un collegamento direttamente alla Cabina Primaria di Ciminna di Enel Distribuzione, la quale a sua volta è collegata in entra-esci sulla linea esistente AT a 150 kV "Ciminna-Castronovo".

L'intervento in progetto consiste nella sostituzione delle 35 turbine eoliche dell'impianto esistente con 11 aerogeneratori di potenza nominale pari a 6 MW ciascuno. Si prevede di collegare gli 11 aerogeneratori di progetto alla Sottostazione di trasformazione MT/AT del comune di Ciminna mediante un cavo interrato MT da 33 kV. Il seguente progetto di repowering consente di aumentare notevolmente la potenza complessivamente prodotta dall' impianto, riducendo gli impatti sul territorio grazie al più ridotto numero di aerogeneratori impiegati. Inoltre, la maggior efficienza dei nuovi aerogeneratori comporta un aumento considerevole dell'energia specifica prodotta, riducendo in maniera proporzionale la quantità di CO2 equivalente.

1.1 Descrizione del proponente

Il soggetto proponente del progetto in esame è VRG Wind 040 S.r.l., interamente parte del gruppo Sorgenia Spa, uno dei maggiori operatori energetici italiani.

Il Gruppo è attivo nella produzione di energia elettrica con oltre 4.750 MW di capacità di generazione installata e oltre 400.000 clienti in fornitura in tutta Italia. Efficienza energetica e attenzione all'ambiente sono le linee guida della sua crescita. Il parco di generazione, distribuito su tutto il territorio nazionale, è costituito dai più avanzati impianti a ciclo combinato e da impianti a fonte rinnovabile, per una capacità di circa 370 MW tra biomassa ed eolico. Nell'ambito delle energie rinnovabili, il Gruppo, nel corso della sua storia, ha anche sviluppato, realizzato e gestito impianti di tipo fotovoltaico (ca. 24 MW), ed idroelettrico (ca. 33 MW). In quest'ultimo settore, Sorgenia è attiva con oltre 75 MW di potenza installata gestita tramite la società Tirreno Power, detenuta al 50%.

Il Gruppo Sorgenia, tramite le sue controllate, fra le quali VRG Wind 040 S.r.l., è attualmente impegnata nello sviluppo di un importante portafoglio di progetti rinnovabili di tipo eolico, fotovoltaico, biometano, geotermico ed idroelettrico, caratterizzati dall'impiego delle Best Available Technologies nel pieno rispetto dell'ambiente.

1.2 Contenuti della relazione

La presente relazione ha l'obiettivo di illustrare lo studio delle strutture necessarie a garantire i requisiti di sicurezza e di funzionalità dell'opera. In particolare, il presente elaborato contiene i calcoli di stabilità e resistenza del basamento di innesto della struttura metallica.

Nella valutazione dell'apparato fondale si è fatto riferimento allo studio preliminare geologico e geotecnico.

Per i particolari costruttivi e maggiori dettagli dimensionali sulle strutture progettate si faccia riferimento agli elaborati grafici oggetto del presente progetto ("040-23 Tipico fondazioni aerogeneratori").

2 INQUADRAMENTO TERRITORIALE

Il sito in cui è ubicato il parco eolico oggetto di Repowering, denominato VRG-040, è collocato nei comuni di Villafrati, Ciminna, Campofelice di Fitalia, nella provincia di Palermo, in Sicilia.

L'impianto VRG-040 è localizzato a circa 30 km a Sud dal capoluogo, a 2 km in direzione Sud-Est rispetto al centro urbano del Comune di Villafrati ed a 0,8 km in direzione Sud/Sud-Ovest rispetto al centro storico di Campofelice di Fitalia.

Figura 2-1: Inquadramento territoriale dell'impianto VRG-040

L'impianto eolico VRG-040 è situato in una zona prevalentemente collinare non boschiva caratterizzata da un'altitudine media pari a circa 700 m, ma con rilievi montuosi non trascurabili, con sporadiche formazioni di arbusti e la presenza di terreni seminativi/incolti.

Il parco eolico ricade all' interno dei seguenti fogli catastali:

- Fogli 5, 8, 11, 13 nel comune di Campofelice di Fitalia
- Fogli 15, 16, 17 nel comune di Villafrati

In Figura 2-2 è riportato l'inquadramento territoriale dell'aerea, con la posizione degli aerogeneratori su ortofoto nel suo stato di fatto e nel suo stato di progetto.

Figura 2-2: Inquadramento su ortofoto dell'area dell'impianto VRG-040 nel suo stato di fatto e nello stato di progetto Si riporta in formato tabellare un dettaglio sulla localizzazione degli aerogeneratori di nuova costruzione, in coordinate WGS84 UTM fuso 33 N:

ID	ID Comune		Nord [m]
VF-01_r	Villafrati	368426	4195457
VF-02_r	Villafrati	368897	4195223
VF-03_r	Villafrati	369560	4195527
VF-04_r	Villafrati	368145	4195831
CF-01_r	Campofelice di Fitalia	365429	4187461
CF-02_r	Campofelice di Fitalia	366612	4186827
CF-03_r	Campofelice di Fitalia	367414	4186248
CF-04_r	Campofelice di Fitalia	367840	4185966
CF-05_r	Campofelice di Fitalia	368221	4185627
CF-06_r	Campofelice di Fitalia	364734	4187807
CF-07_r	Campofelice di Fitalia	366221	4186975

	Tabella 1: Localizzazione	geografica degli	aerogeneratori di nuov	a costruzione
--	---------------------------	------------------	------------------------	---------------

3 NORMATIVA DI RIFERIMENTO E FONTI CONSULTATE

Di seguito sono elencati i principali riferimenti Normativi a cui si farà riferimento nella presente relazione.

- [1] D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»".
- [2] Circolare n.7 Reg. Atti Int. CONSUP del 21.01.2019 "Istruzioni per l'applicazione dello "Aggiornamento delle «Norme tecniche per le costruzioni»" di cui al decreto ministeriale 17 gennaio 2018
- [3] UNI EN 1990. Criteri generali di progettazione strutturale.
- [4] UNI EN 1991-1-1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [5] UNI EN 1992-1-1 Parte 1-1: Progettazione delle strutture di calcestruzzo. Regole generali e regole per gli edifici
- [6] UNI EN 1993-1-1 Parte 1-1: Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici
- [7] UNI EN 1993-1-8 Parte 1-8: Progettazione delle strutture in acciaio. Progettazione dei collegamenti
- [8] UNI EN 1997-1 Parte 1: Progettazione geotecnica. Regole generali
- [9] IEC 61400-1: Wind turbines Part:1 Design requirements
- [10] Scheda tecnica del produttore delle turbina "Site Roads and Hardstands requirements SG 6.0-170"
- [11] Scheda tecnica del produttore della turbina "Developer Package SG 6.0-170"
- [12] Scheda tecnica del produttore della turbina "Foundation loads T115-50A SG 6.0-170"

4 DESCRIZIONE DELLE OPERE

Le opere in progetto sono costituite da un basamento di fondazione per una turbina eolica di capacità 6 MW, diametro fino a 170 m e altezza al mozzo fino a 125 m. La turbina è sostenuta da una torre costituita da un tubolare in acciaio a sezione variabile innestato alla struttura di base in calcestruzzo armato.

Come illustrato in seguito, il basamento è costituito da un plinto, a base circolare su pali, di diametro 25 m. L'altezza dell'elemento è variabile, da un minimo 1.5 m sul perimetro esterno del plinto a un massimo di 3.75 metri nella porzione centrale. In corrispondenza della sezione di innesto della torre di sostegno è realizzato un colletto aggiuntivo di altezza 0.5 m. Come verrà descritto al paragrafo 9.2.2, considerando i parametri geotecnici dei terreni riportati al paragrafo 5, risultano necessari pali di diametro 1.2 m e lunghezza 33 m.

Il calcestruzzo selezionato per le strutture è di classe di resistenza C25/30 per i pali e C32/40 per il basamento, il colletto dovrà invece essere realizzato con un successivo getto con classe di resistenza C45/55. In ogni caso, all'interfaccia tra il calcestruzzo del colletto e le strutture metalliche, dovrà essere interposta un'idonea malta ad alta resistenza per permettere un livellamento ottimale e garantire la perfetta verticalità delle strutture e permettere un'idonea distribuzione degli sforzi di contatto.

Si allega sezione delle opere estratta dagli elaborati grafici allegati:

Figura 3: Sezione opere in progetto

5 PARAMETRI GEOTECNICI

Sulla base delle proprietà dei terreni forniti dalla relazione preliminare geologica e geotecnica (elaborato "040-19.00 – Relazione geotecnica") è possibile individuare la seguente stratigrafia tipo:

- 0 1/1.5 m da p.c. Materiale di copertura: costituito di materiale sciolto a grana medio-fine, derivante dal disfacimento dei terreni di natura argillo-limosa, flyschoide, costituita da terreno agrario a matrice argillosa e argillo-limosa, di colore grigio-rossastro, con inclusi frammenti lapidei spigolosi, prevalentemente quarzoareniti spigolosi ed arrotondati;
- 1/1.5 8 m da p.c. Alternanze litologiche relative alla formazione di Terravecchia (Unità Flyschoide). Si tratta di rocce coerenti con livelli pseudo-coerenti costituiti da argille siltoidi, alternate a sottili livelli arenacei con intercalazioni di calcareniti gradate, e da argille sabbiose e quarzareniti gradate.

Dalle informazioni dedotte dalle indagini, alle profondità indagate, non è stata rilevata la presenza della falda negli strati superficiali di sottosuolo.

I relativi parametri geotecnici sono sintetizzati nella sottostante tabella 2:

id strato	Profondità media [m da p.c.]	Coesione (C) [kN/m ²]	Coesione non drenata (C _u) [kN/m ²]	Angolo di attrito φ [°]	Peso di volume [kN/m³]
Materiale di copertura	1,5	5	30	22	17
Flysch	8*	12	70	23	18,5

Tabella 2: Sintesi dei parametri geotecnici

Si precisa che i dati riportati nella relazione geologica-geotecnica preliminare sono basati su indagini pregresse e dati disponibili in bibliografia relativi ad un massimo di 8 metri di profondità, mancano quindi informazioni sulle caratteristiche tecniche dei terreni presenti al di sotto degli 8 metri. Inoltre, tali informazioni non sono relative a terreni in prossimità degli aerogeneratori. Si rendono necessarie ulteriori indagini per poter determinare con maggiore certezza la successione stratigrafica nell'area di progetto ed i relativi parametri meccanici almeno fino alla massima profondità prevista per le perforazioni per procedere al dimensionamento definitivo delle fondazioni.

6 CARICHI DI PROGETTO

Per il dimensionamento preliminare delle fondazioni degli aerogeneratori si considerano i carichi della turbina SG 6.0-170, altezza al mozzo pari a 115 m e riportati nel documento [12] Scheda tecnica del produttore della turbina "Foundation loads T115-50A SG 6.0-170". Nella successiva fase esecutiva verrà effettuato il dimensionamento definitivo sulla base delle caratteristiche della turbina che verrà effettivamente installata.

6.1 Carichi permanenti

6.1.1 Pesi permanenti strutturali (G1)

Il peso proprio delle strutture è calcolato in automatico dal software a elementi finiti, tenuto conto dei volumi degli elementi strutturali e del peso specifico dei materiali assegnati agli elementi. Per gli elementi in calcestruzzo armato si è considerato un peso specifico pari a 25 kN/m³, per le strutture in acciaio è stato assunto un peso specifico pari a 78.50 kN/m³.

6.1.2 Pesi permanenti non strutturali (G2)

I carichi permanenti non strutturali sono rappresentati dal peso del terreno sovrastante il basamento (G2_terreno) e quello imputabile al peso della torre e delle macchine installate sul basamento (G2_wtg). Quest'ultimo viene considerato nelle combinazioni di carico diverse da quelle che utilizzano il carico da vento (W), in cui il peso di torre e macchine è già stato considerato.

6.2 Sovraccarichi (Q)

6.2.1 Carichi indotti dal vento (W)

Il carichi da vento per una turbina con le caratteristiche precedentemente descritte, relativi alle diverse situazioni previste, sono riportati nelle tabelle seguenti estratte dal documento Scheda tecnica del produttore della turbina "Foundation loads T115-50A SG 6.0-170":

Carichi da vento caratteristici (W_Characteristic):

Load case	F _x (kN)	F _y (kN)	F _z (kN)	M _x (kNm)	M _y (kNm)	M _z (kNm)
Dic62 V42.5 060 s9	1535,05	50,5	-6826,1	4163,87	178349,5	374,9

Table 4 SG 6.0-170 HH115m Characteristics Loads at the base of the tower

Carichi da vento in condizione extreme (W_Extreme), relativi a situazioni eccezionali:

Load case	Load factor	F _× (kN)	Fy (kN)	Fz (kN)	F _{xy} (kN)	Mx (kNm)	My (kNm)	Mz (kNm)	M _{xy} (kNm)
Dlc22 3bn V11.0_n_s7	1,1	1688,55	55,55	-7508,71	1689,47	4580,25	196184,46	412,39	196237,91
Dic22 3bn V11.0 n s7	1.0	1535,05	50,5	-6826,1	1535,88	4163,87	178349,5	374,9	178398,1

Table 3 SG 6.0-170 HH115m Factored/Unfactored Extreme loads at tower bottom

Carichi da vento in condizione quasi permanente (W_QP) e relativi alle normali condizioni di esercizio della turbina:

Quasi-permanent load

Loads according to GL2010, considering DLC 1.1 and 6.4 with a probability of exceedance of pf = 10^{-2} (equivalent to 1750 h in 20 years) with γ = 1.0 nave been estimated as shown in Table 5:

pf=0.01000		Tower loads at section								
Section Height from bottom (m)	Fx (KN)	Fy (KN)	Fxy (KN)	Fz (KN)	Mx (KNm)	My (KNm)	Mxy (KNm)	Mz (KNm)		
0	1002.0 7	123,15	1002,4 8	-6629,52	18223,36	119459,4 9	119805,99	4928,71		

Table 5 SG 6.0-170 HH115m Quasi Permanent Loads at tower bottom

6.3 Azione sismica (E)

L'azione sismica agente sull'elemento viene determinata in maniera semplificata rilevando l'accelerazione sismica ottenuta in corrispondenza del periodo proprio proprio della struttura, quest'ultimo ottenuto ricorrendo al metodo di Rayleigh, nel quale si applica una distribuzione di forze pari alla forza peso pensata come distribuita in maniera discreta su un'asta di rigidezza pari alla rigidezza traslazionale del sistema in esame.

$$T = 2 \pi \sqrt{\frac{\sum W_i \,\delta_i^2}{g \,\sum W_i \,\delta_i}}$$

In cui:

- Wi è il peso delle masse strutturali, pensate come distribuite in punti discreti
- δi è lo spostamento misurato in corrispondenza del punto di applicazione della forza
- g è l'accelerazione di gravità

I pesi dei vari tronchi della torre e degli altri componenti sono stati desunti da Scheda tecnica del produttore delle turbina "Site Roads and Hardstands requirements SG 6.0-170".

6.3.1 Spettri di progetto

L'azione sismica è tradotta da spettri in accelerazione. Vista la complessità della struttura si persegue l'obiettivo di una progettazione non dissipativa, le valutazioni sismiche verranno quindi eseguite su spettri di progetto elastici, adottando un fattore di comportamento q=1.

Si definisce una vita nominale per la struttura $V_N = 50$ anni e una classe d'uso IV. In queste condizioni si ottiene un periodo di riferimento per la costruzione pari a:

$$V_R = V_R \cdot C_U = 50 \cdot 2 = 100$$
 anni

Da cui ne deriveranno i periodi di ritorno determinati nella seguente figura.

Per la determinazione dell'azione sismica di progetto sono stati considerati i parametri di azione sismica relativi alle coordinate di tutti gli aerogeneratori al fine di utilizzare, a favore di sicurezza, i valori più elevati, che risultano essere quelli in corrispondenza dell'aerogeneratore VF01.

	T _R	ag	F ₀	T* _C
SLO	60	0.058	2.375	0.263
SLD	101	0.074	2.384	0.278
SLV	949	0.173	2.502	0.323
SLC	1950	0.217	2.553	0.334

Si ottengono i seguenti parametri sismici di progetto:

Dalla relazione geologica e geotecnica è stato rilevato che la Categoria di Sottosuolo che interessa il sito di progetto è la **C** mentre la Categoria Topografica è **T1**.

Si assume, a favore di sicurezza, un valore del coefficiente di smorzamento pari all'1%.

Si riportano di seguito le espressioni ed i parametri caratterizzanti lo spettro di risposta orizzontale allo SLV:

Valori di progetto dei parametri a., F., T.c. in funzione del peric

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C}/3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{\!_{\mathrm{C}}} = \mathbf{C}_{\!_{\mathrm{C}}} \cdot \mathbf{T}_{\!_{\mathrm{C}}}^*$	(NTC-07 Eq. 3.2.7)
$T_0 = 4,0 \cdot a_{\mu} / g + 1,6$	(NTC-07 Eq. 3.2.9)

 $\Gamma_{c}^{-1}\left[s\right]$

1D40 -				
0.35				
		6 •	2	
	* * * * * * * * * * * * * * * * * * *			
0.15				
0.10				
0.05				
10	100	1000	T _n [anni]	10

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} & 0 \leq T < T_{B} \quad S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right] \\ & T_{B} \leq T < T_{C} \quad S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \\ & T_{C} \leq T < T_{D} \quad S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \left(\frac{T_{C}}{T} \right) \\ & T_{D} \leq T \qquad S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \end{split}$$

Categoria di sottosuolo		C
Categoria topografica		T1
Coefficiente amplificazione stratigrafica		S _S 1.5
Coefficiente di amplificazione topografica		S _T 1.0
Coefficiente S	$S = S_s \cdot S_T$	S 1.5
Coefficiente C _C		C _C 1.5
Smorzamento Convenzionale		NO
Coefficiente di smorzamento viscoso non o	convenzionale	ζ 1.00
Fattore che altera lo spettro	η = sqrt(10/5+ ζ)	η 1.3
Tc	$T_C = C_C \cdot T_C^*$	T _C 0.492 [s]
Тв	$T_B = T_C/3$	T _B 0.164 [s]
T _D	$T_D = 4.0 \cdot a_g/g + 1.6$	T _D 2.291 [s]

Si riporta l'andamento dello spettro di risposta orizzontale SLV:

6.3.2 Determinazione della forzante sismica

Per quanto riguarda l'accelerazione sismica da adottare nei calcoli strutturali, si ipotizza che lo spettro di risposta oltre i 4s sia caratterizzato dal medesimo andamento avente per $T_D \le T \le 4s$. Come illustrato in tabella sottostante, il periodo proprio della struttura viene determinato pensando la torre incastrata alla base, e risulta pari a 5.30 s. Per questo valore si ottiene Sd=0.034g.

Node ID	d _i	Wi	d _i ²	$W_i d_i^2$	W _i d _i	т
	m	kN	m²	kN m ²	kN m	S
7	7.903	3143.0	62.450	196279	24837	5.30
12	5.786	849.6	33.483	28447	4916	
11	2.885	843.3	8.325931	7021	2433	
10	1.135	845.5	1.287338	1088	959	
9	0.296	717.7	0.087536	63	212	
8	0.028	638.6	0.000768	0	18	
			Σ	232899	33376	

L'accelerazione assunta nei calcoli, come anticipato, sarà pari a 0.034g, da cui ne seguono le forze statiche equivalenti all'azione sismica riportate in seguito.

Se (T ₁)	0.0340 g
----------------------	----------

Elemento	Z min	Z _{max}	Z	Δz	m	Ν	V	М
	m	m	m	m	kg	kN	kN	kN m
Navicella+rotore	115.00	115.00	115.00		314298	3143.0	106.9	12289
Concio fusto 1/5	0.00	13.56	6.78	13.56	84960	849.6	28.9	196
Concio fusto 2/5	13.56	31.76	22.66	18.20	84330	843.3	28.7	650
Concio fusto 3/5	31.76	55.56	43.66	23.80	84550	845.5	28.7	1255
Concio fusto 4/5	55.56	82.44	69.00	26.88	71770	717.7	24.4	1684
Concio fusto 5/5	82.44	112.41	97.43	29.97	63860	638.6	21.7	2115
						7037.7	239.3	18189.2

Per tenere conto della variabilità spaziale del moto sismico e di incertezze nella localizzazione delle masse, come indicato al paragrafo 7.2.6 delle NTC2018 si attribuisce un'eccentricità accidentale pari al 5% del diametro del basamento. Inoltre, per tenere conto della contemporaneità dell'azione sismica nelle due direzioni ortogonali si considera applicato in direzione Y il 30% dell'azione sismica applicata lungo X. Nella tabella sottostante vengono riassunte le forze sismiche risultanti:

eccentricità 0.05*D 1.25 n	n
----------------------------	---

	N	Fx	Fy	Му	Mx	Mz
	kN	kN	kN	kN m	kN m	kN m
SISMA X + 0.3 Y	7037.68	239.28	71.78	18189.2	5456.8	299.1

7 MATERIALI

7.1 Calcestruzzo armato

7.1.1 Magrone

Il getto di magrone posto al fine di realizzare il piano di posa dei plinti è realizzato con calcestruzzo di classe di resistenza C12/15 che presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 27000 \text{ MPa};$ v = 0.20; $\gamma = 25 \text{ kN/m3};$ $f_{ck} = 12 \text{ MPa};$ $f_{cd} = 6.8 \text{ MPa} (0.85 f_{ck}/1.5)$

7.1.2 Pali

Il calcestruzzo previsto per la realizzazione dei pali di fondazione è di classe di resistenza C25/30 che presenta le seguenti caratteristiche meccaniche:

 $E_{cm} = 31500 \text{ MPa};$

v = 0.20;

 $\gamma = 25 \text{ kN/m3};$

f_{ck} = 25 MPa;

 $f_{cd} = 14.17 \text{ MPa} (=0.85 \text{fck}/1.5)$

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC2 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

7.1.3 Basamento

Il calcestruzzo previsto per la realizzazione del basamento di fondazione è di classe di resistenza C32/40 che presenta le seguenti caratteristiche meccaniche:

Ecm = 33300 MPa;

v = 0.20;

 $\gamma = 25 \text{ kN/m3};$

fck = 32 MPa;

fcd = 18.13 MPa (=0.85fck/1.5)

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC4 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

7.1.4 Colletto di innesto

Il calcestruzzo previsto per la realizzazione del colletto del plinto di fondazione è di classe di resistenza C45/55 che presenta le seguenti caratteristiche meccaniche:

E_{cm} = 36200 MPa;

v = 0.20;

 $\gamma = 25 \text{ kN/m3};$

f_{ck} = 45 MPa;

f_{cd} = 25.5 MPa (=0.85fck/1.5)

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC4 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

7.1.5 Acciaio di armatura

L'acciaio impiegato per le armature di strutture in CA deve essere di tipo B450C e presentare le seguenti caratteristiche:

E = 200000 MPa;

v = 0.30;

a = 12·10-6;

γ = 78.50 kN/m3;

f_{yk} = 450 MPa;

f_{uk} = 540 Mpa.

8 SOFTWARE IMPIEGATO PER LE ANALISI FEM

Le sollecitazioni di progetto utili per la verifica delle strutture sono state desunte da un modello agli elementi finiti tridimensionale elaborato con il codice di calcolo Midas Gen di Midas Information Tecnology di estesa commercializzazione.

I modelli strutturali sono stati realizzati congruentemente alle geometrie strutturali e alle caratteristiche dei materiali rappresentate negli elaborati strutturali di progetto.

8.1 Sistemi di riferimento

In Midas Gen sono definiti i seguenti sistemi di coordinate

- Global Coordinate System (GCS)
- Element Coordinate System (ECS)
- Node local Coordinate System (NCS)

Il GCS usa le lettere maiuscole X, Y e Z per definire un sistema di coordinate cartesiale globale, che segue la regola della mano destra. È utilizzato per la maggior parte della definizione degli input, compreso ad esempio la definizione dei nodi e la restituzione di risultati globali ad essi associati, quali spostamenti e reazioni vincolari.

Il GCS definisce la posizione geometrica della struttura da analizzare e il suo punto di riferimento (l'origine) è automaticamente fissata al set di coordinate (0,0,0). Dal momento che la direzione verticale è rappresentata dall'asse Z è convenzionale modellare le strutture nel loro sviluppo verticale lungo questo asse.

L'ECS usa le lettere minuscole x,y e z per definire un sistema di riferimento cartesiano, che segue la regola della mano destra, associati a un elemento. I risultati delle analisi in termini di forze interne e tensioni e la maggior parte degli input associati al singolo elemento sono espressi in questo sistema di coordinate locali.

8.2 Elementi beam

Gli elementi a due nodi assimilabili a elementi strutturali monodimensionali, quali travi e pilatri, sono stati modellati come elementi beam. La formulazione di tali elementi è basata sulla teoria della trave di Timoshenko, considerando le capacità di rigidezza in tensione e compressione, taglio e le capacità deformative in condizione di flessione e torsione. La definizione delle caratteristiche della sezione trasversale, caratterizzanti la meccanica dell'elemento, è definita da apposite finestre di dialogo all'interno del software.

8.3 Output delle azioni interne

Per gli elementi beam la convenzione dei segni è quella riportata nella figura seguente, le frecce indicano i versi delle sollecitazioni considerate come positive.

Figura 4: Definizione degli elementi beam e rispettivi ECS

8.4 Elementi plate

Gli elementi planari a 3 o 4 nodi sono definiti come elementi plate (i nodi che definiscono l'elemento saranno chiamati N1. N2. N3 e, nel caso di elemento a 4 nodi, N4). Questa tipologia di elemento è capace di terer conto di tensioni e compressioni nel piano, sforzi di taglio dento e fuori dal piano e sollecitazioni di momento flettente nel piano.

Questo elemento può essere utilizzato per modellare strutture in cui sono permette sia flessioni nel piano sia fuori dal piano, ad esempio per definire serbatoi in pressioni, muri di contenimento, impalcati da ponte, impalcati di edifici, fondazioni continue.

I carichi di pressione possono essere applicati sulle superfici degli elementi secondo i sistemi di riferimento GCS o ECS.

Un elemento plate può avere forma quadrilatera o triangolare, con rigidezza assiale e a taglio nel piano e rigidezza flessionale e a taglio fuori dal piano di riferimento.

Il comportamento flessionale degli elementi plate è descritto secondo due approcci: DKT/DKQ (Discrete Kirchhoff elements) e DKMT/DKMQ (Discrete Kirchhoff-Mindlin elements). DKT/DKQ è sviluppato sula base della teoria della teoria di Kirchhoff per elementi bidimensionali sottili,

DKMT/DKMQ è sviluppata sulla base della teoria Mindlin-Reissner per elementi bidimensionali moderatamente spessi.

Il comportamento nel piano è formulato in accordo alla teoria LST (Linear Strain Triangle) per gli elementi a 3 nodi e in accordo alla formulazione degli elementi isoparametrici a tensione piana con aggiunta di modi incompatibili per gli elementi a 4 nodi.

In generale, la rigidezza è valutata in maniera automatica dal software a partire dallo spessore e dai parametri meccanici definiti dall'utente per gil elementi; il peso proprio strutturale e la massa strutturale di un elemento plate sono valutati in maniera automatica dal software a partire dallo spessore assegnato all'elemento e da peso nell'unità di volume e densità di massa definita per il materiale assegnati all'elemento.

8.5 Gradi di libertà degli elementi e ECS

Il sistema di riferimento ECS di ogni elemento è utilizzato quando il programma calcola la matrice di rigidezza per l'elemento. Gli output grafici delle componenti di sollecitazione soono riportate anche nell'ECS nella fase di post-processing.

I gradi di liberà traslazionali esistono nell'ECS come direzioni XYZ e le rotazioni sono definite rispetto agli assi x e y dell'ECS. Le direzioni degli assi dell'ECS sono rappresentate nella Figura 7. In caso di elementi quadrilateri, la direzione del pollice rispetto alla regola della mano destra definisce l'asse Z dell'ECS. La direzione di rotazione (N1, N2, N3, N4) segue la regola della mano destra e definisce la direzione del verso positivo. L'asse Z dell'ECS ha origine dal centro della superficie dell'elemento e ha direzione perpendicolare a essa. La linea che connette il punto medio tra N1 e N4 e il punto medio tra N2 e N3 definisce la direzione dell'asse x. La direzione perpendicolare all'asse x diventa la direzione dell'esse y dell'ECS con verso stabilito dalla regola della mano destra.

Per un elemento triangolare, la linea parallela alla direzione che va da N1 a N2, passante per il centro dell'elemento diventa l'asse X dell'ECS. Le direzioni y e z sono definite come per gli elementi a 4 lati prima descritti.

Figura 5: Definizione degli elementi plate e rispettivi ECS

8.6 Output delle azioni interne

La convenzione dei segni per le azioni interne di un elemento plate e per le sollecitazioni è definita sia dall'ECS che dal GCS.

I seguenti risultati di output sono definite con riferimento all'ECS:

- Azioni sui nodi di connessione
- Azioni per unità di lunghezza sui nodi di connessione e sul baricentro dell'elemento
- Tensioni sulla superficie superiore e inferiore in corrispondenza dei nodi di connessione

In ogni nodo, moltiplicando ogni componente di spostamento nodale per la corrispondente componenti di rigidezza viene determinata l'azione dell'elemento sul nodo.

Per calcolare le forze per unità di lunghezza in un nodo di connessione o nel baricentro di un elemento, le tensioni sono calcolate separatamente per il comportamento nel piano e quello fuori dal piano e integrate nella direzione dello spessore.

Nelle figure successive sono mostrate le convenzioni secondo le quali sono esplicitate le sollecitazioni sugli elementi plate. Le frecce indicano il verso positivo delle forze.

Figura 7: Convenzione dei segni per l'output delle forze per unità di lunghezza

Figura 9: Convenzione dei segni per le tensioni agenti

Figura 10: Determinazione delle principali componenti di tensione

9 ANALISI STRUTTURALE E VERIFICHE

9.1 Analisi strutturale tramite modello FEM

L'analisi strutturale è stata effettuata utilizzando il softwarare MidasGen 2021 v3.1, realizzando un modello ad elementi finiti tridimensionale. Gli elementi strutturali sono stati schematizzate mediante elementi finiti di tipo beam e plate, introducendo le condizioni di vincolo esterno e gli opportuni svincoli nei punti in cui in vincolo di collegamento è a cerniera.

Vista la condizione di simmetria dei carichi indotti e delle strutture, i carichi orizzontali verranno applicati in direzione radiale lungo un'unica direzione.

Le azioni di vento e sisma verranno applicate con approccio statico equivalente, secondo la determinazione dei loro effetti determinati nei capitoli precedenti.

I quantitativi di armatura ottenuti nelle seguenti elaborazioni dovranno essere disposti nella piastra in maniera simmetrica rispetto all'asse verticale baricentrico della platea.

Nei successivi paragrafi vengono riportati con maggiore dettaglio le ipotesi poste alla base delle analisi.

9.1.1 Geometria del modello

Il basamento è stato discretizzato attraverso una mesh di elementi plate che simulano anche l'effetto della variazione della sezione in altezza. Il modello segue quindi con buona approssimazione la variazione di peso e rigidezza della sezione resistente e la forma circolare del basamento.

Sul perimetro di innesto della struttura metallica sono stati disposti una serie di nodi collegati mediante un link rigido a un nodo master, nel quali sono state applicate le componenti delle forze che derivano dalla turbina. Nel nodo vengono quindi applicate le seguenti forze:

- carichi gravitazionali delle strutture innestate
- azioni del vento sulla turbina, come definite in 6.2.1
- azioni sismiche, come definite in 6.3

Il nodo è stato posizionato a una quota di 4.25 m superiore rispetto alla quota di testa dei pali, per poter tener conto degli effetti di eccentricità dei carichi verticali rispetto alla platea.

Figura 11: Nodo master per lapplicazione dei carichi provenienti dalla torre

I pali sono stati modellati alla distanza esatta a cui verranno posti rispetto alla platea e modellati mediante elementi beam.

Figura 12: Modello FEM, vista prospettica

Figura 13: Modello FEM, vista dall'alto

9.1.2 Vincoli

Essendo la struttura su pali, si immagina che l'intero carico venga ripartito su tali elementi. Lo spostamento orizzontale viene bloccato sulla testa del palo, mentre in punta è vincolato con un vincolo a molla che simula il cedimento dovuto al carico subito.

La rigidezza della molla si calcola a partire da una stima della portata del singolo palo e del relativo cedimento. Maggiori informazioni al successivo paragrafo 9.2.2.

9.1.3 Casi di di carico

Si riportano le condizioni di carico applicate al modello di calcolo:

Il carico G2 rappresentante i pesi permanenti non strutturali viene diviso tra peso del terreno sovrastante il basamento (G2_terreno) e peso proprio della turbina e relative componenti (G2_WGT). Quest'ultimo viene applicato per tenere in considerazione l'effetto del peso sul basamento solamente nelle combinazioni dove non è presente l'azione del vento nella quale invece è già compreso nei carichi forniti dalle specifiche del produttore.

Figura 16: Caso di carico W_Characteristic

Figura 17: Caso di carico W_Quasi-Permanent

Figura 18: Caso di carico W_Extreme

Figura 20: Caso di carico E

9.1.4 Combinazioni di carico

Le combinazioni di calcolo selezionate per le verifiche di tipo STR per le quali dovranno essere impiegati i coefficienti definiti nella colonna A1 della tabella Tab. 2.6.1 delle NTC2018.

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Conishi accompanyati Ci	Favorevoli	24	0,9	1,0	1,0
Cancu permanenti Gi	Sfavorevoli	YGI	1,1	1,3	1,0
	Favorevoli	24	0,8	0,8	0,8
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	γ _{G2}	1,5	1,5	1,3
Aziazi zaziahili O	Favorevoli	24	0,0	0,0	0,0
	Sfavorevoli	r Qi	1,5	1,5	1,3

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Di seguito vengono elencati i carichi oggetto delle successive combinazioni, i valori sono indicati nelle rispettive tabelle al precedente paragrafo 6.

Casi di carico	
Cat.	
G1	pesi permanenti strutturali
G2_terreno	pesi permanenti non strutturali
G2_wtg	pesi permanenti non strutturali
W_Characteristic	carichi da vento caratteristici
W_QP	carichi da vento in condizione quasi permanente
W_Extreme	carichi da vento in condizione extreme (load factor 1.1)
W_Frequent	carichi 0.9*W_Characteristic eccetto Fz = Fz di W_Characteristic
E	sisma

СОМВО	ТҮРЕ		Grienen	W GL W	orocteristi	W. C.	W Ethern	W fiequel	*	r
SLU1	Strength/Stress	Add	1.30	1.50	1.50					
SLU2	Strength/Stress	Add	1.30	1.50			1.35			
SLU3	Strength/Stress	Add	1.00	0.80			1.35			
SLUext	Strength/Stress	Add	1.00	1.00				1.00		
SLV1	Strength/Stress(Elastic	Add	1.00	1.00	1.00					1.00
SLV2	Strenght/Stress(Elastic	Add	1.00	1.00			1.00			1.00
SLEr	Serviceability	Add	1.00	1.00		1.00				
SLEf	Serviceability	Add	1.00	1.00					1.00	
SLEqp	Serviceability	Add	1.00	1.00			1.00			

La seguente tabella contiene le combinazioni di carico utilizzate nei calcoli.

Le combinazioni "SLU2" e "SLU3" si riferiscono alla combinazione fondamentale allo Stato Limite Ultimo. Viene attribuito il coefficiente amplificativo 1.35 in quanto si fa riferimento alla condizione "Normal", ovvero le normali condizioni di esercizio della turbina, come riportato nella sottostante tabella estratta da [9] IEC 61400-1: Wind turbines - Part:1 Design requirements. Tale documento viene considerato come "di comprovata validità" rispetto alle NTC2018. I carichi da utilizzare nella condizione "Normal", sono quelli riportati nella tabella dei carichi quasi-permanenti (W_QP), come precisato nella documentazione fornita dal produttore.

La combinazione "SLUext" si riferisce alla combinazione allo Stato Limite Ultimo per azioni di tipo eccezionale. In questa combinazione i carichi da vento utilizzati sono gli "Extreme loads" (W_Extreme) in condizione "Abnormal", quindi quelli riportati nella relativa tabella in corrispondenza del load factor 1.1, proprio della condizione "Abnormal".

La combinazione "SLV1" rappresenta la combinazione allo Stato Limite Ultimo per sisma.

La combinazione "SLV2" rappresenta la combinazione allo Stato Limite Ultimo per sisma combinata con l'azione del vento nelle normali condizioni di esercizio della turbina (W_QP).

La combinazione "SLEr" contiene i carichi da vento caratteristici (W_Characteristic).

La combinazione "SLEf" contiene i carichi da vento caratteristici (W_Characteristic) moltiplicati per il fattore riduttivo 0.9, ad eccezione del carico Fz, che rimane pari a quello caratteristico.

La combinazione "SLEqp" contiene i carichi da vento in condizione quasi-permanente (W_QP).

	Unfavourable loads						
	Type of design situatio	n (see Table 2)	All declap altuations				
Normal (N)	Abnormal (A)	All design situations					
1,35*	1,35* 1,1 1,5						
If for normal design for the design situal loading from gravity	situations the characteristion in question, and grav and other sources may h	stic value of the load response F_{gravity} rity is an unfavourable load, the partial have the value	due to gravity can be calculated load factor for combined				
$y_r = 1, 1 + \varphi \varphi^2$ $\varphi = \begin{cases} 0, 15 & \text{for DLC1.1} \\ 0, 25 & \text{otherwise} \end{cases}$							
$\varsigma = \begin{cases} 1 - \left \frac{F_{\text{gravity}}}{F_k} \right ; & F_{\text{gravit}} \\ 1; & F_{\text{gravity}} \end{cases}$	$ \leq F_k $ $ > T_k $						

Oltre ai casi di carico sopra elencati sono state introdotte anche delle combinazioni di inviluppo delle combinazioni di stato limite ultimo ("SLUenv").

9.1.5 Giudizio motivato accettabilità dei risultati

Al fine di validare il modello di calcolo vengono confrontati i risultati ottenuti da:

- Modello di calcolo FEM;
- Calcolo manuale su piastra rigida delle reazioni alla testa dei pali con foglio excel.

Visti gli spessori degli elementi assunti i due risultati portano a valori di reazione verticale simile.

Le valutazioni vengono eseguite sulla combinazione di carico "SLEr".

Figura 21: Reazioni verticali su modello FEM

Di seguito, elaborazione con foglio di calcolo Excel e relative reazioni sui pali ottenute:

Figura 22: Reazioni verticali foglio di calcolo Excel

Lo scarto tra i risultati forniti dai due modelli è trascurabile; il modello FEM risponde in maniera efficace agli input dati.

9.2 Risultati del modello FEM

9.2.1 Direzioni fissate per gli assi locali degli elementi

L'analisi strutturale è stata eseguita facendo riferimento al sistema di riferimento globale per la definizione delle azioni agenti.

Per migliorare la lettura delle sollecitazioni sono stati orientati gli assi di riferimento locale degli elementi in direzione radiale (assi x) e circonferenziale (assi y).

Figura 23: Assi di riferimento locali su elementi plate

Le armature che verranno assegnate agli elementi plate vengono definite in direzione circonferenziale e radiale per gli elementi posti esternamente al nucleo di innesto della torre della turbina eolica, la porzione centrale ha armature definite in direzione X e Y.

Figura 24: Assi di riferimento delle armature

9.2.2 Azioni assiali sui pali

Si è provveduto a stimare la portata verticale limite mediante metodi statici. Si è fatto riferimento a condizioni di lungo termine, considerando i parametri del terreno associati a condizioni drenate. In questa sede si ipotizzano le medesime proprietà dello strato più profondo anche oltre gli 8 m. Di seguito i risultati ottenuti:

CALCOL	O PORTAT	A PALI T	RIVELLATI													
DATI DI IN	NPUT															
D L z _w f _{cd}	diametro de lunghezza i profondità resistenza	el palo massima di della falda d di calcolo d	calcolo lal p.c. el c.l.s.			1.20 33.00 50.00 14.17	[m] [m] [Mpa]		FS	Coefficien Coefficien Fattori di c	te parziale re te parziale re correlazione 8	esistenza a esistenza la ξ	lla base aterale	γь γι ξ	1.35 1.15 1.70	[-] [-] [-]
n° strato 1 2	tipo terreno M. Copert. Flysh	DH _i [m] 1.50 31.50	H _f [m] 1.50 33.00	Yn [kN/m³] 17.00 18.50	γ' [kWm³] 17.00 18.50 0.00 0.00 0.00 0.00 0.00 0.00	N _{SPT} [-]	f [°] 22.00 23.00	K [-] 0.50 0.50	с _и [kPa]	α [-] 0.00 0.00 0.00 0.00 0.00 0.00 0.00	c _a [kPa] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		DH _i H _f γ' N _{SPT} ¢ K	LEC spessore profondită peso sper Numero c angolo di rapporto f	GENDA dello strato à dello strato da cifico del terrer cifico efficace colpi al piede (s attrito (solo gra tra σ_h/σ_v	l p.c. o naturak olo granul nulari)
					0.00					0.00	0.00 0.00		c _u c _a = αC	coesione adesione	non drenata (s (solo coesivi)	olo coesiv
PORTATA	ALLA BASE	- protoco	llo di Beren:	zantzev												
n° strato 2	tipo terreno	DH _i [m] 31.50	H _f [m] 33.00	γ _n [kN/m ³] 18.50	γ' [kN/m ³] 18.50	N _{SPT} [-] 0.00	f [°] 23.00	к [-] 0.50	c _u [kPa] 0.00	α [-] 0.00	c _a [kPa] 0.00					
A _b s _{vL} N _q =∪B _k C N _c	Area della l Pressione a Coeff. di pr Coesione a Coeff. di co	base del pa geostatica d ressione ge illa base besione	lo di base ostatica	1.13 608.25 9.80 0.00 9.00	[m ⁻] [kPa] [kPa]	♦ B _k 10	26° 20.00 26° 0.75 0.62	30° 33.00 30° 0.77 0.67	34° 63.00 34° 0.81 0.73	37° 104.00 37° 0.83 0.76	40° 186.00 40° 0.85 0.79		Tabella pe Tabella pe H/D	er il calcolo er il calcolo 27.4	diB _k diບ 5	
Q _{b,lim} Q _{b,amm}	Portata limi Portata am	te di base m. di base		3965.63 2937.50	[kN] [kN]	15 20	0.55 0.49	0.61 0.57	0.68	0.73 0.71	0.77 0.75					
PORTATA	LATERALE -	protocoll	o di Viggian	ni												
σ _{h.1} σ _{h.2} σ _{h.3} σ _{h.4} σ _{h.5} σ _{h.6} σ _{h.7} σ _{h.8} σ _{h.9}	tensione lat tensione lat tensione lat tensione lat tensione lat tensione lat tensione lat tensione lat	terale strato terale strato terale strato terale strato terale strato terale strato terale strato terale strato	1° 2° 3° 4° 5° 6° 7° 8° 9°	σ _{v,i} 0.00 25.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	G _{v.(i+1)} 25.50 608.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	σ _{v.med} 12.75 316.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00	σ _{h.med} 6.38 158.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00	[kPa] [kPa] [kPa] [kPa] [kPa] [kPa] [kPa]	Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		σ 2.58 67.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00			σ = c _{a.i} +	σ _{h.med.i} tan ∳	
Q _{I,lim} Q _{I,amm}	Portata limi Portata am	te laterale m. laterale		8000.98 4092.57	[kN] [kN]	Peso propr	<u>io palo</u>	933.05	[kN]	•	tenere in co non tenere	onto nel ca in conto ne	alcolo della el calcolo d	portata ella portata		
PORTATA	PALO															
PORTATA		IMITE		6097.02	[kN]											

I calcoli dimostrano l'impiego di pali diametro 1.2 m e lunghezza 33 m.

A partire dalla della portata, dalla tipologia e geometria del palo è possibile ricavare una stima del cedimento, tramite la seguente relazione, e della rigidezza del terreno:

$$w_{singolo} = \frac{Q \cdot d}{\lambda \cdot Q_{lim}}$$

Si ottiene un valore di rigidezza k = 863744 kN/m.

Questi sono i valori di rigidezza del vincolo a molla applicato alla base dei pali di cui al paragrafo 9.1.2.

Nell'immagine sottostante si riportano le reazioni massime misurate alla base dei pali per l'inviluppo delle combinazioni SLU e SLV. Le forze sono indicate in kN ed il software indica con il segno (+) azioni assiali di compressione.

Figura 25: Reazioni verticali massime riportate alla punta del palo

Il massimo valore di azione assiale è compatibile con il valore di portata limite stimata.

9.2.3 Azioni sul basamento

Si riportano di seguito le sollecitazioni flettenti e taglianti sul basamento, calcolate secondo la teoria Wood Armer, in direzione radiale e circonferenziale per le diverse combinazioni indicate.

Inviluppo delle combinazioni SLU: "SLUenv"

Figura 26: SLUenv: Momento direzione radiale, Bottom

Figura 27: SLUenv: Momento direzione circonferenziale, Bottom

Figura 28: SLUenv: Momento direzione radiale, Top

Figura 29: SLUenv: Momento direzione Circonferenziale, Top

Figura 30: SLUenv: Taglio Vxx

Figura 31: SLUenv: Taglio Vyy

Figura 32: SLV2: Momento direzione radiale, Bottom

Figura 33: SLV2: Momento direzione circonferenziale, Bottom

Figura 34: SLV2: Momento direzione radiale, Top

Figura 35: SLV2: Momento direzione circonferenziale, Top

Figura 36: SLV2: Taglio Vxx

Figura 37: SLV2: Taglio Vyy

Combinazione "SLEr":

Figura 38: SLEr: Momento direzione radiale, Bottom

Figura 39: SLEr: Momento direzione circonferenziale, Bottom

Figura 40: SLEr: Momento direzione radiale, Top

Figura 41: SLEr: Momento direzione circonferenziale, Top

Combinazione "SLEqp":

Figura 42: SLEqp: Momento direzione radiale, Bottom

Figura 43: SLEqp: Momento direzione circonferenziale, Bottom

Figura 44: SLEqp: Momento direzione radiale, Top

Figura 45: SLEqp: Momento direzione circonferenziale, Top

9.2.4 Verifica degli elementi strutturali

Le verifiche sugli elementi strutturali vengono eseguite come segue:

- SLU: Verifica con acciaio snervato e calcestruzzo con deformazione allo 0.35%
- SLV: Verifica con acciaio in campo elastico e calcestruzzo in campo elastico
- SLE caratteristica (rara): verifica tensionale sulla massima tensione delle fibre d'acciaio $\sigma_s \leq$ 0.8 * f_{yk} e sulla massima tensione di compressione del calcestruzzo $\sigma_c \leq$ 0.6 * f_{ck}
- SLE quasi permanente: verifica sulla massima tensione di compressione del calcestruzzo $\sigma_c \leq 0.45 * f_{ck}$

9.2.5 Verifica strutturale del palo

Sul palo sono state disposti 16Ø20 longitudinali e un'armatura a spirale Ø10/25 su tutta la sua lunghezza per garantire adeguato confinamento. Tale armatura è maggiore del minimo indicato al paragrafo 7.7.2.5 delle NTC2018.

Verifica C.A. S.L.U File: SLU_longitudin File Materiali Opzioni Visualizza Pr	nale rogetto Sez. Rett. Sismica Normativa:	- 🗆 X					
n 🛩 🖬 🚭							
Titolo : SLU_longitudinale							
Sezione circolare cava	N* barre 0 Zoom	O a T ⊙ Circolare					
Raggio esterno 60 [cm]		O Rettangoli O Coord.					
Raggio interno 0 [cm]		O DXF					
N* barre uguali 16							
Diametro barre 2 [cm]							
Copriferro (baric.) 9 [cm]							
Sollecitazioni S.L.U. Metodo n N Ed MxEd O N KN MyEd O O	P.to applicazione N Centro Baricentro cls NO Coord.[cm] yN 0 Tipo rottura Lato calcestruzzo - Acciaio snervato						
Materiali B450C C25/30	M _{xRd} 962 kN m	 Metodo di calcolo S.L.U.+ S.L.U Metodo n 					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \sigma_{\rm C} & \hline -14,17 & {\rm N/mm}^2 \\ \sigma_{\rm S} & \hline 391,3 & {\rm N/mm}^2 \\ \epsilon_{\rm C} & 3,5 & \\ \epsilon_{\rm S} & 16,93 & \\ d & 111 & {\rm cm} & {\rm L} \\ \times & 19,02 & {\rm x/d} & 0,1713 \end{array} $	Tipo flessione • Retta • Deviata Vertici: 52 N* rett. 100 Calcola MRd Dominio M-N .o 0 cm Col. modello M-curvatura					
	δ 0,7						

Le sollecitazioni di taglio vengono estratte dalle reazioni orizzontali globali e ripartite sui 20 pali presenti.

Load	F _x (kN)	F _Y (kN)	F _z (kN)	V _{TOT} (kN)	V _{PALO} (kN)
SLU1	0	0	88280.87	0.00	0.00
SLU2	-1352.79	-166.253	86674.17	1362.97	68.15
SLU3	-1352.79	-166.253	65422.96	1362.97	68.15
SLUext	-1688.55	-55.55	65855.42	1689.46	84.47
SLV1	-239.28	-71.78	65384.41	249.81	12.49
SLV2	-1241.35	-194.93	64976.23	1256.56	62.83

Si considera il valore di azione sollecitante tagliante derivante dalla combinazione "SLUext", più gravosa.

La resistenza a taglio viene calcolata su una sezione rettangolare equivalente attraverso il Metodo di Clarke & Birjandi.

Figura 46: Sezione rettangolare equivalente

Si procede alla verifica a taglio:

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	.A N	TC2018	
Caratteristic	che dei materiali			
f _{ck}		MPa	25	
α_{cc}			0.85	
γ _c			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	14.17	$a_{cc} \cdot f_{cd} / g_c$
γs			1.15	
f _{y,wd}		MPa	391.30	f _{yd} / g _s
Caratteristic	che della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kN	85	
b _w	larghezza della sezione	ст	102.82	
h	altezza totale della sezione	ст	109.99	
с	distanza asse barre dal lembo teso	ст	9.5	
d	altezza utile della sezione	ст	100.49	h - c
d*		ст	90.441	0.9 d
k		•	1.446	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm²	40.82	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0036	
A _{sw}	area di armatura a taglio disposta	cm ²	1.571	
S	spaziatura staffe	ст	25	
Controllo n	ecessità di armatura a taglio			
V _{Rdc1}		kN	373.29	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d
V _{Rdc2}		kN	314.45	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kN	373.29	max[V _{Rdc1} , V _{Rdc2}]
V_{Ed} / V_{Rdc}	non è necessario prevedere l'armatura a taglio VRdo	: > VE	d	
Controllo c	apacità massima della sezione a taglio			
ν	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
α _c	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kN	3293.45	$1.0 \cdot v \cdot f_{cd}$ /{cot(45)+tan(45)} \cdot bw $\cdot 0.9 \cdot d^*$
V_{Ed} / $V_{Rd,max}$	sezione sufficiente per la resistenza taglio		0.026	
Calcolo de	lla resistenza della sezione con armatura a taglio)		
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.02	$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$
9, _{calc}	valore di teta calcolato	rad	0.185	= 10.58° cot ($9_{,calc}$) = 5.35
Գ _{,min}	valore minimo di teta	rad	0.785	= 45° cot (9_{min}) = 1.00
9 _{,max}	valore massimo di teta	rad	0.381	= 21.8° cot (9_{max}) = 2.50
9	valore di calcolo di teta	rad	0.381	= 21.8° cot (9) = 2.50
V _{Rsd}	resistenza a taglio trazione	kN	555.98	$A_{sw} \cdot f_{yd} \cdot d^* / s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	2271.34	$\mathbf{b} \cdot \mathbf{d}^* = \mathbf{a}_{\mathbf{c}} \cdot \mathbf{n} \cdot \mathbf{f}_{cd} \cdot (cot(\alpha) + cot(\vartheta)) / (1 + cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	555.98	
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.153	

Si ottiene che non è necessario prevedere armatura a taglio, la resistenza del calcestruzzo è sufficiente a garantire adeguata resistenza all'elemento.

Utilizzando la teoria di Broms, si deduce che i valori di resistenza geotecnica e strutturale del palo sono sufficienti a garantirne la stabilità, la resistenza del palo a forze orizzontali risulta pari a 388.66 kN, maggiore della massima sollecitazione tagliante sul palo (84.47 kN). Si riporta il calcolo:

INPUTS					
Geometria					
Dimensione sezionale del palo		d =	1.20 m		
Lunghezza palo		L =	33.00 m		
Momento di plasticizzazione della sezione		M _v =	962.00 kN m		
Parametri geotecnici					
Peso specifico terreno		γ =	18.50 kN/m ²		
Angolo di resistenza al taglio terrreno		$\phi =$	23.00 °	=	0.40 rad
Coefficienti parziali					
Coefficiente parziale SLU per pali soggetti a c	arichi trasversali	$\gamma_T =$	1.30		¹ Tab.6.4.VI
Fattore di correlazione		$\zeta =$	1.70		¹ Tab.6.4.IV
CALCOLO PER PALI IN CD					
Coefficiente di spinta passiva	K _P = (1+senø)/(1-senø)	K _P =	2.28		
Pressione in testa	p=3*Kp*γ*D*z	p(z=0) =	0.00 kN/m ²		
Pressione in punta	p=3*Kp*γ*D*z	p(z=L) =	5,016.75 kN/m ²		
Meccanismo di palo corto					
Resistenza alla traslazione orizzontale	$H_{C} = f(KP_d,L)$	H _C =	82,776.36 kN		
Momento massimo	M _{max} =2/3 H L	Mmax =	1,821,079.81 kN m		
Meccanismo di palo intermedio					
Resistenza alla traslazione orizzontale	$H_M = f(C_u, d, L, M_y)$	H _M =	27,621.27 kN		
Meccanismo di palo lungo					
Resistenza alla traslazione orizzontale	$H_L = f(C_{u,d}, M_y)$	$H_L =$	858.94 kN		
Meccanismo di rottura		Meccanismo	di palo lungo		

Resistenza di calcolo del palo a forze orizzontali

 $H_D = 388.66 \text{ kN}$

9.2.6 Verifica a flessione platea

Preliminarmente è stato calcolato il quantitativo di armatura disposto in termini di sezione trasversale per metro. Se ne riportano i risultati nelle tabelle sottostanti.

ARMATUR	A RADIALE	BOTTOM				
r	S	layer	n	fi	As	Note
ст	mm			mm	cm ²	
300	105	2	19.05	30	134.6	
350	122	2	16.39	30	115.8	
470	164	2	12.20	30	86.2	
890	310	2	6.45	30	45.6	
1070	373	2	5.36	30	37.9	
775	270	2	7.41	30	52.3	Mezzeria Basamento

ARMATUR	A CIRCON	IFERENZIALI	BOTTOM			
r	S	layer	n	fi	As	Note
ст	mm			mm	cm ²	
175	100	2	20.00	20	62.8	
890	100	2	20.00	20	62.8	
890	100	1	10.00	20	31.4	
1200	100	1	10.00	20	31.4	
1200	200	1	5.00	20	15.7	
1250	200	1	5.00	20	15.7	
775	100	2	20.00	20	62.8	Mezzeria Basamento

ARMATUR	A RADIALE	TOP				
r	S	layer	n	fi	As	Note
ст	mm			mm	cm ²	
300	105	1	9.52	30	67.3	
470	164	1	6.10	30	43.1	
775	270	1	3.70	30	26.2	Mezzeria Basamento

ARMATUR	A CIRCON	FERENZIAL	TOP			
r	S	layer	n	fi	As	Note
ст	mm			mm	cm ²	
215	150	2	13.33	20	41.9	
470	150	2	13.33	20	41.9	
470	100	1	10.00	20	31.4	
1200	100	1	10.00	20	31.4	
1200	200	1	5.00	20	15.7	
1250	200	1	5.00	20	15.7	
775	100	1	10.00	20	31.4	Mezzeria Basamento
1070	100	1	10.00	20	31.4	Centro palo

La verifica a flessione della platea è stata eseguita in tre sezioni significative, in entrambe le direzioni radiale e circonferenziale, confrontando il momento resistente con quello sollecitante Wood Armer riportato al paragrafo 9.2.3. Sono state svolte le verifiche considerando l'inviluppo

delle combinazioni stato limite ultimo "SLUenv" e la combinazione "SLV2", con differenti parametri dei materiali per soddisfare le condizioni al paragrafo 9.2.4.

La verifica lato Top è stata eseguita solamente sulla sezione del colletto, più sollecitata.

Verifiche allo Stato Limite Ultimo: inviluppo combinazioni SLU

Sezione Colletto: Verifica direzione radiale, Bottom

$M_{\rm Ed} = 18505 \rm kNm$	M _{Rd} = 18927 kNm	$C_{\rm s}S = M_{\rm Ed}/M_{\rm Ed} = 0.978$
		$C.S = H_{Ed} H_{Rd} = 0.570$

Sezione Colletto: Verifica direzione circonferenziale, Bottom

M _{Ed} = 8251 kNm	$M_{Rd} = 8$	3624 kNm	$C.S = M_{Ed}/$	$M_{Rd} = 0.957$
	Verifica C.A. S.L.U File: SLU_h375_circ	onferenziale	- 🗆 X	
		rogetto Sez. Rett. Sismica Normativa: N	10 2018 1	
	Titolo : SLU h375 circonf		Tipo Sezione	
	N* Vertici 4 Zoom	N ⁺ barre 2 Zoom	O a T O Circolare	
	N* x [cm] y [cm]	N* As [cm ²] x [cm] y [cm]	○ Rettangoli	
		1 62,83 50 7,5 2 41,9 50 353,65	O DXF	
	3 100 351,3			
	4 100 0	-	2000	
	Sollecitazioni	P.to applicazione N		
	S.L.U. 🖌 Metodo n	⊙ Centro ○ Baricentro cls □	⁺N	
		O Coord.[cm]		
		N O		
		Tipo rottura		
	yEd C	Lato calcestruzzo - Acciaio snervatt	Metodo di calcolo	
	Materiali	M _{xRd} 8.624 kN m	⊙ S.L.U.+ ○ S.L.U	
	B450C C32740		O Metodo n	
	ε _{su} 67,5 ‰ ε _{c2} 2 ‰	σ _c -18,13 N/mm ²	Retta O Deviata	
	'yd 391.3 N/mm² ² cu 3.5	σ _s 391,3 N/mm ²		
	E _s 200.000 N/mm ² 'cd 18,13	ε _c 3,5 ‰	N* rett. 100	
	E _s /E _c 15 fcc / fcd 0,8 ?	ε _s 44,5 ‰ <u>Ca</u>	alcola MRd Dominio M-N	
	ε _{syd} 1,957 ‰ σ _{c,adm} 12,25	d 367,5 cm Lo	0 cm Col. modello	
	σ _{s,adm} 255 N/mm ² τ _{co} 0,7333	x 26,8 x/d 0,07291	M-curvatura	
	τ _{c1} 2,114	8 0.7		

Sezione Colletto: Verifica direzione radiale, Top

```
M_{Ed} = 4056 \text{ kNm}
```

$M_{Rd} = 9497 \text{ kNm}$

Sezione Colletto: Verifica direzione circonferenziale, Top

$$M_{Ed} = 1053 \text{ kNm} \qquad M_{Rd} = 5718 \text{ kNm} \qquad C.S = M_{Ed}/M_{Rd} = 0.184$$

Sezione in mezzeria del basamento: Verifica direzione radiale

M 2002 Libling		C.C. M. (M. 0.762
$M_{Ed} = 3902 \text{ kNm}$	$M_{Rd} = 5117 \text{ kNm}$	$C.S = M_{Ed}/M_{Rd} = 0.763$
	N* b[cm] h[cm] N* b[cm] h[cm] 1 100 263 255,5	Tipo Sezione O Rettan.re O Trapezi O a T O Circolare O Rettangoli O Coord. O DXF
	Sollecitazioni P.to applicazione N S.L.U. ▲ Metodo n ③ Centro ○ Baricentro cls N Ed ③ △ ○ Mgd ○ kNm ○ Tipo rottura Lato acciaio - Acciaio snervato Min	Metodo di calcolo
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SLU: SLU: Metodo n Tipo flessione N* ret. 100 Calcola MRd Dominio M-N O cm Col. modello M-curvatura
		1 Tecompresso

Sezione in mezzeria del basamento: Verifica direzione circonferenziale

Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

$M_{Ed} = 697 \text{ kNm}$	$M_{Rd} = 2681 \text{ kNm}$	$C.S = M_{Ed}/M_{Rd} = 0.260$
	「Verifica C.A. S.L.U File: SLU_h193 (palo)_radiale File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: ト ①	×
	N* islue I Zoom N* strati barre Zoom N* figure elementari 1 Zoom N* strati barre Zoom N* b [cm] h [cm] 1 20.2 7.5 1 100 193 1 20.2 7.5 2 37.9 185	Tipo Sezione Image: Sez
	Sollecitazioni P.to applicazione N S.L.U. ← Metodo n N Ed 0 kN M g 0 kNm 0 kNm 0 cord.[cm] YN 0 Tipo rothura Lato acciaio - Acciaio snervato	-98,05 -98,05
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SLU: SLU: Actodo di calcolo SLU: SLU: Actodo n Tipo Ilezione Retta Deviata N* rett. 100 Calcola MRd Dominio M-N , 0 cm Col. modello
	× 8,78 x/d 0,04746 τ _{c1} 2,114 δ 0,7	M-curvatura Precompresso

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

$$M_{Ed} = 1047 \text{ kNm}$$
 $M_{Rd} = 2300 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.455$

Verifica Stato Limite di Vita: combinazione SLV2

Sezione Colletto: Verifica direzione radiale, Bottom

 $M_{Ed} = 14620 \text{ kNm}$

$M_{Rd} = 17916 \text{ kNm}$

Sezione Colletto: Verifica direzione circonferenziale, Bottom

$M_{Ed} = 6467 \text{ kNm}$	$M_{Rd} = 8$	3283 kNm	$C.S = M_{Ed}/M_{Rd} = 0.781$
	Verifica C.A. S.L.U File: SLU_h375_circo File Materiali Opzioni Visualizza P D D D D D D D D D D D D D D D D D D D	onferenziale rogetto Sez. Rett. Sismica Normativa: NTC 2/ Tip	- X 18 ? Sezione Settan.re O Trapezi Constance
	N* x [cm] y [cm] 1 0 0 2 0 375 3 100 351.3 4 100 0	N* As cm² x [cm] y [cm] 1 62,83 50 7,5 0 2 41,9 50 353,65 0	Tettangoli © Coord.
	Sollecitazioni → Metodo n N Ed 0 kN M xEd 0 kNm M yEd 0 0	P.to applicazione N © Centro O Baricentro cls Coord.[cm] N 0 JN 0 Tipo rottura Lato acciaio - Acciaio snervato	+N −
	Materiali B450C C32/40 Esu 1.957 % Ec2 % ¹ yd 391.3 N/mm² Ecu 2 Es 200.000 N/mm² ¹ cd 18.13	M _{xRd} 8.283 kN m ac 7.793 N/mm ² a 391.3 N/mm ² b 0 c 0.4898 %	Stute O S.L.U. O Metodo n I lessione Retta O Deviata N* ret. 100
	Le ^fc 15 fc /fc 0.8 ? Esyd 1.957 % 7c.adm 12.25 Gs.adm 255 N/mm ² Tc 0.7333 Tc 1 2.114	E _s 1.957 ‰ Calcol d 367.5 cm L _o 0 × 73,57 x/d 0.2002 δ 0.7	cm Col. modello M-curvatura Precompresso

Sezione Colletto: Verifica direzione radiale, Top

```
M_{Ed} = 821 \text{ kNm}
```

 $M_{Rd} = 9240 \text{ kNm}$ $C.S = M_{Ed}/M_{Rd} = 0.089$ 📅 Verifica C.A. S.L.U. - File: SLV_h375_radiale × File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ? 🗅 🚅 🖬 🖨 Titolo : Sezion **Tipo Sezione** ⊙ Rettan.re O Trapezi N* strati barre 2 1 Zoom Zoom N° figure elementari O Circolare Oal O Rettangoli O Coord.
 N*
 As [cm²]
 d [cm]

 1
 67,3
 8,5

 2
 134,6
 367,5
 h [cm] 375 b [cm] O DXF P.to applicazione N
 O Bar Sollecitazioni + O Baricentro cls Metodo n S.L.U. xN 0 0 O Coord.[cm] N Ed kN yN 0 M 0 kNm Tipo rottura-M_{yEd}O 0 Lato acciaio - Acciaio snervato M_{xRd} -9.240 kN m ⊙ S.L.U. O S.L.U.+ B450C C32/40 Metode 1 957 Esu 2 Ec2 % N/mm² o, -5,998 O Deviata Retta 2 fud 391.3 N/mm² Ecu N/mm² 391,3 σ 200.000 N/mm² fcd N* rett. 100 18,13 Ε. 0,364 E. % Dominio M-N Calcola MRd Es/Ec 15 fcc / fcd 0.8 ? E 1,957 % ε_{syd} 1,957 % σ_{c,adm} 12,25 L₀ 0 Col. modello d 366,5 cm cm

Sezione Colletto: Verifica direzione circonferenziale, Top

0_{8,adm} 255 N/mm²

τ_{co} 0,7333

τ_{c1} 2,114

× 57,48

x/d 0,1568

\$ 0,7

M-curvatura

Precompresso

Sezione mezzeria basamento: Verifica direzione radiale

Sezione mezzeria basamento: Verifica direzione circonferenziale

Sezione perimetrale del basamento, asse palo: Verifica direzione radiale

Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

9.2.7 Verifica a taglio platea

Si considerano i valori di taglio massimo Vxx in combinazione "SLUenv", come riportati al paragrafo 9.2.3, essendo in questa direzione le azioni più gravose.

Sezione Colletto:

Nelle zone di maggior sollecitazione, riscontrabili nel perimetro prossimo al colletto di innesto della torre dovrà essere disposto un opportuno quantitativo di armatura trasversale in modo da incrementare la resistenza a taglio della piastra.

Dovranno essere disposti nella zona prossima al colletto a passo 25 cm almeno 6.28 cm² di armatura (2Ø20) per metro, come mostrato nella verifica sottostante.

DETERMINA	LIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	.A N	ITC2018		
Caratteristic	he dei materiali				
f _{ck}		MPa	32		
α _{cc}			0.85		
γc			1.5		
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13		$a_{cc} \cdot f_{cd} / g_c$
γs			1.15		
f _{y,wd}		MPa	391.30		f _{yd} / g _s
Caratteristic	he della sezione resistente				
V _{Ed}	taglio sollecitante di progetto	kN	4100		
b _w	larghezza della sezione	ст	100		
h	altezza totale della sezione	ст	375		
с	distanza asse barre dal lembo teso	ст	8.5		
d	altezza utile della sezione	ст	366.5		h - c
d*		ст	329.85		0.9 d
k		2	1.234		min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm*	134.6		
ρΙ	rapporto geometrico di armatura longitudinale tesa	2	0.0036		
A _{sw}	area di armatura a taglio disposta	cm*	6.28		
s	spaziatura staffe	ст	25		
Controllo ne	ecessità di armatura a taglio				
V _{Rdc1}		kN	1224.10		$[0.18 \cdot k \cdot (100 \cdot \rho I \cdot fck)^{(1/3)}] / \gamma c \cdot bw \cdot d$
V _{Rdc2}		kN	994.21		[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kN	1224.10		max[V _{Rdc1} , V _{Rdc2}]
V_{Ed} / V_{Rdc}	è necessario prevedere l'armatura a taglio VRdc < V	/Ed			
Controllo co	apacità massima della sezione a taglio				
ν	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5		
αc	coefficiente per effetti dello sforzo assiale di compressione		1		
α	inclinazione armature a taglio	rad	1.571	gradi	90
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kN	14953		$1.0 \cdot \nu \cdot f_{cd}/\{cot(45)+tan(45)\} \cdot bw \cdot 0.9 \cdot d^*$
V_{Ed} / $V_{Rd,max}$	sezione sufficiente per la resistenza taglio		0.274		
Calcolo de	lla resistenza della sezione con armatura a taglia)			
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.05		$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$
9, _{calc}	valore di teta calcolato	rad	0.336	= 19.22°	cot (9 _{,calc}) = 2.87
9, _{min}	valore minimo di teta	rad	0.785	= 45°	$\cot(9_{min}) = 1.00$
9, _{max}	valore massimo di teta	rad	0.381	= 21.8°	cot (9, _{max}) = 2.50
9	valore di calcolo di teta	rad	0.381	= 21.8°	cot (9) = 2.50
V _{Rsd}	resistenza a taglio trazione	kN	8106		$A_{sw} \cdot f_{yd} \cdot d^{\star} / s \cdot (cot(\alpha) \! + \! cot(\vartheta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	10313	b·	$d^{\star} \ a_{c} \cdot n \cdot f_{cd} \cdot \ (cot(\alpha) + cot(\vartheta)) \ / \ (1 + cot^{2}(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	8106		
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.506		

Nelle altre zone si è verificato che è sufficiente una spaziatura inferiore.

Nel tratto centrale del basamento è possibile aumentare il passo a 50 cm, come mostrato nella verifica sottostante, nella sezione posta a 470 cm dal centro del basamento.

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN	C.A N	TC2018	
Caratteristic	che dei materiali			
f _{ck}		MPa	32	
α_{cc}			0.85	
γc			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_c$
γs			1.15	
f _{y,wd}		MPa	391.30	f _{vd} / g _s
Caratteristic	che della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kN	2326	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	335	
с	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	ст	326.5	h-c
d*		ст	293.85	0.9 d
k			1.247	min[1.0+√(20/d) , 2.0]
A _{sl}	area di armatura longitudinale tesa	cm ²	86.2	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0026	
A _{sw}	area di armatura a taglio disposta	cm ²	6.28	
S	spaziatura staffe	ст	50	
Controllo n	ecessità di armatura a taglio			
V _{Rdc1}		kN	986.98	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d
V _{Rdc2}		kN	900.71	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kN	986.98	max[V _{Rdc1} , V _{Rdc2}]
V_{Ed} / V_{Rdc}	è necessario prevedere l'armatura a taglio VRdc <	VEd		
Controllo c	apacità massima della sezione a taalio			
v	coefficiente di riduzione della resistenza del cls fessurato per tagl	io	0.5	
α _c	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	gradi 90
V _{Rd,max}	massima resistenza a taglio-compressione della sezione	kN	13321	$1.0 \cdot v \cdot f_{cd}$ /{cot(45)+tan(45)} · bw · 0.9 · d*
V _{Ed} / V _{Rd,max}	sezione sufficiente per la resistenza taglio		0.175	
Calcolo de	lla resistenza della sezione con armatura a tag	lio		
ω _{sw}	percentuale meccanica di armatura trasversale (per alfa=90°)		0.03	$(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$
9,calc	valore di teta calcolato	rad	0.235	= 13.46° cot ($9_{,calc}$) = 4.18
9. _{min}	valore minimo di teta	rad	0.785	= 45° cot (9_{min}) = 1.00
9.max	valore massimo di teta	rad	0.381	$= 21.8^{\circ}$ cot (9 _{.max}) = 2.50
9	valore di calcolo di teta	rad	0.381	= 21.8° cot (9) = 2.50
V _{Rsd}	resistenza a taglio trazione	kN	3611	$A_{sw} \cdot f_{yd} \cdot d^* / s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$
V _{Rcd}	resistenza a taglio compressione	kN	9187	$b \cdot d^* a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\vartheta)) / (1 + \cot^2(\alpha))$
V _{Rd}	resistenza a taglio della sezione	kN	3611	
V _{Ed} /V _{Rd}	coefficiente di sfruttamento della capacità di resistenza a taglio		0.644	

Nella zona più periferica è possibile aumentare il passo fino a 1 m come evidenziato nella verifica sottostante, per una sezione a 1130 cm dal centro del basamento.

DETERMINA	ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C	:.A N	NTC2018	
Caratteristic	che dei materiali			
f _{ck}		MPa	32	
α_{cc}			0.85	
γc			1.5	
f _{cd}	resistenza di calcolo a compressione del calcestruzzo	MPa	18.13	$a_{cc} \cdot f_{cd} / g_c$
γs			1.15	
f _{y,wd}		MPa	391.30	f _{yd} / g _s
Caratteristic	che della sezione resistente			
V _{Ed}	taglio sollecitante di progetto	kN	750	
b _w	larghezza della sezione	ст	100	
h	altezza totale della sezione	ст	175	
с	distanza asse barre dal lembo teso	ст	8.5	
d	altezza utile della sezione	ст	166.5	h - c
d*		ст	149.85	0.9 d
k			1.347	min[1.0+√(20/d) , 2.0]
A _{si}	area di armatura longitudinale tesa	cm ²	35.9	
ρΙ	rapporto geometrico di armatura longitudinale tesa		0.0021	
A _{sw}	area di armatura a taglio disposta	cm ²	6.28	
S	spaziatura staffe	ст	100	
Controllo n	ecessità di armatura a taglio			
V _{Rdc1}		kN	503.77	[0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d
V _{Rdc2}		kN	515.12	[0.035 · k^(3/2) · √(fck)] · bw · d
V _{Rdc}	resistenza della sezione non armata a taglio	kN	515.12	max[V _{Rdc1} , V _{Rdc2}]
V _{Ed} / V _{Rdc}	è necessario prevedere l'armatura a taglio VRdc < V	VEd		
Controllo c	anacità massima della sezione a taalio			
v	coefficiente di riduzione della resistenza del cls fessurato per taglio		0.5	
a.	coefficiente per effetti dello sforzo assiale di compressione		1	
α	inclinazione armature a taglio	rad	1.571	aradi 90
V _{Rd max}	massima resistenza a taglio-compressione della sezione	kN	6793	1.0 · v · f _~ /{cot(45)+tan(45)} · bw · 0.9 · d*
V _{Ed} / V _{Rd max}	sezione sufficiente per la resistenza taglio		0.110	
	lla resistenza della sezione con armatura a tagli	`		
Ω	percentuale meccanica di armatura trasversale (per alfa=90°)	•	0.01	(A _{mu} · f _{ut})/(b · s · f _{ut})
9 agia	valore di teta calcolato	rad	0 165	$= 9.47^{\circ}$ cot $(9_{colo}) = 5.99$
-,caic 9 min	valore minimo di teta	rad	0.785	$= 45^{\circ}$ $\cot(9_{min}) = 1.00$
Sinin Sinav	valore massimo di teta	rad	0.381	$= 21.8^{\circ}$ cot (9,) = 2.50
≎,max 9	valore di calcolo di teta	rad	0.381	$= 21.8^{\circ}$ $\cot(9) = 2.50$
V _{Red}	resistenza a taglio trazione	kN	921	$A_{mn} \cdot f_{rd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(\beta)) \cdot \operatorname{sen}(\alpha)$
V	resistenza a taglio compressione	kN	4685	$h \cdot d^* = n \cdot f \cdot (cot(\alpha) + cot(\alpha)) / (1 + cot^2(\alpha))$
• Rod V_		kNI	4000 Q21	
VRd V/V/	resisteriza a layilu utila seziure	NIN	921	
V Ed/ V Rd	coeniciente ul situltamento della capacita di resistenza a taglio		0.015	

9.2.8 Verifica a punzonamento platea

La verifica di punzonamento viene eseguita considerando la reazione massima (combinazione "SLUenv") misurata alla base del palo meno il peso proprio del palo, sulla base delle indicazioni dell'EC2. Cautelativamente il coefficiente β viene adottato pari a 1.5, come per il caso di elementi posti all'angolo di piastre.

 $V_{Ed} = 5869.0 - 932.58 = 4936.42 \text{ kN}$

	E	lemento:	Basamento pala eolica						
$\mathbf{V}_{Ed,g}$		daN	493,642	Forza globale di tag	glio-punzonamen	to di progetto			
ΔV_{Ed}		daN	0	0 Forza contraria a V _{Ed.g} (eventuale, nel caso di fondazioni)					
β		n.o puro	1.50	1.50 coefficiente amplificativo della forza, in caso di eccentricità di carico					
н		cm	177.00	177.00 Altezze totale della piastra					
dy		cm	168.00	168.00 altezze utili relative alle armature poste nelle due dir. ortogonali					
dz		cm	165.00 altezze utili relative alle armature poste nelle due dir. ortogonali			togonali			
r _{ly}		%	0.21% Rapporto % dell'armat. tesa in direz. "y" rispetto area sezione				zione		
r _{Iz}		%	0.09%	0.09% Rapporto % dell'armat. tesa in direz. "z" rispetto area sezione					
R ck		daN/cm ²	400.0	Resistenza caratter	ristica cubica del	calcestruzzo della	lastra		
	Pilastro	Sezione	b) Circolare		С	simbolo			
	Pilastro	Posizione	d) di Bordo con sporto		BS	simbolo			
	Fori	Vicinanza	a) No		N	simbolo			
Φ		cm	120.00	diametro pilastro ci	ircolare		•		

Dati dedotti dai materiali e dai dati di input

f _{ck}	daN/cm ²	332.0	Resistenza caratteristica cilindrica del calcestruzzo
f _{cd}	daN/cm ²	188.1	Resistenza di calcolo a compressione del calcestruzzo
$\mathbf{f} = \mathbf{f}_{ck}^{1/2} / \mathbf{f}_{vk}$	cm/daN ^{1/2}	0.004049	Parte dipendente dai materiali nella formula (9.11)
d = d _{eff}	cm	166.50	Altezza utile della sezione
r _{lyz} = RADQ(ρly x ρlz)	n.o puro	0.00140	Radice quadrata del prodotto delle percentuali di armatura
r ι = min (0.02 ; ρlyz)	n.o puro	0.00140	Coefficiente della formula (6.47): deve essere comunque <= 0.02
d _{u1} = 2 × d	cm	333.00	Distanza di \mathbf{u}_1 dal filo pilastro
$\mathbf{d}_{est} = \mathbf{k}_{out} \times \mathbf{d}$	cm	249.75	Distanza da \mathbf{u}_{out} dell'armatura più lontana dal filo pilastro
d _{min} = 0.3 x d	cm	49.95	Distanza dal filo pilastro dell'armatura più vicina (cuciture verticali)
d _{rad,max} = 0.75 x d	cm	124.88	Distanza radiale massima fra cuciture
d _{cir,max,i} = 1.5 x d	cm	249.75	Distanza circonferenziale massima per cuciture interne a \mathbf{u}_{out}
d _{cir.max.e} = 2.0 x d	cm	333.00	Distanza circonferenziale massima per cuciture esterne a \mathbf{u}_{out}

Dati dedotti: forze, tensioni, perimetro di verifica

$\mathbf{V}_{Ed} = \mathbf{\beta} \times (\mathbf{V}_{Ed,g} - \mathbf{\Delta} \mathbf{V}_{Ed})$	daN	740,463	Forza effettiva di taglio-punzonamento di progetto
$\tau_{\text{Rd,max}} = \mathbf{v}_{\text{V}} \times \mathbf{v} \times \mathbf{f}_{\text{Cd}}$	daN/cm ²	37.63	Tensione di taglio-punzonamento massima assoluta
k = min (2 ; 1 + (20/ d) ^{1/2})	n.o puro	1.347	Coefficiente della formula (6.47): deve essere comunque <= 2.00
$\tau_a = \mathbf{C}_{\text{Rd,c}} \times \mathbf{k} \times (100 \times \rho_1 \times \mathbf{f}_{ck})^{1/3}$	daN/cm ²	2.698	T ensione massima ammessa senza armatura da confrontare con $ au_{min}$
$\tau_{\rm min} = 0.1107 \text{ x } \mathbf{k}^{3/2} \text{ x fck}^{1/2}$	daN/cm ²	3.152	Tensione massima ammessa senza armatura: valore minimo comunque
$\boldsymbol{\tau}_{\text{Rd.c}} = \max \left(\boldsymbol{\tau}_{a}; \boldsymbol{\tau}_{\min} \right)$	daN/cm ²	3.152	T ensione massima ammessa senza armatura (max fra ${f au}_{{ m min}}$ e ${f au}_{{ m Rd.c}}$)
$\mathbf{u}_{out} = \mathbf{V}_{Ed} / (\tau_{Rd,c} \times \mathbf{d})$	cm	1,411.0	Perimetro di verifica oltre il quale non serve armatura

Perimetro di filo pilastro: u ₀	cm	377.0	Perimetro di verifica di filo pilastro
Perimetro di verifica di base: u ₁	cm	1,554.6	Perimetro di verifica di base

Verifica alla faccia del pilastro; controllo della correttezza di materiali e dimensioni

$\boldsymbol{\tau}_{Ed} = \boldsymbol{\beta} \times \boldsymbol{V}_{Ed,g} / (\boldsymbol{u}_0 \times \boldsymbol{d})$	daN/cm ²	11.80	Tensione di progetto in corrispondenza della faccia del pilastro			
$\mathbf{r} = \mathbf{\tau}_{Rd,max} / \mathbf{\tau}_{Ed}$	n.o puro	3.190	materiali e geometria idonei			
Verifica al perimetro di base; controllo della necessità di armatura						
$\boldsymbol{\tau}_{Ed,1} = \mathbf{V}_{Ed} / (\mathbf{u}_1 \mathbf{x} \mathbf{d})$	daN/cm ²	2.861	Tensione di progetto in corrispondenza della sezione di base			
$\mathbf{r} = \mathbf{\tau}_{\text{Bd,c}} / \mathbf{\tau}_{\text{Ed,1}}$	n.o puro	1.102	non è necessaria l'armatura			

9.2.9 Verifiche tensionali in esercizio

Si esegue il controllo delle tensioni sulla sezione del colletto, più sollecitata, e si verifica che siano compatibili con i seguenti limiti imposti dalle NTC2018.

			Valore progetto			
Combinazione	Normativa	Valore limite	Direzione radiale	Direzione circonferenziale		
			Bottom			
	$\sigma_s \le 0.8 * f_{yk}$	$\sigma_s \leq 360 \text{ MPa}$	358.2 MPa	350.3 MPa		
	$\sigma_c \le 0.6 * f_{ck}$	$\sigma_c \leq 19.2 \text{ MPa}$	8.4 MPa	5.6 MPa		
SLEr			Тор			
	$\sigma_s \le 0.8 * f_{yk}$	$\sigma_s \leq 360 \text{ MPa}$	136.4 MPa	51.7 MPa		
	$\sigma_c \le 0.6 * f_{ck}$	$\sigma_c \leq 19.2 \text{ MPa}$	1.9 MPa	0.6 MPa		
			Bottom			
	$\sigma_c \le 0.45 * f_{ck}$	$\sigma_c \leq 14.4 \text{ MPa}$	7.0 MPa	4.6 MPa		
SLEqp			Тор			
	$\sigma_c \le 0.45 * f_{ck}$	$\sigma_c \leq 14.4 \text{ MPa}$	0.4 MPa	0.2 MPa		

Sono stati ottenuti i seguenti risultati, che verificano le sezioni analizzate.

9.3 Calcolo rigidezza alla rotazione

Si riporta la verifica di compatibilità della minima rigidezza rotazionale della fondazione allo Stato Limite di Esercizio. Ai fini del calcolo della rigidezza alla rotazione si sono presi in considerazione i nodi agli estremi della fondazione (16 e 336) indicati nell'immagine seguente e distanti 2500 cm.

Figura 47: Identificazione nodi

Si considerano quindi gli spostamenti dei nodi precedentemente indicati, nelle combinazioni "SLEr" e "SLEqp".

La seguente tabella riassume i dati di input ed i risultati relativi al calcolo della rigidezza rotazionale del basamento:

	Combinazione SLEr	Combinazione SLEqp
Spostamento massimo (Nodo 16)	1.818 cm	1.581 cm
Spostamento minimo (Nodo 336)	0.404 cm	0.634 cm
Differenza	1.414 cm	0.947 cm
Angolo	0.0005656 rad	0.0003788 rad
Momento flettente applicato	178349500 Nm	119805990 Nm
Rigidezza rotazionale	3.15328E+11 Nm/rad	3.16278E+11 Nm/rad

La rigidezza alla rotazione, calcolata come (M/σ) è superiore, per entrambe le combinazioni di calcolo, al valore minimo indicato nella specifica fornita dal produttore della turbina (1.5E+11 Nm/rad) e riportata nell'immagine sottostante.

The value for SG 6.0-170 T115-50A is shown in Table 2:

WTG	SG 6.0-170 T115-50A				
Minimum rotational stiffness of the foundation	1.5E+11 Nm/rad				
Table 2 SG 6.0-170 T115-50A Minimum rotational stiffness					