

**EMISSIONE** 

**DESCRIZIONE** 

Α

REV.

# ANAS s.p.A.

Direzione Centrale Programmazione Progettazione

F. Arciuli

CONTROLLATO

C. Marro

RESP. D'ITINERARIO RESP. DI SETTORE

APPROVATO

Ottobre 2006

DATA

P. Polani

VERIFICATO

RESP. TECNICO

## CORRIDOIO PLURIMODALE TIRRENICO-NORD EUROPA ITINERARIO AGRIGENTO -CALTANISSETTA-A19

S.S. Nº 640 "DI PORTO EMPEDOCLE"

AMMODERNAMENTO E ADEGUAMENTO ALLA CAT. B DEL D.M. 5.11.2001

Dal km 44+000 allo svincolo con l'A19

## **INDICE**

## RELAZIONE TECNICA

| 1 Generalità                                                          | 3  |
|-----------------------------------------------------------------------|----|
| 2 Criteri di calcolo                                                  | 5  |
| 2.1 Impalcato                                                         | 5  |
| 2.1.1 Statica longitudinale                                           | 5  |
| 2.1.2 Statica trasversale                                             | 6  |
| 3 Riferimenti normativi                                               | 7  |
| RELAZIONE SUI MATERIALI                                               |    |
| 1 Conglomerati cementizi                                              | 8  |
| 2 Acciaio ad aderenza migliorata                                      | 10 |
| 3 Acciaio da carpenteria                                              | 10 |
| 4 Controventi                                                         | 10 |
| 5 Bulloni ad alta resistenza.                                         | 11 |
| 6 Pioli con testa tipo "Nelson"                                       | 11 |
| 7 Saldature                                                           | 11 |
| CALCOLI STATICI                                                       |    |
| PARTE I - IMPALCATO                                                   |    |
| 1 Generalità                                                          | 12 |
| 2 Analisi dei carichi                                                 |    |
| 3 Modelli di calcolo                                                  |    |
| 4 Analisi strutturale                                                 |    |
| 4.1 Criteri generali                                                  |    |
| 4.2 Sollecitazioni di progetto                                        |    |
| 5 Verifiche dell' impalcato                                           |    |
| 5.1 Verifica di resistenza travi principali                           | 26 |
| 5.2 Verifica di stabilità dei pannelli d'anima delle travi principali |    |
| 5.3 Soletta                                                           |    |
| 5.3.1 Verifica di resistenza della soletta.                           | 36 |
| 5.4 Verifica a fessurazione                                           | 39 |

## PARTE II : APPOGGI, GIUNTI E RITEGNI SISMICI

| 1 Dimensionamento degli appoggi | 45 |
|---------------------------------|----|
| 2 Ritegni sismici               | 46 |
| 3 Giunti di dilatazione         | 47 |

APPENDICE A: Sollecitazioni di calcolo dell'impalcato

APPENDICE B: Modelli di calcolo dell'impalcato

#### **RELAZIONE TECNICA**

#### 1 Generalità

Nel presente elaborato sono riportati i calcoli statici del Viadotto S. F. NERI, inserito nei lavori per l'ammodernamento e l'adeguamento alla cat. B del D.M. 5.11.2001 della S.S. 640 "di Porto Empedocle" nel tratto dal km 44+000 allo svincolo con l'A19.

Il viadotto presenta due carreggiate separate. La sezione dell'impalcato è costituita da due travi a doppio T , collegate da traversi ad anima piena posti circa a metà altezza delle travi.

Le caratteristiche geometriche della sezione corrente sono riportate in figura 1.1.

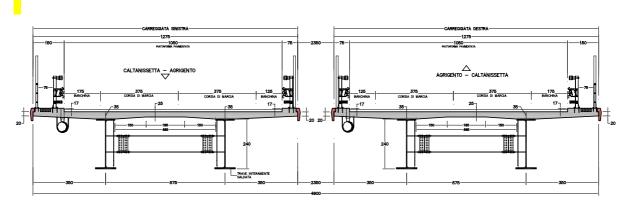



Figura 1.1 - Sezione trasversale impalcati

Ciascun impalcato ha una larghezza complessiva di 12,75 m così suddivisa:

- due corsie di marcia da 3,75 m e due banchine da 1,75 m e 1,25 m che costituiscono la sede stradale;
- un cordolo da 1,50 m per l'alloggiamento della barriera di sicurezza, del parapetto e del marciapiede di servizio di 0,75 m;
- un cordolo da 0,75 m per l'alloggiamento della barriere di sicurezza.

Le travi metalliche, poste ad interasse di 5,75 m, sono collegate da traversi ad anima piena posti ad interasse di circa 6 m. Gli sbalzi laterali hanno lunghezza di 3,50 m.

La soletta ha spessore variabile da 35 cm in corrispondenza delle travi a 25 cm in mezzeria e 20 cm all' estremità degli sbalzi.

Di seguito si riportano le caratteristiche principali del viadotto:

- Altezza max da terra: 28 m circa;
- Carreggiata SX: 4 campate di luce 43 + 45 + 60 + 40 m per uno sviluppo complessivo di 188 m;
- Carreggiata DX: 4 campate di luce 25 + 45 + 60 + 40 m per uno sviluppo complessivo di 170 m;
- Altezza delle travi costante e pari a 2,40 m;
- Ritegni sismici costituiti da 2 dispositivi di ritegno elastico a doppio effetto da 250 t ubicati sulla spalla SA, per ogni impalcato.

#### 2 Criteri di calcolo

#### 2.1 Impalcato

#### 2.1.1 Statica longitudinale

Lo schema statico adottato è quello di un bitrave continuo a più campate ad asse rettilineo con luci pari agli interassi delle pile misurati sull'asse stradale.

L'analisi strutturale è condotta su una singola trave composta, sottoposta al peso proprio, ai sovraccarichi permanenti, alle distorsioni e all'aliquota dei carichi mobili che discende dalla ripartizione trasversale dei carichi.

La trave continua composta è discretizzata in conci di sezione costante, tenendo conto quindi delle variazioni geometriche, della fessurazione della soletta e delle azioni concentrate.

Nell'analisi strutturale si tiene conto delle fasi transitorie e di esercizio e si opera con i seguenti modelli:

*Modello* 1: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio dell'acciaio.

*Modello* 2: ottenuto considerando le proprietà inerziali ideali della sezione composta con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 6. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata.

*Modello* 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 20. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata e dal ritiro.

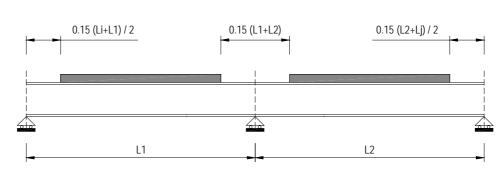



Figura 2.1 - Modellazione degli effetti dovuti alla fessurazione

Nei modelli 2 e 3 si tiene conto della riduzione di rigidezza della sezione composta in prossimità degli appoggi interni per la fessurazione della soletta, trascurando il contributo inerziale del calcestruzzo su un tratto di lunghezza pari al 15 % delle luci delle due campate adiacenti e mettendo comunque in conto il contributo inerziale delle armature presenti entro la larghezza collaborante (fig. 2.1).

Per le verifiche di sicurezza, si considerano le seguenti quattro sezioni tipo:

*Sezione Tipo* 1: proprietà inerziali della sola membratura metallica soggetta alle sollecitazioni dovute al peso proprio dell'acciaio e della soletta di calcestruzzo.

Sezione Tipo 2: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 6. La sezione è utilizzata per le sollecitazioni prodotte dalle azioni di breve durata nelle regioni a momento flettente positivo. Sezione Tipo 3: proprietà inerziali ideali della sezione mista con calcestruzzo omogeneizzato all'acciaio con coefficiente di omogeneizzazione n = 20. La sezione è utilizzata per le sollecitazioni prodotte dai sovraccarichi permanenti e dal ritiro nelle regioni a momento flettente positivo.

Sezione Tipo 4: proprietà inerziali della sezione costituita dalla membratura metallica e dalle barre di armatura con esclusione del calcestruzzo. La sezione è utilizzata nelle regioni a momento flettente negativo.

#### 2.1.2 Statica trasversale

Il calcolo della soletta è stato effettuato su un tratto di sezione di lunghezza unitaria. Le sollecitazione dei carichi permanenti sono riferite al metro. Per i carichi da traffico è stata considerata una diffusione a 45° del carico fino all'appoggio. Il coefficiente di amplificazione dinamica per i carichi da traffico è pari ad 1,4.

Il dimensionamento dei traversi di campata è stato effettuato su schemi semplificati che consentono la valutazione della rigidezza necessaria a garantire la stabilità delle piattabande compresse delle travi principali, sia nelle fasi transitorie che in quelle di esercizio.

#### 3 Riferimenti normativi

Le analisi delle azioni e le verifiche di sicurezza sono state condotte facendo riferimento alle seguenti normative:

- D.M. 16/01/96 "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi."
- D.M. 16/01/96 "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche."
- D.M. 16/01/96 "Norme tecniche per le costruzioni in zone sismiche."
- D.M. 04/05/90 "Criteri generali e prescrizioni tecniche per la progettazione, esecuzione e collaudo dei ponti stradali."
- CNR 10011/97 "Costruzioni di Acciaio Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione."
- CNR 10016/85 "Strutture composte di acciaio e calcestruzzo istruzioni per l'impiego nelle costruzioni."
- CNR 10018/85 "Apparecchi di appoggio in gomma e PTFE nelle costruzioni. Istruzioni per il calcolo e l'impiego."

#### **RELAZIONE SUI MATERIALI**

#### 1 Conglomerati cementizi

I conglomerati cementizi da porre in opera saranno composti da:

- aggregato (UNI 8520 parti 2,11,12,14,15,20,22);
- acqua (UNI 8981/7);
- cemento (UNI/ENV 197/1);
- additivi superfluidificanti (UNI 8145 ASTM C494/G) e ritardanti, se occorrenti per garantire le prestazioni del calcestruzzo in base al tempo di trasporto;

ed avranno le seguenti caratteristiche:

• calcestruzzo per soletta e marciapiedi: Rck ≥ 40 MPa

Nella tabella seguente sono riportate, per ogni singola classe di esposizione ambientale (UNI EN 206-1 2001), le prescrizioni per il calcestruzzo che ne garantiscano la durabilità.

| Elemento strutturale                               | Classe di<br>esposizione (UNI<br>EN 206-1) | Descrizione<br>condizioni<br>ambientali                                                                      | Situazioni possibili per<br>l'applicazione della<br>classe                                                                                                         |
|----------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calcestruzzo per opere non armate (magri)          | -                                          |                                                                                                              | -                                                                                                                                                                  |
| Calcestruzzo per pali                              | XC2                                        | Ambiente bagnato, raramente asciutto                                                                         | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua per lungo tempo                                                                             |
| Calcestruzzo per zattere di pile<br>e spalle       | XC2 - XF3                                  | Ambiente bagnato,<br>raramente asciutto -<br>Elevata saturazione<br>d'acqua, senza<br>agente antigelo        | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua per lungo tempo -<br>Superfici di calcestruzzo<br>esposte alla pioggia ed al gelo           |
| Calcestruzzo per elevazione spalle                 | XC2 - XF3                                  | Ambiente bagnato,<br>raramente asciutto -<br>Elevata saturazione<br>d'acqua, senza<br>agente antigelo        | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua per lungo tempo -<br>Superfici di calcestruzzo<br>esposte alla pioggia ed al gelo           |
| Calcestruzzo per elevazione pile                   | XC4 - XF1                                  | Ambiente ciclicamente bagnato ed asciutto - Moderata saturazione d'acqua, senza uso di agente antigelo       | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua - Superfici di<br>calcestruzzo esposte alla<br>pioggia ed al gelo                           |
| Calcestruzzo per soletta,<br>cordoli e marciapiedi | XC4 - XD3 - XF4                            | Ambiente ciclicamente bagnato ed asciutto - Elevata saturazione d'acqua, con limitato uso di agente antigelo | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua - Parti di ponti esposte<br>agli agenti antigelo e soggette<br>a spruzzi contenenti cloruri |
| Calcestruzzo per baggioli                          | XC4 - XF1                                  | Ambiente ciclicamente bagnato ed asciutto - Moderata saturazione d'acqua, senza uso di agente antigelo       | Elementi strutturali le cui<br>superfici siano a contatto con<br>acqua per lungo tempo -<br>Superfici di calcestruzzo<br>esposte alla pioggia ed al gelo           |

| Prescrizioni per il calcestruzzo in relazione alla durabilità ed alla |                         |                                  |                             |                    |                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                       |                         |                                  |                             | za necessar        |                                                                                                                                                                                                                                              |  |  |
|                                                                       |                         | 1                                |                             | ifiche struttu     | ırali                                                                                                                                                                                                                                        |  |  |
| Elemento<br>strutturale                                               | Rapport<br>o<br>massimo | Dosaggio<br>minimo di<br>cemento | Classe di<br>resistenz<br>a | Copriferr<br>o min | Informazioni aggiuntive                                                                                                                                                                                                                      |  |  |
|                                                                       | A/C                     | (kg/m <sup>3</sup> )             | Rck<br>(N/mmq)              | (mm)               |                                                                                                                                                                                                                                              |  |  |
| Calcestruzzo per opere non armate (magri)                             | -                       | -                                | 15                          | -                  |                                                                                                                                                                                                                                              |  |  |
| Calcestruzzo per pali                                                 | 0,60                    | 280                              | 30                          | 60                 | E' da prevedersi l'uso di additivi<br>fluidificanti e/o superfluidificanti                                                                                                                                                                   |  |  |
| Calcestruzzo per<br>zattere di pile e spalle                          | 0,50                    | 320                              | 30                          | 40                 | E' da prevedersi l'uso di additivi<br>superfluidificanti e/o aeranti - E'<br>necessario un controllo della<br>percentuale minima di aria in<br>funzione del diametro massimo<br>dell'aggregato - Utilizzo di<br>aggregati resistenti al gelo |  |  |
| Calcestruzzo per<br>elevazione spalle                                 | 0,50                    | 320                              | 35                          | 35                 | E' da prevedersi l'uso di additivi<br>superfluidificanti e/o aeranti - E'<br>necessario un controllo della<br>percentuale minima di aria in<br>funzione del diametro massimo<br>dell'aggregato - Utilizzo di<br>aggregati resistenti al gelo |  |  |
| Calcestruzzo per<br>elevazione pile                                   | 0,50                    | 300                              | 35                          | 35                 | E' da prevedersi l'uso di additivi<br>superfluidificanti e/o aeranti - E'<br>necessario un controllo della<br>percentuale minima di aria in<br>funzione del diametro massimo<br>dell'aggregato - Utilizzo di<br>aggregati resistenti al gelo |  |  |
| Calcestruzzo per<br>soletta, cordoli e<br>marciapiedi                 | 0,45                    | 340                              | 40                          | 30                 | E' da prevedersi l'uso di additivi<br>superfluidificanti e/o aeranti - E'<br>necessario un controllo della<br>percentuale minima di aria in<br>funzione del diametro massimo<br>dell'aggregato - Utilizzo di<br>aggregati resistenti al gelo |  |  |
| Calcestruzzo per<br>baggioli                                          | 0,50                    | 300                              | 45                          | 30                 | E' da prevedersi l'uso di additivi<br>superfluidificanti e/o aeranti - E'<br>necessario un controllo della<br>percentuale minima di aria in<br>funzione del diametro massimo<br>dell'aggregato - Utilizzo di<br>aggregati resistenti al gelo |  |  |

#### 2 Acciaio ad aderenza migliorata

Le armature da porre in opera non dovranno presentare tracce di ossidazione, corrosione e di qualsiasi altra sostanza che possa ridurne l'aderenza al conglomerato; dovranno inoltre presentare sezione integra e priva di qualsiasi difetto.

Si utilizzeranno barre ad aderenza migliorata tipo FeB44 k controllato in stabilimento, aventi le seguenti caratteristiche:

 $\begin{array}{ll} \bullet & \text{tensione caratteristica di snervamento} & f_{yk} \geq \ 430 \ \text{MPa} \\ \\ \bullet & \text{tensione caratteristica di rottura} & f_{tk} \geq 540 \ \text{MPa} \end{array}$ 

• allungamento percentuale  $A_{10} \ge 12\%$ 

• modulo elastico  $E_s = 206.000 \text{ MPa}$ 

#### 3 Acciaio da carpenteria

La carpenteria metallica sarà realizzata in acciaio tipo Fe 510 (grado C), conforme alle prescrizioni del D.M. 9.1.1996 e delle Istruzioni CNR 10011, avente le seguenti caratteristiche:

 $\bullet \quad \text{tensione di rottura a trazione} \qquad \qquad f_t \geq 510 \; \text{MPa}$ 

• tensione di snervamento  $f_v \ge 355 \text{ MPa}$ 

• resilienza  $KV \ge 27 \text{ J a } -20 \text{ }^{\circ}\text{C}$ 

• allungamento (lamiere)  $\epsilon_t \ge 21\%$ 

Nei tratti a direttrice curva la carpenteria metallica dovrà presentare curvatura continua. E' esclusa la realizzazione per tratti rettilinei consecutivi (spezzata) approssimanti la curva.

Tutte le giunzioni per l'assemblaggio dei conci delle travi portanti, sia quelle da eseguire in officina che quelle in cantiere, saranno di tipo saldato a completa penetrazione.

I traversi intermedi, di pila e di spalla saranno collegati alle travi principali attraverso giunzioni bullonate.

La carpenteria metallica sarà protetta con tre mani di vernice, due applicate in officina e la terza in opera, a conferire il colore finale.

## 4 Controventi

Le aste del controvento orizzontale ed i relativi elementi di collegamento, saranno realizzati in acciaio tipo Fe 510, conforme alle prescrizioni del D.M. 09.01.1996 e alle Istruzioni CNR 10011, avente le seguenti caratteristiche:

• tensione di rottura a trazione  $f_t \ge 510 \text{ MPa}$ 

• tensione di snervamento  $f_v \ge 355 \text{ MPa}$ 

• resilienza  $KV \ge 27 \text{ J a } -20 \text{ }^{\circ}\text{C}$ 

• allungamento (lamiere)  $\varepsilon_t \ge 21\%$ 

#### 5 Bulloni ad alta resistenza

Le giunzioni bullonate saranno realizzate con bulloni ad alta resistenza aventi le seguenti caratteristiche (UNI 3740):

• vite classe 10.9 (UNI5712)

• tensione di rottura a trazione  $f_t \ge 1000 \text{ MPa}$ 

• tensione di snervamento  $f_v \ge 900 \text{ MPa}$ 

• tensione caratteristica  $f_{K,N} \ge 7000 \text{ MPa}$ 

• dado classe 10 (UNI 5713)

• rosette C50 (UNI 5714)

• forza di serraggio  $N_s = 0.8 f_{K,N} A_{res}$ 

• coppia di serraggio  $T_s = 0.2 N_s d$ 

#### 6 Pioli con testa tipo "Nelson"

• materiale base ST37-3K – DIN 17100

 $\bullet \quad \text{tensione di snervamento} \qquad \qquad f_{yk} \geq \ 355 \ \text{Mpa}$ 

• tensione di rottura a trazione  $f_u \ge 510 \text{ Mpa}$ 

#### 7 Saldature

Le saldature dovranno essere realizzate secondo le indicazioni delle Norme CNR 10011/97. Tutte le giunzioni per l'unione dei conci delle travi principali e dei traversi saranno eseguite con saldature testa a testa a completa penetrazione di 1<sup>a</sup> classe.

#### **CALCOLI STATICI**

#### **PARTE I - IMPALCATO**

#### 1 Generalità

I calcoli sono condotti con riferimento alla geometria dell'asse sinistro utilizzando uno schema statico a trave continua su 4 campate con luci 43 + 45 + 60 + 40 m. Per quanto riguarda l'asse della carreggiata destra si farà riferimento all'asse sinistro in quanto le luci delle campate sono le medesime tranne per la prima di luce 25 m anziché 43 m.

#### 2 Analisi dei carichi

Peso proprio della struttura (g<sub>1</sub>)

- Carpenteria metallica  $(g_{1,1})$ :

trave continua..... = da geometria conci elementi secondari: traversi, controventi, pioli..... = 4,46 kN/m

Carichi permanenti (g<sub>2</sub>)

- Barriere, parapetti, elementi di bordo ..... = 7,80 kN/m

Ritiro del calcestruzzo ( $\varepsilon_2$ )

Il ritiro del calcestruzzo è stato schematizzato con le seguenti azioni statiche equivalenti:

- Forze assiali di estremità:  $N_{c,r\infty} = \varepsilon_{c,r,\infty} E_a A_c/n_r = -8229.5 \text{ kN}$ 

- Coppie flettenti di estremità:  $M_{c r\infty} = N_{c r\infty} e_r = 6855,2 \text{ kNm}$ 

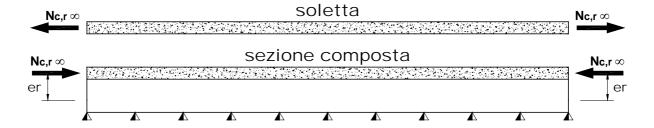



Figura 2.1 - Azioni statiche equivalenti al ritiro

#### avendo assunto:

deformazione finale da ritiro:  $\varepsilon_{c,r,\infty} = 0,000210$ 

coefficiente di omogeneizzazione a  $t_o$ :  $n_0 = E_a / E_c = 6$ 

coefficiente di omogeneizzazione a  $t_{\infty}$ :  $n_r = n_0 (1+\phi) = 20$ 

modulo elastico acciaio:  $E_a = 206000 \text{ N/mm}^2$ 

area soletta:  $A_c = 3,6700 \times 10^6 \text{ mm}^2$ 

distanza tra i baricentri nella sezione terminale (ossia fra il baricentro della soletta in c.a. e

quello della sezione composta a  $t_{\infty}$ ):  $e_r = 0.833 \text{ m}$ 

#### *Variazione termica* $(\varepsilon_3)$

Gli effetti prodotti dalle variazioni termiche differenziali fra soletta in c.a. e travi metalliche sono stati valutati attraverso azioni statiche equivalenti concentrate alle estremità dell'impalcato.

Si prendono in esame le seguenti variazioni termiche:

- Variazione termica differenziale positiva:  $\Delta T = +10^{\circ} \text{ C}$ 

- Forze assiali di estremità:  $N_{c,\Delta T} = \alpha E_a A_c \Delta T/n_0 = 12699.8 \text{ kN}$ 

- Coppie flettenti di estremità:  $M_{c,\Delta T} = N_{c,\Delta T} e_T = -5511,7 \text{ kNm}$ 

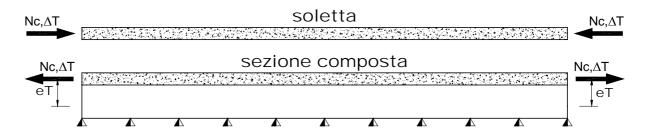



Figura 2.2 – Azioni statiche equivalenti alla variazione termica positiva

avendo assunto:

coefficiente di dilatazione termica:  $\alpha = 0.00001$ 

coefficiente di omogeneizzazione a  $t_0$   $n_0 = E_a / E_c = 6$ 

modulo elastico acciaio:  $E_a = 206000 \text{ N/mm}^2$ 

area soletta:  $A_c = 3,6700 \times 10^6 \,\text{mm}^2$ 

distanza tra i baricentri nella sezione terminale (ossia fra il baricentro della soletta in c.a. e

quello della sezione composta a  $t_0$ ):  $e_T = 0,434 \text{ m}$ 

- Variazione termica differenziale negativa:  $\Delta T = -5^{\circ} C$ 

- Forze assiali di estremità:  $N_{c,\Delta T} = \alpha E_a A_c \Delta T/n_0 = -6349,9 \text{ kN}$ 

- Coppie flettenti di estremità:  $M_{c,\Delta T} = N_{c,\Delta T} e_T = 2755,9 \text{ kNm}$ 

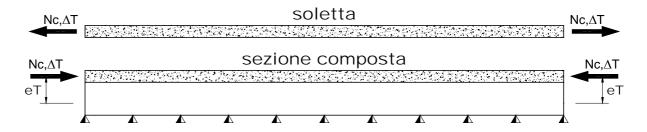



Figura 2.3 - Azioni statiche equivalenti alla variazione termica negativa

avendo assunto:

coefficiente di dilatazione termica:  $\alpha = 0.00001$ 

coefficiente di omogeneizzazione a  $t_0$   $n_0 = E_a / E_c = 6$ 

modulo elastico acciaio:  $E_a = 206000 \text{ N/mm}^2$ 

area soletta:  $A_c = 3,6700 \times 10^6 \, \text{mm}^2$ 

distanza tra i baricentri nella sezione terminale (ossia fra il baricentro della soletta in c.a. e quello della sezione composta a  $t_0$ ):  $e_T = 0,434 \text{ m}$ 

#### *Carichi mobili* (q<sub>1</sub>)

Si considerano i seguenti carichi mobili:

- q<sub>1,a</sub>: mezzo convenzionale da 600 kN a 3 assi avente ingombro longitudinale di 15 m
- q<sub>1,b</sub>: carico di 30 kN/m uniformemente distribuito al di fuori dell'ingombro del q<sub>1,a</sub>

In senso trasversale i carichi  $q_{1,a}$  e  $q_{1,b}$  sono stati distribuiti su corsie convenzionali di larghezza pari a 3,50 m in modo tale da ottenere la distribuzione trasversale più gravosa per la singola trave (Figura 2.4).

Il carico sulla trave maggiormente sollecitata risulta (Figura 2.5):

```
carico d'asse: = 292,00 kN carico uniforme: = 43,80 kN/m
```

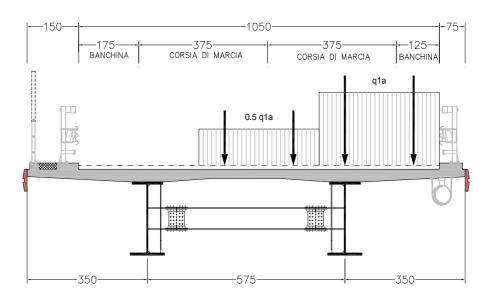



Figura 2.4 - Distribuzione trasversale dei carichi da traffico

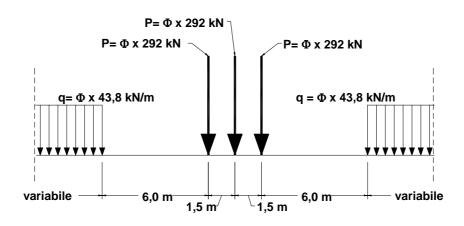



Figura 2.5 - Carico mobile agente sulla trave più sollecitata

Effetto dinamico dei carichi mobili (q2)

 $\Phi = 1.4 - (L - 10) / 150 = 1,18$  per L = 43 m  $\Phi = 1.4 - (L - 10) / 150 = 1,16$  per L = 45 m  $\Phi = 1.4 - (L - 10) / 150 = 1,06$  per L = 60 m  $\Phi = 1.4 - (L - 10) / 150 = 1,20$  per L = 40 m

#### Azione del vento (q5)

L'azione del vento è riconducibile ad un carico orizzontale uniforme di 2,50 kN/m², diretto ortogonalmente all'asse longitudinale del ponte, agente sulla proiezione, nel piano verticale, delle superfici direttamente investite dal vento. La superficie dei carichi transitanti sul ponte esposta al vento è assimilata ad una parete rettangolare continua di altezza costante pari a 3,00 m dalla pavimentazione stradale.

Tale azione dà luogo ad una sollecitazione torcente che provoca una flessione differenziale dalle due travi portanti.

Con riferimento allo schema riportato in Figura 2.6, risulta:



Figura 2.6 - Schematizzazione delle azioni dovute al vento

#### Azione del sisma (q<sub>6</sub>)

L'azione sismica orizzontale (longitudinale e trasversale) è valutata mediante la seguente espressione:

$$F_h = C \cdot R \cdot I \cdot \epsilon \cdot \beta \cdot W$$

essendo:

| C = (S-2)/100 = 0.07 | coefficiente di intensità sismica                     |
|----------------------|-------------------------------------------------------|
| R = 1                | coefficiente di risposta                              |
| I = 1                | coefficiente di protezione sismica                    |
| $\varepsilon = 1,2$  | coefficiente di fondazione                            |
| $\beta = 2.5$        | coefficiente di struttura (appoggi e ritegni sismici) |
| W                    | peso proprio e carichi permanenti                     |

| <br>RIEPILOGO DEI CARICHI AGENTI SULLA TRAVE                           | MAGGIORM | ENTE SOLLECITA | ATA               |
|------------------------------------------------------------------------|----------|----------------|-------------------|
|                                                                        |          |                |                   |
| CARPENTERIA METALLICA [g <sub>1,1</sub> ]                              |          |                |                   |
| Peso trave continua                                                    | =        | da geometria   | conci             |
| Peso elementi secondari                                                | =        | 2,44           | kNm <sup>-1</sup> |
| PESO DELLA SOLETTA IN C.A. [g <sub>1,2</sub> ]                         | =        | 45,81          | kNm <sup>-1</sup> |
| CARICHI PERMANENTI [g <sub>2</sub> ]                                   | =        | 16,68          | kNm <sup>-1</sup> |
| RITIRO DEL CALCESTRUZZO [ε <sub>2</sub> ]                              |          |                |                   |
| Forza assiale N                                                        |          | -4114,74       | kN                |
| Momento flettente in corrispondenza di SA                              |          | 3427,58        | kNm               |
| Momento flettente in corrispondenza di SB                              | =        | 3427,58        | kNm               |
| VARIAZIONE TERMICA NEGATIVA [ε₃]                                       |          |                |                   |
| Forza assiale N                                                        | =        | -3174,96       | kN                |
| Momento flettente in corrispondenza di SA                              | =        | 1377,93        | kNm               |
| Momento flettente in corrispondenza di SB                              | =        | 1377,93        | kNm               |
| VARIAZIONE TERMICA POSITIVA [ε₃]                                       |          |                |                   |
| Forza assiale N                                                        | =        | 6349,91        | kN                |
| Momento flettente in corrispondenza di SA                              |          | -2755,86       | kNm               |
| Momento flettente in corrispondenza di SB                              | =        | -2755,86       | kNm               |
| AZIONE DEL VENTO [q₅]                                                  | =        | 7,47           | kNm <sup>-1</sup> |
| CARICHI MOBILI CON EFFETTO DINAMICO [q <sub>1</sub> + q <sub>2</sub> ] |          |                |                   |
| Carico dovuto al sistema Tridem [P]                                    | =        | 292 хф         | kN                |
| Carico uniforme [q]                                                    | =        | 43,8 хф        | kNm <sup>-1</sup> |

Figura 2.7 – Riepilogo dei carichi sulla trave più sollecitata

#### 3 Modelli di calcolo

Nelle analisi strutturali si fa riferimento alla trave maggiormente sollecitata soggetta ai carichi individuati al paragrafo precedente.

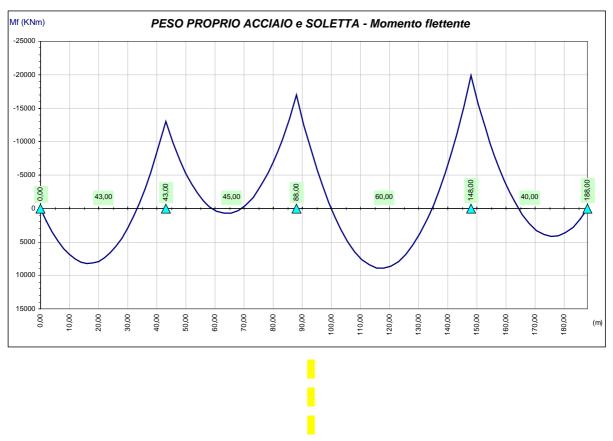
Le analisi sono eseguite per le fasi costruttive (varo e getto della soletta) e per le condizioni di esercizio della struttura (a breve termine e a lungo termine).

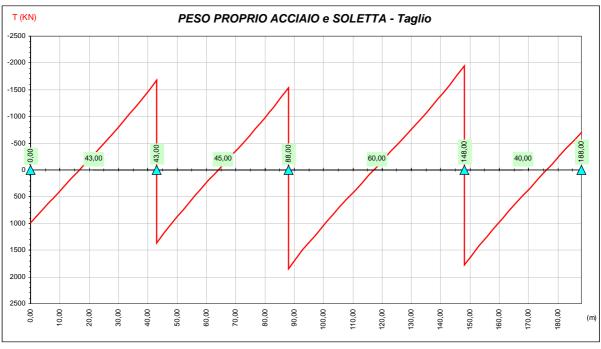
La larghezza collaborante della soletta per la definizione delle caratteristiche inerziali della sezione, sia per l'analisi strutturale che per la verifica, è stata valutata secondo le indicazioni della norma CNR 10016.



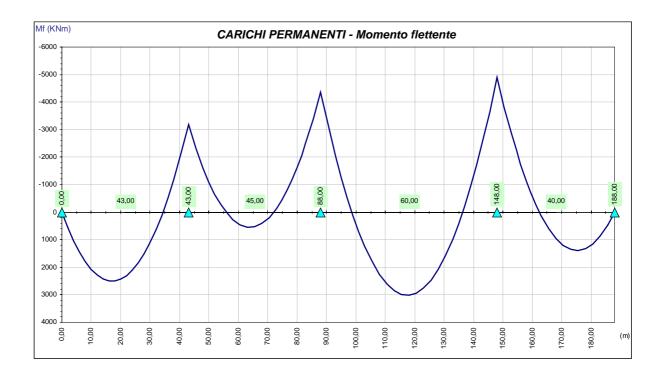
#### 4 Analisi strutturale

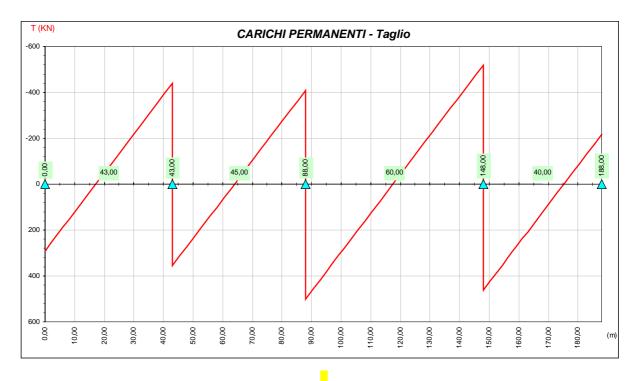
#### 4.1 Criteri generali


Il calcolo delle sollecitazioni è stato effettuato con riferimento alla trave maggiormente sollecitata, su un modello agli elementi finiti ottenuto discretizzando la struttura in conci di caratteristiche geometriche ed inerziali costanti. Le analisi sono state eseguite per le seguenti condizioni di carico:

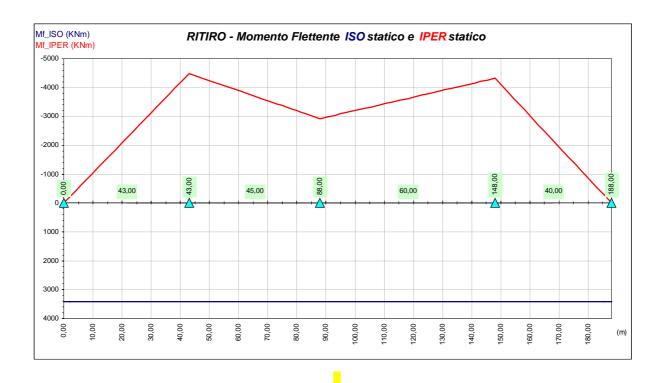

- a. Peso proprio della carpenteria metallica e della soletta.
- b. Carichi permanenti.
- c. Ritiro.
- d. Variazione termica differenziale.
- e. Carichi mobili.
- f. Vento.

Ai fini delle verifiche di resistenza, per quanto riguarda la prima condizione di carico, la soletta è stata considerata realizzata in un unico getto. Con tale ipotesi si sovrastimano le tensioni sulle travi metalliche e quindi si perviene ad una verifica conservativa della sicurezza.

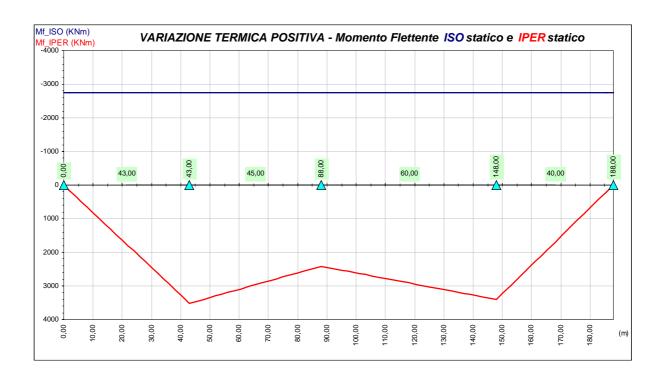

### 4.2 Sollecitazioni di progetto


a) Peso proprio della carpenteria metallica e della soletta (Modello 1)

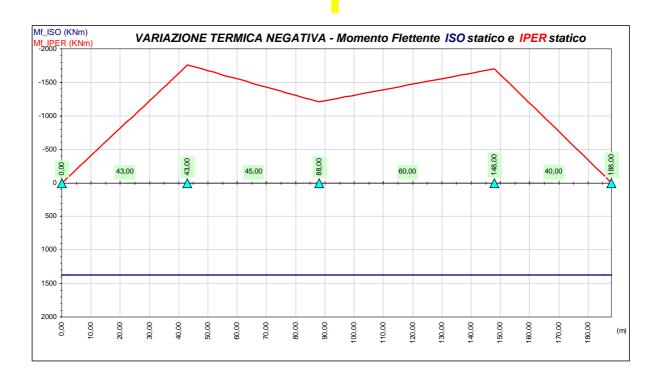




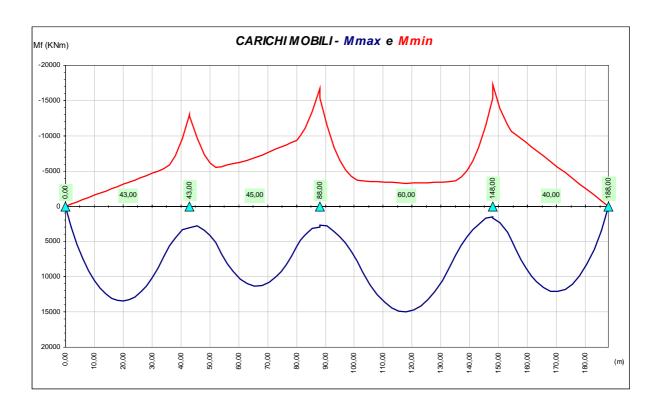

## b) Carichi permanenti (Modello 3 n = 20)

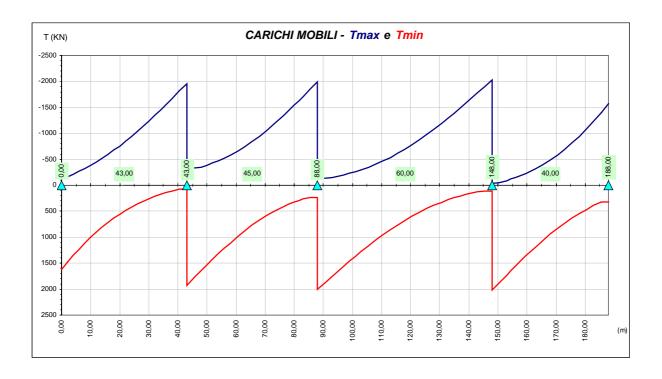




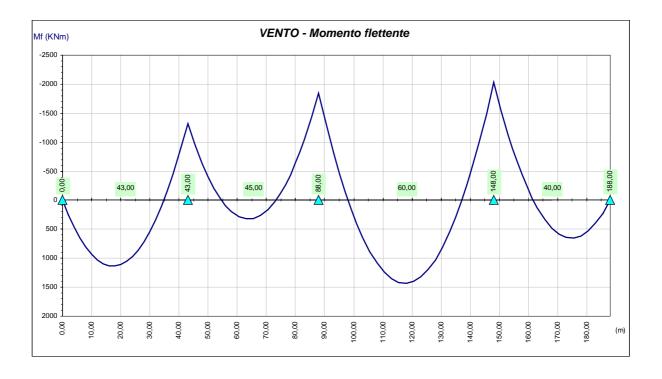


#### c) Ritiro (Modello 3 n = 20)

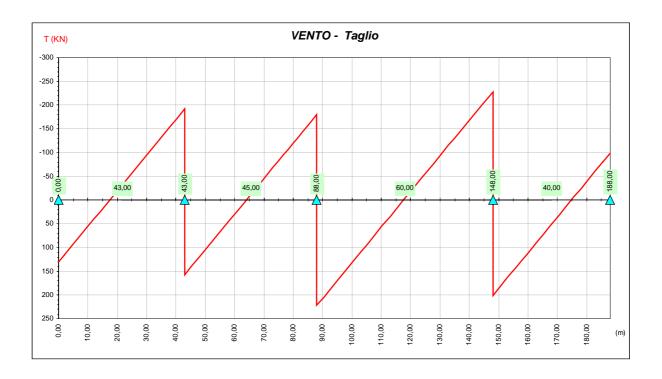



## d) Variazione termica differenziale positiva $\,\Delta T=+10$ °C (Modello 2 n=6)




d) Variazione termica differenziale negativa  $\Delta T = -5$  °C (Modello 2 n = 6)





#### e) *Carichi mobili* (*Modello* 2 n = 6)





## f) Azione del vento





#### 5 Verifiche dell' impalcato

#### 5.1 Verifica di resistenza travi principali

Le verifiche sono condotte per le seguenti combinazioni di carico:

I) 
$$F_d = G_k + Q_k + 0.6 Q_5 + \epsilon_2 + \epsilon_3$$
 essendo 
$$-G_k \qquad \qquad \text{pesi propri e carichi permanenti } (g_1 + g_2)$$
 
$$-Q_k \qquad \qquad \text{carichi mobili } (q_1 + q_2)$$
 
$$-Q_5 \qquad \qquad \text{azione del vento } (q_5)$$
 
$$-\epsilon_2 \qquad \qquad \text{ritiro del calcestruzzo}$$
 
$$-\epsilon_3 = (-5 \, ^{\circ}\text{C}) \qquad \text{variazione termica differenziale negativa}$$
 II)  $F_d = G_k + Q_k + 0.6 \ Q_5 + \epsilon_3$ 

con

$$-\varepsilon_3 = (+10 \, ^{\circ}\text{C})$$
 variazione termica differenziale positiva

Per quanto riguarda i carichi mobili, sezione per sezione, sono considerati i massimi e minimi del momento flettente con i valori del taglio concomitante e i tagli massimi e minimi con i concomitanti momenti flettenti, al fine di determinare la più gravosa condizione di verifica.

Nelle verifiche di resistenza è omessa (per il solo sisma verticale) la combinazione AV definita al punto 3.9 del DM 04 maggio 1990 riguardante i ponti stradali, in quanto non dimensionante e non significativa in rapporto alle combinazioni analizzate, con carichi accidentali come condizione dominante. Secondo il punto 3.9, le azioni sismiche verticali devono essere calcolate in assenza di carico accidentale, considerando le sole masse corrispondenti ai pesi propri ed ai sovraccarichi permanenti, ed in accordo con le vigenti "Norme tecniche per le costruzioni in zona sismica" (DM 16 gennaio 1996). Le azioni verticali da applicare alle strutture mediante analisi statica sono equivalenti ad un sistema di forze uniformemente distribuite, proporzionali alle masse presenti, con valore pari a:

$$F_v = m \cdot C \cdot I \cdot W$$

essendo

- C il coefficiente di intensità sismica (0,07 per zona zone di II categoria 0,04 per zone di III categoria);
- m = 2;
- I = 1 il coefficiente di protezione sismica
- W peso complessivo masse.

I viadotti presentano impalcati di larghezza pari a 12,75 m ed un peso complessivo a metro lineare di 153 kN/m. Nella combinazione di sisma verticale andrebbe considerato un carico uniformemente distribuito che nel caso più sfavorevole (zone di II categoria) può essere pari al 14% delle masse verticali ovvero pari circa a 22 kN/m.

Gli impalcati sono stati calcolati considerando nell'ingombro della carreggiata due corsie convenzionali di carico, per un carico totale di 1,50 volte la singola colonna di carico nominale ( $q_{1a} + q_{1b}$ ), da maggiorare successivamente in base al coefficiente di amplificazione dinamica. Di conseguenza, il carico accidentale medio uniformemente distribuito è sicuramente uguale o superiore a 45 kN/m ovvero almeno pari al 30% delle masse della struttura. Inoltre, i carichi accidentali sono posizionati in base alle linee di influenza, in modo da ottenere le massime sollecitazioni, mentre il carico sismico uniformemente distribuito agisce sull'intera struttura così da non poter massimizzare gli effetti. Quanto già detto vale a maggior ragione per gli sbalzi della sezione trasversale, i quali vengono verificati nei confronti del carico  $q_{1a}$  per un totale di 600 x 1,40 = 840 kN (1,4 è il coefficiente di amplificazione dinamica) disposto in una area di 3,00 x 1,50 metri nelle posizioni più sfavorevoli. Appare quindi lecita la scelta di trascurare la combinazione AV per il sisma verticale, in rapporto alle combinazioni di verifica I) e II) sopra descritte.

Resistenze di progetto dei materiali costituenti la sezione:

Acciaio da carpenteria Fe 510:

```
\begin{array}{llll} & \text{per elementi di spessore} & t \leq 40 \text{ mm} & \Rightarrow & \sigma_{a,amm} = 240 & \text{MPa} \\ & \text{per elementi di spessore} & t > 40 \text{ mm} & \Rightarrow & \sigma_{a,amm} = 210 & \text{MPa} \\ & \text{Calcestruzzo R}_{ck} \ 40: & \Rightarrow & \sigma_{c,amm} = 12,25 & \text{MPa} \\ & \text{Acciaio per armature FeB44K:} & \Rightarrow & \sigma_{s,amm} = 255 & \text{MPa} \end{array}
```

Nelle zone a momento negativo si trascura il contributo del calcestruzzo teso e si considera agente il solo effetto iperstatico del ritiro e/o della variazione termica.

Le verifiche sono condotte con l'ausilio di un codice di calcolo automatico sulle sezioni più significative dell'impalcato. Le grandezze geometriche ed inerziali delle sezioni tengono conto delle fasi costruttive e di esercizio a breve e a lungo termine.

Il calcolo delle tensioni è stato effettuato sezione per sezione, con le proprietà inerziali della sezione tipo associata all'azione presa in considerazione.

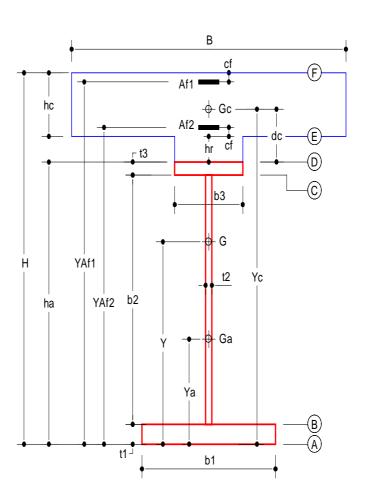
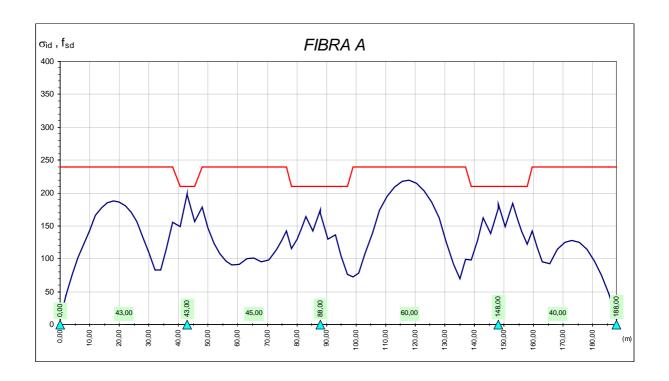
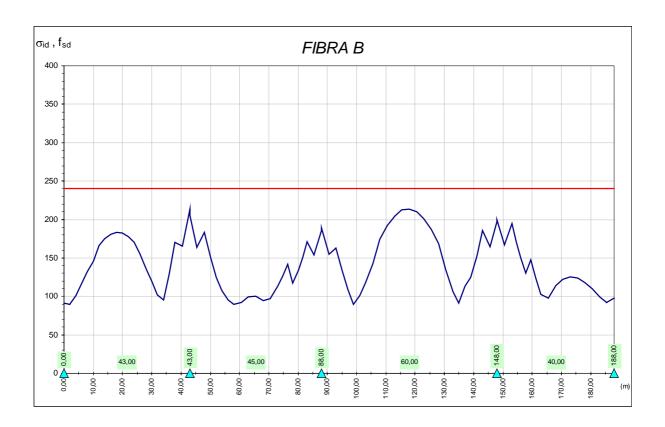
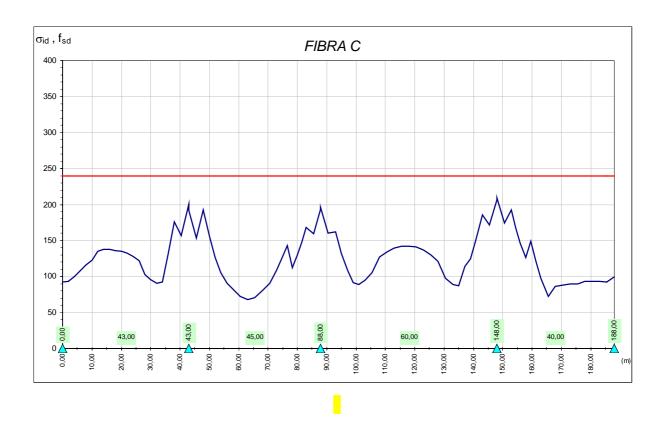
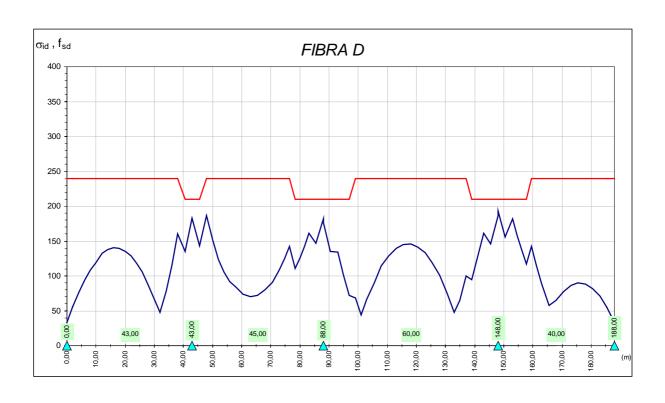
In presenza di stati di sollecitazione pluriassiali la tensione ideale di confronto è determinata mediante l'espressione indicata nella CNR - UNI 10011.

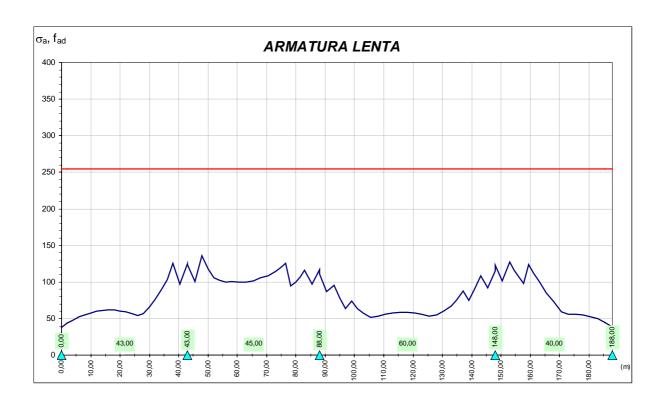
Le tensioni ideali calcolate in riferimento a ciascuna sezione tipo sono state sommate fra loro e quindi confrontate con le tensioni di progetto.

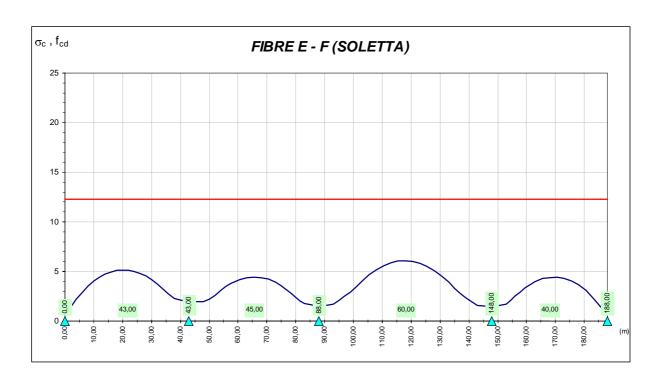
Si riportano nel seguito le rappresentazioni grafiche delle verifiche per le combinazioni di carico precedentemente individuate (confronto tra tensioni ideali di calcolo e tensioni di progetto).

Le curve di colore blu (grigio scuro) rappresentano l'inviluppo delle tensioni ideali di calcolo per le combinazioni di carico precedentemente individuate, mentre quelle rosse (grigio chiaro) le tensioni resistenti di progetto.

La verifica è stata effettuata nelle 5 fibre di riferimento della sezione composta specificate nella figura seguente e sull'armatura superiore della soletta.



Figura 5.1 – Fibre di riferimento per le verifiche di resistenza














#### 5.2 Verifica di stabilità dei pannelli d'anima delle travi principali

Le verifiche sono state effettuate per le combinazioni di carico precedentemente esposte facendo riferimento ai criteri suggeriti dalle CNR 10011.

L'anima delle travi metalliche è stata considerata suddivisa in pannelli rettangolari, compresi fra due montanti verticali di irrigidimento successivi, soggetti alle tensioni normali e tangenziali di calcolo dovute alle combinazioni I e II già menzionate. La distribuzione delle tensioni è riportata in appendice. I pannelli sono stati considerati incernierati lungo i bordi.

La verifica consiste nel provare che:

$$\sqrt{\sigma^2 + 3\tau^2} \le \sigma_{crid}$$

oppure nel caso risulti  $\sigma_{cr, id} > 0.8 f_d$ 

$$\sqrt{\sigma^2 + 3\tau^2} \le \sigma_{cr\ red}$$

dove:

$$\sigma_{cr,id} = \frac{\sqrt{\sigma^2 + 3\tau^2}}{\frac{1 + \psi}{4} + \frac{\sigma}{\sigma_{cr}} + \sqrt{\left(\frac{3 - \psi}{4} \frac{\sigma}{\sigma_{cr}}\right)^2 + \left(\frac{\tau}{\tau_{cr}}\right)^2}}$$

e

$$\sigma_{cr,red} = f_d \frac{20 + \sqrt{25 - 15(f_y / \sigma_{cr,id})^2}}{25 + (f_y / \sigma_{cr,id})^2}$$

con il seguente significato dei simboli:

lunghezza del pannello a altezza netta del pannello h spessore del pannello t rapporto fra i lati del pannello  $\alpha = a / h$  tensione normale di compressione  $\sigma$  tensione normale di trazione  $\phi$  coefficiente di distribuzione lineare delle tensioni normali  $\phi$  tensione tangenziale media  $\phi$  coefficiente di imbozzamento per le tensioni normali

$$-1 < \psi < 0 \qquad K_{\sigma} = (1+K_{1}) - \psi K_{2} + 10 \psi (1+\psi) \qquad (K_{1} = 7,636, K_{2} = 23,9)$$
 
$$\psi <= -1 \qquad K_{\sigma} = 23,9$$

coefficiente di imbozzamento per le tensioni tangenziali  $K_{\tau} = 0.8 (5.34 + 4/\alpha^2)$ 

tensione di riferimento 
$$\sigma_{cr,0} = 186200 \ (t/h^2) \ N/mm^2$$
 tensioni ideali di imbozzamento 
$$\sigma_{cr} = K_{\sigma} \ \sigma_{cr,0}$$
 
$$\tau_{cr} = K_{\tau} \ \sigma_{cr,0}$$

Nelle tabelle seguenti sono riportate sinteticamente le verifiche di tutti i pannelli e in dettaglio quelle relative al pannello maggiormente sollecitato.

| Pann.       | Campata     | Ascissa<br>iniziale | Sez | Ascissa<br>finale | Sez | Lungh.<br>Pannello |            | LA<br>CRIORE |            | LA<br>CRIORE | ANI     | 'MA     |
|-------------|-------------|---------------------|-----|-------------------|-----|--------------------|------------|--------------|------------|--------------|---------|---------|
| $n^{\circ}$ | $n^{\circ}$ | (m)                 | n°  | (m)               | n°  | (m)                | b3<br>(cm) | t3 (cm)      | b1<br>(cm) | t1 (cm)      | b2 (cm) | t2 (cm) |
| 1           | 1           | 0,00                | 1   | 5,38              | 4   | 5,38               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 2           | 1           | 5,38                | 4   | 10,76             | 8   | 5,38               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,429   |
| 3           | 1           | 10,76               | 8   | 16,14             | 12  | 5,38               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 4           | 1           | 16,14               | 12  | 21,51             | 15  | 5,37               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 5           | 1           | 21,51               | 15  | 26,89             | 19  | 5,38               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 6           | 1           | 26,89               | 19  | 32,26             | 23  | 5,37               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,397   |
| 7           | 1           | 32,26               | 23  | 37,63             | 26  | 5,37               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 8           | 1           | 37,63               | 26  | 43,00             | 29  | 5,37               | 90,0       | 5,793        | 110,0      | 5,862        | 228,3   | 2,966   |
| 9           | 2           | 43,00               | 30  | 48,63             | 33  | 5,63               | 90,0       | 5,664        | 110,0      | 5,776        | 228,6   | 2,944   |
| 10          | 2           | 48,63               | 33  | 54,26             | 37  | 5,63               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 11          | 2           | 54,26               | 37  | 59,88             | 40  | 5,62               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,333   |
| 12          | 2           | 59,88               | 40  | 65,51             | 44  | 5,63               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 13          | 2           | 65,51               | 44  | 71,14             | 47  | 5,63               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,279   |
| 14          | 2           | 71,14               | 47  | 76,76             | 51  | 5,62               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 15          | 2           | 76,76               | 51  | 82,39             | 55  | 5,63               | 90,0       | 3,735        | 110,0      | 5,471        | 230,8   | 2,500   |
| 16          | 2           | 82,39               | 55  | 88,00             | 58  | 5,61               | 90,0       | 7,565        | 110,0      | 8,674        | 223,8   | 2,946   |
| 17          | 3           | 88,00               | 59  | 93,45             | 62  | 5,45               | 90,0       | 7,670        | 110,0      | 8,752        | 223,6   | 2,959   |
| 18          | 3           | 93,45               | 62  | 98,90             | 65  | 5,45               | 90,0       | 3,651        | 110,0      | 5,303        | 231,0   | 2,500   |
| 19          | 3           | 98,90               | 65  | 104,35            | 69  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 20          | 3           | 104,35              | 69  | 109,80            | 72  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,106   |
| 21          | 3           | 109,80              | 72  | 115,25            | 75  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 22          | 3           | 115,25              | 75  | 120,70            | 79  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 23          | 3           | 120,70              | 79  | 126,15            | 82  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 24          | 3           | 126,15              | 82  | 131,60            | 85  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,101   |
| 25          | 3           | 131,60              | 85  | 137,05            | 89  | 5,45               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 26          | 3           | 137,05              | 89  | 142,50            | 92  | 5,45               | 90,0       | 4,927        | 110,0      | 5,284        | 229,8   | 2,500   |
| 27          | 3           | 142,50              | 92  | 148,00            | 95  | 5,50               | 90,0       | 8,727        | 110,0      | 9,636        | 221,6   | 2,955   |
| 28          | 4           | 148,00              | 96  | 153,71            | 99  | 5,71               | 90,0       | 8,627        | 110,0      | 9,503        | 221,9   | 2,938   |
| 29          | 4           | 153,71              | 99  | 159,42            | 103 | 5,71               | 90,0       | 5,123        | 110,0      | 5,415        | 229,5   | 2,500   |
| 30          | 4           | 159,42              | 103 | 165,13            | 107 | 5,71               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,500   |
| 31          | 4           | 165,13              | 107 | 170,84            | 111 | 5,71               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,032   |
| 32          | 4           | 170,84              | 111 | 176,55            | 114 | 5,71               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 33          | 4           | 176,55              | 114 | 182,26            | 117 | 5,71               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2,000   |
| 34          | 4           | 182,26              | 117 | 188,00            | 120 | 5,74               | 90,0       | 3,000        | 110,0      | 4,000        | 233,0   | 2.000   |

Tabella 5.1 - Caratteristiche geometriche dei pannelli d'anima

| Pann.       | _ /_                               | 0                 | Esito della         |       | Condiz. Car. | Posiz.   |       | Sollecitazioni |       |
|-------------|------------------------------------|-------------------|---------------------|-------|--------------|----------|-------|----------------|-------|
| $n^{\circ}$ | $\sigma_{_{cr,id}}/\sigma_{_{id}}$ | $\beta \cdot \nu$ | verifica            | Comb. | Mobili       | verifica | N(kN) | M (kNm)        | V(kN) |
| 1           | 2,862                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -662  | 3604           | 2661  |
| 2           | 2,770                              | 1,500             | Pannello verificato | 1     | V min        | Destra   | 3049  | 12476          | 1472  |
| 3           | 2,011                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -1843 | 9609           | -152  |
| 4           | 1,827                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -2467 | 8636           | -587  |
| 5           | 1,886                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | 608   | 9112           | -1891 |
| 6           | 2,411                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -1465 | 3392           | -2614 |
| 7           | 2,152                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -1749 | -9261          | -3367 |
| 8           | 1,758                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -3359 | -26809         | -3652 |
| 9           | 1,786                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -3388 | -27395         | 2997  |
| 10          | 2,156                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -2270 | -15676         | 1741  |
| 11          | 2,361                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -2182 | -144           | 1996  |
| 12          | 2,944                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -563  | 2365           | 1252  |
| 13          | 3,027                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -1612 | 778            | -1472 |
| 14          | 2,532                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -2305 | -13653         | -1076 |
| 15          | 2,066                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -2491 | -21196         | -1968 |
| 16          | 1,935                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -3131 | -32139         | -3831 |
| 17          | 1,912                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -2930 | -30679         | 4297  |
| 18          | 2,051                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -1813 | -13347         | 3524  |
| 19          | 2,534                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -1792 | 1946           | 2790  |
| 20          | 2,061                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | 370   | 7944           | 2085  |
| 21          | 1,932                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -2529 | 8019           | 249   |
| 22          | 1,690                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -2961 | 9078           | 52    |
| 23          | 2,022                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -2463 | 7245           | -418  |
| 24          | 1,949                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | 128   | 6428           | -2280 |
| 25          | 2,112                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -2279 | -196           | -2985 |
| 26          | 1,836                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -1878 | -17570         | -3720 |
| 27          | 1,810                              | 1,500             | Pannello verificato | 1     | V max        | Destra   | -3014 | -35877         | -4500 |
| 28          | 1,770                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -3230 | -37351         | 4369  |
| 29          | 1,835                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -1613 | -19818         | 3518  |
| 30          | 2,501                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -2193 | -12810         | 1715  |
| 31          | 1,990                              | 1,500             | Pannello verificato | 1     | V min        | Sinistra | -903  | 3278           | 1948  |
| 32          | 2,495                              | 1,500             | Pannello verificato | 1     | M min        | Destra   | -2345 | 4039           | 505   |
| 33          | 2,356                              | 1,500             | Pannello verificato | 1     | M min        | Sinistra | -2491 | 4850           | 316   |
| 34          | 1,709                              | 1,500             | Pannello verificato | 2     | V max        | Destra   | 1241  | 1187           | -2465 |

Tabella 5.2 - Verifica sintetica dei pannelli d'anima

| Caratteristiche del pannello |        |        |    |  |  |
|------------------------------|--------|--------|----|--|--|
| Pannello                     | N_pan  | 28     |    |  |  |
| Ascissa inizio               | Inizio | 148,00 | m  |  |  |
| Ascissa fine                 | Fine   | 153,71 | m  |  |  |
| Lunghezza del pannello       | a      | 571,0  | cm |  |  |
| Campata                      | n°     | 4      |    |  |  |

| Sollecitazioni di verifica         |                       |        |                   |  |  |  |
|------------------------------------|-----------------------|--------|-------------------|--|--|--|
| Combinazione                       | n°                    | 1      |                   |  |  |  |
| Condizione carichi mobili          |                       | V min  |                   |  |  |  |
| Forza assiale                      | N                     | -3230  | kN                |  |  |  |
| Momento flettente                  | M                     | -37351 | kNm               |  |  |  |
| Taglio                             | V                     | 4369   | kN                |  |  |  |
| Tensione punto C (bordo superiore) | $\sigma_{\mathbf{c}}$ | 160,6  | N/mm <sup>2</sup> |  |  |  |
| Tensione punto B (bordo inferiore) | $\sigma_{\mathbf{b}}$ | -151,0 | N/mm <sup>2</sup> |  |  |  |
| Tensione tangenziale               | Τ                     | 67,0   | N/mm <sup>2</sup> |  |  |  |

| Verifica di s                                                                                                   | tabilità               |             |                   |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------|-------------------|--|--|
| Tensione di compressione massima (σ1)                                                                           | $\sigma_1$             | -151,0      | N/mm <sup>2</sup> |  |  |
| Tensione all'altro estremo (σ2)                                                                                 | $\psi.\sigma_1$        | 160,6       | N/mm <sup>2</sup> |  |  |
| Tensione tangenziale                                                                                            | τ                      | 67,0        | N/mm <sup>2</sup> |  |  |
| Tensione dovuta ad N                                                                                            | $\sigma_{N} =$         | 4,8         | N/mm <sup>2</sup> |  |  |
| Tensione dovuta ad M                                                                                            | $\sigma_{\rm M}$ =     | -155,8      | N/mm <sup>2</sup> |  |  |
| Coefficiente $\psi$ ( $\psi$ = $\sigma$ 2/ $\sigma$ 1)                                                          | Ψ                      | -1,06       |                   |  |  |
| Coefficiente α (α=a/b_ani)                                                                                      | α                      | 2,57        |                   |  |  |
| Modulo elastico dell'acciaio                                                                                    | E_acciaio              | 206000      | N/mm <sup>2</sup> |  |  |
| Tensione di snervamento (fsy)                                                                                   | $f_{sy}$               | 355         | N/mm <sup>2</sup> |  |  |
| Resistenza di calcolo fsd (fsd = fsy/γm)                                                                        | $f_{sd}$               | 355         | N/mm <sup>2</sup> |  |  |
| Coefficiente di imbozzamento                                                                                    | $K_{\sigma} =$         | 30,11       |                   |  |  |
| Coefficiente di imbozzamento                                                                                    | $K_{\tau} =$           | 5,99        |                   |  |  |
| Coefficiente correttivo di kσ e kτ                                                                              |                        | 1,26        |                   |  |  |
| Tensione di riferimento                                                                                         | $\sigma_{\rm cr,0}$ =  | 32,6        | N/mm <sup>2</sup> |  |  |
|                                                                                                                 | $\sigma_{\rm cr}$ =    | -983,1      | N/mm <sup>2</sup> |  |  |
|                                                                                                                 | $	au_{ m cr}$ =        | 195,6       | N/mm <sup>2</sup> |  |  |
| Tensione critica ideale                                                                                         | $\sigma_{\rm cr,id}$ = | 337,2       | N/mm <sup>2</sup> |  |  |
| Tensione ideale                                                                                                 | $\sigma_{id}$ =        | 190,5       | N/mm <sup>2</sup> |  |  |
| Coefficiente per metodo di verifica                                                                             | ν=                     | 1,5         |                   |  |  |
|                                                                                                                 | β=                     | 1,00        |                   |  |  |
| <b>VERIFICA</b> $(\sigma \operatorname{cr}, \operatorname{id} / \sigma \operatorname{id}) \ge \beta \times \nu$ | S                      | SODDISFATTA |                   |  |  |
| σcr,id / σie                                                                                                    | d = 1,770              | >           | 1,50              |  |  |

Tabella 5.3-Verifica dettagliata del pannello  $n^{\circ}28$ 

#### **5.3 Soletta**

La soletta ha una larghezza complessiva di 12,75 m e spessore variabile da 25 cm in campata a 35 cm sugli appoggi in corrispondenza delle travi metalliche. Gli sbalzi, destro e sinistro, hanno lunghezza pari a 350 cm e l'interasse delle travi principali è di 575 cm. Il getto viene eseguito per tratti con l'utilizzo di casseri mobili seguendo uno schema di getto con sequenze ottimizzate che prevedono prima l'esecuzione dei conci in campata, poi quelli sugli appoggi.

#### 5.3.1 Verifica di resistenza della soletta

Per il getto della soletta è previsto l'utilizzo di cls con R<sub>ck</sub> 40 MPa e di acciaio tipo FeB44k; le caratteristiche meccaniche dei materiali sono le seguenti:

• cls  $R_{ck}$  40:  $\sigma_{c adm} = 12,25 \text{ MPa}$ 

• acciaio Fe B 44K:  $\sigma_{s \text{ adm}} = 260 \text{ MPa}$ 

La verifica è condotta su una striscia di soletta di larghezza unitaria, avente schema statico di trave appoggiata sulle due travi metalliche, con due sbalzi laterali. Per i carichi da traffico è stata considerata:

- il carico  $q_{1,a}$  posto a 15 cm di distanza dal cordolo, per il calcolo delle sollecitazioni sui due sbalzi;
- il carico  $q_{1,a}$  posta a cavallo della mezzeria della soletta, per il calcolo delle sollecitazioni in campata.

Le sollecitazioni dei carichi permanenti sono riferite al metro lineare.

Le sollecitazioni dei carichi da traffico, trattandosi di carichi localizzati, sono state riportate al metro lineare diffondendo il carico a 45° fino all'appoggio. Il coefficiente di amplificazione dinamica per i carichi da traffico è pari ad 1,4.

## <u>Verifica sbalzo</u>

Le sollecitazioni per la sezione di appoggio sono:

| • | peso proprio soletta | $\Rightarrow$ | M = -39.4  kNm/m | T = 24.9  kN/m |
|---|----------------------|---------------|------------------|----------------|
|---|----------------------|---------------|------------------|----------------|

• permanenti 
$$\Rightarrow$$
 M = -27,9 kNm/m T = 12,1 kN/m

• carichi mobili (con eff. dinamico) 
$$\Rightarrow$$
  $M = -193.2 \text{ kNm/m}$   $T = 151.2 \text{ kN/m}$ 

$$M = -260.5 \text{ kNm/m}$$
  $T = 188.2 \text{ kN/m}$ 

Considerando un'armatura superiore di  $5\phi20 + 5\phi26$  al metro (area 42,25 cm<sup>2</sup>), una inferiore di  $5\phi20$  al metro (area 15,7 cm<sup>2</sup>) ed un copriferro medio di 4 cm, si ha la seguente verifica di resistenza della sezione  $100 \times 35$ :

| VERIFICA                       | A SEZIO     | ONE    |                 | ds                     | Asc           |       |                    |
|--------------------------------|-------------|--------|-----------------|------------------------|---------------|-------|--------------------|
| Base:                          | В           | 100    | cm              |                        | 4/4///        |       |                    |
| Altezza:                       | Н           | 35     | cm              | X                      |               |       |                    |
| Armatura compressa:            | Asc         | 15,71  | $cm^2$          |                        | <u> </u>      |       |                    |
| Copriferro superiore:          | ds          | 4      | cm              |                        |               | d H   |                    |
| Armatura tesa:                 | Ast         | 42,26  | $cm^2$          |                        |               |       |                    |
| Copriferro inferiore:          | di          | 4      | cm              |                        |               |       |                    |
| Coefficiente di omogenizzazion | e: <b>n</b> | 15     |                 | di                     |               |       |                    |
| Momento flettente:             | M           | 26050  | Kgm             | ai L                   | Ast           | l     |                    |
| Forza di taglio:               | Т           | 18821  | Kg              | _                      | В —           |       |                    |
| Posizione asse neutro:         | Χ           | 13,5   | cm              | Tensione nel cls:      | σc=           | 118,4 | Kg/cm <sup>2</sup> |
| Momento d' inerzia:            | J           | 295989 | $cm^4$          | Tensione nell' acciaid | o: <b>σs=</b> | 2317  | Kg/cm <sup>2</sup> |
| Momento statico per il taglio: | Sx          | 11125  | cm <sup>3</sup> | Tensione tangenziale   | e: τmax=      | 7,1   | Kg/cm <sup>2</sup> |

Figura 5.2 - Verifica di resistenza della sezione d'appoggio destra

## Verifica campata

Le sollecitazioni per la sezione di campata sono:

$$\Rightarrow$$
 M = -81,4 kNm/m T = -1,7 kN/m

Considerando un'armatura superiore di  $5\phi20$  al metro (area 15,7 cm<sup>2</sup>) e inferiore di  $5\phi20$  +  $2,5\phi26$  al metro (area 28,98 cm<sup>2</sup>), una ed un copriferro medio di 4 cm, si ha la seguente verifica di resistenza della sezione  $100 \times 25$ :

| VERIFICA                       | SEZIO       | ONE   |        | ds                          |          |                    |
|--------------------------------|-------------|-------|--------|-----------------------------|----------|--------------------|
| Base:                          | В           | 100   | cm     |                             |          |                    |
| Altezza:                       | Н           | 25    | cm     | X / //////                  |          |                    |
| Armatura compressa:            | Asc         | 15,71 | $cm^2$ |                             |          |                    |
| Copriferro superiore:          | ds          | 4     | cm     |                             | d H      |                    |
| Armatura tesa:                 | Ast         | 28,98 | $cm^2$ |                             |          |                    |
| Copriferro inferiore:          | di          | 4     | cm     |                             |          |                    |
| Coefficiente di omogenizzazion | e: <b>n</b> | 15    |        | <u> </u>                    |          |                    |
| Momento flettente:             | M           | 8140  | Kgm    | diAst                       | <u> </u> |                    |
| Forza di taglio:               | Т           | 174   | Kg     | В                           |          |                    |
| Posizione asse neutro:         | X           | 9,0   | cm     | Tensione nel cls: σc=       | 79,7     | Kg/cm <sup>2</sup> |
| Momento d' inerzia:            | J           | 92392 | $cm^4$ | Tensione nell' acciaio: σs= | 1580     | Kg/cm <sup>2</sup> |
| Momento statico per il taglio: | Sx          | 5198  | $cm^3$ | Tensione tangenziale: τmax= | 0,1      | Kg/cm <sup>2</sup> |

Figura 5.3 - Verifica di resistenza della sezione di campata

#### 5.4 Verifica a fessurazione

Nel presente capitolo si riportano le verifiche a fessurazione per la soletta in c.a. effettuate in direzione longitudinale e trasversale in accordo con le normative:

- D.M. 4-5-1990 Norme tecniche per i ponti stradali
- CNR 10016/85 Travi composte in acciaio calcestruzzo
- D.M. 9-01-1996 Norme tecniche per il calcolo delle strutture in c.a.
- Circolare Ministeriale 15-10-96 n. 252

Il valore caratteristico di apertura delle fessure nell'area di efficacia delle armature non deve superare i seguenti limiti:

- $w_k = 0.2$  mm per la combinazione di carico FII;
- $w_k = 0.1$  mm per la combinazione di carico FIII.

Il valore caratteristico è dato da:

$$w_k = 1.7 w_m$$

in cui  $w_m$ , che rappresenta il valor medio dell'apertura calcolata in base alla deformazione media  $\epsilon_{am}$  del tratto  $s_{rm}$  pari alla distanza media fra le fessure vale:

$$w_m = 1.7 \epsilon_{am} s_{rm}$$
.

La distanza media fra le fessure può essere calcolata attraverso l'espressione:

$$s_{rm} = 2\left(c + \frac{s}{10}\right) + k_1 k_2 \frac{\phi}{\rho}.$$

nella quale:

- c è il ricoprimento dell'armatura;
- s è la distanza fra le barre;
- \$\phi\$ il diametro delle barre;
- k<sub>2</sub> è il coefficiente che caratterizza l'aderenza del calcestruzzo alle barre che vale 0,4 nel caso di barre ad aderenza migliorata;
- k<sub>3</sub> è il coefficiente della forma del diagramma delle tensioni prima della fessurazione, da assumersi pari a: 0,125 nel caso in cui l'asse neutro sia interno alla soletta,

 $0,125(1+\sigma_1/\sigma_2)$  nel caso in cui l'asse neutro sia esterno, essendo  $\sigma_1$  e  $\sigma_2$  le tensioni nominali ai lembi estremi della soletta;

- $\rho_t$  è il rapporto  $A_a/A_{cef}$ ;
- A<sub>cef</sub> è l'area di calcestruzzo entro la quale la barre di acciaio possono effettivamente influenzare l'apertura delle fessure;
- A<sub>a</sub> è l'area di acciaio contenuta nell'area A<sub>cef</sub>.

La deformazione unitaria media  $\varepsilon_{am}$  può valutarsi invece con la formula:

$$\varepsilon_{am} = \frac{\sigma_o}{E_a} \left[ 1 - \beta_1 \beta_2 \left( \frac{\sigma_{ar}}{\sigma_0} \right)^2 \right] \quad (\varepsilon_{am} \ge 0.4 \frac{\sigma_0}{E_a})$$

essendo:

- σ<sub>0</sub> la tensione nell'acciaio calcolata nella sezione fessurata per la combinazione di carico considerata, tenuto conto del ritiro;
- $\sigma_{ar}$  la tensione nell'acciaio calcolata nella sezione fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione  $f_{ctm}$  nella fibra di calcestruzzo più sollecitata in sezione interamente reagente, compresa nell'area efficace;
- β<sub>1</sub> il coefficiente rappresentativo dell'aderenza acciaio calcestruzzo che assume il valore unitario nel caso di barre ad aderenza migliorata;
- β<sub>2</sub> il coefficiente che tiene conto delle condizioni di sollecitazione: 1,0 nel caso di prima applicazione di un azione di breve durata, 0,5 nel caso di azioni di lunga durata o nel caso di azioni ripetute.

#### Verifica in direzione longitudinale

La verifica a fessurazione della soletta in direzione longitudinale è stata condotta per le sezioni soggette a momento negativo nelle zone a cavallo degli appoggi interni.

Nella tabella seguente è riportato in dettaglio il calcolo effettuato per la sezione maggiormente sollecitata.

# Combinazione FII

|                                                                  | Sezione n. | 72                  | Ascissa (m) | 148                |
|------------------------------------------------------------------|------------|---------------------|-------------|--------------------|
| Combinazione di carico (DM 04/05/90)                             |            |                     | FII         |                    |
| Luce campata `                                                   |            |                     | 40          | m                  |
| Coefficienti ψ <sub>1</sub>                                      |            | $\psi_1$            | 0,67        |                    |
| Coefficienti ψ <sub>2</sub>                                      |            | $\psi_2$            | 0,45        |                    |
| Valore limite di apertura fessure w <sub>limite</sub>            |            | W <sub>limite</sub> | 0,3         | mm                 |
| Ricoprimento armatura c                                          |            | С                   | 6,3         | cm                 |
| Diametro barre φ                                                 |            | ф                   | 26          | mm                 |
| Interasse barre s                                                |            | S                   | 20          | cm                 |
| Larghezza efficace b <sub>c_ef</sub>                             |            | $b_{c\_ef}$         | 20          | cm                 |
| Larghezza efficace d <sub>c_ef</sub>                             |            | $d_{c\_ef}$         | 14          | cm                 |
| Tipo di barre                                                    |            |                     | am          |                    |
| Coefficiente k <sub>2</sub>                                      |            | $k_2$               | 0,4         |                    |
| Tensione $\sigma_1$                                              |            | $\sigma_1$          | 58,29       | kg/cm <sup>2</sup> |
| Tensione $\sigma_2$                                              |            | $\sigma_2$          | 47,72       | kg/cm <sup>2</sup> |
| Coefficiente k <sub>3</sub>                                      |            | $k_3$               | 0,23        |                    |
| Area efficace A <sub>c_ef</sub>                                  |            | $A_{c\_ef}$         | 280         | cm <sup>2</sup>    |
| Area acciaio A <sub>a</sub>                                      |            | $A_a$               | 5,31        | cm <sup>2</sup>    |
| Coefficiente ρ <sub>t</sub>                                      |            | $\rho_{t}$          | 0,02        |                    |
| Distanza media tra le fessure s <sub>rm</sub>                    |            | S <sub>rm</sub>     | 29,07       | cm                 |
| Tensione $\sigma_0$                                              |            | $\sigma_0$          | 937,1       | kg/cm <sup>2</sup> |
| Tensione di trazione media nel cls f <sub>cfm</sub>              |            | f <sub>cfm</sub>    | 37,78       | kg/cm <sup>2</sup> |
| Coefficiente β <sub>1</sub>                                      |            | $\beta_1$           | 1           | -                  |
| Coefficiente β <sub>2</sub>                                      |            | $\beta_2$           | 0,5         |                    |
| Tensione σ <sub>ar</sub>                                         |            | σ <sub>ar</sub>     | 730,4       | kg/cm <sup>2</sup> |
| Deformazione media unitaria $\varepsilon_{am}$                   |            | € <sub>am</sub>     | 0,00031     | J                  |
| Distanza media tra le fessure w <sub>m</sub>                     |            | W <sub>m</sub>      | 0,09035     | mm                 |
| Distanza caratteristica di apertura delle fessure w <sub>i</sub> | <          | $\mathbf{w}_{k}$    | 0,15359     | mm                 |
| Esito della verifica                                             |            |                     | Verificato  |                    |

## Combinazione FIII

|                                                                             | Sezione n. | 72                  | Ascissa (m) | 148                |
|-----------------------------------------------------------------------------|------------|---------------------|-------------|--------------------|
| Combinazione di carico (DM 04/05/90)                                        |            |                     | FIII        |                    |
| Luce campata                                                                |            |                     | 40          | m                  |
| Coefficienti ψ <sub>1</sub>                                                 |            | $\psi_1$            | 0,67        |                    |
| Coefficienti ψ <sub>2</sub>                                                 |            | $\psi_2$            | 0,45        |                    |
| Valore limite di apertura fessure w <sub>limite</sub>                       |            | W <sub>limite</sub> | 0,15        | mm                 |
| Ricoprimento armatura c                                                     |            | С                   | 6,3         | cm                 |
| Diametro barre φ                                                            |            | φ                   | 26          | mm                 |
| Interasse barre s                                                           |            | S                   | 20          | cm                 |
| Larghezza efficace b <sub>c_ef</sub>                                        |            | $b_{c\_ef}$         | 20          | cm                 |
| Larghezza efficace d <sub>c_ef</sub>                                        |            | $d_{c\_ef}$         | 14          | cm                 |
| Tipo di barre                                                               |            |                     | am          |                    |
| Coefficiente k <sub>2</sub>                                                 |            | $k_2$               | 0,4         |                    |
| Tensione $\sigma_1$                                                         |            | $\sigma_1$          | 50,24       | kg/cm <sup>2</sup> |
| Tensione $\sigma_2$                                                         |            | $\sigma_2$          | 42,46       | kg/cm <sup>2</sup> |
| Coefficiente k <sub>3</sub>                                                 |            | $k_3$               | 0,23        |                    |
| Area efficace A <sub>c_ef</sub>                                             |            | $A_{c\_ef}$         | 280         | cm <sup>2</sup>    |
| Area acciaio A <sub>a</sub>                                                 |            | $A_a$               | 5,31        | cm <sup>2</sup>    |
| Coefficiente ρ <sub>t</sub>                                                 |            | $\rho_{t}$          | 0,02        |                    |
| Distanza media tra le fessure s <sub>rm</sub>                               |            | S <sub>rm</sub>     | 29,25       | cm                 |
| Tensione σ <sub>0</sub>                                                     |            | $\sigma_0$          | 781,3       | kg/cm <sup>2</sup> |
| Tensione di trazione media nel cls f <sub>cfm</sub>                         |            | $f_{cfm}$           | 37,78       | kg/cm <sup>2</sup> |
| Coefficiente β <sub>1</sub>                                                 |            | $\beta_1$           | 1           |                    |
| Coefficiente $\beta_2$                                                      |            | $\beta_2$           | 0,5         |                    |
| Tensione $\sigma_{\sf ar}$                                                  |            | $\sigma_{ar}$       | 730,4       | kg/cm <sup>2</sup> |
| Deformazione media unitaria ε <sub>am</sub>                                 |            | ε <sub>am</sub>     | 0,00021     | -                  |
| Distanza media tra le fessure w <sub>m</sub>                                |            | W <sub>m</sub>      | 0,06130     | mm                 |
| Distanza caratteristica di apertura delle fessure $\mathbf{w}_{\mathbf{k}}$ |            | $W_k$               | 0,10421     | mm                 |
| Esito della verifica                                                        |            |                     | Verificato  |                    |

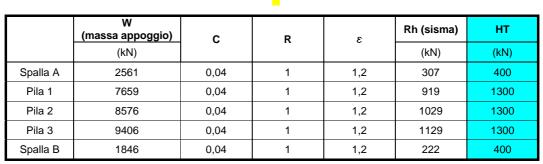
## Verifica in direzione trasversale

La verifica a fessurazione della soletta in direzione trasversale è stata effettuata per la zona di appoggio sulle travi metalliche. I carichi considerati sono: il peso della soletta, i carichi permanenti ed i carichi mobili. Nelle tabelle seguenti sono riportate in dettaglio le verifiche relative agli sbalzi destro e sinistro, nel caso in cui il carico accidentale  $q_{1a}$  sia posizionato in modo tale da massimizzare il momento flettente.

| Verifica a fessurazione secondo D.M. 09                                     | 9/01/1996      |
|-----------------------------------------------------------------------------|----------------|
| GEOMETRIA DELLA SEZIONE E CARATTERISTI                                      | CHE MATERIALI  |
| Calcestruzzo Rck [daNcm <sup>-2</sup> ]                                     | 400            |
| Tipo acciaio                                                                | FeB44k         |
| Modulo elastico acciaio [daNcm <sup>-2</sup> ]                              | 2100000        |
| Tensione ammissibile cls σcamm [daNcm <sup>-2</sup> ]                       | 122,5          |
| Resistenza a trazione del cls fctk [daNcm <sup>-2</sup> ]                   | 26,53          |
| Tensione ammissibile acciaio σsamm [daNcm <sup>-2</sup> ]                   | 2600           |
| Altezza della sezione h [cm]                                                | 35             |
| Larghezza della sezione b [cm]                                              | 100            |
| Spaziatura verticale delle barre S [cm]                                     | 0,00           |
| Spaziatura orizzontale delle barre s [cm]                                   | 10,00          |
| Ricoprimento dell'armatura c [cm]                                           | 2,70           |
| SOLLECITAZIONI DI PROGETTO                                                  |                |
| Forza assiale di progetto [daN]                                             | 0              |
| Momento flettente di progetto [daN]                                         | 26050          |
| CALCOLO DISTANZA MEDIA FRA LE FI                                            | ECCLIDE        |
| CALCOLO DISTANZA MEDIA FRA LE FI                                            |                |
| Coefficiente k3                                                             | 0,4            |
| Altezza efficace deff [cm]                                                  | 0,125          |
| Larghezza efficace beff [cm]                                                | 8,13<br>100,00 |
|                                                                             | ·              |
| Area efficace Ac,eff [cm <sup>2</sup> ]                                     | 813,49         |
| Area efficace As [cm <sup>2</sup> ]                                         | 42,25          |
| Coefficiente pr                                                             | 0,052          |
|                                                                             | 9,90           |
| CALCOLO DELLA DEFORMAZIONE MEDIA DE                                         | LL'ARMATURA    |
| Tensione σs [daNcm <sup>-2</sup> ]                                          | 2321,35        |
| Tensione or [daNcm <sup>-2</sup> ]                                          | 880,61         |
| Coefficiente β1                                                             | 1              |
| Coefficiente β2                                                             | 0,5            |
| Deformazione unitaria media ɛsm                                             | 1,03E-03       |
| CALCOLO AMPIEZZA FESSURE                                                    |                |
| Ampiezza delle fessure wk [mm]                                              | 0,173          |
| Coefficiente di riduzione                                                   | 0,74           |
| Ampiezza delle fessure ridotta wrid [mm]                                    | 0,128          |
| Ampiezza dene lessare ridotta wrid [mm] Ampiezza massima ammissibile w [mm] | 0,200          |
| 7 mprezza maconna anninosione w [mm]                                        | 0,200          |

| Verifica a fessurazione secondo D.M. 0                    | 9/01/1996     |
|-----------------------------------------------------------|---------------|
| GEOMETRIA DELLA SEZIONE E CARATTERISTI                    | CHE MATERIALI |
| Calcestruzzo Rck [daNcm <sup>-2</sup> ]                   | 400           |
| Tipo acciaio                                              | FeB44k        |
| Modulo elastico acciaio [daNcm <sup>-2</sup> ]            | 2100000       |
| Tensione ammissibile cls σcamm [daNcm <sup>-2</sup> ]     | 122,5         |
| Resistenza a trazione del cls fctk [daNcm <sup>-2</sup> ] | 26,53         |
| Tensione ammissibile acciaio σsamm [daNcm <sup>-2</sup> ] | 2600          |
| Altezza della sezione h [cm]                              | 35            |
| Larghezza della sezione b [cm]                            | 100           |
| Spaziatura verticale delle barre S [cm]                   | 0,00          |
| Spaziatura orizzontale delle barre s [cm]                 | 10,00         |
| Ricoprimento dell'armatura c [cm]                         | 2,70          |
| SOLLECITAZIONI DI PROGETTO                                |               |
| Forza assiale di progetto [daN]                           | 0             |
| Momento flettente di progetto [daN]                       | 20252         |
|                                                           |               |
| CALCOLO DISTANZA MEDIA FRA LE F                           | ESSURE        |
| Coefficiente k2                                           | 0,4           |
| Coefficiente k3                                           | 0,125         |
| Altezza efficace deff [cm]                                | 8,13          |
| Larghezza efficace beff [cm]                              | 100,00        |
| Area efficace Ac,eff [cm <sup>2</sup> ]                   | 813,49        |
| Area efficace As [cm <sup>2</sup> ]                       | 42,25         |
| Coefficiente pr                                           | 0,052         |
|                                                           | 9,90          |
|                                                           | 7,70          |
| CALCOLO DELLA DEFORMAZIONE MEDIA DE                       |               |
| Tensione σs [daNcm <sup>-2</sup> ]                        | 1804,68       |
| Tensione σr [daNcm <sup>-2</sup> ]                        | 880,61        |
| Coefficiente β1                                           | 1             |
| Coefficiente β2                                           | 0,5           |
| Deformazione unitaria media εsm                           | 7,57E-04      |
| CALCOLO AMPIEZZA FESSURE                                  | E             |
| Ampiezza delle fessure wk [mm]                            | 0,127         |
| Coefficiente di riduzione                                 | 0,74          |
| Ampiezza delle fessure ridotta wrid [mm]                  | 0,094         |
| Ampiezza massima ammissibile w [mm]                       | 0,100         |

#### PARTE II: APPOGGI, GIUNTI E RITEGNI SISMICI


#### 1 Dimensionamento degli appoggi

Nelle tabelle seguenti è riportato il dettaglio delle reazioni verticali per ogni singolo appoggio ed il calcolo dell'azione sismica in direzione trasversale; con queste azioni è stata dimensionata la capacità orizzontale e verticale di ogni appoggio in PTFE (fissi, unidirezionali e multidirezionali), come riportato anche nelle tavole progettuali. Nella determinazione delle reazioni verticali degli appoggi verranno considerate due condizioni di carico:

- 1) P.p. acciaio + p.p. soletta + permanenti + ritiro + vento +  $\triangle T_{neg}$  + carichi mobili;
- 2) P.p. acciaio + p.p. soletta + permanenti + vento +  $\triangle T_{pos}$  + carichi mobili.

|             | Acciai<br>o | Soletta | Perm.  | Ritiro  | Vento  | ∆t<br>Neg. | ∆t<br>Pos. | Mobili | Coeff.<br>Din. | Rv<br>Comb. 1 | Rv<br>Comb. 2 | V    |
|-------------|-------------|---------|--------|---------|--------|------------|------------|--------|----------------|---------------|---------------|------|
|             | (kN)        | (kN)    | (kN)   | (kN)    | (kN)   | (kN)       | (kN)       | (kN)   | (kN)           | (kN)          | (kN)          | (kN) |
| Spalla<br>A | 227,98      | 760,96  | 291,71 | -104,20 | 130,59 | -40,90     | 81,81      | 1616   | 1,18           | 2882          | 3109          | 3500 |
| Pila 1      | 861,83      | 2172,22 | 795,45 | 138,79  | 348,97 | 53,15      | -106,30    | 3033   | 1,18           | 7403          | 7105          | 9000 |
| Pila 2      | 945,69      | 2432,87 | 909,68 | -57,91  | 402,23 | -20,50     | 41,01      | 3345   | 1,17           | 7957          | 8076          | 9000 |
| Pila 3      | 1019,69     | 2701,48 | 981,87 | 131,37  | 429,14 | 50,84      | -101,68    | 3420   | 1,20           | 8735          | 8451          | 9000 |
| Spalla<br>B | 163,02      | 542,88  | 217,30 | -108,06 | 99,07  | -42,58     | 85,16      | 1567   | 1,20           | 2439          | 2675          | 3500 |

- Reazioni (Rv) e capacità verticale (V) appoggi carreggiata sinistra -



<sup>-</sup> Azione sismica trasversale (Rh) e capacità orizzontale (HT) appoggi carreggiata sinistra -

I valori delle capacità verticali e orizzontali degli appoggi della carreggiata destra sono stati estrapolati per analogia dal calcolo dalla carreggiata sinistra in quanto le luci delle campate delle due carreggiate sono simili tranne per la prima campata della carreggiata destra che risulta più corta.

## 2 Ritegni sismici

L'azione sismica longitudinale del viadotto è riportata alla spalla SA mediante dispositivi di ritegno elastico. La forza sul ritegno è stata calcolata schematizzando il viadotto come un oscillatore semplice in cui la massa è rappresentata dall'impalcato e la molla dal ritegno elastico.

Per determinare la forza sismica longitudinale da affidare al ritegno è stato calcolato il periodo proprio di oscillazione mediante la formula  $t=2\pi\cdot\sqrt{\frac{m}{k}}$ .

Nella tabella seguente viene riportato il calcolo della forza sismica longitudinale da affidare ad ogni ritegno e il relativo spostamento:

| CALCOLO RITEGNI SISMICI VIADOTTO:         | 4 - CAR | R. SX |
|-------------------------------------------|---------|-------|
| Peso Viadotto                             | 30050   | (kN)  |
| Massa                                     | 3063    |       |
| N° Ritegni                                | 2       |       |
| Periodo                                   | 1,229   | sec   |
| COEFFICIENTI SISMICI                      |         |       |
| Categoria zona sismica                    | 3°      |       |
| Grado di sismicità S =                    | 6       |       |
| Coeffciente di intensità C =              | 0,04    |       |
| Coeffciente di fondazione $\epsilon =$    | 1,2     |       |
| Coeffciente di protezione I =             | 1       |       |
| Coeffciente di struttura $ \beta =$       | 2,5     |       |
| Coeffciente di risposta R =               | 0,751   |       |
| Coeff. Sismico totale C • ε • I • β • R = | 0,090   |       |
| Azione su un ritegno                      | 1360    | (kN)  |
| Spostamento                               | ± 35    | (mm)  |

#### 3 Giunti di dilatazione

I giunti di dilatazione in gomma armata sono dimensionati considerando, a favore di sicurezza, una variazione termica di  $\pm$  40 °C sull'intero impalcato. Con tale valore si intendono inglobati anche gli effetti del ritiro della soletta in cls.

L'escursione del giunto sulla spalla SA è stata dimensionata in modo tale da consentire lo spostamento elastico del viadotto sotto l'effetto del sisma.

L'escursione del giunto sulla spalla SB è stata dimensionata in modo tale da consentire lo spostamento elastico del viadotto sotto l'effetto del sisma + una variazione termica di  $\pm 40\,^{\circ}\text{C}$ .

Le caratteristiche geometriche dei giunti adottati sono riportate nelle tavole di progetto.

APPENDICE A: Sollecitazioni di Calcolo dell'Impalcato

|                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                                 | g1 g2                                                                                                                                                                                                              |                                                                                                                                                                                                                                      | g2                                                                                                                                                                                                |                                                                                                                                                                                         | (                                                                                                                                                                              | η1 + q2 (C                                                                                                                                                                                                                | Carichi Mol                                                                                                                                                                                                                    | oili + Effett                                                                                                                                                                                                             | to Dinamic                                                                                                                                                      | o)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VE                                                                                                                                                                                                                              | NTO                                                                                                                                                                                 |                                                                                                                                                                                |                                                              | ε2 - RITIF                                                                                                                                                                                                                                                                                                  | RO                                                                                                                                                                                                           |                                                                  | ε3 -                                                                                                                                                                                                        | VARIAZIO                                                                                                                                                                                                                                                                                                                                  | ONE TERM                                                     | IICA POSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIVA                                                                            | ε3 - VA                                                                                                                                                                      | RIAZIONE T                                                   | ERMICA                                                                                                                                                                                                                                                                                          | NEGATIVA                                                     |                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.1                                                                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                 | acciaio ·                                                                                                                                                                                                          | + soletta                                                                                                                                                                                                                            |                                                                                                                                                                                                   | manenti<br>ortati                                                                                                                                                                       | Ti                                                                                                                                                                             | min                                                                                                                                                                                                                       | Tn                                                                                                                                                                                                                             | nax                                                                                                                                                                                                                       | Mr                                                                                                                                                              | nin                                                                                                                                                                                                                                                 | Mı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | max                                                                                                                                                                                                                             | q                                                                                                                                                                                   | <sub> </sub> 5                                                                                                                                                                 |                                                              | TTI ISOS                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              | IPER                                                             | FETTI<br>STATICI                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | TTI ISOST                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | TATICI                                                                                                                                                                       |                                                              | TI ISOSTATI                                                                                                                                                                                                                                                                                     |                                                              | EFFETTI<br>PERSTATICI                                                                                                                                                                                                                     |
| Sezione<br>n°                                                                                                                                            | Ascissa<br>(m)                                                                                                                                                                                                               | Sez.<br>tipo                                                                                                    | T (KN)                                                                                                                                                                                                             | M<br>(KNm)                                                                                                                                                                                                                           | Т                                                                                                                                                                                                 | M                                                                                                                                                                                       | T                                                                                                                                                                              | M<br>(KNm)                                                                                                                                                                                                                | T (KN)                                                                                                                                                                                                                         | M<br>(KNm)                                                                                                                                                                                                                | T (KN)                                                                                                                                                          | M<br>(KNm)                                                                                                                                                                                                                                          | T (KN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M<br>(KNm)                                                                                                                                                                                                                      | T (KN)                                                                                                                                                                              | M<br>(KNm)                                                                                                                                                                     | Soletta<br>N                                                 | N                                                                                                                                                                                                                                                                                                           | Ira mista  M (KNm)                                                                                                                                                                                           | Т                                                                | ura mista  M (KNm)                                                                                                                                                                                          | Soletta N (KN)                                                                                                                                                                                                                                                                                                                            | Struttur<br>N                                                | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Т                                                                               | ma mista  M                                                                                                                                                                  | Soletta N (KN)                                               | Struttura r                                                                                                                                                                                                                                                                                     | М                                                            | Struttura mista  T M                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                        | 0,00<br>2,00<br>4,00<br>6,00<br>8,00<br>10,00<br>12,00<br>14,00<br>16,00<br>20,00<br>22,00<br>24,00<br>26,00<br>28,00<br>30,00<br>32,00<br>34,00<br>36,00<br>38,00<br>40,50                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                | 989<br>870<br>752<br>633<br>514<br>395<br>277<br>158<br>39<br>-79<br>-198<br>-317<br>-435<br>-673<br>-802<br>-930<br>-1059<br>-1188<br>-1317<br>-1496                                                              | (KNm)<br>0<br>1859<br>3481<br>4865<br>6012<br>6922<br>7594<br>8029<br>8226<br>8186<br>7909<br>7394<br>6642<br>5652<br>4425<br>2951<br>1219<br>-771<br>-3018<br>-5523<br>-9038                                                        | (KN)  292  258  224  190  156  122  88  54  20  -14  -48  -82  -116  -150  -184  -218  -252  -286  -320  -354  -397                                                                               | (KNm)<br>0<br>549<br>1031<br>1444<br>1790<br>2067<br>2277<br>2418<br>2491<br>2497<br>2434<br>2304<br>2105<br>1838<br>1504<br>1101<br>631<br>92<br>-514<br>-1189<br>-2128                | (KN) 1616 1482 1354 1233 1117 1008 905 809 718 634 556 484 419 359 305 256 213 174 140 109 77                                                                                  | (KNm)<br>0<br>2964<br>5416<br>7395<br>8937<br>10080<br>10862<br>11320<br>11492<br>11414<br>11123<br>10655<br>10047<br>9332<br>8541<br>7693<br>6808<br>5916<br>5025<br>4132<br>3115                                        | -156<br>-159<br>-207<br>-267<br>-327<br>-387<br>-452<br>-521<br>-596<br>-676<br>-760<br>-848<br>-940<br>-1036<br>-1135<br>-1238<br>-1343<br>-1452<br>-1563<br>-1676<br>-1816                                                   | (KNm)<br>0<br>-214<br>1758<br>3050<br>4105<br>4944<br>5668<br>6717<br>6988<br>7058<br>6905<br>6512<br>5860<br>4937<br>3729<br>2217<br>388<br>-1767<br>-4221<br>-7574                                                      | 0<br>-156<br>-156<br>-156<br>-156<br>-156<br>-156<br>-156<br>-156                                                                                               | (KNm)<br>0<br>-3111<br>-622<br>-933<br>-1244<br>-1555<br>-1866<br>-2177<br>-2488<br>-2799<br>-3110<br>-3421<br>-3732<br>-4044<br>-4355<br>-4666<br>-4977<br>-5288<br>-5914<br>-7192<br>-9602                                                        | 0<br>1137<br>1010<br>634<br>514<br>740<br>622<br>504<br>386<br>-75<br>-192<br>-309<br>-425<br>-195<br>-655<br>-769<br>-883<br>-997<br>-782<br>-248<br>-594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>2964<br>5416<br>7422<br>9113<br>10490<br>11603<br>12454<br>13045<br>13378<br>13457<br>13284<br>12865<br>12205<br>11309<br>10176<br>8800<br>7178<br>5636<br>4485<br>3321                                                    | 131<br>116<br>101<br>86<br>71<br>56<br>41<br>26<br>11<br>-4<br>-19<br>-34<br>-49<br>-64<br>-79<br>-94<br>-109<br>-124<br>-139<br>-154<br>-173                                       | (KNm)<br>0<br>246<br>462<br>649<br>805<br>931<br>1027<br>1093<br>1129<br>1136<br>1112<br>1058<br>974<br>860<br>717<br>543<br>339<br>105<br>-159<br>-452<br>-862                | (KN) 4115 4115 4115 4115 4115 4115 4115 411                  | (KN) -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115                                                                                                                          | (KNm)  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427  3427                                | (KN) -104 -104 -104 -104 -104 -104 -104 -104                     | 0<br>-208<br>-417<br>-625<br>-834<br>-1042<br>-1250<br>-1459<br>-1667<br>-1876<br>-2084<br>-2292<br>-2501<br>-2709<br>-2918<br>-3126<br>-3334<br>-3543<br>-3751<br>-3960<br>-4220                           | -6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350                                                                                                                                                                            | (KN) 6350 6350 6350 6350 6350 6350 6350 6350                 | (KNm) -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756 -2756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (KN)  82 82 82 82 82 82 82 82 82 82 82 82 82                                    | (KNm)<br>0<br>164<br>327<br>491<br>654<br>818<br>982<br>1145<br>1309<br>1473<br>1636<br>1800<br>1963<br>2127<br>2291<br>2454<br>2618<br>2781<br>2945<br>3109<br>3313         | 3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175 | -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175                                                                                     | 1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378 | (KN) (KNm) -41 0 -41 -82 -41 -164 -41 -245 -41 -327 -41 -409 -41 -491 -41 -573 -41 -654 -41 -736 -41 -900 -41 -982 -41 -1064 -41 -1227 -41 -1309 -41 -1391 -41 -1373 -41 -1554 -41 -1554 -41 -1657                                        |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                         | 43,00<br>43,00<br>45,50<br>48,00<br>50,00<br>52,00<br>56,00<br>58,00<br>60,50<br>63,00<br>70,50<br>73,00<br>74,75<br>76,50<br>78,25<br>80,00<br>81,50<br>83,00<br>85,50<br>88,00                                             | 4<br>4<br>4<br>1<br>1<br>1<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2 | -1675<br>1359<br>1180<br>1001<br>872<br>743<br>615<br>486<br>357<br>209<br>60<br>-88<br>-236<br>-385<br>-533<br>-646<br>-758<br>-871<br>-984<br>-1080<br>-1177<br>-1356                                            | -13001<br>-13001<br>-9828<br>-7101<br>-5228<br>-3613<br>-2255<br>-1154<br>-312<br>396<br>732<br>697<br>292<br>-485<br>-1632<br>-2664<br>-3893<br>-5319<br>-6942<br>-8490<br>-10183<br>-13349<br>-16963                               | -439<br>356<br>314<br>271<br>237<br>203<br>169<br>135<br>101<br>59<br>16<br>-26<br>-69<br>-111<br>-154<br>-184<br>-213<br>-243<br>-273<br>-298<br>-326<br>-409                                    | -3173<br>-3173<br>-2336<br>-1605<br>-1096<br>-656<br>-284<br>21<br>257<br>457<br>550<br>538<br>419<br>193<br>-138<br>-433<br>-781<br>-1180<br>-1632<br>-2060<br>-2527<br>-3389<br>-4358 | 71<br>1925<br>1786<br>1645<br>1532<br>1421<br>1313<br>1208<br>1108<br>988<br>876<br>770<br>673<br>584<br>504<br>452<br>405<br>362<br>323<br>292<br>263<br>237                  | 3065<br>-11079<br>-7466<br>-4161<br>-1753<br>348<br>2121<br>3580<br>4744<br>5817<br>6505<br>6849<br>6896<br>6697<br>6301<br>5929<br>5491<br>5010<br>4508<br>4060<br>3589<br>2456<br>2952                                  | -1953<br>-335<br>-338<br>-350<br>-387<br>-428<br>-474<br>-525<br>-581<br>-659<br>-746<br>-841<br>-944<br>-1055<br>-1174<br>-1261<br>-1352<br>-1445<br>-1542<br>-1626<br>-1712<br>-1853<br>-1992                                | -11222<br>3030<br>2276<br>3013<br>3439<br>3832<br>4194<br>4517<br>4770<br>4959<br>4968<br>4745<br>4236<br>3389<br>2160<br>1047<br>-293<br>-1873<br>-3706<br>-5480<br>-7417<br>-10880<br>-14667                            | -1560<br>1395<br>1101<br>749<br>469<br>232<br>-95<br>-95<br>-95<br>-95<br>-171<br>-171<br>-171<br>-171<br>-171<br>-171<br>-171<br>-356<br>-554<br>-775<br>-1161 | -12957<br>-12811<br>-9680<br>-7366<br>-6147<br>-5469<br>-5645<br>-5835<br>-6025<br>-6263<br>-6501<br>-6844<br>-7271<br>-7698<br>-8124<br>-8423<br>-8722<br>-9021<br>-9371<br>-10042<br>-11040<br>-13459<br>-16759                                   | 71 -335 8 8 384 207 326 543 428 654 169 366 -120 76 -409 -213 -654 -755 -431 -659 -184 -437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3065<br>3030<br>2786<br>3413<br>4140<br>5139<br>6749<br>8123<br>9250<br>10321<br>11017<br>11335<br>11273<br>10832<br>10012<br>9210<br>8218<br>7029<br>5699<br>4786<br>4046<br>3119<br>2962                                      | -192<br>157<br>138<br>120<br>105<br>90<br>75<br>60<br>45<br>26<br>7<br>-12<br>-30<br>-49<br>-68<br>-81<br>-94<br>-107<br>-120<br>-132<br>-143<br>-162<br>-180                       | -1318<br>-1318<br>-949<br>-627<br>-403<br>-208<br>-44<br>90<br>194<br>282<br>323<br>317<br>264<br>165<br>19<br>-112<br>-265<br>-441<br>-641<br>-830<br>-1036<br>-1417<br>-1844 | 4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115 | -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115                                                                                     | 3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427 | -104<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | -4481<br>-4481<br>-4394<br>-4308<br>-4238<br>-4169<br>-4100<br>-4031<br>-3962<br>-3875<br>-3789<br>-3702<br>-3616<br>-3529<br>-3443<br>-3382<br>-3222<br>-3261<br>-3200<br>-3149<br>-3097<br>-3010<br>-2924 | -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350 -6350                                                                                                                                                                                     | 6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350 | -2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756 | 82<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-2                       | 3518<br>3518<br>3457<br>3395<br>3346<br>3297<br>3248<br>3199<br>3150<br>3089<br>3028<br>2967<br>2905<br>2844<br>2783<br>2740<br>2697<br>2654<br>2611<br>2575<br>2538<br>2477 | 3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175 | -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175                                                                   | 1378 1378 1378 1378 1378 1378 1378 1378                      | -41 -1759 12 -1758 12 -1698 12 -1673 12 -1649 12 -1664 12 -1662 12 -1575 12 -1545 12 -1545 12 -1443 12 -1443 12 -1443 12 -1391 12 -1370 12 -1306 12 -1327 12 -1306 12 -1287 12 -1269 12 -1238 12 -1208                                    |
| 45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69<br>70 | 88,00<br>90,50<br>93,00<br>95,00<br>97,00<br>99,00<br>101,00<br>105,50<br>110,50<br>113,00<br>115,50<br>118,00<br>120,50<br>123,00<br>125,50<br>128,00<br>135,00<br>135,00<br>137,00<br>141,00<br>143,00<br>141,00<br>148,00 | 5<br>5<br>2<br>2<br>2<br>1<br>1<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7      | 1843<br>1664<br>1485<br>1356<br>1228<br>1099<br>970<br>841<br>693<br>545<br>396<br>248<br>99<br>-49<br>-197<br>-346<br>-494<br>-642<br>-791<br>-939<br>-1068<br>-1197<br>-1325<br>-1454<br>-1583<br>-1762<br>-1941 | -16963<br>-12579<br>-8642<br>-5801<br>-3217<br>-891<br>1178<br>2990<br>4907<br>6454<br>7630<br>8435<br>8869<br>8932<br>8624<br>7945<br>6896<br>5475<br>3683<br>1521<br>-486<br>-2751<br>-5273<br>-8053<br>-11090<br>-15272<br>-19901 | 501<br>458<br>416<br>382<br>348<br>314<br>280<br>246<br>203<br>161<br>118<br>76<br>33<br>-9<br>-52<br>-94<br>-137<br>-179<br>-222<br>-264<br>-298<br>-332<br>-366<br>-400<br>-434<br>-477<br>-519 | -4358 -3159 -2067 -1269 -539 -122 -716 -1242 -1803 -2258 -2607 -2850 -2987 -3017 -2941 -2758 -2470 -2075 -1574 -967 -404 -226 -924 -1691 -2525 -3663 -4908                              | 2011<br>1887<br>1762<br>1662<br>1562<br>1465<br>1370<br>1278<br>1165<br>1058<br>954<br>856<br>763<br>676<br>594<br>449<br>386<br>329<br>278<br>241<br>208<br>179<br>153<br>129 | -13451<br>-9566<br>-5948<br>-3256<br>-827<br>1317<br>3184<br>4783<br>6425<br>7692<br>8605<br>9187<br>9466<br>9474<br>9243<br>8810<br>8211<br>7486<br>6675<br>5812<br>5102<br>4383<br>3677<br>2984<br>2306<br>1306<br>1516 | -134<br>-135<br>-150<br>-174<br>-200<br>-229<br>-262<br>-298<br>-349<br>-405<br>-469<br>-538<br>-613<br>-695<br>-782<br>-875<br>-973<br>-1076<br>-1183<br>-1295<br>-1388<br>-1483<br>-1580<br>-1679<br>-1780<br>-1905<br>-2029 | 2708<br>2441<br>3362<br>3997<br>4643<br>5303<br>5976<br>6642<br>7450<br>8208<br>8881<br>9431<br>9816<br>9999<br>9946<br>9622<br>8996<br>8041<br>6731<br>5046<br>3413<br>1512<br>-667<br>-3132<br>-5860<br>-9525<br>-13458 | 1654 1413 1023 804 578 355 151 24 24 24 24 -14 -14 -14 -14 -14 -166 -366 -591 -817 -1037 -1428 -1671                                                            | -15322<br>-11487<br>-8373<br>-6547<br>-5163<br>-4231<br>-3730<br>-3609<br>-3550<br>-3491<br>-3432<br>-3372<br>-3313<br>-3260<br>-3295<br>-3329<br>-3364<br>-3398<br>-3433<br>-3468<br>-3578<br>-4104<br>-5060<br>-6468<br>-8321<br>-11441<br>-15317 | -134<br>483<br>455<br>526<br>339<br>461<br>875<br>589<br>462<br>334<br>206<br>77<br>260<br>-181<br>-309<br>-438<br>-567<br>-695<br>-823<br>-639<br>-900<br>-801<br>-678<br>-241<br>-476<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>-505<br>- | 2708<br>2798<br>3621<br>4344<br>5273<br>6445<br>7831<br>9388<br>11135<br>12562<br>13665<br>14438<br>14878<br>14984<br>14755<br>14191<br>13294<br>12067<br>10516<br>8644<br>6997<br>5555<br>4326<br>3341<br>2564<br>1678<br>1678 | 222<br>203<br>184<br>169<br>154<br>139<br>124<br>109<br>91<br>72<br>53<br>34<br>16<br>-3<br>-22<br>-41<br>-59<br>-78<br>-97<br>-116<br>-131<br>-146<br>-161<br>-176<br>-191<br>-209 | -1844 -1313 -829 -476 -152 142 405 639 889 1091 1247 1357 1419 1434 1403 1324 1199 1027 808 542 296 19 -287 -623 -990 -1490 -2037                                              | 4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115 | -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 -4115 | 3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427                                                                                                                                                 | -23 -23 -23 -23 -23 -23 -23 -23 -23 -23                          | -2924 -2982 -3040 -3087 -3134 -3180 -3227 -3273 -3332 -3390 -3448 -3507 -3565 -3623 -3681 -3740 -3798 -3856 -3914 -3973 -4019 -4066 -4113 -4159 -4206 -4264 -4322                                           | -6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350 | 6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350 | -2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756 | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>1 | 2416 2457 2498 2531 2564 2597 2630 2663 2705 2746 2787 2828 2870 2911 2952 2994 3035 3076 3117 3159 3192 3225 3258 3291 3324 3365 3406                                       | 3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175 | -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 -3175 | 1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378 | -8 -1208 -8 -1228 -8 -1249 -8 -1266 -8 -1282 -8 -1315 -8 -1332 -8 -1352 -8 -1352 -8 -1394 -8 -1414 -8 -1435 -8 -1445 -8 -1455 -8 -1457 -8 -1517 -8 -1538 -8 -1559 -8 -1579 -8 -1596 -8 -1612 -8 -1629 -8 -1645 -8 -1663 -8 -1683 -8 -1683 |
| 72<br>73<br>74<br>75<br>76<br>77<br>78<br>79                                                                                                             | 146,00<br>148,00<br>150,50<br>153,00<br>154,50<br>156,00<br>157,75<br>159,50<br>161,25                                                                                                                                       | 3<br>3<br>6<br>6<br>6<br>6<br>1                                                                                 | 1780<br>1601<br>1422<br>1325<br>1229<br>1116<br>1003<br>891                                                                                                                                                        | -19901<br>-19901<br>-15675<br>-11897<br>-9837<br>-7922<br>-5871<br>-4016<br>-2359                                                                                                                                                    | 463<br>420<br>378<br>352<br>327<br>297<br>267<br>237                                                                                                                                              | -4908<br>-3805<br>-2807<br>-2260<br>-1751<br>-1205<br>-711<br>-270                                                                                                                      | 2021<br>1879<br>1736<br>1649<br>1562<br>1463<br>1367<br>1274                                                                                                                   | -15100<br>-11276<br>-7776<br>-5818<br>-4026<br>-2178<br>-592<br>744                                                                                                                                                       | -2029<br>-43<br>-54<br>-92<br>-119<br>-148<br>-185<br>-226<br>-272                                                                                                                                                             | 1706<br>2013<br>3228<br>3990<br>4738<br>5600<br>6454<br>7274                                                                                                                                                              | 1482<br>1160<br>733<br>453<br>317<br>317<br>317<br>317                                                                                                          | -15317<br>-17232<br>-13920<br>-11547<br>-10652<br>-10131<br>-9577<br>-9023<br>-8469                                                                                                                                                                 | -43<br>625<br>744<br>586<br>635<br>532<br>780<br>677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1516<br>1706<br>2301<br>3719<br>4826<br>6151<br>7581<br>8816<br>9852                                                                                                                                                            | 2201<br>182<br>163<br>152<br>141<br>128<br>115<br>102                                                                                                                               | -2037<br>-2037<br>-1558<br>-1126<br>-890<br>-670<br>-435<br>-222<br>-33                                                                                                        | 4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115<br>4115 | -4115<br>-4115<br>-4115<br>-4115<br>-4115<br>-4115<br>-4115<br>-4115                                                                                                                                                                                                                                        | 3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427<br>3427                                                                                                                                                 | 108<br>108<br>108<br>108<br>108<br>108<br>108<br>108             | -4322<br>-4322<br>-4052<br>-3782<br>-3620<br>-3458<br>-3269<br>-3080<br>-2891                                                                                                                               | -6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350<br>-6350                                                                                                                                                                                                                                                                      | 6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350<br>6350 | -2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756<br>-2756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -85<br>-85<br>-85<br>-85<br>-85<br>-85<br>-85<br>-85<br>-85                     | 3406<br>3406<br>3194<br>2981<br>2853<br>2725<br>2576<br>2427<br>2278                                                                                                         | 3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175<br>3175 | -3175<br>-3175<br>-3175<br>-3175<br>-3175<br>-3175<br>-3175                                                                                                                                                                                                                                     | 1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378<br>1378 | 43 -1703<br>43 -1597<br>43 -1490<br>43 -1426<br>43 -1363<br>43 -1288<br>43 -1214<br>43 -1139                                                                                                                                              |

| 80 | 163,00 | 1 | 778  | -900 | 208  | 120  | 1184 | 1841 | -322  | 8038  | 317 | -7915 | 224   | 10693 | 88  | 133 | 4115 | -4115 | 3427 | 108 | -2702 | -6350 | 6350 | -2756 | -85 | 2129 | 3175 | -3175 | 1378 | 43 | -1065 |
|----|--------|---|------|------|------|------|------|------|-------|-------|-----|-------|-------|-------|-----|-----|------|-------|------|-----|-------|-------|------|-------|-----|------|------|-------|------|----|-------|
| 81 | 165,50 | 1 | 629  | 860  | 165  | 586  | 1060 | 3020 | -400  | 9005  | 317 | -7123 | 426   | 11562 | 70  | 331 | 4115 | -4115 | 3427 | 108 | -2431 | -6350 | 6350 | -2756 | -85 | 1916 | 3175 | -3175 | 1378 | 43 | -958  |
| 82 | 168,00 | 7 | 481  | 2248 | 123  | 946  | 942  | 3779 | -489  | 9776  | 317 | -6332 | -72   | 12039 | 51  | 481 | 4115 | -4115 | 3427 | 108 | -2161 | -6350 | 6350 | -2756 | -85 | 1703 | 3175 | -3175 | 1378 | 43 | -852  |
| 83 | 170,50 | 7 | 333  | 3265 | 80   | 1200 | 832  | 4157 | -588  | 10282 | 317 | -5540 | -222  | 12115 | 32  | 585 | 4115 | -4115 | 3427 | 108 | -1891 | -6350 | 6350 | -2756 | -85 | 1490 | 3175 | -3175 | 1378 | 43 | -745  |
| 84 | 173,00 | 7 | 184  | 3912 | 38   | 1347 | 729  | 4198 | -697  | 10449 | 317 | -4749 | -372  | 11784 | 13  | 642 | 4115 | -4115 | 3427 | 108 | -1621 | -6350 | 6350 | -2756 | -85 | 1277 | 3175 | -3175 | 1378 | 43 | -639  |
| 85 | 175,50 | 7 | 36   | 4187 | -5   | 1388 | 634  | 3954 | -816  | 10199 | 317 | -3957 | -522  | 11038 | -5  | 652 | 4115 | -4115 | 3427 | 108 | -1351 | -6350 | 6350 | -2756 | -85 | 1065 | 3175 | -3175 | 1378 | 43 | -532  |
| 86 | 178,00 | 7 | -112 | 4091 | -47  | 1323 | 548  | 3480 | -946  | 9456  | 317 | -3166 | -323  | 9873  | -24 | 616 | 4115 | -4115 | 3427 | 108 | -1081 | -6350 | 6350 | -2756 | -85 | 852  | 3175 | -3175 | 1378 | 43 | -426  |
| 87 | 180,50 | 7 | -261 | 3625 | -90  | 1152 | 469  | 2791 | -1086 | 8143  | 317 | -2374 | -824  | 8284  | -43 | 532 | 4115 | -4115 | 3427 | 108 | -810  | -6350 | 6350 | -2756 | -85 | 639  | 3175 | -3175 | 1378 | 43 | -319  |
| 88 | 183,00 | 7 | -409 | 2788 | -132 | 874  | 389  | 1732 | -1236 | 6180  | 317 | -1583 | -886  | 6180  | -62 | 402 | 4115 | -4115 | 3427 | 108 | -540  | -6350 | 6350 | -2756 | -85 | 426  | 3175 | -3175 | 1378 | 43 | -213  |
| 89 | 185,50 | 7 | -558 | 1579 | -175 | 490  | 322  | -640 | -1397 | 3491  | 317 | -791  | -1046 | 3491  | -80 | 224 | 4115 | -4115 | 3427 | 108 | -270  | -6350 | 6350 | -2756 | -85 | 213  | 3175 | -3175 | 1378 | 43 | -106  |
| 90 | 188,00 | 7 | -706 | 0    | -217 | 0    | 317  | 0    | -1567 | 0     | 0   | 0     | 0     | 0     | -99 | 0   | 4115 | -4115 | 3427 | 108 | 0     | -6350 | 6350 | -2756 | -85 | 0    | 3175 | -3175 | 1378 | 43 | 0     |

APPENDICE B: Modelli di Calcolo dell'Impalcato

## Generalità

Nella presente appendice si riportano per esteso i listati di input, in formato SAP 2000, per i modelli di calcolo utilizzati:

- Modello 1: ottenuto considerando le proprietà inerziali delle sole travi metalliche ed utilizzato per la valutazione degli effetti indotti dal peso proprio della carpenteria metallica e della soletta;
- Modello 2: ottenuto considerando le proprietà inerziali ideali della sezione composta
  con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 6. Il modello
  è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata (azione
  del vento, carichi mobili, variazioni termiche);
- Modello 3: ottenuto considerando le proprietà inerziali ideali della sezione mista con soletta collaborante omogeneizzata all'acciaio mediante coefficiente 20. Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata (carichi permanenti, ritiro).

Nei modelli 2 e 3 si tiene conto della riduzione di rigidezza della sezione composta in prossimità degli appoggi interni per la fessurazione della soletta, trascurando il contributo inerziale del calcestruzzo su un tratto di lunghezza pari al 15 % delle luci delle due campate adiacenti e mettendo comunque in conto il contributo inerziale delle armature presenti entro la larghezza collaborante.

Nelle tabelle delle pagine successive tali modelli sono espressi con le seguenti sigle:

- ACC+CLS BT = sezione mista acciaio-calcestruzzo per azioni di breve termine;
- ACC+CLS LT = sezione mista acciaio-calcestruzzo per azioni di lungo termine;
- SOLO ACC = sezione con solo acciaio;
- ACC+ARM = sezione con acciaio ed armature metalliche (per le sezioni d'appoggio).

## Viadotto 4

## **DESCRIZIONE DEL MODELLO:**

SYSTEM

## modello con le proprietà geometriche della sola sezione in acciaio

```
DOF=UX,UY,UZ,RX,RY,RZ LENGTH=m FORCE=KN LINES=59
JOINT
    X = 0.00
                 Y = 0.00
                             Z = 0.00
    X = 0.00
                 Y=10.00
                              Z = 0.00
    X = 0.00
                 Y = 28.00
                              Z = 0.00
                              Z=0.00
Z=0.00
4
5
6
7
    X = 0.00
                 Y = 36.00
                 Y=38.00
    X = 0.00
                              Z=0.00
    X = 0.00
                 Y = 43.00
    X = 0.00
                 Y = 48.00
                              Z = 0.00
    X = 0.00
                  Y = 50.00
                              Z = 0.00
    X = 0.00
                  Y=58.00
                              Z=0.00
10
     X = 0.00
                  Y = 63.00
                               Z = 0.00
11
12
     X=0.00
X=0.00
X=0.00
                               Z = 0.00
                  Y=68.00
                  Y = 73.00
                               Z = 0.00
13
                  Y=80.00
                               Z = 0.00
14
     X = 0.00
                  Y=83.00
                               Z = 0.00
15
     X = 0.00
                  Y=88.00
                               Z = 0.00
16
      X = 0.00
                  Y = 93.00
17
     X = 0.00
                  Y = 95.00
                                Z = 0.00
     X=0.00
X=0.00
X=0.00
18
19
                  Y=103.00
                                Z = 0.00
                                Z=0.00
                  Y=108.00
20
21
                  Y=113.00
                                 Z=0.00
     X = 0.00
                  Y=118.00
                                 Z=0.00
22
     X = 0.00
                  Y=123.00
                                 Z = 0.00
23
      X = 0.00
                  Y=128.00
                                 z=0.00
24
25
26
      X = 0.00
                  Y=133.00
                                 Z=0.00
     X=0.00
X=0.00
X=0.00
                  Y=141.00
Y=143.00
                                 Z = 0.00
                                 Z=0.00
Z=0.00
27
28
                  Y=148.00
     X = 0.00
                  Y=153.00
                                 Z=0.00
29
     X = 0.00
                  Y=156.00
                                 Z = 0.00
      X = 0.00
30
                  Y=163.00
                                 z=0.00
      X = 0.00
                                 Z = 0.00
31
                  Y=168.00
32
     X = 0.00
                  Y=173.00
                                 Z=0.00
33
34
     X=0.00
X=0.00
                  Y=178.00
Y=183.00
                                 Z=0.00
Z=0.00
                                 Z=0.00
     X = 0.00
                  Y=188.00
RESTRAINT
  ADD=1 DOF=U1,U2,U3,R2,R3
  ADD=2 DOF=U1,R2,R3
  ADD=3 DOF=U1,R2,R3
  ADD=4 DOF=U1,R2,R3
  ADD=5
          DOF=U1,R2,R3
         DOF=U1,U3,R2,R3
          DOF=U1,R2,R3
  ADD=7
  ADD=8 DOF=U1,R2,R3
  ADD=9 DOF=U1,R2,R3
  ADD=10 DOF=U1,R2,R3
  ADD=11 DOF=U1,R2,R3
  ADD=12 DOF=U1,R2,R3
  ADD=13 DOF=U1,R2,R3
  ADD=14 DOF=U1,R2,R3
  \texttt{ADD=15} \quad \texttt{DOF=U1,U3,R2,R3}
  ADD=16 DOF=U1,R2,R3
  ADD=17 DOF=U1,R2,R3
  ADD=18 DOF=U1,R2,R3
  ADD=19 DOF=U1,R2,R3
  ADD=20 DOF=U1,R2,R3
  ADD=21 DOF=U1,R2,R3
  ADD=22 DOF=U1,R2,R3
  ADD=23 DOF=U1,R2,R3
  ADD=24 DOF=U1,R2,R3
ADD=25 DOF=U1,R2,R3
  ADD=26 DOF=U1,R2,R3
ADD=27 DOF=U1,U3,R2,R3
  ADD=28 DOF=U1,R2,R3
  ADD=29 DOF=U1,R2,R3
  ADD=30 DOF=U1,R2,R3
  ADD=31 DOF=U1,R2,R3
  ADD=32 DOF=U1,R2,R3
  ADD=33 DOF=U1,R2,R3
```

ADD=34 DOF=U1,R2,R3

```
ADD=35 DOF=U1,U3,R2,R3
PATTERN
  NAME=TEMP
 NAME=PRES
MATERIAL
  NAME=1FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=2FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=3FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=4FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=5FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=6FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=7FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=8FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=9FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=10FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=11FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=12FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=STEEL IDES=S M=7.8271 W=76.81954
    T=0 E=1.99948E+08 U=.3 A=.0000117
  NAME=CONC IDES=C M=2.40068 W=23.56161
    T=0 E=2.482113E+07 U=.2 A=.0000099
FRAME SECTION
; Elenco MATERIALI (ST = Sezione Tipo GEOMETRICA)
  NAME=1 MAT=1FR A=0.4496 J=0 I=0.3519347,0 AS=0,0 T=1,1
                                                                    ; ST=1 (Acc+Cls BT)
  NAME=2 MAT=2FR A=0.2340 J=0 I=0.2724244,0 AS=0,0 T=1,1
                                                                    ; ST=1 (Acc+Cls LT)
  NAME=3 MAT=3FR A=0.1416 J=0 I=0.1657169,0 AS=0,0 T=1,1
                                                                    ; ST=1 (Acc+Arm)
 NAME=4 MAT=4FR A=0.1216 J=0 I=0.1209402,0 AS=0,0 T=1,1 NAME=5 MAT=5FR A=0.5137 J=0 I=0.4807965,0 AS=0,0 T=1,1
                                                                    ; ST=1 (Solo Acc)
                                                                    ; ST=2 (Acc+Cls BT)
  NAME=6 MAT=6FR A=0.2981 J=0 I=0.3594915,0 AS=0,0 T=1,1
                                                                    ; ST=2 (Acc+Cls LT)
  NAME=7 MAT=7FR A=0.2057 J=0 I=0.2306857,0 AS=0,0 T=1,1
                                                                    ; ST=2 (Acc+Arm)
  NAME=8 MAT=8FR A=0.1857 J=0 I=0.1855619,0 AS=0,0 T=1,1
                                                                      ST=2 (Solo Acc)
  NAME=9 MAT=9FR A=0.6202 J=0 I=0.6687209,0 AS=0,0 T=1,1
                                                                      ST=3 (Acc+Cls BT)
 NAME=10 MAT=10FR A=0.4046 J=0 I=0.5048040,0 AS=0,0 T=1,1
                                                                      ; ST=3 (Acc+Cls LT)
  NAME=11 MAT=11FR A=0.3122 J=0 I=0.3659165,0 AS=0,0 T=1,1
                                                                      ; ST=3 (Acc+Arm)
                                                                      ; ST=3 (Solo Acc)
 NAME=12 MAT=12FR A=0.2784 J=0 I=0.2914210,0 AS=0,0 T=1,1
; Elenco ASTE (L = Lunghezza; ST = Sezione Tipo GEOMETRICA)
                                       ; L=10,00 - ST=1 (Solo Acc) - q=13,55
; L=18,00 - ST=1 (Solo Acc) - q=13,55
  1 J=1,2 SEC=4 NSEG=5 ANG=0
  2
     J=2,3 SEC=4 NSEG=9
                              ANG=0
                                          ; L=8,00 - ST=2 (Solo Acc) - q=18,58
; L=2,00 - ST=2 (Solo Acc) - q=18,58
     J=3,4 SEC=8 NSEG=4
                              ANG=0
    J=4,5 SEC=8 NSEG=1 ANG=0
                                           ; L=5,00 - ST=3 (Solo Acc) - q=25,85
; L=5,00 - ST=3 (Solo Acc) - q=25,85
            SEC=12 NSEG=2 ANG=0
     J=5,6
             SEC=12 NSEG=2 ANG=0
     J=6,7
                                          ; L=2,00 - ST=2 (Solo Acc) - q=18,58
     J=7,8 SEC=8 NSEG=1 ANG=0
     J=8,9 SEC=8 NSEG=4 ANG=0
                                          ; L=8,00 - ST=2 (Solo Acc) - q=18,58
                                           ; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
     J=9,10 SEC=4 NSEG=2 ANG=0
  9
  10 J=10,11 SEC=4 NSEG=2 ANG=0
  11 J=11,12 SEC=4 NSEG=2 ANG=0
                                              ; L=7,00 - ST=2 (Solo Acc) - q=18,58
; L=3,00 - ST=2 (Solo Acc) - q=18,58
                SEC=8 NSEG=4
                                  ANG=0
  12 J=12,13
  13
      J=13,14
                SEC=8 NSEG=2 ANG=0
                                              ; L=5,00 - ST=3 (Solo Acc) - q=25,85
; L=5,00 - ST=3 (Solo Acc) - q=25,85
  14 J=14,15
                SEC=12 NSEG=2 ANG=0
  15
      J=15,16
                SEC=12 NSEG=2 ANG=0
                                             ; L=2,00 - ST=2 (Solo Acc) - q=18,58
; L=8,00 - ST=2 (Solo Acc) - q=18,58
; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
      J=16,17
  16
                SEC=8 NSEG=1 ANG=0
  17
      J=17,18
                SEC=8 NSEG=4 ANG=0
                        NSEG=2
 18
     J=18,19
                SEC=4
                                  ANG=0
                        NSEG=2
                                  ANG=0
      J=19,20
                SEC=4
  19
      J=20,21
  20
                SEC=4
                        NSEG=2
                                  ANG=0
                                              ; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
                                  ANG=0
  21
      J=21,22
                SEC=4
                        NSEG=2
  22
      J=22,23
                SEC=4
                         NSEG=2
                                  ANG=0
                                              ; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=8,00 - ST=2 (Solo Acc) - q=18,58
; L=2,00 - ST=2 (Solo Acc) - q=18,58
; L=5,00 - ST=3 (Solo Acc) - q=25,85
; L=5,00 - ST=3 (Solo Acc) - q=25,85
  23
      J=23,24
                SEC=4
                        NSEG=2
                                  ANG=0
  24
      J = 24, 25
                SEC=8
                        NSEG=4 ANG=0
  25 J=25,26
                SEC=8 NSEG=1 ANG=0
     J=26,27
                SEC=12 NSEG=2 ANG=0
  26
      J=27,28
                SEC=12 NSEG=2 ANG=0
                                              ; L=3,00 - ST=2 (Solo Acc) - q=18,58
     J=28,29
                SEC=8 NSEG=2 ANG=0
      J=29,30 SEC=8
                        NSEG=4
                                  ANG=0
                                              ; L=7,00 - ST=2 (Solo Acc) - q=18,58
      J=30,31 SEC=4
                        NSEG=2
                                  ANG=0
                                              ; L=5,00 - ST=1 (Solo Acc) - q=13,55
```

```
; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
; L=5,00 - ST=1 (Solo Acc) - q=13,55
  31 J=31,32 SEC=4 NSEG=2 ANG=0
  32 J=32,33 SEC=4 NSEG=2 ANG=0
  33 J=33,34 SEC=4 NSEG=2 ANG=0
  34 J=34,35 SEC=4 NSEG=2 ANG=0
                                                     ; L=5,00 - ST=1 (Solo Acc) - q=13,55
; Elenco CARICHI
LOAD
  NAME=1
     TYPE=DISTRIBUTED SPAN
       ADD=1 RD=0,1 U2=-13.55,-13.55
       ADD=2 RD=0,1 U2=-13.55,-13.55
       ADD=3 RD=0,1 U2=-18.58,-18.58
ADD=4 RD=0,1 U2=-18.58,-18.58
       ADD=5 RD=0,1 U2=-25.85,-25.85
ADD=6 RD=0,1 U2=-25.85,-25.85
       ADD=7 RD=0,1 U2=-18.58,-18.58
       ADD=8 RD=0,1 U2=-18.58,-18.58
       ADD=9 RD=0,1 U2=-13.55,-13.55
       ADD=10 RD=0,1 U2=-13.55,-13.55

ADD=11 RD=0,1 U2=-13.55,-13.55

ADD=12 RD=0,1 U2=-18.58,-18.58

ADD=13 RD=0,1 U2=-18.58,-18.58
       ADD=14 RD=0,1 U2=-25.85,-25.85
       ADD=15 RD=0,1 U2=-25.85,-25.85
       ADD=16 RD=0,1 U2=-18.58,-18.58
       ADD=17 RD=0,1 U2=-18.58,-18.58
       ADD=18 RD=0,1 U2=-13.55,-13.55

ADD=19 RD=0,1 U2=-13.55,-13.55

ADD=20 RD=0,1 U2=-13.55,-13.55

ADD=21 RD=0,1 U2=-13.55,-13.55
       ADD=22 RD=0,1 U2=-13.55,-13.55
       ADD=23 RD=0,1 U2=-13.55,-13.55
       ADD=24 RD=0,1 U2=-18.58,-18.58
       ADD=25 RD=0,1 U2=-18.58,-18.58

ADD=26 RD=0,1 U2=-25.85,-25.85

ADD=27 RD=0,1 U2=-25.85,-25.85
       ADD=28 RD=0,1 U2=-18.58,-18.58
       ADD=29 RD=0,1 U2=-18.58,-18.58
       ADD=30 RD=0,1 U2=-13.55,-13.55
       ADD=31 RD=0,1 U2=-13.55,-13.55
       ADD=32 RD=0,1 U2=-13.55,-13.55
ADD=33 RD=0,1 U2=-13.55,-13.55
       ADD=34 RD=0,1 U2=-13.55,-13.55
  ELEM=JOINT TYPE=DISP LOAD=1
ELEM=JOINT TYPE=APPL LOAD=1
  ELEM=JOINT TYPE=REAC LOAD=1
  ELEM=FRAME TYPE=FORCE LOAD=1
END
```

# Viadotto 4

# **DESCRIZIONE DEL MODELLO:**

SYSTEM
DOF=UX,UY,UZ,RX,RY,RZ LENGTH=m FORCE=KN LINES=59

modello con le proprietà geometriche della sezione mista per azioni di lunga durata con soletta fessurata in appoggio

| JOI      | ЛТ           |       |                              |                  |  |
|----------|--------------|-------|------------------------------|------------------|--|
| 1        | X=0.0        | 00    | Y = 0.00                     | Z = 0.00         |  |
| 2        | X=0.0        |       | Y=10.00                      | Z = 0.00         |  |
| 3        | X=0.0        | 00    | Y = 28.00                    | Z = 0.00         |  |
| 4        | X=0.0        | 00    | Y = 36.00                    | Z = 0.00         |  |
| 5        | X=0.0        | 00    | Y = 38.00                    | Z = 0.00         |  |
| 6        | X=0.0        | 0.0   | Y = 43.00                    | Z = 0.00         |  |
| 7        | X=0.0        | 0.0   | Y = 48.00                    | Z = 0.00         |  |
| 8        | X=0.0        | 00    | Y = 50.00                    | Z = 0.00         |  |
| 9        | X=0.0        | 0.0   | Y = 58.00                    | Z = 0.00         |  |
| 10       | X=0.         | .00   | Y = 63.00                    | Z = 0.00         |  |
| 11       | X=0.         |       | Y = 68.00                    | Z = 0.00         |  |
| 12       | X=0.         |       | Y = 73.00                    | Z=0.00           |  |
| 13       | X=0.         |       | Y = 80.00                    | Z=0.00           |  |
| 14       | X=0.         |       | Y=83.00                      | Z=0.00           |  |
| 15       | X=0.         |       | Y=88.00                      | Z=0.00           |  |
| 16       | X=0.         |       | Y=93.00                      | Z=0.00           |  |
| 17       | X=0.         |       | Y=95.00                      | Z=0.00           |  |
| 18       | X=0.         |       | Y=103.00                     | Z=0.00           |  |
| 19       | X=0.         |       | Y=108.00                     | Z=0.00           |  |
| 20<br>21 | X=0. $X=0$ . |       | Y=113.00<br>Y=118.00         | Z=0.00<br>Z=0.00 |  |
| 22       | X=0.         |       | Y=123.00                     | Z=0.00<br>Z=0.00 |  |
| 23       | X=0.         |       | Y=128.00                     | Z=0.00           |  |
| 24       | X=0.         |       | Y=133.00                     | Z=0.00           |  |
| 25       | X=0.         |       | Y=141.00                     | Z=0.00           |  |
| 26       | X=0.         |       | Y=143.00                     | Z=0.00           |  |
| 27       | X=0.         |       | Y=148.00                     | Z=0.00           |  |
| 28       | X=0.         |       | Y=153.00                     | Z=0.00           |  |
| 29       | X=0.         |       | Y=156.00                     | Z = 0.00         |  |
| 30       | X=0.         |       | Y=163.00                     | Z=0.00           |  |
| 31       | X=0.         | .00   | Y=168.00                     | z=0.00           |  |
| 32       | X=0.         |       | Y=173.00                     | z=0.00           |  |
| 33       | X=0.         | .00   | Y=178.00                     | Z = 0.00         |  |
| 34       | X=0.         | .00   | Y=183.00                     | Z=0.00           |  |
| 35       | X=0.         | .00   | Y=188.00                     | Z=0.00           |  |
| DEGE     |              |       |                              |                  |  |
|          | TRAINT       |       | 11 110 112 50                | D.2              |  |
|          | DD=1         |       | J1,U2,U3,R2,                 | R3               |  |
|          | DD=2         |       | J1,R2,R3                     |                  |  |
|          | DD=3<br>DD=4 |       | J1,R2,R3<br>J1,R2,R3         |                  |  |
|          | DD=4<br>DD=5 |       | J1,R2,R3<br>J1,R2,R3         |                  |  |
|          | DD=5         |       | J1, N2, R3<br>J1, U3, R2, R3 |                  |  |
|          | DD=7         |       | J1,R2,R3                     |                  |  |
|          | DD=8         |       | J1,R2,R3                     |                  |  |
|          | DD=9         |       | J1,R2,R3                     |                  |  |
|          | DD=10        |       | =U1,R2,R3                    |                  |  |
|          | DD=11        |       | =U1,R2,R3                    |                  |  |
|          | DD=12        |       | =U1,R2,R3                    |                  |  |
|          | DD=13        |       | =U1,R2,R3                    |                  |  |
|          | DD=14        |       | =U1,R2,R3                    |                  |  |
|          | DD=15        |       | =U1,U3,R2,R3                 | 3                |  |
| ΑI       | DD=16        | DOF=  | =U1,R2,R3                    |                  |  |
| ΑI       | DD=17        |       | =U1,R2,R3                    |                  |  |
| AI       | DD=18        | DOF=  | =U1,R2,R3                    |                  |  |
| ΑI       | DD=19        | DOF=  | =U1,R2,R3                    |                  |  |
| AI       | DD=20        | DOF=  | =U1,R2,R3                    |                  |  |
| ΑI       | DD=21        |       | =U1,R2,R3                    |                  |  |
|          | DD=22        |       | =U1,R2,R3                    |                  |  |
|          | DD=23        |       | =U1,R2,R3                    |                  |  |
|          | DD=24        |       | =U1,R2,R3                    |                  |  |
|          | DD=25        |       | =U1,R2,R3                    |                  |  |
|          | DD=26        |       | =U1,R2,R3                    |                  |  |
|          | DD=27        |       | =U1,U3,R2,R3                 | 3                |  |
|          | DD=28        |       | =U1,R2,R3                    |                  |  |
|          | DD=29        |       | =U1,R2,R3                    |                  |  |
| ΑI       | DD=30        | DOF'= | =U1,R2,R3                    |                  |  |
|          |              |       |                              |                  |  |

```
ADD=34 DOF=U1,R2,R3
 ADD=35 DOF=U1,U3,R2,R3
PATTERN
 NAME=TEMP
  NAME=PRES
MATERIAL
  NAME=1FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=2FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=3FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=4FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=5FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=6FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=7FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=8FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=9FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=10FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=11FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=12FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=STEEL IDES=S M=7.8271 W=76.81954
    T=0 E=1.99948E+08 U=.3 A=.0000117
  NAME=CONC IDES=C M=2.40068 W=23.56161
    T=0 E=2.482113E+07 U=.2 A=.0000099
FRAME SECTION
; Elenco MATERIALI (ST = Sezione Tipo GEOMETRICA)
                                                                  ; ST=1 (Acc+Cls BT)
  NAME=1 MAT=1FR A=0.4496 J=0 I=0.3519347,0 AS=0,0 T=1,1
  NAME=2 MAT=2FR A=0.2340 J=0 I=0.2724244,0 AS=0,0 T=1,1
                                                                  ; ST=1 (Acc+Cls LT)
  NAME=3 MAT=3FR A=0.1416 J=0 I=0.1657169,0 AS=0,0 T=1,1
                                                                  ; ST=1 (Acc+Arm)
  NAME=4 MAT=4FR A=0.1216 J=0 I=0.1209402,0 AS=0,0 T=1,1
                                                                   ST=1
                                                                          (Solo Acc)
  NAME=5 MAT=5FR A=0.5137 J=0 I=0.4807965,0 AS=0,0 T=1,1
                                                                    ST=2 (Acc+Cls BT)
                                                                  ; ST=2 (Acc+Cls LT)
 NAME=6 MAT=6FR A=0.2981 J=0 I=0.3594915,0 AS=0,0 T=1,1
  NAME=7 MAT=7FR A=0.2057 J=0 I=0.2306857,0 AS=0,0 T=1,1
                                                                  ; ST=2 (Acc+Arm)
  NAME=8 MAT=8FR A=0.1857 J=0 I=0.1855619.0 AS=0.0 T=1.1
                                                                  ; ST=2 (Solo Acc)
                                                                  ; ST=3 (Acc+Cls BT)
  NAME=9 MAT=9FR A=0.6202 J=0 I=0.6687209,0 AS=0,0 T=1,1
  NAME=10 MAT=10FR A=0.4046 J=0 I=0.5048040,0 AS=0,0 T=1,1
                                                                   ; ST=3 (Acc+Cls LT)
  NAME=11 MAT=11FR A=0.3122 J=0 I=0.3659165,0 AS=0,0 T=1,1
                                                                    ; ST=3 (Acc+Arm)
  NAME=12 MAT=12FR A=0.2784 J=0 I=0.2914210,0 AS=0,0 T=1,1
                                                                    ; ST=3 (Solo Acc)
FRAME
3 J=3,4 SEC=6 NSEG=4 ANG=0
                                        ; L=8,00 - ST=2 (Acc+Cls LT) - q=18,58
    J = 4, 5
            SEC=7 NSEG=1 ANG=0
                                        ; L=2,00 - ST=2 (Acc+Arm) - q=18,58
                                        ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
; L=5,00 - ST=3 (Acc+Arm) - q=25,85
; L=2,00 - ST=2 (Acc+Arm) - q=18,58
  5
    J=5,6
            SEC=11 NSEG=2 ANG=0
  6
    J=6,7 SEC=11 NSEG=2 ANG=0
    J=7,8 SEC=7 NSEG=1 ANG=0
                                        ; L=8,00 - ST=2 (Acc+Cls LT) - q=18,58
; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
    J=8,9 SEC=6 NSEG=4 ANG=0
  8
    J=9,10 SEC=2 NSEG=2 ANG=0
                                           ; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
  10 J=10,11 SEC=2 NSEG=2 ANG=0
  11 J=11,12 SEC=2 NSEG=2 ANG=0
                                            ; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
; L=7,00 - ST=2 (Acc+Cls LT) - q=18,58
; L=3,00 - ST=2 (Acc+Arm) - q=18,58
; L=5,00 - ST=3 (Acc+Arm) - q=25,85
; L=5,00 - ST=3 (Acc+Arm) - q=25,85
; L=2,00 - ST=2 (Acc+Arm) - q=18,58
; L=8,00 - ST=2 (Acc+Cls LT) - q=18,58
; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
                       NSEG=4
  12
     J=12,13 SEC=6
                                 ANG=0
  13
     J=13,14 SEC=7 NSEG=2 ANG=0
                SEC=11 NSEG=2 ANG=0
 14 J=14,15
                SEC=11 NSEG=2 ANG=0
  15 J=15,16
     J=16,17
                SEC=7 NSEG=1 ANG=0
  17 J=17,18
                SEC=6
                       NSEG=4 ANG=0
     J=18,19
                SEC=2
                        NSEG=2
                                 ANG=0
                                            ; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
                        NSEG=2
  19
     J=19,20
                SEC=2
                                ANG=0
  20
     J=20,21
                SEC=2
                       NSEG=2 ANG=0
  21 J=21,22
                SEC=2
                       NSEG=2 ANG=0
  22 J=22,23
                SEC=2
                       NSEG=2 ANG=0
  23
     J=23,24
                SEC=2
                       NSEG=2 ANG=0
  24 J=24,25 SEC=6
                       NSEG=4 ANG=0
                                            ; L=8,00 - ST=2 (Acc+Cls LT) - q=18,58
               SEC=7 NSEG=1 ANG=0
  25 J=25,26
                                            ; L=2,00 - ST=2 (Acc+Arm) - q=18,58
      J=26,27 SEC=11 NSEG=2 ANG=0
                                             ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
```

ADD=31 DOF=U1,R2,R3 ADD=32 DOF=U1,R2,R3 ADD=33 DOF=U1,R2,R3

```
; L=5,00 - ST=3 (Acc+Arm) - q=25,85

; L=3,00 - ST=2 (Acc+Arm) - q=18,58

; L=7,00 - ST=2 (Acc+Cls LT) - q=18,58

; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55

; L=5,00 - ST=1 (Acc+Cls LT) - q=13,55
  27 J=27,28 SEC=11 NSEG=2 ANG=0
28 J=28,29 SEC=7 NSEG=2 ANG=0
      J=29,30
                 SEC=6
                           NSEG=4 ANG=0
      J=30,31
                  SEC=2
                           NSEG=2
                                     ANG=0
  31 J=31,32
                  SEC=2
                           NSEG=2 ANG=0
  32 J=32,33 SEC=2 NSEG=2 ANG=0
33 J=33,34 SEC=2 NSEG=2 ANG=0
  34 J=34,35 SEC=2 NSEG=2 ANG=0
; Elenco CARICHI
LOAD
  NAME=1
    TYPE=DISTRIBUTED SPAN
       ADD=1 RD=0,1 U2=-13.55,-13.55
ADD=2 RD=0,1 U2=-13.55,-13.55
       ADD=3 RD=0,1 U2=-18.58,-18.58
       ADD=4 RD=0,1 U2=-18.58,-18.58
       ADD=5 RD=0,1 U2=-25.85,-25.85
       ADD=6 RD=0,1 U2=-25.85,-25.85
       ADD=7 RD=0,1 U2=-18.58,-18.58
       ADD=8 RD=0,1 U2=-18.58,-18.58
ADD=9 RD=0,1 U2=-13.55,-13.55
       ADD=10 RD=0,1 U2=-13.55,-13.55
       ADD=11 RD=0,1 U2=-13.55,-13.55
       ADD=12 RD=0,1 U2=-18.58,-18.58
       ADD=13 RD=0,1 U2=-18.58,-18.58
       ADD=14 RD=0,1 U2=-25.85,-25.85
       ADD=15 RD=0,1 U2=-25.85,-25.85
       ADD=16 RD=0,1 U2=-18.58,-18.58
       ADD=17 RD=0,1 U2=-18.58,-18.58
       ADD=18 RD=0,1 U2=-13.55,-13.55
       ADD=19 RD=0,1 U2=-13.55,-13.55
       ADD=20 RD=0,1 U2=-13.55,-13.55
       ADD=21 RD=0,1 U2=-13.55,-13.55
       \texttt{ADD=22} \quad \texttt{RD=0}\,, \texttt{1} \quad \texttt{U2=-13.55}\,, -13.55
       ADD=23 RD=0,1 U2=-13.55,-13.55
       ADD=24 RD=0,1 U2=-18.58,-18.58
       ADD=25 RD=0,1 U2=-18.58,-18.58
       ADD=26 RD=0,1
                           U2=-25.85,-25.85
       ADD=27 RD=0,1 U2=-25.85,-25.85
       ADD=28 RD=0,1 U2=-18.58,-18.58
       ADD=29 RD=0,1 U2=-18.58,-18.58
       ADD=30 RD=0,1 U2=-13.55,-13.55
       ADD=31 RD=0,1 U2=-13.55,-13.55
       ADD=32 RD=0,1 U2=-13.55,-13.55
       ADD=33 RD=0,1 U2=-13.55,-13.55
       ADD=34 RD=0,1 U2=-13.55,-13.55
OUTPUT
  ELEM=JOINT TYPE=DISP LOAD=1
  ELEM=JOINT TYPE=APPL LOAD=1
  ELEM=JOINT TYPE=REAC LOAD=1
  ELEM=FRAME TYPE=FORCE LOAD=1
END
```

# Viadotto 4

# **DESCRIZIONE DEL MODELLO:**

SYSTEM

modello con le proprietà geometriche della sezione mista per azioni di breve durata con soletta fessurata in appoggio

| DOF=                                         | UX,UY,UZ,                                                                                                                                                                                                                               | RX,RY,RZ                                                                                                      | LENGTH=m         | FORCE=KN | LINES=59 |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|----------|----------|
| JOINT                                        |                                                                                                                                                                                                                                         |                                                                                                               |                  |          |          |
| 1 X=                                         | 0.00                                                                                                                                                                                                                                    | Y = 0.00                                                                                                      | Z = 0.00         |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=10.00                                                                                                       | Z = 0.00         |          |          |
|                                              |                                                                                                                                                                                                                                         | Y = 28.00                                                                                                     | Z = 0.00         |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=36.00                                                                                                       | Z=0.00           |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=38.00                                                                                                       | Z=0.00           |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=43.00                                                                                                       | Z=0.00           |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=48.00<br>Y=50.00                                                                                            | Z=0.00<br>Z=0.00 |          |          |
|                                              |                                                                                                                                                                                                                                         | Y=50.00                                                                                                       | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=63.00                                                                                                       | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=68.00                                                                                                       | Z = 0.00         |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y = 73.00                                                                                                     | Z = 0.00         |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y = 80.00                                                                                                     | Z = 0.00         |          |          |
| 14 X                                         | =0.00                                                                                                                                                                                                                                   | Y = 83.00                                                                                                     | Z = 0.00         |          |          |
| 15 X                                         | =0.00                                                                                                                                                                                                                                   | Y=88.00                                                                                                       | Z = 0.00         |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y = 93.00                                                                                                     | Z = 0.00         |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=95.00                                                                                                       | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=103.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=108.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00<br>=0.00                                                                                                                                                                                                                          | Y=113.00                                                                                                      | Z=0.00<br>Z=0.00 |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=118.00<br>Y=123.00                                                                                          | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=128.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=133.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=141.00                                                                                                      | Z = 0.00         |          |          |
| 26 X                                         | =0.00                                                                                                                                                                                                                                   | Y=143.00                                                                                                      | z = 0.00         |          |          |
| 27 X                                         | =0.00                                                                                                                                                                                                                                   | Y=148.00                                                                                                      | Z = 0.00         |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=153.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=156.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=163.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=168.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00<br>=0.00                                                                                                                                                                                                                          | Y=173.00<br>Y=178.00                                                                                          | Z=0.00<br>Z=0.00 |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=183.00                                                                                                      | Z=0.00           |          |          |
|                                              | =0.00                                                                                                                                                                                                                                   | Y=188.00                                                                                                      | Z=0.00           |          |          |
| RESTRA ADD= ADD= ADD= ADD= ADD= ADD= ADD= AD | 1 DOF=U1 2 DOF=U1 3 DOF=U1 4 DOF=U1 5 DOF=U1 6 DOF=U1 7 DOF=U1 8 DOF=U1 10 DOF=U1 11 DOF=U1 12 DOF=U1 13 DOF=U1 14 DOF=U1 15 DOF=U1 16 DOF=U1 17 DOF=U1 18 DOF=U1 18 DOF=U1 19 DOF=U1 19 DOF=U1 19 DOF=U1 19 DOF=U1 19 DOF=U1 20 DOF=U1 | ,R2,R3<br>,R2,R3<br>,R2,R3<br>,U3,R2,R3<br>,R2,R3<br>,R2,R3                                                   |                  |          |          |
| ADD= ADD= ADD= ADD= ADD= ADD= ADD= ADD=      | 22 DOF=UI 23 DOF=UI 24 DOF=UI 25 DOF=UI 26 DOF=UI 27 DOF=UI 28 DOF=UI 29 DOF=UI 30 DOF=UI                                                                                                                                               | 1,R2,R3<br>1,R2,R3<br>1,R2,R3<br>1,R2,R3<br>1,R2,R3<br>1,R2,R3<br>1,U3,R2,R3<br>1,R2,R3<br>1,R2,R3<br>1,R2,R3 | 3                |          |          |

```
ADD=34 DOF=U1,R2,R3
  ADD=35 DOF=U1,U3,R2,R3
PATTERN
 NAME=TEMP
 NAME=PRES
  NAME=1FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=2FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=3FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=4FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=5FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=6FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=7FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=8FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=9FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=10FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=11FR IDES=N
    T=0 E=206000000 U=0.0 A=0
  NAME=12FR IDES=N
    T=0 E=206000000 U=0.0 A=0
 NAME=STEEL IDES=S M=7.8271 W=76.81954
T=0 E=1.99948E+08 U=.3 A=.0000117
 NAME=CONC IDES=C M=2.40068 W=23.56161
T=0 E=2.482113E+07 U=.2 A=.0000099
FRAME SECTION
; Elenco MATERIALI (ST = Sezione Tipo GEOMETRICA)
  NAME=1 MAT=1FR A=0.4496 J=0 I=0.3519347,0 AS=0,0 T=1,1
                                                                   ; ST=1 (Acc+Cls BT)
  NAME=2 MAT=2FR A=0.2340 J=0 I=0.2724244,0 AS=0,0 T=1,1
                                                                   ; ST=1 (Acc+Cls LT)
  NAME=3 MAT=3FR A=0.1416 J=0 I=0.1657169,0 AS=0,0 T=1,1
                                                                   ; ST=1 (Acc+Arm)
                                                                    ; ST=1 (Solo Acc)
  NAME=4 MAT=4FR A=0.1216 J=0 I=0.1209402,0 AS=0,0 T=1,1
  NAME=5 MAT=5FR A=0.5137 J=0 I=0.4807965,0 AS=0,0 T=1,1
                                                                    ; ST=2 (Acc+Cls BT)
                                                                    ; ST=2 (Acc+Cls LT)
  NAME=6 MAT=6FR A=0.2981 J=0 I=0.3594915,0 AS=0,0 T=1,1
  NAME=7 MAT=7FR A=0.2057 J=0 I=0.2306857,0 AS=0,0 T=1,1
                                                                    ; ST=2 (Acc+Arm)
                                                                   ; ST=2 (Solo Acc)
  {\tt NAME=8\ MAT=8FR\ A=0.1857\ J=0\ I=0.1855619,0\ AS=0,0\ T=1,1}
 NAME=9 MAT=9FR A=0.6202 J=0 I=0.6687209.0 AS=0.0 T=1.1
                                                                   ; ST=3 (Acc+Cls BT)
  NAME=10 MAT=10FR A=0.4046 J=0 I=0.5048040,0 AS=0,0 T=1,1
                                                                     ; ST=3 (Acc+Cls LT)
  NAME=11 MAT=11FR A=0.3122 J=0 I=0.3659165,0 AS=0,0 T=1,1
                                                                     ; ST=3 (Acc+Arm)
  NAME=12 MAT=12FR A=0.2784 J=0 I=0.2914210,0 AS=0,0 T=1,1
                                                                     ; ST=3 (Solo Acc)
FRAME
; Elenco ASTE (L = Lunghezza; ST = Sezione Tipo GEOMETRICA)

1 J=1.2 SEC=1 NSEG=5 ANG=0 ; L=10,00 - ST=1 (Acc+Cls BT) - q=13,55
                                          ; L=18,00 - ST=1 (Acc+Cls BT) - q=13,55
     J=2,3 SEC=1 NSEG=9 ANG=0
                                          ; L=8,00 - ST=2 (Acc+Cls BT) - q=18,58
     J = 3, 4
             SEC=5
                     NSEG=4 ANG=0
                                          ; L=2,00 - ST=2 (Acc+Arm) - q=18,58
     J=4,5 SEC=7 NSEG=1 ANG=0
                                          ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
             SEC=11 NSEG=2 ANG=0
     J=5,6
             SEC=11 NSEG=2 ANG=0
  б
     J=6,7
                                           ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
                                         ; L=5,00 - ST=2 (Acc+Arm) - q=25,85

; L=2,00 - ST=2 (Acc+Arm) - q=18,58

; L=8,00 - ST=2 (Acc+Cls BT) - q=18,58

; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55

; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55

; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
     J=7,8 SEC=7 NSEG=1 ANG=0
  8
     J=8,9 SEC=5 NSEG=4 ANG=0
     J=9,10 SEC=1 NSEG=2 ANG=0
  10 J=10,11 SEC=1 NSEG=2 ANG=0
  11 J=11,12 SEC=1 NSEG=2 ANG=0
  12 J=12,13 SEC=5
                        NSEG=4
                                  ANG=0
                                             ; L=7,00 - ST=2 (Acc+Cls BT) - q=18,58
                                             ; L=3,00 - ST=2 (Acc+Arm) - q=18,58

; L=5,00 - ST=3 (Acc+Arm) - q=25,85

; L=5,00 - ST=3 (Acc+Arm) - q=25,85

; L=2,00 - ST=2 (Acc+Arm) - q=18,58

; L=8,00 - ST=2 (Acc+Cls BT) - q=18,58
  13
      J=13,14 SEC=7 NSEG=2 ANG=0
  14
      J=14,15 SEC=11 NSEG=2 ANG=0
 15 J=15,16
                SEC=11 NSEG=2 ANG=0
                SEC=7 NSEG=1 ANG=0
  16
      J=16,17
      J=17,18
  17
                SEC=5
                        NSEG=4
                                  ANG=0
                                             ; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
                                  ANG=0
  18
     J=18,19
                SEC=1
                        NSEG=2
      J=19,20
                SEC=1
                        NSEG=2
                                  ANG=0
                        NSEG=2
  20
      J=20,21
                SEC=1
                                  ANG=0
                                              ; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
                                             ; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
  21
      J=21,22
                SEC=1
                        NSEG=2 ANG=0
  22 J=22,23
                SEC=1
                        NSEG=2 ANG=0
  23
     J=23.24
                SEC=1
                        NSEG=2 ANG=0
      J=24,25
                                              ; L=8,00 - ST=2 (Acc+Cls BT) - q=18,58
                SEC=5
                        NSEG=4
                                 ANG=0
                SEC=7 NSEG=1 ANG=0
                                              ; L=2,00 - ST=2 (Acc+Arm) - q=18,58
  25 J=25,26
     J=26,27 SEC=11 NSEG=2 ANG=0
                                              ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
      J=27,28
                SEC=11 NSEG=2 ANG=0
                                               ; L=5,00 - ST=3 (Acc+Arm) - q=25,85
```

ADD=32 DOF=U1,R2,R3 ADD=33 DOF=U1,R2,R3

```
; L=3,00 - ST=2 (Acc+Arm) - q=18,58
; L=7,00 - ST=2 (Acc+Cls BT) - q=18,58
; L=5,00 - ST=1 (Acc+Cls BT) - q=13,55
  28 J=28,29 SEC=7 NSEG=2 ANG=0
  29
      J=29,30 SEC=5 NSEG=4 ANG=0
      J=30,31 SEC=1
                            NSEG=2
                                      ANG=0
      J=31,32
                  SEC=1
                            NSEG=2
                                      ANG=0
  32 J=32,33 SEC=1 NSEG=2 ANG=0
  33 J=33,34 SEC=1 NSEG=2 ANG=0
34 J=34,35 SEC=1 NSEG=2 ANG=0
; Elenco CARICHI
LOAD
  NAME=1
     TYPE=DISTRIBUTED SPAN
       ADD=1 RD=0,1 U2=-13.55,-13.55
ADD=2 RD=0,1 U2=-13.55,-13.55
ADD=3 RD=0,1 U2=-18.58,-18.58
       ADD=4 RD=0,1 U2=-18.58,-18.58
       ADD=5 RD=0,1 U2=-25.85,-25.85
       ADD=6 RD=0,1 U2=-25.85,-25.85
       ADD=7 RD=0,1 U2=-18.58,-18.58
       ADD=8 RD=0,1 U2=-18.58,-18.58
       ADD=9 RD=0,1 U2=-13.55,-13.55
ADD=10 RD=0,1 U2=-13.55,-13.55
ADD=11 RD=0,1 U2=-13.55,-13.55
       ADD=12 RD=0,1 U2=-18.58,-18.58
       ADD=13 RD=0,1 U2=-18.58,-18.58
       ADD=14 RD=0,1 U2=-25.85,-25.85
       ADD=15 RD=0,1 U2=-25.85,-25.85
ADD=16 RD=0,1 U2=-18.58,-18.58
       ADD=17 RD=0,1 U2=-18.58,-18.58
ADD=18 RD=0,1 U2=-13.55,-13.55
       ADD=19 RD=0,1 U2=-13.55,-13.55
       ADD=20 RD=0,1 U2=-13.55,-13.55
       ADD=21 RD=0,1 U2=-13.55,-13.55
       ADD=22 RD=0,1 U2=-13.55,-13.55
       ADD=23 RD=0,1 U2=-13.55,-13.55
       ADD=24 RD=0,1 U2=-18.58,-18.58
       ADD=25 RD=0,1 U2=-18.58,-18.58
       ADD=26 RD=0,1 U2=-25.85,-25.85
       ADD=27 RD=0,1 U2=-25.85,-25.85
       ADD=28 RD=0,1 U2=-18.58,-18.58
       ADD=29 RD=0,1 U2=-18.58,-18.58
       ADD=30 RD=0,1 U2=-13.55,-13.55
       ADD=31 RD=0,1 U2=-13.55,-13.55
       ADD=32 RD=0,1 U2=-13.55,-13.55
ADD=33 RD=0,1 U2=-13.55,-13.55
       ADD=34 RD=0,1 U2=-13.55,-13.55
OUTPUT
  ELEM=JOINT TYPE=DISP LOAD=1
  ELEM=JOINT TYPE=APPL LOAD=1
  ELEM=JOINT TYPE=REAC LOAD=1
  ELEM=FRAME TYPE=FORCE LOAD=1
```

61