COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:


APPALTATORE:

PROGETTAZIONE: MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RIASSETTO NODO DI BARI

TRATTA A SUD DI BARI: VARIANTE DI TRACCIATO TRA BARI CENTRALE E **BARI TORRE A MARE**

RELAZIONE TECNICO-DESCRITTIVA NV12 - Viabilità di ricucitura n° 19 e 20

APPALTATORE PROGETTAZIONE					SCALA:			
DIRETTORE TECNICO In D'Agostimo Angelo Antonio Custruzioni Generali s.r.l. DIRETTORE DELLA PROGETTAZIONE Ing. M. RASIMELLI								
(data e firma) (data e firma)								
COMMESSA	LOTTO F	ASE ENTE	TIPO DOC.	OPERA / [DISCIPLINA	PROGR.	RE\	<i>I</i> .

OPERA / DISCIPLINA

REV.

0 0 3

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/D
А	Nuova emissione in risposta a RdV: IA3S-RV-0000000068	G. De Martino	Ott. 2021	G. Di Marco	Ott. 2021	M. Rasimelli	Ott. 2021	Lifetto A. Renso
В	Revisione in risposta a RdV: IA3S-RV-0000000229	G. De Martino	Feb. 2022	G. Di Marco	Feb. 2022	M. Rasimelli	Feb. 2022	
С	Revisione in risposta a RdV: IA3S-RV-0000000423	G. De Martino	Giu. 2022	G. Di Marco	Giu. 2022	M. Rasimelli	Giu. 2022	A2413
								SE ANDRE

File: IA3S01EZZRHNV1200003C

n. Elab.

APPALTATOR D'AGOSTINO A GENERALI S.F.	ANGELO ANTONIO COSTI	RUZIONI	RIASSET	TO NO	DO DI BA	RI		
PROGETTISTA:		TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA						
Mandataria: M	landante:		BARI CENTRALE E BARI TORRE A MARE					
RPA srl T	echnital SpA HUB Engin	eering Scarl						
PROGETTO E	ESECUTIVO:		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di rio	cucitura n° 19 e 20 – Re rittiva	lazione	IA3S	01	E ZZ RH	NV1200 003	С	2 DI 44

INDICE

1	PREMESSA	3
2	SCOPO DEL DOCUMENTO	4
3	NORMATIVA DI RIFERIMENTO	5
4	INQUADRAMENTO FUNZIONALE	
5	CRITERI E CARATTERISTICHE PROGETTUALI	
6	SEZIONE TRASVERSALE	
7	ANDAMENTO PLANIMETRICO	13
. 7.1	Andamento planimetrico	
7.1 7.2	Diagramma di velocità	
	7.2.1 Lunghezza di transizione	
	7.2.2 Distanza di riconoscimento	
	7.2.3 Costruzione del diagramma delle velocità	
7.3	Verifica andamento planimetrico	
8	ANDAMENTO ALTIMETRICO	21
8.1	Verifica andamento altimetrico	22
9	ALLARGAMENTI DELLA CARREGGIATA PER ISCRIZIONE DEI VEICOLI IN CURVA	25
10	SOVRASTRUTTURA STRADALE	26
10.1	Verifica della pavimentazione stradale	27
11	BARRIERE DI SICUREZZA E RETI ANTIVANDALISMO	38
12	ACCESSI E PASSI CARRAI	
12.1	Normativa	
12.2	Caratteristiche progettuali	
12.3	Previsione del numero degli accessi e dei passi carrai	43

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 3 DI 44				

1 PREMESSA

Il progetto di Riassetto del Nodo di Bari (linea ferroviaria Bari-Lecce) nella Tratta a Sud di Bari-Variante di tracciato tra Bari Centrale e Bari Torre a Mare è caratterizzato da un tracciato che interferisce con una serie di viabilità.

Gli interventi sulle viabilità, previsti nel progetto esecutivo sviluppato, riguardano, in generale, le seguenti tipologie di intervento:

- Viabilità sostitutive dei collegamenti esistenti;
- Viabilità di ripristino dei collegamenti esistenti (con modifica planimetrica e/o altimetrica a tratti esistenti di viabilità interferenti con la linea ferroviaria);
- Viabilità di nuovo collegamento (per accesso-uscita stazioni/fermate);
- Viabilità di ricucitura dei collegamenti esistenti.

Oggetto della presente relazione è la descrizione tecnica delle viabilità di ricucitura 19 e 20, inerenti alla WBS della NV12, "Nuova Viabilità Strada San Marco (NV12)" collocata al km 8+056,74 del tracciato ferroviario di progetto RFI. Tale viabilità interferisce con una serie di viabilità interpoderali delle aree agricole del comune di Triggiano. Il contesto agrario attraversato dalla linea ferroviaria è caratterizzato attualmente dalla presenza di poche case sparse inserite in un contesto ad uso per lo più agricolo. I due interventi di progetto che interessano la NV12 – ossia le viabilità di ricucitura 19 e 20 –, sono lunghi in totale 356 metri.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
Mandataria: Mandante:	BARICENIRAL	E E BARI IOR	RE A MARE		
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTT	O CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 0°	I E ZZ RH	NV1200 003	С	4 DI 44

2 SCOPO DEL DOCUMENTO

Scopo del presente documento è la descrizione tecnica delle viabilità di ricucitura 19 e 20, inerenti alla WBS della NV12, "Nuova Viabilità Strada San Marco (NV12)" collocata al km 8+056,74, inserita nell'ambito del Progetto Definitivo della Variante di tracciato tra Bari Centrale e Bari Torre a Mare della Linea Bari-Lecce – Riassetto Nodo di Bari.

Nel seguito si riportano:

- le normative di riferimento;
- l'inquadramento funzionale;
- i criteri e le caratteristiche progettuali utilizzati;
- la descrizione della sezione trasversale;
- le caratteristiche e la verifica dell'andamento planimetrico e dell'andamento altimetrico;
- l'analisi degli allargamenti della carreggiata per iscrizione dei veicoli in curva;
- la descrizione della configurazione della sovrastruttura stradale;
- le caratteristiche delle barriere di sicurezza;

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOG	LIO			
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 5 DI	44			

3 NORMATIVA DI RIFERIMENTO

Si riporta nel seguito l'elenco delle disposizioni legislative adottate per la definizione geometrico-funzionale della viabilità.

- D. L.gs. 30/04/1992 n. 285: "Nuovo codice della strada";
- D.P.R. 16/12/1992 n. 495: "Regolamento di esecuzione e di attuazione del nuovo Codice della Strada":
- D.M. 05/11/2001: "Norme funzionali e geometriche per la costruzione delle strade";
- D.M. 22/04/2004: "Modifica del decreto 5 novembre 2001, n. 6792, recante «Norme funzionali e geometriche per la costruzione delle strade»";
- D.M. 19/04/2006: "Norme funzionali e geometriche per la costruzione delle intersezioni stradali";
- D.M. 18/02/1992: "Regolamento recante istruzioni tecniche per la progettazione l'omologazione e l'impiego delle barriere stradali di sicurezza";
- D.M. 03/06/1998: "Istruzioni tecniche sulla progettazione, omologazione ed impiego delle barriere di sicurezza stradale";
- D.M. 21/06/2004: "Aggiornamento delle istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza e le prescrizioni tecniche per le prove delle barriere di sicurezza stradale":
- Circolare Ministero delle Infrastrutture e dei Trasporti 21/07/2010: "Uniforme applicazione delle norme in materia di progettazione, omologazione e impiego dei dispositivi di ritenuta nelle costruzioni stradali":
- Direttiva Ministero LL.PP. 24.10.2000: "Direttiva sulla corretta ed uniforme applicazione delle norme del Codice della Strada in materia di segnaletica e criteri per l'installazione e la manutenzione";
- D.M. n.253 del 28/6/2011: "Disposizioni sull'uso e l'installazione dei dispositivi di ritenuta stradale";
- D.M. 1/4/2019: "Dispositivi stradali di sicurezza per i motociclisti (DSM)";
- Bollettino Ufficiale C.N.R. n.78/1980 "Norme sulle caratteristiche geometriche delle strade extraurbane"; relativamente al punto 2.2.2 Strade a destinazione particolare
- Bollettino Ufficiale C.N.R. n.60/1978 "Norme sulle caratteristiche geometriche e di traffico delle strade urbane", relativamente ai punti 3.3.4: Passi carrabili e 3.4: Organizzazione delle carreggiate parcheggio, Strade a destinazione particolare
- Bollettino Ufficiale CNR n.150/1992 "Norme sull'arredo funzionale delle strade urbane": relativamente ai punti 3.2 Segnaletica verticale, 3.3 Segnaletica orizzontale e 6. Passi carrai
- Bollettino Ufficiale C.N.R. n.90/1983 "Norme sulle caratteristiche geometriche e di traffico delle intersezioni stradali urbane" relativamente ai punti 3. Criteri generali di progettazione e 5.3 Corsie specializzate per la svolta a destra in uscita – curve tricentriche di ciglio
- Bollettino Ufficiale CNR n.178/1995 "Catalogo delle pavimentazioni stradali":
- Studio a carattere pre-normativo per gli Interventi di Adeguamento delle Strade Esistenti del 21/03/2006
- Delibera Consulta Comunale dell'Ambiente Bari n.18/2005 "Regolamento comunale del verde pubblico e privato".
- Piani Regolatori vigenti dei comuni di Bari, di Triggiano e di Noicattaro;
- Piano Paesaggistico Territoriale Regionale (PPTR) della regione Puglia adottato nel 2013;
- Linee Guida 4.4.3 "Patto città campagna: riqualificazione delle periferie e delle aree agricole periurbane" (PPTR) della regione Puglia approvato nel febbraio 2015;
- Linee Guida 4.4.5 "Qualificazione paesaggistica e ambientale delle infrastrutture viarie" (PPTR) della regione Puglia approvato nel febbraio 2015.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
PROGETTISTA:					
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 6 DI 44				

4 INQUADRAMENTO FUNZIONALE

Il contesto territoriale attraversato dalla linea ferroviaria è caratterizzato attualmente dalla presenza di poche case sparse inserite in un contesto ad uso esclusivamente agricolo. Gli interventi di ricucitura della viabilità interpoderale esistente sono inquadrati dal progetto definitivo come strade locali a destinazione particolare, secondo quanto indicato al paragrafo 3.5 del D.M. 05/11/2001. Per il suddetto decreto, "in ambito extraurbano, si tratta di strade agricole, poderali, di bonifica, consortili e vicinali (strade private fuori dai centri abitati ad uso pubblico), con transito alternato dei veicoli a vista, nelle quali le dimensioni della piattaforma vanno riferite in particolare all'ingombro dei veicoli di cui è previsto il transito".

Dato che gli interventi del progetto esecutivo delle strade di ricucitura n.19 e n.20 ricadono in un ambito territoriale extraurbano, con funzione di accesso locale ai fondi agricoli, tale attribuzione funzionale risulta giustificata. Per queste viabilità di ricucitura non sono applicabili le caratteristiche compositive e di traffico connesse all'intervallo della velocità di progetto previste dalla norma D.M. 05/11/2001 per la costruzione delle nuove strade.

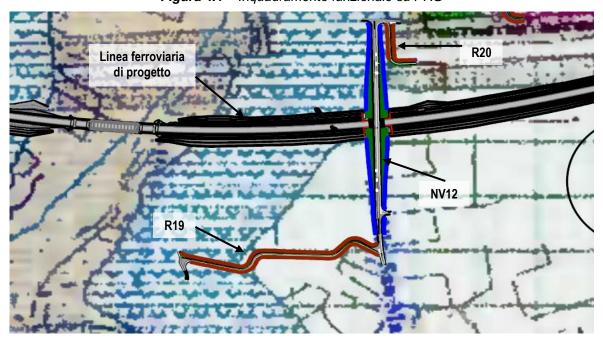


Figura 4.1 - Inquadramento funzionale su PRG

Il progetto prevede altresì opportuni accorgimenti, sia costruttivi, per permettere il transito dei veicoli nelle curve – per il transito dei veicoli che procedono in senso opposto e per il sorpasso di veicoli fermi sul limite stradale –, sia di segnaletica, per il contenimento della velocità di marcia del veicolo isolato e per la regolazione delle precedenze sull'unica corsia di marcia, nelle intersezioni e in corrispondenza degli accessi carrabili¹.

¹ Tali aspetti progettuali rivestiranno un'importanza rilevante sulla successiva manutenzione dell'opera stradale privata ad uso pubblico (senza cancello sul varco di collegamento alle strade comunali e senza onere di tasse di alcun genere per il passo carraio). In particolare, la manutenzione della strada vicinale sia ordinaria (pulizia e chiusure delle buche stradali), sia straordinaria (ripavimentazioni, posa impianti, ecc.) deve essere effettuata dal comune o da uno dei proprietari delle aree laterali con l'obbligatorio contributo degli altri proprietari e utilizzatori. Analogamente, eventuali

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA					
PROGETTISTA:						
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE					
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 7 DI 44					

In particolare, oggetto di tale elaborato sono le viabilità 19 e 20.

Entrambe hanno il compito di permettere l'accesso ai fondi – interclusi dai rilevati della NV12 e dalla Nuova linea ferroviaria – ai proprietari e ai coltivatori dei fondi agricoli limitrofi.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 8 DI 44				

5 CRITERI E CARATTERISTICHE PROGETTUALI

Come anticipato in premessa, gli interventi di progetto – le cui lunghezze sono riportate nella tabella seguente – interessano la ricucitura della viabilità interpoderale separata dalla linea ferroviaria, dalla NV12 e dalla relativa opera di scavalco (GA06).

WBS Ricucitura L
[-] [#] [m]

NV12 19 269
20 82

Tabella 5.1 – Interventi di ricucitura di progetto

Come si chiarirà nell'ambito della descrizione della sezione trasversale (§6), per tutte le viabilità di ricucitura è stata adottata una sezione stradale di tipo C delle "Norme sulle caratteristiche geometriche delle strade extraurbane", CNR 78/1980². Tale sezione è utilizzabile per tracciati caratterizzati da volumi di traffico estremamente ridotti e tali da consentirne l'utilizzazione esclusivamente in regime di strada a senso unico alternato. Chiaramente, la sua adozione è subordinata alla realizzazione di adeguati slarghi per consentire l'incrocio dei veicoli, opportunamente ubicati in funzione delle distanze di mutuo avvistamento. In tal senso, lungo i rettifili con sufficiente sviluppo longitudinale verranno predisposte piazzole di precedenza.

Per evitare di attribuire la prevalenza a uno specifico verso di percorrenza, le piazzole lungo ciascuna strada andrebbero collocate alternandone il posizionamento in sinistra e in destra. Tuttavia, per ridurre i terreni da espropriare nel caso in cui la viabilità di rammaglio sia adiacente e parallela alla linea ferroviaria o alle relative opere di scavalco, le piazzole sono collocate sempre dal lato opposto alla nuova infrastruttura ferroviaria.

Per quanto concerne il posizionamento altimetrico delle strade di ricucitura, è stato adottato un criterio di progettazione comune: far sì che si sviluppassero mediamente 30 cm al di sopra del piano campagna. Dato che le viabilità di ricucitura nella loro totalità si inseriscono all'interno di un territorio sostanzialmente pianeggiante, questa scelta è tesa a preservarne la percorribilità della strada nell'eventualità di allagamenti localizzati, conseguenza di piogge di breve durata e forte intensità. Sempre nell'ottica della protezione idraulica delle viabilità di ricucitura vanno inquadrate anche le scelte effettuate in merito alle pendenze trasversali della piattaforma stradale nei rettifili, differenti a seconda del posizionamento planimetrico della strada di ricucitura rispetto alle nuove infrastrutture – linea ferroviaria e relative opere di scavalco stradali –. In particolare, si distinguono due macro-casi:

- la viabilità di ricucitura risulta adiacente e parallela alle nuove infrastrutture ferroviarie e stradali;
- la strada si sviluppa tra i poderi.

Nel primo caso, si è optato per una configurazione trasversale "a tetto", con un'unica pendenza trasversale del 2.5% – costante sia in rettifilo sia in curva –, rivolta verso il lato opposto all'infrastruttura ferroviaria o stradale di nuova costruzione. Ne consegue la necessità di prevedere un unico fosso di guardia drenante, il cui posizionamento rispetto alla strada è determinato in maniera univoca dalla pendenza trasversale della piattaforma stradale. Tale configurazione, oltre ad assecondare le norme di salvaguardia del corpo ferroviario (di fatto, allontanando l'acqua dal corpo ferroviario), va anche nella direzione del contenimento dei terreni da espropriare.

² Riportato nell'allegato 03.e ("Manuale di Progettazione (MDP) – Sezione III.I", alla voce "Prescrizioni Tecniche – Progettazione dell'infrastruttura", sottosezione "Specifiche tecniche: Linee – Stazioni/Impianti – Viabilità").

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
PROGETTISTA:					
Mandataria: Mandante:					
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 9 DI 44				

Di contro, per le strade che si sviluppano tra i poderi, è stata prevista una configurazione trasversale in rettifilo "a schiena" con falde inclinate al 2.5% verso l'esterno, con doppio fosso di guardia drenante.

In curva la carreggiata è inclinata verso l'interno della curva con una pendenza trasversale massima del 2.5%.

Inoltre per limitare il deflusso delle acque pluviali stradali verso i campi coltivati laterali si è ritenuto opportuno prevedere comunque una protezione idraulica su entrambi i lati della strada per le ragioni seguenti:

- il tracciato planimetrico delle viabilità di rammaglio, stabilito in sede di progettazione definitiva, non ricalca sempre quello delle curve di livello: anzi, si riscontra spesso una successione di curve destrorse e sinistrorse, determinando la circostanza che le quote di campagna più alte dalle quali proviene il ruscellamento superficiale possono trovarsi talvolta in sinistra, talaltra in destra, con cambiamenti anche repentini;
- la finalità delle canalette, considerata la natura sub-pianeggiante del territorio, piuttosto che di raccolta e recapito delle acque di versante, è principalmente quella di proteggere il corpo stradale dall'erosione localizzata;
- secondo il Regolamento comunale del verde pubblico e privato del Comune di Bari, la manutenzione ordinaria dei fossi di guardia (falciatura e pulizia) delle strade comunali e vicinali soggette a pubblico transito deve essere effettuata dai proprietari dei fondi agricoli limitrofi alla strada: il doppio fosso di guardia consente di ripartire l'onere della manutenzione della strada in parti uguali fra i frontisti⁴.

Figura 5.1 – Figura 5.2.3.a del D.M. 05/11/2001: "Norme funzionali e geometriche per la costruzione delle strade". Si evince che le strade locali a destinazione particolare, che rientrano nella categoria 'altre strade', possano essere realizzate a doppia falda.

STRADE TIPO	PIATTAFORMA	PENDENZE TRASVERSALI
A, B, D a due o piu' corsie per carreggiata	∇	
E a quattro corsie		-
altre strade	$\nabla \Box$	

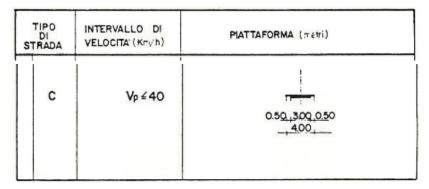
Per l'inserimento delle viabilità in oggetto in un contesto caratterizzato dai vincoli di cui sopra, è stata assunta come intervallo della velocità di progetto la velocità massima di 40 km/ora e la velocità minima di 25 km/ora.

⁴ L'art. 13 del Regolamento comunale del verde pubblico e privato – Delib. C.C. di Bari 18/2005 – recita, infatti: "Al fine di consentire il regolare deflusso delle acque, tutti i fossi devono essere sottoposti alle operazioni di manutenzione ordinaria e straordinaria da parte dei proprietari o gestori, siano essi enti pubblici e/o privati. [...] I fossi delle strade comunali e vicinali devono essere sfalciati dai frontisti."

³ Tale configurazione è contemplata dalla normativa vigente; vedasi, a tal proposito, la Figura 5.1.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.I.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
PROGETTISTA: Mandataria: Mandante:					
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 10 DI 44				

Le curve delle strade parallele al confine ferroviario ed al rilevato stradale avranno un raggio minimo in asse di 25 m e quelle comprese fra i poderi di 20 m.


Alle strade in oggetto è associata una segnaletica verticale di prescrizione del limite massimo di velocità di 30 km/h.

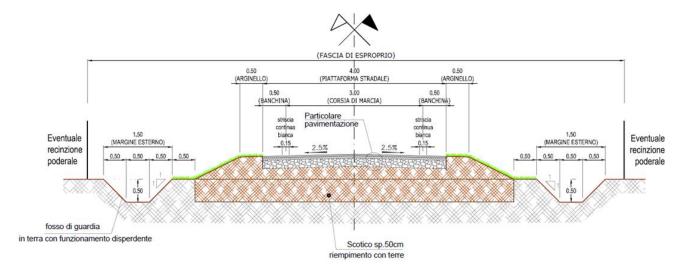
APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI					
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA					
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE					
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 11 DI 44					

6 SEZIONE TRASVERSALE

Come chiarito nell'ambito della descrizione dell'inquadramento funzionale (§4), tutte le infrastrutture stradali di ricucitura interpoderali sono inquadrate come strade locali a destinazione particolare, secondo quanto indicato nel D.M. 05/11/2001. Per tutte le viabilità di ricucitura è stata adottata una sezione stradale di tipo C delle "Norme sulle caratteristiche geometriche delle strade extraurbane", CNR 78/1980. La sezione è costituita da una carreggiata composta da una singola corsia, a transito alternato di marcia, larga 3.0 m e da banchine laterali di 0.50 m: la larghezza complessiva del nastro stradale, interamente pavimentato, è dunque pari a 4.00 m.

Figura 6.1 – Tabella 2.2.2 del Bollettino ufficiale CNR n° 78 del 28/7/1980: "Norme sulle caratteristiche geometriche delle strade extraurbane". Composizione della piattaforma stradale: strade a destinazione particolare di tipo C

Come anticipato in sede di esposizione dei criteri e delle caratteristiche progettuali (§5), a parità di composizione della piattaforma stradale, si è optato per due diverse configurazioni della sezione in termini di pendenze trasversali: la discriminante in tal senso è il posizionamento planimetrico della strada di ricucitura rispetto alle nuove infrastrutture – linea ferroviaria e relative opere di scavalco stradali.

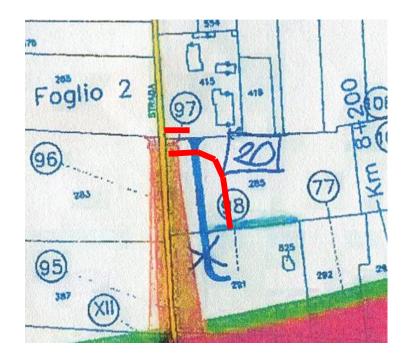

- Per le viabilità di ricucitura adiacenti e parallele alla linea ferroviaria o alle relative strade di scavalco, è prevista una configurazione "a tetto" con un'unica pendenza trasversale del 2.5% – uguale sia in rettifilo sia in curva –, rivolta verso il lato opposto alla linea ferroviaria o alla viabilità principale (NV).
- Per le strade poste fra i poderi, invece, si è optato per una conformazione "a schiena" (a doppia falda) con falde inclinate al 2.5% verso l'esterno della piattaforma stradale in rettifilo e "a tetto" verso l'interno della curva con pendenza trasversale massima al 2.5%

La pendenza unica trasversale in curva del 2.5% assicura che il dislivello del ciglio stradale esterno alla curva, rispetto al terreno considerato orizzontale, sia al massimo di 200cmx0.025=5cm. Per una quota media di progetto in asse di 30cm la quota laterale varia da 25 cm ai 35 cm compatibile per eventuali ingressi straordinari, con i mezzi agricoli, ai fondi agricoli limitrofi.

Per le ricuciture n.19 e n. 20, oggetto della presente relazione, la conformazione della piattaforma è "a schiena", non essendo le stesse adiacenti e parallele alla linea ferroviaria ed ai rilevati dei nuovi tratti necessari allo scavalco della nuova linea ferroviaria.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
PROGETTISTA:					
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnico-descrittiva	IA3S 01 E ZZ RH NV1200 003 C 12 DI 44				

Figura 6.2 – Sezione tipo ricuciture: configurazione a schiena



APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 13 DI 44				

7 ANDAMENTO PLANIMETRICO

L'andamento della strada di ricucitura n.19 ricalca fedelmente l'andamento del progetto definitivo.

L'andamento della strada di ricucitura n. 20 è invece parzialmente diverso. La presenza di una nuova area residenziale e di un nuovo passo carraio rispetto al rilievo del progetto definitivo ha costretto ad allontanare l'asse di progetto della strada di ricucitura n. 20 dall'asse dell'adeguamento NV12, portandola a 33 m. Il progetto definitivo prevedeva una distanza di 20 m. La particella catastale è la stessa.

7.1 Andamento planimetrico

L'andamento planimetrico è composto dalla successione degli elementi riportati nella tabella seguente.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 14 DI 44				

Tabella 7.1 – Andamento planimetrico della ricucitura 19

N°	Elemento	nento Pro		L	R	Coord	dinate	Azimut	Dev.
[#]	[-]			[m]	[m]	E	N	[°]	[°]
		I	0+000.00		-	2684136.70	4549977.65	102.58160	
1	Rettifilo			66.981					0
		F	0+66.981		-	2684201.97	4549962.62	102.58160	
		I	0+66.981			2684201.97	4549962.62	102.58160	
				26.050	20				-37.1851
2	Curva	F	0+93.031			2684224.06	4549972.61	28.20331	
		С				2684206.46	4549982.11		
		V				2684216.83	4549959.19		
		-1	0+93.031			2684224.062	4549972.61	28.20331	
3	Rettifilo			0.013	-				0
		F	0+93.044			2684244.07	4549972.62	28.20331	
		I	0+93.044			2684244.07	4549972.62	28.20331	
				22.152	20				31.435
4	Curva	F	0+115.196			2684242.30	4549983.12	91.48139	
		С				2684241.67	4549963.13		
		V				2684229.94	4549983.51		
		I	0+115.196			2684242.30	4549983.12	91.48139	
5	Rettifilo			75.565	-				0
		F	0+190.761			2684317.83	4549980.74	91.48139	
		I	0+190.761			2684317.83	4549980.74	91.48139	
				16.240	20				-23.1544
6	Curva	F	0+207.001			2684332.53	4549986.52	45.16453	
		С				2684318.46	4550000.73		
		V				2684326.42	4549980.47		
		I	0+207.001			2684332.53	4549986.52	45.16453	
7	Rettifilo			8.998	-				0
		F	0+216.000			2684338.92	4549992.85	45.16453	
		I	0+216.000			2684338.92	4549992.85	45.16453	
				26.133	20				37.2557
8	Curva	F	0+242.132			2684363.04	4549995.93	120.08388	
		С				2684352.10	4549978.64		
		V				2684349.80	4550003.62		
	_ ,	I	0+242.132	00.015		2684363.04	4549995.93	120.08388	_
9	Rettifilo	_	0.000 774	26.642	-	0004000 00	4E40000 EE	400.00000	0
		F	0+268.774			2684386.08	4549982.55	120.08388	

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA				
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 15 DI 44				

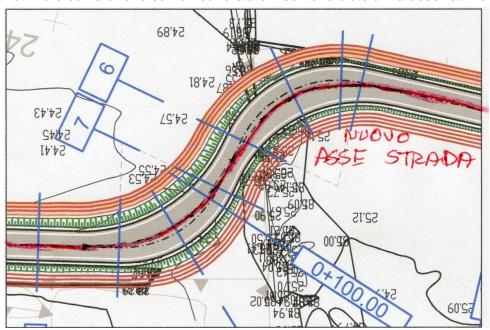
Tabella 7.2 – Andamento planimetrico della ricucitura 20

N°	Elemento		Prog.	L	R	Coordinate		Azimut	Dev.
[#]	[-]			[m]	[m]	E	N	[°]	[°]
		I	0+000.00		-	2684373.06	4550301.43	88.47136	
1	Rettifilo			16.551					0
		F	0+16.551		-	2684389.60	4550301.78	88.47136	
		I	0+16.551			2684389.60	4550301.78	88.47136	
				31.416	20				45.0000
2	Curva	F	0+47.967			2684410.02	4550282.21	178.47137	
		С				2684390.03	4550281.78		
		V				26844409.60	4550302.20		
		I	0+47.967			2684410.02	4550282.21	178.47137	
3	Rettifilo			34.463	-				0
		F	0+82.430			2684410.75	4550247.75	178.47137	

Fra rettifilo e curve circolari non sono state inserite, in asse strada, curve di transizioni di tipo quadratico (clotoidi) ma solo curve di transizione di tipo lineare delle linee del margine interno della corsia per raccordare la linea di margine in rettifilo con quella interna della curva ove è presente l'allargamento della corsia di 3.00m.

La motivazione di questa scelta nasce dalla necessità di interferire il meno possibile con le attività agricole limitrofe ad inizio e fine tratto (ove le strade poderali esistenti sono più strette della strada di progetto) e di far rimanere il tracciato stradale del progetto esecutivo all'interno delle aree di esproprio previste dal progetto definitivo (il tracciato stradale con le clotoidi e le curve da normativa stradale si sarebbe allontanato troppo dall'area degli espropri già previsti e avrebbe comportato o un allargamento o una variazione degli espropri del progetto definitivo).

Le norme stradali del 2001 non prescrivono curve di transizioni in asse strada tra rettifili e curve per le strade a destinazione particolare dove la carreggiata è composta da una unica corsia, con senso unico alternato di marcia.


Le Norme 2001 prescrivono invece elementi geometrici di transizione per la linea di margine interno fra rettifilo e curva quando vi è la necessità di allargare la corsia di 3.00m nelle curve strette (per permettere il transito dei veicoli merci). Tali elementi, posti a cavallo fra rettifilo e curva, sono lunghi complessivamente almeno 15m, con almeno 7.5m nel rettifilo ed almeno 7.5m in curva. L'allargamento della corsia lungo la linea del margine interno della curva avviene in modo proporzionale alla lunghezza del tratto di 15m.

Il nuovo asse stradale che ne consegue, nel tratto fra rettifilo e curva, diventa una curva di transizione con andamento lineare e non con andamento quadrato come nel caso delle clotoidi.

Nel caso si fossero adottate clotoidi da normativa, per curve con velocità di progetto variabile fra 25 e 40 km/ora, il distanziamento in asse fra curva e rettifilo sarebbe stato massimo di 30cm con una lunghezza della curva di transizione di circa 20m, lunghezza analoga alla curva di transizione lineare di 15m del nuovo asse stradale fra rettifilo e curva.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
Mandataria: Mandante:					
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 16 DI 44				

Nella figura sottostante (riferita alla ricucitura 19) si legge l'allargamento in curva della unica corsia di marcia nel flesso fra le due curve contrapposte. Come si nota il nuovo asse stradale presenta un raccordo di transizione fra rettifilo e curva anche se non sono state inserite le clotoidi fra asse rettifilo ed asse curva.

La variazione della pendenza trasversale della piattaforma stradale fra rettifilo e curva avviene interamente nel rettifilo prima e dopo la curva.

7.2 Diagramma di velocità

Il D.M. 05/11/2001, "Norme funzionali e geometriche per la costruzione delle strade", definisce il diagramma delle velocità come la rappresentazione grafica delle velocità di progetto in funzione della progressiva dell'asse stradale. Tale diagramma va costruito sulla base del solo andamento planimetrico del tracciato, determinando la velocità di progetto corrispondente a ciascuno dei suoi elementi: in tal senso, si assume che le pendenze longitudinali non influenzino la velocità di progetto.

Il modello semplificato di variazione della velocità lungo il tracciato, utilizzato per la costruzione del diagramma di velocità si basa, poi, sulle seguenti ipotesi:

- in rettifilo la velocità di progetto tende al limite superiore dell'intervallo della velocità di progetto; gli spazi di accelerazione conseguenti all'uscita da una curva circolare e quelli di decelerazione per l'ingresso a detta curva, o dai tratti di inizio e fine dei tratti stradali in adeguamento, ricadono soltanto negli elementi considerati;
- i valori dell'accelerazione e della decelerazione si considerano pari a $0.8 m/s^2$.

7.2.1 Lunghezza di transizione

La lunghezza di transizione D_T è la lunghezza in cui la velocità, conformemente al modello teorico ammesso, passa dal valore V_{p1} a quello V_{p2} , competenti a due elementi che si succedono. Tale lunghezza, espressa in metri, si calcola:

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI				
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE				
	DANI CENTRALE E DANI TORRE A MARE				
RPA srl Technital SpA HUB Engineering Scarl					
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 17 DI 44				

$$D_T = \frac{\Delta V \cdot V_m}{12.96a}$$

ove ΔV è la differenza tra le velocità V_{p1} e V_{p2} , V_m è la velocità media tra i due elementi e a è l'accelerazione o la decelerazione che si assume pari a $\pm 0.8 \ m/s^2$.

7.2.2 Distanza di riconoscimento

Per distanza di riconoscimento D_r s'intende la lunghezza massima del tratto di strada entro il quale il conducente può riconoscere eventuali ostacoli e avvenimenti. Dipende dalla velocità e può essere calcolata banalmente in metri con la relazione:

$$D_r = t \cdot V_p$$

con $t=12\ s$ e v_p espressa in m/s (da intendersi riferita all'elemento di raggio maggiore).

Secondo questo modello, l'apprezzamento di una variazione di curvatura dell'asse – che consente al conducente di modificare la sua velocità – può avvenire solo all'interno della distanza di riconoscimento. Quindi, per garantire la sicurezza della circolazione in caso di decelerazioni, la distanza di transizione D_T deve avere una lunghezza non superiore alla distanza di riconoscimento:

$$D_T \leq D_r$$

In ogni caso, perché la variazione di curvatura sia effettivamente percepita, la distanza di transizione deve comunque essere minore della distanza di visuale libera nel tratto che precede la curva circolare.

Le lunghezze di transizioni e le distanze di riconoscimento che saranno utilizzate nell'intervento delle strade di ricucitura sono:

	Velocità	Lunghezza di transizione	Distanza di riconoscimento	
V_{p1}	V_{p2}	V_m	D_T	D_r per V_{p1}
(Km/ora)	(Km/ora)	(Km/ora)	(m)	(m)
40	30	35	33.75	133
40	25	32.5	47.02	133
40	10(accesso)	25	72.34	133
40	0 (Stop)	20	77.16	133
30	25	27.5	13.26	100
30	20	25	24.11	100
30	10(accesso)	20	38.58	100
30	0 (Stop)	15	43.40	100
25	10(accesso)	17.5	25.32	83
25	0 (Stop)	12.5	30.14	83

La velocità nell'intersezione regolata da Stop è pari a 0 (zero), quella agli accessi agrari di 10 km/ora e quella nelle intersezioni a precedenza, nelle rotatorie e nelle strade poderali di 30km/ora

APPALTAT D'AGOSTIN GENERALI	O ANGELO ANT	ONIO COSTRUZIONI	RIASSETTO NODO DI BARI					
PROGETTISTA:			TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA					
Mandataria:	Mandante:		BARI CENTRALE E BARI TORRE A MARE					
RPA srl	Technital SpA	HUB Engineering Scarl						
PROGETTO	O ESECUTIVO	:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica			IA3S	01	E ZZ RH	NV1200 003	С	18 DI 44

7.2.3 Costruzione del diagramma delle velocità

Per chiarezza operativa, è opportuno partire dal diagramma delle curvature dell'asse stradale, associandolo alle velocità di progetto nei tratti a curvatura costante. In seguito si individuano i punti di inizio delle manovre di accelerazione e quelli finali per le decelerazioni. Il diagramma delle velocità si ottiene, così, riportando le distanze di transizione D_T relative alle manovre di accelerazione o decelerazione dai rispettivi punti di inizio o di fine.

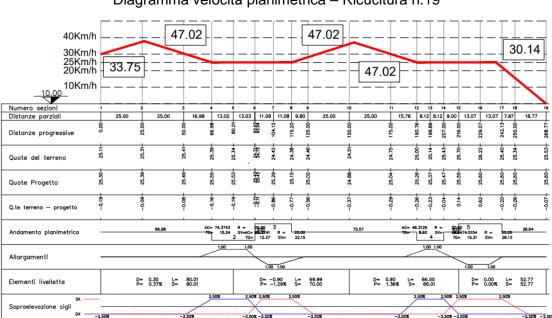
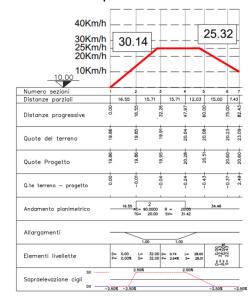



Diagramma velocità planimetrica - Ricucitura n.19

Diagramma velocità planimetrica – Ricucitura n.20

APPALTAT D'AGOSTING GENERALI	O ANGELO ANT	ONIO COSTRUZIONI	RIASSET	TO NOI	DO DI BA	RI					
PROGETTI			TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA								
Mandataria:	<u>Mandante:</u>		BARI CENT	RALEE	BARI TOR	RE A MARE					
RPA srl	Technital SpA	HUB Engineering Scarl									
PROGETTO	O ESECUTIVO:		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Viabilità di tecnica	ricucitura n° 1	9 e 20 – Relazione	IA3S	01	E ZZ RH	NV1200 003	С	19 DI 44			

7.3 Verifica andamento planimetrico

La verifica delle distanze di visuale libera è stata condotta verificando che lungo le curve circolari sia garantita la distanza di visuale libera richiesta per l'arresto alla velocità di percorrenza della strada ricavata dal diagramma di velocità.

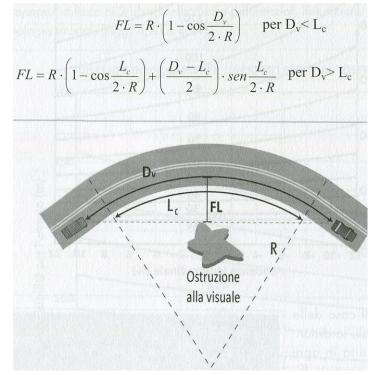
Tali velocità sono state ricavate dal diagramma di velocità riportato nei singoli profili stradali.

Verifica visibilità planimetrica nelle curve - Ricucitura 19 Allarga Altezza Distanza Franco Franco Franco Rilevato rete/barrie. mento Laterale min FL1 min FL2 Dv1 Dv2 Curva R i med Da Lc Conformità al m km/ora [-] % m m m m Da<Lc Da>Lc Da<Lc Da>Lc D.M. 05/11/2001 m 2 20 0,52 -0,46 22,52 26,05 1 0,2 5 6,3 3,09 32 VERIFICATO 4 20 25 0,52 -1,29 22,60 22,15 1 0,8 5 7,2 3,11 38 **VERIFICATO** 0,52 6 20 25 -1,36 16,24 0,2 2,88 40 **VERIFICATO** 22,61 6,3 8 20 25 0,52 0,00 22,48 26,13 1 5 6 3,08 32 **VERIFICATO**

Tabella 7.3 - Verifica distanze di visuale libera in curva

					Veri	fica visil	oilità p	lanimet	rica nelle	curve - F	Ricucitur	a 20			
							Allarga	Altezza	Distanza	Franco	Franco	Franco			
Curva	R	V	fe	i med	Da	Lc	mento	Rilevato	rete/barrie.	Laterale	min FL1	min FL2	Dv1	Dv2	Conformità al
	m	km/ora [-] % m m m m m m Da <lc da="">Lc Da>Lc Da>Lc Da>Lc D.M. 05</lc>									D.M. 05/11/2001				
2	2 20 25 0,52 -1,32 22,61 31,42 1 0,1 5 6,15 3,11 - 32 - VERIFICATO														

ove la notazione utilizzata in tabella è la seguente:


- R- raggio della curva in asse alla corsia/carreggiata per le strade di ricucitura
- V velocità di progetto o valore del diagramma delle velocità di percorrenza;
- f_e coefficiente d'attrito equivalente;

Valori de	el coeff	iciente	equiva	lente					
V km/ora	20	30	40	50	60	70	80	90	100
f_e	0.53	0.51	0.48	0.46	0.43	0.40	0.38	0.36	0.35

- imed pendenza longitudinale (in discesa valori negativi);
- D_A distanza di visuale libera richiesta per l'arresto; DA=0.78*V-0.0028*V²+V²/(254*(fe+i))
- *Lc* Sviluppo longitudinale della curva;
- Ead − Allargamento della corsia;
- altezza rilevato altezza media del progetto dal piano di campagna (larghezza rilevato =altezzax3/2)
- Distanza rete o barriera distanza in rettifilo tra l'asse della corsia e la rete sul limite della proprietà agricola nelle strade interpoderali (5.00m=1.50metà corsia + 0.50banchina + 0.50arginello + 2.50fosso drenante) o la barriera di sicurezza poste nelle strade parallele alla ferrovia (2.00m=1.50metà corsia + 0.50banchina) (unici due ostacoli alla visibilità nelle strade di ricucitura);

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE
RPA srl Technital SpA HUB Engineering Scarl	
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 20 DI 44

- Franco Laterale Franco laterale disponibile (Somma della distanza in rettifilo fra asse corsia e rete/barriera + allargamento + larghezza del rilevato)
- Fl1 Franco libero minimo necessario nel caso in cui Da<Lc
- Fl2 -Franco libero minimo necessario nel caso in cui Da>Lc
- D_{V1} distanza di visuale libera disponibile lungo la curva nel caso in cui Da<Lc
- D_{V2} distanza di visuale libera disponibile lungo la curva nel caso in cui Da>Lc.

Dalla tabella si evince che, risultando $D_V > D_A$ la verifica è soddisfatta.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSET	TO NO	DO DI BA	RI						
PROGETTISTA:	TRATTA A	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA								
Mandataria: Mandante:	BARI CENT	RALE E	BARI TOR	RE A MARE						
RPA srl Technital SpA HUB Engineering Scarl										
PROGETTO ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S	01	E ZZ RH	NV1200 003	С	21 DI 44				

8 ANDAMENTO ALTIMETRICO

Come accennato nell'ambito della descrizione dei criteri e delle caratteristiche progettuali (§5), le viabilità di ricucitura sono state concepite con una quota di progetto collocata mediamente 30 cm al di sopra del piano di campagna. Giacché le strade di rammaglio interessano un territorio sub-pianeggiante, questa scelta è tesa a consentire un rapido e sicuro accesso a fondi laterali e per poter costruire il pacchetto stradale al di fuori di un eventuale ruscellamento naturale delle acque pluviali.

Sulla base di questo criterio generale, per le viabilità di ricucitura oggetto di studio si profilano gli andamenti altimetrici definiti dalle seguenti tabelle sinottiche:

Tabella 8.1 – Andamento altimetrico ricucitura 19

	LIVELLETTA	Distanza:	80.01	Sviluppo:	80.01	Diff.Qt.:	0.30	Pendenza [%]:	0.37%
1	ESTREMI LIVELLETTE	Prog.1	0+000.00	Quota 1	25.30	Prog.2	0+063.40	Quota 2	25.54
	VERTICI LIVELLETTE	Prog.1	0+000.00	Quota 1	25.30	Prog.2	0+066.98	Quota 2	25.60
	PARABOLA	Distanza:	33.22	Sviluppo:	33.22	Raggio:	2000	Tangente:	16.61
4.0		Freccia:	-0.07	Raccordo:	convesso				
1-2	ESTREMI	Prog.1	0+063.40	Quota 1	25.54	Prog.2	0+096.62	Quota 2	25.39
	VERTICE	Prog	0+080.01	Quota	25.60				
	LIVELLETTA	Distanza:	69.99	Sviluppo:	70.00	Diff.Qt.:	-0.90	Pendenza [%]:	-1.29%
2	ESTREMI LIVELLETTE	Prog.1	0+096.62	Quota 1	25.39	Prog.2	0+123.51	Quota 2	25.04
	VERTICI LIVELLETTE	Prog.1	0+080.01	Quota 1	25.53	Prog.2	0+150.00	Quota 2	24.88
	PARABOLA	Distanza:	52.99	Sviluppo:	52.99	Raggio:	1500	Tangente:	26.50
2-3		Freccia:	0.18	Raccordo:	concavo				
2-3	ESTREMI	Prog.1	0+123.51	Quota 1	25.04	Prog.2	0+176.49	Quota 2	25.06
	VERTICE	Prog	0+150.00	Quota	24.88				
	LIVELLETTA	Distanza:	66.00	Sviluppo:	66.01	Diff.Qt.:	090	Pendenza [%]:	1.36%
3	ESTREMI LIVELLETTE	Prog.1	0+176.49	Quota 1	25.06	Prog.2	0+202.37	Quota 2	25.41
	VERTICI LIVELLETTE	Prog.1	0+150.00	Quota 1	24.70	Prog.2	0+216.00	Quota 2	25.60
	PARABOLA	Distanza:	27.27	Sviluppo:	27.27	Raggio:	2000	Tangente:	13.64
3-4		Freccia:	-0.05	Raccordo:	convesso				
3-4	ESTREMI	Prog.1	0+202.37	Quota 1	25.41	Prog.2	0+229.64	Quota 2	25.60
	VERTICE	Prog	0+216.00	Quota	25.60				
	LIVELLETTA	Distanza:	52.77	Sviluppo:	52.77	Diff.Qt.:	0.00	Pendenza [%]:	0.00%
4	ESTREMI LIVELLETTE	Prog.1	0+229.64	Quota 1	25.60	Prog.2	0+268.77	Quota 2	25.60
	VERTICI LIVELLETTE	Prog.1	0+216.00	Quota 1	25.60	Prog.2	0+268.77	Quota 2	25.60

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSET	TO NO	DO DI BA	RI							
PROGETTISTA:	TRATTA A	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA									
Mandataria: Mandante:	BARI CENT	RALE E	BARI TOR	RE A MARE							
RPA srl Technital SpA HUB Engineering Scarl											
PROGETTO ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S	01	E ZZ RH	NV1200 003	С	22 DI 44					

Tabella 8.2 – Andamento altimetrico ricucitura 20

	LIVELLETTA	Distanza:	32.00	Sviluppo:	32.00	Diff.Qt.:	0.00	Pendenza [%]:	0.00%
1	ESTREMI LIVELLETTE	Prog.1	0+000.00	Quota 1	19.86	Prog.2	0+018.79	Quota 2	19.86
	VERTICI LIVELLETTE	Prog.1	0+000.00	Quota 1	19.86	Prog.2	0+032.00	Quota 2	19.86
	PARABOLA	Distanza:	26.43	Sviluppo:	26.43	Raggio:	1000	Tangente:	13.21
1-2		Freccia:	0.09	Raccordo:	concavo				
1-2	ESTREMI	Prog.1	0+018.79	Quota 1	19.86	Prog.2	0+045.21	Quota 2	20.21
	VERTICE	Prog	0+032.26	Quota	19.95				
	LIVELLETTA	Distanza:	28.00	Sviluppo:	28.01	Diff.Qt.:	0.74	Pendenza [%]:	2.64%
2	ESTREMI LIVELLETTE	Prog.1	0+045.21	Quota 1	20.21	Prog.2	0+046.79	Quota 2	20.25
	VERTICI LIVELLETTE	Prog.1	0+032.26	Quota 1	19.86	Prog.2	0+060.00	Quota 2	20.60
	PARABOLA	Distanza:	26.43	Sviluppo:	26.43	Raggio:	1000	Tangente:	13.22
2-3		Freccia:	-0.09	Raccordo:	convesso				
2-3	ESTREMI	Prog.1	0+046.79	Quota 1	20.25	Prog.2	0+073.21	Quota 2	20.60
	VERTICE	Prog	0+060.00	Quota	20.51				
	LIVELLETTA	Distanza:	22.43	Sviluppo:	22.43	Diff.Qt.:	0	Pendenza [%]:	0.00%
3	ESTREMI LIVELLETTE	Prog.1	0+073.21	Quota 1	20.60	Prog.2	0+082.43	Quota 2	20.60
	VERTICI LIVELLETTE	Prog.1	0+060.00	Quota 1	20.60	Prog.2	0+082.43	Quota 2	20.60

8.1 Verifica andamento altimetrico

La verifica di conformità alle prescrizioni del D.M. 05/11/2001 dell'andamento altimetrico della ricucitura 19 e 20 è riportata nelle tabelle che seguono.

Assumendo come velocità di verifica le velocità di percorrenza lette nei diagrammi di velocità, le verifiche dell'andamento altimetrico sono da considerarsi valide per entrambi i versi di marcia. Del resto, gli unici dati che, in teoria, varierebbero nei due sensi di marcia sono la distanza d'arresto D_A e il segno della differenza Δi tra le pendenze delle livellette a monte e a valle del raccordo: $\Delta i = i_2 - i_1$

La distanza d'arresto è computata in funzione della pendenza media i_{med} delle due livellette convergenti nel raccordo. Per i calcoli riportati nelle tabelle seguenti si adotta sempre il modulo negativo di Δi , per avere una distanza di arresto del veicolo maggiore (marcia in discesa).

Ricucitura n.19

Tabella 8.3 – Verifiche raccordo 1-2 (convesso)

			Ric	cucitura 1	9- Verific	a comfo	rt e visil	bilità per	l'arresto n	el raccord	o convesso	1-2		
V	V fe pend1 pend2 i med Da Δi Rv Lr Rcomfort Rvmin1 Rvmin2 Dv1 Dv2 Conformità al													
km/ora	[-]	%	%	%	m	%	m	m	m	Da <l< td=""><td>Da>L</td><td>Da<l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<></td></l<>	Da>L	Da <l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<>	Da>L	D.M. 05/11/2001
25	25 0,52 0,37 -1,29 -0,46 22,52 1,66 2000 33,20 81 136 - 86,33 - sì													

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE
RPA srl Technital SpA HUB Engineering Scarl	
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 23 DI 44

Tabella 8.4 – Verifiche raccordo 2-3 (concavo)

			Ric	Ricucitura 19 - Verifica comfort e visibilità per l'arresto nel raccordo concavo 2-3													
V	V fe pend1 pend2 i med Da Δi Rv Lr Rcomfort Rvmin1 Rvmin2 Dv1 Dv2 Conformità al																
km/ora	[-]	%	%	%	m	%	m	m	m	Da <l< td=""><td>Da>L</td><td>Da<l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<></td></l<>	Da>L	Da <l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<>	Da>L	D.M. 05/11/2001			
40	0,48	-1,29	1,36	-0,04	39,85	2,65	1500	39,75	206	664	qualsiasi	59,89	DF>50m	sì			

Tabella 8.5 – Verifiche raccordo 3-4 (convesso)

			Ric	cucitura 1	9- Verific	a comfo	rt e visil	oilità per	l'arresto ne	el raccordo	convesso	3-4		
V	V fe pend1 pend2 i med Da Δi Rv Lr Rcomfort Rvmin1 Rvmin2 Dv1 Dv2 Conformità al													
km/ora	[-]	%	%	%	E	%	m	m	m	Da <l< td=""><td>Da>L</td><td>Da<l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<></td></l<>	Da>L	Da <l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<>	Da>L	D.M. 05/11/2001
25	25 0,52 1,36 0 -0,68 22,54 1,36 2000 27,20 81 136 - 86,33 - sì													

Ricucitura n.20

Tabella 8.6 - Verifiche raccordo 1-2 (concavo)

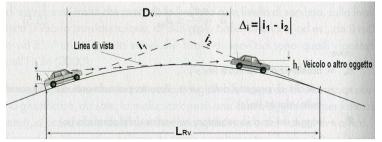
	Ricucitura 20 -Verifica comfort e visibilità per l'arresto di notte nel raccordo concavo 1-2													
V	fe	pend1	pend2	i med	Da	Δi	Rv	Lr	Rcomfort	Rvmin1	Rvmin2	Dv1	Dv2	Conformità al
km/ora	[-]	%	%	%	m	%	m	m	m	Da <lr< td=""><td>Da>Lr</td><td>Da<lr< td=""><td>Da>Lr</td><td>D.M. 05/11/2001</td></lr<></td></lr<>	Da>Lr	Da <lr< td=""><td>Da>Lr</td><td>D.M. 05/11/2001</td></lr<>	Da>Lr	D.M. 05/11/2001
25	0,52	0	2,64	-1,32	22,61	2,64	1000	26,40	81	286	-	42,30	-	sì

Tabella 8.7 – Verifiche raccordo 2-3 (convesso)

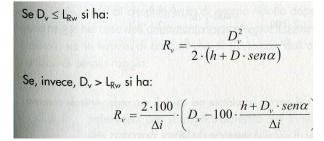
	Ricucitura 20- Verifica comfort e visibilità per l'arresto nel raccordo convesso 2-3													
V	fe	pend1	pend2	i med	Da	Δi	Rv	Lr	Rcomfort	Rvmin1	Rvmin2	Dv1	Dv2	Conformità al
km/ora	[-]	%	%	%	m	%	m	m	m	Da <l< td=""><td>Da>L</td><td>Da<l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<></td></l<>	Da>L	Da <l< td=""><td>Da>L</td><td>D.M. 05/11/2001</td></l<>	Da>L	D.M. 05/11/2001
25	0,52	2,64	0	-1,32	22,61	2,64	1000	26,40	81	137	-	61,05	-	sì

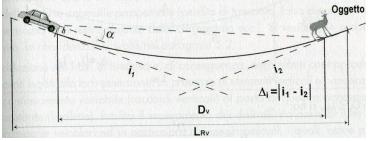
ove la notazione utilizzata in tabella è la seguente:

- *V* velocità di progetto o valore del diagramma delle velocità di percorrenza;
- f_e coefficiente d'attrito equivalente;


Valori de	Valori del coefficiente equivalente									
V km/ora	20	30	40	50	60	70	80	90	100	
f_e	0.53	0.51	0.48	0.46	0.43	0.40	0.38	0.36	0.35	

- pend1 –pendenza longitudinale prima livelletta
- pend2 –pendenza longitudinale seconda livelletta
- imed pendenza longitudinale media (in discesa valori negativi);
- D_A distanza di visuale libera richiesta per l'arresto; DA=0.78*V-0.0028*V²+V²/(254*(fe+i))
- Δi differenza Δi tra le pendenze delle livellette a monte e a valle del raccordo
- R- raggio del raccordo verticale
- *Lr* Sviluppo longitudinale del raccordo;


APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI									
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE									
RPA srl Technital SpA HUB Engineering Scarl										
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO									
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 24 DI 44									


- R_{comf} il raggio altimetrico minimo per la verifica relativa al comfort; Rcomfort=0.129xV²
- lacktriangledown R_{min,arr} 1- il raggio altimetrico minimo per assicurare una distanza di visuale libera pari a Da nel caso in cui Da<Lc
- $R_{min,arr}$ 2- il raggio altimetrico minimo per assicurare una distanza di visuale libera pari a Da nel caso in cui Da>Lc
- D_{V1} distanza di visuale libera disponibile lungo il raccordo nel caso in cui Da<Lc
- D_{V2} distanza di visuale libera disponibile lungo il raccordo nel caso in cui Da>Lc.
- Raccordi convessi (dossi) dove h₁=1.10m (occhio conducente), h₂=0.10m (ostacolo), Dv=Da

Se
$$D_{\rm v} \leq L_{\rm Rw}$$
 si ha:
$$R_{\rm v} = \frac{D_{\rm v}^2}{2\cdot\left(h_1+h_2+2\cdot\sqrt{h_1\cdot h_2}\right)}$$
 Se, invece, $D_{\rm v} > L_{\rm Rw}$ si ha:
$$R_{\rm v} = \frac{2\cdot 100}{\Delta i} \cdot \left(D_{\rm v} - 100 \cdot \frac{h_1+h_2+2\cdot\sqrt{h_1\cdot h_2}}{\Delta i}\right)$$

 Raccordi concavi (sacche) dove h₁=0.5m (altezza faro), sen 1° =0.01745 (divergenza in alto del fascio luminoso con gli abbaglianti), Dv=Da

Dalle tabelle si evince che, risultando $D_V > D_A$ la verifica è soddisfatta.

Quanto alle pendenze longitudinali delle livellette, come si evince dalle tabelle degli andamenti altimetrici, sono tutte inferiori al 10%: pertanto, sono conformi al D.M. 05/11/2001.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI									
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE									
RPA srl Technital SpA HUB Engineering Scarl										
PROGETTO ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S	01	E ZZ RH	NV1200 003	С	25 DI 44				

9 ALLARGAMENTI DELLA CARREGGIATA PER ISCRIZIONE DEI VEICOLI IN CURVA

Per la definizione dell'eventuale allargamento E della carreggiata in curva, ci si rifà a quanto prescritto dal D.M. 05/11/2001, per il quale occorre fare riferimento alla relazione $E = \frac{45}{R_e}$ ove R_e [m] è il raggio esterno della corsia.

Il raggio minimo in asse adottato per la viabilità di ricucitura n.19 e n.20 è di 20 m.

Il raggio esterno della unica corsia larga 3.00 m disponibile per i due sensi di marcia è di R_e =20+1.5=21.5 m.

L'allargamento è di E_{eff} =45/21.5= 2.09m

Le strade di ricucitura sono strade locali a destinazione particolare – all'interno delle quali ricadono "strade agricole, poderali, di bonifica, consortili e vicinali (strade private fuori dai centri abitati ad uso pubblico), con transito alternato dei veicoli a vista" in cui è poco probabile l'incrocio di due veicoli tipo trattori, autocarri, autotreni ed autoarticolati. In questo caso, è consentito ridurre il valore E_{eff} fino a dimezzarlo.

Poiché si ritiene che il transito di veicoli ingombranti – trattori, camion e furgoni – sarà piuttosto modesto sulle viabilità di ricucitura, si è ritenuto opportuno porre l'allargamento da adottare E_{ad} pari a:

$$E_{ad} = \frac{E_{eff}}{2} = 2.09/2 = 1.00 \text{ m}$$

APPALTAT D'AGOSTIN GENERALI	RIASSETTO NODO DI BARI										
PROGETTI	STA:		TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA								
Mandataria:	Mandante:	BARI CENTRALE E BARI TORRE A MARE									
RPA srl	Technital SpA	HUB Engineering Scarl									
PROGETTO	O ESECUTIVO	:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
Viabilità di tecnica	IA3S	01	E ZZ RH	NV1200 003	С	26 DI 44					

10 SOVRASTRUTTURA STRADALE

Nel progetto definitivo, per la sovrastruttura stradale è stata prevista una configurazione di spessore complessivo pari a 30 cm costituita dai seguenti strati:

Tabella 10.1 – Schematizzazione del "pacchetto" della sovrastruttura stradale del progetto definitivo

Strato	Materiale	Spessore
[-]	[-]	[cm]
usura	conglomerato bituminoso	3
binder	conglomerato bituminoso	7
fondazione	misto granulare stabilizzato	20

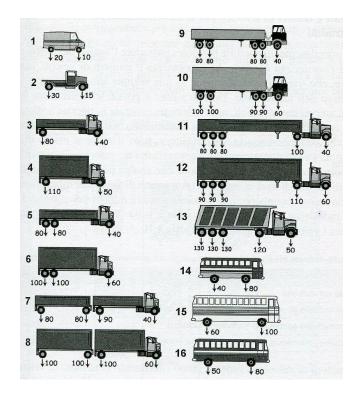
Non esistendo studi sul traffico poderale dell'area della provincia di Bari si è stimato che per le poderali di ricucitura, sia accettabile un numero massimo di 5 veicoli commerciali all'ora nelle due direzioni di marcia in transito sulla stessa corsia e che il traffico giornaliero medio dei veicoli commerciali sia pari al 50% di quello massimo (veicoli dell'ora di punta per 24 ore) e che non vi sia alcun transito di bus.

Tabella 10.2 – Passaggi di veicoli commerciali e bus > 3 t

Tipologia veicolo [-]	Max Veic./ora [veic.]	TGM [veic.]
commerciali e agricoli	5	60
bus	0	0
totale	5	60

Vista la scheda N.7F- Strade locali- del Catalogo delle Pavimentazioni Stradali, pubblicate dal CNR sul Bollettino Ufficiale anno XXIX n.178 del 15 settembre 1995, per un numero di passaggi di 400 mila veicoli commerciali > 3 t in venti anni, la pavimentazione stradale assume la configurazione riportata di seguito, caratterizzata da uno spessore complessivo di 27 cm.

Tabella 10.3 – Schematizzazione del "pacchetto" della sovrastruttura stradale del progetto esecutivo


Strato	Materiale	Spessore
[-]	[-]	[cm]
usura	conglomerato bituminoso	4
binder	conglomerato bituminoso	5
base	conglomerato bituminoso	-
fondazione	misto granulare stabilizzato	18

La composizione di traffico e frequenza utilizzato per la verifica con il metodo AASHTO delle strade di ricucitura è la seguente, in cui si è ipotizzato solo il transito di furgoni ed autocarri leggeri e pesanti:

OPERA	Composizione di traffico e frequenza – valori in percentuale																
OPERA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Tot
Strade di Ricucitura	80	10	3	3	2	2	0	0	0	0	0	0	0	0	0	0	100

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI									
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE									
RPA srl Technital SpA HUB Engineering Scarl										
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO									
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 27 DI 44									

I Tipi dei veicoli commerciali con massa superiore a 3 tonnellate previsti dal Catalogo delle pavimentazioni CNR95 sono illustrati nella tabella (il numero di assi e la distribuzione dei carichi per asse sono espressi in KN).

Il tasso di incremento dei flussi di traffico commerciale e agricolo delle strade di ricucitura per il calcolo delle pavimentazioni è stato fissato al 0.5% annuo pari ad un incremento del 10% in 20 anni.

10.1 Verifica della pavimentazione stradale

Normativa

La normativa di riferimento è di seguito riportata:

- CNR: "Norme per l'accettazione dei bitumi per usi stradali. Caratteristiche per accettazione". CNR, B.U. n. 68 del 1978;
- CNR: "Norme sulle caratteristiche geometriche e di traffico delle strade urbane". CNR, B.U. n. 60 del 1978;
- "American Association of State Highway and Transportation Official" AASTHO Guide for Design of Pavement Structures:
- CNR: "Istruzioni per la pianificazione della manutenzione stradale". CNR, B.U. n. 125 del 1988;
- CNR: "Norme sugli aggregati: criteri e requisiti di accettazione degli aggregati impiegati nelle sovrastrutture stradali". CNR, B.U. n. 139 del 1992;
- Decreto legislativo del 30-04-92 n. 285 e successive modificazioni: "Nuovo codice della strada";
- CNR: "Catalogo delle pavimentazioni stradali" B.U. n. 178 del 1995.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.I.	RIASSETTO NODO DI BARI									
PROGETTISTA: <u>Mandataria:</u> <u>Mandante:</u>	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE									
RPA srl Technital SpA HUB Engineering Scarl										
PROGETTO ESECUTIVO: Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA3S 01 E ZZ RH NV1200 003 C 28 DI 44									

 Decreto Ministeriale del 5-11-2001: "Norme funzionali e geometriche per la costruzione delle strade".

Metodo AASHTO

Si è proceduto ad una verifica della sovrastruttura stradale attraverso l'algoritmo di calcolo dell' "AASHTO GUIDE FOR DESIGN OF PAVEMENT STRUCTURES" basato sui risultati dell'esperimento AASHTO.

Tale metodo empirico permette di calcolare, tramite alcune relazioni, che tengono conto delle caratteristiche meccaniche dei materiali costituenti la sovrastruttura, il numero di passaggi di assi standard del peso di 8,2 ton. che la pavimentazione può sopportare prima di raggiungere un grado di ammaloramento, cioè un livello di funzionalità inaccettabile, in relazione all'affidabilità richiesta.

Il numero ricavato è stato poi confrontato con il numero di passaggi di assi standard alla fine della "vita utile" calcolati attraverso lo spettro di traffico sopra definito.

L'obiettivo che ci si prefigge nella progettazione delle sovrastrutture è quello di assicurare attraverso normali operazioni di manutenzione un livello minimo di funzionalità per un prefissato lasso di tempo.

E' opportuno osservare che il rifacimento dello strato di usura dopo un certo numero di anni è da considerarsi come un intervento manutentivo ordinario e prevedibile al fine di assicurare le necessarie caratteristiche di aderenza nelle pavimentazioni flessibili.

Poiché, inoltre, le caratteristiche dei materiali utilizzati non si mantengono costanti nel tempo, i carichi sono dispersi per posizione ed entità, ed infine il fenomeno stesso della rottura per fatica risulta essere un fenomeno aleatorio, l'obiettivo deve essere definito in termini probabilistici.

Nel progetto delle pavimentazioni, l'obiettivo si sostanzia, quindi, attraverso la definizione di tre elementi:

- la vita utile, intesa come il numero di anni durante il quale la pavimentazione deve assicurare, attraverso normali operazioni di manutenzione, condizioni di funzionalità superiori allo stato limite, per il progetto in esame è stata posta pari a 20 anni;
- lo stato limite, cioè il livello minimo di funzionalità della sovrastruttura ritenuto accettabile, superato il quale è necessario comunque intervenire, per il metodo empirico il parametro di riferimento è il PSI;
- l'affidabilità, cioè la probabilità che la sovrastruttura sia in grado di assicurare, con normali operazioni di manutenzione, condizioni di circolazione superiori allo stato limite per l'intera durata della vita utile, per il progetto in esame è stata posta pari al 85%.

Per procedere alla progettazione ed alla verifica della sovrastruttura è necessario determinare il numero di veicoli da 8,2 tonn. per asse che possono transitare nell'arco della vita utile lungo le corsie della strada in progetto.

Il parametro di progetto del modello di calcolo delle pavimentazioni flessibile proposto dall' AASHTO è il volume di traffico di veicoli commerciali/giorno che, si prevede, transiteranno sulla sovrastruttura, definito da:

$$n_{vca} = TGM * P_{veicoli\ comm} * P_{veic.corsia+carica} * P_{senso\ marcia}$$
 [1]

dove P_{veicoli commerciali} è pari al 100% (in quanto si sta lavorando sui dati di traffico dei soli mezzi commerciali) mentre per gli altri addendi bisogna far riferimento ai seguenti valori:

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI						
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE						
RPA srl Technital SpA HUB Engineering Scarl							
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 29 DI 44						

	Percentuale di traffico per senso di marcia P _{sm}					
100%	TGM per senso di marcia					
50%	TGM totale equiripartito per senso di marcia					
70%	TGM con diverse ripartizioni stagionali					

Perc	Percentuale veic. commerciali sulla corsia di calcolo P _{corsia}					
100%	Una corsia per senso di marcia					
90%	Due corsie per senso di marcia					
70%	Tre corsie per senso di marcia					

In particolare P_{sm} assume valore 100% in quanto il T.G.M. già è calcolato per senso di marcia mentre P_{corsia} è uguale a 100%, in quanto, come già detto si ha una corsia per senso di marcia.

A questo punto è possibile calcolare T^N ovvero il numero di veicoli commerciali transitati nell'arco della vita utile N attraverso la formula [2]

$$T^N = n_{vca} \left[\frac{(1+r)^N - 1}{r} \right] * 3.65$$
 [2]

Il risultato di quanto sopra detto è sintetizzato nella tabella di calcolo 3.1.

Tab. 3.1: Numero di passaggi di veicoli commerciali nell'arco della vita utile

Dati generali											
Strada	Categoria	Tipologia	TGM	P _{vc}	R	N	n _{corsie}	R _{tc}	P_{vcc}	n _{vca}	T ^N
[-]	[-]	[-]	[veic/gg]	[%]	[%]	[anni]	[#]	[%]	[%]	[#]	[#]
RXX	Locale a dest. particolare Locale	Flessibile	60	100%	0,5%	20	1	100%	100%	21900	459.442,63

Il procedimento AASHTO consiste nel determinare il numero di assi standard (8,2 ton) che la pavimentazione può sopportare, raggiungendo un fissato grado di ammaloramento finale (PSIf).

Tale valore è funzione di vari parametri, come le caratteristiche meccaniche dei materiali, gli spessori dei vari strati della pavimentazione, portanza del sottofondo etc.

Questi assi devono essere confrontati con il traffico commerciale che si stima passerà durante la vita utile della pavimentazione sulla corsia più carica.

Poiché il traffico commerciale transitante si differenzia per il numero di assi, per il carico degli assi e per la tipologia, è necessario determinare il numero di assi standard equivalenti, ovvero il numero di assi standard che determinano lo stesso danno, alla pavimentazione, degli assi dei veicoli realmente transitanti.

Per determinare il numero di assi standard che transiteranno, è necessario stabilire preliminarmente i coefficienti di equivalenza tra ciascun asse reale e quello standard.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI					
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE					
Mandataria: Mandante:						
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 30 DI 44					

Anche questi coefficienti sono funzione di alcuni parametri, come le caratteristiche meccaniche dei materiali, gli spessori dei vari strati della pavimentazione, portanza del sottofondo.

Noti questi coefficienti, si calcola quello medio, che è funzione della composizione del traffico sulla strada in esame.

Infine per determinare il numero di assi equivalenti che transiteranno sulla corsia più carica basta moltiplicare il coefficiente di equivalenza medio per il numero di veicoli commerciali che si stima transiteranno durante la vita utile della pavimentazione sulla corsia più carica.

La verifica consiste nel controllare che il numero di assi standard che la pavimentazione può sopportare sia maggiore del numero di assi equivalenti che transitano durante la vita utile della pavimentazione.

Sia $W_{8,2}$ il numero di passaggi di assi standard singoli da 8.2 tonnellate, sopportabile dalla pavimentazione.

Esso è legato a vari parametri attraverso la funzione regressione:

$$logW_{8.2} = Z_R S_0 + 9.36 \log \left(\frac{SN}{2.54} + 1 \right) - 0.2 + \frac{\log \frac{PSI_i - PSI_f}{4.2 - 1.5}}{0.4 + \frac{1094}{(\frac{SN}{2.54} + 1)}} + 2.32 \log M_r - 3.056$$
 [3]

dove il modulo resiliente M_r è espresso in MPa (N/mm²).

Affidabilità

Il parametro relativo all'affidabilità R (Reliability) esprime la probabilità che il numero di applicazioni del carico N_T , che una pavimentazione può sopportare prima di raggiungere un prefissato indice di servizio finale PSI_{fin} (parametro che rappresenta il grado di ammaloramento della sovrastruttura), sia maggiore o uguale al numero di applicazioni di carico N_T , che realmente sono applicati alla sovrastruttura, nel tempo di progettazione considerato T. $R_{\%} = 100 * Prob (N_t \ge N_T)$ [4]

In altri termini, rappresenta la probabilità di sopravvivenza della pavimentazione.

L'AASHTO dà dei suggerimenti sul livello di affidabilità da assumere nel calcolo, in funzione del tipo e dell'ubicazione della strada, come riportato nella seguente tabella (Tab.5.1).

Tab. 5.1: Livelli di affidabilità suggeriti per vari tipi di strade.							
Classifica funzionale	Livelli di affidabilità suggeriti [%]						
	Urbana	Extraurbana					
Autostrade	85 - 99,9	80 - 99,9					
Arterie principali	80 - 99	75 - 95					
Strade di scorrimento	80 - 95	75 - 95					
Strade locali	50 - 80	50 - 80					

Si può notare da tale tabella che il valore di affidabilità, varia da un minimo di 50 fino a 99,9%, al fine di ottenere pavimentazioni che presentino una maggiore probabilità di sopravvivenza, rispetto a quelle calcolate con il metodo "AASHTO Interim Guide", il quale tiene conto implicitamente di un coefficiente di affidabilità pari al 50%.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE					
PROGETTISTA:						
Mandataria: Mandante:						
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 31 DI 44					

I valori più alti di affidabilità si adottano per strade di grande importanza per le quali si richiede una maggior vita utile della sovrastruttura, anche allo scopo di ridurre al minimo gli interventi di rifacimento del manto stradale, che sono causa di notevoli disagi per l'utenza.

All'interno della formula proposta dall'"AASHTO Guide", non compare direttamente il termine dall'affidabilità R, ma esso risulta legato al prodotto di due parametri, ovvero:

$$z_R * s_0$$
 [5]

dove:

- S_0 è la deviazione standard della variabile $\delta_0 = \log N_t \log N_T$ che definisce l'affidabilità R%. La variabile è di tipo aleatorio, con legge di probabilità normale, con media pari a δ_0 e deviazione standrd pari proprio a S_0 .
- Z_R è il valore della variabile standardizzata di δ_0 alla quale corrisponde la probabilità R%, che si abbiamo valori ad esso superiori.

Per valori di R >50%, Z_R assume valori negativi, mentre si annulla per R=50%.

Si riportano di seguito nella tabella 5.2, i valori assunti dalla variabile Z_R per un prefissato livello di affidabilità R.

Tab. 5.2: Affidabilità						
R [%]	Z _R [-]					
50.0%	0.000					
60.0%	-0.253					
70.0%	-0.524					
75.0%	-0.674					
80.0%	-0.841					
85.0%	-1.037					
90.0%	-1.282					
92.0%	-1.405					
95.0%	-1.645					
98.0%	-2.054					
99.0%	-2.327					
99.9%	-3.090					

Per il caso in esame si è fissato un valore di affidabilità R= 85% a cui corrisponde Z_R=-1.037,

I valori di S₀ per pavimentazioni flessibili variano tra 0.4÷0.5 ed in particolare di è adottato un valore pari a 0.45.

Modulo Resiliente

E' un modulo di tipo dinamico che tiene conto del comportamento viscoelastico del materiale, che provoca delle deformazioni elastiche ritardate nel tempo sotto carichi variabili ciclicamente.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE					
PROGETTISTA:						
Mandataria: Mandante:						
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 32 DI 44					

Tale modulo viene inserito all'interno del modello al fine di tener conto della portanza del sottofondo stradale; infatti a parità di carichi di traffico e di caratteristiche meccaniche dei materiali adoperati, un buon costipamento dello strato di sottofondo è in grado di ridurre lo spessore degli strati della pavimentazione, con tutto il risparmio che ciò comporta in termini economici, garantendo sempre alla sovrastruttura una buona resistenza ai carichi a cui essa è sottoposta.

La portanza dei terreni di sottofondo è la caratteristica meccanica, che influenza il sia il dimensionamento, che il comportamento della sovrastruttura.

Per portanza s'intende la capacità che il terreno di sottofondo ha di "sopportare" i carichi, senza che si verifichino eccessive deformazioni.

Una variazione in esercizio della capacità portante determina una conseguente variazione dello strato deformativo nella pavimentazione e quindi si arrecherà in essa un certo danno.

La portanza del sottofondo può variare per tutta una serie di fattori, quali possono essere il contenuto d'acqua e la variazione delle condizioni climatiche legate soprattutto alla temperatura.

Nel metodo che stiamo trattando, si considera, all'interno dell'equazione fondamentale, il cosiddetto modulo resiliente effettivo M_r, che viene definito come quel valore del modulo, costante durante l'anno, per il quale il danno, o meglio ancora la variazione dell'indice di servizio PSI, è uguale al danno annuale cumulato, che si avrebbe considerando i valori assunti dai moduli resilienti dei diversi periodi climatici considerati.

Nel caso specifico, si prevede di realizzare uno strato di sottofondo di circa di circa 30 cm, costipato in modo da raggiungere un valore della prova AASHTO Standard ≥ 100% ed un Modulo di deformazione ≥ 50 N/mm² come previsto al punto 2.7.2 Strato supercompattato per rilevati e le trincee stradali dell'Allegato n.10.05 - Capitolato per la Costruzione di opere civili Movimenti Terra della Documentazione Contrattuale.

Con tale valore del Modulo di deformazione è possibile assumere il valore del Modulo Resiliente attraverso la relazione Mr=(1.8÷2.1)Md. Il Modulo Resiliente varia tra i 90 N/mm² e i 105 N/mm²

Nelle verifiche successive si assume un valore del Modulo Resiliente pari a quello minore di 90 N/mm².

Structural Number

Nel metodo "AASHTO Guide" si tiene conto della resistenza strutturale della pavimentazione attraverso il parametro che va sotto il nome di "structural number".

Esso è funzione degli spessori degli strati si, della resistenza dei materiali impiegati rappresentata attraverso i coefficienti strutturali di strato ai (structural layer coefficients) e della loro sensibilità all'acqua rappresentata attraverso i coefficienti di drenaggio m_i.

L'espressione analitica dello structural number è la seguente:

$$SN = \sum_{i=1}^{n} i a_i * s_i * m_i$$
 [8]

dove:

- n è il numero degli strati costituenti la sovrastruttura stradale;
- s_i è lo spessore dell'i-esimo strato costituente il pacchetto stradale;
- a_i è un coefficiente che esprime la capacità relativa dei materiali impiegati nei vari strati della pavimentazione a contribuire come componenti strutturali alla funzionalità della sovrastruttura. Tale coefficiente è funzione del tipo e proprietà del materiale;
- mi rappresenta il coefficiente di drenaggio dei materiali non legati.

Numerosi studi hanno evidenziato che i coefficienti strutturali, dipendono essenzialmente da una serie di fattori, quali le proprietà dei materiali, spessore e posizione dello strato e dal livello di traffico.

APPALTAT D'AGOSTIN GENERALI	RIASSETTO NODO DI BARI TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA						
PROGETTISTA:							
Mandataria:	Mandante:	BARI CENTRALE E BARI TORRE A MARE					
RPA srl	Technital SpA HUB Engineering Scarl						
PROGETTO	O ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di tecnica	ricucitura n° 19 e 20 – Relazione	IA3S	01	E ZZ RH	NV1200 003	С	33 DI 44

Mediante un approccio teorico basato sulla teoria del multistrato elastico e sulla base dei risultati dell' "AASHTO Road Test", l' "AASHTO Guide" ha fornito le correlazioni tra i coefficienti strutturali e i rispettivi moduli resilienti dei materiali.

Per ottenere i valori dei coefficienti ai, si ricorre all'utilizzo dei nomogrammi forniti dall' "AASHTO Guide".

È consigliabile ridurre i valori ottenuti da questi nomogrammi di circa il 5-10% per gli strati in conglomerato bituminoso, per tener conto della particolarità delle pavimentazioni italiane, come già detto prima.

Valori di riferimento per i diversi strati possono essere quelli riportati nella seguente tabella 5.3:

Tab. 5.3: Coefficienti strutturali e di drenaggio							
Materale	Coe	ff. struttu	Coeff. drenaggio				
iviaterale	Min	Max	Med	m _i			
Misto granulare	0.11	0.11	0.11	0.98			
Misto granulare frantumato	0.13	0.14	0.14	0.98			
Macadam	0.12	0.12	0.12	0.98			
Misto bituminato	0.20	0.22	0.21	1.00			
Cls bituminoso	0.25	0.30	0.28	1.00			
Misto cementato	0.25	0.30	0.28	0.95			
Misto legato con scorie	0.22	0.30	0.26	0.95			
Terra stabilizzata con cemento	0.20	0.20	0.20	0.95			
Pozzolana e calce	0.18	0.18	0.18	0.95			
Binder	0.36	0.40	0.38	1.00			
Usura normale	0.40	0.44	0.42	1.00			
Usura grenue (antiskyd)	0.44	0.45	0.45	1.00			
Usura drenante	0.42	0.44	0.43	1.00			
Usura Splitt Mastix Asphalt (SMA)	0.43	0.44	0.43	1.00			
Impermeabilizzante	0.00	0.00	0.00	1.00			

Il valore del coefficiente di drenaggio per gli strati legati è posto uguale ad 1.

Noti gli spessori dei vari strati della pavimentazione è possibile calcolare il valore di SN, come riportato nelle tabelle a seguire.

Calcolo Structural Number							
strato	S	materiale	α	m	a _{nm}	а	SN
[-]	[cm]	[-]	[#]	[#]	[#]	[#]	[cm]
usura	4	conglomerato bituminoso	1,00	-	0,420	0,420	
binder	5	conglomerato bituminoso	1,00	-	0,380	0,380	5,46
base	0	conglomerato bituminoso	1,00	-	0,280	0,280	5,40
fondazione	18	misto granulare non legato	-	0,95	0,110	0,105	

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE
RPA srl Technital SpA HUB Engineering Scarl	
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 34 DI 44

Indice di servizio

L'indice di servizio PSI (present serviceability index), esprime il grado di ammaloramento delle pavimentazioni e varia tra 5 (pavimentazioni in ottime condizioni) a 0 (pavimentazioni in pessime condizioni).

All'inizio della vita utile della pavimentazione l'indice PSI_i viene assunto mediamente pari a 4.2, per tener conto delle inevitabili imperfezioni costruttive, mentre al termine della vita utile, il valore del PSI_f da assumere dipende essenzialmente dal tipo di strada.

Per strade di modesta importanza si accetta il raggiungimento di un degrado maggiore rispetto a quelle di grande importanza.

Per i valori di PSI_f si è fatto riferimento alla tabella 5.5 riportata di seguito:

Tab. 5.5: Indice di Servizio Finale					
Tipo Strada	PSI _f				
Di modesta importanza	1.50				
Locali	2.00				
Urbane di scorrimento	2.50				
Extraurbane	2.50				
Corsie preferenziali	2.50				
Autostrade	3.00				
Di grande comunicazione	3.00				

nel caso specifico, pur essendo le viabilità di ricucitura strade locali di modesta importanza si è adottato un valore pari a 2.5, equiparandole a strade extraurbane

Calcolo del traffico in assi standard

Occorre valutare il traffico commerciale (veicoli con carico per asse > 10 kN) che transitano sulla corsia più carica durante la vita utile (valore N8.2) attraverso spettri di traffico prevedibili per la strada di cui si vuole progettare la pavimentazione.

Poiché il traffico commerciale è costituito da veicoli con diverso numero e tipo di asse a diverso carico, bisogna calcolare gli assi standard equivalenti che provocano lo stesso danno degli assi dei veicoli reali introducendo il coefficiente di equivalenza.

$$N_{8.2} = n_{vca} \left[\frac{(1+r)^N - 1}{r} \right] * 3.65 * C_{SN} = T^N * C_{SN}$$
 [10]

La prima parte della formula [10], ovvero il numero di veicoli commerciali transitanti sulla corsia più lenta, alla fine della vita utile (TN), è già stata determinata nei capitoli precedenti.

Occorre ora determinare il numero di assi standard equivalenti e per far ciò bisogna stabilire il valore del coefficiente di equivalenza CSN e per far ciò si fa riferimento allo spettro di traffico suggerito dalle stime effettuate, qui di seguito riportato.

APPALTAT D'AGOSTIN GENERALI S	O ANGELO ANTONIO COSTRUZ	IONI	RIASSET	TO NOI	OO DI BA	RI		
PROGETTI	STA:		ΤΡΑΤΤΑ Α	SUD DI F	BARI – VAF	RIANTE DI TE	RACCIAT	ΓΟ TRA
Mandataria:	Mandante:					RE A MARE	(AOOIA)	TO THA
RPA srl	Technital SpA HUB Engineeri	ng Scarl						
PROGETTO	D ESECUTIVO:		PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di tecnica	ricucitura n° 19 e 20 – Relaz	ione	IA3S	01	E ZZ RH	NV1200 003	С	35 DI 44

1			Spettre	o di trafi	fico				
Autocarri leggeri	Veicolo	Tipo	n	asse	P	B _i	A_{i}	CSN _i	n · CSN
Autocarri leggeri	[-]	[#]	[%]	[-]	[kN]	[#]	[#]	[#]	[#]
autocarri leggeri S 20 0.452 2,198 0.0063 0,002 0,000 autocarri medi e pesanti 3 3,0% S 40 0.757 1,156 0,02713 0,002 autocarri medi e pesanti 4 3,0% S 5 40 0,757 1,132 0,002 0,000 0,003 autocarri medi e pesanti 4 3,0% S 50 1,087 0,790 0,16206 0,004 autocarri pesanti 6 2,0% 7nd 160 3,235 -0,138 1,37554 0,027 autocarri pesanti 6 2,0% 7nd 160 3,235 -0,138 1,37554 0,026 6 2,0% 5 60 1,584 0,498 0,31801 0,006 7 0,0% 5 80 1,584 0,498 0,31801 0,006 8 2,0 5 80 1,584 0,498 0,31801 0,006 9 2,0		1	90.00/	S	10	0,409	3,245	0,00057	0,00046
10,0% S 15	autana wi Laggari	1	80,0%	S	20	0,452	2,196	0,00636	0,00509
autocarri medi e pesanti	autocarri leggeri	2	10.00/	S	15	0,425	2,644	0,00227	0,00023
autocarri medi e pesanti		2	10,0%	S	30	0,557	1,567	0,02713	0,00271
autocarri medi e pesanti S 80 3,235 0,000 1,0000 0,000 <td></td> <td>2</td> <td>2 00/</td> <td>S</td> <td>40</td> <td>0,757</td> <td>1,132</td> <td>0,07382</td> <td>0,00221</td>		2	2 00/	S	40	0,757	1,132	0,07382	0,00221
1	autocarri modi o nocanti		3,0%	S	80	3,235	0,000	1,00000	0,03000
8 10 0,757 1,132 0,0732	autocarri meur e pesanti	4	3 0%	S	50	1,087	0,790	0,16206	0,00486
Autocarri pesanti		4	3,070		110	7,969	-0,596	3,94009	0,11820
Autocarri pesanti		5	2.0%	S	40	0,757	1,132	0,07382	0,00148
Paris	autocarri necanti		2,070	Tnd	160	3,235	-0,138	1,37554	0,0275
1	autocarri pesaria	6	2.0%	S	60	1,584	0,498	0,31801	0,00636
Amount of the control of th			2,070	Tnd	200	6,034	-0,552	3,56336	0,07127
No.				S	40	-	-	-	-
S		7	0.0%	S	90	-	-	-	-
S 60 - - - - - -		,	0,070	S	80	-	-	-	-
Beat Pace 100		***************************************		S		-	-	-	-
S 100 - -				S	60	-	-	-	-
Autotreni e autoarticolati autotreni e autoarticolati P P P P P P P P P P P P P		8	0,0%	S	100	-	-	-	-
Part		O		S	100	-	-	-	-
Autotreni e autoarticolati 9						-	-	-	_
A proper						-	-	-	-
Tind 160 - - - - - - - - -	autotreni e autoarticolati	9	0,0%			-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		***************************************		***************************************		_	-	_	_
Tind 200 - - - - - - - - -						-	-	-	-
S 40 - - - - - - - - -		10	0,0%			-	-	-	-
11		***************************************				-	-	-	-
Trd 240 - - - - - - - - -						-	-	-	-
12		11	0,0%			-	-	-	-
12 0,0% S 110		***************************************		***************************************		-	-	-	-
mezzi d'opera 13 0,0% S 50 -						-	-	-	-
Mezzi d'opera 13 0,0% S 120 - - - - - - - - -		12	0,0%			-	-	-	-
mezzi d'opera 13 0,0% S 120 -						-	-	-	-
Trd 390						-	-	-	-
14 0,0% S 80	mezzi d'opera	13	0,0%			-	-	-	-
autobus 14 0,0% S 40						-	-	-	-
autobus 15 0,0% S 100		14	0,0%			-	-	-	-
s 60		***************************************				-	-	-	-
S 60	autobus	15	0,0%			-	-	-	-
16 0,0% S 50			,			-	-	-	-
S 50		16	0,0%			-	-	-	-
STANDARD - 100% S 80 3,235 0,270							-	-	
	STANDARD	-	100%	S	80	3,235	-	-	0,2703

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE
RPA srl Technital SpA HUB Engineering Scarl	
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 36 DI 44

Il coefficiente di equivalenza tra il generico asse reale, caratterizzato da un peso Pi e tipologia Ti, e l'asse singolo standard da 8,2 ton ed è definito dalla seguente relazione:

$$C_{SNi} = C_{SN} (P_i, T_i, PSI_f, SN) = 10^{-A}$$
 [11]

Il valore del coefficiente A vale:

$$A = \left\{ 4.79 \times \left[\log(18 + 1) - \log\left(0.225 \times P_i + T_i\right) \right] + 4.33 \times \log(T_i) + \frac{G}{B_i} - \frac{G}{B^*} \right\} \quad [12]$$

dove:

- P_i è il peso complessivo dell'asse o set di assi (singolo, tandem, tridem) in kN;
- T_i indica la tipologia dell'asse e assume valore 1 per assi singolo, 2 per assi tandem e 3 per assi tridem;
- B_i è un parametro funzione, anche tra le altre cose dello Structural number (SN), già determinato in precedenza; B_i l'espressione è la seguente:

$$B_i = 0.40 + \frac{0.081 \times (0.255 \times P_i \times T_i)^{3.23}}{\left(\frac{SN}{2.54} + 1\right)^{5.19} \times T_i^{3.23}}$$
 [13]

- B* è il valore che assume Bi per l'asse singolo da 8.2 ton =80 kN;
- G è un coefficiente funzione degli indici di servizio e vale:

$$G = \log\left(\frac{4.2 - PSI_f}{2.7}\right)$$
 [14]

Per tanto detta ni la percentuale relativa del veicolo i-esimo nello spettro di traffico considerato (ad esempio se il veicolo i-esimo ha una frequenza del 10%, ni sarà uguale a 0,10) il coefficiente di equivalenza medio di tale spettro di traffico sarà uguale a:

$$C_{SN} = \sum_{i} (n_i \times C_{SNi}) \quad [15]$$

I calcoli svolti per la determinazione del coefficiente medio di equivalenza sono esposti nella tabella precedente ed il traffico commerciale che transitano sulla corsia più carica durante la vita utile è:

Traffico in assi standard					
PSI_i	PSI_f	G	CSN	N _{8,2}	
[#]	[#]	[#]	[#]	[#]	
4,2	2,5	-0,20	0,2704	124.225	

II Traffico Sopportabile

Noti i parametri di progetto di cui si è detto sopra è possibile determinare attraverso la formula di regressione [3], il traffico sopportabile in termini di assi standard equivalenti da 8,2 ton. In particolare tali parametri sono riassunti di seguito, ricordando che la vita utile è fissata pari a 20 anni e che le condizioni climatiche sono quelle tipiche dell'Italia meridionale (zone con clima asciutto e piogge estive frequenti):

Calc	olo de	ella r	esistenza	in assi st	andard
R	Z_{r}	S_0	Log (W _{8,2})	W _{8,2}	$W_{8,2} > N_{8,2}$
[%]	[#]	[#]	[#]	[#]	[-]
85,00%	-1,037	0,45	5,41	259.001	OK!

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE
RPA srl Technital SpA HUB Engineering Scarl	
PROGETTO ESECUTIVO: Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA3S 01 E ZZ RH NV1200 003 C 37 DI 44

<u>La verifica della pavimentazione risulta soddisfatta</u> in quanto il numero $W_{8.2}$ di passaggi di assi equivalenti da 8.2 tonnellate, sopportabili dalla pavimentazione, è maggiore del numero $N_{8.2}$ di passaggi di assi equivalenti previsti nell'arco della vita utile della pavimentazione.

La vita utile della pavimentazione ovvero gli anni in cui la pavimentazione può sopportare il numero dei passaggi del tipo di traffico previsto è di 39 anni. (a titolo di confronto, a parità di traffico la pavimentazione del progetto definitivo sarebbe stata sufficiente per 66anni).

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSETTO NODO DI BARI	
PROGETTISTA: Mandataria: Mandante:	TRATTA A SUD DI BARI – VARIANTE DI TRA BARI CENTRALE E BARI TORRE A MARE	ACCIATO TRA
RPA srl Technital SpA HUB Engineering Scarl		
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO	REV. FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003	C 38 DI 44

11 BARRIERE DI SICUREZZA E RETI ANTIVANDALISMO

Il Manuale di Progettazione "Corpo stradale" di RFI, Parte XI: Linee guida per la sicurezza nell'affiancamento strada ferrovia (Codifica RFI_DINIC_MA_CS_00_001_C) stabilisce che in caso di parallelismo fra strada e ferrovia, per evitare l'invasione della sede ferroviaria da parte di un veicolo sviato, ci si debba attenere a precise indicazioni in relazione alla casistica specifica.

Il DM n.223 del 18/01/1992 al comma 1 dell'art. 2 prevede "Che i progetti esecutivi relative alle strade pubbliche extraurbane ed a quelle urbane con velocità di progetto maggiore o uguale a 70 km/ora devono comprendere un apposito allegato progettuale, completo di relazione motivata sulle scelte, redatto da un ingegnere, riguardante i tipi delle barriere di sicurezza da adottare, la loro ubicazione e le opere complementari connesse."

La circolare del MIT del21/07/2010 chiarisce che la velocità di progetto, a cui fa riferimento il Decreto 223/1992, "di un arco stradale deve essere determinata in relazione alla classe funzionale, riportata all'art.2 comma 2 del D.Lgs. 285/1992 (Nuovo codice della strada) ed alle sue caratteristiche planimetriche (raggio di curvatura), indipendentemente dalla eventuale imposizione di un limite di velocità sul tratto stradale oggetto di intervento."

Le viabilità di ricucitura 19 e 20 hanno un raggio planimetrico massimo di 20m.

La massima velocità possibile in tale curva per un veicolo senza sbandare è di

 $V = \sqrt{((q + ft) \times R \times 127)}$ in cui

q pendenza trasversale in valore assoluto

ft quota parte del coefficiente di aderenza impegnato trasversalmente

R raggio asse curva

 $V = \sqrt{((0.025+0.22)x20x127)} = 25 \text{ km/ora.} < 70 \text{km/ora}$

Stante la configurazione plano-altimetrica delle ricuciture 19 e 20, che non sono parallele alla nuova linea ferroviaria, e che consentono una velocità massima in curva di 25 km/ora, non è necessario installare alcuna barriera di sicurezza nelle curve stradali di tali strade.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.i.	RIASSET	TO NOI	OO DI BA	RI		
PROGETTISTA: Mandataria: Mandante:				RIANTE DI TE RE A MARE	RACCIA	ΓΟ TRA
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S	01	E ZZ RH	NV1200 003	С	39 DI 44

12 ACCESSI E PASSI CARRAI

Si definiscono <u>accessi</u> le immissioni di una strada ad uso privato su una strada ad uso pubblico e le immissioni di veicoli da un'area agricola priva di cancelli di ingresso alla strada di uso pubblico.

Si definiscono <u>passi carrai</u> le immissioni di veicoli da un'area commerciale/produttiva o da un edificio privato sulla strada di uso pubblico, con cancelli di ingresso.

12.1 Normativa

Il Regolamento Edilizio del Comune di Triggiano (Dicembre 2005) prescrive: nell'art.88-Accesso alla rete viaria che:

- 4. L'accesso diretto dallo spazio pubblico allo spazio privato è disciplinato come segue:
 - a) nelle strade di rilevante importanza, l'accesso diretto dallo spazio pubblico allo spazio privato non è consentito qualora non sia possibile l'inversione di marcia nello spazio privato e l'immissione frontale dei veicoli sullo spazio pubblico;
 - b) nelle restanti strade l'accesso diretto dallo spazio pubblico allo spazio privato è consentito, limitatamente agli edifici già esistenti, con il solo obbligo dell'immissione frontale dei veicoli sullo spazio pubblico.
 - **5.** L'immissione dei veicoli verso lo spazio pubblico deve essere regolamentata in relazione alle caratteristiche della rete stradale:
 - a) nelle strade di rilevante importanza il cancello a delimitazione della proprietà deve essere arretrato di mt. 4,50 dal filo della carreggiata per consentire la fermata del veicolo in ingresso al di fuori del flusso veicolare; al fine di consentire una migliore visibilità, la recinzione dovrà essere provvista di raccordi obliqui, con inclinazione non inferiore a 45°;
 - b) nelle strade di minore importanza, come quelle di quartiere e le strade locali interzonali, appositamente individuate, il cancello può essere installato sull'allineamento stradale a condizione che sia dotato di sistema automatizzato con comando di apertura a distanza;

e nell'art. 9

1 - Recinzioni che:

APPALTATORE: D'AGOSTINO ANGE GENERALI s.r.l.	LO ANTONIO COSTRUZIONI	RIASSET	TO NOI	OO DI BA	RI		
PROGETTISTA:					RIANTE DI TR	RACCIAT	TO TRA
Mandataria: Manda	<u>nte:</u>	BARI CENT	RALE E	BARI TOR	RE A MARE		
RPA srl Techni	tal SpA HUB Engineering Scarl						
PROGETTO ESEC	UTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di ricucito tecnica	ıra n° 19 e 20 – Relazione	IA3S	01	E ZZ RH	NV1200 003	С	40 DI 44

- 2. <u>Caratteristiche</u>: le cancellate o i muri di suddivisione tra confini di proprietà possono assumere tipologie edilizie diverse ma comunque in relazione ad un organico progetto di sistemazione delle aree scoperte di pertinenza. Per gli interventi nei centri storici, nelle zone di vincolo ambientale o, comunque, in edifici che rivestano interesse storico o ambientale, le recinzioni concorrono alla definizione dell'isolato urbano e pertanto la loro forma, i materiali, la tipologia e l'altezza sono determinate in funzione delle caratteristiche tipo-morfologiche dell'isolato.
- 3. Altezze: le recinzioni nelle aree urbanizzate possono avere altezze variabili in funzione della tipologia, dell'uso e del grado di sicurezza o di riservatezza da raggiungere, comunque inferiori a 3.00 m. e trasparenti per due terzi (rispetto ai 3.00 m.). Le recinzioni su spazi e strade pubbliche non possono invece superare un'altezza massima di 2,50 metri dal piano dell'area pubblica, di cui solo 1.00 m può essere in muratura piena e per la parte rimanete devono essere trasparenti. Per gli interventi nei centri storici, nelle zone di vincolo ambientale o, comunque, in edifici che rivestano interesse storico o ambientale, è consentita la conservazione o la realizzazione di recinzioni di altezza maggiore in relazione alle necessità di tutela storico-ambientale e di armonizzazione al contesto; nell'ambito rurale sono consentite solo recinzioni interamente in pietra a secco con altezza non superiore a m. 1,00.
- 4. <u>Materiali</u>: in linea generale le recinzioni possono essere realizzate in pietra, in muratura di tufo o di mattoni pieni, a vista o intonacata, in ferro, in legno. Le recinzioni in calcestruzzo devono essere preferibilmente rivestite in lastre di pietra, in tufo, in laterizi o intonacate. Sono sempre da preferire recinzioni arboree o arbustive o miste.
 - Le siepi possono essere protette all'interno o all' esterno da reti e cancelli in ferro.

I colori devono armonizzarsi con il contesto ambientale.

Le <u>Norme funzionali e geometriche per la costruzione delle intersezioni</u> Decreto 19 aprile 2006 prescrivono nel paragrafo 7.1- <u>Accessi alle strade extraurbane</u> che:

La localizzazione e la configurazione degli accessi debbono essere tali da rispettare le distanze di visuale libera stabilite per le intersezioni. La sistemazione geometrica degli accessi deve essere realizzata come per le corrispondenti tipologie di intersezione.

Tipo di strada	D-Locale extraurbana
Ammessi	SI
Organizzazione accessi	Diretti
Distanza minima tra innesti successivi	-
Distanza minima tra accesso ed intersezione (misurata tra l'asse dell'accesso e l'asse dell'intersezione)	30m

- nel paragrafo 1.1 Distanze di visibilità nelle intersezioni a raso che:

Per le manovre non prioritarie (relativi agli accessi) le verifiche vengono sviluppate secondo il criterio dei triangoli di visibilità relativi ai punti di conflitto di intersezione generati dalle correnti veicolari.

Il lato maggiore del triangolo di visibilità viene rappresentato dalla distanza di visibilità principale D, data dall'espressione: D = v x t In cui v=velocità di riferimento [m/s] (pari al valore della velocità di progetto caratteristica del tratto considerato o, in presenza di limiti impositivi di velocità, dal valore prescritto dalla segnaletica) e t=tempo di manovra pari a 6 s in presenza di manovre regolate da Stop.

Tali valori vanno incrementati di un secondo per ogni punto percentuale di pendenza longitudinale del ramo secondario superiore al 2%.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSETTO NODO DI BARI		
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA		
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE		
RPA srl Technital SpA HUB Engineering Scarl			
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO		
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 41 DI 44		

Il lato minore del triangolo di visibilità sarà commisurato ad una distanza di 3m dal ciglio della strada principale, ove è previsto l'arresto dei veicoli in uscita dagli accessi.

All'interno del triangolo di visibilità non devono esistere ostacoli alla continua e diretta visione reciproca dei veicoli afferenti al punto di intersezione considerato. Si considerano ostacoli per la visibilità oggetti isolati aventi la massima dimensione planimetrica superiore a 0.8 m.

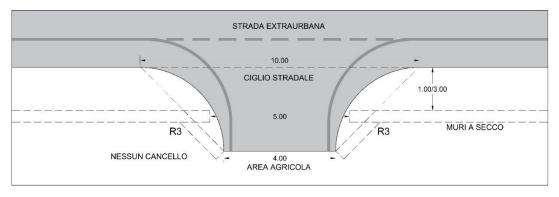
Il <u>Regolamento di Attuazione del Codice della Strada</u> D.P.R. 16 dicembre 1992, n. 495 prescrive nell'art.45 <u>Accessi alle strade extraurbane</u> che:

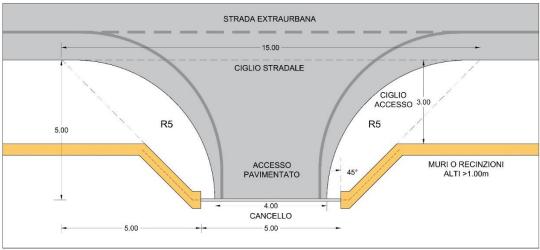
- 5. Gli accessi devono essere localizzati dove l'orografia dei luoghi e l'andamento della strada consentono la più ampia visibilità della zona di svincolo e possibilmente nei tratti di strada in rettilineo, e realizzati in modo da consentire una agevole e sicura manovra di immissione o di uscita dalla sede stradale, senza che tale manovra comporti la sosta del veicolo sulla carreggiata.
- 6. L'ente proprietario della strada può negare l'autorizzazione per nuovi accessi, diramazioni e innesti, o per la trasformazione di quelli esistenti o per la variazione d'uso degli stessi quando ritenga che da essi possa derivare pregiudizio alla sicurezza e fluidità della circolazione e particolarmente quando trattasi di accessi o diramazioni esistenti o da istituire in corrispondenza di tratti di strada in curva o a forte pendenza, nonché ogni qualvolta non sia possibile rispettare le norme fissate ai fini della visibilità per le intersezioni di cui agli articoli 16 e 18 del codice della strada.
- 8. Gli accessi e le diramazioni devono essere costruiti con materiali di adeguate caratteristiche e sempre mantenuti in modo da evitare apporto di materie di qualsiasi natura e lo scolo delle acque sulla sede stradale;
- 9. Gli accessi sono realizzati e mantenuti sia per la zona insistente sulla strada sia per la parte ricadente sulla proprietà privata, a cura e spese dei titolari dell'autorizzazione, i quali sono tenuti a rispettare le prescrizioni e le modalità fissate dall'ente proprietario della strada e ad operare sotto la sorveglianza dello stesso nell'art.26.

Fasce di rispetto fuori dai centri abitati che:

Le distanze dal confine stradale da rispettare nella costruzione o ricostruzione dei muri di cinta, lateralmente alle strade non possono essere inferiori a 5m per le strade di tipo A e B e 3m per le strade di tipo C ed F.

12.2 Caratteristiche progettuali

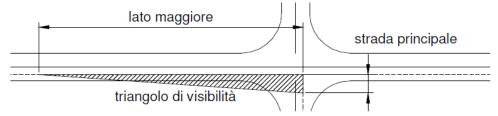

Gli accessi ed i passi carrai debbono avere un'ubicazione ed una configurazione planoaltimetrica tali da non arrecare pericolo od intralcio alla circolazione veicolare e pedonale, da agevolare le manovre dei veicoli in ingresso o in uscita dal passo carrabile e da rispettare le distanze di visuale libera necessari al conducente in uscita dall'accesso per percepire i veicoli in marcia sulla strada.


Lungo i tronchi delle strade di adeguamento e delle strade di ricucitura delle <u>strade extraurbane</u> gli accessi saranno realizzati in conformità ai seguenti criteri:

 Nessun accesso e passo carraio verrà aperto nei tratti delle rampe di accesso ai cavalcavia aventi una pendenza longitudinale superiore al 3%.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.l.	RIASSET	TO NO	DO DI BA	RI		
PROGETTISTA:	TRATTA A	SUD DI I	BARI – VAF	RIANTE DI TE	RACCIAT	ΓΟ TRA
Mandataria: Mandante:	BARI CENT	RALE E	BARI TOR	RE A MARE		
RPA srl Technital SpA HUB Engineering Scarl						
PROGETTO ESECUTIVO:	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S	01	E ZZ RH	NV1200 003	С	42 DI 44

- Nei tratti con pendenza longitudinale inferiore al 3% la distanza minima tra innesti successivi e fra accesso ed intersezione sarà di 100 m salvo deroga dell'ente proprietario della strada per i passi carrai esistenti, nel caso in cui sia tecnicamente impossibile procedere all'adeguamento.
- La larghezza degli accessi (senza cancelli) è di minimo 4.00 m. Nel caso di transito sistematico e frequente di veicoli agricoli pesanti, si sono previsti accessi più larghi di massimo 10,00 m.
- La larghezza dei passi carrai (con cancelli di ingresso) è di minimo 5.00 m. Nel caso di transito sistematico e frequente di veicoli pesanti, si sono previsti accessi più larghi di massimo 10,00 m.
- La sistemazione geometrica dei passi carrai è realizzata con l'arretramento di 5.00 m del cancello di accesso, rispetto al ciglio stradale, allo scopo di consentire la sosta, fuori della carreggiata, di un veicolo in attesa di ingresso
- I raccordi dei cigli nelle strade extraurbane saranno realizzati con raggi planimetrici di 5.00 m per i passi carrai e di 3.00 m per gli accessi agricoli.
- L'arretramento parallelo alla strada de nuovi muri di cinta o di nuove recinzioni, alti più di 1 m, sarà di 3.00m dal ciglio stradale.
- I muri e le recinzioni laterali in corrispondenza dell'accesso saranno inclinati in obliquo di 45°.
- Per gli accessi carrabili agli edifici esistenti si prevede la realizzazione di nuovi cancelli alti almeno 2.20 m, al posto di quelli rimossi. Nessun cancello è previsto per i nuovi accessi ai fondi agricoli.
- La localizzazione e la configurazione degli accessi debbono essere tali da rispettare le distanze di visuale libera stabilite per le intersezioni assimilando l'uscita dell'accesso come Stop.



APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.I.	RIASSETTO NODO DI BARI	
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA	
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE	
RPA srl Technital SpA HUB Engineering Scarl		
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO	
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 43 DI 44	

I veicoli provenienti dai passi carrai hanno l'obbligo di fermarsi e dare precedenza (Stop) ai veicoli che percorrono le viabilità di ricucitura.

Per il corretto e sicuro funzionamento delle manovre in corrispondenza dei passi carrai, è necessario che i veicoli che si apprestano a compiere le manovre di attraversamento o di immissione possano vedersi reciprocamente onde adeguare la loro condotta di guida in corrispondenza dell'incrocio stesso. A tal fine il D.M. 19/04/2006 prevede la verifica attraverso la costruzione di un triangolo di visibilità che deve essere libero da qualsiasi ostacolo, all'altezza di 1.10m dal piano viabile.

La localizzazione e la configurazione degli accessi e dei passi carrai da area o edificio privato alla strada pubblica debbono essere tali da rispettare le distanze di visuale libera necessarie per assicurare l'avvistamento reciproco del conducente del veicolo in uscita (non si considera ammessa l'uscita a retromarcia) con il conducente del veicolo in transito e per consentire la frenatura in emergenza del veicolo marciante alla velocità massima consentita sulla strada principale.

Il lato minore del triangolo di visibilità deve avere un vertice distante 3.00 m dalla linea di margine stradale.

Il lato maggiore del triangolo di visibilità viene rappresentato dalla distanza di visibilità principale D, data dall'espressione: $D = v \times t$, in cui:

v = velocità di riferimento [m/s], pari al valore della velocità di progetto caratteristica del tratto considerato o, in presenza di limiti impositivi di velocità, dal valore prescritto dalla segnaletica;

t = tempo di manovra pari a 6 s (manovre regolate da Stop).:

Tali valori vanno incrementati di un secondo per ogni punto percentuale di pendenza longitudinale del ramo secondario superiore al 2% (in discesa).

Per le viabilità di ricucitura in cui la velocità di progetto stradale è di 40km/ora ed il limite di velocità è di 30km/ora il lato maggiore del triangolo di visibilità è di 30/3.6*6=50m.

12.3 Previsione del numero degli accessi e dei passi carrai

Per le strade di ricucitura n.19 e n.20 e per la strada di adeguamento NV12 (via San Marco) vengono qui di seguito riportati (in via non definitiva) il numero e l'ubicazione dei nuovi accessi carrabili e/o passi carrai necessari a permettere la continuità dell'accesso alle abitazioni o alle attività commerciali, produttive o ai fondi agricoli, dopo la realizzazione delle nuove strade e della nuova linea ferroviaria.

La valutazione circa la necessità di realizzare nuovi accessi o passi carrai è stata effettuata valutando l'attuale accessibilità di ciascun fondo agrario rispetto alle strade comunali e alle strade vicinali esistenti (aperti entrambi all'uso pubblico) ed alle strade interpoderali private (interdette al traffico pubblico) su cui il fondo intercluso già esercita la propria servitù di passaggio.

L'ubicazione dettagliata dei futuri accessi alle aree agricole sulle strade di ricucitura dipenderà principalmente dalle esigenze di ciascuna area in rapporto alle coltivazioni previste o all'uso (anche diverso da quello agricolo) che ciascun coltivatore riterrà più opportuno intraprendere dopo la realizzazione della nuova linea ferroviaria.

APPALTATORE: D'AGOSTINO ANGELO ANTONIO COSTRUZIONI GENERALI s.r.I.	RIASSETTO NODO DI BARI	
PROGETTISTA:	TRATTA A SUD DI BARI – VARIANTE DI TRACCIATO TRA BARI CENTRALE E BARI TORRE A MARE	
Mandataria: Mandante:	BARI CENTRALE E BARI TORRE A MARE	
RPA srl Technital SpA HUB Engineering Scarl		
PROGETTO ESECUTIVO:	PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO	
Viabilità di ricucitura n° 19 e 20 – Relazione tecnica	IA3S 01 E ZZ RH NV1200 003 C 44 DI 44	

Si prevedono complessivamente 2 accessi agricoli lungo il tratto di adeguamento NV12 della via San Marco e 7 accessi agricoli e 3 passi carrai sulle strade di ricucitura:

Ricucitura	L	Particelle Num.Acessi		
[-]	[m]	Catastali	Agrari	Carrai
19	273	8	6	1
20	83	3	1	2
Totale Acc	essi Ricu	citure	7	3

L'intersezione della strada n. 20 con via San Marco è stata unificata con il passo carraio (con cancello arretrato di 5.00 m) attualmente esistente sul tratto a nord di via San Marco, non interessato dai lavori di adeguamento. In questo modo viene assicurata la distanza di visibilità fra i conducenti dei veicoli in transito lungo via San Marco con quelli in ingresso dal passo carraio e dalla strada di progetto n. 20.

Viabilità di ricucitura n.20