AUTORIZZAZIONE UNICA EX D. LGS. N. 387/2003

PROGETTO DEFINITIVO PARCO EOLICO MONTI ALÀ DEI SARDI

Titolo elaborato:

PROGETTO DI MONITORAGGIO AMBIENTALE (PMA)

TL	GD	GD	EMISSIONE	 09/08/23	0	0
REDATTO	CONTR.	APPROV.	DESCRIZIONE REVISIONE DOCUMENTO	DATA	RE	V

PROPONENTE

PONENTE PRIME S.R.L.

VIA A. DE GASPERI N. 8 74023 GROTTAGLIE (TA)

CONSULENZA

GE.CO.D'OR S.R.L

VIA A. DE GASPERI N. 8 74023 GROTTAGLIE (TA)

PROGETTISTA

Ing. Gaetano D'Oronzio Via Goito 14 – Colobraro (MT)

Codice	Formato	Scala	Foglio
MASA141	A4	/	1 di 40

Sommario

1.	PREMESSA	3
2.	NORMATIVE DI RIFERIMENTO	4
3.	DESCRIZIONE GENERALE DELL'IMPIANTO	5
4.	REQUISITI E CRITERI GENERALI DEL PROGETTO DI MONITORAGGIO AMBIENTA	LE 9
4.1.	Area di indagine	10
4.2.	Localizzazione delle aree di indagine e dei punti/stazioni di monitoraggio	10
4.3.	Parametri analitici e metodologie di riferimento	11
4.4.	Articolazione temporale delle attività di monitoraggio	12
4.5.	Restituzione dei dati di monitoraggio	13
4.5.	1 Rapporti tecnici e dati del monitoraggio	13
5.	BIODIVERSITA' – FAUNA	15
5.1.	Fauna - Obiettivi specifici del Monitoraggio Ambientale e area d'indagine	16
5.2.	Fauna - Localizzazione delle aree di indagine e delle stazioni/punti di monitoraggio	19
5.3.	Fauna - Parametri descrittori	23
5.4.	Metodologie applicate	24
5.5.	Tipologia del dato finale e indicatori derivanti dalla raccolta dati	26
5.6.	Fauna - Articolazione temporale delle attività di monitoraggio	27
6.	AGENTI FISICI – RUMORE	27
6.1.	Rumore - Obiettivi specifici del Monitoraggio Ambientale	27
6.2.	Rumore - Localizzazione delle aree di indagine e dei punti di monitoraggio	28
6.3.	Rumore - Parametri analitici, metodologia di riferimento e strumentazione adoperata	36
6.4.	Rumore – Articolazione temporale delle attività di monitoraggio	39

1. PREMESSA

La "Ponente Prime s.r.l." è una società costituita per realizzare un impianto eolico in Sardegna, denominato "Parco Eolico Monti Alà dei Sardi", nel territorio del Comune di Monti e Alà dei Sardi, (Provincia di Sassari), della potenza totale di 86,4 MW, con punto di connessione a 150 kV in corrispondenza della stazione elettrica RTN Terna "Buddusò" 150 kV nel Comune di Buddusò (SS). A tale scopo la Ge.co.D'Or. s.r.l., società italiana impegnata nello sviluppo di impianti per la produzione di energia da fonti rinnovabili con particolare focus nel settore dell'eolico e proprietaria della suddetta società, si è occupata della progettazione definitiva per la richiesta di Autorizzazione Unica (AU) alla costruzione e l'esercizio del suddetto impianto eolico e della relativa Valutazione d'Impatto Ambientale (VIA).

Figura 1.2: Localizzazione Parco Eolico Monti Alà dei Sardi con individuazione dei Comuni interessati

Il presente documento contiene il Progetto di Monitoraggio Ambientale (PMA) che, successivamente all'entrata in vigore della Parte Seconda del D.Lgs.152/2006 e s.m.i., rappresenta un elemento importante nell'ambito del processo della Valutazione di Impatto Ambientale (VIA) e fornisce, ai sensi dell'Art. 28, una "misura dell'evoluzione dello stato dell'ambiente nelle diverse fasi di attuazione di un progetto e i necessari "segnali" per mettere in campo azioni correttive qualora le risposte ambientali non siano in linea con quanto previsto in fase di VIA".

Il PMA si riferisce al progetto relativo al Parco Eolico Monti Alà dei Sardi e si inserisce come parte integrante dell'elaborato di progetto "MASA102 Studio d'impatto Ambientale – Relazione generale".

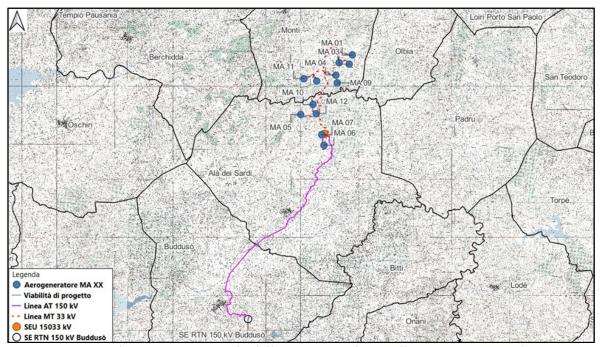
Il presente studio è stato condotto in accordo alle "Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D.Lgs.152/2006 e s.m.i., D.Lgs.163/2006 e s.m.i.) – Rev. 1 del 16/06/2014".

Gli obiettivi del Monitoraggio Ambientale e le relative attività da programmare e caratterizzare nel presente documento riguardano:

- 1. <u>"verifica dello scenario ambientale di riferimento</u> utilizzato nello SIA e caratterizzazione delle condizioni ambientali (scenario di base) da confrontare con le successive fasi di monitoraggio mediante la rilevazione dei parametri caratterizzanti lo stato delle componenti ambientali e le relative tendenze in atto prima dell'avvio dei lavori per la realizzazione dell'opera (monitoraggio ante operam o monitoraggio dello scenario di base)";
- 2. <u>"verifica delle previsioni degli impatti ambientali</u> contenute nello SIA e delle variazioni dello scenario di base mediante la rilevazione dei parametri presi a riferimento per le diverse componenti ambientali soggette ad un impatto significativo a seguito dell'attuazione dell'opera nelle sue diverse fasi (monitoraggio degli effetti ambientali in corso d'opera e post operam o monitoraggio degli impatti ambientali); tali attività consentiranno di:
 - a. verificare l'efficacia delle misure di mitigazione previste nello SIA per ridurre la significatività degli impatti ambientali individuati in fase di cantiere e di esercizio;
 - b. individuare eventuali impatti ambientali non previsti o di entità superiore rispetto alle previsioni contenute nello SIA e programmare le opportune misure correttive per la loro gestione/risoluzione";
- 3. "comunicazione degli esiti delle attività di cui ai punti precedenti (alle autorità preposte ad eventuali controlli, al pubblico)".

2. NORMATIVE DI RIFERIMENTO

Nel seguito sono riportate le norme tecniche di riferimento del progetto in questione:

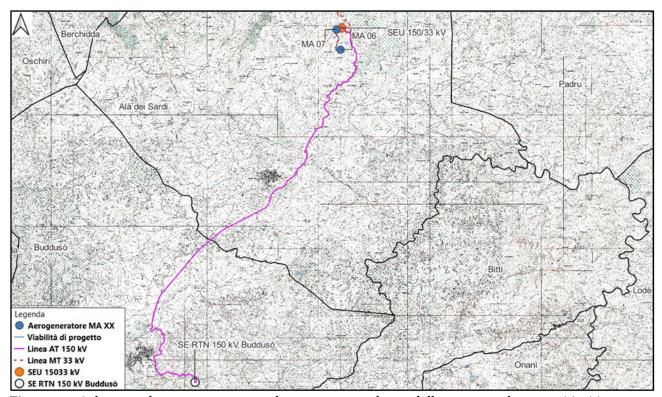

- ✓ Direttiva 2010/75/UE sulle emissioni industriali;
- ✓ Direttiva 2021/42/CE sulla Valutazione Ambientale Strategica di piani e programmi;
- ✓ Direttiva 2014/52/UE sulla Valutazione d'Impatto Ambientale di determinati progetti pubblici e privati;
- ✓ Il DPCM 27.12.1988 "Norme tecniche per la redazione degli Studi di Impatto Ambientale";

- ✓ D.Lgs.152/2006 e s.m.i.;
- ✓ Il D.Lgs.163/2006 e s.m.i che regolamenta la VIA per le opere strategiche e di preminente interesse nazionale (Legge Obiettivo 443/2001) e definisce per i diversi livelli di progettazione (preliminare, definitiva, esecutiva) i contenuti specifici del monitoraggio ambientale;
- ✓ Linee Guida per il Progetto di Monitoraggio Ambientale (PMA) delle infrastrutture strategiche ed insediamenti produttivi di cui al D.Lgs. 163/2006.
- ✓ Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D.Lgs.152/2006 e s.m.i., D.Lgs.163/2006 e s.m.i.) "Indirizzi metodologici generali" (Capitoli 1-2-3-4-5) Rev.1 del 16/06/2014

3. DESCRIZIONE GENERALE DELL'IMPIANTO

L'impianto eolico presenta una potenza totale pari a 86,4 MW ed è costituito da 12 aerogeneratori di potenza nominale pari a 7,2 MW (modello Vestas V172 con altezza torre pari a 114 m e rotore pari a 172 m).

L'impianto interessa prevalentemente il Comune di Monti (SS), ove ricadano 7 aerogeneratori, il Comune di Alà dei Sardi (SS), ove ricadono 5 aerogeneratori e la Stazione Elettrica Utente (SEU) di trasformazione 150/33 kV, e il Comune di Buddusò (SS), dove ricade la Stazione Elettrica (SE) RTN Terna 150 kV "Buddusò" (**Figura 3.1**).


Figura 3.1: Inquadramento territoriale dell'impianto eolico Gallura su IGM con i limiti amministrativi dei comuni interessati

La soluzione di connessione (soluzione tecnica minima generale STMG - codice pratica del preventivo di connessione C.P. 202102876) prevede che l'impianto eolico venga collegato in antenna a 150 kV su una nuova Stazione Elettrica (SE) della RTN a 150 kV in GIS denominata "Buddusò" (**Figura 3.2**) da inserire in entra – esce alla linea 150 kV "Ozieri – Siniscola 2" (di cui al Piano di Sviluppo Terna), previa:

- realizzazione di un nuovo elettrodotto di collegamento della RTN a 150 kV tra la SE di Santa Teresa e la nuova SE Buddusò (di cui al Piano di Sviluppo Terna);
- potenziamento/rifacimento della linea 150 kV "Chilivani Buddusò Siniscola 2" con caratteristiche almeno equivalenti a quelle di una linea con conduttori AA da 585 mm².

Il progetto prevede che la SEU (Sottostazione Elettrica Utente) 150/33 kV venga collegata alla SE RTN mediante la posa in opera, su strade esistenti o da realizzarsi per lo scopo, di una linea Alta Tensione a 150 kV interrata di lunghezza complessiva di circa 26,5 km.

Le turbine eoliche sono collegate attraverso un sistema di linee elettriche interrate a 33 kV, allocate prevalentemente in corrispondenza del sistema di viabilità interna necessario alla costruzione e la gestione futura dell'impianto e realizzato prevalentemente adeguando il sistema viario esistente e realizzando nuovi tratti di raccordo per consentire il transito dei mezzi eccezionali.

Figura 3.2: Soluzione di connessione a 150 kV in corrispondenza della stazione elettrica RTN Terna 150 kV Buddusò (di futura realizzazione)

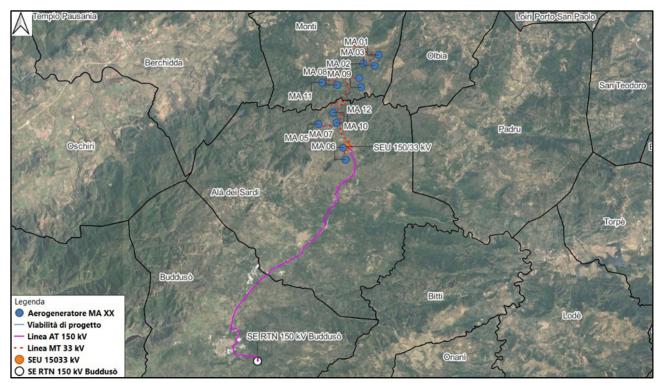
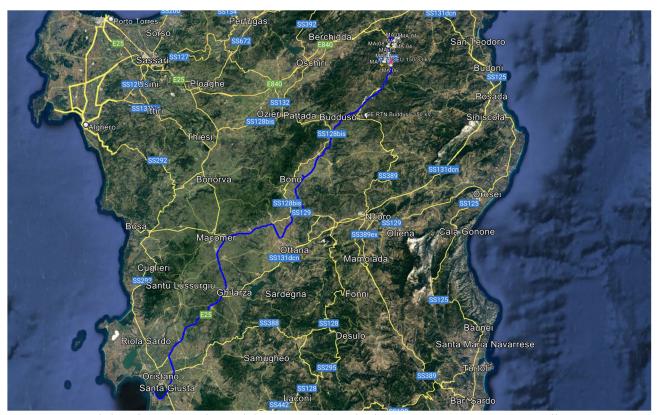



Figura 3.3: Inquadramento territoriale del Parco Eolico Monti Alà dei Sardi su ortofoto con i limiti amministrativi dei comuni interessati

L'area di progetto (**Figura 3.4**) si raggiunge partendo dal Porto di Oristano, attraversando poi la SS131, SS129, SP17, SP33, SP33, SS129, SP84, SP7, SS389 e un sistema di viabilità esistente, opportunamente adeguato e migliorato per il transito dei mezzi eccezionali, da utilizzare per consegnare in sito i componenti degli aerogeneratori e da cui si dirameranno nuovi tratti di viabilità necessari per la costruzione e la manutenzione dell'impianto eolico.

Figura 3.4: Viabilità di accesso al sito dal Porto Industriale di Oristano su immagine satellitare Si riportano di seguito le coordinate delle posizioni scelte per l'installazione degli aerogeneratori.

ID	ID Comune (Provincia)		Informazioni catastali Comune (Provincia)		Coordinate	Coordinate geografiche		H _{hub} [m]	H _{TOT} [m]
		Foglio	Particella	Latitudine [°]	Longitudine [°]				
MA01	Monti	32	381	40,771558	9,395286	172	200	114	
MA02	Monti	32	72	40,766363	9,382235	172	200	114	
MA03	Monti	32	211	40,764585	9,391917	172	200	114	
MA04	Monti	39	68	40,756211	9,37833	172	200	114	
MA05	Alà dei Sardi	5	48-118	40,725601	9,342591	172	200	114	
MA06	Alà dei Sardi	17	91	40,701933	9,366032	172	200	114	
MA07	Alà dei Sardi	17	75	40,709972	9,363786	172	200	114	
MA08	Monti	38	64	40,75166	9,358958	172	200	114	
MA09	Monti	39	250	40,750116	9,380075	172	200	114	
MA10	Alà dei Sardi	5	59	40,733383	9,35513	172	200	114	
MA11	Monti	36	216	40,753400	9,345837	172	200	114	

ID	Comune (Provincia)	Informazioni catastali		Coordinate geografiche		D _{ROTORE} [m]	H _{hub} [m]	H _{TOT} [m]
		Foglio	Particella	Latitudine [°]	Longitudine [°]			
MA12	Alà dei Sardi	5	140	40,726477	9,35807	172	200	114

Tabella 3.1: Localizzazione geografica degli aerogeneratori di progetto

4. REQUISITI E CRITERI GENERALI DEL PROGETTO DI MONITORAGGIO AMBIENTALE

Il PMA rappresenta un documento avente un'autonomia propria e in piena coerenza con i contenuti dello Studio d'Impatto Ambientale sullo stato d'ambiente ante-operam, ovvero precedente l'attuazione del progetto, e sulle previsioni degli impatti ambientali collegati alla realizzazione dell'opera (sia in corso d'opera che post-operam).

A livello metodologico e di principio il percorso da seguire per la predisposizione del PMA riguarda i seguenti punti:

- 1. "identificazione delle azioni di progetto che generano, per ciascuna fase (ante operam, in corso d'opera, post operam), impatti ambientali significativi sulle singole componenti ambientali (fonte: progetto, SIA e relative indagini specialistiche); per ciascuna azione di progetto sarà inoltre necessario evidenziare e quantificare i parametri progettuali che caratterizzano l'attività (es. per le attività di cantiere il numero e la tipologia dei mezzi operativi impiegati, numero dei viaggi giornaliero/totale mezzi di trasporto materiali da/per il cantiere, ecc.) in quanto tale dettaglio permette di orientare l'eventuale monitoraggio ambientale alla specifica tipologia di sorgente emissiva (es. emissioni di motori diesel) ed ai relativi parametri ambientali potenzialmente critici (es. PM10, NOx, CO, IPA)";
- 2. "identificazione delle componenti/fattori ambientali da monitorare (fonte: progetto, SIA e relative indagini specialistiche); sulla base dell'attività di cui al punto 1 vengono selezionate le componenti/fattori ambientali che dovranno essere trattate nel PMA in quanto interessate da impatti ambientali significativi e per le quali sono state individuate misure di mitigazione la cui efficacia dovrà essere verificata mediante il monitoraggio ambientale".

In particolare, il presente PMA è focalizzato sui fattori per cui sono emersi impatti di una certa rilevanza e sulle relative azioni di mitigazione ed è commisurato sull'incidenza della singola componente impattante.

Inoltre, esso si va ad integrare con le attività di monitoraggio già in essere al fine di coordinarsi e adattarsi in maniera flessibile con le azioni già intraprese dalle Autorità preposte, considerando la presenza di altri impianti eolici nelle aree prese in considerazione.

Come suggerito nelle Linee Guide citate si fa riferimento ad un formato sintetico ed esaustivo in relazione allo schema di lavoro da adottare.

Nei paragrafi successivi le varie componenti ambientali di cui si è fatta menzione, nell'ambito dell'area da attenzionare e sulla base degli obiettivi specifici di monitoraggio, sono trattate seguendo il seguente schema:

- 1. "area d'indagine";
- 2. "localizzazione delle aree di indagine e delle stazioni/punti di monitoraggio";
- 3. "parametri analitici e metodologie di riferimento (campionamento, analisi, elaborazioni dati)";
- 4. "articolazione temporale delle attività di monitoraggio";
- 5. "restituzione dati di monitoraggio".

Nel seguito i punti sopra indicati sono inizialmente esaminati in via generale, successivamente sono trattati in relazione alla Biodiversità – Fauna e al Rumore, ovvero le componenti ambientali per cui l'impianto in questione può essere più impattante, concordemente con quanto discusso nella SIA.

4.1. Area di indagine

Le aree di indagine sono state identificate e delimitate per ciascuna componente ambientale e corrispondono alla porzione di territorio entro la quale sono attesi gli impatti significativi sulla componente indagata generati dalla realizzazione/esercizio dell'opera.

4.2. Localizzazione delle aree di indagine e dei punti/stazioni di monitoraggio

Relativamente alle diverse fasi (ante-operam, corso d'opera e post-operam) è necessario individuare le stazioni o punti di monitoraggio all'interno dell'area d'indagine, al fine di fornire una caratterizzazione a livello qualitativo e quantitativo delle componenti ambientali.

Si rende necessario in fase preliminare individuare eventuali reti di monitoraggio già presenti al fine di integrare i nuovi punti di monitoraggio con quelli di tali reti.

Nel caso in cui non sia possibile effettuare un'integrazioni con reti già presenti, i punti di monitoraggio sono stabiliti anche in relazione della dimensione dell'area indagata, in accordo con le Linee Guida esistenti.

Inoltre, è necessario portare in conto la sensibilità del contesto ambientale e territoriale, per esempio nel caso di presenza di ricettori sensibili.

"In generale i ricettori sono rappresentati dai sistemi, o elementi di un sistema naturale o antropico, che sono potenzialmente esposti agli impatti generati da una determinata sorgente di pressioni ambientali: la popolazione, i beni immobili, le attività economiche, i servizi pubblici, i beni ambientali e culturali ovvero, in termini tipologici, un'area densamente abitata, un edificio".

La sensibilità del ricettore è definita da:

- "tipologia di pressione cui è esposto il ricettore: per le emissioni sonore sarà ricettore sensibile una scuola mentre non sarà ricettore sensibile una cascina rurale ad uso agricolo frequentata saltuariamente";
- "valore sociale, economico, ambientale, culturale: un'area naturale protetta avrà un valore superiore rispetto ad un agro-ecosistema caratterizzato da elementi di naturalità residua";
- "vulnerabilità: è la propensione del ricettore a subire gli effetti negativi determinati dall'impatto in relazione alla sua capacità (o incapacità) di fronteggiare alla specifica pressione ambientale; può essere assimilata alla funzione che lega le pressioni (es. sversamento accidentale di contaminanti sul suolo) agli impatti effettivamente riscontrabili (es. aumento delle concentrazioni di idrocarburi nella falda superficiale) ed è pertanto connessa alle caratteristiche intrinseche proprie del ricettore (es. permeabilità dei suoli di copertura); negli esempi riportati una falda superficiale con suoli di copertura ridotti e permeabili (acquifero vulnerabile) rappresenta un ricettore sensibile";
- "resilienza: è la capacità del ricettore di ripristinare le sue caratteristiche originarie dopo aver subito l'impatto generato da una pressione di una determinata tipologia ed entità (es. la capacità di autodepurazione di un corso d'acqua dopo aver subito l'impatto determinato dallo scarico di sostanze organiche di origine antropica) ed è pertanto anch'essa connessa alle caratteristiche intrinseche proprie del ricettore".

4.3. Parametri analitici e metodologie di riferimento

La scelta dei parametri ambientali (chimici, fisici, biologici) che caratterizzano lo stato quali-quantitativo di ciascuna componente/fattore ambientale, rappresenta l'elemento più rilevante per il raggiungimento degli obiettivi del Monitoraggio Ambientale (MA) e deve essere focalizzata sui parametri effettivamente significativi per il controllo degli impatti ambientali attesi.

Relativamente ad ognuno dei parametri descrittori individuati, per ognuna delle componenti ambientali e nei vari scenari (ante-operam, corso d'opera e post-operam), il PMA deve specificare:

- valori limite previsti dalle eventuali Normative di riferimento (in assenza delle stesse si rende necessario indicare i criteri e le metodologie utilizzate per l'attribuzione di valori standard quali qualitativi);
- o range di naturale variabilità stabiliti in base ai dati contenuti nello SIA, integrati, ove opportuno, da serie storiche di dati, dati desunti da studi ed indagini a carattere locale, analisi delle condizioni a contorno (sia di carattere antropico che naturale) che possono rappresentare nel corso del MA cause di variazioni e scostamenti dai valori previsti nell'ambito dello SIA;
- o valori soglia, ovvero i termini di riferimento da confrontare con i valori rilevati con il monitoraggio ambientale in corso d'opera e post opera;
- o valori ottenuti dalle misure;
- o metodologie analitiche di riferimento per il campionamento e l'analisi;
- o metodologie per il controllo dell'affidabilità dei dati; le metodologie possono discendere da standard codificati a livello normativo ovvero da specifiche procedure ad hoc, standardizzate ripetibili, che devono essere chiaramente stabilite nell'ambito di uno specifico "protocollo operativo";
- o criteri di elaborazione dei dati;
- o gestione delle anomalie presenti al fine di definire opportune procedure volte ad accertare il rapporto l'effetto anomalo e la relativa causa.

4.4. Articolazione temporale delle attività di monitoraggio

Le fasi temporali in cui articolare le attività di monitoraggio sono di seguito elencate:

- ante-operam, ovvero relativa al periodo precedente le attività di cantiere; tale fase è necessaria per definire la situazione iniziale, cioè i livelli di riferimento con cui confrontare i risultati del monitoraggio nelle 2 fasi seguenti;
- corso d'opera, ovvero relativa al periodo che comprende le attività di cantiere per la realizzazione opera (allestimento cantiere, lavorazioni varie, smantellamento del cantiere e ripristino dei luoghi);
- 3. post operam, ovvero relativa al periodo della fase di esercizio e di dismissione dell'opera e riferibile quindi a:
 - a. periodo che precede l'entrata in esercizio dell'opera nel suo assetto definitivo;

- b. esercizio dell'opera;
- c. attività di dismissione dell'opera al termine del relativo ciclo di vita.

4.5. Restituzione dei dati di monitoraggio

Le informazioni da restituire in seguito al MA riguardano:

- o rapporti tecnici e descrittivi delle attività svolte e dei risultati del MA, sviluppati secondo le Linee Guida di riferimento;
- o dati del monitoraggio;
- o dati territoriali georeferenziati volti a localizzare gli elementi significativi del monitoraggio.

4.5.1 Rapporti tecnici e dati del monitoraggio

I rapporti tecnici relativi al Monitoraggio Ambientale e da predisporre periodicamente devono contenere:

- o le finalità specifiche dell'attività di monitoraggio condotta in relazione alla componente/fattore ambientale;
- o la descrizione e la localizzazione delle aree di indagine e delle stazioni/punti di monitoraggio;
- o i parametri monitorati;
- o l'articolazione temporale del monitoraggio in termini di frequenza e durata;
- o i risultati del monitoraggio e le relative elaborazioni e valutazioni, comprensive delle eventuali criticità riscontrate e delle relative azioni correttive intraprese.

Inoltre, i rapporti tecnici devono contenere le schede di sintesi per ogni punto o stazione di monitoraggio, ovvero schede in cui sono riportate le seguenti informazioni:

- codice che identifica univocamente l'area di indagine, i comuni, le province e regioni i cui territori ricadono nella stessa, eventuale presenza di elementi naturali che possano interferire con l'attività di monitoraggio condizionandone eventualmente l'esito, l'uso reale del suolo;
- codice che identifica univocamente il punto o stazione di monitoraggio, le relative coordinate geografiche espresse in gradi decimali (sistema di riferimento WGS84 o ETRS89), la componente ambientale monitorata, la fase di monitoraggio;
- codice che identifica univocamente possibili ricettori presenti nell'area attenzionata, relative coordinate geografiche espresse nel sistema WGS84 o ETRS89, localizzazione e descrizione;
- strumentazione e metodologia adoperata per il monitoraggio, durata e cadenza dell'attività.

Alle schede di sintesi è necessario fornire informazioni a livello grafico, ovvero allegare l'inquadramento generale dell'opera, che includa la localizzazione dei punti o stazioni di monitoraggio, una rappresentazione su Carta Tecnica Regionale o su foto aerea (scala 1:10.000) dei punti o stazioni di monitoraggio (anche se già esistenti e appartenenti ad un'altra rete di monitoraggio), che riporti anche l'elemento progettuale compreso nell'area di indagine, eventuali ricettori sensibili e fattori naturali che possano interferire con l'attività svolta e immagini fotografiche delle aree attenzionate.

Nella **Figura 4.7.1** è riportata una possibile scheda di sintesi.

Area di indagine								
Codice identificativo area di indagine								
Territori intere	ssati dal moni	toraggio						
Destinazio	ne d'uso dal F	RG						
Uso re	ale del suolo							
Descrizioni e	morfologia de	ell'area						
Elementi antropici e/o natura di m	li che possano onitoraggio	condiziona	re l'attività					
Punto/stazione di monitoraggio								
Codice identificativo pu	nto/stazione	di monitora	ggio					
Regione				Provincia	ļ			
Comune				Località				
Sistema di riferimento	•	Latit	udine		Longi	tudine		
De	scrizione	•						
Compon	ente ambienta	le						
Parame	tri monitorat	i						
Strument	azione adoper	ata						
Fase di monitoraggio	Anto	operam		Corso d'opera		Post	operam	
Periodicità e durata c	ell'attività di	monitoraggi	0					•
			Ricett	ori				
Codice identi	ficativo del rio	ettore						
Regione			Provincia	l				
Comune		Località						
Sistema di riferimento Latitudine				Longi	tudine			
Descriz	ione ricettore	:						

Figura 4.7.1: Esempio di scheda di sintesi

Infine, i rapporti tecnici devono essere corredati con tabelle in formato aperto xls o csv contenenti le seguenti informazioni relative ai dati di monitoraggio:

- codice che identifica univocamente il punto o stazione di monitoraggio;
- codice che identifica univocamente la campagna di monitoraggio;
- periodo di campionamento;
- data del campionamento;
- parametro monitorato;
- unità di misura del parametro monitorato;
- valore misurato;
- valore limite nel caso in cui sia previsto dalle Normative vigenti;
- superamenti dei valori limite e/o anomalie riscontrate nell'attività.

5. BIODIVERSITA' - FAUNA

Le componenti ambientali prese in considerazione sono l'avifauna e la chirotterofauna in quanto, come si evince dallo Studio d'Impatto Ambientale, rappresentano gli aspetti per cui è necessario sviluppare un monitoraggio specifico.

Sulla base di tale considerazione risulta fondamentale condurre uno studio sulle popolazioni di avifauna e chirotterofauna, ovvero stabilire un'attività di monitoraggio specifica volta a stabilire le interazioni delle varie specie con i siti in questione e la consistenza delle popolazioni.

La fauna nelle tre fasi di vita dell'impianto eolico viene sostanzialmente disturbata dalla presenza dell'opera dell'uomo, dall'incremento di luminosità notturna e dall'incremento del rumore nell'ambiente.

La fase di costruzione e di dismissione dell'impianto sono limitate nel tempo e non hanno una durata continua da un punto di vista cronologico; pertanto, generano un impatto BASSO sulla Fauna.

Durante la fase di esercizio i possibili impatti sono legati principalmente a 3 aspetti:

- incremento della luminosità notturna, ovvero presenza di alcuni lampeggianti di segnalazione installati su alcuni aerogeneratori, che comunque non sono in grado di alterare significativamente le attuali condizioni, sia per intensità in sé che per la presenza di altri impianti nell'area;
- la presenza degli aerogeneratori implica una potenziale collisione dell'avifauna e chirotterofauna con gli stessi;
- incremento di rumore, dovuto all'esercizio degli aerogeneratori, che può rappresentare un'azione di disturbo per la fauna e sul cui tema c'è una crescente preoccupazione all'interno

della comunità scientifica, secondo cui il rumore antropico può interferire con i comportamenti degli animali mascherando la percezione dei segnali di comunicazione acustica.

5.1. Fauna - Obiettivi specifici del Monitoraggio Ambientale e area d'indagine

Con riferimento all'aspetto ambientale relativo alla biodiversità – fauna, "oggetto del monitoraggio è la comunità biologica, rappresentata dalle specie appartenenti alla fauna (con particolare riguardo a specie e habitat inseriti nella normativa comunitaria, nazionale e regionale), le interazioni svolte all'interno della comunità e con l'ambiente abiotico, nonché le relative funzioni che si realizzano a livello di ecosistema.

L'obiettivo delle indagini è quindi il monitoraggio delle popolazioni animali, delle loro dinamiche, delle eventuali modifiche della struttura e composizione delle biocenosi e dello stato di salute delle popolazioni di specie target, indotte dalle attività di cantiere e/o dall'esercizio dell'opera".

L'obiettivo del monitoraggio ambientale è lo studio delle popolazioni di avifauna e chirotterofauna, delle loro dinamiche e delle eventuali modifiche della struttura e composizione delle biocenosi indotte dalle attività di cantiere e/o dall'esercizio dell'opera.

Nello specifico il monitoraggio ante operam prevede la caratterizzazione delle zoocenosi presenti nell'area di studio. Le fasi successive, in corso e post operam, andranno a verificare l'insorgenza di eventuali alterazioni nella consistenza e nella struttura delle cenosi precedentemente individuate.

L'individuazione dell'area di indagine è stata effettuata sulla base delle indicazioni riportate in:

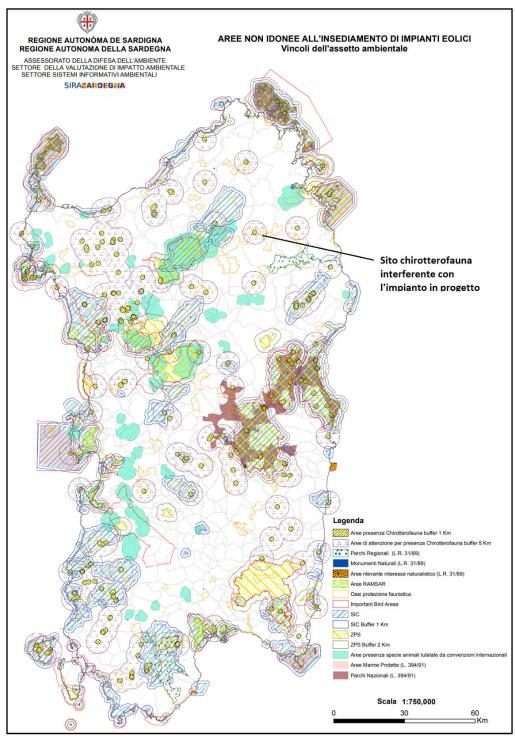
- "Linee guida per il monitoraggio dei Chirotteri: indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia, ISPRA (2004)";
- "Protocollo di monitoraggio avifauna e chirotterofauna dell'Osservatorio Nazionale su Eolico e Fauna" (Garcia *et al.*, 2012);
- "Linee guida per la valutazione dell'impatto degli impianti eolici sui chirotteri" (Agnelli et al.,
 2014)".

Si riporta di seguito una tabella riassuntiva in cui si evidenziano le diverse aree di indagine.

Descrizione	Area di indagine		
Localizzazione e controllo dei siti riproduttivi dei	Localizzazione e controllo di eventuali siti riproduttivi		
Rapaci	entro un buffer di 500 m dall'impianto.		
Mappaggio dei passeriformi nidificanti e rapaci	Transetti che percorrono approssimativamente la linea		
diurni nidificanti	di giunzione dei punti di collocazione delle torri		
diumi nidiicanti	eoliche.		

Descrizione	Area di indagine	
Rilevamento delle comunità di passeriformi mediante punti di ascolto	Punti d'ascolto in un buffer di 100-200 m dalle torri.	
Esecuzione punti di ascolto con playback indirizzati agli uccelli notturni nidificanti	Punti d'ascolto ad una distanza di 200 m dalle torri	
Monitoraggio dell'avifauna migratrice	Intera area dell'impianto	
	Transetti che percorrono approssimativamente la linea	
Monitoraggio avifauna svernante	di giunzione dei punti di collocazione delle torri	
	eoliche.	

Tabella 5.1.1: Area d'indagine avifauna


all'interno dei siti Natura 2000.

L'area vasta dell'impianto è definita come la porzione di territorio nella quale si esauriscono gli effetti significativi, diretti e indiretti, ovvero la porzione di territorio ottenuta applicando ad ogni singolo aerogeneratore un buffer pari a 50 x 200 m = 10.000 m, dove 200 m è l'altezza massima dell'aerogeneratore stesso (H_{hub} + Raggio rotore = 114 m + 86 m = 200 m)

Come riportato nell'elaborato di progetto "MASA102 Studio d'Impatto Ambientale – Relazione generale", l'area vasta dell'impianto non interferisce con nessuna delle aree Rete Natura 2000, mentre nelle aree limitrofe all'area vasta sono presenti le zone protette SIC/ZSC ITB011109 Monte Limbara, avente una distanza minima dall'impianto (MA 11) di 11 km, e SIC/ZSC ITB011113 – Campo di Ozieri e Pianure comprese tra Tula e Oschiri, avente distanza minima dall'impianto (MA 05) di circa 12 km. Alla luce di quanto esplicitato non si rende necessario il monitoraggio dell'avifauna e chirotterofauna

La figura seguente "aree non idonee all'insediamento di impianti eolici" (Fonte: *Portale Regione Sardegna*) riporta anche le aree di attenzione per presenza di chirotterofauna con buffer di 5 km.

Gli aerogeneratori di progetto MA 05, MA 08, MA 10, MA 11 e MA 12, principali elementi di disturbo durante la fase di esercizio, risultano essere localizzati all'interno del buffer di 5 km del sito della chirotterofauna indicato nella **Figura 5.1.1**, motivo per cui è necessario che il progetto di monitoraggio dell'avifauna e dei chirotteri preveda anche punti di rilevamento all'interno di tale area interferita. In particolare, quale area d'indagine si considera la parte dell'area del sito di chirotterofauna interferito che comprende il buffer di 5 km applicato agli aerogeneratori sopra richiamati.

Figura 5.1.1: Aree non idonee all'insediamento degli impianti eolici (Fonte: *Portale Regione Sardegna https://www.regione.sardegna.it/documenti/1 38 20150819111849.pdf*)

Descrizione	Area di indagine
	Si considera l'intersezione dell'area del sito della
	chirotterofauna interferito e dell'area ottenuta
Monitoraggio dell'avifauna e chirotterofauna	applicando un
	buffer di 5 km dagli aerogeneratori MA 05, MA 08, MA
	10, MA 11 e MA 12

Tabella 5.1.2: Monitoraggio siti chirotterofauna presenti

5.2. Fauna - Localizzazione delle aree di indagine e delle stazioni/punti di monitoraggio

Con riferimento all'aspetto ambientale relativo alla biodiversità – fauna, "nel PMA dovranno essere individuate le stazioni di campionamento, le aree e i punti di rilevamento, in funzione della tipologia di opera e dell'impatto diretto o indiretto già individuato nello SIA, delle caratteristiche del territorio, della presenza di eventuali aree sensibili (siti della Rete Natura 2000, zone umide, aree naturali protette, ecc.) e delle eventuali mitigazioni e compensazioni previste nel progetto.

Il sistema di campionamento andrà opportunamente scelto in funzione delle caratteristiche dell'area di studio e delle popolazioni da monitorare, selezionate in base alle caratteristiche dei potenziali impatti ambientali.

In corso d'opera il monitoraggio dovrà essere eseguito con particolare attenzione nelle aree prossime ai cantieri, dove è ipotizzabile si possano osservare le interferenze più significative. In fase di esercizio, nel caso di opere puntuali potrà essere utile individuare un'area (buffer) di possibile interferenza all'interno della quale compiere i rilievi; nel caso di infrastrutture lineari, potranno essere individuati transetti e plot permanenti all'interno dei quali effettuare i monitoraggi.

I punti di monitoraggio individuati in generale, dovranno essere gli stessi per le fasi ante, in corso e post operam, al fine di verificare eventuali alterazioni nel tempo e nello spazio e di monitorare l'efficacia delle mitigazioni e compensazioni previste. Per quanto concerne le fasi in corso e post operam, è necessario identificare le eventuali criticità ambientali non individuate durante la fase ante operam, che potrebbero richiedere ulteriori esigenze di monitoraggio.

Per quanto riguarda la vegetazione, il suo studio si articola su basi qualitative (variazione nella composizione specifica) e quantitative (variazioni nell'estensione delle formazioni). Normalmente le metodologie di rilevamento possono essere basate su plot e transetti permanenti la cui disposizione spaziale viene parametrizzata rispetto alle caratteristiche dell'opera (lineare, puntuale, areale). L'analisi prevede una ricognizione dettagliata della fascia d'interesse individuata con sopralluoghi nel corso della stagione vegetativa.

Per quanto riguarda la fauna, analogo approccio dovrà verificare qualitativamente e quantitativamente lo stato degli individui, delle popolazioni e delle associazioni tra specie negli habitat e nei tempi adeguati alla fenologia e alla distribuzione delle specie".

Il monitoraggio dell'avifauna prevede le seguenti aree di indagine e stazioni di monitoraggio:

- ricerca di potenziali siti riproduttivi di rapaci in un buffer di **500 m** da ogni aerogeneratore;

- 15 punti di ascolto per il rilevamento delle comunità di passeriformi nidificanti e uccelli notturni nidificanti, di cui 12 entro un buffer di 100 200 m da ogni aerogeneratore;
- 12 transetti per il mappaggio dei passeriformi nidificanti, dei rapaci diurni nidificanti e per il rilevamento degli uccelli svernanti nell'area d'indagine entro un buffer di 100 200 m da ogni areogeneratore;
- 7 potenziali punti di osservazione della migrazione al fine di studiare l'intera area d'indagine;
- 1 punto di osservazione della migrazione all'interno del sito di chirotterofauna interferente con l'impianto.

Nella figura seguente sono indicate la localizzazione e il numero delle stazioni di monitoraggio dell'avifauna; tuttavia, le stazioni rappresentate sono da considerarsi del tutto potenziali in quanto la relativa posizione e il relativo numero potrebbero variare sia per esigenze logistiche che di ricerca.

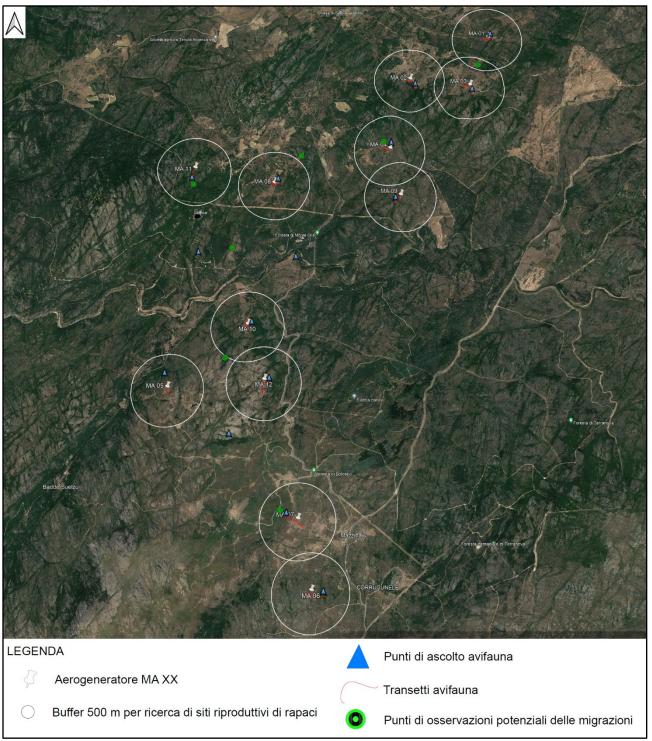
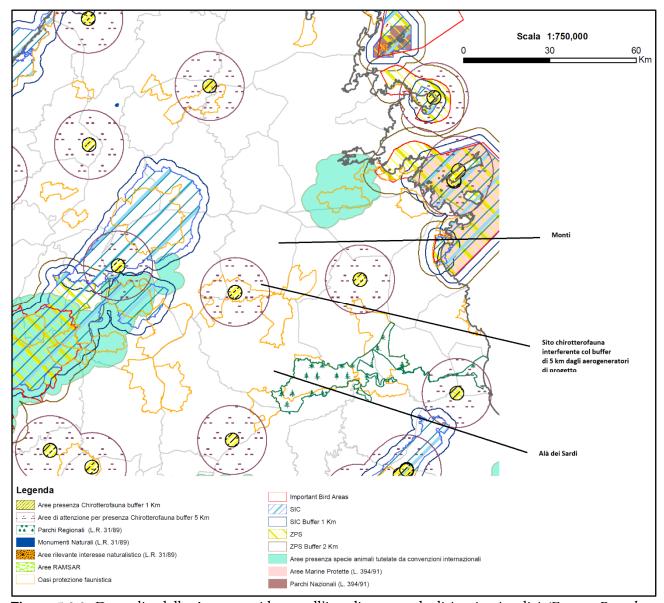



Tabella 5.2.1: Localizzazione delle stazioni di monitoraggio dell'avifauna

Nel corso delle tre fasi progettuali (ante operam, in corso d'opera e post operam) ed eventuale fase di dismissione, le stazioni di campionamento per il monitoraggio dell'avifauna rimangono invariate, al fine di ottenere dati faunistici che possano essere confrontabili nel corso del tempo.

Come anticipato, considerata la presenza di siti di chirotterofauna nelle vicinanze dell'area d'impianto (**Figura 5.1.1**), si prevede il monitoraggio della chirotterofauna nell'area che si ottiene dall'intersezione tra l'area di attenzione per presenza di chirotterofauna (buffer 5 km), più vicina all'area d'impianto e

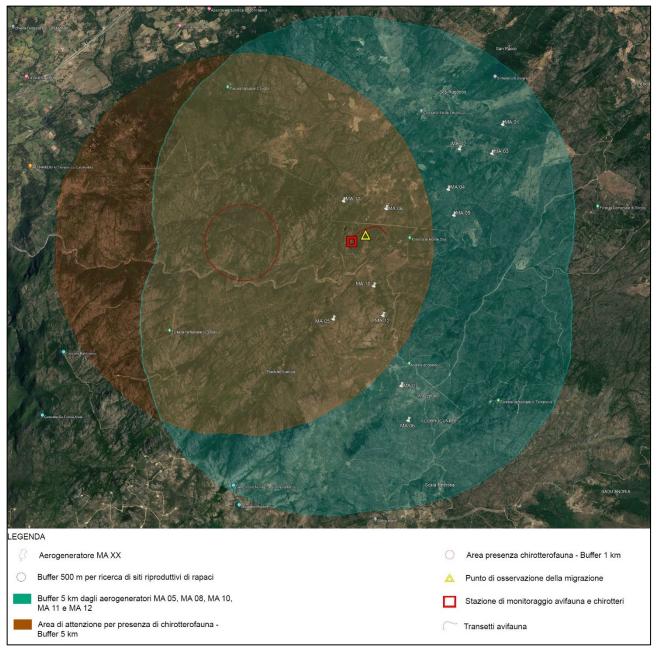

indicata nella **Figura 5.2.2**, e l'area che si ottiene applicando un buffer di 5 km dagli aerogeneratori di progetto.

Figura 5.2.2: Dettaglio delle Aree non idonee all'insediamento degli impianti eolici (Fonte: *Portale Regione Sardegna <u>https://www.regione.sardegna.it/documenti/1 38 20150819111849.pdf</u>), sito della chirotterofauna interferente col buffer di 5 km dagli aerogeneratori di progetto, limiti amministrativi dei comuni di Monti e Alà dei Sardi*

Nello specifico, come rappresentato nella figura seguente, l'area di monitoraggio della chirotterofauna è la parte di area del sito di chirotterofauna interferente evidenziato nella **Figura 5.2.2** che comprende il buffer di 5 km dagli aerogeneratori MA 05, MA 08, MA 10, MA 11 e MA 12.

Nella figura seguente sono indicate la localizzazione e il numero delle stazioni di monitoraggio che riguardano parte l'area sopra definita; tuttavia, le stazioni rappresentate sono da considerarsi del tutto potenziali in quanto la relativa posizione e il relativo numero potrebbero variare sia per esigenze logistiche che di ricerca.

Tabella 5.2.3: Rappresentazione dell'area di indagine e delle stazioni di monitoraggio della chirotterofauna

5.3. Fauna - Parametri descrittori

Al fine di predisporre il Progetto di Monitoraggio Ambientale deve essere definita una strategia di monitoraggio per la caratterizzazione quali-quantitativa dei popolamenti e delle comunità potenzialmente interferiti dall'opera nelle fasi di cantiere, esercizio ed eventuale dismissione. La strategia deve individuare, come specie *target*, quelle protette dalle direttive 92/43/CEE e 2009/147/CE, dalle leggi nazionali e regionali, le specie rare e minacciate secondo le Liste Rosse internazionali, nazionali e regionali, le specie endemiche, relitte e le specie chiave caratterizzanti gli habitat presenti e le relative funzionalità.

Nel caso specifico, per ognuna delle specie *target* individuate, i parametri descrittori monitorati sono relativi a due categorie, così come riportato in **Tabella 5.3.1**.

Categoria dei parametri descrittori	Parametri descrittori			
	Indice di mortalità e migrazione delle specie target			
Stato degli individui	Frequenza di individui con variazione dei comportamenti			
	Presenza di patologie			
	Variazione della consistenza delle popolazioni delle specie target			
	Variazione nella struttura dei popolamenti			
Stato delle popolazioni	Abbandono o variazione dei siti di riproduzione, alimentazione e rifugio			
	Modifiche di interazione tra prede e predatori			
	Nascita o aumento di specie alloctone			

Figura 5.3.1: Parametri descrittori

5.4. Metodologie applicate

Una caratterizzazione faunistica adeguata può essere conseguita solo attraverso un adeguato piano di campionamento basato su sopralluoghi effettuati nell'area di interesse.

A seconda delle specie oggetto di indagine, è necessario adottare specifiche metodologie di rilevamento standardizzate, al fine di omogeneizzare la raccolta di dati.

Per quanto riguarda le popolazioni animali, la relativa mobilità e dinamicità e la tendenza a occultarsi rendono oltremodo difficile standardizzare le metodiche che variano anche al variare dell'obiettivo di monitoraggio.

Per le difficoltà sopra citate è piuttosto raro che si possano effettuare rilievi che prevedano il censimento dell'intera popolazione.

Molte stime censuarie sono ottenute operando in aree campione dimensionate sulla base delle caratteristiche delle popolazioni oggetto di studio.

Nel caso specifico la metodologia usata per il monitoraggio dell'impatto diretto e indiretto degli impianti eolici sull'avifauna e la specie dei chirotteri è basata sul protocollo ANEV, che si fonda su un approccio di tipo BACI (Before After Control Impact) che prevede lo studio delle popolazioni animali prima, durante e dopo la costruzione dell'impianto, prendendo come riferimento il confronto con un'area di controllo.

Si riportano di seguito le metodologie di campionamento e le relative frequenze di campionamento previste per l'avifauna e la chirotterofauna, sulla base delle linee guida contenute nel documenti "Protocollo di monitoraggio avifauna e chirotterofauna dell'Osservatorio Nazionale su Eolico e Fauna" (ISPRA, ANEV, Legambiente), "Linee guida per il monitoraggio dei Chirotteri: indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia, ISPRA (2004)" e "Linee guida per la valutazione dell'impatto degli impianti eolici sui chirotteri" (Agnelli *et al.*, 2014).

Descrizione	Metodologia	Frequenza
Localizzazione e controllo dei siti riproduttivi dei Rapaci	Localizzazione e controllo di eventuali siti riproduttivi entro un buffer di 500 m dall'impianto. Mappaggio su cartografia 1:25.000 dei siti riproduttivi e delle traiettorie di spostamento.	1 uscita/mese da gennaio a maggio in base alla fenologia delle specie rilevate
Mappaggio dei passeriformi nidificanti e rapaci diurni nidificanti	Mappaggio di tutti i contatti visivi e canori con gli uccelli identificati a qualunque distanza percorrendo approssimativamente la linea di giunzione dei punti di collocazione delle torri eoliche.	1 uscita/mese nel periodo compreso tra aprile e giugno
Rilevamento delle comunità di passeriformi mediante punti di ascolto	Campionamento mediante punti d'ascolto prestabiliti (point count) della durata di 10 minuti, entro un buffer compreso tra i 100 – 200 m. Il numero dei punti di ascolto sarà uguale al numero delle torri previste da ogni impianto +3, prevedendo altri punti di ascolto in aree campione.	2 uscite/mese nel periodo compreso tra marzo e giugno
Esecuzione punti di ascolto con playback indirizzati agli uccelli notturni nidificanti	Censimento degli uccelli rapaci notturni mediante l'ascolto degli individui in canto, con punti d'ascolto in numero minimo 1 punto/km. Rilevamento mediante l'ascolto dei richiami notturni, successivo all'emissione di sequenze di tracce di richiami amplificati (playback).	1° sessione nel mese di marzo 2° sessione compresa tra maggio e giugno
Monitoraggio dell'avifauna migratrice	Verifica del transito dei rapaci e passeriformi intorno al sito dell'impianto in previsione, tramite osservazione da un punto fisso. Mappatura su carta in scala 1:5000 delle traiettorie di volo.	1 uscita a decade da marzo a novembre esclusi i mesi di giugno e luglio.
Monitoraggio avifauna svernante	Censimento degli uccelli svernanti nell'area del progetto, tramite l'esecuzione di transetti lineari di 1km, e tramite osservazione diretta delle specie presenti.	1 sessione di campionamento da svolgere nel periodo compreso tra dicembre e febbraio

Tabella 5.4.1: Metodologie e frequenza di campionamento dell'avifauna

Si riportano di seguito le metodologie di campionamento previste per la chirotterofauna, in accordo con le linee guida "Linee guida per il monitoraggio dei Chirotteri: indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia" (ISPRA 2004).

Descrizione	Metodologia	Frequenza		
Ricerca dei siti idonei alla riproduzione, svernamento e rifugio	Ricerca in un raggio di 5 km dal potenziale impianto di tutti i siti di chirotterofauna idonei alla nidificazione, svernamento e rifugio.	1 uscita di campo nel periodo compreso tra dicembre e marzo 1 uscita di campo nel periodo compreso tra giugno e settembre		
Monitoraggio della chirotterofauna migratrice e stanziale	Indagini mediante bat detector in modalità eterodyne e time expansion, con successiva analisi dei sonogrammi, sulla chirotterofauna migratrice e stanziale.	2 uscite mensili nel periodo compreso tra aprile e ottobre		

Tabella 5.4.2: Metodologie e frequenza di campionamento della chirotterofauna

5.5. Tipologia del dato finale e indicatori derivanti dalla raccolta dati

Lo studio delle popolazioni di avifauna e chirotterofauna mira ad esprimere modelli e indici descrittori delle dinamiche demografiche, ovvero abbondanze, consistenza della popolazione, numero coppie riproduttive, tassi di successo riproduttivo e produttività, indici di sopravvivenza e reclutamento, rapporto classi di età, variazione fenologica locale, variazione percorso di migrazione, variazione distribuzione spaziale.

L'analisi del popolamento produce elenchi di specie, abbondanze relative e indici di diversità.

Gli indici di diversità utilizzabili nel corso dell'analisi dei dati sono di seguito riportati:

- ricchezza specifica totale (S): è l'attributo principale di una comunità e si basa unicamente sul numero totale di specie presenti;
- ricchezza specifica di Margalef (d): indice calcolato dividendo il numero delle specie 1 per il logaritmo del numero di individui secondo la formula

$$d = \frac{(S-1)}{\log N}$$

dove S = numero di specie e N = numero di individui;

- **diversità di Shannon (H')**: indice che contiene informazioni sia sulla ricchezza di specie sia su come gli individui sono ripartiti tra essi e viene calcolato secondo la formula

$$H' = -\sum_{i=1}^{S} p_i \log_2(p_i)$$

dove S = numero di specie e pi = proporzione della i-esima specie nel campione;

 dominanza di Simpson (D): indice che evidenzia la probabilità che due individui estratti a caso da un campione appartengano alla stessa specie e viene calcolato secondo la formula

$$D = \sum_{i=1}^{S} \frac{n_i (n_i - 1)}{N (N - 1)}$$

dove S = numero di specie, ni = numero di individui della specie i-esima e N= numero di individui totali nel campione.

5.6. Fauna - Articolazione temporale delle attività di monitoraggio

Come anticipato nel Paragrafo **4.4**, la frequenza dei campionamenti, la relativa intensità sul territorio (densità e numero dei prelievi, lunghezza dei transetti ecc.), la durata e la tempistica (tenendo conto della fenologia delle specie chiave) devono essere definite nel PMA.

Nel caso specifico si prevede che il monitoraggio, durante la fase ante operam, abbia durata di 1 anno, nel corso del quale le attività sono distribuite sulla base del protocollo ANEV.

Il monitoraggio ante operam avrà inizio il 1° gennaio dell'anno precedente a quello di inizio dei lavori di costruzione e terminerà il 31 dicembre del medesimo anno.

Il monitoraggio proseguirà durante l'intera fase corso d'opera e, nella fase post operam, avrà una durata di 3 anni, nel corso della quale le attività saranno distribuite sulla base del protocollo ANEV.

La cadenza temporale delle varie attività è riportata nella Tabella 5.4.1 del Paragrafo 5.4.

6. AGENTI FISICI – RUMORE

Per inquinamento acustico si intende "l'introduzione di rumore nell'ambiente abitativo o nell'ambiente esterno tale da provocare fastidio o disturbo al riposo ed alle attività umane, pericolo per la salute umana, deterioramento degli ecosistemi, (...)" (art. 2 L. 447/1995).

Il monitoraggio dell'inquinamento acustico è volto a valutare gli effetti provocati dal rumore sulla popolazione (esistono normative standard, specifiche e linee guida a seconda dei settori infrastrutturali e attività produttive da attenzionare) e sugli ecosistemi e singole specie (pur non essendo disponibili normative di riferimento, esistono in merito una serie di studi scaturiti da precedenti esperienze e considerati riferimenti riconosciuti in ambito internazionale).

6.1. Rumore - Obiettivi specifici del Monitoraggio Ambientale

Gli obiettivi specifici del monitoraggio del rumore possono essere suddivisi in base alle fasi dell'opera: Ante Operam (AO), Corso d'Opera (CO) e Post Operam (PO). Nella fase AO e con riferimento all'area d'indagine avviene la definizione e valutazione dello scenario di rumore presente inizialmente; in particolare, sono stimati i singoli contributi di rumore generati dalle varie sorgenti presenti e sono individuati eventuali superamenti dei valori limite dei livelli acustici definiti dalle normative di riferimento e da eventuali prescrizioni presenti a livello comunale.

Nella fase successiva (CO) è effettuata la verifica che i valori limite di rumore, stabiliti dalle normative sul monitoraggio acustico, non siano superati dalle sorgenti di rumore quali macchinari, impianti, attrezzature di cantiere e mezzi in ingresso e uscita dalle aree di cantiere.

Nel caso di presenza di criticità vengono messe in atto azioni correttive volte alla mitigazione dei livelli acustici, quali, per esempio, la ridefinizione del programma di lavori, la ripianificazione temporale delle attività di cantiere e l'utilizzo di macchinari e mezzi di trasporto poco rumorosi e viene valutato l'effetto di tali azioni.

Nella fase PO Il rumore aerodinamico è il rumore più importante prodotto da un impianto eolico moderno ed è imputabile all'attrito dell'aria con le pale e con la torre di sostegno; esso dipende, quindi, fortemente dalla velocità di rotazione del rotore ed aumenta all'aumentare delle dimensioni dell'aerogeneratore.

In tale fase avviene il confronto tra i parametri misurati nelle fasi precedenti con quelli misurati in seguito alla realizzazione dell'opera, la verifica che i valori limite, indicati nelle normative di riferimento per il monitoraggio acustico, non siano stati superati e che eventuali azioni di mitigazione del rumore, conseguenti ad eventuali criticità, abbiano sortito l'efficacia auspicata.

6.2. Rumore - Localizzazione delle aree di indagine e dei punti di monitoraggio

La scelta dell'area di indagine e dei punti di monitoraggio dipende dalla presenza eventuale di ricettori, dalle relative caratteristiche e dalla posizione rispetto alla sorgente di rumore.

Allo scopo di individuare tutti i ricettori potenzialmente disturbati dal rumore prodotto dagli aerogeneratori, è stata effettuata una accurata ricognizione presso i luoghi oggetto di intervento, interessando dapprima l'intera zona di progetto e pervenendo successivamente ai ricettori aventi distanza dalle turbine fino a circa 850 metri, individuandone al contempo l'ubicazione e la tipologia.

L'area di indagine è quindi individuata dalla superficie interna al buffer di 850 m applicato agli aerogeneratori di progetto.

Dai sopralluoghi effettuati si è verificato che molti fabbricati esistenti sono casolari da anni abbandonati e non sono stati compresi nel novero dei ricettori.

Nella tabella seguente sono riportati alcuni fabbricati rinvenuti nell'area d'indagine e nell'area immediatamente esterna ad essa, nei pressi di alcuni dei quali sono state effettuate le misurazioni acustiche nel seguito della trattazione riportate, la relativa tipologia, la localizzazione, le informazioni catastali e la distanza dall'aerogeneratore più vicino.

ID	Comune	Latitudine [°]	Longitudine [°]	Distanza WTG più vicina [m]	Fg	P.lla	Stato Accatastamento	Buffer di sicurezza applicato in seguito a sopralluogo [m]
R01	Monti	40.779844°	9.398495°	954 (MA01)	29	94	D10	300
R02	Monti	40.771999°	9.402335°	594 (MA01)	33	58	F02	0
R03	Monti	40.773485°	9.382991°	855 (MA02)	32	477	C02	300
R04	Monti	40.771450°	9.381017°	631 (MA02)	32	480	D10	0
R05	Monti	40.769203°	9.380958°	381 (MA02)	32	706	C02	300
R06	Monti	40.765617°	9.370988°	912 (MA02)	34	241	A03	500
R07	Monti	40.761314°	9.375058°	629 (MA04)	34	86; 71; 72 (catasto Terreni)	n.a.	0
R08	Monti	40.761012°	9.375427°	586 (MA04)	34	83	n.a.	0
R09	Monti	40.761814°	9.371218°	864 (MA04)	34	239	C02	300
R10	Monti	40.759529°	9.370465°	756 (MA04)	34	250	A04	500
R11	Monti	40.759285°	9.369047°	852 (MA04)	34	279	C02	300
R12	Monti	40.758707°	9.369005°	833 (MA04)	34	248	A04	500
R13	Monti	40.758093°	9.367872°	903 (MA04)	39	245	A03	500
R14	Monti	40.757828°	9.368049°	885 (MA04)	39	181 (Catasto Terreni)	n.a.	300
R15	Monti	40.757477°	9.368176°	865 (MA04)	39	246	C02	300
R16	Monti	40.757228°	9.367245°	928 (MA08)	39	58	A04	500
R17	Monti	40.757525°	9.366998°	938 (MA08)	39	39	n.a.	300
R18	Monti	40.757464°	9.366624°	907 (MA08)	38	29	A03	500
R19	Monti	40.757205°	9.366542°	884 (MA08)	38	240	A03	500
R20	Monti	40.757294°	9.365927°	856 (MA08)	38	241	C02	300
R21	Monti	40.756478°	9.367398°	890 (MA08)	39	276	C02	300

ID	Comune	Latitudine [°]	Longitudine [°]	Distanza WTG più vicina [m]	Fg	P.lla	Stato Accatastamento	Buffer di sicurezza applicato in seguito a sopralluogo [m]
R22	Monti	40.755873°	9.367213°	837 (MA08)	39	244	C06	300
R23	Monti	40.755495°	9.367140°	809 (MA08)	39	242	C02	300
R24	Monti	40.755460°	9.367378°	821 (MA08)	39	59	A03	500
R25	Monti	40.757272°	9.365486°	830 (MA08)	38	335 (Catasto Terreni)	n.a.	0
R26	Monti	40.757057°	9.364963°	782 (MA08)	38	335; 345 (Catasto Terreni)	n.a.	300
R27	Monti	40.759937°	9.366546°	1075 (MA04)	34	53 (Catasto Terreni)	n.a.	300
R28	Monti	40.759681°	9.365011°	1025 (MA08)	38	330	A04	500
R29	Monti	40.761654°	9.364596°	1201 (MA 08)	31	89; 99 (Catasto Terreni)	n.a.	0
R30	Monti	40.763631°	9.362368°	1356 (MA08)	31	160	A04	500
R31	Monti	40.763543°	9.362192°	1344 (MA08)	31	440	C02	300
R32	Monti	40.763425°	9.362140°	1330 (MA08)	31	439	C02	300
R33	Monti	40.763500°	9.361854°	1335 (MA08)	31	515 (Catasto Terreni)	n.a.	0
R34	Monti	40.762061°	9.361357°	1170 (MA08)	31	354; 353	C02	300
R35	Monti	40.761187°	9.360982°	1068 (MA08)	31	67	n.a.	0
R36	Monti	40.760609°	9.359950°	994 (MA08)	38	301	A04	500
R37	Monti	40.760543°	9.359316°	985 (MA08)	31	362	A04	500
R38	Monti	40.760513°	9.359164°	980 (MA08)	31	363	F02	0
R39	Monti	40.760482°	9.358800°	977 (MA08)	31	397; 396; 395	A04	500
R40	Monti	40.760445°	9.357124°	985 (MA08)	31	455 (Catasto Terreni)	n.a.	0
R41	Monti	40.759817°	9.359032°	903 (MA08)	38	317	C02	300
R42	Monti	40.758893°	9.358374°	802 (MA08)	38	269 (Catasto Terreni)	n.a.	300
R43	Monti	40.758830°	9.358290°	795 (MA08)	38	294	A03	500

ID	Comune	Latitudine [°]	Longitudine [°]	Distanza WTG più vicina [m]	Fg	P.lla	Stato Accatastamento	Buffer di sicurezza applicato in seguito a sopralluogo [m]
R44	Monti	40.758628°	9.355800°	817 (MA08)	38	186 (Catasto Terreni)	n.a.	0
R45	Monti	40.758136°	9.360094°	723 (MA08)	38	235	C02	0
R46	Monti	40.758602°	9.360851°	785 (MA08)	38	295; 328	C02	300
R47	Monti	40.756309°	9.353853°	671 (MA08)	36	195	E07	500
R48	Monti	40.753572°	9.352701°	568 (MA08)	38	318	A04	500
R49	Monti	40.753184°	9.351992°	516 (MA11)	38	303; 312; 313	C07	300
R50	Ala dei Sardi	40.739278°	9.362851°	917 (MA10)	5	105	D10	300
R51	Ala dei Sardi	40.737235°	9.355224°	425 (MA10)	5	59 (Catasto Terreni)	n.a.	0
R52	Ala dei Sardi	40.731365°	9.342361°	634 (MA05)	5	146	C02	300
R53	Ala dei Sardi	40.731141°	9.342214°	612 (MA05)	5	151 (Catasto Terreni)	n.a.	300
R54	Ala dei Sardi	40.728528°	9.339553°	413 (MA05)	5	117 (Catasto Terreni)	n.a.	0
R55	Ala dei Sardi	40.725194°	9.335859°	570 (MA05)	4	276	C02	0
R56	Ala dei Sardi	40.723509°	9.335765°	621 (MA05)	4	210 (Catasto Terreni)	n.a.	0
R57	Ala dei Sardi	40.721352°	9.362336°	671 (MA12)	7	5 (Catasto Terreni)	n.a.	0
R58	Ala dei Sardi	40.717167°	9.351288°	1180 (MA12)	5	36 (Catasto Terreni)	n.a.	0
R59	Ala dei Sardi	40.715468°	9.362365°	620 (MA07)	17	141; 142	D01	300
R60	Ala dei Sardi	40.711222°	9.354209°	803 (MA07)	17	136	D01	300
R61	Ala dei Sardi	40.710743°	9.353738°	851 (MA07)	17	139	D01	300
R62	Ala dei Sardi	40.710295°	9.353606°	858 (MA07)	17	138	D01	500
R63	Ala dei Sardi	40.712079°	9.348282°	1326 (MA07)	16	7 (Catasto Terreni)	n.a.	0
R64	Ala dei Sardi	40.709209°	9.367612°	331 (MA07)	17	140 (Catasto Terreni)	n.a.	0

ID	Comune	Latitudine [°]	Longitudine [°]	Distanza WTG più vicina [m]	Fg	P.lla	Stato Accatastamento	Buffer di sicurezza applicato in seguito a sopralluogo [m]
R65	Ala dei Sardi	40.707229°	9.366925°	398 (MA07)	17	162	D10	300
R66	Ala dei Sardi	40.709249°	9.371031°	615 (MA07)	17	11	A03	0
R67	Ala dei Sardi	40.708849°	9.371122°	629 (MA07)	17	10 (Catasto Terreni)	n.a.	500
R68	Ala dei Sardi	40.708693°	9.370843°	609 (MA07)	17	140 (Catasto Terreni)	n.a.	500
R69	Ala dei Sardi	40.708802°	9.371634°	671 (MA07)	7	34	D10	500
R70	Ala dei Sardi	40.708628°	9.373272°	813 (MA07)	8	38	C02	300
R71	Ala dei Sardi	40.708885°	9.374246°	888 (MA07)	8	41 (Catasto Terreni)	n.a.	300
R72	Ala dei Sardi	40.708641°	9.373857°	860 (MA07)	8	42	C02	300
R73	Ala dei Sardi	40.707733°	9.372913°	616 (MA07)	17	150	C02	0
R74	Ala dei Sardi	40.707737°	9.371141°	658 (MA07)	17	166	A04	500
R75	Ala dei Sardi	40.707540°	9.371031°	667 (MA07)	17	164	C02	300
R76	Ala dei Sardi	40.707733°	9.372913°	809 (MA07)	8	9	D01	300
R77	Monti	40.744515°	9.363047°	862 (MA08)	38	320	D10	500
R78	Monti	40.744563°	9.363421°	870 (MA08)	38	321	D10	500
R79	Monti	40.745030°	9.363641°	835 (MA08)	38	323	D10	300
R80	Monti	40.745029°	9.364004°	850 (MA08)	38	324	D10	300
R81	Monti	40.744872°	9.363365°	840 (MA08)	38	322	D10	300
R82	Monti	40.744320°	9.365320°	978 (MA08)	38	332	D10	300
R83	Monti	40.754773°	9.349547°	346 (MA11)	36	194	C02	300
R84	Monti	40.754612°	9.349789°	356 (MA11)	36	193	A04	300
R85	Monti	40.754448°	9.349971°	365 (MA11)	36	206	C02	300
R86	Monti	40.754446°	9.350388°	392 (MA11)	36	212	D10	300
R87	Monti	40.754149°	9.349539°	323 (MA11)	36	199	F02	0
R88	Monti	40.753823°	9.350470°	393 (MA11)	36	35 (Catasto Terreni)	n.a.	300

ID	Comune	Latitudine [°]	Longitudine [°]	Distanza WTG più vicina [m]	Fg	P.lla	Stato Accatastamento	Buffer di sicurezza applicato in seguito a sopralluogo [m]
R89	Monti	40.748266°	9.345335°	572 (MA11)	37	15	D10	300
R90	Monti	40.759950°	9.348283°	750 (MA11)	31	327	C02	300
R91	Monti	40.759611°	9.348069°	711 (MA11)	31	329	C07	300

Tabella 6.2.1: Localizzazione di alcuni fabbricati nell'area d'indagine e in quella immediatamente esterna, relativa tipologia e aerogeneratore più vicino

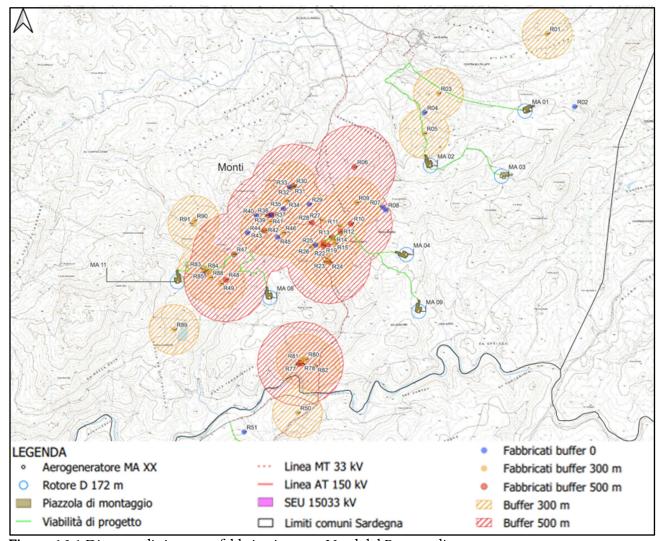


Figura 6.2.1 Distanza di sicurezza fabbricati – zona Nord del Parco eolico

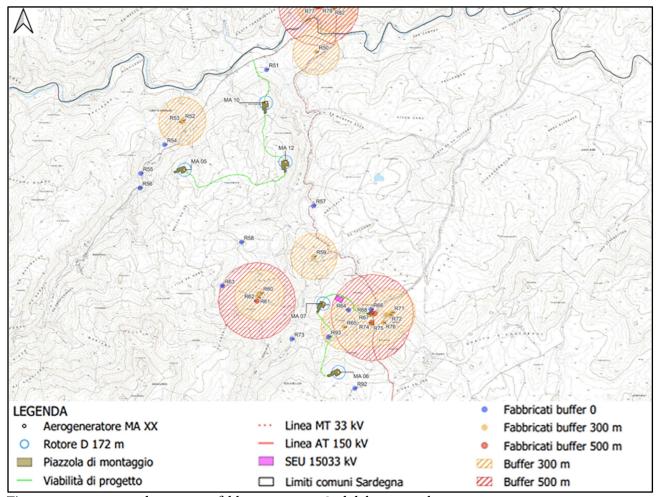
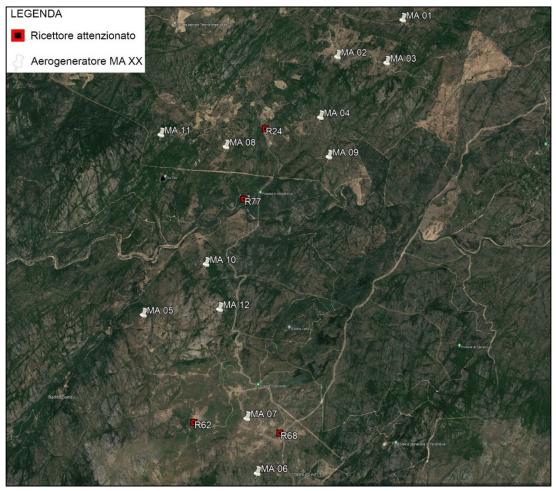


Figura 6.2.2 Distanza di sicurezza fabbricati – zona Sud del Parco eolico


All'interno dell'area d'indagine sono stati individuati 4 punti di monitoraggio in corrispondenza dei quali sono state effettuate le misurazioni del rumore di sottofondo ante operam (maggiori dettagli sono indicati negli elaborati di progetto "MASA112 Studio previsionale d'impatto acustico" e "MASA102 Studio d'impatto Ambientale – Relazione generale").

La scelta dei punti di misurazione è ricaduta in prossimità di 4 ricettori più soggetti all'influenza dell'emissione acustica degli aerogeneratori di progetto.

Punto di	Coordinate UTM	I – WGS84 T33		
misurazione	[°]	[°]	WTG più vicina	Distanza [m]
R24	40.755460°	9.367378°	MA 08	821
R62	40.710295°	9.353606°	MA 07	858
R68	40.708693°	9.370843°	MA 07	609
R77	40.744515°	9.363047°	MA 08	862

Tabella 6.2.2: Posizione dei punti di misurazione e distanza dall'aerogeneratore di progetto più vicino

Pertanto, le stazioni di misura sono state localizzate in corrispondenza dei suddetti punti (più precisamente presso R24, R62, R68 e R77) in fase Ante Operam; nelle fasi successive è necessario localizzare tali stazioni negli stessi punti di monitoraggio al fine di poter confrontare i livelli di rumore misurati in fase iniziale con i corrispondenti livelli che saranno misurati in seguito e verificare il rispetto dei limiti imposti dalla normativa vigente.

Figura 6.2.3: Ubicazione dei ricettori attenzionati e degli aerogeneratori di progetto su immagine satellitare

6.3. Rumore - Parametri analitici, metodologia di riferimento e strumentazione adoperata

"I parametri acustici rilevati nei punti di monitoraggio sono elaborati per valutare gli impatti dell'opera sulla popolazione attraverso la definizione dei descrittori/indicatori previsti dalla L. 447/1995 e relativi decreti attuativi".

I rilevamenti fonometrici sono effettuati in ambiente esterno per la valutazione del livello assoluto di immissione, generato dall'insieme delle sorgenti di rumore e valutato presso i ricettori, e in ambiente interno per la valutazione del livello differenziale di immissione, generato da una singola sorgente di rumore rispetto al livello corrispondente in assenza di tale sorgente.

Il parametro considerato nelle misure Ante Operam è il livello equivalente di pressione sonora pesato A (Leq [dB(A)]) con scansione temporale di 1 s acquisito tramite misure di breve durata effettuate in corrispondenza delle tre postazioni di misura in ambiente esterno.

Nelle fasi successive si procederà con la misurazione di tale livello nelle 4 postazioni in modo da effettuare un confronto del parametro considerato.

Considerata la tipologia di attività presenti nell'area e la tipologia del rumore che caratterizza le misure, è possibile affermare che i livelli acquisiti nel tempo di misura pari a 15 minuti siano rappresentativi dei livelli equivalenti di rumore relativi al corrispondente periodo di riferimento.

Nelle tabelle seguenti sono riportati i valori delle misure effettuate.

Punto di misura	Periodo	Livello sonoro	Valore [dB(A)]	Tempo di misura [minuti]	Carattere del rumore
R24	Diurno	LAeq	35,8	15	Stazionario
R62	Diurno	LAeq	35,5	15	Stazionario
R68	Diurno	LAeq	38,0	15	Stazionario
R77	Diurno	LAeq	39,2	15	Stazionario

Tabella 6.3.1: Riepilogo livelli di rumore residuo nel periodo diurno (03/02/2022)

Punto di misura	Periodo	Livello sonoro	Valore [dB(A)]	Tempo di misura [minuti]	Carattere del rumore
R24	Notturno	LAeq	27,9	15	Stazionario
R62	Notturno	LAeq	29.8	15	Stazionario
R68	Notturno	LAeq	32,8	15	Stazionario
R77	Notturno	LAeq	31,3	15	Stazionario

Tabella 6.3.2: Riepilogo livelli di rumore residuo nel periodo notturno (02/09/2022)

I valori delle misure ottenute possono essere confrontati con i valori limite assoluti in immissione in base al periodo diurno o notturno (DPCM 1.3.1991) con riferimento all'area di indagine.

Il Comune Alà dei Sardi, interessato da 5 aerogeneratori di progetto, non ha redatto un piano di classificazione acustica che indichi i valori limite di riferimento; a tale proposito è necessario far riferimento all'Art. 6 del DPCM 1.3.1991 che riporta i suddetti valori sulla base delle varie classi di destinazione d'uso nel caso di mancanza di tale piano.

Destinazione territoriale	Periodo diurno 06:00 – 22:00	Periodo notturno 22:00 – 06:00	
Destinazione territoriale	[dB(A)]	[dB(A)]	
Territorio nazionale (anche senza	70	60	
PRG)	, ,		
Zona urbanistica A (D.M. 1444/68	65	55	
-Art. 2)			
Zona urbanistica B (D.M. 1444/68	60	50	
-Art. 2)			
Zona esclusivamente industriale	70	70	

Tabella 6.3.3: Valori limite dei livelli LAeq per diverse classi di zonizzazione (DPCM 1.3.1991)

Le aree in cui sono presenti i 4 punti di misura presi in considerazione sono prevalentemente di tipo agricolo e possono essere ritenute appartenenti alla categoria "Territorio nazionale (anche senza PRG)", per cui i limiti di riferimento per i livelli sonori, nel periodo diurno e notturno, sono 70 e 60 dB(A), superiori ai valori equivalenti ottenuti nella campagna di misura effettuata Ante Operam.

Tuttavia, in considerazione di una futura classificazione del territorio comunale di Alà dei Sardi in zone acustiche omogenee e considerando che il Comune di Monti è dotato di piano di classificazione acustica ("Legge Quadro sull'inquinamento acustico" N. 447 del 26 ottobre 1995), prendendo in considerazione i valori limite del livello equivalente di pressione sonora ponderato in scala "A" (tale classificazione è ripresa dal D.P.C.M. del 14/11/1997) e classificando l'area in cui sono localizzati gli aerogeneratori di progetto quale area agricola di tipo "misto" (Classe III) essendo di tipo rurale ("rientrano in questa classe le aree urbane interessate da traffico veicolare locale o di attraversamento, con media densità di popolazione, con presenza di attività commerciali, uffici con limitata presenza di attività artigianali e con assenza di attività industriali; aree rurali interessate da attività che impiegano macchine operatrici"), i valori limite di immissione di riferimento nei periodo diurno e notturno sono indicati nella tabella seguente.

Fascia territoriale	Periodo diurno 6:00 – 22:00 [dB(A)]	Periodo notturno 22:00 – 6:00 [dB(A)]
Aree protette	50	40
Aree residenziali	55	45
Aree di tipo misto	60	50
Area di intensa attività umana	65	55
Aree prevalentemente industriali	70	60
Aree esclusivamente industriali	70	70

Tabella 6.3.4: Riepilogo dei limiti dei livelli LAeq per diverse classi d'uso (DPCM 1.3.1991)

Come si evince dalle tabelle precedentemente riportate, i livelli LAeq misurati presso i quattro ricettori sono inferiori, nel periodo diurno e notturno, ai valori limite assoluti in immissione.

Nelle fasi Corso d'Opera e Post Operam si procederà con la campagna di misurazione presso le stesse postazioni al fine di confrontare le misure ottenute con i valori limite sopra riportati e con le equivalenti misure precedentemente ricavate negli stessi "punti di monitoraggio" in modo da valutare l'impatto acustico dell'impianto.

La misurazione dei livelli sonori è stata effettuata secondo quanto indicato dall'Art. 2 del Decreto Ministeriale del 16/03/98 e la strumentazione di misura soddisfa le specifiche di cui alla classe 1 della norma CEI EN 61672.

In particolare, si è adottata la seguente metodologia:

- le misure sono state effettuate in periodo diurno e notturno;
- la lettura è stata effettuata in dinamica Fast e ponderazione A;
- il microfono del fonometro, munito di cuffia antivento, è stato posizionato ad un'altezza di 1,5 m dal piano del suolo per la realizzazione le misure spot;
- il fonometro è stato collocato su apposito sostegno (cavalletto telescopico) per consentire agli operatori di porsi ad una distanza di almeno tre metri dallo strumento.

Immediatamente prima e dopo ogni serie di misure si è proceduto alla calibrazione della strumentazione di misura e la deviazione non è mai risultata superiore a 0,5 dB(A).

L'Art. 4 del DPCM del 14/11/1997 individua i valori limite di 5 e 3 dB(A), rispettivamente nel periodo diurno e notturno, per i livelli differenziali di immissione misurati in ambiente interno, ovvero all'interno delle abitazioni.

Maggiori dettagli sono indicati negli elaborati di progetto "MASA112 Studio previsionale d'impatto acustico"

6.4. Rumore – Articolazione temporale delle attività di monitoraggio

"La durata delle misurazioni, funzione della tipologia della/e sorgente/i in esame, deve essere adeguata a valutare gli indicatori/descrittori acustici individuati; la frequenza delle misurazioni e i periodi di effettuazione devono essere appropriati a rappresentare la variabilità dei livelli sonori, al fine di tenere conto di tutti i fattori che influenzano le condizioni di rumorosità (clima acustico) dell'area di indagine, dipendenti dalle sorgenti sonore presenti e dalle condizioni di propagazione dell'emissione sonora.

Per il monitoraggio AO e necessario effettuare misurazioni che siano rappresentative dei livelli sonori presenti nell'area di indagine prima della realizzazione dell'opera ed eventualmente durante i periodi maggiormente critici per i ricettori presenti.

Per il monitoraggio CO la frequenza e strettamente legata alle attività di cantiere: in funzione del cronoprogramma della attività, si individuano le singole fasi di lavorazione significative dal punto di vista della rumorosità e per ciascuna fase si programma l'attività di monitoraggio.

Il monitoraggio PO deve essere eseguito in concomitanza dell'entrata in esercizio dell'opera (preesercizio), nelle condizioni di normale esercizio e durante i periodi maggiormente critici per i ricettori presenti".

Nel caso specifico e per quanto riguarda la fase Ante Operam, il monitoraggio acustico è stato effettuato in data 02/09/2022 e 03/09/2022.

Per quanto riguarda la fase CO i rilievi fonometrici sono previsti:

- ad ogni impiego di nuovi macchinari e/o all'avvio di specifiche lavorazioni impattanti;
- alla realizzazione degli interventi di mitigazione;
- allo spostamento del fronte di lavorazione (nel caso di cantieri lungo linea).

Per lavorazioni che si protraggono nel tempo è possibile programmare misure con periodicità bimestrale, trimestrale o semestrale, da estendere a tutta la durata delle attività di cantiere.

In particolare, sono individuate le 5 macrofasi lavorative da tenere in considerazione per il monitoraggio acustico e, per ognuna di esse, alcune sottofasi operative e l'elenco delle macchine d'opera da utilizzare, come esplicitato nella seguente tabella.

Opera	Lavorazione	Mezzo
	Scavo	Escavatore cingolato
Fondazione	Scavo	Autocarro
	Posa magrone	Betoniera

Opera	Lavorazione	Mezzo
		Pompa
	Trasporto e installazione ferri	Autocarro
	Doce eleviete	Pompa
	Posa cls plinto	Autocarro
	Reinterro e stabilizzazione	Escavatore cingolato
	Reinterro e stabilizzazione	Rullo
		Pala meccanica cingolata
Strade e mierrole	Saarra / win aut a	Bobcat
Strade e piazzole	Scavo/riporto	Rullo gommato
		Autocarro
		Escavatore cingolato
Cavidotti	Scavo a sezione obbligata	Autocarro
		Bobcat
	T	Autocarro speciale
Consegna in sito aerogeneratori	Trasporto e scarico componenti aerogeneratori	Gru
	acrogeneratori	Gru
	Transacto componenti	Autocarro speciale
Montaggio aerogeneratori	Trasporto componenti	Gru
Montaggio aerogeneratori	Montaggio	Gru
	Montaggio	Gru

Tabella 6.4.1: Macrofasi lavorative, relative sottofasi e macchine d'opera da utilizzare

Maggiori dettagli sono indicati negli elaborati di progetto "MASA112 Studio previsionale d'impatto acustico"

Infine, il progetto di monitoraggio in questione prevede rilievi fonometrici per un periodo di due anni nella fase Post Operam e con una frequenza di una volta all'anno di durata di tre giorni.