Comuni di : SAN GIORGIO LA MOLARA, MOLINARA, SAN MARCO DEI CAVOTI, BASELICE E FOIANO DI VAL FORTORE Provincia di : BENEVENTO **Regione : CAMPANIA** PROPONENT I.V.P.C. S.r.l. Vico Santa Maria a Cappella Vecchia, 80121 Napoli IVPC Sr I Sede legale : 80121 Napoli (NA) - Vico Santa Maria a Cappella Vecchia 11 01895480646 Sede Operativa : 83100 Avellino - Via Circumvallazione 108 Indirizzo email ivpc@pec.ivpc.com PROGETTO PER IL RIFACIMENTO E POTENZIAMENTO DPERA DI UN PARCO EOLICO TITOLO ELABORATO : Relazione tecnica specialistica OGGETTO DATA : N°/CODICE ELABORATO : Agosto 2023 R.06 Rev.01 SCALA : Tipologia : Relazione Folder: Lingua : ITALIANO **STUDIO INGEGNERIA ELETTRICA** MEZZINA dott. ing. Antonio Via Tiberio Solis n.128 | 71016 San Severo (FG) Tel. 0882.228072 | Fax 0882.243651 e-mail: info@studiomezzina.net | web: www.studiomezzina.net **IECNIC** Ing. MEZZINA Ing. MEZZINA Agosto 2023 IVPC Revisione progetto a seguito richieste integrazione del Ministero 01 00 Emissione per progetto definitivo Ing. Merlino Ing. MEZZINA IVPC Dicembre 2021 N° REVISIONE DATA OGGETTO DELLA REVISIONE ELABORAZIONE VERIFICA APPROVAZIONE Proprietà e diritto del presente documento sono riservati - la riproduzione è vietata

PROPONENTE:

IVPC S.r.I. Società Unipersonale Sede legale : 80121 Napoli (NA) - Vico Santa Maria a Cappella Vecchia 11 Sede Operativa : 83100 Avellino - Via Circumvallazione 108 PEC: ivpc@pec.ivpc.com C.F. e P.IVA: 01895480646 IVPCPCC

PROGETTO DEFINITIVO PER IL RIFACIMENTO DI UN PARCO EOLICO DELLA POTENZA COMPLESSIVA DI 103,70MW COSTITUITO DA N. 17 AEROGENERATORI TIPO GE 158 DA 6.1MW SITO NEI COMUNI DI BASELICE, FOIANO DI VAL FORTORE, SAN MARCO DEI CAVOTI, MOLINARA E SAN GIORGIO LA MOLARA (BN), NONCHÉ DELLE OPERE CONNESSE E DELLE INFRASTRUTTURE INDISPENSABILI ALLA COSTRUZIONE E ALL'ESERCIZIO DELL'IMPIANTO.

RELAZIONE TECNICA SPECIALISTICA

bn

Calcolo della gittata massima di elementi rotanti per rottura accidentale della pala

e suoi frammenti e verifica rispetto ai recettori sensibili individuati

Rif. Codice Pratica TERNA n. 202001639

STATO DELLE REVISIONI DEL DOCUMENTO					
N. Progressivo Revisione Data Oggetto Emissione					
1	00	29/12/2021	Prima emissione progetto definitivo		
2	01	05/08/2023	Revisione progetto a seguito richieste integrazione del Ministero		

INDICE RELAZIONE

Som	nmario <				
1.	OGGETTO.	<u> </u>			
2.	PREMESSA.				4
3.	INQUADRAMENTO DELL'IMPIANTO				
4.	CARATTERISTICHE DELL'AEROGENER	ATORE	E .		
5.	METODO UTIIZZATO PER IL CALCOLO	DELLA	GIT	TATA MASSIMA	
5.1	Ipotesi.	<u>.</u>]!	0		
5.2	Modello di calcolo		2		
6.	RISULTATI DEL CALCOLO DELLA GITTZ	АТА М	ASSI	MA PER ROTTURA DELL'II	NTERA PALA.21
7.	CALCOLO DELLA GITTATA MASSIMA PI	ER DIS	TACO	CO DEI FRAMMENTI DI PA	LA23
7.1	Rottura di un frammento di pala distante 10	0 m dall	la pun	nta della pala	
7.2	Rottura di un frammento di pala distante 5	m dalla	ı punt	ta della pala	
8.	RIEPILOGO DEI RISULTATI OTTENUTI	Ľ.	<u>g</u>		
8.1	Distanze dai principali elementi sensibili del	ll'area	8		
9.	CONCLUSIONI.		<u>N</u>		
		5	N		
			Ĩ		
	T	5 4			
		7	•		
		\mathcal{O}			
	0	Ω			

1. OGGETTO.

La presente relazione è relativa alla progettazione definitiva in seno al procedimento autorizzativo del *"Progetto per il rifacimento e potenziamento di un parco eolico"* che la **IVPC S.r.I.** intende realizzare in territorio di Baselice, Foiano di Val Fortore, San Marco dei Cavoti, Molinara e San Giorgio la Molara, tutti in provincia di Benevento.

Questa relazione costituisce la revisione della precedente Rev. 00 del 29/12/2021 emessa nell'ambito dell'iniziale progetto definitivo dell'impianto da sottoporre a VIA al Ministero della Transizione Ecologica e della Sicurezza Energetica (MASE). Il MASE, con propria nota Prot. N. del xx richiedeva precisazioni e integrazioni al progetto; per ottemperare alle quali si è reso necessario una revisione del layout di progetto con riduzione del numero complessivo di aerogeneratori da 24, previsti nell'iniziale progetto definitivo, a 17 previsti nella revisione progettuale della quale fa parte il presente documento.

Pertanto, l'impianto, nella nuova configurazione, sarà composto da n. 17 aerogeneratori, ciascuno della potenza di 6,1MW, con diametro del rotore di 158m, altezza di mozzo 101m e altezza complessiva (TIP) di 180m; la potenza complessiva del parco eolico è quindi pari a 103,70 MW. Il nuovo layout prevede la seguente dislocazione territoriale degli aerogeneratori: 2 Aerogeneratori situati nel territorio di Baselice; 1 aerogeneratore in agro di Foiano di Valfortore; 4 aerogeneratori in agro di San Marco dei Cavoti; 5 aerogeneratori in agro di Molinara; 5 aerogeneratori in agro di San Giorgio La Molara.

Fig. 1. Inquadramento planimetrico del parco eolico su ortofoto.

A seguito degli studi effettuati sull'area in esame (analisi orografiche, anemologiche, geologiche, connessione alla rete elettrica, acustici, archeologici, etc.) e in funzione dell'obiettivo di ottimizzare il rendimento economico dell'impianto, si è concluso che per l'impianto in oggetto possano essere utilizzati aerogeneratori di grossa taglia. Tutte le turbine scelte da IVPC sono sempre certificate a livello internazionale, generalmente dalla Germanischer Lloyd, DNV o da altro organismo equivalente. Questa certificazione è essenziale per garantire la bancabilità del progetto e la sicurezza al paese che le turbine produrranno l'energia prevista essendo anche la curva di potenza, $P = f(v_{vento})$, certificata.

La turbina utilizzata il progetto di rifacimento del parco eolico di che trattasi è della GENERAL ELECTRIC tipo GE158 con potenza di 6,1 MW, diametro del rotore di 158m, altezza di mozzo di 101m e quindi altezza complessiva al tip di 180m.

Il modello di turbina scelto è al momento il più performante sul mercato in relazione al sito di installazione in esame.

Scopo della presente relazione è la determinazione della gittata massima degli elementi rotanti del nuovo aerogeneratore proposto in caso di rottura accidentale dell'intera pala o suoi frammenti.

2. PREMESSA.

La reale distanza raggiungibile da una pala - ovvero da frammenti di essa - distaccatasi dal rotore di un aerogeneratore, è funzione di un gran numero di variabili, che vanno dall'effettiva velocità istantanea del rotore nel momento del lancio alle condizioni meteo-anemometriche, dalle effettive dimensioni, massa e forma del frammento alla posizione assunta al momento del distacco, passando per l'influenza dei moti turbolenti determinati dalla rototraslazione del proietto.

Nel presente studio si è inteso affrontare il problema non solo semplicemente dal punto di vista cinematico del modello aerogeneratore-terreno circostante, ma anche dinamico prendendo in considerazione anche le forze di attrito viscoso dovuto al movimento nell'aria del corpo, nonché le azioni aero-fluido-dinamiche ; si è pertanto utilizzato un modello che tenesse conto di queste azioni, precisando che per le azioni aerodinamiche, data la loro particolare complessità, si sono dovute fare necessariamente delle ipotesi semplificative, ma comunque a favore della sicurezza, come sarà meglio dettagliato in seguito. In quest'ottica, data l'impossibilità di conoscere compiutamente le condizioni al contorno del problema, l'approccio adottato alla valutazione della gittata massima deve necessariamente ricondursi ad alcune ipotesi

rappresentative, ormai universalmente adottate nella letteratura e studi di questo settore, facendo riferimento a tre eventi esemplificativi:

- 1. Rottura (distacco) dell'intera pala (blade lama);
- 2. Rottura di un frammento di pala corrispondente agli ultimi suoi 10 m verso la punta;
- 3. Rottura di un frammento di pala corrispondente agli ultimi suoi 5 m verso la punta;

Di tali casi, il <u>primo costituisce senz'altro quello probabilisticamente più rilevante</u> in ragione della discontinuità strutturale costituita dalla giunzione della pala alla flangia del mozzo a mezzo di collegamenti a vite; gli altri due casi sono probabilisticamente molto meno rilevanti. Pur tuttavia la prassi progettuale degli impianti eolici li porta a considerare comunque.

Fig. 2. Pala in composito di un aerogeneratore

I casi di rottura di frammenti, anche in virtù della caratteristica costituiva della pala che è realizzata con fibre strutturali in matrici sintetiche e quindi caratterizzate da rotture di tipo plastico e non fragile, si riferiscono di norma a parti del rivestimento alare che potrebbero, in caso di urto o folgorazione, staccarsi dal resto della struttura; tuttavia la casistica è numericamente bassissima, come testimoniato dallo studio di 1578 casi reali registrati in Nord America ed in Europa da uno studio commissionato dalla Vestas all'ente indipendente **BP Power**, secondo il quale la probabilità di un evento accidentale si attesta su 1.6x10⁻⁵ per turbina all'anno.¹

¹ Anche secondo studi più recenti le probabilità hanno quest'ordine di grandezza. Secondo Larwood and van Dam (2006) da $4,2x10^{-4}$ a $5.4x10^{-6}$.

Ulteriori e più recenti studi, anche accademici, di rilevanza internazionale, confermano questi dati, come qui di seguito brevemente illustrato mediante grafici e tabelle bibliografate:

Fig. 3. A sx: Distribuzione dei punti di impatto su 10.000 simulazioni per una turbina test. A dx: relative probabilità di impatto rispetto ad una costruzione di pianta 25x25 ed altezza 3.67m².

Operating Condition	Probability Per Turbine Per Year
Nominal operating rpm	4.2×10^{-4}
Braking (1.25 times nominal rpm)	4.2×10^{-4}
Emergency (2.0 times nominal rpm)	5×10^{-6}

Tab. 1. Probabilità di rottura in relazione alla velocità di rotazione secondo Braam ed altri³

² Cfr. *Analysis of blade fragment risk at a wind energy facility*, Scott Larwood e David Simms, 2017

³ Braam H, van Mulekom GJ, Smit RW. Handboek - RisicozoneringWindturbines: The Netherlands; 2005.

Fig. 4. Inviluppo delle probabilità di impatto per un parco costituito da macchine di varia taglia (rotori da 35 a 106m) 4

Come evidente da quanto sopra riportato, la probabilità di impatto tra un frammento di pala ed un oggetto situato tra 250 ed i 500m è compresa tra $1x10^{-5}$ e $1x10^{-6}$ eventi per anno, rientrando nella classificazione di evento estremamente remoto.

Il rischio associato è classificabile mediante matrice di rischio tra "basso" e "minimo":

		Frequent	Reasonably Probable	Occasional	Remote	Extremely Remote	Improbable
nce	Catastrophic	High	High	High	Moderate	Low	Routine
ednei	Critical	High	High	Moderate	Low	Low	Routine
Cons	Marginal	Moderate	Moderate	Low	Low	Routine	Routine
	Negligible	Routine	Routine	Routine	Routine	Routine	Routine

Likelihood

A solo titolo di paragone, la possibilità di un edificio di essere colpito da un fulmine è collocabile tra 1×10^{-4} s pertanto di almeno un ordine di grandezza superiore.

 ⁴ Cfr. Analysis of blade fragment risk at a wind energy facility, Scott Larwood e David Simms, 2017
 ⁵ Cfr Determining the Probability of Lightning Striking a Facility, R.T. Hasbrouck, PE, National Lightning Safety Institute, 2004 - <u>http://lightningsafety.com/nlsi_lhm/prbshort.html</u>

3. INQUADRAMENTO DELL'IMPIANTO.

L'impianto eolico sarà composto da n° 17 aerogeneratori, tutti localizzati in provincia di Benevento, tra i comuni di Baselice, Foiano di Val Fortore, San Marco dei Cavoti, Molinara e San Giorgio la Molara.

Fig. 5. Inquadramento di ampio raggio su ortofoto dell'area di intervento (punto verde), situata nel cuore dell'Appennino.

Fig. 6. Inquadramento su ortofoto del parco, situato tra i comuni di Baselice, San Marco dei Cavoti, Foiano di Valfortore, Molinara, SanGiorgio la Molara; in rosso, gli aerogeneratori; in verde le tratte di elettrodotti MT.

La zona delle installazioni è situata in zona di media montagna, ad una altitudine media di circa 925m s.l.m., con quote variabili da un minimo di circa 865 ad un massimo di circa 1000m sul livello del mare. Le caratteristiche di ventosità del sito lo rendono idoneo all'installazione di un impianto per la produzione di energia dal vento, come da analisi anemometriche effettuate in loco.

Nelle Figure seguenti l'area interessata dagli aerogeneratori è individuata su IGM.

Fig. 7. Inquadramento geografico dei due sottoimpianti "Fortore 1 e Fortore 2" del parco eolico "FORTOR" su IGM: in verde l'area spazzata dagli aerogeneratori; in arancio la circonferenza di massima gittata (285m, calcolata come verrà ampiamente descritto in appresso); in magenta i ricettori sensibili individuati.

Fig. 8. Inquadramento geografico dei sue sottoimpianti "Fortore 3 e Fortore 4" del parco eolico su IGM: in verde l'area spazzata dagli aerogeneratori; in arancio la circonferenza di massima gittata; in magenta i ricettori sensibili.

Cottoimnianto	Donominaziono	Comuno	UTM - EST	UTM - NORD	altitudine
BAS02 Baselice	[m]	[m]	[m s.l.m.]		
	BAS02	Baselice	491 926	4 579 718	951
	BAS03	Baselice	491 927	4 579 318	940
FORTORE_1	SMC01	San Marco dei Cavoti	491 934	4 578 782	925
_	SMC02	San Marco dei Cavoti	492 203	4 578 440	984
	FVF01	Foiano di Val Fortore	493 355	4 578 462	936
	SMC04	San Marco dei Cavoti	492 268	4 577 667	986
FORTORE_2	SMC05	San Marco dei Cavoti	492 448	4 577 329	962
	MOL01	Molinara	492 767	4 576 656	914
	MOL02	Molinara	493 102	4 575 964	908
	MOL03	Molinara	493 503	4 575 787	905
FORTORE_3	MOL04	Molinara	493 686	4 575 365	913
	MOL07	Molinara	493 780	4 574 980	932
	SGM01	San Giorgio La Molara	496 370	4 573 960	901
	SGM02	San Giorgio La Molara	496 720	4 573 710	887
FORTORE_4	SGM04	San Giorgio La Molara	496 189	4 572 643	902
	SGM05	San Giorgio La Molara	497 390	4 572 721	875
	SGM06	San Giorgio La Molara	496 629	4 572 298	863

Tab. 2. Denominazione, posizione ed altitudine dei 17 aerogeneratori

4. CARATTERISTICHE DELL'AEROGENERATORE.

Come sopra già descritto, l'impianto eolico proposto sarà costituito da n. 17 aerogeneratori della potenza uninominale di 6.1MWe, con altezza di mozzo (h) pari a 101 m, diametro del rotore di 158m e lunghezza della singola pala (blade) di 77,40 m; in **Fig. 9** è riportato lo schema dimensionale di un aerogeneratore con tali dimensioni.

Fig. 9. Schema dimensionale dell'aerogeneratore ipotizzato da IVPC.

Come sopra accennato, l'aerogeneratore utilizzato è della General Electric tipo GE158, le cui caratteristiche principali che rilevano ai fini della presente relazione sono riportate nella scheda tecnica di **Fig. 10**.

Dal data sheet di **Fig. 10** si rileva che la velocità tangenziale massima alla punta della pala è pari a **82 m/s** a cui corrisponde una velocità angolare di **9,9 giri/min**. Tale valore è anche rilevabile direttamente da un altro data sheet dell'aerogeneratore: quello inerente le caratteristiche di emissione acustica dell'aerogeneratore riportato in **Fig. 11**. Da

quest'ultimo data sheet si evince non solo che effettivamente la massima velocità angolare dell'aerogeneratore è di 9,9 giri/min, ma che al fine di ridurre le emissioni acustiche è possibile anche regolare la velocità di rotazione operativa della macchina. <u>Al contrario, ciò significa che è possibile ridurre la velocità di rotazione del rotore al fine, ad esempio, qualora necessario ridurre la gittata degli elementi rotanti e quindi rendere compatibile l'aerogeneratore rispetto a eventuali recettori sensibili presenti nelle vicinanze.</u> E' possibile la regolazione fino ad una minore velocità di rotazione di 6,26 m/s (modo operativo per massimo livello di emissione acustica di 98 dB(A)). Ovviamente a questa riduzione di velocità corrisponde anche ad una riduzione di potenza, ma questo prezzo serve per rendere compatibile con l'ambiente una macchina che viceversa non potrebbe essere installata. Infine è da rilevare che la regolazione di velocità (e quindi di gittata e di emissione acustica) è applicabile in modo discontinuo sia in funzione dei quadranti di imbardata del rotore che in funzione della velocità del vento in un dato momento.

- Original Document

GE Renewable Energy

WT General Description

Turbine	4.2/4.5/4.8/5.0/5.2/5.3/5.5/5.8/6.1/6.3 - 158
Rated output [MW]	4.2/4.5/4.8/5.0/5.2/5.3/5.5/5.8/6.1/6.3
Rotor diameter [m]	158
Number of blades	3
Swept area [m²]	19607
Rotational direction (viewed from an upwind location)	Clockwise
Maximum speed of the blade tips [m/s]	50Hz - 82.0 m/s 60Hz - 83.6 m/s
Orientation	Upwind
Orientation Speed regulation	Upwind Pitch control
Orientation Speed regulation Aerodynamic brake	Upwind Pitch control Full feathering
Orientation Speed regulation Aerodynamic brake Color of outer components	Upwind Pitch control Full feathering RAL 7035 (light grey) and RAL 7023 (concrete grey, for concrete sections of hybrid tower only)
Orientation Speed regulation Aerodynamic brake Color of outer components Reflection degree/Gloss degree Steel tower	Upwind Pitch control Full feathering RAL 7035 (light grey) and RAL 7023 (concrete grey, for concrete sections of hybrid tower only) 30 - 60 gloss units measured at 60° as per ISO 2813
Orientation Speed regulation Aerodynamic brake Color of outer components Reflection degree/Gloss degree Steel tower Reflection degree/Gloss degree Rotor blades, Nacelle, Hub	Upwind Pitch control Full feathering RAL 7035 (light grey) and RAL 7023 (concrete grey, for concrete sections of hybrid tower only) 30 - 60 gloss units measured at 60° as per ISO 2813 60 - 80 gloss units measured at 60° as per ISO 2813
Orientation Speed regulation Aerodynamic brake Color of outer components Reflection degree/Gloss degree Steel tower Reflection degree/Gloss degree Rotor blades, Nacelle, Hub Reflection degree/Gloss degree Hybrid Tower	Upwind Pitch control Full feathering RAL 7035 (light grey) and RAL 7023 (concrete grey, for concrete sections of hybrid tower only) 30 - 60 gloss units measured at 60° as per ISO 2813 60 - 80 gloss units measured at 60° as per ISO 2813 Concrete gray (similar RAL 7023); gloss matte

3 Technical Data for the Cypress Wind Turbines

Table 1: Technical data Cypress-158 wind turbine

Fig. 10. Estratto dal data sheet di una GE158 Cypress.

Nominal Sound Nominal		Nominal Electrical Power (kW) for each Hub Height							
Power Level (dBA)	er Speed el (rpm)	101.0m	120.9m	141.0m	150.0m	151.0m	161.0m		
107.0	9.90	4800 - 6100*	4800 - 6100*	N/A	N/A	4800 - 6100*	4800 - 6100*		
106.0	9.70	4800 - 6300*	4800 - 6300*†	4800 - 6300*	4800 - 6300*	4800 - 6300*	4800 - 6300*		
105.0	9.35	4800 - 5300	N/A	4800 - 5300	4800 - 5300	4800 - 5300	4800 - 5300		
104.0	9.00	4800 - 5100*	N/A	4800 - 5100	4800 - 5100	4800 - 5100	4800 - 5100*		
103.0	8.54	4800	4800+	4800†	4800	4800	4800		
102.0	8.20	4650	4650	N/A	4650	4650	4650		
101.0	7.66	4300	4300	N/A	4300	N/A	4300		
100.0	7.22	4042	4042	4042†	4042	N/A	4042		
99.0	6.70	3507	3507	3507	3507	3507	3507		
98.0	6.26	3098	3098	3098	3098	3098	3098		

GE Renewable Energy -Original Document - Product Acoustic Specifications

Table 1: Overview of configurations for each apparent sound power level.

Fig. 11. Livelli di emissione acustica di una GE158 Cypress.

I calcoli della gittata massima degli elementi rotanti in caso di rottura vengono eseguiti per una velocità di rotazione di 10 giri/min.

5. METODO UTIIZZATO PER IL CALCOLO DELLA GITTATA MASSIMA

Per il calcolo della distanza massima raggiunta dalla pala o da parti di essa dopo il distacco dall'aerogeneratore è necessario effettuare alcune assunzioni esemplificative e, per quanto possibile, conservative.

Il calcolo descritto nel seguito determina il punto di impatto con il terreno rispetto all'aerogeneratore (gittata massima), al fine di verificare la compatibilità dell'opera con gli insediamenti abitativi e le infrastrutture più prossime agli aerogeneratori.

5.1 Ipotesi.

L'ipotesi di partenza è che la pala o un suo frammento si distacchi accidentalmente mentre il rotore è in movimento nelle peggiori condizioni, ovvero alla massima velocità angolare ammessa dai sistemi di controllo ed arresto della macchina.

Il moto risultante sarà quello di un corpo libero, soggetto alla forze inerziali, di gravità ed alle forze aerodinamiche; queste ultime sono determinate non solo dal moto proprio del corpo (velocità assoluta rispetto al sistema di riferimento adottato) ma anche dall'influenza del vento e sue raffiche (velocità relativa) e dalla posizione assunta dal corpo rispetto alla direzione principale di avanzamento; discreta rilevanza

possiede anche l'incremento delle perdite in regime turbolento determinate dalla rotazione del corpo attorno ai propri assi principali di inerzia; tali perdite non sono linearmente dipendenti dalla velocità di eiezione ed avanzamento e se ne, terrà conto con opportuni coefficienti correttivi analitici sperimentali. La dinamica del moto, come affermato in premessa, è estremamente complessa in quanto governata da numerose variabili come la forma della superficie palare ovvero del suo frammento, la massa e la sua distribuzione, gli angoli di incidenza e di swirl, alcuni dei quali non controllabili e non prevedibili come nel caso del vento.

Fig. 12. Sistema di coordinate usato per la pala

Gli angoli dell'ala rispetto alla direzione di avanzamento, ovvero i coefficienti di resistenza e portanza, durante la parabola di caduta non sono peraltro univocamente determinati sulla base di quelli posseduti al momento del distacco ma variabili istante per istante: infatti le forze inerziali (per la conservazione della quantità di moto) determineranno la rotazione della pala o del frammento attorno ai tre assi principali di inerzia, così come ostacolata e modificata dalle spinte aerodinamiche connesse con la geometria dell'oggetto.

Il moto che ne deriva è di tipo rototraslatorio complesso e non è deterministicamente possibile prevederlo con completezza. Tuttavia, si possono formulare ipotesi semplificative, e tuttavia conservative, assumendo il caso puramente accademico che il corpo si disponga con la dimensione principale allineata all'orizzonte, posizione tale da offrire la minima resistenza con l'aria rispetto alla direzione di avanzamento orizzontale (*moto del profilo alare*) e massimo attrito rispetto a quelle verticali (*massima portanza*).

Tutte queste assunzioni risultano conservative ai fini della gittata massima; in questo modo la gittata reale non sarà superiore a quella calcolata, poiché nel caso reale il coefficiente di resistenza aerodinamica sarà continuamente maggiore di quello del caso del moto "a giavellotto", per effetto dell'anzidetta rotazione della pala attorno ai propri assi d'inerzia.

Dell'incidenza delle forze aerodinamiche aggiuntive indotte dalla rototraslazione si terrà conto mediante un coefficiente correttivo analitico sperimentale.

Fig. 13. Simulazione del comportamento della pala al momento del contatto con il terreno: alla posizione del centro di massa va sommata la lunghezza eccedente della pala.

Il calcolo descritto nel seguito determina il percorso del baricentro dell'elemento distaccato (pala intera o frammento di esso) e quindi la gittata di tale punto materiale; ai fini degli impatti sui recettori presenti nell'area si è poi determinata la gittata della punta della pala, sommando alla predetta gittata baricentrica la massima distanza del baricentro dal perimetro del proietto. In questa ipotesi conservativa si assume che l'elemento distaccato, durante tutto il volo, mantenga una posizione perpendicolare alla traiettoria del baricentro, come rappresentato in **Fig. 13**.

Tale modellazione è del tutto conservativa: innanzitutto nella realtà il proietto, almeno nel primo terzo della fase di volo, continuerà a ruotare attorno ai propri assi di inerzia, determinando un incremento dell'attrito ed una riduzione della gittata; inoltre nelle fasi terminali del volo esso si disporrà con la parte più pesante verso il basso, esponendo la massima sezione frontale resistente all'avanzamento; infine, a causa e per effetto di tale disposizione, la punta del frammento, a distanza maggiore dal baricentro, atterrerà verso il punto di lancio.

Quanto appena descritto è supportato dal recente lavoro "Wind turbine rotor fragments: impact probability

and setback evaluation"⁶.

Di seguito si riporta un grafico tratto da tale lavoro:

Fig. 14. Modellizzazione della traiettoria ed orientamento di un frammento da 10m per una torre da 1.5MW, rotore da 70m e hub da 80, con velocità angolare pari a 26.3rpm.

In **Fig. 14**, la linea continua rappresenta la traiettoria balistica in attrito aerodinamico. Come può desumersi, la rototraslazione introduce una riduzione del lancio a causa della vorticosità aerodinamica aggiuntiva. Nel medesimo studio si afferma – e ciò è confermato dai risultati ottenuti in questa relazione- che lo stesso oggetto, in un lancio simulato nel vuoto, avrebbe una gittata pari circa al doppio della distanza ottenuta nella realtà.

Per studiare la gittata del proiettile utilizzeremo un sistema di riferimento cartesiano xy in cui l'origine O degli assi del sistema coincida con il centro della base della torre dell'aerogeneratore, avendo assunto l'asse delle Y positivo verso l'alto, e l'asse positivo delle X nello stesso verso del moto orizzontale del proiettile. Rispetto a questo sistema di riferimento il punto di lancio del baricentro del proiettile avrà coordinate (x₀, y₀), che verranno ora determinate.

⁶ Scott M. Larwood, University of the Pacific, e C. P. Van Dam, University of California, Davis – 2015.

5.2 Modello di calcolo

Si osserva innanzitutto che le equazioni qui di seguito trattate si riferiscono all'emiciclo ascendente della pala, tra i 270° e i 90°, a sinistra rispetto alla torre considerata nella figura che segue; il caso discendente è irrilevante ai fini della gittata massima, poiché il lancio tra i 90° e i 270° è ad alzo negativo, e pertanto di gittata senz'altro inferiore rispetto all'arco di lancio nel semipiano opposto.

Come evidente dalla figura, si potrà assumere anche –se ne ricorre il caso- che l'aerogeneratore si trovi in una posizione sopraelevata rispetto al punto di caduta, in modo da ottenere una gittata calcolata il più possibile realistica; il dislivello H_i, altezza di installazione rispetto al punto di caduta, non può essere assunto a priori ma deve valutarsi in funzione della gittata. Pertanto, si calcolerà prima il valore della gittata rispetto al piano di installazione; sulla base del valore di gittata ottenuto in prima battura si valuterà la H_i corrispondente procedendo ad un nuovo calcolo iterativo. In alternativa si può procedere per via grafica valutando l'intersezione della traiettoria calcolata con il profilo altimetrico più sfavorevole nel punto considerato.

Fig. 15. Schema di massima del fenomeno oggetto di studio.

STUDIO INGEGNERIA ELETTRICA MEZZINA dott. ing. Antonio Via T. Solis, 128 - 71016 San Severo (FG) P. IVA 02037220718 J 0882-228072 / 👼 0882-243651 🖂: info@studiomezzina.net

Le equazioni che reggono il moto del modello adottato sono quelle di un punto materiale soggetto alla forza di gravità, alla portanza lungo l'asse y ed alla resistenza dell'aria lungo l'asse x. Scrivendo l'equazione della dinamica in forma scalare nel piano di gittata si ottiene:

 $\begin{aligned} \ddot{x} &= -k_x \dot{x}^2 ,\\ \ddot{y} &= -g - k_y \dot{y}^2 ,\\ \ddot{y} &= -g + k_y \dot{y}^2 ,\end{aligned}$

[2] per il tratto ascendente;[3] per il tratto discendente.

[1]

dove g = 9,81m/s², costante nel campo del moto considerato, è l'accelerazione di gravità, e k_x è un termine costante dato dalla seguente espressione:

$$k_x = \frac{1}{2} \rho \frac{S_x C_x}{m} \quad [4]$$

con $\boldsymbol{\rho}$ densità dell'aria, S_x l'area della sezione del frammento misurata nel piano YZ, C_x il suo coefficiente di resistenza aerodinamica ed m la massa.

Per k_y vale l'analogo nell'asse ortogonale:

La posizione e la velocità iniziale sono determinati dall'angolo α_0 di distacco, dalla distanza del centro di massa del frammento di pala dall'asse del mozzo r_0 e dalla velocità tangenziale V del frammento di pala al momento del distacco. Essi sono legati alla posizione ed alla velocità iniziale dalle relazioni:

$$x_0 = -r_0 \cos \alpha_0$$

$$y_0 = H + r_0 \sin \alpha_0$$

$$v_x = V \sin \alpha_0$$

$$v_y = V \cos \alpha_0$$

dove H è l'altezza della torre (H_0) incrementata dell'eventuale dislivello (H_i) nel caso in cui l'aerogeneratore si trovi in una posizione sopraelevata rispetto agli elementi sensibili.

Integrando due volte l'equazione della dinamica lungo l'asse x [1], si ricava la legge oraria del moto:

$$x(t) = \frac{1}{k_x} \ln|(k_x V \sin \alpha_0) t + 1| - r_o \cos \alpha_0 \qquad [6]$$

Analizziamo ora il tratto ascendente del moto parabolico del proietto. Indicando con v la componente verticale della velocità, dalla [2] si ottiene:

$$\tan^{-1}\left(\nu\sqrt{\frac{k_y}{g}}\right) = \tan^{-1}\left(\nu_y\sqrt{\frac{k_y}{g}}\right) - \sqrt{gk_y} t \qquad [7]$$

E quindi, con semplici passaggi trigonometrici, la relativa espressione della velocità:

$$v(t) = \sqrt{\frac{g}{k_y}} \frac{v_y - \sqrt{\frac{g}{k_y}} \tan(t\sqrt{gk_y})}{\sqrt{\frac{g}{k_y}} + v_y \tan(t\sqrt{gk_y})}, \quad [8]$$

Il punto di inversione del moto e quindi di massima altezza si ottiene al tempo T_{max} quando la componente verticale della velocità si annulla, ovvero, dalla [7]:

$$T_{max} = \frac{1}{\sqrt{gk_y}} \tan^{-1}\left(v_y \sqrt{\frac{k_y}{g}}\right)$$
[9]

La legge del moto lungo l'asse y può essere facilmente ricavata a partire ancora dalla [2] operando sull'identità differenziale della velocità:

$$\frac{dv}{dt} = \frac{dv}{dy}\frac{dy}{dt}$$
 [10]

Sostituendo la [10] nella [2] si ottiene l'espressione della posizione in funzione della velocità istantanea:

$$y(v) = \frac{1}{2k_y} \ln \left(\frac{v_y^2 + g_{k_y}}{v^2 + g_{k_y}} \right), \quad [11]$$

L'altezza massima raggiunta dal proietto si ottiene imponendo v = 0 nella [11] ed aggiungendovi la quota di partenza y_0 :

$$Y_{max} = \frac{1}{2k_y} \ln\left(\frac{v_y^2 + g_{k_y}}{g_{k_y}}\right) + y_0, \quad [12]$$

A partire dal punto di massimo della traiettoria pseudoparabolica del proietto deve applicarsi la [3] per la fase di discesa; con le opportune integrazioni, si ottiene:

$$v(t) = \sqrt{\frac{g}{k_y}} \tanh\left(-t^* \sqrt{gk_y}\right), \qquad [13]$$

Dove si è posto $t^* = t - T_{max}$, ricordando di aver suddiviso la traiettoria in fase ascendente e discendente; il segno della velocità negativo che ne deriva è connesso alla scelta dal sistema di riferimento orientato contro il campo gravitazionale.

Analizzando la [19] si desume che per $t \to \infty$ la velocità tende asintoticamente al parametro $\sqrt{\frac{g}{k_y}}$, che prende

il nome di *velocità limite* v_L .

Dalla [13] è immediato ottenere la legge oraria per integrazione diretta; ricordando che la quota di partenza è Y_{max} si ottiene:

$$y(t) = Y_{max} - \frac{1}{k_y} \ln \left[\cosh \left| t^* \sqrt{gk_y} \right| \right], \quad [14]$$

Dalla [14], si ricava infine il valore del tempo di discesa del frammento di pala, ottenuto per y(t) = 0:

$$T_d = \frac{1}{\sqrt{gk_y}} \cosh^{-1}[e^{Y_{max}k_y}]$$
 [15]

Siamo ora in grado di calcolare la gittata L del frammento di pala, ponendo nella legge del moto orizzontale [6] il valore del tempo di volo T_v così ottenuto:

$$T_v = T_{max} + T_d \qquad [16]$$

Per i calcoli effettuati nei passaggi seguenti ci si è avvalsi di dati estrapolati dai datasheet e dai disegni forniti dal costruttore dell'aerogeneratore, dei quali qui si riassume i principali in forma tabellare:

		Full blade	10m	5m
Sx = massima sezione perpendicolare all'asse principale del proietto	Sx [m ²]	6,55	0,3	0,176
Sy = massima area proiettata lungo l'asse principale del proietto	Sy [m ²]	215,8	13,65	5,32
Sz = minima area proiettata lungo l'asse principale del proietto	Sz [m ²]	79,6	2,7	1,05
Centro di massa dal centro di rotazione	[m]	27,38	71,6	76
massa	[kg]	20000	385	126

Tab. 3. tabella di riepilogo dei dati della pala e suoi frammenti.

Per tutti i casi di studio, la velocità di lancio è stata assunta pari alla massima velocità angolare del rotore di 10 giri/min (ω_0) per la GE158, come sopra analizzato.

6. RISULTATI DEL CALCOLO DELLA GITTATA MASSIMA PER ROTTURA DELL'INTERA PALA

Di seguito si riportano alcuni dati essenziali per l'applicazione del metodo illustrato al paragrafo che precede. Il significato dei simboli e il loro valore sono riportati nella seguente **Tab. 4** relativamente all'aerogeneratore GE158.

Diametro del rotore [m]	D	158
Altezza del mozzo o Hub [m]	H_{hub}	101
Lunghezza pala [m]	L_{pala}	77,4
Diametro del mozzo [m]	d _{mozzo}	3.20
Velocità angolare massima 🔵		25
Overspeed Protection [rpm]	0	23
Velocità vento di cut-out [m/s]	GL	25
Peso pala [kg]	V	20.000
Inclinazione asse del rotore	O	6°

Tab. 4. Specifiche tecniche della V136.

Si è utilizzata la posizione del centro di massa rinveniente dalla Tab. 2.

Il calcolo della gittata massima è stato pertanto effettuato con il centro di massa della pala (r₀) distante **27,38** m dal mozzo.

Nella seguente tabella sono rappresentati i valori di ingresso da introdurre nella risoluzione delle equazioni del moto e i valori ottenuti per i coefficienti k_x , k_y . Si è introdotto un ulteriore coefficiente, k_z , per tener conto dei periodi in cui la faccia ortogonale all'asse z del sistema di riferimento principale adottato è esposta in direzione del moto a causa degli effetti di rototraslazione.

	ρ (kg/m³)	1,225			
S _x (m²)	6.55	S _y (m²)	215.8	S _z (m ²)	79.6
Cx	0,35	Cy	0.8	Cz	0.65
$k_x = \frac{1}{2} \rho \frac{S_x C_x}{m}$	0,000064	$k_y = \frac{1}{2} \rho \frac{S_y C_y}{m}$	0,004856	$k_z = \frac{1}{2} \rho \frac{S_z C_z}{m}$	0,001455
	m (kg)	20000			

Tab. 5. Valori utilizzati per il calcolo

Il calcolo della gittata massima è stato poi effettuato implementando le equazioni descritte al paragrafo precedente su foglio excel (riportato in allegato alla presente relazione), calcolando il lancio in tutto il

semipiano ad alzo positivo, ovvero tra 270° e 90°. I coefficienti sono stati impiegati in forma di media attraverso un fattore correttivo funzione non lineare dei coefficienti medesimi, ottenuto per via sperimentale, che tiene conto del fatto che nel primo terzo del volo il corpo sarà soggetto a rototraslazione e che per circa 2/3 della traiettoria il corpo opporrà le massime sezioni resistenti all'avanzamento, rendendo percentualmente trascurabile il contributo della sezione minima trasversa.

Qui di seguito il grafico che rappresenta la variazione della gittata in funzione dell'angolo di distacco⁷:

Fig. 16. Gittate al variare dell'angolo di distacco per la rottura dell'intera pala.

I principali risultati del calcolo, approssimati per eccesso, sono qui riassunti:

Angolo di massima gittata	300°	Angolo di massima elevazione	25°
Tempo di volo [s]	9		
Gittata del centro di massa [m]	175		
Gittata massima [m]	225	Elevazione massima [m]	245

Il calcolo è stato condotto considerando un dislivello tra punto di installazione dell'aerogeneratore e punto di caduta dell'elemento rotto di 100m.

 $^{^7}$ Per il sistema di riferimento adottato si rimanda alla Fig. 144

7. CALCOLO DELLA GITTATA MASSIMA PER DISTACCO DEI FRAMMENTI DI PALA

Per il calcolo della gittata massima per rottura di un frammento di pala sono stati presi in considerazione le due seguenti casistiche:

- Rottura di un frammento di pala a distanza di 10 m dalla punta della pala;
- Rottura di un frammento di pala a distanza di 5 m dalla punta della pala;

7.1 Rottura di un frammento di pala distante 10 m dalla punta della pala

Nella seguente tabella sono rappresentati i valori di ingresso da introdurre nella risoluzione delle equazioni del moto, come nel caso dell'intera pala:

	ρ (kg/m³)	1,225			
S _x (m ²)	0.3	S _y (m ²)	13.65	S _z (m ²)	2.7
Cx	0,45	Cy	0.6	Cz	0.4
$k_x = \frac{1}{2} \rho \frac{S_x C_x}{m}$	0,000215	$k_y = \frac{1}{2} \rho \frac{S_y C_y}{m}$	0,013030	$k_z = \frac{1}{2} \rho \frac{S_z C_z}{m}$	0,001718
	m (kg)	385			

Tab. 6. Valori utilizzati per il calcolo

bN

Si è utilizzata la posizione del centro di massa rinveniente dalla Tab. 2.

Il calcolo della gittata massima è stato pertanto effettuato con il centro di massa del frammento situato a

71.6 m dal mozzo.

Fig. 17. Gittate al variare dell'angolo di distacco per la rottura del frammento da 10m

I valori massima di gittata ed elevazione massima, approssimati all'intero multiplo di 5 superiore, nelle condizioni di

calcolo sono stati individuati come segue:

Angolo di massima gittata	315°	Angolo di massima elevazione	35°
Tempo di volo [s]	13		
Gittata del centro di massa [m]	275		
Gittata massima [m]	285	Elevazione massima [m]	330

Il calcolo è stato condotto considerando un dislivello tra punto di installazione dell'aerogeneratore e punto di caduta dell'elemento rotto di 100m.

7.2 Rottura di un frammento di pala distante 5 m dalla punta della pala

Nella seguente tabella sono rappresentati i valori di ingresso da introdurre nella risoluzione delle equazioni del moto, come nei casi precedenti:

	ρ (kg/m³)	1,225	GL		
S _x (m²)	0.176	S _y (m ²)	5.32	S _z (m ²)	1.05
Cx	0,35	C _y	0.6	Cz	0.4
$k_x = \frac{1}{2} \rho \frac{S_x C_x}{m}$	0,000299	$k_y = \frac{1}{2} \rho \frac{S_y C_y}{m}$	0,015517	$k_z = \frac{1}{2} \rho \frac{S_z C_z}{m}$	0,002042
	m (kg)		93		

Tab. 7. Valori utilizzati per il calcolo

Si è utilizzata la posizione del centro di massa rinveniente dalla Tab. 2.

Il calcolo della gittata massima è stato pertanto effettuato con il centro di massa del frammento situato a 76 m dal centro del mozzo.

I valori massimi di gittata ed elevazione, approssimati all'intero multiplo di 5 superiore, nelle condizioni di calcolo sopra esplicitate, sono stati individuati come segue:

Angolo di massima gittata	315°	Angolo di massima elevazione	35°
Tempo di volo [s]	12		
Gittata del centro di massa [m]	270		
Gittata massima [m]	275	Elevazione massima [m]	335

8. RIEPILOGO DEI RISULTATI OTTENUTI

Nella tabella riepilogativa seguente si mostrano i risultati ottenuti nei tre casi di studio: rottura dell'intera pala, rottura di un frammento di pala distante 10 m dalla punta della pala e rottura di un frammento di pala distante 5 m dalla punta della pala, così come sopra calcolati

CASI DI STUDIO	Massa del proietto	Elevazione massima	Tempo di volo per gittata massima	Gittata
Rottura dell'intera pala	20000 kg	245 m	9 s	225 m
Rottura di un frammento distante 10 m dalla punta della pala	385 kg	330 m	13 s	275 m
Rottura di un frammento distante 5 m dalla punta della pala	126 kg	335 m	12 s	285 m

Tab. 8. Riepilogo delle simulazioni effettuate

Il massimo valore di gittata calcolato tra tutti i casi considerati è pari a **285,00 m**, per il frammento di 5m.

Tale valore deve essere confrontato con le distanze dei ricettori individuati.

8.1 Distanze dai principali elementi sensibili dell'area

Si riportano qui di seguito le **distanze minime** dai principali elementi urbanistici e infrastrutturali presenti nell'area di ubicazione del parco eolico.

Elementi sensibili	Distanze minime
Centro abitato di Baselice	5200 m
Centro abitato di Foiano di Valfortore	4000 m
Centro abitato di San Marco dei Cavoti	3700 m
Centro abitato di Molinara	3600 m
Centro abitato di San Giorgio La Molara	3500m
Centro abitato di Montefalcone di Valfortore	3350 m
S.P. 116	1675 m
S.P. 30	670 m
S.P. 45	295 m
S.P. "ex S.S.369"	190 m

Tab. 9.Elenco elementi urbanistici e infrastrutturali sensibili nell'area del parco eolico. In giallo, è statoevidenziato l'unico elemento situato ad una distanza critica rispetto alla massima gittata della macchinaMOL 03 e MOL 02, inferiore rispetto alla gittata dei frammenti di pala: la Strada Provinciale "ex SS 369".

Oltre ai suddetti elementi, nell'area del parco eolico sono presenti altri recettori significativi potenzialmente interessati dagli impatti attesi dalla realizzazione del parco eolico. I ricettori sono elencati nella seguente tabella nella quale sono riportata anche le distanze di ciascuno di essi da ciascuno dei 17 aerogeneratori del parco eolico in progetto.

WTG	Coordinate	WGS84 UTM	BAS02	BAS03	SMC01	SMC02	SMC04	SMC05	FVF01	MOL1	MOL2	MOL3	MOL4	MOL7	SGM01	SGM02	SGM04	SGM05	SGM06
Recettore	E	N	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
R1	492591	4580264	875	1124	1802	2005	2451	2996	1979	3847	7280	4572	5129	5596	7322	7758	8550	8959	9051
R2	492858	4579642	1079	969	1473	1482	1878	2376	1314	3233	3634	3906	4466	4942	6646	7075	7881	8280	8359
R3	493801	4578576	2383	2023	2052	1585	1598	1683	516	2460	2674	2799	3344	3757	5262	5671	6517	6868	6993
R4	493219	4577897	2434	1942	1659	1056	826	786	527	1595	1891	2130	2683	3154	4696	5457	6164	6646	6664
R5	496649	4575498	6535	6102	5840	5223	4843	4299	4443	4135	3642	3171	3090	2856	1621	1784	2964	2879	3273
R6	494856	4571786	8647	8110	7551	7004	6509	5883	6809	5136	4295	4223	3678	3177	2656	2670	1618	2700	1810
R7	496609	4571009	10016	9495	8998	8413	7930	7280	8041	6638	6066	5625	5123	4601	2884	2651	1512	1866	1178
R8	498548	4571918	10433	9952	9581	8961	8521	7893	8345	7433	6856	6357	5967	5483	3046	2567	2346	1408	1853
R9	491732	4578249	1626	1117	416	508	795	1413	1593	2045	2608	3036	3539	4060	6244	6750	7282	7913	7825
R10	493293	4576267	3901	3367	2849	2269	1782	1132	2149	674	352	528	1073	1576	3786	4284	4780	5424	5306
R11	493451	4576247	3985	3455	2950	2366	1885	1235	2178	831	458	461	1015	1499	3646	4145	4665	5291	8187
R12	493775	4576433	3972	3455	3020	2407	1955	1330	2041	1149	841	699	1205	1620	3524	4010	4624	5177	5133
R13	493952	4578297	2676	2284	2241	1718	1641	1607	654	2309	2465	2555	3084	3488	4946	5362	6207	6550	6676
R14	493770	4578295	2511	2108	2044	1518	1452	1462	459	2201	2399	2528	3072	3491	5039	5469	6286	6658	6762
R15	494071	4578176	2838	2445	2377	1835	1719	1620	796	2277	2394	2454	2974	3365	4776	5194	6047	6382	6513
R16	494146	4578519	2707	2365	2399	1916	1887	1888	840	2592	2735	2804	3323	3712	5054	5459	6343	6643	6801
R17	494076	4578726	2549	2234	2327	1885	1912	1983	817	2724	2899	2990	3516	3913	5273	5673	6560	6856	7017
			Distanza t	tra WTG e	Recettore	fino a 250	m												
			Distanza t	tra WTG e	Recettore	maggiore	di 250m e	fino a 500	m										
			Distanza t	tra WTG e	Recettore	maggiore	di 500m												

Tab. 10. Elenco dei ricettori, loro posizione e distanze dagli aerogeneratori

Si precisa che i ricettori e la loro denominazione sono i medesimi analizzati anche nello Studio dell'Ombra giornaliera e nello studio acustico.

Dalla lettura della **Tab. 9** qui proposta si desume che la distanza minima è pari a 352m corrispondente a quella tra l'aerogeneratore MOL02 e il recettore R10; tale valore è superiore alla gittata massima sopra calcolata di **285m**. La situazione è riportata nella seguente Fig. 19.

Fig. 19. Inquadramento del ricettore R10 rispetto alla macchina MOL02.

In definiva l'unico recettore sensibile situato all'interno del possibile cono di lancio è la Strada Provinciale "ex S.S. 369", oltre a quelle vicinali e/o di servizio del parco eolico.

Tuttavia, alla luce delle considerazioni probabilistiche riportate nella parte iniziale della presente relazione, in ordine alla probabilità di accadimento dell'evento accidentale di rottura della pala, e del fattore di contemporaneità relativo alla presenza, nelle medesime circostanze di tempo e di luogo, di esseri umani in transito sui recettori anzidetti, <u>si ritiene che sussistano condizioni di sicurezza adeguate rispetto a tutti gli aerogeneratori, del tutto comparabili alla presenza occasionale di esseri umani in qualsiasi punto del terreno circostante agli stessi aerogeneratori, come agricoltori che <u>vi lavorino da presso</u>.</u>

9. CONCLUSIONI.

Non sono presenti nelle vicinanze degli aerogeneratori, ed in particolare entro la distanza di 285m, pari alla gittata massima degli elementi rotanti in caso di rottura, insediamenti abitativi e lavorativi a carattere continuativo, tali da poter essere interessati dagli elementi lanciati in caso di rottura.

Il fabbricato più critico, individuato come R10, situato a circa 380m dalla macchina MOL02, è situato comunque ben oltre la suddetta gittata massima.

Gli unici elementi sensibili, pertanto, restano le strade situate nei dintorni degli aerogeneratori. Tuttavia, l'accadimento di fenomeni quali colpi di fulmine o urti accidentali che possono determinare l'eventuale distacco della pala o suoi frammenti determina un valore di rischio molto basso, reso ancora più basso dal fattore di contemporaneità.

Come descritto in narrativa, la probabilità di impatto tra un frammento di pala ed un oggetto situato tra 200 ed i 500m (come nel caso delle strade ricadenti nella zona di possibile impatto) è compresa tra 1x10⁻⁵ e 1x10⁻⁶ eventi per anno, rientrando nella classificazione di evento estremamente remoto, collegato ad un rischio associato classificabile - mediante matrice di rischio- "minimo". A solo titolo di paragone, la possibilità di un edificio di essere colpito da un fulmine è collocabile tra {1x10⁻³ e 1x10⁻⁴}⁸, pertanto di almeno un ordine di grandezza superiore.

In conclusione, pur essendo la rottura accidentale di una pala o di parte di essa un evento altamente improbabile, la gittata massima dell'elemento rotante nel caso in cui pur tuttavia tale fenomeno dovesse accadere, risulta essere inferiore alla distanza degli aerogeneratori dagli elementi sensibili più vicini presenti nell'area.

Si allegano i fogli di calcolo excel che hanno determinato il calcolo della gittata massima dell'intera pala o frammenti di essa al variare dell'angolo di distacco.

San Severo, Agosto 2023

STUDIO INGEGNERIA ELETTRICA MEZZINA Antonio 0110 0

⁸ Cfr *Determining the Probability of Lightning Striking a Facility*, R.T. Hasbrouck, PE, National Lightning Safety Institute, 2004 - <u>http://lightningsafety.com/nlsi_lhm/prbshort.html</u>

Inserire le variabili del sistema nei campi in bianco sottostanti

Diamentro del rotore (m)	
	158
Lunghezza della pala (m)	
	77,4
Raggio al centro di massa del frammento (m)	
	27.38
	27,50
Distanza punta frammento dal centro di massa (m)	
	51,62
Altezza mozzo (m)	
	101
Quota del piede della torre rispetto ad area circostante	
·······	100
Valacità angolaro (rom)	
	10
	10
densità aria	
	1,125
Superficie frontale Sx	
	6,55
Coefficiente di resistenza Cy	
Coefficience di resistenza cx	0.25
	0,55
Superficie frontale Sy	
	215,8
Coefficiente di resistenza Cy	
	0,8
Superficie frontale Sz	
	79.6
L	, 5,0
Coefficiente di registerre Co	
coefficiente di resistenza cz	
	0,65
Massa della pala	
	20000

Angolo di distacco (gradi°)	GITTATA centro di massa [m]	GITTATA massima [m]	Vx	Vy		Tmax (istante di inversione del moto)	Ymax	Td tempo di discesa	Tv Tempo di volo
270	-145,99	197,61	-28,67	0,00		0,00	173,62	6,53	6,5257
275	-152,59	204,21	-28,56	2,50		0,25	174,04	6,54	6,7896
280	-158,41	210,03	-28,24	4,98		0,51	175,29	6,56	7,0690
285	-163,29	214,91	-27,70	7,42	1	0,75	177,33	6,61	7,3598
290	-167,06	218,68	-26,94	9,81	1	0,99	180,10	6,67	7,6579
295	-169,56	221,18	-25,99	12,12		1,22	183,49	6,74	7,9587
300	-170,62	222,24	-24,83	14,34		1,43	187,42	6,83	8,2580
305	-170,11	221,73	-23,49	16,45	-	1,63	191,77	6,92	8,5516
310	-167,88	219,50	-21,96	18,43		1,81	196,43	7,02	8,8356
315	-163,81	215,43	-20,27	20,27		1,98	201,28	7,13	9,1065
320	-157,79	209,41	-18,43	21,96	-	2,13	206,21	7,23	9,3614
325	-149,70	201,32	-16,45	23,49	-	2,26	211,11	7,34	9,5976
330	-139,45	191,07	-14,34	24,83	-	2,38	215,90	7,44	9,8130
335	-126,94	178,56	-12,12	25,99	-	2,47	220,48	7,53	10,0059
340	-112,08	163,70	-9,81	26,94	-	2,55	224,78	7,62	10,1747
345	-94,78	146,40	-7,42	27,70	-	2,61	228,73	7,70	10,3182
350	-74,95	126,57	-4,98	28,24	-	2,66	232,29	7,78	10,4356
355	-52,51	104,13	-2,50	28,56		2,68	235,40	7,84	10,5261
0	-27,38	79,00	0,00	28,67		2,69	238,04	7,90	10,5891
5	-1,82	53,44	2,50	28,56	-	2,68	240,18	7,94	10,6242
10	21,86	/3,48	4,98	28,24	-	2,66	241,80	7,97	10,6312
15	43,62	95,24	7,42	27,70	-	2,61	242,91	8,00	10,6101
20	63,47	115,09	9,81	26,94	-	2,55	243,51	8,01	10,5610
25	81,44	133,06	12,12	25,99	-	2,47	243,62	8,01	10,4842
30	97,55	149,17	14,34	24,83	-	2,38	243,28	8,00	10,3802
35	111,84	163,46	16,45	23,49	-	2,26	242,52	7,99	10,2500
40	124,36	175,98	18,43	21,96		2,13	241,41	7,96	10,0948
45	135,16	186,78	20,27	20,27		1,98	240,00	7,94	9,9159
50	144,29	195,91	21,96	18,43	4	1,81	238,38	7,90	9,7155
55	151,80	203,42	23,49	16,45	-	1,63	236,63	/,8/	9,4959
60	157,78	209,40	24,83	14,34	-	1,43	234,85	7,83	9,2598
65	162,30	213,92	25,99	12,12	-	1,22	233,12	7,79	9,0105
70	165,44	217,06	26,94	9,81	-	0,99	231,55	7,76	8,7516
75	167,29	218,91	27,70	7,42	-	0,75	230,23	7,73	8,4869
80	167,96	219,58	28,24	4,98	-	0,51	229,22	7,71	8,2202
85	167,55	219,17	28,56	2,50		0,25	228,59	7,70	7,9556
90	166,14	217,76	28,67	0,00		0,00	228,38	7,70	7,6965

Inserire le variabili del sistema nei campi in bianco sottostanti

Diamentro del rotore (m)	
	158
Lunghezza del frammento [m]	10
	10
Raggio al centro di massa del frammento (m)	
	71.6
	/-
Distanza punta frammento dal centro di massa (m)	
	7,4
Altezza mozzo (m)	
	101
Quota del piede della torre rispetto ad area circostante	100
	100
Valacità angolara (ram)	
	10
	10
densità aria	
	1,225
Superficie frontale Sx	
	0,3
Coefficiente di resistenza Cx	0.45
	0,45
Superficie frontale Sv	
	13.65
Coefficiente di resistenza Cy	
	0,6
Superficie frontale Sz	
	2,7
Confliction to discussion of	
Coefficiente di resistenza Cz	0.4
	0,4
Massa del frammento	
	385

Angolo di distacco (gradi°)	GITTATA Centro di massa [m]	GITTATA assoluta	Vx	Vy		Tmax (istante di inversione del moto)	Ymax	Td tempo di discesa	Tv Tempo di volo
270	-188,23	195,63	-74,98	0,00		0,00	129,40	6,09	6,0922
275	-205,01	212,41	-74,69	6,53		0,66	131,81	6,17	6,8253
280	-221,16	228,56	-73,84	13,02		1,27	138,56	6,38	7,6437
285	-235,66	243,06	-72,42	19,41		1,80	148,49	6,68	8,4794
290	-247,97	255,37	-70,46	25,64		2,24	160,34	7,04	9,2834
295	-257,93	265,33	-67,95	31,69		2,61	173,10	7,42	10,0307
300	-265,55	272,95	-64,93	37,49		2,90	186,11	7,81	10,7136
305	-270,88	278,28	-61,42	43,01		3,14	198,98	8,20	11,3335
310	-273,94	281,34	-57,44	48,20		3,33	211,49	8,57	11,8958
315	-2/4,68	282,08	-53,02	53,02		3,48	223,54	8,92	12,4067
320	-275,00	260,40	-40,20	57,44		3,01	255,00	9,20	12,8720
325	-200,00	270,00	-45,01	6/ 03		3,71	240,04	9,59	13,2900
330	-250.61	258.01	-31 60	67.05		3,75	256,45	10.18	14 0381
340	-235,54	233,01	-25.64	70.46		3,80	200,30	10,10	14,0501
345	-214.81	272.21	-19.41	72.42		3.94	284.18	10.71	14.6504
350	-185.92	193 32	-13.02	73.84		3 97	292.18	10.94	14 9108
355	-143.45	150,85	-6.53	74.69		3.99	299.51	11.15	15,1406
0	-71.60	79.00	0.00	74.98		3.99	306.13	11.35	15.3394
5	2,10	9,50	6,53	74,69		3,99	311,99	11,52	15,5059
10	48,46	55,86	13,02	73,84	1	3,97	317,05	11,67	15,6385
15	82,57	89,97	19,41	72,42	1	3,94	321,25	11,79	15,7353
20	109,68	117,08	25,64	70,46	1	3,91	324,52	11,89	15,7936
25	132,19	139,59	31,69	67,95	1	3,86	326,81	11,95	15,8103
30	151,40	158,80	37,49	64,93	1	3,79	328,05	11,99	15,7818
35	168,08	175,48	43,01	61,42		3,71	328,17	11,99	15,7038
40	182,69	190,09	48,20	57,44		3,61	327,11	11,96	15,5712
45	195,52	202,92	53,02	53,02		3,48	324,79	11,89	15,3781
50	206,74	214,14	57,44	48,20		3,33	321,19	11,79	15,1180
55	216,40	223,80	61,42	43,01		3,14	316,28	11,65	14,7833
60	224,54	231,94	64,93	37,49		2,90	310,13	11,47	14,3665
65	231,10	238,50	67,95	31,69		2,61	302,89	11,25	13,8612
70	236,04	243,44	70,46	25,64		2,24	294,91	11,02	13,2646
75	239,33	246,73	72,42	19,41		1,80	286,81	10,78	12,5832
80	241,04	248,44	73,84	13,02		1,27	279,58	10,57	11,8396
85	241,47	248,87	74,69	6,53		0,66	274,47	10,42	11,0793
90	241.17	248.57	74.98	0.00		0.00	272.60	10.37	10.3662

 cittata CoG
 gittata max
 angolo
 tempo volo
 H max

 274,68
 282,08
 315,00
 12,4067007
 328,17

Inserire le variabili del sistema nei campi in bianco sottostanti

Diamentro del rotore (m)	
	158
Lunghezza del frammento [m]	
	5
	-
Paggio al centro di massa del frammento (m)	
	76
	,,,
Distance with from worth del contro di massa (m)	
Distanza punta frammento dal centro di massa (m)	2
	3
Altezza mozzo (m)	
	101
Quota del piede della torre rispetto ad area circostante	
	100
Velocità angolare (rom)	
	10
demoteX enter	
densita aria	1 225
	1,225
Superficie frontale Sx	
	0,176
Coefficiente di resistenza Cx	
	0,35
Superficie frontale Sv	
Superiore inditate Sy	5 22
	5,52
o this is the existence for	
Coefficiente di resistenza Cy	
	U,6
Superficie frontale Sz	
	1,05
Coefficiente di resistenza Cz	
	0.4
	- /
Massa del frommonto	
Massa dei frammento	120
	1/n

	Angolo di distacco (gradi°)	GITTATA centro di massa [m]	GITTATA massima [m]	Vx	Vy	Tmax (istante di inversione del moto)	Ymax	Td tempo di discesa	Tv Tempo di volo
	270	-182,31	185,31	-79,59	0,00	0,00	125,00	6,07	6,0693
	275	-199,31	202,31	-79,28	6,94	0,70	127,69	6,16	6,8532
	280	-215,64	218,64	-78,38	13,82	1,33	135,10	6,40	7,7277
	285	-230,19	233,19	-76,88	20,60	1,87	145,74	6,74	8,6079
	290	-242,48	245,48	-74,79	27,22	2,31	158,14	7,13	9,4396
	295	-252,44	255,44	-72,13	33,63	2,65	171,21	7,55	10,2008
	300	-260,17	263,17	-68,92	39,79	2,93	184,33	7,96	10,8887
	305	-265,74	268,74	-65,19	45,65	3,15	197,17	8,36	11,5095
	310	-269,20	272,20	-60,97	51,16	3,32	209,59	8,75	12,0715
	315	-270,51	273,51	-56,28	56,28	3,46	221,53	9,12	12,5828
	320	-269,55	272,55	-51,16	60,97	3,57	232,95	9,48	13,0504
	325	-266,14	269,14	-45,65	65,19	3,66	243,87	9,82	13,4797
	330	-259,93	262,93	-39,79	68,92	3,73	254,27	10,14	13,8747
	335	-250,44	253,44	-33,63	72,13	3,79	264,16	10,45	14,2384
	340	-236,84	239,84	-27,22	74,79	3,83	273,51	10,74	14,5727
	345	-217,79	220,79	-20,60	76,88	3,87	282,32	11,01	14,8786
	350	-190,69	193,69	-13,82	78,38	3,89	290,55	11,27	15,1564
	355	-149,73	152,73	-6,94	79,28	3,90	298,17	11,50	15,4059
	0	-76,00	79,00	0,00	79,59	3,91	305,14	11,72	15,6264
	5	-0,28	3,28	6,94	79,28	3,90	311,42	11,91	15,8164
6	10	44,75	47,75	13,82	78,38	3,89	316,94	12,09	15,9742
	15	77,26	80,26	20,60	76,88	3,87	321,66	12,23	16,0975
	20	102,91	105,91	27,22	74,79	3,83	325,50	12,35	16,1837
	25	124,22	127,22	33,63	72,13	3,79	328,39	12,44	16,2294
	30	142,48	145,48	39,79	68,92	3,73	330,27	12,50	16,2308
	35	158,44	161,44	45,65	65,19	3,66	331,05	12,52	16,1832
	40	172,57	175,57	51,16	60,97	3,57	330,66	12,51	16,0812
	45	185,12	188,12	56,28	56,28	3,46	329,01	12,46	15,9185
	50	196,27	199,27	60,97	51,16	3,32	326,03	12,37	15,6874
	55	206,06	209,06	65,19	45,65	3,15	321,68	12,23	15,3793
	60	214,51	217,51	68,92	39,79	2,93	315,96	12,06	14,9843
	65	221,56	224,56	72,13	33,63	2,65	308,96	11,84	14,4929
	70	227,13	230,13	74,79	27,22	2,31	300,97	11,59	13,8978
	75	231,15	234,15	76,88	20,60	1,87	292,56	11,33	13,2006
	80	233,62	236,62	78,38	13,82	1,33	284,79	11,09	12,4211
	85	234,83	237,83	79,28	6,94	0,70	279,11	10,91	11,6101
1	90	235.35	238.35	79.59	0.00	0.00	277.00	10.85	10.8481

cittata CoG gittata max angolo tempo volo H max 270,51 273,51 315,00 12,58282126 331,05

GITTATA centro di massa [m]

GITTATA massima [m]