

### PROGETTO AdSP n° 1948

Banchinamento parziale del terminal Ro-Ro Noghere nel Porto di Trieste - Fase I secondo il PRP 2016, comprensivo di dragaggio del canale di servizio e di collegamento alla viabilità

#### PROGETTISTA:



F&M Ingegneria Spa Via Belvedere 8/10 30035 - Mirano (VE)



SQS srl Viale della Terza Armata 7 34123 - Trieste (TS)



Piazzale della Stazione 7 35131 - Padova (PD)



F&M Divisione Impianti srl Via Belvedere 8/10 30035 - Mirano (VE)



HMR Ambinete srl Piazzale della Stazione 7 35131 - Padova (PD)



ArcheoTest Srl Via Vidali 5 34129 - Trieste (TS)

RESPONSABILE UNICO DEL PROCEDIMENTO:

Ing. Eric Marcone

# PROGETTO DI FATTIBILITA' TECNICO-ECONOMICA

TITOLO TAVOLA:

RELAZIONE SISMICA

ELABORATO:

*I0\_GEO\_r004* 

| 00   | 19/05/2023 | PRIMA EMISSIONE PER COMMENTI | A.A.    | C.S.       | T.T.      |
|------|------------|------------------------------|---------|------------|-----------|
| Rev. | Data       | Descrizione                  | Redatto | Verificato | Approvato |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

## **Sommario**

| 2 INQUADRAMENTO DELL'AREA                                                                                                | 4        |
|--------------------------------------------------------------------------------------------------------------------------|----------|
| 3 SISMICITA' DELL'AREA                                                                                                   | 5        |
| 3.1 RISCHIO SISMICO                                                                                                      | 5        |
| 3.2 CLASSIFICAZIONE SISMICA DELL'AREA                                                                                    | 8        |
| 3.3 MAPPE DI PERICOLOSITÀ SISMICA                                                                                        | 12       |
| 3.4 ZONAZIONE SISMOGENETICA                                                                                              |          |
| 3.5 SISMICITÀ STORICA DELL'AREA                                                                                          |          |
| 3.5.1 Catalogo CPTI15 e DBMI15                                                                                           |          |
| 3.5.2 Catalogo NTC4.1.1                                                                                                  |          |
| 3.5.3 Banca dati GNDT 1996                                                                                               |          |
|                                                                                                                          |          |
| 4 INDAGINE GEOGNOSTICA                                                                                                   |          |
| 4.1 SONDAGGI A CAROTAGGIO CONTINUO                                                                                       |          |
| 4.2 HVSR (HORIZONTAL TO VERTICAL SPECTRAL RATIO)                                                                         |          |
| 4.3 MISURE DI SISMICA ATTIVA MASW (MULTICHANNEL ANALYSIS OF SURFACE W                                                    | /AVES)48 |
| 5 AZIONI SISMICHE DI PROGETTO DA NORMATIVA                                                                               | 50       |
| 6 VALUTAZIONE DELLA SUSCETTIBILITÀ ALLA LIQUEFAZIONE                                                                     | 54       |
|                                                                                                                          |          |
| Indice delle figure                                                                                                      |          |
| Figura 2.1 – Inquadramento dell'area di studio (campita in rosso) nella Valle di Zaule – Baia di                         |          |
| modello 3D riprodotto in ambiente GIS con plug-in Qgis2threejs                                                           |          |
| Figura 3.1 – I maggiori terremoti italiani del secolo                                                                    |          |
| Figura 3.2 – Costo dei terremoti dal 1968 al 2003<br>Figura 3.3 – Classificazione sismica del territorio italiano (1984) |          |
| Figura 3.4 – Classificazione sismica del territorio italiano (Proposta GdL 1998)                                         |          |
| Figura 3.5 – Classificazione sismica del territorio italiano (1 1000sta Cub 1990)                                        |          |
| Figura 3.6 – Classificazione sismica del territorio italiano (2020)                                                      |          |
| Figura 3.7 – Classificazione sismica del territorio italiano (2022)                                                      |          |
| Figura 3.8 – Mappa cromatica pericolosità sismica di riferimento per il territorio nazionale (Ordina                     |          |
| del 28 aprile 2006, All. 1b))                                                                                            |          |



| Figura 3.9 – Mappe di pericolosità sismica accelerazione orizzontale di picco e intensità macrosismica         | T=475   |
|----------------------------------------------------------------------------------------------------------------|---------|
| anni                                                                                                           |         |
| Figura 3.10 – Confronto scala Richter e Scala Mercalli                                                         |         |
| Figura 3.11 – Mappa interattiva (Pvr =10% - Tr = 474 anni)                                                     |         |
| Figura 3.12 – Mappa interattiva (Pvr =5% - Tr = 974 anni)                                                      |         |
| Figura 3.13 – Mappa interattiva (Pvr =2% - Tr = 2475 anni)                                                     |         |
| Figura 3.14 – Mappa interattiva (Pvr =10% [] Tr = 474 anni)                                                    | 21      |
| Figura 3.15 – Mappa interattiva (Pvr =5% [] Tr = 974 anni)                                                     |         |
| Figura 3.16 – Mappa interattiva (Pvr =2% [] Tr = 2475 anni)                                                    |         |
| Figura 3.17 – Zonazione sismogenetica ZS.4 – 1996                                                              |         |
| Figura 3.18 – Zonazione sismogenetica ZS.9 – 2004 (http://www.arcgis.com)                                      |         |
| Figura 3.19 – Localizzazione del sito in esame con le zone sismogenetiche                                      |         |
| Figura 3.20 – Nuovo database INGV "DISS 3.3.0" – 2021                                                          |         |
| Figura 3.21 – Ubicazione del territorio di Trieste sul nuovo database INGV "DISS 3.3.0" – 2021                 |         |
| Figura 3.22 – Informazioni parametriche per la componente sismogenetica ITCS101                                |         |
| Figura 3.23 – Informazioni parametriche per la componente sismogenetica ITCS100                                |         |
| Figura 3.24 – Mappa degli epicentri dei terremoti del territorio italiano in CPTI15 (Mw – magnitudo mo         | •       |
|                                                                                                                |         |
| Figura 3.25 – Mappa degli epicentri dei terremoti del territorio italiano in DBMI15                            |         |
| Figura 3.26 – Distribuzione temporale degli eventi sismici                                                     |         |
| Figura 3.27 – Quadro sinottico degli eventi sismici nel tempo                                                  |         |
| Figura 3.28 – Ubicazione terremoti nei dintorni di Trieste; evidenziato l'evento sismico di Servola del 189    |         |
| Figura 3.29 – Distribuzione dei dati per regione                                                               |         |
| Figura 3.30 – Mappa delle massime intensità sismiche osservate nei comuni italiani                             | 39      |
| Figura 4.1 – Estratto non in scala dell'ortofotocarta indicante le indagini geognostiche svolte nell'areale di |         |
|                                                                                                                | 40      |
| Figura 4.2 – Estratto planimetrico non in scala indicante i punti di indagine geognostica condotta a care      |         |
| continuo                                                                                                       |         |
| Figura 4.3 – Estratto planimetrico non in scala riportante l'ubicazione delle prove HVSR eseguite              |         |
| Figura 4.4 – Estratto planimetrico non in scala riportante l'ubicazione delle prove MASW eseguite              |         |
| Figura 5.1 –Curva di dispersione prova MASW 1                                                                  |         |
| Figura 5.2 – Inversione prova MASW 1                                                                           |         |
| Figura 5.3 – Spettri di risposta elastici per i periodi di ritorno Tr di riferimento.                          |         |
| Figura 5.4 – Valori di progetto dei parametri a g , Fo , TC* in funzione del periodo di ritorno TR             |         |
| Figura 6.1 – Catalogo europeo dei fenomeni di liquefazione                                                     | 56      |
|                                                                                                                |         |
| Indice delle tabelle                                                                                           |         |
| Tabella 5-1 – Tabella 3.2.II del capitolo 3.2.2 "Categorie di sottosuolo e condizioni topografiche" de         | el D.M. |
| 17.01.2018 "Aggiornamento delle Norme tecniche per tecniche per le costruzioni"                                |         |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### 1 PREMESSA

Il presente documento è finalizzato alla progettazione del banchinamento parziale del terminal Ro-Ro Noghere che prevede la creazione di un nuovo fronte banchinato con quota finito alla +3,50 m l.m.m.

L'obiettivo del progetto è realizzare una banchina esclusivamente sulle aree a mare ovvero sullo specchio acqueo antistante le aree a terra.

Il contesto geologico è stato dettagliato a seguito della realizzazione di:

- 6 sondaggi sia a carotaggio continuo che a distruzione di nucleo con la contestuale esecuzione di:
  - 47 SPT (Standard Penetration Test)
  - 18 campioni indisturbati prelevati con campionatore tipo Shelby
- 2 MASW (Multichannel Analysis of Surfaces Waves);
- 4 prove HVSR (Horizontal to Vertical Spectral Ratio);
- 12 prospezioni sismiche a mare.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

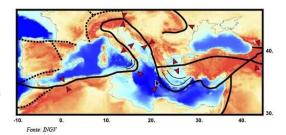
#### 2 INQUADRAMENTO DELL'AREA

Il banchinamento parziale in progetto è situato nel comune di Muggia in un ambito planiziale della zona industriale della Valle di Zaule, parte orientale della Baia di Muggia.



Figura 2.1 – Inquadramento dell'area di studio (campita in rosso) nella Valle di Zaule – Baia di Muggia, tramite modello 3D riprodotto in ambiente GIS con plug-in Qgis2threejs.




1948 PFTE I0 GEO r004 02 00.docx

#### 3 SISMICITA' DELL'AREA

#### 3.1 RISCHIO SISMICO

L'Italia è uno dei Paesi a maggiore rischio sismico del Mediterraneo, per la freguenza dei terremoti che hanno storicamente interessato il suo territorio e per l'intensità che alcuni di essi hanno raggiunto, determinando un impatto sociale ed economico rilevante. La sismicità della Penisola italiana è legata alla sua particolare posizione

geografica, perché è situata nella zona di convergenza tra la zolla africana e quella eurasiatica ed è sottoposta a forti spinte compressive, che causano l'accavallamento dei blocchi di roccia. In 2500 anni, l'Italia è stata interessata da più di 30.000 terremoti di media e forte intensità superiore al IV-V grado della scala Mercalli) e da circa 560 eventi sismici di intensità uguale o superiore all'VIII grado della scala Mercalli (in media uno ogni



4 anni e mezzo). Solo nel XX secolo, ben 7 terremoti hanno avuto una magnitudo uguale o superiore a 6.5 (con effetti classificabili tra il X e XI grado Mercalli). La sismicità più elevata si concentra nella parte centro-meridionale della penisola - lungo la dorsale appenninica (Val di Magra, Mugello, Val Tiberina, Val Nerina, Aguilano, Fucino, Valle del Liri, Beneventano, Irpinia) - in Calabria e Sicilia, ed in alcune aree settentrionali, tra le quali il Friuli, parte del Veneto e la Liguria occidentale.

| Data Area         |                      | Intensità | Magnitudo | Vittime |
|-------------------|----------------------|-----------|-----------|---------|
|                   | epicentrale          | (MCS)     | (Maw)     |         |
| 8 settembre 1905  | Calabria             | XI        | 7.1       | 557     |
| 23 ottobre 1907   | Calabria meridionale | VIII-IX   | 5.9       | 167     |
| 28 dicembre 1908  | Reggio C. – Messina  | XI        | 7.2       | 85.926  |
| 7 giugno 1910     | Irpinia - Basilicata | VIII-IX   | 5.9       | 50 ca.  |
| 15 ottobre 1911   | Area etnea           | X         | 5.3       | 13      |
| 8 maggio 1914     | Area etnea           | IX        | 5.3       | 69      |
| 13 gennaio 1915   | Marsica (Abruzzo)    | XI        | 7.0       | 32.610  |
| 26 aprile 1917    | Val Tiberina         | IX        | 5.8       | 20 ca.  |
| 29 giugno 1919    | Mugello              | IX        | 6.2       | 100 ca. |
| 7 settembre 1920  | Garfagnana           | IX-X      | 6.5       | 171     |
| 27 marzo 1928     | Carnia (Friuli)      | VIII-IX   | 5.7       | 11      |
| 23 luglio 1930    | Alta Irpinia         | X         | 6.7       | 1404    |
| 30 ottobre 1930   | Senigallia           | IX        | 5.9       | 18      |
| 26 settembre 1933 | Maiella              | VIII-IX   | 5.7       | 12      |
| 18 ottobre 1936   | Veneto-Friuli        | IX        | 5.9       | 19      |
| 21 agosto 1962    | Irpinia              | IX        | 6.2       | 17      |
| 15 gennaio 1968   | Valle del Belice     | X         | 6.1       | 296     |
| 6 maggio 1976     | Friuli               | IX-X      | 6.4       | 965     |
| 23 novembre 1980  | Irpinia-Basilicata   | X         | 6.9       | 2734    |
| 26 settembre 1997 | Umbria-Marche        | VIII-IX   | 6.1       | 11      |

Figura 3.1 – I maggiori terremoti italiani del secolo



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

I terremoti che hanno colpito la Penisola hanno causato danni economici consistenti, valutati per gli ultimi quarant'anni in circa 135 miliardi di euro, che sono stati impiegati per il ripristino e la ricostruzione post-evento. A ciò si devono aggiungere le conseguenze non traducibili in valore economico sul patrimonio storico, artistico, monumentale.

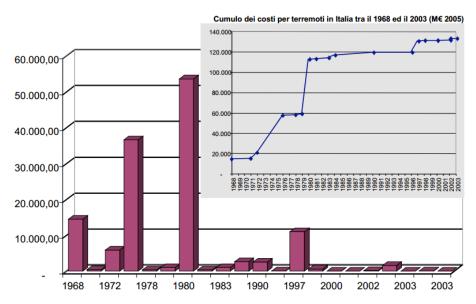



Figura 3.2 - Costo dei terremoti dal 1968 al 2003.

In Italia, il rapporto tra i danni prodotti dai terremoti e l'energia rilasciata nel corso degli eventi è molto più alto

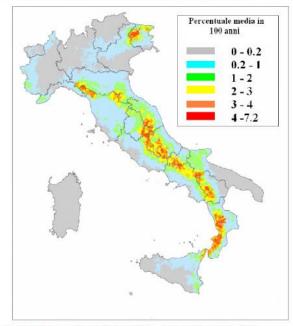
rispetto a quello che si verifica normalmente in altri Paesi ad elevata sismicità, quali la California o il Giappone. Ad esempio, il terremoto del 1997 in Umbria e nelle Marche ha prodotto un quadro di danneggiamento (senza tetto: 32.000; danno economico: circa 10 miliardi di Euro) confrontabile con quello della California del 1989 (14.5 miliardi di \$ USA), malgrado fosse caratterizzato da un'energia circa 30 volte inferiore. Ciò è dovuto principalmente all'elevata densità abitativa e alla notevole fragilità del nostro patrimonio edilizio.

La sismicità (frequenza e forza con cui si manifestano i terremoti) è una caratteristica fisica del territorio, al pari del clima, dei rilievi montuosi e dei corsi d'acqua. Conoscendo la frequenza e l'energia (magnitudo) associate ai terremoti che caratterizzano un territorio ed attribuendo un valore di probabilità al verificarsi di un evento sismico di una certa magnitudo, in un certo intervallo di tempo, possiamo definire la sua pericolosità sismica. Un territorio avrà una pericolosità sismica tanto più elevata quanto più probabile sarà, a parità di intervallo di tempo considerato, il verificarsi di un terremoto

| Data       | Paese                   | Morti        | Magnitudo |
|------------|-------------------------|--------------|-----------|
| 31/05/1970 | Peru                    | 66.000       | 7,8       |
| 09/02/1971 | California, S.Fernando  | 65           | 6,5       |
| 23/12/1972 | Nicaragua, Managua      | 5.000        | 6,2       |
| 04/02/1976 | Guatemala               | 22.000       | 7,9       |
| 06/05/1976 | Italy, Friuli           | 965          | 6,4       |
| 27/07/1976 | Cina, Tangshan          | 250.000      | 7,6       |
| 04/03/1977 | Romania, Vrancea        | 2.000        | 7,2       |
| 10/10/1980 | Algeria, El Asnam       | 3.500        | 7,7       |
| 23/11/1980 | Italy, Irpinia          | 2.734        | 6,9       |
| 11/06/1981 | Southern Iran           | 3.000        | 6,9       |
| 13/12/1982 | Yemen                   | 2.800        | 6,0       |
| 19/09/1985 | Mexico, Michoacan       | 9.500        | 7,9       |
| 07/12/1988 | Turkey                  | 25.000       | 7,0       |
| 17/10/1989 | California, Loma Prieta | 62           | 7,1       |
| 20/06/1990 | Iran                    | 50.000       | 7,7       |
| 17/01/1994 | California, Northridge  | 57           | 6,7       |
| 17/01/1995 | Japan, Kobe             | 5.466        | 7,2       |
| 26/09/1997 | Umbria-Marche           | 11           | 5,8       |
| 17/08/1999 | Turkey, Izmit           | 17.000       | 7,4       |
| 20/09/1999 | Taiwan                  | 2295         | 7,6       |
| 26/01/2001 | India                   | 20.000       | 7.6       |
| 21/05/2003 | Algeria                 | 2250         | 6,7       |
| 26/12/2003 | Iran, Bam               | 25.000       | 6,6       |
| 23/10/2004 | Japan, Niigata          | 36           | 6.8       |
| 26/12/2004 | Sumatra                 | 290.000      | 9.0       |
| 15/08/2007 | Perù, Pisco             | 500          | 8.0       |
| 12/05/2008 | China, Wenchuan         | Oltre 70.000 | 8.0       |

di una certa magnitudo. Le conseguenze di un terremoto, tuttavia, non sono sempre gravi: molto dipende dalle caratteristiche di resistenza delle costruzioni alle azioni di una scossa sismica.




1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Questa caratteristica, o meglio la predisposizione di una costruzione ad essere danneggiata da una scossa sismica, si definisce vulnerabilità. Quanto più un edificio è vulnerabile (per tipologia, progettazione inadeguata, scadente qualità dei materiali e modalità di costruzione, scarsa manutenzione), tanto maggiori saranno le conseguenze che ci si deve aspettare in seguito alle oscillazioni cui la struttura sarà sottoposta.

Infine, la maggiore o minore presenza di beni a rischio e, dunque, la consequente possibilità di subire un danno (economico, in vite umane, ai beni culturali, ecc..), viene definita esposizione (di vite umane, beni economici, beni culturali). Il rischio sismico è determinato da una combinazione della pericolosità, della vulnerabilità e dell'esposizione ed è la misura dei danni che, in base al tipo di sismicità, di resistenza delle costruzioni e di antropizzazione (natura, qualità e quantità dei beni esposti), ci si può attendere in un dato intervallo di tempo. In Italia, possiamo attribuire alla pericolosità sismica un livello medio-alto, per la frequenza e l'intensità dei fenomeni che si susseguono. La Penisola italiana, però, rispetto ad altri Paesi, come la California o il Giappone, nei quali la pericolosità è anche maggiore, ha una vulnerabilità molto elevata, per la notevole fragilità del suo patrimonio edilizio, nonché del sistema infrastrutturale, industriale, produttivo e delle reti dei servizi. Il terzo fattore, l'esposizione, si attesta

#### Probabilità di crolli

Mappa della probabilità di crolli per comune espressa in percentuale media in 100 anni (dati sulle abitazioni del censimento 2001). I valori riportati nella figura rappresentano la percentuale di edifici soggetti a possibili lesioni o parziali crolli a causa di eventi sismici.



Fonte: Dipartimento della Protezione Civile - www.protezionecivile.it

su valori altissimi, in considerazione dell'alta densità abitativa e della presenza di un patrimonio storico, artistico e monumentale unico al mondo. In questo senso è significativo l'evento del 1997 in Umbria e Marche, che ha fortemente danneggiato circa 600 chiese e, emblematicamente, la Basilica di S. Francesco d'Assisi. L'Italia è dunque un Paese ad elevato rischio sismico, inteso come perdite attese a seguito di un terremoto, in termini di vittime, danni alle costruzioni e conseguenti costi diretti ed indiretti.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### 3.2 CLASSIFICAZIONE SISMICA DELL'AREA

Il panorama legislativo in materia sismica è stato profondamente trasformato dalle recenti normative nazionali ovvero dall'OPCM n°3274/2003 che è entrata in vigore dal 25 ottobre 2005, data coincidente con la pubblicazione della prima stesura delle norme tecniche per le costruzioni (D.M. 14 settembre 2005) e dalla successiva OPCM n°3519/2006. La riclassificazione sismica del territorio nazionale prevede che tutto il territorio sia classificato sismico sulla base della Mappa di Pericolosità Sismica del Territorio Nazionale espressa in termini di accelerazione massima del suolo con probabilità di eccedenza del 10% in 50 anni riferita a suoli rigidi. In relazione alla pericolosità sismica, il territorio nazionale è stato suddiviso in quattro zone con livelli decrescenti di pericolosità in funzione a quattro differenti valori di accelerazione orizzontale massima al suolo ag475, ossia quella riferita al 50° percentile, ad una vita di riferimento di 50 anni e ad una probabilità di superamento del 10% riferiti a suoli rigidi caratterizzati da Vs30 > 800 m/s.

| Zona<br>sismica | Fenomeni riscontrati                                                                                                       | Accelerazione con probabilità di<br>superamento del 10%<br>in 50 anni |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1               | Zona con pericolosità sismica alta. Indica la zona più pericolosa, dove possono verificarsi forti terremoti.               | a <sub>g475</sub> ≥ 0,25g                                             |
| 2               | Zona con pericolosità sismica media, dove possono verificarsi terremoti abbastanza forti.                                  | $0.15 \le a_{g475} < 0.25g$                                           |
| 3               | Zona con pericolosità sismica bassa, che può essere soggetta a scuotimenti modesti.                                        | $0.05 \le a_{9475} < 0.15g$                                           |
| 4               | Zona con pericolosità sismica molto bassa.<br>E' la zona meno pericolosa, dove le possibilità di danni sismici sono basse. | a <sub>9475</sub> < 0,05g                                             |

Si riporta tabella di riepilogo con classificazione sismica dell'area oggetto di studio a partire dal 1984 fino al 2022.

| REGIONE                  | COMUNE  | CODICE<br>ISTAT | CLASSIFICAZIONE            |                         |                    |                          |                          |  |  |
|--------------------------|---------|-----------------|----------------------------|-------------------------|--------------------|--------------------------|--------------------------|--|--|
|                          |         |                 | Decreti<br>fino al<br>1984 | Proposta<br>GdL<br>1998 | O.P.C.M<br>3274/03 | Aggiornamento<br>al 2015 | Aggiornamento<br>al 2022 |  |  |
| FRIULI VENEZIA<br>GIULIA | TRIESTE | 032006          | N.C.                       | N.C.                    | 4                  | 3                        | 3                        |  |  |

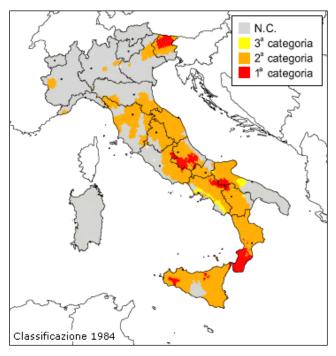



Figura 3.3 – Classificazione sismica del territorio italiano (1984)

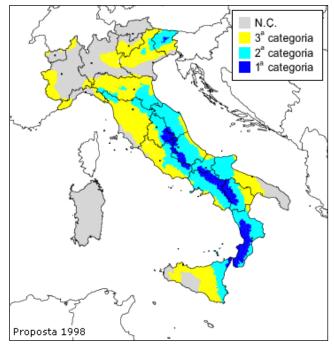



Figura 3.4 – Classificazione sismica del territorio italiano (Proposta GdL 1998).



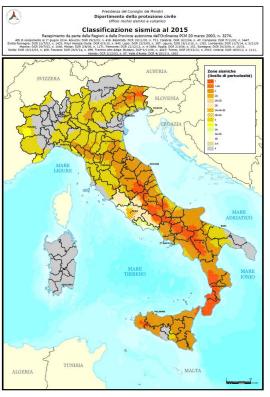



Figura 3.5 – Classificazione sismica del territorio italiano (2015)

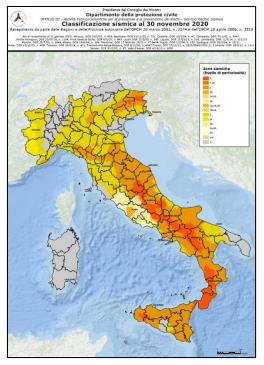



Figura 3.6 – Classificazione sismica del territorio italiano (2020)



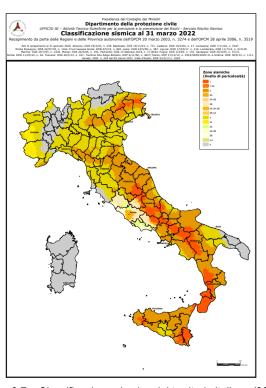



Figura 3.7 – Classificazione sismica del territorio italiano (2022)



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### 3.3 MAPPE DI PERICOLOSITÀ SISMICA

Dal sito INGV è possibile consultare la mappa di pericolosità sismica del territorio italiano (riferimento: Ordinanza PCM del 28 aprile 2006 n°3519, All.1b) espressa in termini di accelerazione massima del suolo con probabilità di eccedenza del 10% in 50 anni riferita a suoli rigidi (Vs > 800 m/s; cat. A, punto 3.2.1 del D.M. 14.09.2005).

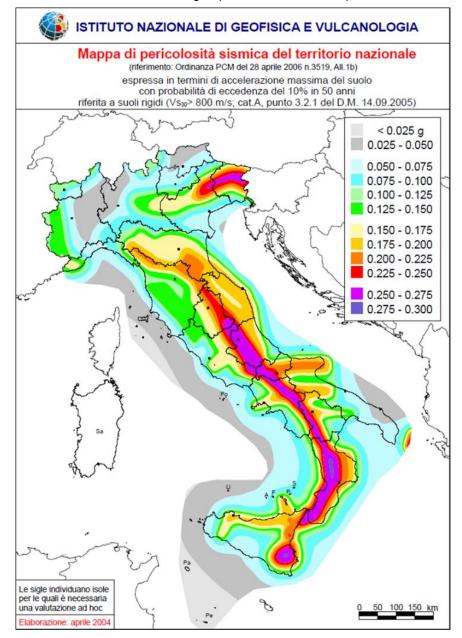



Figura 3.8 – Mappa cromatica pericolosità sismica di riferimento per il territorio nazionale (Ordinanza PCM 3519 del 28 aprile 2006, All. 1b))

Dal sito http://emidius.mi.ingv.it/GNDT/ogs\_int.html è possibile consultare le mappe di pericolosità sismiche del territorio italiano in termini di accelerazione orizzontale di picco (T = 475 anni) ed in termini di intensità macrosismica (MCS scale).

Il gruppo Nazionale per la Difesa dai Terremoti (GNDT) è uno dei Gruppi Nazionali di ricerca scientifica di cui si avvale il Servizio Nazionale della Protezione Civile (Legge 24 febbraio 1992, n° 225, art. 17).

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

### Di seguito si riportano le mappe di pericolosità sismica in Italia.

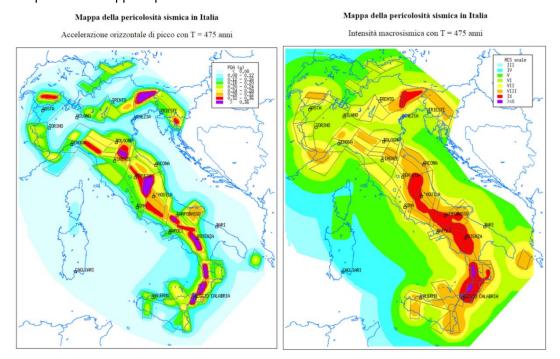



Figura 3.9 – Mappe di pericolosità sismica accelerazione orizzontale di picco e intensità macrosismica T=475 anni.

| magnitudo Richter | energia<br>joule | grado Mercalli |
|-------------------|------------------|----------------|
| < 3.5             | < 1.6 E+7        | 1              |
| 3.5               | 1.6 E+7          | II             |
| 4.2               | 7.5 E+8          | III            |
| 4.5               | 4 E+9            | IV             |
| 4.8               | 2.1 E+10         | ٧              |
| 5.4               | 5.7 E+11         | VI             |
| 6.1               | 2.8 E+13         | VII            |
| 6.5               | 2.5 E+14         | VIII           |
| 6.9               | 2.3 E+15         | IX             |
| 7.3               | 2.1 E+16         | Х              |
| 8.1               | > 1.7 E+18       | ΧI             |
| > 8.1             |                  | XII            |

Figura 3.10 – Confronto scala Richter e Scala Mercalli

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Dal sito http://esse1-gis.mi.ingv.it/ è inoltre possibile, per il comune interessato, consultare le mappe interattive di pericolosità sismica; di seguito si riportano degli estratti della mappa interattiva considerando rispettivamente una probabilità di eccedenza del 10%, del 5%, del 2% in 50 anni.

Non essendo il sito in esame ricadente in un quadrante si riportano i risultati di pericolosità sismica dei quadranti prossimi caratterizzati da accelerazione maggiore.

#### Pericolosità sismica quadrante Nord

#### Modello di pericolosità sismica MPS04-S1

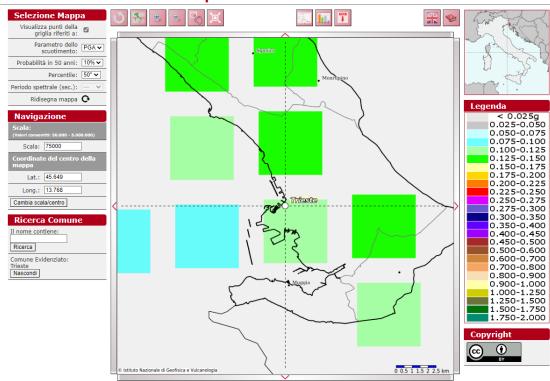



Figura 3.11 – Mappa interattiva (Pvr = 10% - Tr = 474 anni)



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



#### Modello di pericolosità sismica MPS04-S1

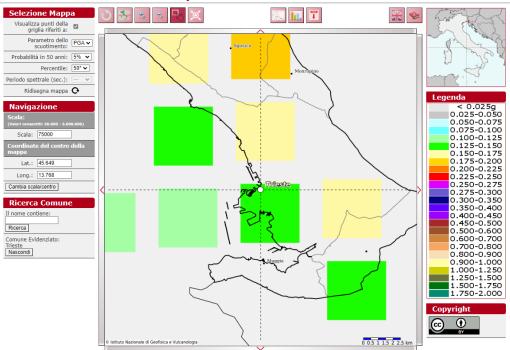



Figura 3.12 – Mappa interattiva (Pvr = 5% - Tr = 974 anni)

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

#### Modello di pericolosità sismica MPS04-S1

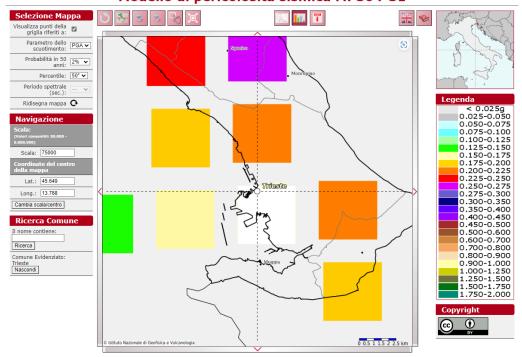



Figura 3.13 – Mappa interattiva (Pvr = 2% - Tr = 2475 anni)

Progetto di fattibilità tecnica ed economica



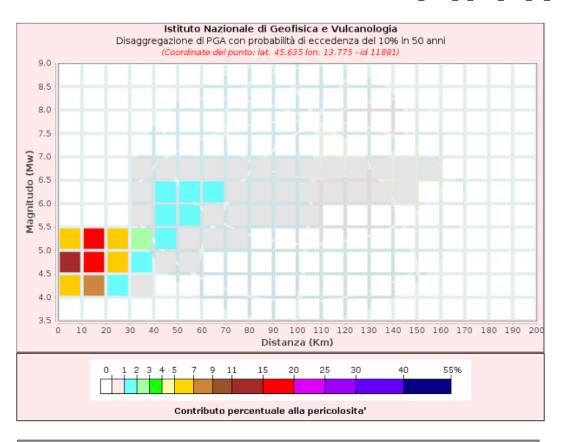
Relazione Sismica

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Studi recenti per la determinazione della Magnitudo sono quelli di D. Spallarossa e S. Basani, anno 2007, relativi alla "Disaggregazione della pericolosità sismica in termini M-R- ε".

La disaggregazione è un processo che permette di valutare il contributo di differenti scenari M- R-ɛ alla pericolosità sismica. Pertanto, utile alla definizione del terremoto di scenario (scenario che contribuisce maggiormente alla pericolosità sismica) per studi di microzonazione, analisi di liquefazione, studi di stabilità dei versanti.

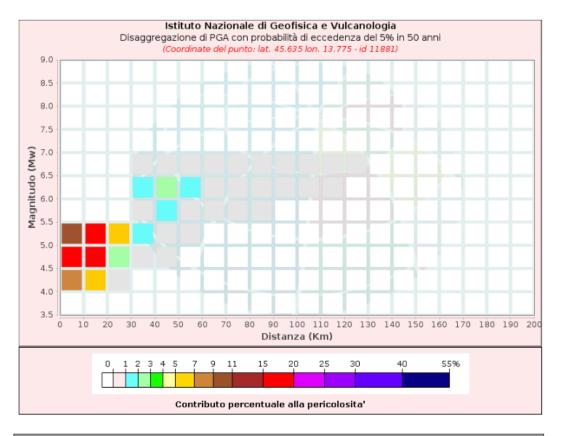
Le immagini seguenti riportano, per l'area in oggetto, la disaggregazione del valore di a(g) con i contributi alla pericolosità sismica determinati con probabilità di eccedenza rispettivamente per:


TR (Tempo di ritorno) = VR/ [-ln(1-PVR)]

TR = 50/[-ln(1-0.10)] = 474 anni

TR = 50/[-ln(1-0.05)] = 974 anni

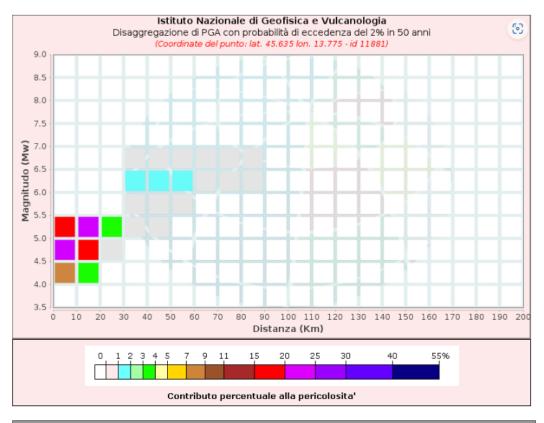
TR = 50/[-ln(1-0.02)] = 2475 anni






| Disaggregazione di PGA con probabilità di eccedenza del 10% in 50 anni<br>(Coordinate del punto: lat. 45.635 lon. 13.775 - id 11881) |             |             |         |                |             |             |             |             |             |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Distanza                                                                                                                             |             |             |         | Magnitudo (Mw) |             |             |             |             |             |             |             |
| (Km)                                                                                                                                 | 3.5-<br>4.0 | 4.0-<br>4.5 | 4.5-5.0 | 5.0-5.5        | 5.5-<br>6.0 | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |
| 0-10                                                                                                                                 | 0.0000      | 5.8700      | 11.5000 | 6.8300         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 10-20                                                                                                                                | 0.0000      | 7.3900      | 18.6000 | 15.6000        | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 20-30                                                                                                                                | 0.0000      | 1.2300      | 5.3100  | 6.9900         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 30-40                                                                                                                                | 0.0000      | 0.0321      | 1.1400  | 2.8800         | 0.9980      | 0.9620      | 0.1690      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 40-50                                                                                                                                | 0.0000      | 0.0000      | 0.2680  | 1.3500         | 1.7700      | 1.9900      | 0.3800      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 50-60                                                                                                                                | 0.0000      | 0.0000      | 0.0126  | 0.5200         | 1.2400      | 1.6600      | 0.3460      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 60-70                                                                                                                                | 0.0000      | 0.0000      | 0.0000  | 0.1120         | 0.6190      | 1.0200      | 0.2330      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 70-80                                                                                                                                | 0.0000      | 0.0000      | 0.0000  | 0.0082         | 0.3010      | 0.6820      | 0.1690      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 80-90                                                                                                                                | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.1450      | 0.5600      | 0.1530      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 90-100                                                                                                                               | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0440      | 0.3810      | 0.1170      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 100-110                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0037      | 0.1910      | 0.0702      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 110-120                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0832      | 0.0407      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 120-130                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0253      | 0.0184      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 130-140                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0071      | 0.0091      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 140-150                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0010      | 0.0034      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 150-160                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0002      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 160-170                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 170-180                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 180-190                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 190-200                                                                                                                              | 0.0000      | 0.0000      | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |

| Valori Medi                |      |      |  |  |  |  |  |
|----------------------------|------|------|--|--|--|--|--|
| Magnitudo Distanza Epsilon |      |      |  |  |  |  |  |
| 5.07                       | 21.7 | 1.34 |  |  |  |  |  |






|          | Disaggregazione di PGA con probabilità di eccedenza del 5% in 50 anni<br>(Coordinate del punto: lat. 45.635 lon. 13.775 - id 11881) |             |         |         |                |             |             |             |             |             |             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Distanza |                                                                                                                                     |             |         |         | Magnitudo (Mw) |             |             |             |             |             |             |
| (Km)     | 3.5-<br>4.0                                                                                                                         | 4.0-<br>4.5 | 4.5-5.0 | 5.0-5.5 | 5.5-<br>6.0    | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |
| 0-10     | 0.0000                                                                                                                              | 7.0000      | 15.3000 | 10.6000 | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 10-20    | 0.0000                                                                                                                              | 6.2900      | 18.7000 | 18.8000 | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 20-30    | 0.0000                                                                                                                              | 0.2410      | 2.9200  | 6.0800  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 30-40    | 0.0000                                                                                                                              | 0.0000      | 0.1410  | 1.6900  | 0.9560         | 1.1300      | 0.2210      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 40-50    | 0.0000                                                                                                                              | 0.0000      | 0.0044  | 0.5330  | 1.4600         | 2.0800      | 0.4470      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 50-60    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0663  | 0.7870         | 1.5200      | 0.3630      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 60-70    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.2370         | 0.8160      | 0.2190      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 70-80    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0432         | 0.4490      | 0.1410      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 80-90    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0013         | 0.2700      | 0.1120      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 90-100   | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.1120      | 0.0723      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 100-110  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0254      | 0.0327      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 110-120  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0019      | 0.0104      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 120-130  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0004      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 130-140  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 140-150  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 150-160  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 160-170  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 170-180  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 180-190  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |
| 190-200  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000         | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |

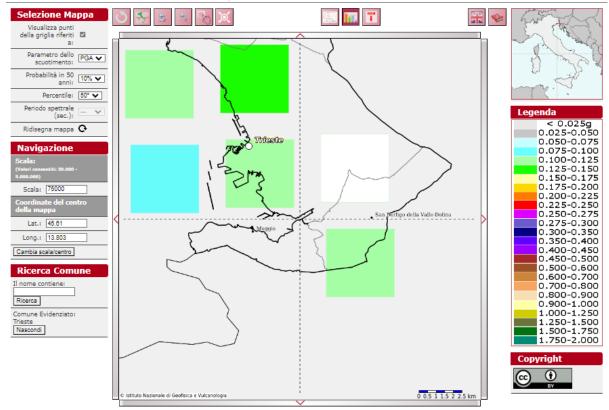
| Valori Medi |         |      |  |  |  |  |  |
|-------------|---------|------|--|--|--|--|--|
| Magnitudo   | Epsilon |      |  |  |  |  |  |
| 5.05        | 17.7    | 1.51 |  |  |  |  |  |



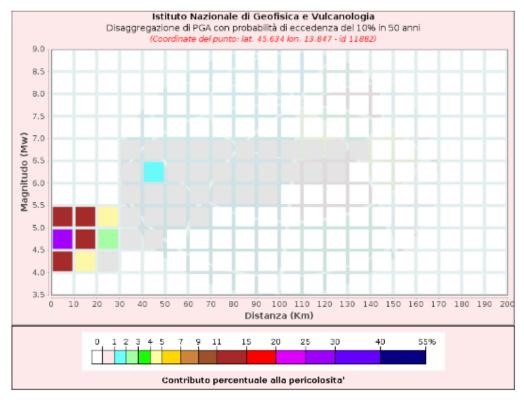


|          | Disaggregazione di PGA con probabilità di eccedenza del 2% in 50 anni<br>(Coordinate del punto: lat. 45.635 lon. 13.775 - id 11881) |             |         |         |             |             |             |             |             |             |             |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| Distanza | Magnitudo (Mw)                                                                                                                      |             |         |         |             |             |             |             |             |             |             |  |  |
| (Km)     | 3.5-<br>4.0                                                                                                                         | 4.0-<br>4.5 | 4.5-5.0 | 5.0-5.5 | 5.5-<br>6.0 | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |  |  |
| 0-10     | 0.0000                                                                                                                              | 7.9900      | 20.8000 | 17.9000 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 10-20    | 0.0000                                                                                                                              | 3.6100      | 16.0000 | 22.1000 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 20-30    | 0.0000                                                                                                                              | 0.0000      | 0.3410  | 3.5600  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 30-40    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.2000  | 0.7330      | 1.2500      | 0.2870      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 40-50    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0078  | 0.6760      | 1.9200      | 0.4980      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 50-60    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0984      | 1.0500      | 0.3360      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 60-70    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.3270      | 0.1610      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 70-80    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0638      | 0.0709      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 80-90    | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0028      | 0.0199      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 90-100   | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 100-110  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 110-120  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 120-130  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 130-140  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 140-150  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 150-160  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 160-170  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 170-180  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 180-190  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 190-200  | 0.0000                                                                                                                              | 0.0000      | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |

|           | Valori Medi |         |  |  |  |  |  |  |  |  |  |  |
|-----------|-------------|---------|--|--|--|--|--|--|--|--|--|--|
| Magnitudo | Distanza    | Epsilon |  |  |  |  |  |  |  |  |  |  |
| 5.05      | 13.6        | 1.74    |  |  |  |  |  |  |  |  |  |  |




1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx


#### Pericolosità sismica quadrante Est



### Modello di pericolosità sismica MPS04-S1

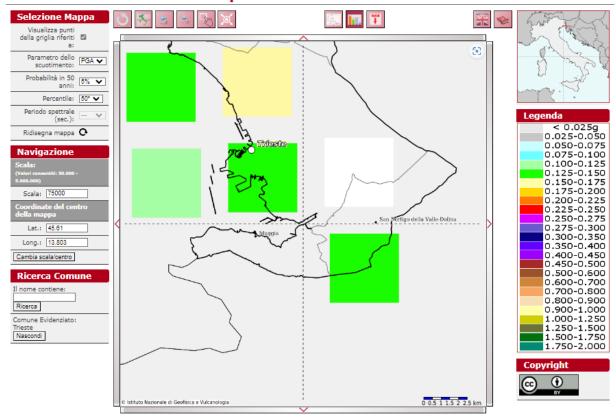




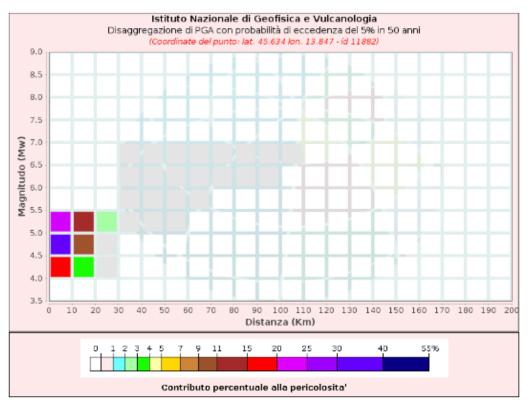


|                  |                |         |         | PGA con p<br>del punto: |             |             |             |             | anni        |             |             |  |  |
|------------------|----------------|---------|---------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| Di-I             | Magnitudo (Mw) |         |         |                         |             |             |             |             |             |             |             |  |  |
| Distanza<br>(Km) | 3.5-<br>4.0    | 4.0-4.5 | 4.5-5.0 | 5.0-5.5                 | 5.5-<br>6.0 | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |  |  |
| 0-10             | 0.0000         | 13.7000 | 25.8000 | 14.9000                 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 10-20            | 0.0000         | 4.9500  | 13.6000 | 12.6000                 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 20-30            | 0.0000         | 0.3560  | 2.4600  | 4.0300                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 30-40            | 0.0000         | 0.0000  | 0.1430  | 0.9020                  | 0.2300      | 0.2560      | 0.0487      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 40-50            | 0.0000         | 0.0000  | 0.0221  | 0.4130                  | 0.8070      | 1.0400      | 0.2130      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 50-60            | 0.0000         | 0.0000  | 0.0000  | 0.1120                  | 0.5430      | 0.8740      | 0.1970      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 60-70            | 0.0000         | 0.0000  | 0.0000  | 0.0061                  | 0.2180      | 0.5000      | 0.1240      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 70-80            | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0654      | 0.2860      | 0.0796      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 80-90            | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0137      | 0.1970      | 0.0646      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 90-100           | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0003      | 0.1130      | 0.0479      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 100-110          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0404      | 0.0260      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 110-120          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0118      | 0.0137      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 120-130          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0013      | 0.0045      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 130-140          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0005      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 140-150          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 150-160          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 160-170          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 170-180          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 180-190          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |
| 190-200          | 0.0000         | 0.0000  | 0.0000  | 0.0000                  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |

|           | Valori Medi |         |  |  |  |  |  |  |  |  |  |  |
|-----------|-------------|---------|--|--|--|--|--|--|--|--|--|--|
| Magnitudo | Distanza    | Epsilon |  |  |  |  |  |  |  |  |  |  |
| 4.93      | 13.2        | 1.01    |  |  |  |  |  |  |  |  |  |  |


Figura 3.14 – Mappa interattiva (Pvr =10% [ Tr = 474 anni)




1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



### Modello di pericolosità sismica MPS04-S1

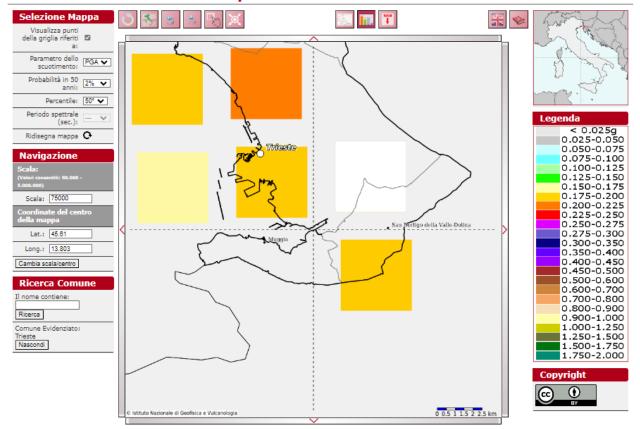




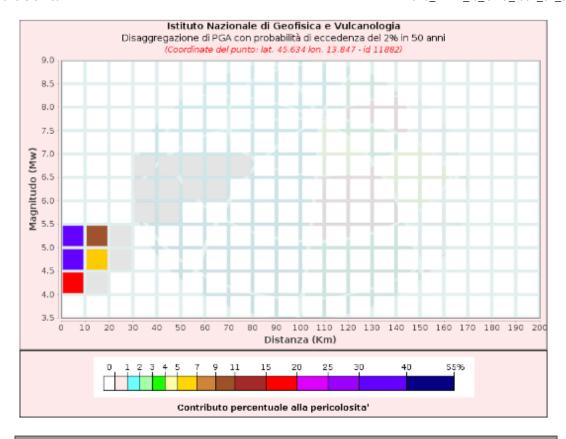


|                  | Disaggregazione di PGA con probabilità di eccedenza del 5% in 50 anni<br>(Coordinate del punto: lat. 45.634 lon. 13.847 - id 11882) |                |         |         |             |             |             |             |             |             |             |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| D: 1             |                                                                                                                                     | Magnitudo (Mw) |         |         |             |             |             |             |             |             |             |  |  |  |
| Distanza<br>(Km) | 3.5-<br>4.0                                                                                                                         | 4.0-4.5        | 4.5-5.0 | 5.0-5.5 | 5.5-<br>6.0 | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |  |  |  |
| 0-10             | 0.0000                                                                                                                              | 15.0000        | 31.3000 | 20.7000 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 10-20            | 0.0000                                                                                                                              | 3.0600         | 10.6000 | 12.2000 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 20-30            | 0.0000                                                                                                                              | 0.0031         | 0.7050  | 2.5800  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 30-40            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.2430  | 0.1620      | 0.2320      | 0.0498      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 40-50            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0583  | 0.4660      | 0.8440      | 0.1970      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 50-60            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0002  | 0.1850      | 0.6050      | 0.1610      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 60-70            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0237      | 0.2760      | 0.0884      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 70-80            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0001      | 0.1050      | 0.0481      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 80-90            | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0353      | 0.0303      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 90-100           | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0053      | 0.0138      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 100-110          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0012      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 110-120          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 120-130          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 130-140          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 140-150          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 150-160          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 160-170          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 170-180          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 180-190          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 190-200          | 0.0000                                                                                                                              | 0.0000         | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |

|           | Valori Medi |         |  |  |  |  |  |  |  |  |  |  |
|-----------|-------------|---------|--|--|--|--|--|--|--|--|--|--|
| Magnitudo | Distanza    | Epsilon |  |  |  |  |  |  |  |  |  |  |
| 4.91      | 10.1        | 1.15    |  |  |  |  |  |  |  |  |  |  |


Figura 3.15 – Mappa interattiva (Pvr =5% | Tr = 974 anni)




1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



### Modello di pericolosità sismica MPS04-S1







|                  | Disaggregazione di PGA con probabilità di eccedenza del 2% in 50 anni<br>(Coordinate del punto: lat. 45.634 lon. 13.847 - id 11882) |         |         |         |             |             |             |             |             |             |             |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| D'-l             | Magnitudo (Mw)                                                                                                                      |         |         |         |             |             |             |             |             |             |             |  |  |  |
| Distanza<br>(Km) | 3.5-<br>4.0                                                                                                                         | 4.0-4.5 | 4.5-5.0 | 5.0-5.5 | 5.5-<br>6.0 | 6.0-<br>6.5 | 6.5-<br>7.0 | 7.0-<br>7.5 | 7.5-<br>8.0 | 8.0-<br>8.5 | 8.5-<br>9.0 |  |  |  |
| 0-10             | 0.0000                                                                                                                              | 15.1000 | 36.9000 | 30.0000 | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 10-20            | 0.0000                                                                                                                              | 0.8170  | 5.3900  | 9.8900  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 20-30            | 0.0000                                                                                                                              | 0.0000  | 0.0008  | 0.5900  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 30-40            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0502      | 0.1650      | 0.0437      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 40-50            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0492      | 0.4630      | 0.1470      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 50-60            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.1720      | 0.0900      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 60-70            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0188      | 0.0285      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 70-80            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0018      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 80-90            | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 90-100           | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 100-110          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 110-120          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 120-130          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 130-140          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 140-150          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 150-160          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 160-170          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 170-180          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 180-190          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |
| 190-200          | 0.0000                                                                                                                              | 0.0000  | 0.0000  | 0.0000  | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      | 0.0000      |  |  |  |

Figura 3.16 – Mappa interattiva (Pvr = 2% [] Tr = 2475 anni)



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### 3.4 ZONAZIONE SISMOGENETICA

La zonazione sismogenetica è uno degli strumenti utilizzati per la valutazione della pericolosità sismica del territorio italiano. La sismogenetica ZS.4 è stata tracciata nel 1996, utilizzata per la redazione della carta di pericolosità sismica nazionale dal Gruppo Nazionale Difesa Terremoti (1996) e dal Servizio Sismico Nazionale (2001) e rappresenta uno schema geodinamico e sismotettonico ancora valido nelle sue linee generali, sebbene le nuove conoscenze in riferimento al quadro cinematico generale ed alla geometria delle sorgenti sismogenetiche e la necessità di una maggiore coerenza con il nuovo catalogo dei terremoti CPTI2, abbiano portato recentemente alla redazione di una nuova zonazione sismogenetica ZS.9 (2004).

Le zone rappresenterebbero quindi degli embrioni di macrostrutture le cui orientazioni seguono i principali andamenti alpini o appenninici, con importanti strutture trasversali di svincolo.

Di seguito si riportano gli estratti delle zonazioni sismogenetiche per rendere meglio evidente le modifiche apportate alle diverse zone che interessano l'area di studio.

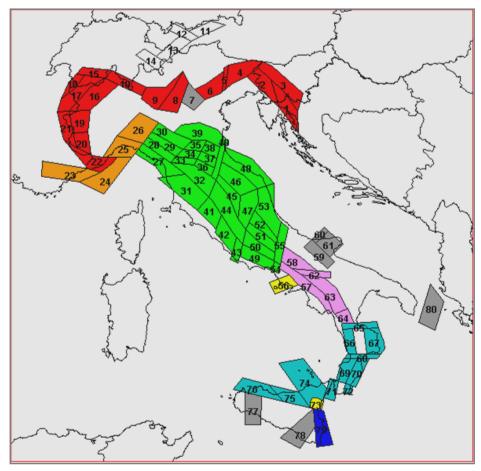



Figura 3.17 – Zonazione sismogenetica ZS.4 – 1996



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

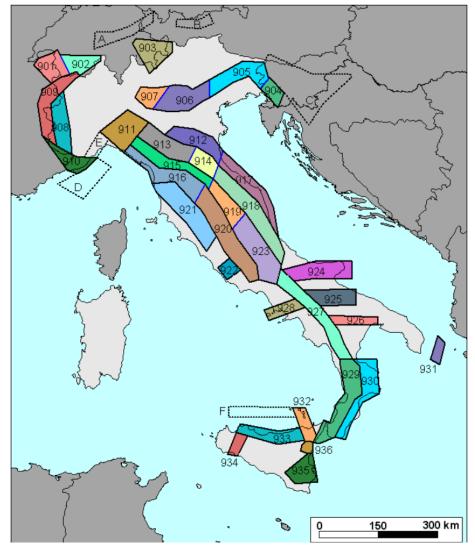



Figura 3.18 – Zonazione sismogenetica ZS.9 – 2004 (http://www.arcgis.com)

Dalla mappa delle Zone Sismogenetiche ZS9, l'area di intervento risulta ricadere in prossimità della zona n°904 denominata come "Altre zone" (cfr. Figura 5 17) che insieme alla n° 905 e 906, costituiscono l'area di massima convergenza tra la placca adriatica ed europea. Tali aree sono caratterizzate da strutture a pieghe sud-vergenti del Sudalpino orientale e faglie inverse associate (Zanferrari et al., 1982; Slejko et al., 1989; Valensise e Pantosti, 2001; Peruzza et al., 2002; Galadini et al., 2002).

La zona n°904 ricalca approssimativamente la zona 2 di ZS4, a meno della porzione inclusa nella 905.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

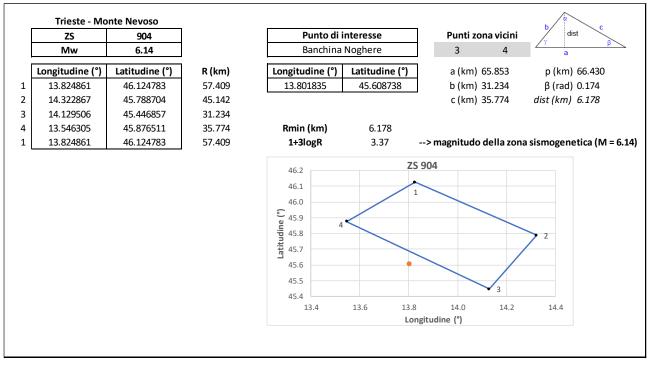



Figura 3.19 – Localizzazione del sito in esame con le zone sismogenetiche

Tab. 4 - Rappresentazione delle zone sismogenetiche e relative M<sub>wmax</sub>.

| Nome ZS                                                                         | Numero ZS                                                                                     | Mwmax |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|
| Colli Albani, Etna                                                              | 922, 936                                                                                      | 5.45  |
| Ischia-Vesuvio                                                                  | 928                                                                                           | 5.91  |
| Altre zone                                                                      | 901, 902, 903, 904, 907, 908, 909, 911, 912, 913, 914, 916, 917, 920, 921, 926, 932, 933, 934 | 6.14  |
| Medio-Marchigiana/Abruzzese,<br>Appennino Umbro, Nizza Sanremo                  | 918, 919, 910                                                                                 | 6.37  |
| Friuli-Veneto Orientale, Garda-Veronese,<br>Garfagnana-Mugello, Calabria Jonica | 905, 906, 915, 930                                                                            | 6.60  |
| Molise-Gargano, Ofanto,<br>Canale d'Otranto                                     | 924, 925, 931                                                                                 | 6.83  |
| Appennino Abruzzese,<br>Sannio – Irpinia-Basilicata                             | 923, 927                                                                                      | 7.06  |
| Calabria tirrenica, Iblei                                                       | 929, 935                                                                                      | 7.29  |

Il nuovo database INGV "DISS 3.3.0" del 2021 (http://diss.rm.ingv.it/diss/), contiene 127 fonti sismogenetiche individuali, 188 sorgenti sismogenetiche composite, 35 sorgenti sismogenetiche dibattute e tre subduzioni.

Tutte le fonti sono basate su dati geologici/geofisici e coprono tutto il territorio italiano e porzioni di tutti i paesi limitrofi e dei mari.



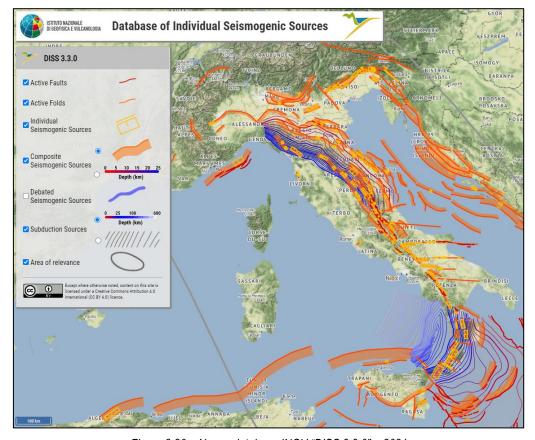



Figura 3.20 – Nuovo database INGV "DISS 3.3.0" – 2021

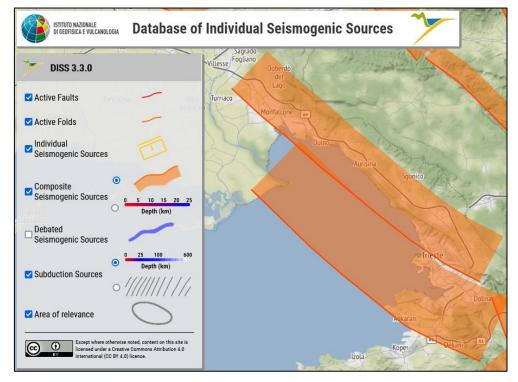



Figura 3.21 – Ubicazione del territorio di Trieste sul nuovo database INGV "DISS 3.3.0" – 2021



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Di seguito vengono riportate le informazioni parametriche delle rispettive sorgenti sismogenetiche composite:

#### ITCS101 – Golfo di Trieste meridionale:

#### PARAMETRIC INFORMATION

| Parameter                |                  | Quality | Evidence                                                            |  |  |
|--------------------------|------------------|---------|---------------------------------------------------------------------|--|--|
| Min depth [km]           | 1.5              | EJ      | Inferred from regional geologic considerations and earthquake data. |  |  |
| Max depth [km]           | 8.0              | EJ      | Inferred from geological observations and earthquake data.          |  |  |
| Strike [deg] min max     | 290330           | LD      | Based on geologic and structural data.                              |  |  |
| Dip [deg] min max        | 3045             | LD      | Based on interpretation of seismic profile (Busetti et al., 2010).  |  |  |
| Rake [deg] min max       | 100120           | EJ      | Inferred from structural and regional earthquake data.              |  |  |
| Slip Rate [mm/y] min max | 0.0200<br>0.2300 | OD      | Calculated from dsiplaced geological markers.                       |  |  |
| Max Magnitude [Mw]       | 6.5              | ER      | Estimated from Leonard's (2014) scaling relations.                  |  |  |

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement

Figura 3.22 – Informazioni parametriche per la componente sismogenetica ITCS101

#### ITCS100 – Golfo di Trieste settentrionale:

#### PARAMETRIC INFORMATION

| Parameter                |                  | Quality | Evidence                                                            |
|--------------------------|------------------|---------|---------------------------------------------------------------------|
| Min depth [km]           | 1.0              | EJ      | Inferred from regional geologic considerations.                     |
| Max depth [km]           | 10.0             | EJ      | Inferred from geological observations and regional earthquake data. |
| Strike [deg] min max     | 320350           | LD      | Based on geologic and structural data.                              |
| Dip [deg] min max        | 5060             | LD      | Based on seismic profile, geologic and structural data.             |
| Rake [deg] min max       | 130160           | EJ      | Inferred from regional structural data.                             |
| Slip Rate [mm/y] min max | 0.0300<br>0.2700 | OD      | Calculated from displaced geological markers.                       |
| Max Magnitude [Mw]       | 6.9              | ER      | Estimated from Leonard's (2014) scaling relations.                  |

LD=Literature Data; OD=Original Data; ER=Empirical Relationship; AR=Analytical Relationship; EJ=Expert Judgement

Figura 3.23 – Informazioni parametriche per la componente sismogenetica ITCS100

Progetto di fattibilità tecnica ed economica



Relazione Sismica

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### 3.5 SISMICITÀ STORICA DELL'AREA

Per l'analisi della sismicità che in passato ha interessato l'area in oggetto si è fatto riferimento ai seguenti cataloghi:

- CPTI15 e DBMI15, Catalogo Parametrico dei Terremoti Italiani;
- NT4.1, catalogo parametrico di terremoti di area italiana al di sopra della soglia del danno (aggiornamento marzo 1998).

#### 3.5.1 Catalogo CPTI15 e DBMI15

La nuova versione del Catalogo Parametrico dei Terremoti Italiani CPTI15 (Rovida A., Locati M., Camassi R., Lolli, B., Gasperini P., Antonucci A., 2021. Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 3.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV)).

Istituto Nazionale di Geofisica e Vulcanologia (http://emidius.mi.ingv.it/CPTI15-DBMI15/) rappresenta una significativa evoluzione rispetto alle versioni precedenti, che sono quindi da considerare del tutto superate. Anche se i criteri generali di compilazione e la struttura sono gli stessi della precedente versione CPTI11, il contenuto del catalogo è stato ampiamente rivisto per quanto concerne:

- la copertura temporale, estesa dal 2006 a tutto il 2019.
- il database macrosismico di riferimento (DBMI15; Locati et al., 2021), significativamente aggiornato.
- i dati strumentali considerati, nuovi e/o aggiornati.
- le soglie di ingresso dei terremoti, abbassate a intensità massima 5 o magnitudo 4.0 (invece di 5-6 e 4.5 rispettivamente).
- la determinazione dei parametri macrosismici, basata su una nuova calibrazione dell'algoritmo Boxer.
- le magnitudo strumentali, che comprendono un nuovo set di dati e nuove relazioni di conversione.

Il catalogo copre all'incirca la stessa area di CPTI11, vale a dire l'intero territorio italiano con porzioni delle aree e dei mari confinanti, e contiene 4860 terremoti nella finestra temporale 1000-2019. Il catalogo, quindi, considera e armonizza il più possibile dati di base di diverso tipo e provenienza. La magnitudo utilizzata è la magnitudo momento (Mw) ed in tutti i casi è riportata la relativa incertezza. Tutti i dati ed i metodi utilizzati sono accuratamente esplicitati nel catalogo per garantire la massima trasparenza possibile nelle procedure di compilazione. Al pari di CPTI11, il catalogo non è stato declusterato e contiene quindi tutti foreshocks e le repliche disponibili e conosciute all'interno delle soglie di magnitudo ed intensità considerate.

Di seguito si riportano i risultati della consultazione.

1948 PFTE I0 GEO r004 02 00.docx

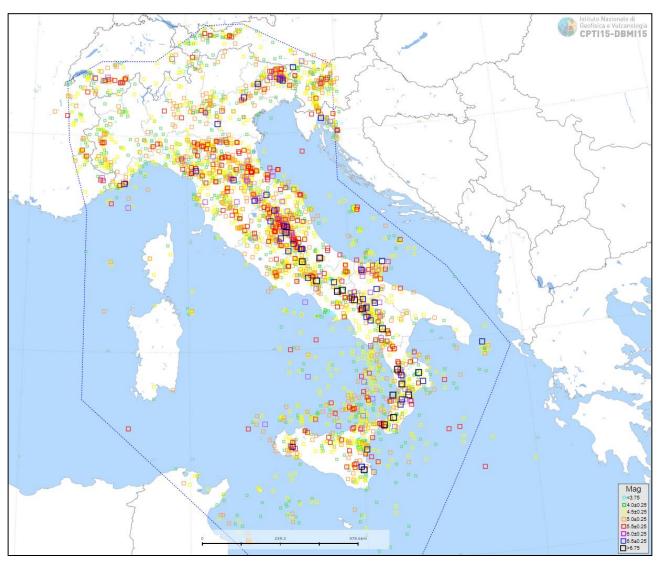



Figura 3.24 – Mappa degli epicentri dei terremoti del territorio italiano in CPTI15 (Mw – magnitudo momento)

L'ultima versione del Database Macrosismico Italiano chiamata DBMI15 è stata rilasciata a gennaio 2021, aggiorna e sostituisce la precedente DBMI11 (Locati et al., 2011).

Il DBMI fornisce un set di dati di intensità macrosismica relativo ai terremoti italiani nella finestra temporale 1000-2019. I dati provengono da studi di autori ed enti diversi, sia italiani che di paesi confinanti (Francia, Svizzera, Austria, Slovenia e Croazia). I dati di intensità macrosismica (MDP, Macroseismic Data Point) sono raccolti e organizzati da DBMI per diverse finalità. La principale è fornire una base di dati per la determinazione dei parametri epicentrali dei terremoti (localizzazione e stima di magnitudo) per la compilazione del Catalogo Parametrico dei Terremoti Italiani (CPTI).

L'insieme di questi dati consente inoltre di elaborare le "storie sismiche" di migliaia di località italiane, vale a dire l'elenco degli effetti di avvertimento o di danno, espressi in termini di gradi di intensità, osservati nel corso del tempo a causa di terremoti.

Il catalogo DBMI15 contiene 123956 dati di intensità relativi a 3228 terremoti.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Grazie al sistema di consultazione on-line messo a disposizione dall'interfaccia web è stato possibile estrarre e localizzare gli epicentri degli eventi registrati nell'area di studio.

Di seguito si riportano i risultati della ricerca.

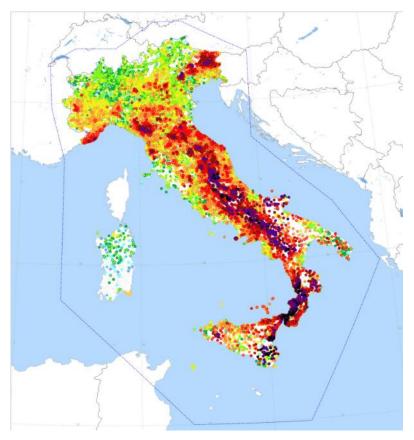



Figura 3.25 – Mappa degli epicentri dei terremoti del territorio italiano in DBMI15

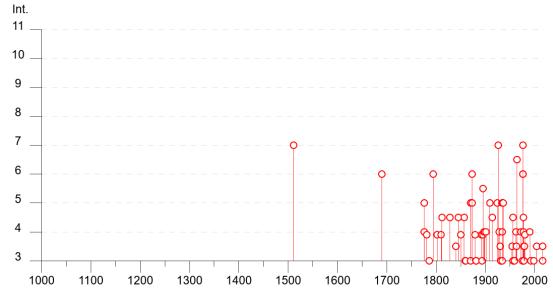



Figura 3.26 – Distribuzione temporale degli eventi sismici



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

## Viene riportato di seguito un quadro sinottico degli eventi sismici registrati:

|      | Anno I       | Ме | Cii |    |    |      |                             |      |      |      |
|------|--------------|----|-----|----|----|------|-----------------------------|------|------|------|
| 7    |              |    | GI  | Но | Mi | Se   | Area epicentrale            | NMDP | Io   | Mw   |
|      | 4 151        | 1  | 03  | 26 | 15 | 30   | Friuli-Slovenia             | 120  | 9    | 6.32 |
| 6    | <b>4</b> 169 | 0  | 12  | 04 | 14 |      | Carinthia, Villach          | 60   | 8-9  | 6.16 |
| 5    | <b>4</b> 177 | 6  | 04  | 24 | 16 | 36   | Costa croata settentrionale | 3    | 7    | 5.10 |
| 4    | <b>4</b> 177 | 6  | 07  | 10 |    |      | Prealpi Friulane            | 19   | 8-9  | 5.82 |
| F    | <b>4</b> 178 | 1  | 04  | 04 | 21 | 20   | Faentino                    | 96   | 9-10 | 6.12 |
| 3    | <b>4</b> 178 | 6  | 12  | 25 | 01 |      | Riminese                    | 90   | 8    | 5.66 |
| NF E | <b>4</b> 178 | 8  | 10  | 20 | 21 | 10   | Carnia                      | 9    | 7-8  | 5.19 |
| 6    | <b>4</b> 179 | 4  | 06  | 07 | 00 | 45   | Prealpi Friulane            | 19   | 8-9  | 5.96 |
| F    | <b>?</b> 180 | 2  | 01  | 04 |    |      | Slovenia                    | 8    |      |      |
| F E  | <b>?</b> 181 | 0  | 12  | 25 | 00 | 45   | Pianura emiliana            | 33   | 6    | 5.06 |
| 4-5  | <b>?</b> 181 | 2  | 10  | 25 | 07 |      | Pordenonese                 | 34   | 7-8  | 5.62 |
| 4-5  | <b>?</b> 182 | 8  | 04  | 11 | 22 | 25   | Appennino umbro-marchigiano | 22   | 5-6  | 4.93 |
| 3-4  | <b>₽</b> 184 | 0  | 08  | 27 | 12 | 05   | Tuhinj Valley               | 49   | 7    | 5.28 |
| 4-5  | 4 184        | 5  | 12  | 21 | 20 | 40   | Ljubljana                   | 5    | 5    | 4.16 |
| F    | <b>9</b> 185 | 0  | 07  | 10 | 02 | 30   | Slovenia nord-occidentale   | 9    | 5    | 4.64 |
| 4-5  | <b>9</b> 185 | 7  | 03  | 07 |    |      | Stiria                      | 13   | 6-7  | 5.21 |
| 3    | <b>9</b> 185 | 9  | 01  | 20 | 07 | 55   | Prealpi Trevigiane          | 36   | 6    | 4.80 |
| 3    | <b>9</b> 186 | 0  | 07  | 19 |    |      | Prealpi Trevigiane          | 10   | 6-7  | 4.92 |
| 3    | <b>4</b> 187 | 0  | 02  | 28 | 11 | 20   | Rijeka                      | 8    | 5    | 4.56 |
| 5    | <b>4</b> 187 | 0  | 03  | 01 | 20 |      | Costa croata settentrionale | 29   | 8    | 5.62 |
| 5    | <b>4</b> 187 | 3  | 03  | 12 | 20 | 04   | Appennino marchigiano       | 196  | 8    | 5.85 |
| 6    | <b>4</b> 187 | 3  | 06  | 29 | 03 | 58   | Alpago Cansiglio            | 197  | 9-10 | 6.29 |
| 2-3  | <b>4</b> 187 | 5  | 03  | 17 | 23 | 51   | Costa romagnola             | 144  | 8    | 5.74 |
| F    | <b>4</b> 187 | 9  | 06  | 22 | 04 | 15   | Friuli                      | 16   | 5-6  | 4.74 |
| 3    | <b>4</b> 188 | 1  | 01  | 24 | 16 | 14   | Bolognese                   | 38   | 7    | 5.22 |
| 3    | <b>₽</b> 188 | 1  | 02  | 02 |    |      | Russi                       | 13   | 5-6  | 4.69 |
| 2    | <b>?</b> 188 | 5  | 12  | 29 |    |      | Alpago Cansiglio            | 47   | 6    | 4.96 |
| 2-3  | <b>9</b> 189 | 1  | 06  | 07 | 01 | 06 1 | Valle d'Illasi              | 403  | 8-9  | 5.87 |
| F    | <b>9</b> 189 | 2  | 06  | 23 | 23 | 20   | Dolomiti Friulane           | 71   | 5-6  | 4.58 |
| 3    | <b>9</b> 189 | 3  | 10  | 27 | 16 | 31   | Bellunese                   | 54   | 5    | 4.42 |
| 5-6  | <b>9</b> 189 | 5  | 04  | 14 | 20 | 17 3 | 3 Ljubljana                 | 810  | 8-9  | 5.98 |
| F [  | <b>9</b> 189 | 5  | 06  | 10 | 01 | 47   | Prealpi Trevigiane          | 73   | 6    | 4.85 |



| 2-3 | 1895 08 09 17 38 2 Adriatico centrale           | 103 | 6 5.11    |
|-----|-------------------------------------------------|-----|-----------|
| 4   | § 1897 07 15 05 53 Ljubljana                    | 325 | 6-7 4.99  |
| 4   | 1898 02 20 04 57 2 Valli del Natisone           | 155 | 7 5.12    |
| NF  |                                                 | 43  | 6 4.63    |
| 4   | 1901 10 30 14 49 5 Garda occidentale            | 289 | 7-8 5.44  |
| 2-3 | ₱ 1908 07 10 02 13 3 Carnia                     | 119 | 7-8 5.31  |
| 5   | 1909 01 13 00 45 Emilia Romagna orientale       | 867 | 6-7 5.36  |
| 4-5 | 🗗 1914 10 27 09 22 Lucchesia                    | 660 | 7 5.63    |
| 5   |                                                 | 78  | 7 5.42    |
| 7   | 🗗 1926 01 01 18 04 0 Carniola interna           | 63  | 7-8 5.72  |
| 4   | 1928 03 27 08 32 Carnia                         | 359 | 9 6.02    |
| 3-4 | ₱ 1930 10 30 07 13 Senigallia                   | 268 | 8 5.83    |
| 3   | ₱ 1931 12 25 11 41 Friuli                       | 45  | 7 5.25    |
| 3   | □ 1934 05 04 13 56 Carnia                       | 80  | 6 4.69    |
| 4   | □ 1934 06 08 03 16 Dolomiti Friulane            | 21  | 5-6 4.93  |
| 5   | □ 1934 11 30 02 58 2 Adriatico settentrionale   | 51  | 5 5.30    |
| 2-3 | □ 1935 06 05 11 48 Faentino                     | 27  | 6 5.23    |
| 5   |                                                 | 269 | 9 6.06    |
| 2-3 | 1939 07 10 16 27 5 Pordenonese                  | 8   | 5 4.75    |
| 2   | 1943 07 24 01 44 Feltrino                       | 29  | 7 5.07    |
| 3-4 | # 1954 10 11 16 45 2 Friuli                     | 36  | 6 4.76    |
|     | _                                               |     |           |
| 4-5 | # 1956 01 31 02 25 3 Carniola interna           | 7   | 5.03      |
| 3   | ₽ 1956 11 05 19 45 Carnia                       | 27  | 6 5.04    |
| 3   |                                                 | 122 | 7-8 5.21  |
| 4   |                                                 | 49  | 5 4.35    |
| 3-4 | ₽ 1963 08 09 06 05 Romagna                      | 16  | 5 5.23    |
| 6-7 | ₽ 1964 03 18 16 43 2 Carso                      | 2   | 4.36      |
| NF  | 1967 12 09 03 09 5 Adriatico centrale           | 22  | 4.36      |
| 2   | 1968 06 22 12 21 3 Val Lagarina                 | 27  | 6-7 4.74  |
| 4   | 1972 10 25 21 56 1 Appennino settentrionale     | 198 | 5 4.87    |
| 3   | 1975 03 24 02 33 3 Carnia                       | 24  | 5-6 4.51  |
| 6   | ₱ 1976 05 06 20 00 1 Friuli                     | 770 | 9-10 6.45 |
| 6   | ₱ 1976 09 11 16 35 0 Friuli                     | 40  | 7-8 5.60  |
| 7   | ₽ 1976 09 15 09 21 1 Friuli                     | 54  | 8-9 5.95  |
| 4   | ₱ 1977 04 03 03 18 1 Friuli                     | 25  | 5 4.51    |
| 4-5 | ₱ 1977 09 16 23 48 0 Friuli                     | 94  | 6-7 5.26  |
| 3   | ⊕ 1978 12 05 15 39 0 Romagna                    | 34  | 4-5 4.61  |
| 3-4 | 1978 12 12 15 14 4 Dolomiti Friulane            | 56  | 5-6 4.35  |
| 3-4 | ₱ 1979 04 18 15 19 1 Friuli                     | 72  | 6-7 4.66  |
| F   | ₽ 1980 12 23 12 01 0 Piacentino                 | 69  | 6-7 4.57  |
| 2-3 | № 1983 11 09 16 29 5 Parmense                   | 850 | 6-7 5.04  |
| 4   | # 1990 11 11 22 16 2 Slovenia occidentale       | 101 | 5-6 4.59  |
| 3   | 1992 02 21 20 50 3 Costa croata settentrionale  | 29  | 5-6 4.31  |
| 2-3 | # 1992 02 21 20 30 3 Costa Croata Sectentionale | 46  | 4.25      |
| 3   | # 1998 08 31 02 32 0 Slovenia centrale          | 77  | 4.31      |
|     |                                                 |     |           |
| 3-4 | 2004 07 12 13 04 0 Slovenia nord-occidentale    | 353 | 5.12      |
| 3   | 2016 10 26 19 18 0 Valnerina                    | 77  | 6.07      |
| 3-4 | 2016 10 30 06 40 1 Valnerina                    | 379 | 6.61      |
|     |                                                 |     |           |

Figura 3.27 – Quadro sinottico degli eventi sismici nel tempo

1948 PFTE I0 GEO r004 02 00.docx

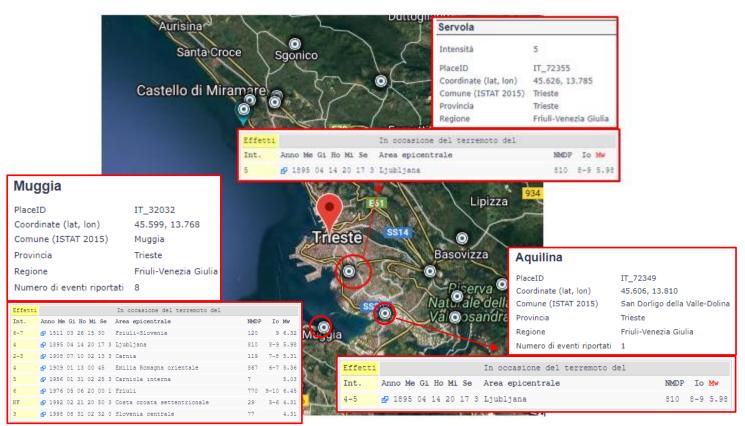
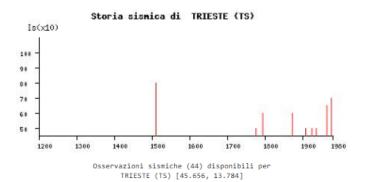



Figura 3.28 – Ubicazione terremoti nei dintorni di Trieste; evidenziato l'evento sismico di Servola del 1895.

## 3.5.2 Catalogo NTC4.1.1

In ambito GNDT, ed in particolare nell'ambito delle iniziative per la valutazione della pericolosità sismica del territorio italiano, a partire dal 1990 si è posta la necessità di produrre cataloghi parametrici compilati secondo criteri orientati alla valutazione della pericolosità sismica (Stucchi, 1991) e che considerassero i risultati delle ricerche effettuate dopo la pubblicazione del catalogo PFG (Postpischl, 1985). Il primo di questi cataloghi è stato prodotto nel giugno 1993 (Stucchi et al., 1993; GNDT WG, 1993; Stucchi e Zerga, 1994); successive versioni sono state prodotte e utilizzate nelle varie fasi del progetto.

La versione NT4.1 rappresenta una rifinitura del catalogo usato per la compilazione delle mappe di pericolosità sismica consegnate dal GNDT al Dipartimento della Protezione Civile nel giugno 1996 (Slejko, 1996).


La versione NTC4.1.1 (luglio 1997) contiene alcune correzioni ad errori evidenziati nella fase successiva alla pubblicazione e alcune modifiche provenienti da controlli effettuati sui dati di base.

Di seguito si riportano le osservazioni sismiche consultate nel sito:

(http://emidius.mi.ingv.it/DOM/consult\_loc.html).



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



| Data             | Effetti  | in occasione del terremoto di |      |    |
|------------------|----------|-------------------------------|------|----|
| Ye Mo Da Ho Mi   | Is (MCS) | Area epicentrale              | Ix   | Ms |
| 1511 03 26 14 30 | 80       | GEMONA                        | 90   | 62 |
| 1976 09 15 09 21 | 70       | FRIULI                        | 85   | 59 |
| 1964 03 18 16 43 | 65       | CARSO                         | 65   | 45 |
| 1794 06 07       | 60       | TRAMONTI                      | 75   | 52 |
| 1873 06 29 03 55 | 60       | BELLUNESE                     | 100  | 64 |
| 1976 05 06 20    | 60       | FRIULI                        | 95   | 65 |
| 1776 04 24       | 50       | BAKAR                         | 65   | 47 |
| 1909 01 13 00 45 | 50       | BASSA PADANA                  | 65   | 54 |
| 1924 12 12 03 29 | 50       | CARNIA                        | 70   | 54 |
| 1936 10 18 03 10 | 50       | BOSCO CANSIGLIO               | 90   | 58 |
| 1812 10 25 07    | 45       | SEQUALS                       | 75   | 52 |
| 1845 12 21       | 45       | LJUBLJANA                     | 65   | 47 |
| 1914 10 27 09 22 | 45       | GARFAGNANA                    | 70   | 58 |
| 1956 01 31 02 25 | 45       | VILLA DEL NEVOSO              | 50   | 47 |
| 1776 07 10       | 40       | TRAMONTI                      | 85   | 59 |
| 1781 04 04       | 49       | FAENTINO                      | 90   | 62 |
| 1928 03 27 08 32 | 40       | CARNIA                        | 90   | 56 |
| 1934 06 08 03 16 | 49       | CLAUT                         | 60   | 47 |
| 1962 01 23 17 31 | 49       | ADRIATICO                     | 60   | 47 |
| 1972 10 25 21 56 | 40       | PASSO CISA                    | 50   | 47 |
| 1930 10 30 07 13 | 35       | SENIGALLIA                    | 85   | 60 |
| 1963 08 09 06 05 | 35       | FAENTINO                      | 60   | 52 |
| 1810 12 25 00 45 | F        | NOVELLARA                     | 70   | 50 |
| 1879 06 22 04 15 | F        | TARCENTO                      | 55   | 42 |
| 1895 06 10 01 47 | F        | VALDOBBIADENE                 | 65   | 47 |
| 1786 12 25       | 30       | RIMINI                        | 80   | 55 |
| 1859 01 20 07 55 | 30       | COLLALTO                      | 70   | 47 |
| 1881 01 24       | 30       | BOLOGNESE                     | 70   | 50 |
| 1881 02 12       | 30       | RUSSI                         | 65   | 47 |
| 1908 07 10 02 13 | 30       | CARNIA                        | 80   | 50 |
| 1931 12 25 11 41 | 30       | TARCENTO                      | 70   | 52 |
| 1934 05 04 13 56 | 30       | CARNIA                        | 65   | 43 |
| 1956 11 05 19 45 | 30       | PALUZZA                       | 60   | 48 |
| 1959 04 26 14 45 | 30       | CARNIA                        | 80   | 49 |
| 1875 03 17       | 25       | RIMINI                        | 80   | 52 |
| 1891 06 07       | 25       | VERONESE                      | 80   | 55 |
| 1935 06 05 11 48 | 25       | FAENTINO                      | 60   | 51 |
| 1943 07 24 01 44 | 20       | VALDOBBIADENE                 | 70   | 48 |
| 1967 12 09 03 09 | 10       | ADRIATICO MER.                | 50   | 44 |
| 1971 07 15 01 33 | 10       | PARMENSE                      | 80   | 54 |
| 1935 03 19 07 27 | RS       | FRANCIA                       | 40   | 50 |
| 1937 12 15 21 25 | RS       | CAPITANATA                    | 55   | 44 |
| 1943 03 25 15 40 | RS       | OFFIDA                        | 60   | 46 |
| 1980 01 25 00 27 | RS       | VAL VENOSTA                   | 55   | 34 |
| 2505 01 25 00 27 | N.J      | TOE VEROSIA                   | - 23 | 34 |

Per il comune di Trieste sono disponibili n° 44 osservazioni sismiche.

L'evento che ha prodotto gli effetti sismici maggiori è quello del 1511 per il quale si ricava un'intensità al sito Is (MCS) di 8.0.

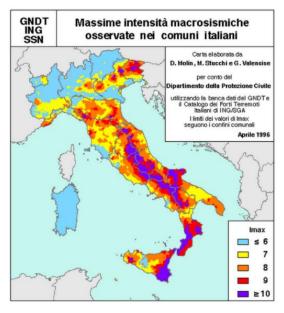


1948 PFTE I0 GEO r004 02 00.docx

#### 3.5.3 Banca dati GNDT 1996

A partire dal 1988 il GNDT (Gruppo Nazionale per la Difesa dai Terremoti) ha raccolto, verificato e ricompilato la grande maggioranza dei dati macrosismici disponibili per terremoti relativi al periodo 1000-1980 e successivo aggiornamento del 1996. Questi dati provengono da alcuni bacini principali, in parte pubblici, in parte riservati, e da studi isolati. Per diversi terremoti sono disponibili più studi, ossia più insiemi di dati compilati a partire da informazioni primarie (record storici) parzialmente coincidenti, ed interpretati con criteri spesso non omogenei.

Il GNDT ha dato corso a nuovi studi di terremoti, privilegiando gli eventi per i quali non fossero già disponibili studi qualificati; anche in questo caso i dati sono stati georeferenziati, in analogia a quanto discusso in precedenza.


Per entrambi i gruppi di studi è stata data priorità agli eventi "principali" di ciascuna sequenza, con esclusione quindi delle repliche individuate secondo il criterio adottato per la compilazione dei cataloghi NT (Stucchi e Zerga, 1993).

In totale, utilizzando i dati della banca GNDT, la mappa delle massime d'intensità osservate può essere prodotta a partire da 943 eventi di intensità epicentrale superiore o uquale alla soglia del danno (lo ≥ 5/6). Per questi eventi si dispone complessivamente di circa 33.000 osservazioni riferite a 9070 località, di cui 8518 in territorio italiano.

| Regione                  | totale<br>comuni | comuni<br>privi di<br>dati | %    | comuni<br>con | %    | comuni<br>con | %    |
|--------------------------|------------------|----------------------------|------|---------------|------|---------------|------|
|                          |                  |                            |      | lmax/oss      |      | lmax/pon      |      |
|                          |                  |                            |      |               |      |               |      |
| Piemonte                 | 1209             | 408                        |      | 553           | 45.7 | 248           | 20.5 |
| Valle d'Aosta            | 74               | 27                         | 36.5 | 19            | 25.7 | 28            | 37.8 |
| Lombardia                | 1546             | 1058                       | 68.4 | 215           | 13.9 | 273           | 17.6 |
| Trentino Alto-<br>Adige  | 339              | 124                        | 36.6 | 103           | 30.4 | 112           | 33.0 |
| Veneto                   | 582              | 173                        | 29.7 | 225           | 38.6 | 184           | 31.6 |
| Friuli Venezia<br>Giulia | 219              | 1                          | 0.5  | 169           | 77.2 | 49            | 22.4 |
| Liguria                  | 235              | 35                         | 14.9 | 151           | 64.2 | 49            | 20.8 |
| Emilia-Romagna           | 341              | 34                         | 10.0 | 209           | 61.3 | 98            | 28.7 |
| Toscana                  | 287              | 12                         | 4.2  | 192           | 66.9 | 83            | 28.9 |
| Umbria                   | 92               | 3                          | 3.3  | 58            | 63.0 | 31            | 33.7 |
| Marche                   | 246              | 18                         | 7.3  | 188           | 76.4 | 40            | 16.3 |
| Lazio                    | 377              | 26                         | 6.9  | 222           | 58.9 | 129           | 34.2 |
| Abruzzo                  | 305              | 11                         | 3.6  | 204           | 66.9 | 90            | 29.5 |
| Molise                   | 136              | 7                          | 5.1  | 88            | 64.7 | 41            | 30.1 |
| Campania                 | 551              | 77                         | 13.9 | 364           | 66.1 | 110           | 19.9 |
| Puglia                   | 257              | 49                         | 19.1 | 114           | 44.3 | 94            | 36.6 |
| Basilicata               | 131              | 2                          | 1.5  | 120           | 91.6 | 9             | 6.9  |
| Calabria                 | 409              | 2                          | 0.5  | 348           | 85.1 | 59            | 14.4 |
| Sicilia                  | 390              | 16                         | 4.1  | 290           | 74.3 | 84            | 21.5 |
| Sardegna                 | 375              | 358                        | 95.4 | 7             | 1.9  | 10            | 2.7  |
|                          |                  |                            |      |               |      |               |      |
| TOTALE                   | 8101             | 2441                       |      | 3839          |      | 1821          |      |

Figura 3.29 – Distribuzione dei dati per regione

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



# Friuli-Venezia Giulia

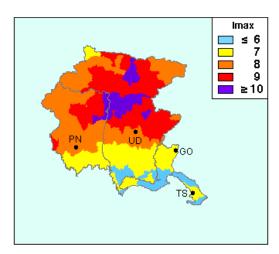



Figura 3.30 – Mappa delle massime intensità sismiche osservate nei comuni italiani

Dalla consultazione del sito, si ricava per la città di Trieste un'intensità macrosismica Imax pari a 7.

# Massime intensità macrosismiche osservate nella provincia di Trieste

| Comune                  | Re | Pr | Com | Lat      | Lon      | Imax |
|-------------------------|----|----|-----|----------|----------|------|
| DUINO-AURISINA          | 6  | 32 | 1   | 45.75046 | 13.66923 | <= 6 |
| MONRUPINO               | 6  | 32 | 2   | 45.71729 | 13.80666 | <= 6 |
| MUGGIA                  | 6  | 32 | 3   | 45.59943 | 13.76801 | <= 6 |
| SAN DORLIGO DELLA VALLE | 6  | 32 | 4   | 45.60404 | 13.85792 | <= 6 |
| SGONICO                 | 6  | 32 | 5   | 45.73496 | 13.74804 | <= 6 |
| TRIESTE                 | 6  | 32 | 6   | 45.65635 | 13.78421 | 7    |



1948 PFTE I0 GEO r004 02 00.docx

#### INDAGINE GEOGNOSTICA

A seguito di accurati rilievi di superficie ed in base al quadro informativo desunto dalla consultazione del Piano Regolatore Generale del Comune e dei database tecnico - scientifici presenti nell'archivio informatico della Regione Autonoma Friuli-Venezia Giulia il quadro geognostico conoscitivo è stato implementato con la realizzazione di:

- 6 BH: sondaggi condotti a carotaggio continuo con il prelievo di campioni indisturbati e l'esecuzione di prove penetrometriche dinamiche SPT;
- **4 HVSR:** prove geofisiche con tecnica di sismica passiva (Horizontal to Vertical Spectral Ratio);
- 2 MASW: prove geofisiche con tecnica di sismica attiva (Multichannel Analysis of Surface Waves);

indagini condotte ai sensi dei capitoli 6.2.1 "CARATTERIZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO" e 6.2.2 "INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA" delle NTC – D.M. 17/01/2018 e della circolare del Ministero delle infrastrutture e trasporti del 21 gennaio 2019 n. 7.

La relazione contiene, pertanto, l'identificazione delle formazioni presenti nel sito, della struttura del sottosuolo, definendone il modello geologico del sottosuolo, illustrando e caratterizzando gli aspetti stratigrafici, strutturali, idrogeologici, geomorfologici, nonché gli eventuali consequenti livelli delle pericolosità geologiche. In relazione alle risultanze delle indicate condotte ed ai fini della definizione dell'azione sismica di progetto è stato adottato l'approccio semplificato basato sulla classificazione del sottosuolo.



Figura 4.1 – Estratto non in scala dell'ortofotocarta indicante le indagini geognostiche svolte nell'areale di studio.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### **SONDAGGI A CAROTAGGIO CONTINUO** 4.1

Al fine di verificare in dettaglio la successione stratigrafica dei terreni, sono state indagate 6 verticali durante le quali sono stati prelevati campioni indisturbati, rimaneggiati e sono state realizzate delle prove penetrometriche dinamiche SPT, come di seguito riassunto nelle tabelle di dettaglio.

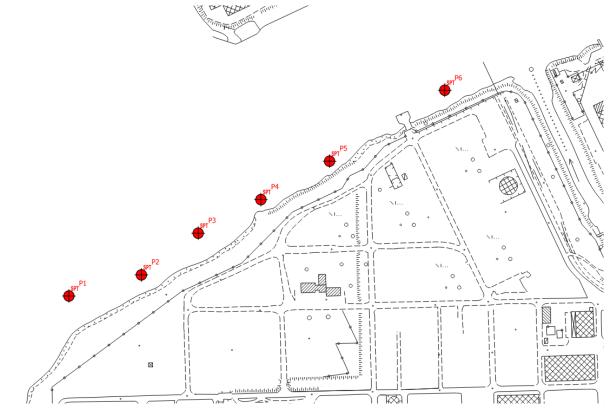



Figura 4.2 – Estratto planimetrico non in scala indicante i punti di indagine geognostica condotta a carotaggio continuo.

| Sondaggio | Campione | Tipologia    | Quota<br>(m da f.m.) | Quota<br>(m da l.m.m.) |
|-----------|----------|--------------|----------------------|------------------------|
|           | CI1      | Indisturbato | 3.40 ÷ 4.00          | 8.80 ÷ 9.40            |
|           | CI2      | Indisturbato | 17.30 ÷ 17.90        | 22.70 ÷ 23.30          |
|           | CI3      | Indisturbato | 25.00 ÷ 25.60        | 30.40 ÷ 31.00          |
| S1        | CR1      | Rimaneggiato | 43.80 ÷ 44.00        | 49.20 ÷ 49.40          |
|           | CR2      | Rimaneggiato | 44.30 ÷ 44.40        | 49.70 ÷ 49.80          |
|           | CR3      | Rimaneggiato | 45.20 ÷ 45.40        | 50.60 ÷ 50.80          |
|           | CR4      | Rimaneggiato | 46.00 ÷ 46.20        | 51.40 ÷ 51.60          |
| 60        | CI1      | Indisturbato | 3.00 ÷ 3.60          | 7.20 ÷ 7.80            |
| S2        | CI2      | Indisturbato | 6.00 ÷ 6.60          | 10.20 ÷ 10.80          |

Progetto di fattibilità tecnica ed economica



Relazione Sismica

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

|    | CR1 | Rimaneggiato | 44.50 ÷ 44.60 | 48.70 ÷ 48.80 |
|----|-----|--------------|---------------|---------------|
|    | CR2 | Rimaneggiato | 45.30 ÷ 45.45 | 49.50 ÷ 49.65 |
|    | CR3 |              | 46.90 ÷ 47.00 | 51.10 ÷ 51.20 |
|    | CI1 | Indisturbato | 3.30 ÷ 3.90   | 12.00 ÷ 12.60 |
|    | CI2 | Indisturbato | 4.50 ÷ 5.10   | 13.20 ÷ 13.80 |
| S3 | CI3 | Indisturbato | 6.00 ÷ 6.60   | 14.70 ÷ 15.30 |
| 53 | CI4 | Indisturbato | 15.50 ÷ 16.10 | 24.20 ÷ 24.80 |
|    | CI5 | Indisturbato | 20.60 ÷ 21.20 | 29.30 ÷ 29.90 |
|    | CI6 | Indisturbato | 24.80 ÷ 25.40 | 33.50 ÷34.10  |
|    | CI1 | Indisturbato | 2.50 ÷ 3.10   | 5.70 ÷ 6.30   |
| S4 | CI2 | Indisturbato | 7.00 ÷ 7.60   | 10.20 ÷ 10.80 |
| 54 | CR1 | Rimaneggiato | 42.00 ÷ 42.08 | 45.20 ÷ 45.28 |
|    | CR2 | Rimaneggiato | 43.30 ÷ 43.40 | 46.50 ÷ 46.60 |
|    | CI1 | Indisturbato | 4.50 ÷ 5.10   | 7.20 ÷ 7.80   |
|    | CI2 | Indisturbato | 6.60 ÷ 7.20   | 9.30 ÷ 9.90   |
| S5 | CR1 | Rimaneggiato | 41.40 ÷ 41.50 | 44.10 ÷ 44.20 |
|    | CR2 | Rimaneggiato | 46.00 ÷ 46.10 | 48.70 ÷ 48.80 |
|    | CR3 | Rimaneggiato | 46.75 ÷ 46.90 | 49.45 ÷ 49.60 |
|    | CI1 | Indisturbato | 2.70 ÷ 3.30   | 9.20 ÷ 9.80   |
| S6 | CI2 | Indisturbato | 4.40 ÷ 5.00   | 10.90 ÷ 11.50 |
| 20 | CI3 | Indisturbato | 7.00 ÷ 7.60   | 13.50 ÷ 14.10 |
|    | CR1 | Rimaneggiato | 42.10 ÷ 42.18 | 48.60 ÷ 48.68 |

Le prove sono state suddivise nei seguenti gruppi:

- A. Descrizione del campione e Prove Fisiche;
- B. Prove meccaniche di resistenza e compressibilità/permeabilità



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

| Sondaggio | SPT | Quota<br>(m da f.m.) | Quota<br>(m da l.m.m.) | N di colpi | Tipo di punta |
|-----------|-----|----------------------|------------------------|------------|---------------|
|           | 1   | 2.90 ÷ 3.35          | 8.30 ÷ 8.75            | 1/1/1      | aperta        |
|           | 2   | 7.50 ÷ 7.95          | 12.90 ÷ 13.35          | 20/27/43   | chiusa        |
|           | 3   | 12.30 ÷ 12.75        | 17.70 ÷ 18.15          | 3/10/27    | chiusa        |
|           | 4   | 15.20 ÷ 15.65        | 20.60 ÷ 21.05          | 15/16/17   | chiusa        |
| S1        | 5   | 17.90 ÷ 18.35        | 23.30 ÷ 23.75          | 17/27/23   | chiusa        |
|           | 6   | 18.80 ÷ 19.25        | 24.30 ÷ 24.75          | 10/26/25   | chiusa        |
|           | 7   | 25.60 ÷ 26.05        | 31.00 ÷ 31.45          | 3/7/9      | chiusa        |
|           | 8   | 28.10 ÷ 28.55        | 33.50 ÷ 33.95          | 7/8/10     | chiusa        |
|           | 9   | 36.00 ÷ 36.45        | 41.40 ÷ 41.85          | 14/17/17   | chiusa        |
| S2        | 1   | 13.50 ÷13.95         | 17.70 ÷ 18.15          | 22/39/47   | chiusa        |
| 52        | 2   | 15.00 ÷15.45         | 19.20 ÷ 19.65          | 20/26/28   | chiusa        |
|           | 1   | 1.50 ÷ 1.95          | 10.20 ÷ 10.65          | 0/0/0      | chiusa        |
|           | 2   | 3.90 ÷ 4.35          | 12.60 ÷ 13.05          | 0/0/0      | chiusa        |
|           | 3   | 5.10 ÷ 5.55          | 13.80 ÷ 14.25          | 0/0/0      | chiusa        |
|           | 4   | 6.60 ÷ 7.05          | 15.30 ÷ 15.75          | 17/28/23   | chiusa        |
|           | 5   | 8.00 ÷ 8.45          | 16.70 ÷ 17.15          | 15/14/19   | chiusa        |
|           | 6   | 9.50 ÷ 9.95          | 18.20 ÷ 18.65          | 12/29/R    | chiusa        |
|           | 7   | 12.00 ÷ 12.45        | 20.70 ÷ 21.15          | 12/14/17   | chiusa        |
| Co        | 8   | 15.00 ÷ 15.45        | 23.70 ÷ 24.15          | 4/7/10     | chiusa        |
| S3        | 9   | 21.20 ÷ 21.65        | 29.90 ÷ 30.35          | 6/6/8      | chiusa        |
|           | 10  | 22.50 ÷ 22.95        | 31.20 ÷ 31.65          | 20/10/4    | chiusa        |
|           | 11  | 25.40 ÷ 25.85        | 34.10 ÷ 34.55          | 19/21/11   | chiusa        |
|           | 12  | 26.50 ÷ 26.95        | 35.20 ÷ 35.65          | 7/12/14    | chiusa        |
|           | 13  | 28.50 ÷ 28.95        | 37.20 ÷ 37.65          | 12/13/18   | chiusa        |
|           | 14  | 30.00 ÷ 30.45        | 38.70 ÷ 39.15          | 10/12/14   | chiusa        |
|           | 15  | 31.50 ÷ 31.95        | 40.20 ÷ 40.65          | 14/23/25   | chiusa        |
|           | 16  | 34.50 ÷ 34.95        | 43.20 ÷ 43.65          | 30/11/7    | chiusa        |
| C/A       | 1   | 13.00 ÷ 13.45        | 16.20 ÷ 16.65          | 35/R       | chiusa        |
| S4        | 2   | 14.50 ÷ 14.95        | 17.70 ÷ 18.15          | 22/R       | chiusa        |
| Q.E       | 1   | 15.00 ÷ 15.45        | 17.70 ÷ 18.15          | 21/28/30   | chiusa        |
| S5        | 2   | 16.50 ÷ 16.95        | 19.20 ÷ 19.65          | 36/R       | chiusa        |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

|    | 1  | 3.30 ÷ 3.75   | 9.80 ÷ 10.25  | 0/0/0    | chiusa |
|----|----|---------------|---------------|----------|--------|
|    | 2  | 5.00 ÷ 5.45   | 11.50 ÷ 11.95 | 0/0/0    | chiusa |
|    | 3  | 7.60 ÷ 8.05   | 14.10 ÷ 14.55 | 19/22/21 | chiusa |
|    | 4  | 10.60 ÷ 11.05 | 17.10 ÷ 17.55 | 27/36/24 | chiusa |
|    | 5  | 13.60 ÷ 14.05 | 20.10 ÷ 20.55 | 21/39/37 | chiusa |
|    | 6  | 16.10 ÷ 16.55 | 22.60 ÷ 23.05 | 11/24/30 | chiusa |
|    | 7  | 20.00 ÷ 20.45 | 26.50 ÷ 26.95 | 20/18/14 | chiusa |
| S6 | 8  | 22.60 ÷ 23.05 | 29.10 ÷ 29.55 | 32/R     | chiusa |
| 30 | 9  | 23.50 ÷ 23.95 | 30.00 ÷ 30.45 | 13/28/R  | chiusa |
|    | 10 | 26.00 ÷ 26.45 | 32.50 ÷ 32.95 | 14/12/14 | chiusa |
|    | 11 | 28.50 ÷ 28.95 | 35.00 ÷ 35.45 | 23/33/47 | chiusa |
|    | 12 | 30.00 ÷ 30.45 | 36.50 ÷ 36.95 | 30/46/44 | chiusa |
|    | 13 | 32.00 ÷ 32.45 | 38.50 ÷ 38.95 | 16/14/11 | chiusa |
|    | 14 | 34.00 ÷ 34.45 | 40.50 ÷ 40.95 | 32/45/22 | chiusa |
|    | 15 | 36.00 ÷ 36.45 | 42.50 ÷ 42.95 | 21/15/12 | chiusa |
|    | 16 | 38.50 ÷ 38.95 | 45.00 ÷ 45.45 | R        | chiusa |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

# 4.2 HVSR (HORIZONTAL TO VERTICAL SPECTRAL RATIO)

Le **4 prove HVSR** (Horizontal to Vertical Spectral Ratio) eseguite si sono basate sulla misura dei rapporti medi fra le ampiezze spettrali delle componenti orizzontali e verticali del rumore sismico ambientale misurato nelle tre direzioni ortogonali del moto.

Le frequenze di risonanza naturali corrispondono ai massimi della curva dei rapporti spettrali in funzione della frequenza, mentre l'ampiezza di questi massimi è qualitativamente proporzionale all'entità del contrasto di impedenza sismica esistente alla base della copertura.

Le prove sono state eseguite nei punti indicati nell'estratto planimetrico di seguito riportato e di cui si rimanda in allegato per una più chiara lettura.

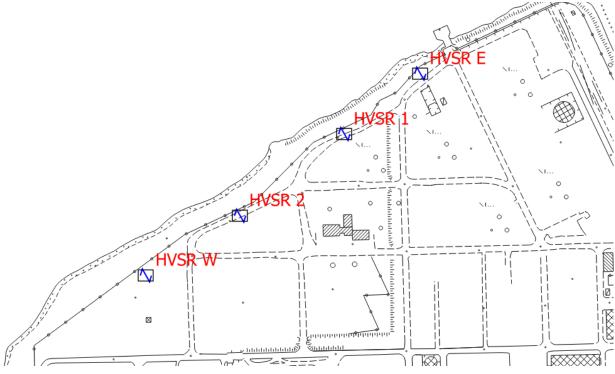



Figura 4.3 – Estratto planimetrico non in scala riportante l'ubicazione delle prove HVSR eseguite.

Per l'esecuzione delle misure è stato utilizzato un tromografo digitale a 24 bit, strumento realizzato per la misurazione del rumore sismico. Le sue ridotte dimensioni ed il modesto peso lasciano virtualmente imperturbato il campo d'onda presente nell'ambiente.

Lo strumento, basato su convertitore AD7124-8 di Analog Devices, è dotato di geofoni Senhe da 4,5 Hz aventi le seguenti caratteristiche:

Resonance frequency: 4.5 Hz + /-10% Operating temperature:  $-40^{\circ}\text{C} + 100^{\circ}\text{C}$  Coil resistance: 375 ohm + /-7.5% Height: 36 mm Open circuit damping: 0.6 + /-7.5% Diameter: 25.4 mm

Voltage sensitivity: 28.8 +/-7.5% (v/m/s) Weight: 86 g

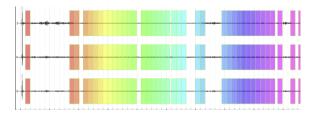
Moving mass: 11 g

Di seguito si riporta un estratto cartografico indicante un punto di prova e la strumentazione durante la fase di

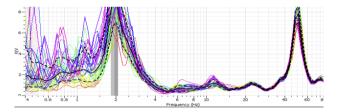


1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

acquisizione, mentre per la descrizione dettagliata delle singole prove si rimanda al documento di progetto "Prove geofisiche", nelle cui schede monografiche viene indicata la georeferenziazione di ogni punto acquisito, le componenti dei segnali acquisiti, i rapporti H/V relativi ad ogni singola finestra definita, la mappa della stazionarietà degli spettri, la direzionalità del rapporto H/V e il rapporto medio H/V con le relative curve di confidenza.


Per le elaborazioni è stato adottato il metodo di Nakamura (1989) che consente di definire i valori delle frequenze principali di risonanza dei suoli. Egli, infatti, ha verificato sperimentalmente che alla base dello strato superficiale, per tutte le frequenze, il rapporto tra l'ampiezza della componente orizzontale e quella verticale può essere considerato pari ad 1. Pertanto, il fattore di amplificazione di sito R è dato dal rapporto spettrale R= H/V. Le considerazioni di carattere stratigrafico inquadrano le risultanze della prova con le indicazioni geologiche disponibili, restituendo informazioni quali l'individuazione di modeste coperture e o eventuali zone di detensionamento superficiale per alterazione.



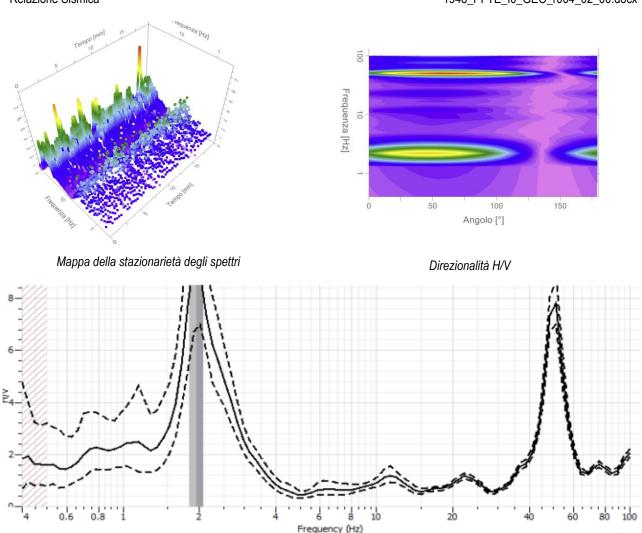

Estratto planimetrico indicante l'ubicazione delle misure HVSR



Dispositivo durante la fase di acquisizione.



Componenti del segnale (Z: verticale, N ed E orizzontali) con sovrapposte le finestre per l'analisi




Rapporti H/V per ogni singola finestra





1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx



Rapporto H/V medio e relative curve di confidenza

Le curve sperimentali HVSR hanno individuato i seguenti picchi del rapporto spettrale H/V, indicanti le frequenze caratteristiche del sito.

| PROVA  | fo (Hz) | <b>A</b> <sub>0</sub> |
|--------|---------|-----------------------|
| HVSR E | 1.95    | 9.3                   |
| HVSR 1 | 1.76    | 10.1                  |
| HVSR 2 | 1.63    | 5.7                   |
| HVSR W | 1.66    | 7.8                   |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

# 4.3 MISURE DI SISMICA ATTIVA MASW (MULTICHANNEL ANALYSIS OF SURFACE WAVES)

Sono state eseguite 2 misure di sismica attiva MASW che hanno seguito le seguenti fasi:

- acquisizione dei dati: registrazione dei segnali sismici di campagna con sismografo multicanale;
- analisi di dispersione: definizione della curva di dispersione dai segnali registrati;
- processo di inversione: definizione del modello di variazione della velocità delle onde di taglio (Vs) con la profondità che genera la curva di dispersione teorica più vicina alla curva di dispersione misurata (per questa ultima fase della elaborazione è preferibile operare con dati di taratura).

Le misure di sismica attiva sono state eseguite con la seguente geometria:

N. tracce 24

Durata acquisizione [msec] 614.4

Interdistanza geofoni [m] 2.0

Periodo di campionamento [msec] 0.60

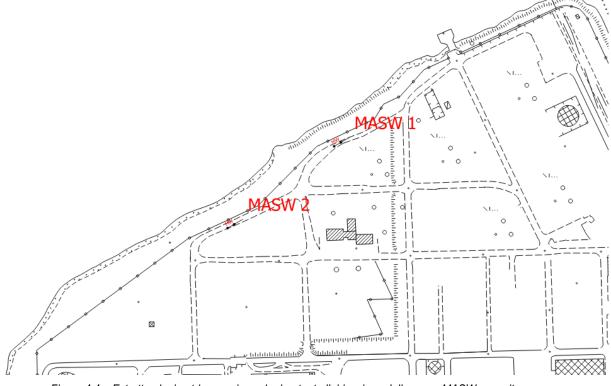



Figura 4.4 – Estratto planimetrico non in scala riportante l'ubicazione delle prove MASW eseguite.

L'osservazione del comportamento delle onde propagate all'interno dei materiali ha consentito di ottenere delle informazioni sito specifiche in relazione alle variazioni indotte dalle caratteristiche del mezzo attraversato.




1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

#### Modellizzazione

È stata simulata, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica, la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

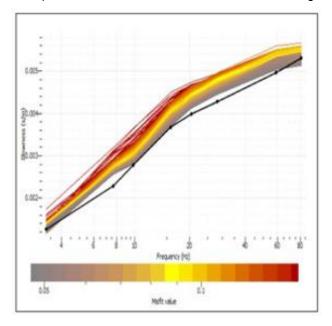
Modificando i parametri del modello geotecnico sintetico, si è ottenuta una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase, detta di inversione, consente di determinare il profilo delle velocità in mezzi a differente rigidezza.



### Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale sono state individuate diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

# Profondità di indagine


Le onde di Rayleigh, poiché decadono a profondità circa uguali alla lunghezza d'onda, filtrando le alte frequenze si sono valutate le zone superficiali mentre utilizzando le basse frequenze si è potuto indagare a profondità maggiori.

Le geometrie degli stendimenti sono state i medesimi delle prove Sismiche a rifrazione, mentre criteri di energizzazione, acquisizione ed elaborazione hanno seguito differenti procedure.

1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

# 5 AZIONI SISMICHE DI PROGETTO DA NORMATIVA

A seguito della taratura con le prove di indagine di tipo diretto, sono state condotte delle misure di sismica attiva quali MASW e passiva HVSR, misure che hanno consentito attraverso l'elaborazione dei dati e l'interpretazione delle prove, la ricostruzione del modello sismostratigrafico.



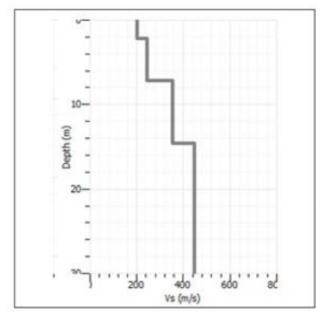



Figura 5.1 - Curva di dispersione prova MASW 1

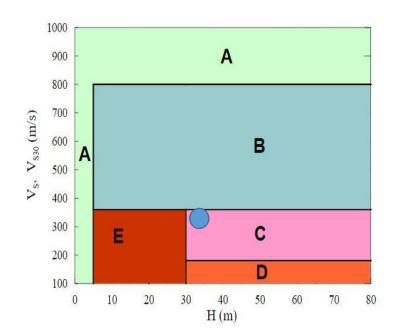
Figura 5.2 – Inversione prova MASW 1

| Strato | Profondità (m) | Spessore [m] | Vs [m/s] |
|--------|----------------|--------------|----------|
| 1      | 1.80           | 1.80         | 170      |
| 2      | 6.00           | 4.20         | 230      |
| 3      | 12.20          | 6.20         | 320      |
| 4      | 30.00          | 17.80        | 455      |
|        |                |              | 343      |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Dal quadro geognostico d'insieme ne è conseguita la possibilità di far riferimento all'approccio semplificato basato sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio V<sub>S</sub>, poiché, ai fini della definizione dell'azione sismica di progetto, le condizioni stratigrafiche e le proprietà dei terreni sono chiaramente riconducibili alle categorie definite nella Tab. 3.2.Il del D.M 17.01.2018.


Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

| Categoria | Caratteristiche della superficie topografica                                                                                                                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A         | Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.                                             |
| В         | Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.                                            |
| С         | Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.   |
| D         | Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s. |
| Е         | Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.                                                                                                                                    |

Tabella 5-1 – Tabella 3.2.II del capitolo 3.2.2 "Categorie di sottosuolo e condizioni topografiche" del D.M. 17.01.2018 "Aggiornamento delle Norme tecniche per tecniche per le costruzioni".

Dalla elaborazione delle misure condotte ai fini della definizione dell'azione sismica di progetto, la classificazione del sottosuolo effettuata in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq è risultata pari a circa 340 m/s.

Ne è conseguita quale categoria di sottosuolo di riferimento la C: "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti, con la profondità del substrato superiori a 30 metri, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s".





1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Ne derivano i seguenti parametri:

WGS84: Lat 45.608662- Lng 13.801944 ED50: Lat 45.609552 - Lng 13.802898

Classe Edificio: IV Funzioni pubbliche o strategiche importanti

Vita Nominale: 100 anni

Cu: 2



| Stato Limite                                 | Tr [anni] | a <sub>g</sub> [g] | Fo    | Tc* [s] |
|----------------------------------------------|-----------|--------------------|-------|---------|
| Operatività (SLO)                            | 120       | 0.060              | 2.587 | 0.265   |
| Danno (SLD)                                  | 201       | 0.076              | 2.543 | 0.283   |
| Salvaguardia vita (SLV)                      | 1898      | 0.169              | 2.591 | 0.348   |
| Prevenzione collasso (SLC)                   | 2475      | 0.184              | 2.596 | 0.352   |
| Periodo di riferimento per l'azione sismica: | 200       |                    |       |         |

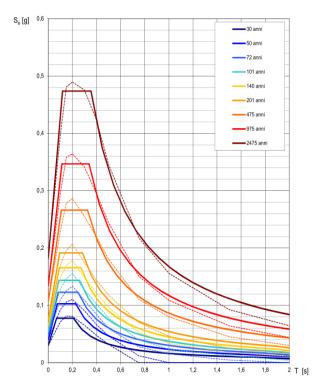



Figura 5.3 – Spettri di risposta elastici per i periodi di ritorno Tr di riferimento.

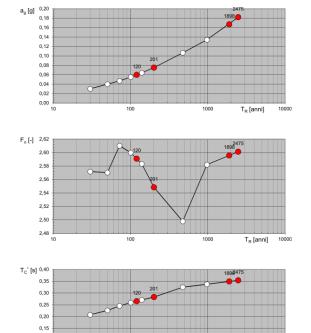



Figura 5.4 – Valori di progetto dei parametri a g , Fo , Tc\* in funzione del periodo di ritorno TR

0,10



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

# Coefficienti simici

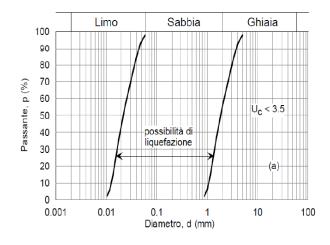
Tipo: Paratie NTC 2018 Categoria Sottosuolo: C Categoria Topografica: T1

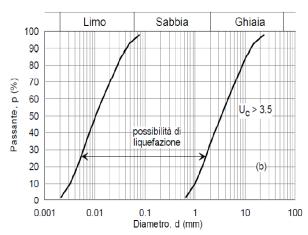
|                                 | SLO  | SLD  | SLV  | SLC  |
|---------------------------------|------|------|------|------|
| SS Amplificazione stratigrafica | 1.50 | 1.50 | 1.44 | 1.41 |
| CC Coeff. funz categoria        | 1.63 | 1.59 | 1.49 | 1.48 |
| ST Amplificazione topografica   | 1.00 | 1.00 | 1.00 | 1.00 |

| Coefficienti             | SLO   | SLD   | SLV   | SLC   |
|--------------------------|-------|-------|-------|-------|
| Kh                       | 0.018 | 0.023 | 0.049 | 0.052 |
| Kv                       | -     | -     | -     | -     |
| Amax [m/s <sup>2</sup> ] | 0.886 | 1.117 | 2.387 | 2.550 |
| Beta                     | 0.520 | 0.520 | 0.520 | 0.520 |



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx


# 6 VALUTAZIONE DELLA SUSCETTIBILITÀ ALLA LIQUEFAZIONE


Il sito presso il quale è ubicato il manufatto deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

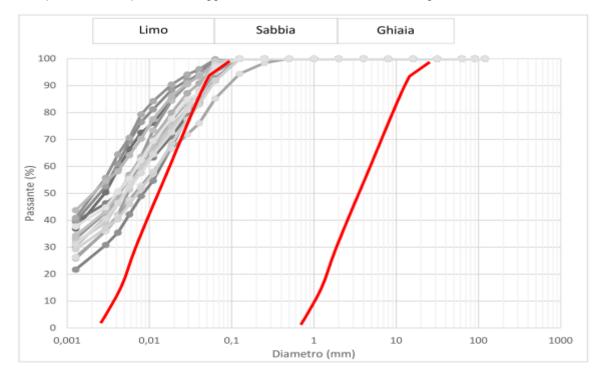
Se il terreno risulta suscettibile di liquefazione e gli effetti conseguenti appaiono tali da influire sulle condizioni di stabilità di pendii o manufatti, occorre procedere ad interventi di consolidamento del terreno e/o trasferire il carico a strati di terreno non suscettibili di liquefazione.

La verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- 1. Accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- 2. Profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna suborizzontale e strutture con fondazioni superficiali;
- 3. Depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1)<sub>60</sub>>30 oppure q<sub>c1N</sub>>180 dove (N1)<sub>60</sub> è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e q<sub>c1N</sub> è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa;
- 4. Distribuzione granulometrica esterna alle zone indicate nella Figura 7.11.1(a) nel caso di terreni con coefficiente di uniformità Uc < 3,5 ed in Figura 7.11.1(b) nel caso di terreni con coefficiente di uniformità Uc > 3,5.






Facendo riferimento alle prove granulometriche condotte sui campioni prelevati durante le fasi di indagine si conferma quanto già visivamente è stato possibile disaminare durante le attività di recupero delle carote ed il loro posizionamento nelle apposite cassette catalogatrici, soggette quindi alla relativa descrizione stratigrafica.

I campioni S1 CI 1, S1 CI 2, S2 CI 1, S2 CI 2, S3 CI 1, S3 CI 2, S3 CI 3, S4 CI 1, S4 CI 2, S5 CI 1, S5 CI 2, S6



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

Cl 1,S6 Cl 2 ed S6 Cl 3 sono stati pertanto rappresentati sul diagramma semilogaritmico a verifica della possibilità potenziale a liquefare se soggetti ad azioni cicliche e dinamiche agenti in condizioni non drenate.



Le condizioni ai punti 3 e 4 risultano soddisfatte, dunque non è necessario procedere alla relativa verifica.



1948\_PFTE\_I0\_GEO\_r004\_02\_00.docx

A supporto di quanto sopra è stato fatto riferito, anche al "European interactive Catalogue of earthquake-induced soil Liquefaction phenomena" (cfr. <u>ECLiq - European interactive Catalogue of earthquake-induced soil Liquefaction phenomena (eucentre.it)</u>), ove sono registrati tutti i fenomeni di liquefazione dovuti a terremoti. In particolare, nell'area di studio (indicata in rosso) non sono mai stati registrati fenomeni di liquefazione.

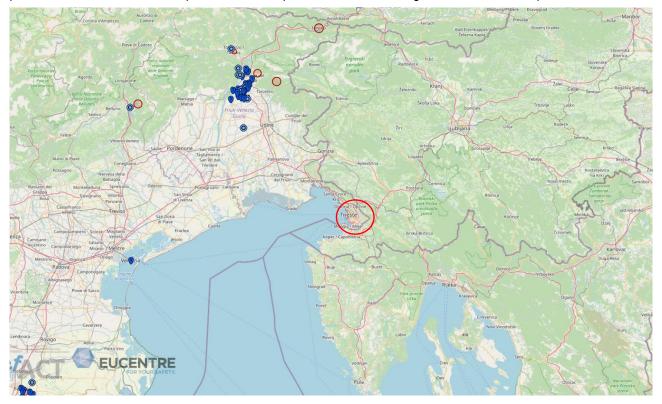



Figura 6.1 – Catalogo europeo dei fenomeni di liquefazione