

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA ELETTRICA A FONTE RINNOVABILE EOLICA, OPERE CONNESSE ED INFRASTRUTTURE INDISPENSABILI Località Frisella di Monreale (PA)

PROGETTO DEFINITIVO

RDE

Numero elaborato:

Titolo elaborato:

Relazione Dimensionamento preliminare cavi Elettrici

Proponente:

Nuova Energia Sicilia S.r.l. Via Umberto Giordano 152 90144 Palermo (PA) P.IVA. 06977220828

Progettisti:

Eugenio Bordonali Francesco Maria Rossi

Rev.	Data	File	Descrizione revisione	eseg.	contr.	Approv
0	29/05/2023	MON2_Sintesi non tecnica.doc	Emissione	FR	FR	FR

Indice

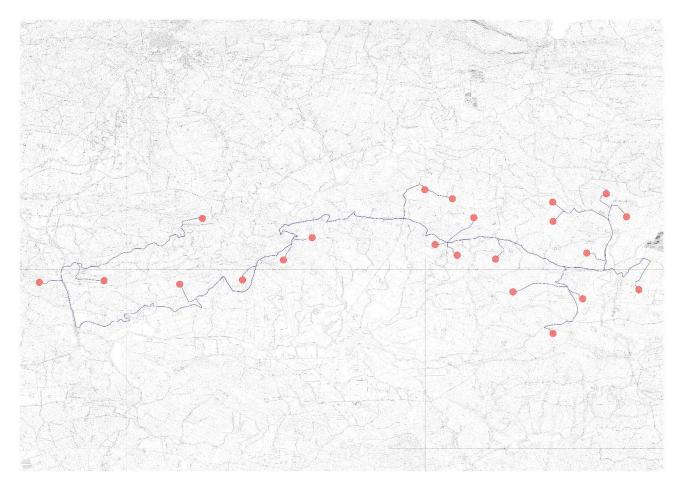
Indice	2	
1.	Introduzione	3
2.	Normativa di riferimento	4
3.	Descrizione del sistema	4
4.	Criteri di dimensionamento	5
5.	Conclusioni	8

1. Introduzione

La presente relazione ha lo scopo di descrivere i collegamenti elettrici dell'impianto di produzione di energia elettrica da fonte eolica sito nel Comune di Monreale, in Provincia di Palermo, denominato "Frisella".

I 22 aerogeneratori in progetto avranno potenza 4.5 MW ciascuno - per una potenza totale istallata di 99 MW -, altezza al mozzo 118m e diametro rotore 163m. Essi ricadranno nel territorio del Comune di Monreale (PA), nelle c.de Frisella, Pioppo, Tagliavia, Aquila, Arcivocale, Torre dei Fiori, Malvello, Malvellotto e Castellana.

Il parco eolico sarà costituito dagli aerogeneratori, dalle nuove piste di accesso alle piazzole degli stessi e dalle opere per la connessione alla Rete di Trasmissione Nazionale (RTN) dell'energia elettrica. L'energia elettrica prodotta dagli aerogeneratori verrà immessa nella rete nazionale tramite un cavidotto interrato, in media tensione, ricadente nel Comune di Monreale (PA). Le opere per la connessione alla rete sono anch'esse localizzata nel Comune di Monreale (PA).


L'iniziativa si inquadra nel piano di sviluppo di impianti per la produzione d'energia da fonte rinnovabile che la società "Nuova Energia Sicilia S.r.l." intende realizzare nella Regione Sicilia per contribuire al soddisfacimento delle esigenze d'energia pulita e sviluppo sostenibile.

2. Normativa di riferimento

Di seguito si riportano le principali Norme e Leggi di riferimento:

- Norma CEI 11-27 Lavori su impianti elettrici
- Norma CEI 11-1 Impianti elettrici con tensione superiore a 1 kV in corrente alternata
- Norma CEI 11-4 Esecuzione delle linee elettriche aeree esterne.
- Norma CEI 11-17+Var.V1 Impianti produzione, trasmissione e distribuzione di energia elettrica-Linee in cavo
- Norma CEI EN 62271-100 Interruttori a corrente alternata ad alta tensione
- Norma CEI EN 62271-102 Sezionatori e sezionatori di terra a corrente alternata per alta tensione
- Norma CEI EN 60898-1 Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari
- Norma CEI 20-22 Prove d'incendio sui cavi elettrici
- Norma CEI 20-37 Prove sui gas emessi durante la combustione dei materiali prelevati dai cavi;
- Norma CEI EN 61009-1 Interruttori differenziali con sganciatori di sovracorrente incorporati per installazioni domestiche e similari
- Norma CEI 33-2 Condensatori di accoppiamento e divisori capacitivi
- Norma CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V
- Norma CEI EN 60044-1+Var. A1/A2 Trasformatori di corrente
- Norma CEI EN 60044-2 Trasformatori di tensione induttivi
- Norma CEI EN 60044-5 Trasformatori di tensione capacitivi
- Norma CEI EN 60076-1 Trasformatori di potenza
- Norma CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione
- Norma CEI 64-8+Var. V1/V2 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua
- Norma CEI EN 60694+Var.A1/A2 Prescrizioni comuni per l'apparecchiatura di manovra e di comando ad alta tensione
- 3. Descrizione del sistema

L'impianto si sviluppa in direzione est-ovest, con il punto di trasformazione e consegna posto all'estremità est. Nel collegamento elettrico si è quindi creato un sottocampo, costituito dai 7 aerogeneratori collocati più ad ovest, elettricamente convogliato in una cabina di smistamento prima di andare al punto di consegna. Gli altri aerogeneratori invece, più vicini al punto di connessione, sono stati collegati direttamente in cabina di consegna

L'impianto costituito da aerogeneratori elettricamente collegati mediante un cavidotto interrato, le cui caratteristiche sono riepilogate di seguito.

Tensione nominale di esercizio (U)	30 Kv	
Tensione massima (Um)	36 Kv	
Frequenza nominale del sistema	50 Hz	
stato del neutro	isolato	

Il cavo sarà di tipo unipolare ad elica visibile, schermato, con isolamento estruso, come di seguito riassunto:

Sigla di identificazione	ARG7H1(AR)E (x)	
Conduttori	Alluminio	
Isolamento	Mescola di polietilene reticolato (qualità DIX 8)	
Schermo	filo di rame	
Guaina esterna	Air Bag	
Profondità di posa	Vedere tipici	

4. Criteri di dimensionamento

La tensione dei cavi è di 30 kV con isolamento verso terra di 18 kV come da norma CEI 11–17; questi saranno tripolari composti da 3 cavi unipolari riuniti ad elica visibile, le giunzioni saranno di due tipologie costruttive: a nastro o resina iniettata. La prima prevede la ricostruzione della giunzione mediante una serie di nastri per tutti gli strati che compongono il cavo; la seconda è

ottenuta iniettando della resina per applicazioni apposite in ambito elettrico che ha la funzione di isolante e poi viene ricostruito lo schermo con nastri in rame. Queste due tipologie di giunzioni sono realizzate secondo la norma CEI 20-24.

Il dimensionamento è stato mirato a ridurre le perdite di potenza e le cadute di tensione compatibilmente con i vincoli ambientali.

Di seguito è mostrato il metodo utilizzato per determinare la caduta di tensione.

Il calcolo della caduta di tensione è stato eseguito mediante la seguente formula, che tiene conto dei parametri longitudinali dei cavi, della potenza attiva e di quella reattiva.

$$\Delta V = \frac{P*R+Q*X}{\sqrt{2}} = \frac{P*R+P*tan}{\sqrt{2}} \frac{\varphi*X}{\sqrt{2}}$$

Analogamente sono stati determinati i valori delle perdite di potenza per effetto Joule usando la seguente formula:

$$P = 3 * R * I^2$$

Dove:

P = potenza attiva

Q = potenza reattiva, calcolata con un valore del fattore di potenza pari a 0,95

R = resistenza complessiva del cavo

X = reattanza longitudinale del cavo

V = tensione nominale di esercizio a 30kV

I = corrente nominale

Sulla base delle formule indicate, impostando una perdita nei cavi di tensione massima consentita del 4% ed una perdita di potenza del 3%, sono state dimensionati i cavi, che hanno assunto la configurazione indicata in tabella:

		Poten	Poten	tensio	Corren	N	lunghez	sezio	resisten	ammette
		za	za	ne	te [A]	condutt	za [m]	ne	za a	nza
		WTG	linea	[kV]		ori		cavo	90°C	specifica
		[kW]	[kW]					[mmq	[ohm/k	cavo
tratto	(WTG)]	m]	[ohm]
20	22	4500	4500	30	92	3	5680	240	0,161	0,112
21	22	4500	4500	30	92	3	2578	240	0,161	0,112
22	19	4500	13500	30	276	3	7753	630	0,063	0,097
	smistame									
19	nto	4500	18000	30	368	3	3654	630	0,063	0,097
	smistame									
18	nto	4500	22500	30	460	3	2400	630	0,063	
	smistame									
17	nto	4500	4500	30	92	3	370	70	0,568	0,140
	smistame									
16	nto	4500	4500	30	92	3	558	70	0,568	0,140
smistame										
nto	consegna	0	31500	30	644	3	11132	630	0,063	0,097
	_									
14	15	4500	4500	30	92	3	704	70	0,568	0,140
15	12	4500	9000	30	184	3	3270	240	0,161	0,112

11	12	4500	4500	30	92	3	729	70	0,568	0,140
13	12	4500	4500	30	92	3	1346	70	0,568	0,140
						_				
12	consegna	4500	22500	30	460	3	5316	630	0,063	0,097
10	consegna	4500	4500	30	92	3	4547	240	0,161	0,112
	O						·		,	,
8	7	4500	4500	30	92	3	2307	70	0,568	0,140
9	7	4500	4500	30	92	3	1971	70	0,568	0,140
		.=								
7	consegna	4500	13500	30	276	3	3293	240	0,161	0,112
6	consegna	4500	4500	30	92	3	3500	70	0,568	0,140
	J								,	,
5	consegna	4500	4500	30	92	3	404	70	0,568	0,140
1	2	4500	4500	30	92	3	1261	70	0,568	0,140
2	consegna	4500	9000	30	184	3	2004	240	0,161	0,112
3	4	4500	4500	30	92	3	723	70	0,568	0,140
4	consegna	4500	9000	30	184	3	2874	240	0,161	0,112

Nell'impianto eolico per effettuare il calcolo della portata si è tenuto conto dei coefficienti correttivi dipendenti dal tipo di installazione del numero di terne di cavi per scavo e dalla temperatura di esercizio; la posa di più terne in un unico scavoe la temperatura di lavoro più alta rispetto a quella di riferimento comportano una riduzione della portata di corrente. Nel caso in esame sono state sono state considerate un numero massimo di 3 terne per ogni trincea ed una temperatura di esercizio di 25°C, Di seguito si riportano i coefficienti correttivi assunti rispettivamente in base al numero di terne presenti nel medesimo scavo, ed in base alle condizioni di temperatura.

Numero terne a trifoglio	2	3	4	6
Coefficiente correttivo	0.86	0.78	0.74	0.69

Temperatura ambiente °C	15	20	25	30	35	40
Coefficiente correttivo	1,04	1	0,96	0,92	0,88	0,84

La formula utilizzata, di seguito esposta, tiene conto dei coefficienti correttivo come da norma CEI 20-21

Portata = $CT \times CS \times Imt$

Dove:

- CT coefficiente riduzione dovuto alla temperatura
- CS coefficiente riduzione dovuto al numero di terne per scavo
- Imt corrente di riferimento come da costruttore

Da un analisi dei risultati tabulati nelle tabelle sopra per i tratti di cavo che costituiscono la rete MT, le

correnti nominale che percorrono i cavi sono inferiori alla portata del cavo.

La formula utilizzata per la verifica termica in condizioni di corrente di corto circuito fa riferimento alla Norma CEI 11-17:

$$K^2 S^2 \ge I_{cc}^2 t$$

dove:

- K (A s1/2 mm-2)è un coefficiente che tiene conto della resistività, del calore specifico e delcoefficiente di temperatura del materiale conduttore;
- S (mm2) è la sezione del conduttore;
- Icc (A) è la corrente di corto circuito;
- t (sec.) durata della corrente di cortocircuito

La norma CEI 11-17 riporta i diversi valori di K in funzione del materiale conduttore (alluminio), della temperatura iniziale,e di quella finale. Come da tabella seguente:.

Temperatura	Temperatura finale							
iniziale	140	160	180	200	220	250		
90	55	64	72	79	85	92		
30	86	92	98	103	107	114		

Il materiale conduttore alluminio e l'isolante del cavo in XLPE la temperatura massima in cortocircuito deve essere pari a 250 °C. La verifica è stata eseguita considerando una corrente di corto circuito di 11,22 kA, che è quella massima erogabile dalla rete di distribuzione, e tempo di eliminazione del guasto pari ad 1 secondo. La Icc del cavo è di 28 kA come da valori forniti dal costruttore; per cui la verifica ha avuto esito positivo.

5. Conclusioni

Nel documento sono stati riassunti i criteri progettuali dei collegamenti elettrici, che ha permesso di mantenere le perdite di potenza al di sotto del 3% e le cadute di tensione al di sotto del 4%.