

PROGETTO DEFINITIVO

COMUNE DI COSTA DI ROVIGO (RO)

IMPIANTO FOTOVOLTAICO CONNESSO ALLA RETE ELETTRICA PER VENDITA DI ENERGIA

RELAZIONE DESCRITTIVA

TAVOLA:

SCALA:

NOME FILE:

F.F1.b1.1

_

0707-I60-DEd-F.F1.b1.1 R00-01 RD

COMMITTENTE:

AIEM GREEN SRL V.le C. A. d'Europa, 9/G 45100 Rovigo CE/PIVA 01627270299

AIEM GREEN S.r.I. Viale C. Alleati d'Europa 9/G 45100 ROVIGO (RO) P.IVA 01627270299 PROPRIETARI:

PROGETTAZIONE:

rogettando

Via Davila, 1 35028 Piove di Sacco (PD) P.IVA 04048490280 Tel. 0425/1900552

Tel. 0425/1900552/// email: info@progettando-sr

Progettista: Dott. Ing. Dario Turolla

Revisione	Data	Note	Redatto	Controllato	Approvato
00	MAGGIO 2023	Prima emissione	LV	FG	DT

Costa Sviluppo S.p.a. C.F. e P.IVA 03929530289

TUTTI I DIRITTI SONO RISERVATI

Questo documento è di proprietà di Progettando s.r.l. e sullo stesso si riserva ogni diritto. Pertanto questo documento non può essere copiato, riprodotto, comunicato o divulgato ad altri o usato in qualsiasi maniera, nemmeno per fini sperimentali, senza autorizzazione scritta di Progettando s.r.l. Su richiesta dovrà essere prontamente reinviato a Progettando s.r.l.

Progetto Definitivo Relazione Descrittiva

IN	ט	Ł

1		PREMESSA	3
2		NORMATIVA DI RIFERIMENTO	4
	2.1	Norme tecniche relative agli impianti fotovoltaici	5
3		DATI GENERALI DEL PROPONENTE	7
4		AREA DI INTERVENTO	8
5		ILLUSTRAZIONE DEI CRITERI PROGETTUALI LEGATI AL TERRENO	10
	5.1	Struttura di sostegno	10
6		CRITERI DI DIMENSIONAMENTO DEI COMPONENTI ELETTRICI	10
	6.1	Potenza nominale dell'impianto	11
7		DATI DI PROGETTO	11
	7.1	Caratteristiche impianto Fotovoltaico	11
	7.2	Caratteristiche fisiche impianto	11
	7.3	Caratteristiche elettriche impianto	12
	7.4	Posizionamento sito di installazione	12
	7.5	Caratteristiche fisiche sito PRE INTERVENTO	12
	7.6	Caratteristiche dei materiali	12
8		PRESTAZIONI DEL SISTEMA	13
9		CONFIGURAZIONE DELL'IMPIANTO	13
	9.1	Tipi di conduttori	13
	9.2	Dimensionamento del conduttori	14
	9.3	Verifica della caduta di tensione	15
	9.4	Contributo alla corrente di corto circuito	15
	9.5	Protezione contro il sovraccarico	16
	9.6	Protezione contro il corto circuito	17
	9.7	Protezione dai contatti diretti/indiretti	18
	9.8	Impianto di terra	18
	9.9	Dispositivi differenziali	19
	9.10	 Dispositivi di protezione principali 9.10.1 Dispositivo generale e di interfaccia (DG e DDI) 9.10.2 Sistema di Protezione generale associato al dispositivo generale (SPG) 9.10.3 Sistema di Protezione di interfaccia associato al dispositivo di interfaccia (SPI) 9.10.4 Controllore Centrale Di Impianto (CCI) 	20 20 20 21 22
	9.11	Selettività delle protezioni	23
	9.12	Protezione dalle scariche atmosferiche	23
	9.13	Valutazione campi elettromagnetici	23
	9.14	Descrizione degli scavi	24
	9.15	Elettrodotto	25

Progetto Definitivo Relazione Descrittiva

9.16	Impianti speciali	25
	9.16.1 Impianto di illuminazione esterna	25
	9.16.2 Impianto di videosorveglianza	25
	9.16.3 Impianto di allarme	25
9.17 Recinzione		25
10	VERIFICA TECNICO FUNZIONALE	

1 PREMESSA

Con la presente relazione si illustrano i principi di base adottati circa la realizzazione di un impianto fotovoltaico installato su strutture a terra di potenza complessiva di 43.104,000 kWp.

L'impianto sarà disposto a terra su una superficie utile di circa 54 ettari di terreno industriale.

L'impianto fotovoltaico sarà collegato alla rete di distribuzione dell'ente fornitore di energia elettrica, immettendo nella stessa l'energia prodotta.

Per massimizzare la produzione, i moduli fotovoltaici sono fissati a terra mediante strutture di sostegno parallele che si sviluppano in direzione Nord-Sud, con un sistema ad inseguimento monoassiale, che consente la rotazione dei moduli fino ad una inclinazione di 60° verso est/ovest.

Per evitare l'ombreggiamento reciproco tra le file di moduli, queste sono opportunamente distanziate in funzione della pendenza delle zone del terreno su cui insistono.

È prevista inoltre la preparazione del terreno attraverso compattazione e lievi livellamenti al fine di consentire l'ancoraggio dei moduli fotovoltaici e sostenere il peso degli stessi e dei carichi di vento e neve secondo quanto richiesto dalle normative specifiche vigenti.

L'impianto fotovoltaico è dotato di appositi locali tecnici, costituiti da cabine prefabbricate modulari contenenti gli organi di interruzione, manovra, conversione e trasformazione dell'energia elettrica prodotta dai moduli fotovoltaici.

La tensione di uscita dell'energia elettrica dall'impianto è pari a 36kV.

Il campo fotovoltaico fa capo ad un'unica stazione elettrica generale, facente parte di un altro impianto fotovoltaico autorizzato tramite PAS n. prot: 16/08/2022 n. 9025.

Secondo le disposizioni tecniche contenute nella norma CEI 0-16, nella stazione elettrica sono contenute le apparecchiature e gli impianti per la connessione alla rete di distribuzione dell'ente fornitore di energia elettrica.

Impianto fotovoltaico AIEM GREEN S.r.I. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

2 NORMATIVA DI RIFERIMENTO

L'impianto dovrà integralmente rispettare, salvo esplicite deroghe, le seguenti disposizioni legislative e normative:

- Legge del 1/3/1968, n. 186 Disposizioni concernenti la produzione di materiali, apparecchiature, macchinari, installazioni ed impianti elettrici ed elettronici;
- Legge 18/10/1977, n. 791 Attuazione delle Direttive del Consiglio delle Comunità Europee (n°73/23/CEE) relative alle garanzie di sicurezza che deve possedere il materiale elettrico destinato ad essere utilizzato entro alcuni limiti di tensione;
- DPR 27/4/1955, n.547 e successive integrazioni;
- DM 37/08 del 22/01/2008;
- DPR 6/12/1991, n.447 Regolamento di attuazione della Legge 46 in materia di sicurezza degli impianti;
- Legge n.818 del 7 dicembre 1984 e successivo decreto M.I. del 8 marzo 1985 e successive integrazioni/varianti;
- D.Lgs del 09/04/2008 n° 81 Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro;
- D.M. 20/02/1992 Approvazione del modello di dichiarazione di conformità dell'impianto alla regola d'arte di cui all'art.7 del regolamento di attuazione del D.M. 37 recante norme per la sicurezza degli impianti;
- D.M. 02/03/2009 Disposizioni in materia di incentivazione della produzione di energia elettrica mediante conversione fotovoltaica della fonte solare;
- D.Lgs. 387/2003 Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità;
- D.M. Sviluppo Economico 10.09.2010 Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili;
- D.Lgs. 3 marzo 2011, n. 28 Attuazione della direttiva 2009/28/Ce sulla promozione dell'uso dell'energia da fonti rinnovabili recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE);
- L.R. Veneto n.17 del 19 Luglio 2022- Norme per la disciplina per la realizzazione di impianti fotovoltaici con moduli ubicati a terra;
- D.Lgs. 152/2006 e s.m.i.- Norme in materia ambientale;
- Legge 23 luglio 2009, n. 99 Disposizioni per lo sviluppo e l'internazionalizzazione delle imprese, nonché in materia di energia;
- Deliberazione 23 luglio 2008 ARG/elt 99/08 e s.m.i. Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica (Testo integrato delle connessioni attive TICA).

Progetto Definitivo Relazione Descrittiva

Dovranno essere utilizzati materiali costruiti a regola d'arte, sui quali sia stato apposto l'apposito marchio che ne attesti la conformità; tali materiali dovranno essere esenti da difetti qualitativi e di lavorazione ed essere inoltre adatti all'ambiente in cui verranno installati, avere le caratteristiche necessarie per resistere alle sollecitazioni meccaniche, corrosive, termiche o dovute all'umidità a cui potranno essere sottoposti durante l'esercizio.

Inoltre per tutti i componenti, per i quali dovrà essere prevista "l'omologazione" secondo le prescrizioni vigenti, dovranno essere forniti i relativi certificati.

Qualora il fornitore non sia in possesso, per determinati apparecchi, del certificato d'omologazione, dovrà essere fornita una dichiarazione, sottoscritta dal fornitore, nella quale lo stesso indichi gli estremi della richiesta d'omologazione e garantisca che l'apparecchio fornito soddisfi tutti i requisiti prescritti dalla specifica d'omologazione.

Si richiamano di seguito le più ricorrenti Norme UNI e C.E.I. cui far riferimento; l'elenco non ha carattere esaustivo.

2.1 NORME TECNICHE RELATIVE AGLI IMPIANTI FOTOVOLTAICI

Dovranno essere applicate integralmente le ultime edizioni delle seguenti Norme CEI:

<u>CEI 0-2</u>	Guida per la definizione per la documentazione di progetto degli impianti elettrici;
<u>CEI 0-16</u>	Regola tecnica di riferimento per la connessione di utenti attivi e passivi alle reti AT ed
	MT delle Imprese distributrici di energia elettrica;
<u>CEI 11-16</u>	Lavori sotto tensione - Attrezzi di lavoro a mano per tensioni fino a 1000Vca e 1500Vcc;
CEI 11-20	Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II
	categoria;
CEI 11-27	Lavori su impianti elettrici;
CEI 11-48	Esercizio degli impianti elettrici;
<u>CEI 17-5</u>	Apparecchiature a bassa tensione - Parte 2: Interruttori automatici;
<u>CEI 17-11</u>	Apparecchiature a bassa tensione - Parte 3: Interruttori di manovra, sezionatori,
	interruttori di manovra sezionatori e unità combinate con fusibili;
CEI 20-40	Guida per l'uso dei cavi a bassa tensione;
CEI 20-45	Cavi isolati con mescola elastomerica, resistenti al fuoco, non propaganti l'incendio,
	senza alogeni (LSOH) con tensione nominale 0,6/1kV;
CEI 20-67	Guida per l'uso dei cavi 0,6/1kV;
CEI 23-3/1	Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e
	similari - Parte I: Interruttori automatici per funzionamento in corrente alternata;
CEI 23-51	Prescrizioni per la realizzazione, le verifiche e le prove dei quadri di distribuzione per
	installazioni fisse per uso domestico e similare;
CEI 23-80	Sistemi di tubi e accessori per installazioni elettriche - Parte I: Prescrizioni generali;
<u>CEI 32-1</u>	Fusibili a tensione non superiore a 1kVca e 1,5kVcc - Parte I: Prescrizioni generali;

Progetto Definitivo Relazione Descrittiva

· · · · · · · · · · · · · · · · · · ·	
<u>CEI 64-8</u>	Impianti elettrici utilizzatori a tensione nominale non superiore a 1kVca e 1,5kVcc;
CEI 81-10	Protezione contro i fulmini;
CEI 82-1	Dispositivi fotovoltaici - Parte I: Misura delle caratteristiche fotovoltaiche corrente-
	tensione;
CEI 82-3	Dispositivi fotovoltaici - Parte III: Principi di misura per sistemi solari fotovoltaici (PV)
	per uso terrestre e irraggiamento spettrale di riferimento;
<u>CEI 82-8</u>	Moduli fotovoltaici (FV) in silicio cristallino per applicazioni terrestri - qualifica del
	progetto ed omologazione del tipo;
CEI 82-22	Fogli informativi e dati di targa per moduli fotovoltaici;
CEI 82-25	Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti
	elettriche di media e bassa tensione;
CEI 82-27	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte I: Prescrizioni per la
	costruzione;
CEI 82-28	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) - Parte II: Prescrizioni per le
	prove;
CEI EN 61439-1	Apparecchiature assiepate di protezione e di manovra per bassa tensione (quadri BT) -
	Parte 1: Apparecchiature soggette a prove di tipo (AS) e apparecchiature parzialmente
	soggette a prove di tipo (ANS).

3 DATI GENERALI DEL PROPONENTE

Di seguito si riportano i principali dati relativi alla società proponente:

Dati società

• Denominazione: AIEM GREEN S.r.l.

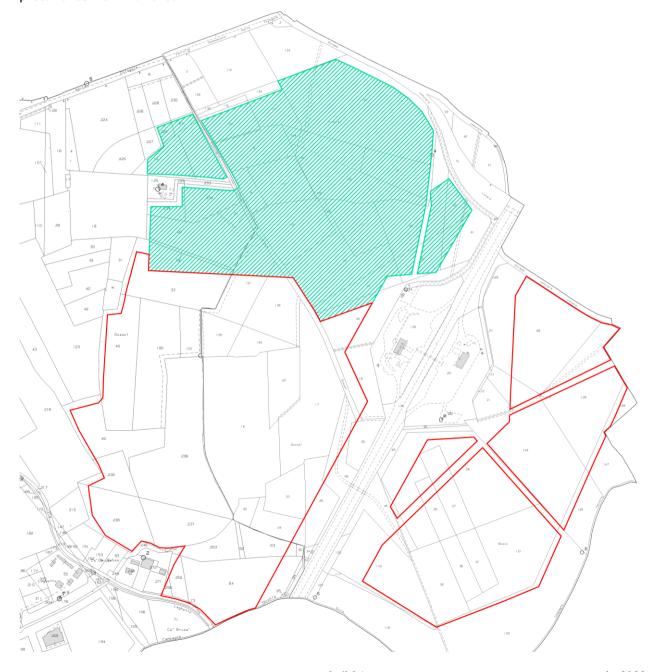
• Sede legale: Viale C. Alleati d'Europa 9/G, 45100 Rovigo (RO)

• CF/Partita IVA: 01627270299

Dati legale rappresentante

Nome e cognome: Elia Corrado Lubian
 Luogo e data di nascita: Rovigo (RO) 03/11/1964
 Codice fiscale: LBNLRR64S03H620U

Si sottolinea che il proponente si avvale del procedimento di Valutazione di Impatto Ambientale di cui all'Art.23 D.Lgs.152/2006, per l'autorizzazione delle opere previste e necessarie alla connessione; pertanto la richiesta di autorizzazione alla costruzione dovrà essere rilasciata a favore di AIEM GREEN S.r.l.

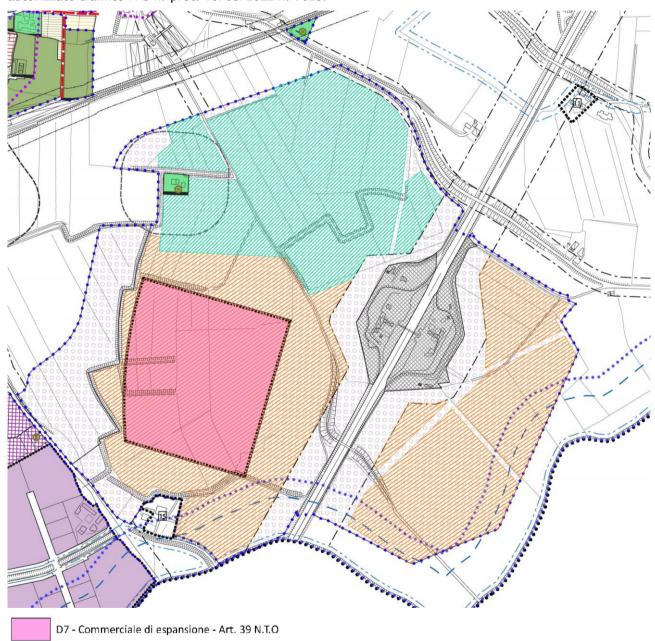


4 AREA DI INTERVENTO

L'area dove verrà realizzato l'impianto fotovoltaico di progetto è individuata catastalmente al Censuario del Comune di Costa di Rovigo (RO):

Foglio 19, Particelle 33, 45, 100, 101, 49, 239, 236, 238, 237, 253, 62, 63, 256, 250, 73, 64; Foglio 20, Particelle 137, 139, 138, 140, 40, 18, 17, 87, 16, 55, 58, 25, 23, 24, 22, 68, 113, 21, 124, 126, 128, 127, 125, 28, 45, 48, 26, 27, 118, 38, 36, 37, 119, 120, 121.

Di seguito si riporta l'estratto catastale dell'area di intervento, con l'area destinata all'impianto evidenziata in rosso, mentre in turchese l'area di impianto fotovoltaico già autorizzato tramite PAS n. prot: 16/08/2022 n. 9025.



Progetto Definitivo Relazione Descrittiva

L'impianto vede la sua collocazione su un terreno inserito in una zona denominata "Zona D7 - Commerciale di espansione" e "Zona D8 - Attrezzature - Polo integrato per il tempo libero".

Si riporta di seguito l'estratto della Variante 5 (adottata) al Piano Interventi comunale, con l'area destinata all'impianto evidenziata in arancione, mentre in turchese l'area di impianto fotovoltaico già autorizzato tramite PAS n. prot: 16/08/2022 n. 9025.

Estratto Variante 5 al Piano Interventi comunale

D8 - Attrezzature - Polo integrato per il tempo libero - Art. 40 N.T.O.

Pag.**9 di 26** Maggio 2023

5 ILLUSTRAZIONE DEI CRITERI PROGETTUALI LEGATI AL TERRENO

Il terreno in questione si presenta con una conformazione prevalentemente pianeggiante senza inclinazioni rilevanti. Il posizionamento della potenza fotovoltaica sarà quindi studiato in base alle caratteristiche del terreno facendo attenzione che tutte le stringhe afferenti allo stesso quadro in corrente continua presentino le stesse condizioni di irraggiamento.

Il posizionamento delle apparecchiature e delle strutture dell'impianto, nonché il tracciamento delle opere edili, sarà eseguito a partire dalla superficie complessivamente disponibile nel/nei lotti di proprietà. Per l'effettiva individuazione della parte di terreno idonea si è tenuto in considerazione la presenza di:

- Aree con pendenza troppo accentuata;
- Aree sottoposte a vincoli;
- Aree accidentate di altra natura.

Sono previsti più punti di accesso all'impianto, tramite cancello di adeguata ampiezza, in modo da permettere l'accesso di mezzi per eventuali manutenzioni.

5.1 STRUTTURA DI SOSTEGNO

La struttura di sostegno sarà realizzata in modo da contenere al minimo le opere civili, tenendo però conto del peso dei moduli, del contributo del terreno, dell'azione del vento nel sito di installazione (sia per la pressione che per la depressione sulle strutture) e del peso delle eventuali precipitazioni nevose che andranno ad insistere sulla superficie dei moduli.

I materiali utilizzati saranno di prima qualità e terranno conto dell'eventuale atmosfera aggressiva presente nel sito di realizzazione.

6 CRITERI DI DIMENSIONAMENTO DEI COMPONENTI ELETTRICI

Per i dati della radiazione solare, umidità relativa, temperature medie e valutazione impatto grandine sono state considerate le apposite norme CEI ed UNI in vigore. Non esiste nessun impedimento strutturale per la corretta installazione dei moduli fotovoltaici e di tutti i componenti necessari per il corretto funzionamento dell'impianto.

Per il dimensionamento dell'impianto si è fatto riferimento alla norma CEI 64-8/7. In particolare, per quanto riguarda le condizioni ambientali:

- i moduli fotovoltaici sono componenti intrinsecamente costruiti per alloggiamento all'esterno;
- le apparecchiature di protezione e manovra presenti localmente nel campo saranno protette con involucri aventi idoneo grado di protezione;

Progetto Definitivo Relazione Descrittiva

• i cablaggi saranno realizzati con cavi in gomma etilenpropilenica a doppio strato, per posa all'esterno/interrata.

Per quanto riguarda invece i parametri elettrici:

- i componenti lato c.c. verranno scelti tenendo soprattutto in considerazione le tensioni elevate in gioco, con particolare attenzione ai sistemi di sezionamento, opportunamente dedicati, per via della difficoltà di rottura dell'arco elettrico in corrente continua, più stabile di quello in alternata, venendo meno lo zero dell'onda sinusoidale;
- i componenti elettrici lato a.c. bassa tensione sono stati scelti in relazione a una tensione concatenata di 400V;
- il sistema di misura dell'energia sarà dotato di idonei trasformatori di misura per ridurre le correnti dell'ordine di grandezza delle centinaia di ampère a quello di alcuni ampère.

6.1 POTENZA NOMINALE DELL'IMPIANTO

La potenza nominale dell'impianto risulta di 43.104,000 kWp con l'impiego di 71.840 moduli di potenza nominale di 600 Wp.

La tensione in corrente continua in ingresso al gruppo di conversione risulterà pari alla somma delle tensioni in condizioni STC dei singoli pannelli collegati in serie (stringa). La tensione in corrente alternata in uscita dal gruppo di conversione dalla corrente continua risulta di 660Vca - 50 Hz.

7 DATI DI PROGETTO

7.1 CARATTERISTICHE IMPIANTO FOTOVOLTAICO

Tipologia Fotovoltaico
Potenza 43.104,000 kWp
Nuovo / trasformazione / ampliamento Nuovo impianto

7.2 CARATTERISTICHE FISICHE IMPIANTO

Superficie occupata ~54 ettari
Superficie occupata dai moduli ~203.314 m²
Numero moduli FV 71.840

Inclinazione moduli FV (Tilt) 0°
Orientamento moduli FV (Azimut) 0°

Tipologia tecnologica moduli Silicio monocristallino
Tipologia strutture di sostegno Profili di acciaio zincato

Tipologia locali controllo, conversione Locale tecnico prefabbricato

Ventilazione locale tecnico Naturale/Forzata

Posizionamento gruppo/i di conversione All'interno del locale tecnico

Progetto Definitivo Relazione Descrittiva

Posizionamento quadri CC In prossimità delle stringhe servite

Posizionamento cabina trafo All'interno del locale tecnico

7.3 CARATTERISTICHE ELETTRICHE IMPIANTO

Tipologia di rete al punto di consegna Media tensione trifase

Tensione nominale 20kV

Tipo collegamento Nuova utenza

Presa Numero /
Potenza Disponibile /

Misura dell'energia Richiesta al distributore

P. nominale max del generatore (CC) 43.104,00 kWp

P. max erogata al punto di consegna (CA) 63.091,20 kWp potenza complessiva area

interessata dalla presente autorizzazione e area di impianto fotovoltaico autorizzato tramite PAS n. prot: 16/08/2022 n. 9025

Tensione nominale al punto di consegna 36kV

7.4 POSIZIONAMENTO SITO DI INSTALLAZIONE

Località Via Nicola Badaloni, SNC

Comune Costa di Rovigo

Provincia Rovigo

Latitudine 45°02'27.54"N Longitudine 11°42'29.50"E

7.5 CARATTERISTICHE FISICHE SITO PRE INTERVENTO

Condizioni del terreno Terreno pianeggiante

Tipo di terreno Industriale
Presenza polvere Si (da terreno)

Esposizione a fenomeni atmosferici Si Presenza corpi estranei visibili No Strutture preesistenti No Ombreggiamenti No Vegetazione alto fusto No

7.6 CARATTERISTICHE DEI MATERIALI

Per i dati e le caratteristiche tecniche dei materiali utilizzati per la realizzazione dell'impianto si rimanda alle schede tecniche degli stessi ed agli elaborati grafici allegati alla presente relazione.

Impianto fotovoltaico AIEM GREEN S.r.l. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

8 PRESTAZIONI DEL SISTEMA

L'impianto è dimensionato in modo tale da costituire un campo fotovoltaico della potenza (lato corrente continua) di 43.104,000 kWp, composto da un unico generatore fotovoltaico.

La produzione media annua di energia prevista risulta pari a 64.099.204,08kWh.

9 CONFIGURAZIONE DELL'IMPIANTO

L'impianto fotovoltaico sarà composto da 71.840 moduli fotovoltaici raggruppati in stringhe da 32 moduli. La raccolta della potenza proveniente dalle stringhe avviene in corrente continua con il parallelo delle stesse tramite i quadri di protezione e sezionamento string-box. Attraverso tali quadri sarà possibile manovrare, in caso di intervento, tramite l'utilizzo di un sezionatore, ogni singola stringa.

Data l'estensione dell'impianto ed al fine di minimizzare le perdite di trasmissione dell'energia si è prevista la suddivisione delle 2245 stringhe in 172 quadri di parallelo e sezionamento string-box, che saranno poi raccolti agli inverter posizionati negli skid di trasformazione. Gli inverter saranno poi collegati al trasformatore dal quale si deriveranno anche le utenze generiche dei servizi ausiliari e della stazione elettrica.

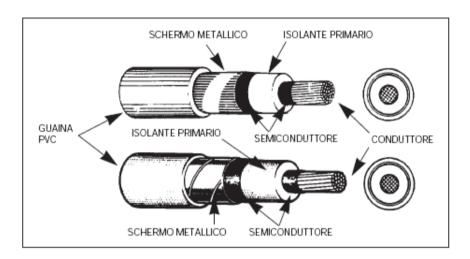
Il gruppo di misura fiscale, connesso mediante TA appositi, sarà collocato in comparto dedicato. Sono stati previsti gruppi di continuità di potenza adeguata al servizio di emergenza relativo agli ausiliari MT/BT. La configurazione descritta è visionabile negli schemi unifilari allegati.

9.1 TIPI DI CONDUTTORI

Le linee di cablaggio in corrente continua, dai moduli fino ai quadri string-box, saranno posate a vista (agganciate alla struttura) e in alcuni tratti saranno interrati e avranno le seguenti caratteristiche:

- tipo unipolare;
- conduttori in rame stagnato tipo corda flessibile a sezione rotonda;
- isolamento in gomma reticolata di qualità Z2;
- guaina esterna in gomma reticolata Z2;
- sigla **H1Z2Z2-K** -1,5/1,5KV (CC).

Le linee di cablaggio in corrente continua, dai quadri string-box ai gruppi di conversione dell'energia interni alla stazione, saranno di tipo interrato, ed avranno le seguenti caratteristiche:


- tipo unipolare per sezioni >25mm²;
- conduttori in alluminio tipo corda flessibile a sezione rotonda;
- isolamento in gomma etilenpropilenica di qualità G16;
- guaina esterna in PVC;
- sigla ARG16R16 1500Vcc 0,6/1,0KV.

Progetto Definitivo Relazione Descrittiva

Le linee/condotti di cablaggio dai gruppi di conversione dell'energia al trasformatore saranno fornite insieme al sistema convertitore/trafo.

I circuiti in **media tensione** saranno realizzati con cavi, del tipo "non propagante l'incendio", provvisti di conduttori in rame ed aventi un adeguato livello di tensione di isolamento del tipo ARG16H1R12 (figura sottostante).

- tipo uni/tripolare;
- conduttori in alluminio tipo corda rigida a sezione rotonda;
- isolamento in gomma etilenpropilenica di qualità G16;
- schermo in rame;
- guaina esterna in PVC;
- sigla ARG16H1R12 12/20KV.

9.2 DIMENSIONAMENTO DEI CONDUTTORI

Per la determinazione della portata di cavi con posa interrata si fa riferimento alla norma CEI UNEL 35026; la portata espressa in Ampere di un cavo interrato è pari a:

Iz = Io K1 K2 K3 K4

Dove **lo** è la portata del cavo in Ampere a una determinata sezione a un certo tipo di isolante e a un determinato modo di installazione; essa è pari a **Iz** quando tutti i fattori di correzione sono unitari ossia quando:

- K1: coeff. di temperatura vale 1 quando la temperatura del terreno è 20°C;
- **K2:** coeff. di raggruppamento vale 1 quando è installato un solo circuito formato da cavi unipolari;
- K3: coeff. di profondità vale 1 quando la profondità di posa è 0,8m;
- K4: coeff. del terreno vale 1 quando la resistività termica del terreno è 1,5Km/W.

Progetto Definitivo Relazione Descrittiva

Dalla tabella riportata nella norma CEI-UNEL 35026, scegliendo una certa sezione per il conduttore, si ricava la sua portata Io. Moltiplicando quest'ultima per i fattori di correzione si ottiene la Iz.

Per considerare accettabile la sezione del conduttore scelta, la Iz risultante dovrà essere maggiore della corrente Ib di impiego che è solita transitare nella conduttura. Se la Iz dovesse risultare minore della corrente di impiego è necessario selezionare una sezione di cavo superiore e ripetere la stessa verifica.

Lo stesso metodo di calcolo si applica anche per i cavi alloggiati in canala metallica in aria libera dove però i fattori ambientali sono:

- K1: coeff. di temperatura vale 1 quando la temperatura ambiente è 20°C;
- K2: coeff. di raggruppamento vale 1 quando è installato un solo circuito formato da cavi unipolari.

9.3 VERIFICA DELLA CADUTA DI TENSIONE

Con le sezioni stabilite in base alla corretta dissipazione termica è necessario verificare che lungo i circuiti non vi siano cadute di tensioni maggiori del 4% della tensione di esercizio come indicato dalla CEI 64/8. In particolare utilizzeremo il metodo della "caduta di tensione unitaria" e, facendo riferimento alla tabella CEI UNEL 35023, assumeremo che la caduta di tensione ΔV sul circuito considerato non superi il 4%. La formula per il calcolo della generica caduta di tensione lungo una tratta elettrica è la seguente:

$$\Delta V = U \cdot I \cdot L / 1.000 < 4\%$$
 dove

- U è la caduta di tensione unitaria tabulata nella CEI-UNEL 35023 [mV/A m]
- L è la lunghezza del cavo [m]
- I è la corrente nel cavo [A]

Nel caso in cui la caduta di tensione su un tratto/circuito sia superiore al 4% è necessario selezionare una sezione maggiore per il/i conduttore/conduttori e ripetere la verifica.

9.4 CONTRIBUTO ALLA CORRENTE DI CORTO CIRCUITO

L'impianto fotovoltaico è un generatore di corrente. In caso di cortocircuito, conformemente alle caratteristiche dei moduli utilizzati, l'impianto dal lato c.c. produrrà al massimo il 10% in più della sua corrente nominale.

In caso di cortocircuito di rete, abbassandosi la tensione, sia le protezioni di interfaccia dell'inverter che la protezione di interfaccia generale interverranno in brevissimo tempo, non consentendo di sostenere la corrente di cortocircuito all'inverter.

La corrente di cortocircuito sul lato MT viene, considerando:

• un aumento del 50% della corrente nominale dell'inverter lato AC durante il transitorio. Sul lato in bassa tensione il contributo è quindi pari a 6,48kA in uscita dall'inverter;

Impianto fotovoltaico AIEM GREEN S.r.I. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

- che l'inverter non può erogare più della potenza producibile dal lato FV, decurtata delle opportune perdite;
- una potenza nominale dell'inverter di 5400,00 kW lato AC;
- che l'inverter lavora a fattore di potenza prossimo all'unità.

All'ingresso del trasformatore, supponendo nulle le perdite tra inverter e trasformatore stesso, si avrebbe una corrente di corto circuito massima pari a 6480 A. All'uscita del trasformatore la corrente di corto circuito presunta erogata dal generatore vale quindi:

• $Icc_out = Icc_in \times \sqrt{3} / (V1 / V2) = 6480 \times 1,732 / (20000 / 660) = 370,37A$

9.5 PROTEZIONE CONTRO IL SOVRACCARICO

I cavi di alimentazione saranno protetti contro il sovraccarico mediante interruttori automatici opportunamente dimensionati. In particolare gli interruttori verranno scelti e regolati seguendo le prescrizioni della CEI 64/8:

- 1. il dispositivo non interverrà per valori minori della corrente di impiego e la sua corrente nominale sarà inferiore alla portata del cavo.
- 2. il massimo sovraccarico ammissibile sarà pari al 45% per un tempo to pari ad 1h (tempo caratteristico di intervento del relè termico del dispositivo).

Le condizioni sopra descritte sono sintetizzate dalle seguenti disuguaglianze:

- a. $lb \le ln \le lz$
- b. If $\leq 1.45 \cdot Iz$

Dove:

- Ib: corrente di impiego del circuito;
- Iz: portata in regime permanente della conduttura;
- In: corrente nominale del dispositivo di protezione;
- If: corrente che assicura l'effettivo funzionamento del dispositivo di protezione.

In generale si sceglieranno dispositivi per i quali:

If
$$\leq 1,45 \cdot \ln$$

In modo che rispettando la disuguaglianza "a" sarà automaticamente verificata la "b". In particolare, per la parte in bassa tensione c.c. si regolerà If pari a 1,05In, mentre per la parte in bassa tensione c.a. si regolerà If pari a 1,10In.

Impianto fotovoltaico AIEM GREEN S.r.l. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

9.6 PROTEZIONE CONTRO IL CORTO CIRCUITO

La protezione delle condutture contro il corto circuito verrà garantita grazie ad interruttori automatici. Tali dispositivi verranno installati all'inizio della conduttura da proteggere in modo tale da interrompere, in un tempo inferiore a quello che porterebbe i conduttori alla temperatura limite ammissibile, tutte le correnti provocate da un corto circuito, che si presenti in un punto qualsiasi del circuito. Nel caso di impianti attivi è sempre necessario considerare che l'eventuale corto circuito su una conduttura dell'impianto stesso non viene alimentato solo dalla rete alla quale si è connessi, ma viene alimentato anche dai generatori che costituiscono l'impianto di produzione elettrica. Essendo però il generatore fotovoltaico schematizzabile come generatore di corrente, piuttosto che come generatore di tensione, il contributo alla corrente di corto circuito che esso è in grado di dare risulta di modesta entità.

Come già detto nel paragrafo precedente, la massima quantità di corrente che il generatore è in grado di erogare è limitata dalla natura stessa del componente fotovoltaico ed è stimabile in un 10% in più della sua corrente nominale.

In uscita all'inverter il contributo alla corrente di corto circuito è comunque fissato dal costruttore ed è pari al 50% in più della corrente nominale. Essendo tali valori trascurabili rispetto ai valori di corrente erogati dalla rete in caso di guasto dimensioneremo le protezioni considerando solo questi ultimi. Premesso ciò, i dispositivi di protezione verranno scelti in modo da limitare l'energia termica passante a valori tollerabili dal cavo. Operativamente occorre rispettare la seguente disuguaglianza:

$$\int$$
 i2 dt \leq K2 S2 per la \leq lcc \leq lb

Ovvero, si confronterà la caratteristica dell'energia specifica passante del dispositivo in funzione della corrente presunta di corto circuito con il termine K2 S2 (energia specifica tollerabile dal cavo). In generale tale disuguaglianza è valida solo per un certo range di valori della corrente presunta di corto circuito e, pertanto, si verificherà che la corrente di guasto trifase ad inizio linea (caso di corto circuito più gravoso) e la corrente di guasto monofase a fine linea (caso di corto circuito meno gravoso) siano comprese in tale range:

- Icc caso di corto circuito più gravoso ≤ la (potere di interruzione massimo);
- Icc caso di corto circuito meno gravoso ≥ Ib (potere di interruzione minimo).

Per la determinazione della corrente di corto circuito si useranno le seguenti formule:

corto circuito trifase:

 $Icc = E0 / \int (RR + RF)^2 + (XR + XF)^2$

corto circuito fase-fase:

 $Icc = \sqrt{3} / 2 \cdot E0 / \sqrt{(RR + RF)^2 + (XR + XF)^2}$

Impianto fotovoltaico
AIEM GREEN S.r.I.
Comune di Costa di Rovigo (RO)
Progetto Definitivo

Progetto Definitivo Relazione Descrittiva

corto circuito fase-neutro:

 $Icc = E0 / \int (RR + RF + RN)^2 + (XR + XF + XN)^2$

Dove

• E0 è la tensione di fase;

• RR e XR sono la resistenza e la reattanza della rete a monte, considerata come un generatore di tensione equivalente di forza elettromotrice EO;

tensione equivalence di forza electromotrice 20,

• RF e XF sono la resistenza e la reattanza del conduttore di fase fino al punto di corto circuito;

• RN e XN sono la resistenza e la reattanza del conduttore di neutro fino al punto di corto circuito.

Il calcolo effettivo delle correnti di guasto e la verifica delle protezioni attraverso le loro curve caratteristiche viene rimandata, come suggerito dalla CEI 0-2, in fase di progettazione esecutiva, poiché attualmente non si dispone del valore dell'impedenza di rete nel punto di consegna. Si consideri però che tali verifiche sono del tutto formali poiché le attuali protezioni in commercio sono in grado di individuare e interrompere le comuni correnti di corto circuito, aventi solitamente valori compresi tra i 10 e i 90KA

9.7 PROTEZIONE DAI CONTATTI DIRETTI/INDIRETTI

Per quanto riguarda la protezione dei contatti diretti, si isoleranno a regola d'arte tutte le parti attive, al fine di impedire che le persone possano venire accidentalmente in contatto con il circuito elettrico. I moduli fotovoltaici, pur essendo componenti in Classe II, si considerano sotto tensione anche quando il sistema risulta distaccato dal lato in corrente alternata.

Per quanto riguarda i contatti indiretti, tutte le parti metalliche accessibili dell'impianto elettrico, non in tensione, ma che vi si potrebbero trovare in caso di scariche sulle carcasse o per difetto di isolamento, saranno poste a terra mediante un impianto di terra coordinato con dispositivi di protezione differenziali.

La misura di protezione adottata nell'impianto da realizzare sarà di tipo totale ed attuata mediante:

Isolamento delle parti attive per i conduttori elettrici;

• Involucri e barriere per i quadri e le altre apparecchiature elettriche.

Il grado di protezione elettrico degli involucri e delle barriere utilizzati dovrà essere minimo IP20B; per le superfici superiori orizzontali degli involucri dovrà essere minimo IP50D.

9.8 IMPIANTO DI TERRA

L'impianto di terra sarà in configurazione TN-S con il neutro, corrispondente al centro stella del trasformatore lato BT, posto a terra nella stazione elettrica. Il conduttore di protezione verrà poi distribuito su tutta l'estensione dell'impianto.

Per determinare la sezione del conduttore di protezione Sp sui vari tratti di circuito si seguono le seguenti prescrizioni della CEI 64/8:

Progetto Definitivo Relazione Descrittiva

- Per S ≤ 16 deve essere Sp = S
- Per $16 \le S \le 35$ deve essere Sp = 16
- Per S ≥ 35 deve essere Sp = S/2 con valori approssimati per eccesso

Nei casi in cui il conduttore di protezione non fa parte della stessa terna dei conduttori di fase la sua sezione non sarà inferiore a 2,5 mm².

Per il dispersore di terra attorno alle cabine e per le strutture si utilizzerà una corda di rame nudo di spessore 35 mm²

9.9 DISPOSITIVI DIFFERENZIALI

Il coordinamento delle protezioni differenziali con l'impianto di terra sarà realizzato in base alla norma CEI 64-8 che prescrive il soddisfacimento della seguente relazione:

Dove:

- la è la corrente che provoca l'apertura automatica del dispositivo di protezione entro un tempo definito (corrente differenziale nominale del dispositivo);
- **Uo** è il valore efficace tra fase e terra della tensione nominale, pari alla tensione di fase essendo il neutro a terra;
- **Zs** è l'impedenza dell'anello di guasto comprendente la sorgente, il conduttore attivo fino al punto di guasto e il conduttore di protezione tra il punto di guasto e la sorgente.

Per il calcolo di Zs si fa riferimento alla seguente formula

$$Zs = \int (RS + RF + RPE)^2 + (XS + XF + XPE)^2$$

Dove:

- RS e XS sono la resistenza e la reattanza della sorgente, considerata come un generatore di tensione equivalente di forza elettromotrice UO;
- RF e XF sono la resistenza e la reattanza del conduttore di fase fino al punto di guasto;
- RPE e XPE sono la resistenza e la reattanza del conduttore di protezione fino al punto di guasto.

Operativamente occorre scegliere i dispositivi differenziali in maniera tale che la loro corrente di apertura sia sempre minore o uguale alla corrente di dispersione in grado di circolare lungo l'anello di guasto.

Per il calcolo effettivo delle correnti di dispersione si rimanda alla fase di progetto esecutivo/costruttivo, in cui si avranno informazioni più precise riguardo l'impedenza delle sorgenti in esame.

9.10 DISPOSITIVI DI PROTEZIONE PRINCIPALI

9.10.1 DISPOSITIVO GENERALE E DI INTERFACCIA (DG E DDI)

Il dispositivo generale sarà conforme alle prescrizioni dell'ultima normativa CEI 0-16. Esso avrà la funzione di salvaguardare il funzionamento della rete nei confronti di guasti nel sistema di generazione elettrica. In particolare, sarà un interruttore tripolare in esecuzione estraibile con sganciatore di apertura e verrà posizionato a valle del gruppo di misura dell'energia.

Il funzionamento di un impianto di produzione in parallelo alla rete di distribuzione è subordinato a precise condizioni, tra le quali in particolare:

- il regime di parallelo non deve causare perturbazioni al servizio sulla rete di distribuzione, al fine di preservare il livello di qualità del servizio per gli altri Utenti connessi;
- il regime di parallelo deve interrompersi immediatamente ed automaticamente in assenza di alimentazione della rete di distribuzione o qualora i valori di tensione e frequenza della rete stessa non siano compresi entro i valori comunicati dal Distributore;
- in caso di mancanza tensione o di valori di tensione e frequenza sulla rete di distribuzione non compresi entro i valori stabiliti dal Distributore, il dispositivo di parallelo dell'impianto di produzione non deve consentire il parallelo con la rete stessa.

Allo scopo di garantire la separazione dell'impianto di produzione dalla rete di distribuzione in caso di perdita di rete deve essere installato un ulteriore dispositivo detto Dispositivo di Interfaccia (DDI). Esso sarà un interruttore tripolare in esecuzione estraibile con sganciatore di apertura a mancanza di tensione.

9.10.2 SISTEMA DI PROTEZIONE GENERALE ASSOCIATO AL DISPOSITIVO GENERALE (SPG)

L'SPG contribuisce alla sicura individuazione degli elementi guasti del sistema elettrico ed alla loro conseguente esclusione, per accelerare la diagnosi del disservizio e la ripresa del servizio. Esso è composto da:

- Trasduttori di corrente di fase e di terra (ed eventualmente trasduttori di tensione) con le relative connessioni al relè di protezione;
- Relè di protezione con relativa alimentazione;
- Circuiti di apertura dell'interruttore.

I trasduttori forniscono grandezze ridotte al relè che comprende:

protezione di massima corrente di fase almeno bipolare a tre soglie, una a tempo dipendente, le
altre due a tempo indipendente definito. Poiché la prima soglia viene impiegata contro il
sovraccarico, la seconda viene impiegata per conseguire un intervento ritardato e la terza per
conseguire un intervento rapido, nel seguito, per semplicità, ci si riferirà a tali soglie con i
simboli:

Progetto Definitivo Relazione Descrittiva

- o *l* > (sovraccarico), valore e tempo di estinzione da concordare con il Distributore;
- I >> (soglia 51, con ritardo intenzionale), val. 250A; tempo di estinzione della sovracorrente: 500ms;
- o 1 >>> (soglia 50, istantanea); val. 600A; tempo di estinzione della sovracorrente: 120ms.
- protezione di massima corrente omopolare a due soglie, oppure protezione direzionale di terra a
 due soglie e massima corrente omopolare a una soglia (da valutare col distributore).

Per le regolazioni delle protezioni sopra descritte si rimanda alla CEI 0-16.

9.10.3 SISTEMA DI PROTEZIONE DI INTERFACCIA ASSOCIATO AL DISPOSITIVO DI INTERFACCIA (SPI)

Il sistema di protezione di interfaccia (SPI), agendo sul DDI, separa l'impianto di produzione dalla rete di distribuzione evitando che:

- in caso di mancanza dell'alimentazione sulla rete, l'Utente possa alimentare la rete stessa;
- in caso di guasto sulla linea MT cui è connesso l'Utente attivo, l'Utente stesso possa continuare ad alimentare il guasto;
- in caso di richiusure automatiche o manuali di interruttori della rete di distribuzione, il generatore possa trovarsi in discordanza di fase con la rete con possibilità di danneggiamento meccanico del generatore stesso.

Il Sistema di Protezione di Interfaccia (SPI) associato al DDI prevede relè di frequenza, di tensione, ed eventualmente di tensione omeopolare, i quali implementano le seguenti protezioni:

- 1. massima tensione (2 soglie);
- 2. minima tensione (2 soglie);
- 3. massima frequenza (2 soglie);
- 4. minima frequenza (2 soglie);
- 5. massima tensione omopolare V0 lato MT (ritardata);
- 6. protezione contro la perdita di rete (da concordare tra il Distributore e l'Utente in funzione delle caratteristiche della rete di distribuzione).

Le protezioni di massima/minima frequenza e di massima/minima tensione devono avere in ingresso grandezze proporzionali ad almeno due tensioni concatenate MT che quindi possono essere prelevate:

- dal secondario di TV collegati fra due fasi MT;
- direttamente da tensioni concatenate BT.

L'intervento di un qualsiasi relè determinerà l'apertura del dispositivo di interfaccia. Le regolazioni delle protezioni avverranno sotto la responsabilità dell'Utente sulla base del piano di regolazione predisposto dal Distributore.

Impianto fotovoltaico AIEM GREEN S.r.l. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

Per la sicurezza dell'esercizio della rete si provvederà un rincalzo alla mancata apertura del dispositivo d'interfaccia. Il rincalzo consiste nel riportare il comando di scatto, emesso dalla protezione di interfaccia, ad un altro dispositivo di interruzione.

Esso è costituito da un circuito, condizionato dalla posizione di chiuso del dispositivo di interfaccia, che agirà sul dispositivo generale, con ritardo non eccedente 1s. Il temporizzatore viene attivato dal circuito di scatto della protezione di interfaccia. La soluzione prescelta dovrà essere comunque approvata dal Distributore.

Esso incorpora i relè responsabili per le seguenti protezioni:

- MIN-MAX TENSIONE (27-59)
- MANCANZA TENSIONE (27T)
- PRESENZA TENSIONE (59T)
- MAX TENSIONE OMOPOLARE (59N)
- MIN-MAX CORRENTE (50-51)
- MASSIMA CORRENTE DIREZIONALE (67)
- MASSIMA CORRENTE DIREZIONALE DI TERRA (67N)
- MIN-MAX CORRENTE OMOPOLARE (50N-51N)
- MIN-MAX FREQUENZA (81)
- DERIVATA DI FREQUENZA (81R)
- SALTO DI FASE (DPHI)

9.10.4 CONTROLLORE CENTRALE DI IMPIANTO (CCI)

Apparato le cui funzioni principali sono il monitoraggio dell'impianto, lo scambio dati fra l'impianto e il DSO ed eventuali ulteriori attori abilitati, ed inoltre la regolazione e il controllo dell'impianto stesso. Il CCI è un apparato i cui compiti principali sono:

- Svolgere la funzione di monitoraggio dell'impianto con lo scopo di raccogliere informazioni dall'impianto e dalle unità di generazione/accumulo utili ai fini della "osservabilità" della rete.
- Coordinare il funzionamento dei diversi elementi costituenti l'impianto, affinché l'impianto stesso operi, nel suo complesso, in maniera da soddisfare al le prescrizioni della Norma CEI 0-16, riportate al punto di connessione con la rete (nel seguito PdC), nel rispetto delle capability prescritte dalla stessa Norma per le singole unità di generazione e di accumulo (funzionalità di regolazione e comando);

9.11 SELETTIVITÀ DELLE PROTEZIONI

L'impianto verrà coordinato in maniera che, in caso di corto circuito o di dispersione verso terra, intervenga la protezione subito a monte del guasto. Così facendo, in caso di guasto, viene scollegata solo la parte di impianto dove il problema si presenta, lasciando il resto del sistema in modalità normale. In particolare, per guasti di tipo differenziale la porzione minima di impianto che viene scollegata è la metà del campo mentre per guasti riconducibili a corto circuito è possibile isolare anche la singola stringa.

In caso di corto circuito le protezioni interverranno in guest'ordine:

- fusibile di stringa
- interruttore sul parallelo in corrente continua
- interruttore integrato nell'inverter
- protezione di generatore
- protezione di interfaccia
- protezione generale
- protezione di linea

In caso di dispersione verso terra le protezioni interverranno in quest'ordine:

- interruttore integrato nell'inverter
- protezione generale
- protezione di linea

9.12 PROTEZIONE DALLE SCARICHE ATMOSFERICHE

Il campo fotovoltaico in oggetto non altera la morfologia del terreno nel quale è installato, e non rappresenta il punto più alto delle masse metalliche presenti. Inoltre, le strutture di sostegno dei moduli fotovoltaici, direttamente conficcate nel terreno, costituiscono un dispersore di fatto. Detto questo si può ritenere che l'impianto possa ritenersi autoprotetto. Utilizzeremo dei limitatori di sovratensione a protezione delle apparecchiature sensibili. Sia i quadri string-box sia gli inverter hanno tali limitatori di sovratensione già integrati. Per maggiori informazioni fare riferimento agli schemi progettuali ed ai fascicoli tecnici dei detti dispositivi.

9.13 VALUTAZIONE CAMPI ELETTROMAGNETICI

L'apporto di un impianto fotovoltaico in esercizio ai valori di campo elettrico ed induzione magnetica normalmente presenti nell'ambiente si considera marginale.

Gli apparati che costituiscono l'impianto fotovoltaico sono rispondenti ai requisiti normativi in materia di compatibilità elettromagnetica in accordo agli articoli 7, 9, 10 e 11 del D.Lgs n° 194/2007. I certificati dei Costruttori in materia di compatibilità elettromagnetica verranno allegati per tutti i componenti in fase di progettazione esecutiva.

Impianto fotovoltaico AIEM GREEN S.r.l. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

I moduli fotovoltaici lavorano in corrente e tensione continue per cui la generazione di campi variabili può essere limitata solamente a dei brevi transitori. Per tale componente non sono quindi previste prove di compatibilità elettromagnetica.

Il modello di inverter scelto possiede le necessarie certificazioni di immunità dai disturbi elettromagnetici esterni e di ridotta emissione di interferenze elettromagnetiche verso altri dispositivi elettronici vicini. In particolare, l'inverter scelto possiede la certificazione di rispondenza alle seguenti normative di compatibilità elettromagnetica:

- CEI EN 50273 (CEI 95-9)
- CEI EN 61000-6-3 (CEI 210-65)
- CEI EN 61000-2-2 (CEI 110-10)
- CEI EN 61000-3-2 (CEI 110-31)
- CEI EN 61000-3-3 (CEI 110-28)
- CEI EN 55022 (CEI 110-5)
- CEI EN 55011 (CEI 110-6)

La presenza dei cavi di media tensione schermati e interrati non rappresenta una fonte di emissione apprezzabile, in più, la mutua induzione provocata dalla vicinanza dei conduttori delle linee in cavo riduce il campo magnetico a valori prossimi allo zero.

Infine, l'ubicazione dei trasformatori BT/MT fa sì che anche il loro contributo ai fini dell'inquinamento elettromagnetico possa venire ignorato

9.14 DESCRIZIONE DEGLI SCAVI

Le linee elettriche destinate al trasporto dell'energia e del segnale verranno, per la maggior parte, interrate con la logica di seguito descritta.

I cavidotti saranno in materiale isolante ed autoestinguente, del tipo pesante (secondo CEI 23-46). In prossimità di ogni quadro di protezione e sezionamento (string-box) sarà allestito un pozzetto avente dimensioni minime 60x60x60cm. Le linee di scavo adiacenti alle file di moduli verranno raccolte dalle dorsali. Le dorsali termineranno alle cabine.

Per quanto possibile i percorsi saranno lineari, con una distribuzione simile alla spina di pesce. Ove necessario le dorsali saranno interrate, i pozzetti saranno carrabili.

I pozzetti saranno presenti:

- Vicino ad ogni quadro di protezione e sezionamento;
- All'incrocio tra le linee di scavo e le dorsali;
- Vicino alle cabine.

La dimensione in sezione degli scavi sarà adeguata al numero di tubazioni da interrare.

Tutti gli scavi avranno una profondità di 0,8m e verranno segnalati con opportuno nastro monitore.

In corrispondenza di ogni cabina prefabbricata verrà tracciata la maglia di terra, che richiederà uno scavo aggiuntivo all'interno dei lavori di sbancamento. Tutto il materiale di scavo sarà usato per il rinterro e la copertura delle tubazioni/cavi posati.

9.15 ELETTRODOTTO

Il cavidotto tra il punto di consegna e il punto di immissione dell'energia sarà coerente con le fasce di rispetto e sarà interrato con una profondità minima di 1,0m.

I cavi di collegamento tra il punto di consegna e il punto di immissione dell'energia sono protetti meccanicamente da tale cavidotto.

9.16 IMPIANTI SPECIALI

9.16.1 IMPIANTO DI ILLUMINAZIONE ESTERNA

L'impianto fotovoltaico sarà dotato di un impianto di illuminazione perimetrale esterna costituito da 148 proiettori LED con potenza di 80W, installati su pali metallici ad altezza di 3 metri fuori terra.

L'illuminazione sarà normalmente spenta anche nelle ore notturne e si accenderà esclusivamente in caso di intervento dell'impianto antintrusione.

9.16.2 IMPIANTO DI VIDEOSORVEGLIANZA

L'impianto fotovoltaico sarà dotato di un impianto di videosorveglianza costituito da 148 telecamere fisse, installate su altrettanti pali (solitamente condivisi con i corpi illuminanti esterni) e collegate alla dorsale in fibra ottica tramite convertitori fibra/rame. La fibra ottica farà capo a uno switch in quadro installato all'interno della cabina, il quale renderà possibile la visione e il controllo da remoto delle immagini.

9.16.3 IMPIANTO DI ALLARME

L'impianto fotovoltaico sarà dotato di un impianto di allarme costituito da cavo magnetofonico lungo tutto il perimetro, in grado di comandare l'accensione dell'impianto di illuminazione perimetrale.

9.17 RECINZIONE

Lungo il perimetro dell'impianto fotovoltaico sarà installata una recinzione in rete metallica plastificata di colore verde, con altezza pari ad 1,8 m, sorretta da pali metallici installati ad un intervallo regolare di 2m. Sarà presente un unico cancello di ingresso realizzato in ferro zincato con larghezza pari a 6m.

Impianto fotovoltaico AIEM GREEN S.r.I. Comune di Costa di Rovigo (RO) Progetto Definitivo

Relazione Descrittiva

10 VERIFICA TECNICO FUNZIONALE

L'impianto fotovoltaico sarà realizzato con componenti che assicurano l'osservanza delle seguenti condizioni:

- a) Pcc > 0,85 * Pnom * I / Istc
- b) Pca > 0,9 * Pcc
- c) Pcc > (1 Ptpv 0,08) * Pnom * I / Istc

dove:

- **Pcc** è la potenza in corrente continua misurata all'uscita del generatore fotovoltaico, con precisione migliore del ±2%;
- Pnom è la potenza nominale del generatore fotovoltaico;
- I è l'irraggiamento [W/m²] misurato sul piano dei moduli, con precisione migliore del ±3%;
- Istc, pari a 1000W/m², è l'irraggiamento in condizioni di prova standard;
- Pca è la potenza attiva in corrente alternata misurata all'uscita del gruppo di conversione della corrente continua in corrente alternata, con precisione migliore del 2%.
- Ptpv sono le perdite termiche del generatore fotovoltaico (desunte dai fogli di dati dei moduli), mentre tutte le altre perdite del generatore stesso (ottiche, resistive, caduta sui diodi, difetti di accoppiamento) sono tipicamente assunte pari all'8%. Tale condizione deve essere verificata per Pca > 90% della potenza di targa del gruppo di conversione della corrente continua in corrente alternata.

le prove di cui ai punti a) e b) saranno effettuate in condizioni I > 600W/ m².