

REGIONE LAZIO

Comune di Paliano

PROGETTO DEFINITIVO

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO A TERRA DELLA POTENZA DI PICCO PARI A 37.807,2 kWp INTEGRATO CON UN SISTEMA DI ACCUMULO DELLA POTENZA DI 12.000 kW E POTENZA IN IMMISSIONE PARI A 48.000 kW UBICATO NEL COMUNE DI PALIANO (FR) E DELLE OPERE CONNESSE NEL COMUNE DI ANAGNI (FR)

TITOLO

Disciplinare descrittivo

PROGETTAZIONE PROPONENTE

SR International S.r.I.
C.so Vittorio Emanuele II, 282-284 - 00186 Roma
Tel. 06 8079555 - Fax 06 80693106
C.F e P.IVA 13457211004

ATON 27 S.r.l.

ATON 27 S.r.l.

VIA EZIO MACCANI 54 - 38121 Trento (TN)

C.F e P.IVA 02708670225

PEC: aton27.srl@pec.it

00	01/07/2023	Ing. Lauretti	Ing. Bartolazzi	Ing. Bartolazzi	Disciplinare descrittivo
Revisione	Data	Elaborato	Verificato	Approvato	Descrizione

Codice Elaborato
TCN-PLN-DD
Scala
Formato
A4

INDICE

INDICE DELLE FIGURE	2
INDICE DELLE TABELLE	2
1. GENERALITÀ	3
2. LAYOUT DELL'IMPIANTO	4
3. CARATTERISTICHE TECNICHE DEI COMPONENTI D'IMPIANTO	5
3.1 MODULI FOTOVOLTAICI	5
3.2 INVERTER MULTISTRINGA	7
3.3 QUADRO ELETTRICO IN MT INTERNO ALLE CABINE DI TRASFORMAZIONE	9
3.4 TRASFORMATORE BT/MT	9
3.5 CABLAGGI ELETTRICI	10
8.1 CABINE DI TRASFORMAZIONE BT/MT	15
8.2 CABINA DI RACCOLTA	15
8.3 CABINA CONTROL ROOM	16
9. IMPIANTO DI ACCUMULO O BESS	
9.1 BATTERY CONTAINER (BC)	17
9.2 SISTEMA INVERTER-TRASFORMAZIONE	18
9.3 CABINA SERVIZI AUX	19
9.4 CABLAGGI ELETTRICI	19
10. IMPIANTI ELETTRICI ED OPERE COMUNI AI DUE PROGETTI	20
11. PROTEZIONE CONTRO I SOVRACCARICHI	20
11.1 PROTEZIONE CONTRO I CORTOCIRCUITI	20
11.2 GRADO D'ISOLAMENTO	21
11.3 POSA DEI CAVI	21
11.3.1 PRESSACAVI	21
11.3.2 FORZA MOTRICE	22
4.4 SICUREZZA ELETTRICA	22
4.5 IMPIANTO DI TERRA	23
12. PROTEZIONE CONTRO LE SOVRATENSIONI	24
13. MISURE DI PROTEZIONE PER LA CONNESSIONE ALLA RETE IN MT	24
14. GRUPPI DI MISURA	25
15. IMPIANTI DI ILLUMINAZIONE, VIDEOSORVEGLIANZA E ANTINTRUSIONE	26
9 CONTROLLO E MONITORAGGIO DELL'IMPIANTO AGRIVOLTAICO	30
10 OPERE CIVILI	30
10.1 STRUTTURE DI SUPPORTO DEI MODULI FV	33
8.4 STAZIONE UTENTE DI TRASFORMAZIONE MT/AT (SU)	34

Disciplinare Tecnico

ATON 27 S.r.I.

9	SCAVI
10	VIABILITÀ, ACCESSI E RECINZIONE
11	MOVIMENTI DI TERRA
11	ANALISI IDRAULICA
IN	DICE DELLE FIGURE
Fig	ura 1 – Tipologia di modulo utilizzato nel progetto - P=580 Wp 6
_	ura 2 – Dati tecnici, meccanici e condizioni operative del modulo fotovoltaico da 590 6
Figu	ura 3 – Modello inverter con potenza nominale di 330 kVA - caratteristiche tecniche 8
Figu	ura 4 – Quadro elettrico di protezione in MT interno alla cabina di trasformazione 9
Figu	ura 5 – Caratteristiche tecniche e dimensioni del trasformatore BT/MT10
Figu	ura 6 – Scheda tecnica del cavo solare 0,6/1 kV12
Figu	ura 7 – Scheda tecnica del cavo in BT - FG16R16 0,6/1 kV13
Figu	ura 8 – Scheda tecnica del cavo MT del tipo "air-bag"14
Fig	ura 9 – Cabina di trasformazione BT/MT-viste laterali15
Figu	ura 10 – Tipologia di battery container18
Figu	ura 11 – Tipologia di cabina di trasformazione-inverter da installare nell'impianto19
Figu	ura 12 – Tipico palo di sostegno per illuminazione e videosorveglianza26
	ura 13 – Tipico dello schema di collegamento per sistemi di videosorveglianza e trollo27
Fig	ura 14 - Sistema di antifurto dei moduli FV29
Figu	ura 13 – Sezione trasversale di una vela d'impianto34
Figu	ura 14 – Tipico di scavo per cavi BT/MT36
IN	DICE DELLE TABELLE
Tab	pella 1 – Dati tecnici dell'impianto agrivoltaico
Tab	pella 2 – Componenti elettrici ed opere civili

1. GENERALITÀ

L'impianto agrivoltaico da realizzare nel territorio comunale di Paliano (FR), sarà realizzato con moduli installati su strutture metalliche del tipo tracker, orientate con un azimuth di 0° rispetto a Sud, per una potenza nominale di circa 37.807,2 kWp. Per il layout d'impianto sono stati scelti moduli bifacciali della potenza nominale di 590 Wp (in condizioni STC) modello Longi, per un totale di circa 64.080 moduli fotovoltaici monocristrallini. Verranno inoltre installati n.120 inverter multistringa della Huawei, aventi ciascuno un valore di potenza nominale pari a 300 kW in ac.

Si sottolinea che in fase esecutiva, soprattutto in riferimento alla situazione di mercato al momento dell'acquisto dei componenti, potrà essere scelta una diversa tipologia di moduli e dei componenti o sistemi elettrici con pari prestazioni. Tale scelta sarà comunque effettuata tenendo conto sia della potenza massima installabile e sia che vengano garantite ottime prestazioni di durata e di producibilità dell'impianto FV.

2. LAYOUT DELL'IMPIANTO

L'impianto agrivoltaico avrà il seguente layout di progetto:

	Impianto Agrivoltaico	Numero Inverter	N. Stringhe per Inverter	Numero stringhe	Numero moduli	Moduli per stringa	Potenza Sottocampo [kWp]	Potenza Totale [kWp]	Potenza Inverter [kW]	Cabine quadri in AT	Cabina di raccolta	Potenza trafo BT/MT 0,8/30 kV
Area 1	Sottocampo 1	11	23 str x 6 inv 22 str x 5 inv	248	5952	24	3511,7	7023,36	3300	CT1		4000
Aicui	Sottocampo 2	11	23 str x 6 inv 22 str x 5 inv	248	5952	24	3511,7	7023,30	3300	C11		4000
Area 2	Sottocampo 3	14	23 str x 12 inv 22 str x 2 inv	320	7680	24	4531,2	4531,20	4200	CT2		5000
Area 3	Sottocampo 4	9	22 str x 5 inv 21 str x 4 inv	194	4656	24	2747,0	5005.60	2700	- СТЗ		3150
Area 3	Sottocampo 5	10	22 str x 6 inv 21 str x 4 inv	216	5184	24	3058,6	5805,60	3000	CIS		3150
Area 4	Sottocampo 6	12	23 str x 10 inv 22 str x 2 inv	274	6576	24	3879,8	3879,84	3600	CT4	CDR	4000
Area 5	Sottocampo 7	7	24 str x 5 inv 23 str x 2 inv	166	3984	24	2350,6	2350,56	2100	CT5		2500
Area 6	Sottocampo 8	9	22 str x 7 inv 21 str x 2 inv	196	4704	24	2775,4	5239,20	2700	- СТ6		3150
Area o	Sottocampo 9	8	22 str x 6 inv 21 str x 2 inv	174	4176	24	2463,8	5259,20	2400	C16		3150
Area 7	Sottocampo 10	9	22 str x 6 inv 21 str x 3 inv	195	4680	24	2761,2	5210,88	2700	- CT7		3150
Area /	Sottocampo 11	8	22 str x 5 inv 21 str x 3 inv	173	4152	24	2449,7	3210,66	2400	CI7		3150
Area 8	Sottocampo 12	12	23 str x 2 inv 22 str x 10 inv	266	6384	24	3766,6	3766,56	3600	СТ8		4000
	· ·	TOTALE 120	·	TOTALE 2670	TOTALE 64080			TOTALE 37807,20	TOTALE 36000,00	TOTALE 8	TOTALE 1	

Tabella 1 – Dati tecnici dell'impianto agrivoltaico

Di seguito la tabella riassuntiva con le principali lunghezze dei cavidotti e volumetrie delle opere civili costituenti l'impianto FV:

Riepilogo	[m]	[m3]
Lunghezza scavi BT in CC tra stringa e inverter	4560	
Volume scavo tra stringhe ed inverter BT DC		1641,6
Lunghezza cavo da 6 mmq in BT CC	80850	
Lunghezza scavi BT in AC tra inverter e cabina di trasformazione	5640	
Volume scavo tra inv e cab trasf. BT AC		2186
Lunghezza terna di cavi unipolari da 300 mmq in BT AC	21146	
Lunghezza scavi MT interni	3431	
Volume scavi MT interni		3154
Lunghezza terna di cavi unipolari in MT da 400 mmq interni	3813	
Lunghezza terna di cavi unipolari in MT da 500 mmq interni	3585	
Lunghezza scavo MT esterno	3450	
Volume scavo MT esterno		3312
Lunghezza terna di cavi unipolari in MT da 500 mmq esterni	10500	
Lunghezza cavi illuminazione e videosorveglianza BT 2,5 mmq AC	7500	
Volume scavi cavi illuminaz e videosorv BT AC		2250
Volume cabine di trasformazione		1311
Volume cabina di raccolta - CDR		205
Volume cabina quadri nella SEU		278
Volume cabina control room		50
Volume scavo fondazioni cabine di trasformazione		205
Volume scavo fondazioni cabina di raccolta		32

Tabella 2 - Componenti elettrici ed opere civili

3. CARATTERISTICHE TECNICHE DEI COMPONENTI D'IMPIANTO

3.1 MODULI FOTOVOLTAICI

Per il layout d'impianto sono stati scelti moduli fotovoltaici bifacciali della Longi, modello LR5-72HGD 590M da 5890 Wp (o similari), in condizioni STC. I moduli sono in silicio monocristallino con caratteristiche tecniche dettagliate riportate nella tabella seguente. Ogni modulo dispone inoltre di diodi di by-pass alloggiati in una cassetta IP65 e posti in antiparallelo alle celle cosi da salvaguardare il modulo in caso di contro-polarizzazione di una o più celle dovuta ad ombreggiamenti o danneggiamenti.

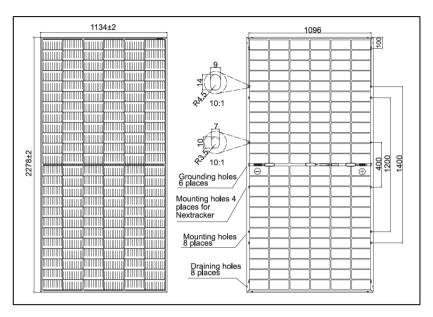


Figura 1 - Tipologia di modulo utilizzato nel progetto - P=580 Wp

In Figura 2, sono rappresentate le caratteristiche tecniche e costruttive del modulo:

Electrical Characteristi	i cs s	TC : AM1.	5 1000V	V/m² 25°0	: NO	OCT : AM1	.5 800W	/m² 20°C	1m/s	Test uncert	ainty for Pm	ax: ±3%			
Module Type	LR5-72H	IGD-560M	LR5-72H	HGD-565M	LR5-72H	IGD-570M	LR5-72H	IGD-575M	LR5-72H	IGD-580M	LR5-72H	IGD-585M	LR5-72H	IGD-590M	
Testing Condition	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	
Maximum Power (Pmax/W)	560	426.3	565	430.1	570	433.9	575	437.7	580	441.5	585	445.3	590	449.1	
Open Circuit Voltage (Voc/V)	50.99	48.46	51.09	48.55	51.19	48.65	51.30	48.75	51.41	48.86	51.52	48.96	51.63	49.07	
Short Circuit Current (Isc/A)	13.89	11.16	13.97	11.22	14.05	11.29	14.14	11.35	14.22	11.42	14.30	11.48	14.38	11.55	
Voltage at Maximum Power (Vmp/V)	42.82	40.69	42.91	40.78	43.00	40.87	43.11	40.97	43.22	41.07	43.33	41.18	43.44	41.28	
Current at Maximum Power (Imp/A)	13.08	10.48	13.17	10.55	13.26	10.62	13.34	10.68	13.42	10.75	13.50	10.81	13.58	10.88	
Module Efficiency(%)	2	1.7	21.9		2	22.1		22.3		22.5		22.6		22.8	
Electrical characteristics with	different	t rear side	power g	gain (refer	ence to 5	75W fron	t)								
Pmax /W	Voc/	V		Isc /A			Vmp/V			Imp /A			Pmax gain		
604	51.3	0		14.84			43.11		14.00				5%		
633	51.3	0		15.55			43.11		14.67				10%		
661	51.4	0		16.26			43.21		15.34				15%		
690	51.4	0		16.96			43.21		16.01				20%		
719	51.4	0		17.67			43.21			16.67			25%	25%	

Electrical characteristics with di	fferent rear side p	ower gain (reference to	575W front)		
Pmax /W	Voc/V	Isc /A	Vmp/V	Imp /A	Pmax gain
604	51.30	14.84	43.11	14.00	5%
633	51.30	15.55	43.11	14.67	10%
661	51.40	16.26	43.21	15.34	15%
690	51.40	16.96	43.21	16.01	20%
719	51.40	17.67	43.21	16.67	25%
Power Output Tolerance	0~	3%	Rear Side Maximum Stati	c Loading	2400Pa
Operational Temperature	-40°C ~	-+85°C	Front Side Maximum Stat	ic Loading	5400Pa
<u>'</u>				c Loading	
Voc and Isc Tolerance	±:	3%	Hailstone Test		25mm Hailstone at the speed of 23m/s
Maximum System Voltage	DC1500V	(IEC/UL)			
Maximum Series Fuse Rating	30)A	_		
Nominal Operating Cell Temperature	45±	:2°C			
Protection Class	Cla	ss II	Temperature Ra	atings (STC)	
Bifaciality	80±	10%	Temperature Coefficient	of Isc	+0.045%/°C
	UL ty	pe 29	Temperature Coefficient	of Voc	-0.230%/°C
Fire Rating					

Figura 2 – Dati tecnici, meccanici e condizioni operative del modulo fotovoltaico da 590 Wp

3.2 INVERTER MULTISTRINGA

Per la conversione dell'energia elettrica prodotta da continua in alternata a 50 Hz sono previsti inverter multistringa, con elevato fattore di rendimento, posizionati a lato delle strutture metalliche dei moduli FV. La tipologia dell'inverter utilizzato è il modello della Huawei del tipo SUN2000-330KTL-h1 (o similare) avente una potenza nominale in uscita in ac di 300 kW alla tensione nominale di 0,8 kV, con funzionalità in grado di sostenere la tensione di rete e contribuire alla regolazione dei relativi parametri. Le caratteristiche tecniche dell'inverter sono riportate nella figura 4 seguente:

	Efficiency
Max. Efficiency	≥99.0%
European Efficiency	≥98.8%
	Input
Max. Input Voltage	1,500 V
Number of MPP Trackers	6
Max. Current per MPPT	65 A
Max. PV Inputs per MPPT	4/5/5/4/5/5
Start Voltage	550 V
MPPT Operating Voltage Range	500 V ~ 1,500 V
Nominal Input Voltage	1,080 V
	Output
Nominal AC Active Power	300,000 W
Max. AC Apparent Power	330,000 VA
Max. AC Active Power (cosφ=1)	330,000 W
Nominal Output Voltage	800 V, 3W + PE
Rated AC Grid Frequency	50 Hz / 60 Hz
Nominal Output Current	216.6 A
Max. Output Current	238.2 A
	0.8 LG 0.8 LD
Adjustable Power Factor Range Total Harmonic Distortion	
Total Harmonic Distortion	< 1%
	Protection
Smart String-Level Disconnector(SSLD)	Yes
Anti-islanding Protection	Yes
AC Overcurrent Protection	Yes
DC Reverse-polarity Protection	Yes
PV-array String Fault Monitoring	Yes
DC Surge Arrester	Type II
AC Surge Arrester	Type II
DC Insulation Resistance Detection	Yes
AC Grounding Fault Protection	Yes
Residual Current Monitoring Unit	Yes
	Communication
Display	LED Indicators, WLAN + APP
USB	Yes
MBUS	Yes
RS485	Yes
	General
Dimensions (W x H x D)	1,048 x 732 x 395 mm
Weight (with mounting plate)	≤108 kg
Operating Temperature Range	-25 °C ~ 60 °C
Cooling Method	Smart Air Cooling
Max. Operating Altitude without Derating	4,000 m (13,123 ft.)
Relative Humidity	0~100%
AC Connector	Waterproof Connector + OT/DT Terminal
Protection Degree	IP66
	Transformerless

Figura 3 – Modello inverter con potenza nominale di 330 kVA - caratteristiche tecniche

3.3 QUADRO ELETTRICO IN MT INTERNO ALLE CABINE DI TRASFORMAZIONE

Il quadro in MT a 30 kV può essere del tipo MT Switchgear isolato ad SF6, modello 8HDJ-24 della Siemens, per la distribuzione secondaria. E' un quadro elettrico costituito da scomparti di protezione trasformatore e linee mediante interruttori di manovra-sezionatori. Il sezionatore sarà in aria di tipo rotativo con telaio a cassetto o con isolamento in SF6 ed involucro in acciaio inox, sarà completo di interblocco con il sezionatore di terra, di blocco a chiave e di contatti di segnalazione. Il quadro è raffigurato in fig.4.

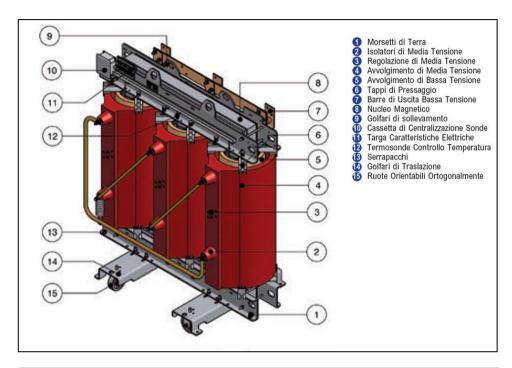


Figura 4 - Quadro elettrico di protezione in MT interno alla cabina di trasformazione

3.4 Trasformatore BT/MT

La trasformazione della bassa tensione, 800 V, in alternata fino a 30.000 V in media, avverrà mediante l'installazione di n.12 trasformatori di potenza trifasi isolati in resina, del tipo DYn11, ONAF, rapporto di trasformazione pari a 0,8/30, di potenza compresa tra 2500÷5000 kVA (dipendente dalla potenza e dal numero di inverter collegati nei vari sottocampi), tensione d'isolamento pari a 36 kV e Vcc% al di sotto dell' 8%. I trasformatori saranno installati all' interno delle cabine di trasformazione, con o senza un box metallico di protezione:

Power	Uk *	P _o	P *	I _o	LwA	LpA	Α	В	С	D	Wheel	Weight
kVA	%	W	W	%	dB(A)	dB(A)	mm	mm	mm	mm	mm	Kg
50	6	230	1870	1,4	54	41	1260	670	1525	520	125	850
100	6	320	2250	1	56	43	1290	670	1545	520	125	1020
160	6	460	3190	0,88	57	44	1425	670	1545	520	125	1300
200	6	520	3630	0,85	58	44	1500	820	1600	670	125	1490
250	6	590	4180	0,8	59	45	1500	670	1700	520	125	1670
315	6	710	4980	0,79	60	46	1590	820	1750	670	125	1910
400	6	860	6050	0,78	61	47	1590	820	1850	670	125	2010
500	6	1030	7050	0,76	62	48	1620	820	1880	670	125	2200
630	6	1260	8360	0,75	63	49	1680	820	1980	670	125	2470
800	6	1490	8800	0,71	64	49	1710	1050	2150	820	125	2960
1000	6	1780	9900	0,7	65	50	1830	1050	2300	820	125	3590
1250	6	2070	12100	0,69	67	52	1860	1000	2360	820	150	3890
1600	6	2530	14300	0,67	68	53	2010	1050	2500	820	150	4860
2000	6	2990	17600	0,65	72	56	2100	1300	2595	1070	200	5860
2500	6	3560	20900	0,62	73	57	2250	1300	2625	1070	200	7160
3150	6	4370	24200	0,6	76	60	2340	1300	2805	1070	200	8610
4000	7	6300	26900	0,61	84	68	2520	1300	2835	1070	200	9650
5000	8	6900	35000	0,61	86	70	2610	1300	2835	1070	200	10770

Figura 5 - Caratteristiche tecniche e dimensioni del trasformatore BT/MT

3.5 CABLAGGI ELETTRICI

I cavi utilizzati nella progettazione sono alimentati sia da sistemi in bassa tensione in corrente continua (max 1500 V) e alternata (800 V) e sia in media (30 kV). I cavi impiegati nella sezione in corrente continua ed alternata in BT, rispetteranno le seguenti caratteristiche riportate di seguito:

- tensione massima compatibile con quella del sistema elettrico;
- il dimensionamento dei cavi elettrici sarà dettato dall'esigenza di limitare la caduta di tensione e, quindi, le perdite di potenza. Ai sensi della guida CEI 82-25, si deve limitare la caduta di tensione sul lato corrente continua sotto al 2%;

- saranno adatti sia per posa esterna che direttamente interrata (resistenza all'acqua, al gelo, al calore e agli agenti chimici, resistività agli urti);

A seconda che i cavi siano esposti o meno alla luce solare verranno realizzati i seguenti collegamenti:

- in serie tra i moduli fotovoltaici a formare stringhe e tra le stringhe ed il proprio inverter, in cui saranno impiegati cavi solari del tipo TECSUN (PV) PV1-F 0,6/1kV AC (o similari), in grado di assicurare la funzionalità nel tempo anche in presenza di tratti irraggiati direttamente dalla luce solare. Tali cavi saranno posati principalmente lungo canaline metalliche forate sottostanti le strutture metalliche dei moduli, aventi una sezione minima di 6 mmg;
- tra la singola stringa e l'inverter, mediante cavi unipolari del tipo TECSUN (PV) PV1-F 0,6/1kV AC (o similari), opportunamente fissati sotto le strutture dei moduli. Il percorso avverrà principalmente su canaline metalliche e per brevi tratti interrato, fino all'inverter, con una sezione minima di 6 mmq;
- fra gli inverter ed il quadro BT all'interno della cabina di trasformazione BT/MT, nei quali si impiegheranno cavi di tipo tradizionale direttamente interrati, ad esempio del tipo FG16R16 0,6/1 kV (o similari) in quanto sono solitamente non soggetti all'irraggiamento diretto da luce solare e possono essere direttamente interrati, aventi una sezione di 300+1G150 mmq;
- tra:
 - 1) le cabine di trasformazione,
 - 2) le cabine di trasformazione con la cabina di raccolta,
 - 3) la cabina di raccolta con i quadri MT nella Sazione Utente (SEU), saranno utilizzati cavi del tipo ARE4H5(AR)E (o similari) unipolari, cordati ad elica visibile, con conduttore in alluminio, del tipo "air-bag", direttamente interrati senza protezione meccanica aggiuntiva e disposti a trifoglio. Per i collegamenti elettrici saranno utilizzate sezioni da (3x1x400) mmq e (3x1x500) mmq;

Per maggiori dettagli sulle sezioni dei cavi scelti e sui calcoli del dimensionamento elettrico, si rimanda alla relazione tecnica elettrica allegata. Di seguito le caratteristiche tecniche ed elettriche delle tipologie di cavi utilizzate per i collegamenti in BT ed MT nell'impianto agrivoltaico:

Cavo Tecsun 0,6/1 kV

BASSA TENSIONE - ENERGIA SOLARE / LOW VOLTAGE - SOLAR ENERGY

TECSUN (PV) PV1-F 0,6/1 kV AC (1,5 kV DC)

Cavi PV con isolante in gomma e certificazione TÜV e VDE PV cables, rubber insulated, TÜV and VDE certified

Norma di riferimento

TÜV 2 PfG 1169/08.2007 e requisiti per cavi per sistemi fotovoltaici, DKE/VDE AK 411.2.3

Certificazioni / Approvazioni

Certificazione N. R 60013989 di TÜV; Registrazione VDE N. 7985

Descrizione del cavo

Conduttore

Rame stagnato, flessibile, secondo IEC 60228 classe 5 **Isolante**

HEPR reticolato 120 °C (mescola tipo EI6/EI8)

Identificazione anima

Colore naturale

Guaina

Gomma EVA reticolata 120 °C (mescola tipo EM4/EM8) Isolante e quaina saldamente aderenti

(isolamento a doppio strato)

Colori della guaina

Nero, rosso, blu

Schermo a treccia di protezione

Tipo TECSUN (PV) (C), con treccia aggiuntiva in fili di rame stagnato (copertura della superficie > 80%), quale elemento di protezione contro roditori o urti accidentali

Marcatura

TECSUN (PV) PV1F

Standard

TÜV 2 PfG 1169/08.2007 and requirements for cables for PV systems, DKE/VDE AK 411.2.3

Certification / Approvals

TÜV Cert.-No. R 60013989; VDE-Reg.No. 7985

Design features

Conductor

Tinned copper, flexible, according to IEC 60228 class 5

Insulation

Cross-linked HEPR 120°C (compound type EI6/EI8)

Core identification

Natural colour

Sheat

Cross-linked EVA rubber 120°C (compound type EM4/EM8). Insulation and sheath are solidly bonded

(Two-layer-insulation)

Sheath-colours

Black, red, blue **Protective Braid Screen**

TECSUN(PV) (C) with additional braid made of tinned copper wires (surface coverage > 80%), as a protective element against rodents or impact

Marking

TECSUN (PV) PV1F

numero anime per sezione	colore	numero componente	diametro massimo conduttore	diametro minimo esterno	diametro massimo esterno	raggio curvatura minimo posa fissa	peso indicativo	carico rottura massimo garantito	resistenza massima conduttore a 20°C	portata corrente singolo cavo libero in aria *	portata corrente singolo cavo su superficie *	corrente corto circuito (1s da 90°C a 250°)
numbers of cores x cross section	colour	part number	conductor diameter max.	outer diameter min.	outer diameter max.	bending radius fixed min.	weight (ca.)	permissible tensile force max.	conductor resistance at 20° C max.	current carryng capacity for single cable free in air *	current carryng capacity for single cable on a surface *	short circuit current (1s. from 90°C to 250°C)
			mm	mm	mm	mm	kg/km	N	Ω/km	Α	Α	kA
1x1,5	nero/black	20014125	1,6	4,4	4,8	14,4	34	23	13,7	30	29	0,21
1x1,5	blu/blue	20004366	1,6	4,4	4,8	14,4	33	23	13,7	30	29	0,21
1x1,5	rosso/red	20004367	1,6	4,4	4,8	14,4	33	23	13,7	30	29	0,21
1x2,5	nero/black	20004369	1,9	4,7	5,1	15,3	44	38	8,21	41	39	0,36
1x2,5	blu/blue	20004370	1,9	4,7	5,1	15,3	44	38	8,21	41	39	0,36
1x2,5	rosso/red	20004372	1,9	4,7	5,1	15,3	44	38	8,21	41	39	0,36
1x4	nero/black	20004374	2,4	5,2	5,6	16,8	59	60	5,09	55	52	0,57
1x4	blu/blue	20004377	2,4	5,2	5,6	16,8	59	60	5,09	55	52	0,57
1x4	rosso/red	20004379	2,4	5,2	5,6	16,8	59	60	5,09	55	52	0,57
1x6	nero/black	20004382	2,9	5,7	6,13	18,3	81	90	3,39	70	67	0,86
1x6	blu/blue	20004385	2,9	5,7	6,1	18,3	78	90	3,39	70	67	0,86
1x6	rosso/red	20004388	2,9	5,7	6,1	18,3	78	90	3,39	70	67	0,86
1x10	nero/black	20004391	4	6,8	7,2	21,6	120	150	1,95	98	93	1,43
1x16	nero/black	20004394	5,6	8,3	8,9	36	190	240	1,24	132	125	2,29
1x25	nero/black	20008077	6,4	10	10,7	43	280	375	0,795	176	167	3,58
1x35	nero/black	20008078	7,5	11,1	11,8	47	380	525	0,565	218	207	5,01
1x50	nero/black	20004396	9	12,6	13,3	53	530	750	0,393	276	262	7,15
1x70	nero/black	20024634	10,8	14,8	15,8	61	720	1050	0,277	347	330	10,01
1x95	nero/black	20004397	12,6	16,2	17	68	900	1425	0,21	416	395	13,59
1x120	nero/black	20008826	14,2	17,7	18,7	75	1150	1800	0,164	488	464	17,16
1x150	nero/black	20008828	15,8	19,7	20,7	83	1420	2250	0,132	566	538	21,45
1x185	nero/black	20038266	17,4	21,3	22,3	89	1710	2775	0,108	644	612	26,46
1x240	nero/black	20008079	20,4	24,2	25,5	102	2200	3600	0,082	775	736	34,32

Figura 6 - Scheda tecnica del cavo solare 0,6/1 kV

Scheda Cavo in BT in Rame del tipo FG16R16 0,6/1 kV

FG16R16 0,6/1 kV G 16TOP

Cca - s3, d1, a3

In accordo alla normativa Europea Prodotti da Costruzione CPR
According to the requirements of the European Construction Product Regulation CPR

Norma di riferimento

CEI UNEL 35318

Descrizione del cavo

Anima

Conduttore a corda rotonda flessibile di rame rosso ricotto

Isolante

Gomma HEPR ad alto modulo qualità G16 che conferisce al cavo elevate caratteristiche elettriche, meccaniche e termiche

Colori delle anime

nero

Rivestimento interno

Riempitivo/guainetta di materiale non igroscopico

In PVC speciale di qualità R16, colore grigio

Marcatura

Stampigliatura ad inchiostro ogni 1 m: PRYSMIAN (G) FG16R16 G16 TOP 0.6/1 kV 1x... Cca-s3,d1,a3 IEMMEQU EFP anno Marcatura metrica progressiva

Conforme ai requisiti previsti dalla Normativa Europea Prodotti da Costruzione (CPR UE 305/11)

Applicazioni

Cavi adatti all'alimentazione elettrica in costruzioni ed altre opere di ingegneria civile con l'obiettivo di limitare la produzione e la diffusione di fuoco e di fumo, rispondenti al Regolamento Prodotti da Costruzione (CPR).

Standard CEI UNEL 35318

Cable design

Core

Stranded flexible annealed bare copper conductor Insulation

High module HEPR rubber G16 type with higher electrical, mechanical and thermal performances

Core identification

black

Bedding

Filler/sheath non hygroscopic material

Sheath

Special PVC grey outer sheath, R16 type grey colour Marking

Ink marking each meter interval on the outer sheath: PRYSMIAN (G) FG16R16 G16 TOP 0.6/1 kV 1x...

Cca-s3,d1,a3 IEMMEQU EFP year

Progressive metric marking

Compliant with the requirements of European Construction Product Regulation (CPR UE 305/11)

Applications

Cables suitable for electrical power systems in constructions and other civil engineering buildings, in order to limit fire and smoke production and spread, in accordance with the European Construction Product Regulation (CPR).

sezione nominale	diametro indicativo conduttore	spessore medio isolante	diametro esterno massimo	peso indicativo del cavo	resistenza massima a 20°C in c. c.	30 °C in aria	30°C in tubo in aria	20 interra	to in tubo	ambiente di 20' interi		raggio minimo d curvatura
conductor cross-section	approximate conductor diameter	average insulation thickness	maximum outer diameter	арргох. weight	maximum DC resistance at 20°C	in open air at 30 °C	pe in duct in air at 30 °C		rent rating (A) ed duct D°C	buri at 20		minimum bending radius
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(Ω/km)			ρ=1°C m/W	ρ=1,5 °C m/W	ρ=1°C m/W	ρ= 1,5 °C m/W	(mm)
1,5	1,5	0,7	8,2	79	13,3	24	20	22	21	35	32	74
1,0	1.5		0.2	/9	15,5	24	20					/4
2,5	2	0,7	8,7	94	7,98	33	28	29	27	45	39	78
2,5 4,0				94 112	7,98 4,95	33 45	28 37			45 58	39 51	78 84
	2	0,7	8,7					29	27			
4,0	2 2,5	0,7 0,7	8,7 9,3	112	4,95	45	37	29 37	27 35	58	51	84
4,0 6,0	2 2,5 3	0,7 0,7 0,7	8,7 9,3 9,9	112 139	4,95 3,30	45 58	37 48	29 37 47	27 35 44	58 73	51 64	84 89
4,0 6,0 10,0	2 2,5 3 3,9 5 6,4	0,7 0,7 0,7 0,7 0,7 0,7	8,7 9,3 9,9 10,9	112 139 188	4,95 3,30 1,91	45 58 80	37 48 66	29 37 47 63	27 35 44 59	58 73 97	51 64 85	84 89 98
4,0 6,0 10,0 16,0 25,0 35,0	2 2,5 3 3,9 5 6,4 7,7	0,7 0,7 0,7 0,7 0,7 0,7 0,9	8,7 9,3 9,9 10,9 11,4 13,2 14,6	112 139 188 227 331 425	4,95 3,30 1,91 1,21 0,780 0,554	45 58 80 107 135	37 48 66 88 117	29 37 47 63 82 108 132	27 35 44 59 77 100	58 73 97 125 160 191	51 64 85 110 141 169	84 89 98 103 119
4,0 6,0 10,0 16,0 25,0 35,0 50,0	2 2,5 3 3,9 5 6,4 7,7 9,2	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4	112 139 188 227 331 425 579	4,95 3,30 1,91 1,21 0,780 0,554 0,386	45 58 80 107 135 169 207	37 48 66 88 117 144 175	29 37 47 63 82 108 132 166	27 35 44 59 77 100 121	58 73 97 125 160 191 226	51 64 85 110 141 169 199	84 89 98 103 119 131 148
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3	112 139 188 227 331 425 579 784	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272	45 58 80 107 135 169 207 268	37 48 66 88 117 144 175 222	29 37 47 63 82 108 132 166 204	27 35 44 59 77 100 121 150	58 73 97 125 160 191 226 277	51 64 85 110 141 169 199 244	84 89 98 103 119 131 148 156
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0 95,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0 1,1	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3 24,4	112 139 188 227 331 425 579 784 989	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272 0,206	45 58 80 107 135 169 207 268 328	37 48 66 88 117 144 175 222 269	29 37 47 63 82 108 132 166 204 242	27 35 44 59 77 100 121 150 184 217	58 73 97 125 160 191 226 277 331	51 64 85 110 141 169 199 244 292	84 89 98 103 119 131 148 156 220
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0 95,0 120,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0 12,5	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0 1,1 1,1	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3 24,4 22,4	112 139 188 227 331 425 579 784 989 1250	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272 0,206 0,161	45 58 80 107 135 169 207 268 328 383	37 48 66 88 117 144 175 222 269 312	29 37 47 63 82 108 132 166 204 242 274	27 35 44 59 77 100 121 150 184 217 251	58 73 97 125 160 191 226 277 331 377	51 64 85 110 141 169 199 244 292 332	84 89 98 103 119 131 148 156 220 202
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0 95,0 120,0 150,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0 12,5 14,2 15,8	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0 1,1 1,1 1,2	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3 24,4 22,4 24,8	112 139 188 227 331 425 579 784 989 1250 1540	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272 0,206 0,161 0,129	45 58 80 107 135 169 207 268 328 383 444	37 48 66 88 117 144 175 222 269 312 355	29 37 47 63 82 108 132 166 204 242 274 324	27 35 44 59 77 100 121 150 184 217 251 287	58 73 97 125 160 191 226 277 331 377 420	51 64 85 110 141 169 199 244 292 332 370	84 89 98 103 119 131 148 156 220 202 223
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0 95,0 120,0 150,0 185,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0 12,5 14,2 15,8 17,5	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0 1,1 1,1 1,1 1,2 1,4	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3 24,4 22,4 24,8 27,2	112 139 188 227 331 425 579 784 989 1250 1540 1890	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272 0,206 0,161 0,129 0,106	45 58 80 107 135 169 207 268 328 383 444 510	37 48 66 88 117 144 175 222 269 312 355 417	29 37 47 63 82 108 132 166 204 242 274 324 364	27 35 44 59 77 100 121 150 184 217 251 287 323	58 73 97 125 160 191 226 277 331 377 420 476	51 64 85 110 141 169 199 244 292 332 370 419	84 89 98 103 119 131 148 156 220 202 223 245
4,0 6,0 10,0 16,0 25,0 35,0 50,0 70,0 95,0 120,0 150,0	2 2,5 3 3,9 5 6,4 7,7 9,2 11,0 12,5 14,2 15,8	0,7 0,7 0,7 0,7 0,7 0,9 0,9 1,0 1,1 1,1 1,2	8,7 9,3 9,9 10,9 11,4 13,2 14,6 16,4 17,3 24,4 22,4 24,8	112 139 188 227 331 425 579 784 989 1250 1540	4,95 3,30 1,91 1,21 0,780 0,554 0,386 0,272 0,206 0,161 0,129	45 58 80 107 135 169 207 268 328 383 444	37 48 66 88 117 144 175 222 269 312 355	29 37 47 63 82 108 132 166 204 242 274 324	27 35 44 59 77 100 121 150 184 217 251 287	58 73 97 125 160 191 226 277 331 377 420	51 64 85 110 141 169 199 244 292 332 370	84 89 98 103 119 131 148 156 220 202 223

Figura 7 - Scheda tecnica del cavo in BT - FG16R16 0,6/1 kV

Cavo in MT del tipo ARE4H5(AR)E 30/36 kV

Condutt	tore di a	lluminio	/ Alum	ninium c	onductor	- ARE4H5	(AR)E		
sezione nominale	diametro conduttore	diametro sull'isolante	diametro esterno nominale	peso del cavo	raggio minimo di curvatura	sezione nominale	posa in aria a trifoglio	posa inter p=1 °C m/W	rata a trifoglio p=2°C m/W
conductor cross-section	conductor diameter	diameter over insulation	nominal outer diameter	weight	minimum bending radius	conductor cross-section	open air installation trefoil	undergrour p=1°C m/W	nd installation trefoil p=2°C m/W
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)	(mm²)	(A)	(A)	(A)

Dati costruttivi / Construction charact 18/30 kV						Caratt. ele	ttriche / Elec	trical charact	18/30 kV
50	8,2	25,5	40,7	1110	550	50	187	167	131
70	9,7	25,6	40,8	1150	550	70	231	204	159
95	11,4	26,5	41,8	1240	560	95	279	244	189
120	12,9	27,4	42,9	1350	580	120	321	277	214
150	14,0	28,1	43,6	1440	580	150	361	310	238
185	15,8	29,5	45,1	1580	600	185	415	351	269
240	18,2	31,5	47,4	1810	630	240	489	408	311
300	20,8	34,7	50,9	2120	670	300	563	459	350
400	23,8	37,9	54,6	2520	730	400	657	526	399
500	26,7	41,0	58,1	2970	770	500	761	650	453
630	30,5	45,6	63,0	3590	840	630	883	682	515

Figura 8 - Scheda tecnica del cavo MT del tipo "air-bag"

8.1 CABINE DI TRASFORMAZIONE BT/MT

In Figura 9 è raffigurata la pianta della generica cabina di trasformazione ed i relativi componenti elettrici. Verranno installate n.8 cabine di trasformazione e saranno suddivise in n.3 locali in cui, il locale centrale contiene al proprio interno uno o due trasformatori trifasi isolati in resina, del tipo DYn11, rapporto di trasformazione pari a 800/30.000, di potenza variabile fino a 5000 kVA, tensione d'isolamento pari a 36 kV e Vcc% al di sotto del 6%, il quale ha lo scopo di elevare la tensione da 800 V in ac fino a 30 kV in ac.

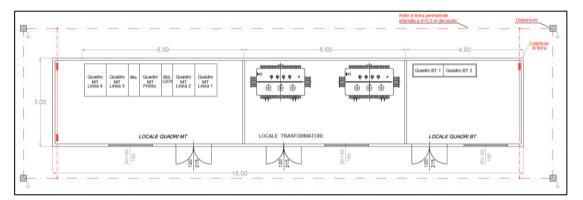


Figura 9 - Cabina di trasformazione BT/MT-viste laterali

Le dimensioni della generica cabina di trasformazione sono circa: 16,0x3,2x3,2 m. Si rimanda per maggiori dettagli alla tavola tecnica della planimetria della cabina.

8.2 CABINA DI RACCOLTA

E' prevista la realizzazione di una cabina di raccolta (CDR), in struttura prefabbricata di tipo monolitico, adibita all' alloggiamento delle apparecchiature elettromeccaniche in BT e MT. Le dimensioni della cabina sono pari a circa 20x3,2x3,2 m ed è suddivisa in due vani: nel primo vano verranno ubicati i quadri di protezione e misura in MT ed sistemi di comunicazione, mentre nel secondo vano, i vari quadri BT, l' eventuale trasformatore aux. e gruppo di continuità.

Gli scomparti MT, che assicurano il sezionamento dei cavi elettrici in caso di guasto o manutenzione, sono comandati dai sistemi di protezione e possono essere sia isolati in aria che in SF6. La cabina è composta dai seguenti sistemi elettrici principali isolati a 36 kV:

- Celle dotate di interruttori in SF6 o aria, che assicurano il sezionamento delle linee elettriche provenienti dalle cabine di trasformazione, in caso di guasto o manutenzione, comandati dai sistemi di protezione;
- Cella contenente il Dispositivo Generale che assicura la separazione dell'intero impianto dalla rete, comandato dalla Protezione Generale;
- Cella contenente il DDI che assicura la separazione dell'impianto di produzione dalla rete, comandato dalla Protezione d'interfaccia;

- Cella di misura;
- Cella trasformatore MT/BT servizi aux (eventuale): sez. tripolare/Terna di fusibili/sez. Tripolare;

Tale cabina sarà anche dotata di sistema di climatizzazione per garantire il mantenimento della temperatura interna per evitare che questa ecceda oltre i limiti di ottimale funzionamento degli inverter. E' dotata di impianto di messa a terra interno collegabile con la maglia di terra esTerna, e di un'illuminazione adeguata di almeno 100 lux.

Generalmente nelle cabine prefabbricate quali quelle previste nel presente progetto si utilizzano basamenti di fondazione a vasca con funzione anche di vano cavi, così come indicato nella tavola suddetta. Al fine di tamponare gli ingressi dei cavi in modo da impedire l'ingresso di acqua e di animali, si può inserire un pozzetto adiacente al locale cabina con l'ingresso cavi il più alto possibile. La profondità dei cunicoli deve essere tale da consentire la sistemazione dei cavi entranti nei quadri rispettando il raggio di curvatura imposto dalle specifiche tecniche, aggiungendo eventualmente uno zoccolo ad esempio in muratura.

Si specifica che per le pareti esterne degli edifici tecnici di supporto dell'impianto fotovoltaico, si potrà prevedere una rifinitura ad intonaco tradizionale con esclusione di materiali plastici o simili e tinteggiature con i colori delle terre naturali.

8.3 CABINA CONTROL ROOM

In prossimità della cabina di raccolta è previsto l'installazione di un container o cabina adibita ai servizi di monitoraggio e controllo dell'intero campo fotovoltaico. Le dimensioni della control room sono pari a circa: 6,2x3,0x2,7 m. All'interno della control room, sono presenti i seguenti dispositivi principali:

- Un armadio Rack contenente tutte le apparecchiature necessarie al corretto monitoraggio della produzione dell'impianto fotovoltaico e il rilevamento di eventuali anomalie;
- Un armadio Rack contenente tutte le apparecchiature necessarie al corretto funzionamento dell'impianto di videosorveglianza;
- Un sistema di condizionamento per mantenere costante la temperatura inTerna e garantire il corretto funzionamento delle apparecchiature elettriche;
- Servizi igienici ed eventuali moduli da ufficio.

9. IMPIANTO DI ACCUMULO O BESS

Il Battery Energy Storage System o BESS che verrà installato in un'area all'interno dell'impianto agrivoltaico, avrà una potenza nominale delle batterie in c.c. pari a 12 MW. L'energia accumulata, dopo essere stata trasformata in MT a 30 kV, confluirà dapprima all'interno della Cabina di Raccolta per poi essere immessa nella RTN. Il cavidotto denominato di evacuazione che collega la CDR con la SST della RTN può consentire anche il prelievo di energia dalla rete per il caricamento delle batterie.

Di seguito una tabella riassuntiva che riporta le principali caratteristiche tecniche del layout:

BESS LAYOUT				
Energia complessiva dell'impianto	48	MWh		
Potenza dell'impianto	12	MW		
Tempo di scarica	4	h		
Battery Container - Capacity	2	MWh		
Battery Container - Power	0,5	MW		
Numero di container	24			
Inverter (FreeMAQ PCSK o MULTI PSCK)	n.6x2005	KVA		
Transformer capacity	n.3x5000	KVA		
Cabina Servizi aux	1			

9.1 BATTERY CONTAINER (BC)

I sistemi di accumulo dell'energia elettrica sono costituiti da batterie elettriche, posizionate all'interno di appositi container, le quali consentono di immagazzinare energia elettrica dall' impianto fotovoltaico e/o dalla rete per poi immetterla nella stessa rete elettrica in periodi di tempo diversi ed opportuni, contribuendo anche al miglioramento delle forme d'onda di tensione e corrente. Verranno installati n.24 Battery Container (BC), ognuno costituito da un banco batterie della potenza nominale di 0,5 MW da 2,0 MWh, per un'energia massima fornita pari a 48,0 MWh, opportunamente posizionati sul terreno livellato, aventi ciascuno dimensioni pari a 6,1x2,4x2,9 m. Nella figura seguente un' immagine del battery container utilizzato in questa fase di progettazione assieme alle caratteristiche tecniche:

Main Characteristics	Intensium® Max 20 High Energy 1500V LFP		
Number of strings (ESSUs) per IHE container	5		
Number of modules per ESSU	24		
Cell type	Lithium Iron Phosphate (LFP)		
Minimum Voltage (0% SOC, OCV)	1040 Vdc		
Nominal Voltage (50% SOC, OCV)	1230 Vdc		
Maximum Voltage (100% SOC, OCV)	1400 Vdc		
Maximum Voltage range	960 – 1460 Vdc		
Rated BoL Energy (DC) based on cell energy at C/5	2.3 MWh		
Rated BoL Energy (DC) based on cell energy at C/2	2.2 MWh		
Nominal DC Power in charge or discharge	1.1 MW		
Max DC Power in charge or discharge	2.2 MW		
DC-DC Roundtrip Efficiency at BoL	> 95%		
Operating Temperature Range	-25°C to +55°C		
Storage Temperature Range	-25°C to +55°C		
Dimensions (L x W x H) Note 1	(6.1 x 2.4 x 2.9) m (19.9 x 8.0 x 9.5) ft		
Ingress Protection (IP) Rating	IP54		
20-foot Container Weight (kg)	< 30,400		
Communication protocol	Modbus TCP (MESA standard compliant)		

Note 1: Dimensions do not include the HVAC. With the HVAC, the length is increased by 0.7 m.

Figura 10 – Tipologia di battery container

9.2 SISTEMA INVERTER-TRASFORMAZIONE

All'interno dell'area d'impianto verranno installati n.3 sistemi inverter-trasformazione, del tipo MV Twinskid Gen3, ciascuno costituito da: n.2 inverter centralizzati della potenza totale di circa 5 MVA, n.1 trasformatore elevatore BT/MT, quadri BT ed MT. Le dimensioni minime della cabina sono pari a circa 6,1x2,9x2,4 m. Di seguito una raffigurazione del sistema in pianta, con le dimensioni caratteristiche:

Figura 11 – Tipologia di cabina di trasformazione-inverter da installare nell'impianto

9.3 CABINA SERVIZI AUX

Per l'impianto BESS in oggetto sarà installata una cabina per l'alimentazione dei servizi ausiliari e conterrà al suo interno un trasformatore BT/AT di potenza minima pari a 50/100 kV, isolato in resina, del tipo DYn11, il quale preleverà la tensione necessaria ad alimentare i servizi ausiliari direttamente dalla rete. Verranno inoltre installati i quadri in AT a 36 kV del tipo AT Switchgear 36 kV, isolati ad SF6, per la distribuzione secondaria, e quadri in BT a 230 V. All' interno verrà posizionata una postazione di controllo con pc, monitor, ups, rack, ecc... da utilizzare da personale specializzato. Le dimensioni del container sono pari a circa 12,0x5,4x4,2 m.

9.4 CABLAGGI ELETTRICI

Per quanto riguarda le tipologie di cavi utiilizzati nel progetto del BESS, saranno del tipo:

- in BT in cc utilizzati per le connessioni tra BC ed inverter, saranno del tipo FG16R16 0,6/1 kV, direttamente interrati, aventi sezioni pari a 240mmq;
- in MT in ca utilizzati per le connessioni tra le cabine di trasformazione ad anello, direttamente interrati, del tipo ARE4H5(AR)EX, cordati ad elica visibile, aventi una sezione di 3x185 mmq;
- in MT in ca utilizzati per la connessione tra le cabine elettriche e la CDR, saranno del tipo del tipo ARE4H5(AR)EX, cordati ad elica visibile, aventi una sezione di 3x185 mmq.

10. IMPIANTI ELETTRICI ED OPERE COMUNI AI DUE PROGETTI

Per ciascuno dei due impianti: fotovoltaico e bess, saranno previste le seguenti e principali caratteristiche civili ed elettriche.

11. PROTEZIONE CONTRO I SOVRACCARICHI

Sono previsti dispositivi di protezione che interrompono le possibili correnti di sovraccarico nei conduttori elettrici prima che tali correnti possano provocare un riscaldamento nocivo all'isolamento, ai collegamenti, ai terminali o all'ambiente circondante le condutture. Le caratteristiche delle protezioni sono state dimensionate per rispondere alle seguenti condizioni:

$$I_b < I_n < I_z$$

$$I_f < 1,45 * I_z$$

dove:

- Ib è la corrente d'impiego del circuito
- In è la corrente nominale de dispositivo di protezione
- Iz è il valore della portata de cavo
- If è il valore della corrente di funzionamento del dispositivo di protezione

Quando lo stesso dispositivo di protezione protegge diversi conduttori in parallelo, si assume per Iz la somma delle portate dei singoli conduttori, a condizione tuttavia che i conduttori siano disposti in modo da portare correnti sostanzialmente uguali. La rilevazione delle sovracorrenti è prevista per tutti i conduttori di fase.

11.1 PROTEZIONE CONTRO I CORTOCIRCUITI

Sono previsti dispositivi di protezione per interrompere le correnti di cortocircuito dei conduttori prima che tali correnti possano diventare pericolose a causa degli effetti termici e meccanici prodotti nei conduttori, nelle connessioni e nelle apparecchiature. I dispositivi di protezione contro i cortocircuiti (interruttori automatici con sganciatori magnetici, fusibili di tipo gG o aM) sono scelti in modo da soddisfare le due seguenti condizioni:

- il potere di interruzione del dispositivo non deve essere inferiore alla corrente di cortocircuito presunta di installazione;
- le correnti provocate da un cortocircuito devono essere interrotte in un tempo non superiore a quello che porta i conduttori alla temperatura limite ammissibile.

La formula approssimata (a favore della sicurezza) verificata ai fini del soddisfacimento delle condizioni di cui sopra è la seguente:

$$K^2S^2(As^2) > I^2t$$

dove:

• I^2t è l' energia specifica passante lasciata passare dal dispositivo di protezione (dato rilevabile dalle caratteristiche di intervento fornite dal costruttore);

- K^2S^2 è l' energia specifica dissipata in calore dal conduttore ovvero sopportabile dal cavo;
- S è la sezione del conduttore in mm2
- K è una costante dipendente dal materiale conduttore e dal tipo di isolante: 115 per cavi in rame isolati in PVC, 135 per cavi in rame isolati in gomma naturale e butilica e 143 per cavi in rame isolati in gomma etilenpropilenica e propilene reticolato.

11.2 GRADO D'ISOLAMENTO

Il grado di isolamento minimo dei conduttori sarà pari a:

- 0,6/1500 V per la parte di impianto BT in continua e alternata;
- 24 kV per la sezione d'impianto in MT, in alternata.

11.3 POSA DEI CAVI

Durante la posa dei cavi nello scavo, devono essere prese precauzioni per non danneggiare il cavo. Le preoccupazioni maggiori riguardano il raggio di curvatura, la temperatura di posa e le sollecitazioni a trazione. Per i cavi utilizzati nella progettazione dell'impianto FV:

- il raggio di curvatura non deve essere inferiore a 9 volte il diametro esterno del cavo in BT e a 14 volte per i cavi in MT;
- la temperatura del cavo (con guaina in PVC) non deve essere inferiore a 0 °C, durante la posa, poiché a bassa temperatura il PVC diventa fragile e piegandolo si fessura;
- la forza di trazione necessaria per posare il cavo, specie nei tubi e polifore, deve essere applicata ai conduttori (non all'isolante) e non deve superare 60 N/mm2 per conduttori in rame. In rettilineo, la forza di trazione, o tiro, T (N) di un cavo vale:

$$T = 10 Lpf$$

dove L (m) è la lunghezza del cavo, p (kg/m) è la massa di un metro di cavo ed f è il coefficiente di attrito, pari a 0,25 per posa in tubi in PVC e 0,2 per posa su rulli (posa "a cielo aperto"). Una volta terminata la posa del cavo, prima di sigillare le teste è necessario tagliare uno o due metri di cavo alle due estremità (o almeno a quella di tiro), poiché potrebbero aver subito danni meccanici e/o infiltrazioni di umidità.

11.3.1 PRESSACAVI

I pressacavi di materiale termoplastico saranno del tipo autoestinguente (V2 secondo UL 94) e resistenti al filo incandescente a 850 °C secondo le norme IEC 695-2-1. I pressacavi saranno muniti di anello di tenuta e di controdado e sono da impiegare nei collegamenti diretti cavo scatola o cavo apparecchiatura, senza tubo o guaina di protezione.

11.3.2 FORZA MOTRICE

E' previsto l'utilizzo di una fornitura esterna per l'alimentazione degli ausiliari dell' impianto agrivoltaico. All'interno delle cabine verranno installate alcune prese di servizio di tipo UNEL e biprese, le quali saranno alimentate da conduttori a semplice isolamento posati in tubazioni in PVC posati a vista. Gli apparecchi di comando (interruttori, deviatori ecc.) da installare saranno del tipo ad un modulo con fissaggio a scatto sulla apposita sottoplacca in materiale isolante. I contatti dovranno garantire una portata nominale di 16 A a 230 V. I morsetti dovranno consentire di cablare conduttori con sezione minima di 2,5 mmq, dotati di piastrina con viti a taglio combinato con doppia sede onde consentire eventuali cavallotti tra diversi interruttori.

Le prese a spina da 10 a 16 A saranno protette da tegoli in materiale isolante che impediscono il contatto anche volontario con le parti in tensione. Saranno provviste di polo centrale di terra per la connessione del conduttore di protezione. Potranno essere impiegate prese e spine conformi alle norme inTernazionali CEE 17 - IEC 3091 e 309-2 per usi industriali comunemente indicate come serie CEE. Per ogni esecuzione è sempre indicato anche il grado di protezione secondo la terminologia IP, conformemente alle Norme IEC 529 e CEI 70-1. Il grado di protezione si intende realizzato:

- per le prese, quando la spina è inserita o quando il coperchio è chiuso;
- per le spine, quando sono inserite nelle relative prese.

4.4 SICUREZZA ELETTRICA

L' impianto deve essere progettato affinchè risponda alle normative vigenti inerenti la sicurezza e la garanzia di continuità, quali:

- continuità dell'alimentazione elettrica;
- minimizzazione dei disservizi ottenuta con la settorializzazione della distribuzione ed una rigida selettività delle protezioni;
- sicurezza antinfortunistica e antincendio ottenuta con l'impiego delle più moderne tecniche di protezione contro i contatti diretti ed indiretti e di materiali con idonei gradi di protezione in funzione delle varie classi di pericolosità degli ambienti.

I sistemi utilizzatori vengono classificati in relazione al collegamento verso terra. In tal caso si distinguono in sistemi di tipo TN, TT e IT, e anche per gli impianti agrivoltaici può essere utilizzata la stessa tipologia descrittiva.

Il generatore fotovoltaico in dc può essere gestito come sistema IT (I, isolamento da terra delle parti attive e T, collegamento diretto a terra delle masse) in questo caso il neutro del trasformatore d'isolamento che realizza la separazione galvanica tra lato corrente continua (sorgente) e lato alternata (MT) non è connesso a terra. Tale separazione elettrica, ha lo scopo di impedire la richiusura delle correnti di guasto, e non prevede quindi il collegamento a terra del generatore fotovoltaico, che sarà quindi di tipo flottante. L'involucro dell'inverter e le altre masse sono portati a terra con il PE (conduttore di protezione). I circuiti ausiliari di alimentazione sono gestiti invece come sistema TT e per questo motivo sono presenti dei dispositivi di protezione dai contatti indiretti, sensibili ad una possibile dispersione verso terra in caso di guasto. In

considerazione del fatto che è presente una rete bt gestita come Sistema IT, la norma CEI 64-8 impone per tali sistemi l'utilizzo di un sistema di monitoraggio continuo dell'isolamento in grado di segnalare un eventuale guasto e quindi un aumento del rischio elettrico.

4.5 IMPIANTO DI TERRA

Un impianto di terra di un sistema elettrico è per definizione l' l'insieme dei dispersori, dei conduttori di terra, dei collettori (o nodi) di terra e dei conduttori di protezione ed equipotenziali destinati a realizzare la messa a terra di protezione e/o di funzionamento.

I componenti delll'impianto di terra sono di seguito definiti:

Dispersore di terra

I materiali consentiti sono il rame, l'acciaio rivestito di rame, materiali ferrosi zincati e le dimensioni del dispersore devono essere tali da assicurarne la durata prevista. Nel caso di picchetti profilati o corde di rame nude le dimensioni minime ammesse sono le seguenti:

- conduttore cordato in rame di sezione minima di 35 mmq;
- picchetto in profilato di rame o di acciaio zincato a caldo con misure:50x50x5 mm.

Conduttore di terra

Il conduttore di terra collega i dispersori tra di loro e al collettore di terra; essi devono avere un percorso breve e non devono essere sottoposti a sforzi meccanici e nemmeno essere soggetti al pericolo di corrosione e di logoramento meccanico.

Collettore di terra

Il collettore di terra è costituito da un morsetto o più comunemente da una sbarra di rame. Al collettore di terra devono essere collegati il conduttore di terra, i conduttori di protezione e i collegamenti equipotenziali principali. In uno stesso impianto possono essere usati due o più collettori di terra.

Al di sotto della vasca delle cabine sarà realizzata una rete equipotenziale di terra secondo quanto riportato negli elaborati grafici. Al collettore di terra in piatto di rame, dovranno essere collegati:

- le incastellature ed il mensolame destinati al sostegno di isolatori o di apparecchiature elettriche;
- tutti i ripari metallici;
- le carcasse dei trasformatori;
- la carcassa e le leve di manovra dell'interruttore e dei sezionatori;
- le protezioni metalliche dei cunicoli ed eventuali pozzetti;
- gli eventuali serramenti metallici del locale (porte, telai, griglie di aerazione, finestre, ecc);

12. Protezione contro le sovratensioni

Le sovratensioni, legate principalmente al fenomeno della scarica atmosferica verso terra, possono costituire un pericolo per la sicurezza delle persone e provocare perdite economiche ingenti. I fulmini intercettati direttamente dalla struttura possono generare:

- Tensioni di passo e contatto all'esterno della struttura;
- Incendi all'interno della struttura;
- Sovratensioni sugli impianti interni ed esterni.

I fulmini a terra possono generare:

- incendi all'interno della struttura per fulminazione diretta della linea elettrica;
- sovratensioni sugli impianti interni per fulminazione indiretta della linea elettrica;
- sovratensioni sugli impianti interni per fulminazioni a terra in prossimità della struttura.

Le sovratensioni compromettono la sicurezza delle persone ad esempio quando innescano un incendio o danneggiano apparecchiature e/o impianti il cui mancato funzionamento può costituire un pericolo per le persone (applicazioni critiche, impianti di sicurezza, ecc.). La normativa nazionale, ha emesso regole di progettazione e realizzazione degli impianti elettrici per far fronte a questi pericoli.

La probabilità che una sovratensione sia pericolosa per le persone è funzione di molteplici parametri, pertanto richiede un'attenta analisi del rischio. Le sovratensioni sono, inoltre, una delle principali cause di danno alle apparecchiature elettriche ed elettroniche: quest'ultime, in particolare, possono essere danneggiate anche da sovratensioni di modesta ampiezza e di breve durata.

Pertanto sia sul lato in corrente continua che sul lato in corrente alternata l'impianto agrivoltaico sarà dotato di sistemi di protezione attiva (SPD - Surge Protection Device) installati all'interno di ogni specifico inverter costituente il gruppo di conversione - che provvedono alla protezione da sovratensioni sia di origine esterna che di origine interna. La rete di terra completerà il sistema di protezione dalle sovratensioni.

13. MISURE DI PROTEZIONE PER LA CONNESSIONE ALLA RETE IN MT

I criteri e le modalità per la connessione alla RTN saranno conformi a quanto prescritto dalle normative CEI 11-20, CEI 0-16, CEI 82-25, per clienti produttori dotati di generatori che entrano in parallelo continuativo con la rete elettrica.

L'impianto risulterà pertanto equipaggiato con un sistema di protezione che si articolerà su tre livelli:

- <u>dispositivo del generatore</u>: gli inverter risulteranno protetti contro il corto circuito e il sovraccarico dagli interruttori magnetotermici previsti nei quadri di parallelo. Il riconoscimento della presenza di guasti interni provocherà l'immediato distacco dell'inverter dalla rete elettrica di distribuzione;
- <u>dispositivo di interfaccia:</u> dovrà provocare il distacco dell'intero sistema di generazione in caso di guasto sulla rete elettrica. Il dispositivo di interfaccia (DI) cioè, determina la sconnessione dell'impianto di generazione in caso di mancanza di tensione sulla rete di trasmissione nazionale. La protezione di interfaccia,

agendo sull'omonimo dispositivo, sconnette quindi l'impianto di produzione dalla rete elettrica evitando che:

- in caso di mancanza dell'alimentazione della rete, il cliente produttore possa alimentare la rete stessa;
- in caso di guasto sulla rete, il cliente produttore possa continuare ad alimentare il guasto stesso inficiando l'efficacia delle richiusure automatiche, ovvero che l'impianto di produzione possa alimentare i guasti sulla rete prolungandone il tempo di estinzione e pregiudica l'eliminazione del quasto stesso con possibii consequenze sula sicurezza;
- in caso di richiusure automatiche o manuali di interruttori della rete elettrica, il generatore possa trovarsi in discordanza di fase con la rete con possibilità di rotture meccaniche. Le protezioni di interfaccia sono costituite essenzialmente da relè di frequenza, di tensione ed, eventualmente, di massima tensione omopolare.

PROTEZIONE			
Massima tensione			
Minima tensione			
Massima frequenza			
Minima frequenza			
(Massima tensione omopolare			
Vo)			

Il riconoscimento di eventuali anomalie sulla rete avverrà considerando come anormali le condizioni di funzionamento al di fuori di un range di valori di tensione e frequenza prestabilite dalle normative vigenti. La protezione offerta dal dispositivo di interfaccia impedirà anche che il gruppo di conversione continui a funzionare, con particolari configurazioni di carico, anche nel caso di black-out esterno. Questo fenomeno, detto funzionamento in isola, deve essere assolutamente evitato, soprattutto perché potrebbe tradursi in condizioni di pericolo per il personale addetto alla ricerca e alla riparazione dei guasti;

 <u>dispositivo generale:</u> sarà costituito da un interruttore in esecuzione estraibile con sganciatore di apertura oppure interruttore con sganciatore di apertura e sezionatore da installare a valle del trasformatore di utenza. Avrà la funzione di salvaguardare il funzionamento della rete nei confronti di guasti nel sistema di generazione elettrica.

14. GRUPPI DI MISURA

Nell'impianto saranno previste apparecchiature di misura necessarie alla contabilizzazione dell'energia prodotta, scambiata con la rete e assorbita dai servizi ausiliari. In particolare le misure dell'energia saranno attuate in modo indipendente:

- sistema di misura dell'energia prodotta dall'impianto, posizionato in uscita dagli inverter (contatore di energia prodotta);
- misure per la contabilizzazione della energia immessa in rete;

- misure UTF destinate alla contabilizzazione della energia utilizzata in impianto.

I sistemi di misura dovranno essere conformi a tutte le disposizioni dell'autorità dell'energia elettrica e gas e alle norme CEI, in particolare saranno dotati di sistemi di sigillatura che garantiscano da manomissioni o alterazioni dei datidi misura. Inoltre saranno idonei a consentire la telelettura dell'energia elettrica prodotta da parte del distributore.

15. IMPIANTI DI ILLUMINAZIONE, VIDEOSORVEGLIANZA E ANTINTRUSIONE

8.1 Illuminazione perimetrale del campo FV

L'impianto FV è dotato di un sistema di illuminazione perimetrale normalmente spenta ed in grado di attivarsi su comando locale o su input di sorveglianza. L'impianto di illuminazione sarà composta da:

n.194 pali conici zincati a caldo, distanti circa 40 m tra di loro, di altezza massima di circa 4 mt per l'illuminazione del perimetro e completi di accessori quali asola per ingresso cavi, asola per morsettiera a conchiglia, morsettiera ad incasso con fusibile, portella da palo, bullone di messa a terra. L'altezza dei pali tiene conto anche della possibilità di installazione in zone dove c'è il rischio di ombreggiamenti sui moduli FV.

Per le lampade verranno impegnate:

- lampade a LED a basso assorbimento di energia.

L'impianto sarà tale da garantire un illuminamento medio al suolo lungo le strade perimetrali, non inferiore a 5 [lux]. Tutto l'impianto sarà realizzato in Classe II o con isolamento equivalente. Saranno installate n.194 lampade per illuminare l'area d'impianto FV.

Figura 12 - Tipico palo di sostegno per illuminazione e videosorveglianza

8.2 Impianto di videosorveglianza

Per la sorveglianza dell'impianto FV è previsto un sistema di controllo dell'area perimetrale ed un controllo volumetrico delle cabine. Il sistema di videosorveglianza sarà montato sugli stessi pali in acciaio zincato fissati al suolo con plinto di fondazione in cls armato, utilizzati per l'illuminazione. Verranno installate n.194 videocamere di sicurezza per le due aree d'impianto FV, due su ciascun palo, alla distanza di circa 80 m.

Il sistema di videosorveglianza è complementare al sistema del cavo microforato e sarà composto indicativamente da:

- telecamere brandeggiabili auto-dome, dotate di zoom ed installate sui pali d'illuminazione dell'impianto FV, del tipo night & day;
- illuminatori ad infrarossi;
- convertitori per collegare le telecamere con cavo UTP;
- sistema di registrazione digitale;
- centrale di allarme.

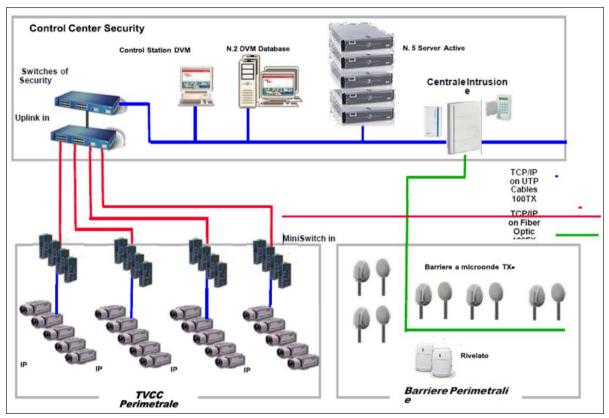


Figura 13 – Tipico dello schema di collegamento per sistemi di videosorveglianza e controllo

8.3 Impianto di rivelazione antintrusione

Si può installare, a protezione dell'impianto agrivoltaico, un sistema antifurto a fibra ottica modulare. Una centralina elettronica (master), installata nella cabina control room, verifica che l'anello di luce del cavo ottico codificato sia costantemente chiuso e

Disciplinare Tecnico

ATON 27 S.r.I.

controlla che l'intensità del fascio di luce sia costante. Nel caso in cui la fibra ottica venga piegata, deformata o interrotta, scatterà l'allarme ed invierà un segnale dato dalla chiusura di un contatto in grado di pilotare qualsiasi sistema di segnalazione quale un dispositivo GSM, una sirena, o interfacciarsi ad un sistema di allarmetradizionale.

Con questo sistema si possono realizzare:

- la protezione diretta dei moduli fotovoltaici;
- la protezione delle cabine;
- la protezione perimetrale del sito agrivoltaico.

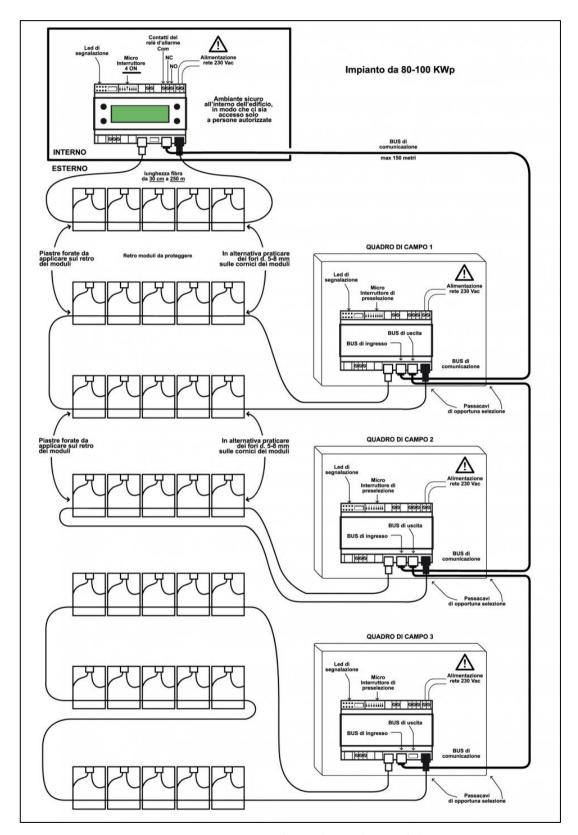


Figura 14 - Sistema di antifurto dei moduli FV

Il sistema sarà alimentato a tensione nominale pari a 230V 50Hz dal quadro servizi ausiliari e dovrà provvedere autonomamente alla distribuzione ed alimentazione di

dispositivi di ripetizione del segnale e/o di alimentazione di unità remote poste lungo il perimetro.

9 CONTROLLO E MONITORAGGIO DELL'IMPIANTO AGRIVOLTAICO

L'impianto agrivoltaico non richiederà, di per sé, il presidio da parte di personale preposto. La centrale, infatti, verrà esercita, a regime, mediante il sistema di supervisione che consentirà di rilevare le condizioni di funzionamento e di effettuare comandi sulle macchine ed apparecchiature da remoto, o, in caso di necessità, di rilevare eventi che richiedano l'intervento di squadre specialistiche. Il sistema di controllo dell'impianto avverrà tramite due tipologie di controllo: controllo locale e controllo remoto.

- Controllo locale: monitoraggi tramite PC centrale, posto in prossimità dell'impianto, tramite software apposito in grado di monitorare e controllare gli inverter;
- Controllo remoto: gestione a distanza dell'impianto tramite modem GPRS con scheda di rete Data-Logger montata a bordo degli inverter. Il sistema di controllo con software dedicato, permetterà l'interrogazione in ogni istante dell'impianto, al fine di verificare la funzionalità degli inverter installati, con la possibilità di visionare le funzioni di stato, comprese le eventuali anomalie di funzionamento.

Le principali grandezze controllate dal sistema saranno:

- Potenze dell'inverter;
- Tensione di campo dell'inverter;
- Corrente di campo dell'inverter;
- Radiazioni solari;
- Temperatura ambiente;
- Velocità del vento;
- Letture dell'energia attiva e reattiva prodotte. La connessione tra gli inverter e il PC avverrà tramite un box acquisizione (convertitore USB/RS485 MODBUS).

10 OPERE CIVILI

Le cabine elettriche dei due impianti saranno realizzate con elementi componibili prefabbricati in calcestruzzo armato vibrato o a struttura monoblocco, tali da garantire pareti interne lisce senza nervature ed una superficie interna costante lungo tutte le sezioni orizzontali. Il calcestruzzo utilizzato, deve essere additivato con idonei fluidificanti-impermeabilizzanti al fine di ottenere adeguata protezione contro le infiltrazioni d'acqua per capillarità. Il box realizzato deve assicurare verso l'esterno un grado di protezione IP 33 Norme CEI EN 60529. La struttura sarà adibita all' alloggiamento delle apparecchiature elettromeccaniche in BT e MT. I quadri elettrici saranno posizionati su un supporto di acciaio utilizzando i supporti distanziatori. Inoltre:

- le aperture devono garantire un grado di protezione IP 33 e una adeguata ventilazione a circolazione naturale di aria;
- le tubazioni di ingresso dei cavi devono essere sigillate onde impedire la propagazione o l'infiltrazione di fluidi liquidi e gassosi;

• la struttura deve essere adeguatamente impermeabilizzata, al fine di evitare allagamenti ed infiltrazioni di acqua.

Tutte le cabine dell' impianto saranno dotate di sistema di climatizzazione per garantire il mantenimento della temperatura interna per evitare che questa ecceda oltre i limiti di ottimale funzionamento, di impianto di messa a terra interno collegabile con la maglia di terra esterna e di un'illuminazione adequata di almeno 100 lux.

Carichi di progetto

Le cabine, terranno conto del rispetto dei carichi di progetto quali: pressione del vento, azione del carico di neve sulla copertura, azione sismica, sollevamento e trasporto del box e carichi mobili e permanenti sul pavimento in conformità della specifica tecnica Enel DG2092 e della Legge 2 Febbraio 1974 n. 64, art. 10.

Impianto elettrico

Gli impianti elettrici, del tipo sfilabile, saranno realizzati con cavo unipolare di tipo antifiamma, con tubo in materiale isolante incorporato nel calcestruzzo e consentirà la connessione di tutti gli apparati necessari per il funzionamento della cabina.

- Impianto di messa a terra

Le cabine devono essere dotate di un impianti di terra di protezione dimensionato in base alle prescrizioni di Legge ed alle Norme CEI EN 50522: 2011-03 (CEI 99-3) E CEI EN 61936 -1: 2011-03 (CEI 99-2). Il collegamento interno-esterno della rete di terra sarà realizzato con almeno n. 2 connettori in acciaio inox, annegati nel calcestruzzo e collegati all'armatura o con analogo sistema che abbia le stesse caratteristiche. L'armatura metallica della struttura verrà collegata a terra per garantire l'equipotenzialità elettrica. I connettori elettrici saranno dotati di boccole filettate a tenuta stagna, per il collegamento della rete di terra, facenti filo con la superficie interna ed esterna della vasca. Per quanto riguarda l'impianto di terra interno, tutte le masse delle apparecchiature MT e BT che fanno parte dell'impianto elettrico verranno collegate all'impianto di terra interno e messe a terra, in particolare:

- i quadri MT e BT;
- il cassone di un eventuale trasformatore MT/BT;
- il rack apparecchiature BT;
- il telaio per quadri BT;
- le masse di tutte le apparecchiature BT.

L'impianto di terra esterno viene fornito in opera ed è costituito da anello con dimensioni descritte nella specifica tecnica e-distribuzione DG2061 in vigore. I dispersori orizzontali verrano realizzati in corda nuda di rame con una sezione uguale o superiore a 35 mm² e collocati sul fondo di una trincea.

Particolari costruttivi

Pareti:

Le pareti saranno realizzate in conglomerato cementizio vibrato, adeguatamente armate di spessore non inferiore a 9 cm. Il dimensionamento dell'armatura dovrà essere quella

prevista dal D.M. 14 gennaio 2008. Sulla parete lato finestre verrà fissato un passante in materiale plastico, annegato nel calcestruzzo in fase di getto, per consentire il passaggio di cavi elettrici temporanei. Tale passante deve avere un diametro interno minimo di 150 mm, deve essere dotato di un dispositivo di chiusura/apertura funzionante solo con attrezzi speciali e deve garantire la tenuta anche in assenza di cavi. Sulla parete opposta a quella contente le porte, in corrispondenza dell'armadio rack, deve essere previsto un sistema passacavo (Φ > 80 mm) per l'antenna. Nella cabina verranno installati:

- porte omologate in resina (DS 919) o in acciaio zincato/inox (DS 918) complete di serrature omologate (DS 988);
- finestre in resina (DS 927) o in acciaio inox (DS 926);

Le porte, il relativo telaio ed ogni altro elemento metallico accessibile dall'esterno devono essere elettricamente isolate dall'impianto di terra (CEI EN 50522:2011-07) e dalla armatura incorporata nel calcestruzzo.

Pavimento:

Il pavimento a struttura portante, deve avere uno spessore minimo di 10 cm e dimensionato per sopportare i carichi definiti nel paragrafo precedente.

Sul pavimento sono previste le seguenti aperture:

- apertura minima di dimensioni 650 mm x 2800 mm per gli scomparti AT;
- apertura di dimensioni 1000 mm x 600 mm completa di plotta di copertura removibile in VTR avente un peso inferiore a 25 daN e una capacità portante tale da poter sopportare un carico concentrato in mezzeria di 750 daN;
- apertura di dimensioni 500 mm x 250 mm per i quadri BT per l'accesso alla vasca di fondazione dei cavi BT;
- apertura di dimensioni 500 mm x 500 mm per il rack dei pannelli elettronici per l'accesso alla vasca di fondazione dei cavi BT;
- apertura di dimensioni 600 mm x 600 mm per il vano misure completa di plotta di copertura removibile in VTR avente un peso inferiore a 25 daN e una capacità portante tale da poter sopportare un carico concentrato in mezzeria di 600 daN.

In corrispondenza della porta d'entrata sarà previsto un rialzo del pavimento di 40 mm per impedire l'eventuale fuoriuscita dell'olio di un eventuale trasformatore. Nel pavimento verrà inglobato un tubo di diametro esterno (De) non inferiore a 60 mm collegante i dispositivi di misura situati nel locale utente con i scomparti AT del locale consegna. In prossimità del foro per il rack devono essere installate n.4 boccole filettate annegate nel cls facenti filo con il pavimento, utili al fissaggio del quadro rack.

Copertura:

La copertura, opportunamente ancorata alla struttura, garantirà un coefficiente medio di trasmissione del calore minore di 3,1 W/°C m². La copertura sarà a due falde ed avrà un pendenza del 2% su ciascuna falda e dovrà essere dotata per la raccolta e l'allontanamento dell'acqua piovana, sui lati lunghi, di due canalette in VTR di spessore di 3 mm. Inoltre, dovrà essere protetta da un idoneo manto impermeabilizzante prefabbricato costituito da membrana bitume-polimero, flessibilità a freddo -10° C, armata in filo di poliestere e rivestita superiormente con ardesia, spessore 4 mm (esclusa ardesia), sormontato dalla canaletta.

Sistema di ventilazione:

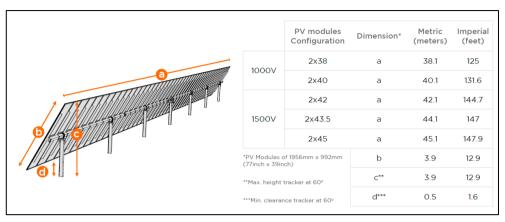
La ventilazione all'interno del box avverrà tramite due aspiratori eolici, in acciaio inox del tipo con cuscinetto a bagno d'olio, installati sulla copertura e le due finestre di aerazione in resina o in acciaio (DS 927 – DS 926), posizionate sul fianco del box. Gli aspiratori dovranno avere un diametro minimo di 250 mm ed essere dotati di rete antinsetto di protezione removibile maglia 10x10 e di un sistema di bloccaggio antifurto. Ad installazione avvenuta, garantiranno una adeguata protezione contro l'introduzione di corpi estranei e la penetrazione di acqua. L'acciaio inox degli aspiratori deve essere del tipo AISI 304 (acciaio al Cr-Ni austenitico) come da UNI EN 10088-1:2005 e dovranno essere posizionati nella zona intermedia tra i quadri di Alta Tensione e la parete anteriore (porte) in modo da evitare che possibili infiltrazioni d'acqua finiscano sulle apparecchiature elettriche AT o BT. Gli aspiratori eolici devono essere isolati elettricamente dall'impianto di terra (CEI EN 50522:2011-07) e dall'armatura incorporata nel calcestruzzo.

Basamento:

Preliminarmente alla posa in opera del box, sul sito prescelto deve essere interrato il basamento d'appoggio prefabbricato in c.a.v., realizzato in monoblocco o ad elementi componibili in modo da creare un vasca stagna sottostante tutto il locale consegna dello spessore netto di almeno 50 cm (compresi eventuali sostegni del pavimento). Tra il box ed il basamento sarà previsto collegamento meccanico (come da punto 7.2.1 del DM 14/01/2008) prevedendo un sistema di accoppiamento tale da impedire eventuali spostamenti orizzontali del box stesso ed un sistema di sigillatura al contatto box-vasca, tale da garantire una perfetta tenuta all'acqua. Esso sarà dotato di fori per il passaggio dei cavi AT e BT, posizionati ad una distanza dal fondo della vasca tale da consentire il contenimento dell'eventuale olio sversato dal trasformatore, fissato in un volume corrispondente a 600 litri. I fori saranno predisposti di flange a frattura prestabilita verso l'esterno e predisposti per l'installazione dei passacavi (foro cilindrico e superficie interna levigata) conformi alla specifica tecnica DS920; tali passacavi montati dall'interno dovranno garantire i requisiti di tenuta stagna anche in assenza dei cavi

10.1 STRUTTURE DI SUPPORTO DEI MODULI FV

Nell' impianto agrivoltaico in oggetto, saranno installate sia strutture di supporto ad inseguitori solari monoassiali.


<u>Insequitori solari monoassiali</u>

Le strutture di supporto del tipo ad inseguitori solari monoassiali sono costituite da un'asse di rotazione su cui vengono installati i moduli fotovoltaici, le quali vengono posate su fondazioni a vite o a palo in acciaio zincato infisso direttamente nel terreno ed interrato ad una profondità opportuna, dipendente dal carico e dal tipo di terreno stesso. Il sistema è perfettamente compatibile con l'ambiente, non prevede che si impregnino le superfici, non danneggia il terreno e non richiede la realizzazione di plinti in cemento armato.

La tipologia di tracker monoassiale utilizzato nel progetto è del tipo "2 in portrait", con asse di rotazione avente azimuth di 0° rispetto alla direzione Nord-Sud, che prevede il montaggio di n.2 moduli in orizzontale sull'asse di rotazione, con una configurazione di

48 moduli e 96 moduli per inseguitore. La distanza tra gli assi delle file è stata valutata, al fine di evitare mutui ombreggiamenti tra i moduli, di circa 9,0 m. Di seguito una rappresentazione tipica del sistema tracker utilizzato nella progettazione:

Tracking Range +120° (configurable) Self-Powered: Autonomous PV Series Power Supply Grid-Powered: AC single phase Drive Power Supply Self-Powered: AC single phase Self-Powered: 250 W max. Grid-Powered: 75 W max. Energy Consumption 563 kWh/MWp-year Time to stow from 60° full tilt Self-Powered: < 3 min Grid-Powered: < 11 min Tracking algorithm Astronomical with TeamTrack Assymetric Backtracking Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Sub-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) 32-50 mph (60-80 km/h) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips PV Modules supported 60-72 c-Si Crystalline, thin-film (First Solar, Solar Frontier), Bifacial		
Power Supply Grid-Powered: AC single phase Self-Powered: 250 W max. Grid-Powered: 75 W max. Energy Consumption 563 kWh/MWp-year Time to stow from 60° full tilt Grid-Powered: < 3 min Grid-Powered: < 11 min Tracking algorithm Astronomical with TeamTrack Assymetric Backtracking Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Sub-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Tracking Range	+120° (configurable)
Drive Power Grid-Powered: 75 W max. Energy Consumption 563 kWh/MWp-year Time to stow from 60° full tilt Self-Powered: < 3 min Grid-Powered: < 11 min Tracking algorithm Astronomical with TeamTrack Assymetric Backtracking Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) 32-50 mph (60-80 km/h) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Power Supply	1.13
Time to stow from 60° full tilt Self-Powered: < 3 min Grid-Powered: < 11 min Tracking algorithm Astronomical with TeamTrack Assymetric Backtracking Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Drive Power	
Time to stow from 60° full tilt Grid-Powered: < 11 min Astronomical with TeamTrack Assymetric Backtracking Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Energy Consumption	563 kWh/MWp-year
Monitoring and control Tracker Monitoring System (TMS) Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) 32-50 mph (60-80 km/h) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Time to stow from 60° full tilt	
Communication Hybrid: 2.4GHz Radio communications between Head-Trackers and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) 32-50 mph (60-80 km/h) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Tracking algorithm	Astronomical with TeamTrack Assymetric Backtracking
Communication and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired: Full wired RS485 Communications Maximum wind resistance (in any position) 32-50 mph (60-80 km/h) Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Monitoring and control	Tracker Monitoring System (TMS)
Maximum wind resistance (in stow position) Configurable according to local regulations PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Communication	and Sub-Trackers, RS485 Wired communications between Head-Trackers and Gateways. Wired : Full wired RS485
PV Module fasteners Bolts, rivets, clamps, Cinch-clips	Maximum wind resistance (in any position)	32-50 mph (60-80 km/h)
Later, mate, carrier, circ	Maximum wind resistance (in stow position)	Configurable according to local regulations
PV Modules supported 60-72 c-Si Crystalline, thin-film (First Solar, Solar Frontier), Bifacial	PV Module fasteners	Bolts, rivets, clamps, Cinch-clips
	PV Modules supported	60-72 c-Si Crystalline, thin-film (First Solar, Solar Frontier), Bifacial

Figura 15 - Sezione trasversale di una vela d'impianto

8.4 STAZIONE UTENTE DI TRASFORMAZIONE MT/AT (SU)

La nuova La stazione utente condivisa sarà ubicata nel Comune di Anagni (FR), su un terreno adiacente la nuova SE, nel Foglio 46 e Particelle 9, 10, 11, 15 e 16 del comune di Anagni (FR). In particolare la SU interesserà un'area totale di circa 7.320 mq. La superficie dello stallo utente della società proponente il seguente progetto è di circa 990 mq.

In particolare, la SU interesserà un'area totale così suddivisa:

- aree stalli in AT utenti pari a circa 4.560 mg
- area stallo e opere elettriche condivise con altro operatore, di circa 2.760 mg

Di seguito sono riportati i componenti elettrici che compongono lo stallo della stazione utente di trasformazione:

- N°1 montante di linea/trasformazione MT/AT, 30/150 KV composto dai seguenti dispositivi elettrici:
- N° 1 trasformatore trifase di potenza pari a circa 50/60 MVA, 150/30 kV, ONAN, gruppo vettoriale YNd11, provvisto di commutatore sotto carico lato AT, dimensioni circa: 6.8x4.6x5.5 m;
- Nº 1 terna di scaricatori di sovratensione, per esterno ad ossido di zinco;170 kV completi di conta scariche, installati sia a protezione del trasformatore
- N° 1 terna di trasformatori di tensione induttivi TVI per esterno, con rapporto $150000: \sqrt{3} 100: \sqrt{3} V$, 10 VA cl. 0.2;
- N° 3 trasformatori di corrente TA; 200-400/5-1-1-1 A, 20 VA-0.2, 20 VA-0.5, 30 VA-5P20, 20 VA-5P20;
- N° 1 interruttore tripolare, 170 kV;
- N° 1 sezionatore tripolare orizzontale 170 kV;
- Nº1 sbarra di parallelo condivisa.

• N°1 stallo di collegamento alla stazione:

La stazione utente condivisa è composta da una sbarra AT di raccolta, con n. 5 stalli dedicati ad altrettanti produttori e n. 1 stallo destinato alla connessione verso la RTN con tubo rigido in alluminio; il montante di uscita sarà equipaggiato con TA e interruttore, sezionatore orizzontale tripolare, TV induttivo, scaricatori e terminali AT, mentre ciascuno dei montanti per produttori sarà dotato di colonnini porta sbarre e sezionatore verticale di sbarra. Nel caso in cui venga richiesto dal Gestore della RTN un ulteriore sezionamento tra le sbarre e la stazione utente si potrebbe ricorrere ad una soluzione con apparecchiatura in gas (ad es. modulo PASS).

- N°1 edificio comandi e quadri MT e BT avente dimensioni di circa 25,6x4,6x2,7 m, suddiviso nei sequenti locali:
- Locale quadri MT;
- Locale trafo aux;
- Locale TLC e quadri BT;
- Locale misure:
- Locale Tecnico

Si rimanda alla tavola tecnica TCN-PLN-IE-08 per maggiori dettagli.

9 SCAVI

Gli scavi all'interno dell'area in cui verrà realizzato l'impianto agrivoltaico riguarderanno principalmente le seguenti opere civili:

cavidotti in BT e MT;

- fibra ottica e rete di terra;
- impianto di terra;
- fondazioni delle cabine elettriche;
- recinzioni e accessi;
- strade interne e perimetrali.

Per quanto riguarda i cavi, quelli di collegamento delle stringhe di moduli saranno posati su canaline metalliche grigliate poste nella parte anteriore delle strutture di sostegno. I cavi di collegamento tra le stringhe e gli inverter (in cc-BT), verranno principalemnte posati su canaline metalliche ed in parte interrati. Infine, i cavi di collegamento tra: gli inverter con le cabine di trasformazione e le cabine elettriche tra di loro, saranno posati all'interno di scavi ed interrati in profondità variabili a seconda del numero e della tensione d'isolamento dei cavi. Di seguito un'immagine di uno scavo tipo in un impianto agrivoltaico:

Figura 16 – Tipico di scavo per cavi BT/MT

Il cavidotto di connessione tra la cabina di raccolta e la SEU, verrà realizzato tramite n.3 terne di cavi in Al del tipo ARE4H5(AR)E, direttamente interrate nelo scavo senza ulteriore protezione meccanica, ad una profondità minima di 1,2 m dal livello della superficie.

Tutti i tipi di cavo utilizzati nel progetto, rispetto ai piani finiti di strade o piazzali o alla quota del piano di campagna, saranno posati all'interno di uno strato di materiale sabbioso di spessore variabile. Un nastro segnalatore sarà immerso nel rimanente volume dello scavo riempito con materiale arido.

La posa dei conduttori si suddividerà sostanzialmente nelle seguenti attività:

- scavo a sezione obbligata della larghezza e della profondità come indicata nel documento di progetto;
- posa dei conduttori e/o fibre ottiche. Particolare attenzione dovrà essere fatta per l'interramento della corda di rame che costituisce il dispersore di terra dell'impianto.
 Infatti questa dovrà essere interrata in uno strato di terreno vegetale di spessore non inferiore a 20 cm nelle posizioni indicate dal documento di progetto;
- reinterro parziale con sabbia vagliata;
- posa dei nastri di segnalazione;
- reinterro con terreno di scavo;
- pavimentazione in conglomerato bituminoso per cavi posati su strade asfaltate.

La posa dovrà essere eseguita a regola d'arte e nel rispetto delle normative vigenti.

In particolare, per i cavi in MT dell'impianto, dovranno essere rispettati alcuni criteri particolari per l'esecuzione delle opere secondo la regola dell'arte come di seguito indicati:

- <u>Tracciato delle linee:</u> esso dovrà seguire più fedelmente possibile la linea guida indicata nella planimetria generale d'impianto. In particolare il tracciato dovrà essere il più breve possibile e parallelo al fronte dei fabbricati dove presenti.
- Posa diretta in trincea: la posa del cavo può essere effettuato, in generale, secondo i due metodi sequenti:
 - a bobina fissa: da adottare quando il percorso in trincea a cielo aperto è intercalato con percorsi in tubazioni e quando il percorso è prevalentemente rettilineo o con ampi raggi di curvatura. La bobina deve essere posta sull'apposito alzabobine, con l'asse di rotazione perpendicolare all'asse mediano della trincea e in modo che si svolga dal basso. Sul fondo della trincea devono essere collocati, ad intervalli variabili in dipendenza del diametro e della rigidità del cavo, i rulli di scorrimento. Tale distanza non deve comunque superare i 3 metri.
 - a bobina mobile: da adottare quando il percorso si svolge tutto in trincea a cielo aperto. Il cavo deve essere steso percorrendo con il carro portabobine il bordo della trincea e quindi calato manualmente nello scavo. L'asse del cavo posato nella trincea deve scostarsi dall'asse della stessa di qualche centimetro a destra e a sinistra seguendo una linea sinuosa, al fine di evitare dannose sollecitazioni dovute all'assestamento del terreno.

Gli scavi di fondazione, riguardano principalmente le cabine elettriche. In particolare, la vasca di fondazione delle cabine elettriche è un piano di appoggio all'interno di uno scavo per il posizionamento di un basamento, sulla quale viene adagiata la cabina prefabbricata. Il basamento prefabbricato, avrà una profondità minima di 0,5 m.

La vasca, oltre all'isolamento del manufatto dal terreno, ha fori a frattura prestabilite per consentire l' ingresso di cavidotti e quindi per il passaggio dei cavi di media e bassa tensione per la distribuzione interna.

Perimetralmente alla cabina verrà realizzato l'impianto di terra. La rete di terra esterna è costituita da una treccia di rame di opportuno spessore, posizionata all' interno dello

scavo distanziata perimetralmente di circa 1 metro dal basamento in opera e collegata alla rete elettrosaldata affogata nel basamento, dal punto di terra interno alla cabina prefabbricata e dai 4 spandenti a croce infissi nel terreno adiacenti agli angoli del basamento.

La vasca ha la possibilità di recuperabilità totale in fase di spostamento e può raccogliere l' olio dell' evenuale trasformatore installato. Infatti per l'eventuale fuoriuscita dell'olio del trasformatore è possibile richiedere un basamento completo di flange che garantisce la tenuta stagna sia dall'esterno che dall'interno.

10 VIABILITÀ, ACCESSI E RECINZIONE

L'impianto sarà dotato di strade di servizio interne e perimetrali che avranno una larghezza pari a circa 5 m e saranno realizzate con materiale proveniente dagli scavi di fondazione delle cabine di campo miscelato con terreno naturale calce/cemento al fine di costituire una piattaforma solida naturale in "terra stabilizzata" che nel tempo si andrà a consolidare con il naturale inerbimento.

L'accesso carrabile all'area d'impianto sarà costituito da 12 cancellI a due ante in pannellature metalliche, larghezza minima 6 m e montato su pali in acciaio fissati al suolo con plinti di fondazione in cls armato collegati da cordolo.

Oltre alla viabilità è prevista la realizzazione della recinzione che corre lungo tutto il perimetro dell'area di progetto, e verrà realizzata con rete romboidale alta minima di $2,20\,\mathrm{mt}$ sormontante su un palo in ferro zincato infisso nel terreno senza opere in c.a. sopraelevata di $20\,\mathrm{cm}$ per facilitare il passaggio delle fauna all'interno dell'impianto. Tra le opere edili si annovera l'impianto di illuminazione notturna del parco per la sicurezza contro i furti e la manutenzione dell'impianto stesso. Per consentire il passaggio della fauna selvatica di piccola taglia saranno realizzati dei passaggi di dimensioni $20\,\mathrm{x}$ 100 cm ogni $100\,\mathrm{m}$ di recinzione.

11 MOVIMENTI DI TERRA

L'attività di movimento terra comprende tutti quegli interventi che incidono sulla realtà del terreno delle aree su cui verrà realizzato l'impianto FV, mutandone le caratteristiche, e che normalmente rientrano in tre diverse tipologie di operazioni di cantiere:

- scavi: consistono nell'asporto di terreno (se di notevole consistenza si parla solitamente di sbancamento);
- riporti: consistono nel deposito di una quantità di terra su un'area;
- livellamenti: sono interventi che, attraverso scavi e riporti, mirano ad eliminare le asperità di un terreno.

La movimentazione terra riguarderà la realizzazione delle seguenti opere civili, in particolare:

- la viabilità interna d'impianto che nel suo complesso (perimetrale e interna) coprirà una superficie pari a circa 32.500 mq. Per la sua realizzazione si prevede: rimozione del cotico erboso superficiale; rimozione dei primi 20 cm di terreno, compattazione del fondo scavo e riempimento con materiale miscelato con terreno naturale calce/cemento

fino al raggiungimento delle quote originali di piano campagna. Il materiale derivato dal volume di terreno escavato sarà riutilizzato in loco per rinterri e livellamente, e la parte eccedente sarà utilizzata in sito per livellamenti e rimodellamenti necessari per altre opere civili;

- gli scavi per l'alloggiamento dei cavidotti in BT dell'impianto comporteranno la movimentazione massima (in relazione cioè al numero di cavi interrati) di terreno di circa 6.100 mc;
- gli scavi per l'alloggiamento dei cavidotti MT interni all'impianto comporteranno la movimentazione di circa 3.200 mc di terreno;
- glo scavo per l'alloggiamento deil cavidotto MT esterno all'impianto comporteranno la movimentazione di circa 3.750 mc di terreno;
- per il posizionamento delle cabine elettriche, potrà essere prevista la realizzazione di uno scavo di alloggiamento della profondità variabile, per un totale di circa 250 mc di terreno.

Il terreno proveniente da tali scavi verrà riutilizzato interamente all'interno del sito. Non sono previsti utilizzi fuori dell'area di cantiere. I terreni di scavo relativi ai cavidotti saranno conferiti a discarica. Il presente cantiere ricade fra quelli di grandi dimensioni, con volumi di scavo superiori a 6.000 mc, sottoposti a pro-cedura di VIA o AIA. Il valore presunto di scavi è superiore ai minimi imposti di legge, considerando che gran parte del terreno asportato per il posizionamento dei cavidotti verrà poi riutilizzato per chiudere lo stesso scavo, così come il terreno proveniente dallo sbancamento per la realizzazione dello stagno artificiale verrà riutilizzato per creare livellamenti interni al campo.

Per approfondimenti, si rimanda alle tavole allegate e alle relazioni specialistiche della SIA (Studio Impatto Ambientale).

11 ANALISI IDRAULICA

L'area interessata dalle opere è caratterizzata da morfologia essenzialmente collinare ed è posta in sommità al rilievo, con morfologie modulate e con andamento poco aspro e pendenze contenute. Il settore in considerazione è infatti caratterizzato da affioramenti di Vulcaniti e subordinatamente da materiali argillosi ed alluvionali recenti e terrazzate che presentano nel complesso morfologie piuttosto dolci.

Sussistono differenti acclività in considerazione dei diversi litotipi affioranti, con valori di pendenza tendenzialmente minori per le alluvioni e le cineriti e maggiori per le colate piroclastiche. Le pendenze sono piuttosto variabili, da un minimo del 3% ad un massimo del 25%. Le esposizioni sono varie.

L'area è caratterizzata dalla presenza di litotipi costituiti prevalentemente da prodotti piroclastici eterogenei e la diversa permeabilità di tali prodotti condiziona la circolazione superficiale e sotterranea delle acque e determina la formazione di una serie di falde sovrapposte. Il modello dell'acquifero risente dei differenti litotipi presenti, quali le cineriti e le colate piroclastiche, che determinano una circolazione a volte complessa proprio a causa dell'anisotropia dei materiali presenti e della loro posizione relativa.

Si riscontrano condizioni di trasmissività alquanto eterogenee, con un grado di permeabilità variabile da medio a ridotto, in funzione della granulometria dei depositi; nel suo insieme il complesso può essere definito mediamente permeabile per porosità e

per fessurazione, con una permeabilità variabile tra $2 \times 10-4$ e 6×10 -5 m/s. L'acquifero presenta un deflusso preferenziale delle acque nei litotipi più permeabili. La superficie freatica si pone ad una profondità variabile tra circa 15 m e 20 m dal piano campagna, con quota tra circa 230 m e 180 m sul livello del mare.

Sia il campo agrivoltaico che i tratti di cavidotto non sono interessati dalle circolazioni idriche profonde in quanto le opere ed i loro nuclei di fondazione si trovano al di sopra delle superfici di falda idrica. La circolazione idrica superficiale nell'area interessata dal progetto è presente unicamente a seguito di eventi pluviometrici e riguarda la frazione idrica che non si infiltra e di conseguenza ruscella verso valle.

Si rimanda per maggiori dettagli all'allegato Relazione Geologica ed Idrogeologica.