





# PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL MARE ADRIATICO MERIDIONALE - BARIUM BAY 74 WTG - 1.110 MW

## **PROGETTO DEFINITIVO - SIA**

## Progettazione e SIA

















## Indagini ambientali e studi specialistici

























## Studio misure di mitigazione e compensazione









supervisione scientifica



| C | IA EC | CTI  | וחו | CDEC   | ` I A I | ICTI/CI |
|---|-------|------|-----|--------|---------|---------|
| J | IA.EJ | ้วเบ | וטי | I SPEC | ΛAL     | 131161  |

ES.1 Analisi della producibilità attesa

| REV. | DATA | DESCRIZIONE |
|------|------|-------------|
|      |      |             |
|      |      |             |
|      |      |             |



| Progetto:  | Progetto preliminare per la realizzazione di un parco eolico offshore - Bari |
|------------|------------------------------------------------------------------------------|
| Report:    | RELAZIONE TECNICA ANALISI DI PRODUCIBILITA'                                  |
| Cliente:   |                                                                              |
|            |                                                                              |
| Autori:    | Cristiano Paoletti                                                           |
| Data:      | 28 Maggio 2023                                                               |
| Revisione: | Rev.0                                                                        |

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### **INTRODUZIONE**

Il Committente, operante nel settore delle energie rinnovabili e titolare di differenti progetti eolici nel territorio italiano, ha espresso la volontà a realizzare un parco eolico offshore composto da 74 aerogeneratori, per una potenza totale di 1110 MW di fronte alla costa nord-orientale della Regione Puglia, in particolare nello specchio di mare antistante la città di Bari.

A tale scopo, il Committente ha provveduto a richiedere all'Autore consulenza al fine di procedere allo svolgimento delle seguenti attività per il progetto in esame:

- I. Valutazione dei dati anemometrici del sito messi a disposizione e determinazione dei parametri caratteristici.
- II. Creazione del modello Fluido-Dinamico Computazionale (CFD) dell'area di studio centrato sul sito in esame.
- III. Valutazione della rosa dei venti, della distribuzione di Weibull della ventosità e delle perdite per scia per ogni singolo aerogeneratore sulla base dei dati anemometrici del sito.
- IV. Produzione del presente report di sintesi e delle tabelle di produzione.

Vengono riportati di seguito la descrizione delle attività svolte ed i risultati ottenuti per il progetto eolico offshore di Bari.

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### LIMITAZIONI DI RESPONSABILITÀ

Il presente lavoro si basa sulle informazioni trasmesse dal Cliente durante la fase di studio. L'Autore non risponde della veridicità, della correttezza e della completezza delle suddette informazioni.

Gli elaborati e le considerazioni condivise nel presente documento hanno natura di consulenza e non vanno utilizzate per scopi diversi da quelli noti ed espressi nel documento di offerta accettata.

Tutte le informazioni condivise dal Cliente, e quelle contenute nel presente lavoro, si ritengono confidenziali tra le parti e non possono essere condivise con terzi senza comune accordo.

Nel perimetro delle attività di questo lavoro non vi sono disposizioni per cui siano dovuti al Cliente aggiornamenti e revisioni delle informazioni qui contenute legati ad eventi o informazioni divenute disponibili in un momento successivo alla consegna del presente documento.

L'Autore non è responsabile per eventuali perdite, danni diretti o indiretti, o spese che il Cliente dovesse affrontare o in cui esso dovesse incorrere in relazione alle attività legate al presente lavoro e alla loro esecuzione, a meno che i suddetti danni, spese o perdite siano riconducibili in modo diretto ed immediato a condotta fraudolenta o estremamente negligente del Consulente.

Le parti concordano comunque che l'importo totale di qualunque danno giudicato rifondibile non potrà superare quanto già pagato dal Cliente verso l'Autore.

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

### INDICE.

| LIMI | TAZIONI DI RESPONSABILITÀ                                     | 3  |
|------|---------------------------------------------------------------|----|
| 1.   | SCOPO.                                                        | 5  |
| 2.   | IL SITO EOLICO                                                | 5  |
| 2.1. | CONFIGURAZIONE D'IMPIANTO.                                    | 5  |
| 2.2. | LA CURVA DI POTENZA DEL MODELLO DI AEROGENERATORE INDIVIDUATO | 9  |
| 3.   | ANEMOMETRIA.                                                  | 10 |
| 4.   | STUDIO ANEMOLOGICO                                            |    |
| 4.1. | METODOLOGIA DI ANALISI CFD.                                   |    |
|      | Il Dominio di Analisi.                                        |    |
| 4.3. | LA CLIMATOLOGY UTILIZZATA IN INPUT.                           | 15 |
| 5.   | PRODUCIBILITA' ATTESA.                                        | 16 |

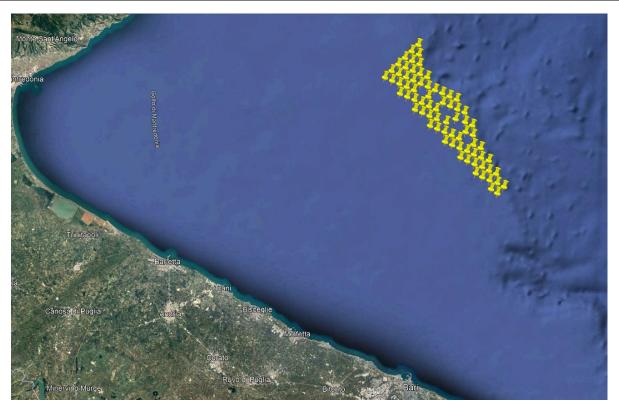
Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### 1. SCOPO.

Scopo del presente documento è:

- → l'analisi dei dati anemometrici per il sito in esame forniti dal Cliente e la determinazione dei parametri caratteristici;
- → la valutazione delle rose dei venti;
- → calcolo delle produzioni al netto delle perdite per scia tramite modellizzazione software CFD;
- → produzione del report di sintesi e delle tabelle di producibilità

#### 2. IL SITO EOLICO


#### 2.1. CONFIGURAZIONE D'IMPIANTO.

Il Sito Eolico in esame si trova al largo della costa di Bari, in Puglia come raffigurato in **Figura 1**. L'estensione del sito parte da circa 40 km di distanza dalla costa fino a circa 54 km dal litorale. L'ingombro del campo eolico lungo l'asse nord ovest – sud est è di circa 33 km.

Il progetto eolico oggetto del presente studio consta di complessive 74 installazioni eoliche del costruttore Vestas modello V236 di 150m di hub e potenza nominale 15000 kW e le cui coordinate sono riportate in **Tabella 1.** Il relativo layout è mostrato nella successiva **Figura 2** 



Figura 1 – Posizione del sito eolico su stralcio ortofotoplanimetrico estratto da Google Earth.



**Figura 2** – Layout di impianto del proposto parco eolico offshore su stralcio ortofotoplanimetrico estratto da Google Earth.

**Report:** RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

|                  |             | coordinate system |         |  |  |  |
|------------------|-------------|-------------------|---------|--|--|--|
| Turbine type     | Turbine No. | WGS84, Zone 33    |         |  |  |  |
|                  |             | x                 | у       |  |  |  |
| V236_hub150m     | Turbine1    | 656127            | 4613728 |  |  |  |
| V236_hub150m     | Turbine2    | 667608            | 4600470 |  |  |  |
| V236_hub150m     | Turbine3    | 665663            | 4604815 |  |  |  |
| V236_hub150m     | Turbine4    | 670212            | 4592518 |  |  |  |
| V236_hub150m     | Turbine5    | 672731            | 4593153 |  |  |  |
| V236_hub150m     | Turbine6    | 671496            | 4591778 |  |  |  |
| V236_hub150m     | Turbine7    | 671339            | 4593773 |  |  |  |
| V236_hub150m     | Turbine8    | 669789            | 4594217 |  |  |  |
| V236_hub150m     | Turbine9    | 671023            | 4595592 |  |  |  |
| V236_hub150m     | Turbine10   | 669552            | 4596124 |  |  |  |
| V236_hub150m     | Turbine11   | 668318            | 4594749 |  |  |  |
| V236_hub150m     | Turbine12   | 666975            | 4595424 |  |  |  |
| V236_hub150m     | Turbine13   | 668160            | 4596744 |  |  |  |
| V236_hub150m     | Turbine14   | 669395            | 4598119 |  |  |  |
| V236_hub150m     | Turbine15   | 667844            | 4598563 |  |  |  |
| V236_hub150m     | Turbine16   | 666610            | 4597187 |  |  |  |
| V236_hub150m     | Turbine17   | 665139            | 4597719 |  |  |  |
| V236_hub150m     | Turbine18   | 666373            | 4599094 |  |  |  |
| V236_hub150m     | Turbine19   | 666137            | 4601001 |  |  |  |
| V236_hub150m     | Turbine20   | 664982            | 4599711 |  |  |  |
| V236_hub150m     | Turbine21   | 663747            | 4598340 |  |  |  |
| V236_hub150m     | Turbine22   | 663431            | 4600158 |  |  |  |
| V236_hub150m     | Turbine23   | 665900            | 4602908 |  |  |  |
| V236_hub150m     | Turbine24   | 664429            | 4603440 |  |  |  |
| V236_hub150m     | Turbine25   | 663194            | 4602065 |  |  |  |
| V236_hub150m     | Turbine26   | 661960            | 4600690 |  |  |  |
| V236_hub150m     | Turbine27   | 660501            | 4601236 |  |  |  |
| V236_hub150m     | Turbine28   | 661723            | 4602597 |  |  |  |
| V236_hub150m     | Turbine29   | 664192            | 4605347 |  |  |  |
| V236_hub150m     | Turbine30   | 663956            | 4607254 |  |  |  |
| V236_hub150m     | Turbine31   | 662278            | 4605843 |  |  |  |
| V236_hub150m     | Turbine32   | 660252            | 4603129 |  |  |  |
| V236_hub150m     | Turbine33   | 658781            | 4603661 |  |  |  |
| V236_hub150m     | Turbine34   | 660458            | 4605073 |  |  |  |
| V236_hub150m     | Turbine35   | 662484            | 4607786 |  |  |  |
| <br>V236_hub150m | Turbine36   | 662248            | 4609693 |  |  |  |
| V236_hub150m     | Turbine37   | 661013            | 4608318 |  |  |  |

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

| Tandalis a fam. |             |        | nate system |
|-----------------|-------------|--------|-------------|
| Turbine type    | Turbine No. | WGS8   | 4, Zone 33  |
|                 |             | х      | у           |
| V236_hub150m    | Turbine38   | 658544 | 4605568     |
| V236_hub150m    | Turbine39   | 657310 | 4604193     |
| V236_hub150m    | Turbine40   | 660777 | 4610225     |
| V236_hub150m    | Turbine41   | 659542 | 4608850     |
| V236_hub150m    | Turbine42   | 658308 | 4607475     |
| V236_hub150m    | Turbine43   | 657073 | 4606100     |
| V236_hub150m    | Turbine44   | 659306 | 4610757     |
| V236_hub150m    | Turbine45   | 657835 | 4611289     |
| V236_hub150m    | Turbine46   | 656600 | 4609914     |
| V236_hub150m    | Turbine47   | 656837 | 4608007     |
| V236_hub150m    | Turbine48   | 655602 | 4606631     |
| V236_hub150m    | Turbine49   | 653895 | 4609070     |
| V236_hub150m    | Turbine50   | 656363 | 4611821     |
| V236_hub150m    | Turbine51   | 654892 | 4612352     |
| V236_hub150m    | Turbine52   | 654656 | 4614260     |
| V236_hub150m    | Turbine53   | 654419 | 4616167     |
| V236_hub150m    | Turbine54   | 653185 | 4614791     |
| V236_hub150m    | Turbine55   | 653421 | 4612884     |
| V236_hub150m    | Turbine56   | 652187 | 4611509     |
| V236_hub150m    | Turbine57   | 650952 | 4610134     |
| V236_hub150m    | Turbine58   | 655366 | 4608538     |
| V236_hub150m    | Turbine59   | 653658 | 4610977     |
| V236_hub150m    | Turbine60   | 651950 | 4613416     |
| V236_hub150m    | Turbine61   | 654131 | 4607163     |
| V236_hub150m    | Turbine62   | 652423 | 4609602     |
| V236_hub150m    | Turbine63   | 650716 | 4612041     |
| V236_hub150m    | Turbine64   | 649245 | 4612573     |
| V236_hub150m    | Turbine65   | 650479 | 4613948     |
| V236_hub150m    | Turbine66   | 651714 | 4615323     |
| V236_hub150m    | Turbine67   | 652948 | 4616698     |
| V236_hub150m    | Turbine68   | 654183 | 4618074     |
| V236_hub150m    | Turbine69   | 653946 | 4619981     |
| V236_hub150m    | Turbine70   | 652711 | 4618605     |
| V236_hub150m    | Turbine71   | 651477 | 4617230     |
| V236_hub150m    | Turbine72   | 650242 | 4615855     |
| V236_hub150m    | Turbine73   | 649008 | 4614480     |
| V236_hub150m    | Turbine74   | 647773 | 4613105     |

**Tabella 1** – Coordinate in WGS84 z33, quota, altezza hub delle 74 turbine previste.

Viale Genova, 27 - 63084 Folignano (AP)

#### 2.2. LA CURVA DI POTENZA DEL MODELLO DI AEROGENERATORE INDIVIDUATO

Il committente intende installare presso il sito eolico di Bari l'aerogeneratore marca Vestas modello V236 da 150m di hub e rotore del diametro di 236m e potenza nominale unitaria di 15000 kW. Si riporta nella successiva **Tabella 2** la tabulazione della curva di potenza relativa alla densità standard dell'aria pari a 1,225 kg/m³ per il modello di aerogeneratore individuato assieme ai valori del coefficiente di spinta.

Vestas V236 (1.225 kg/m3)

| Bin Velocity (m/s) | Power (kW) | Thrust coeff |
|--------------------|------------|--------------|
| 0                  | 0          | 0            |
| 1                  | 0          | 0            |
| 2                  | 0          | 0            |
| 3                  | 54         | 0.918        |
| 4                  | 575        | 0.877        |
| 5                  | 1377       | 0.849        |
| 6                  | 2494       | 0.819        |
| 7                  | 4015       | 0.807        |
| 8                  | 6028       | 0.800        |
| 9                  | 8592       | 0.789        |
| 10                 | 11672      | 0.766        |
| 11                 | 14374      | 0.637        |
| 12                 | 14995      | 0.464        |
| 13                 | 15000      | 0.347        |
| 14                 | 15000      | 0.272        |
| 15                 | 15000      | 0.217        |
| 16                 | 15000      | 0.177        |
| 17                 | 15000      | 0.148        |
| 18                 | 15000      | 0.125        |
| 19                 | 15000      | 0.106        |
| 20                 | 15000      | 0.092        |
| 21                 | 15000      | 0.080        |
| 22                 | 15000      | 0.070        |
| 23                 | 15000      | 0.062        |
| 24                 | 14999      | 0.055        |
| 25                 | 14648      | 0.048        |
| 26                 | 12237      | 0.036        |
| 27                 | 10222      | 0.028        |
| 28                 | 9827       | 0.024        |
| 29                 | 9518       | 0.021        |
| 30                 | 9329       | 0.019        |
| 31                 | 9300       | 0.018        |
| 32                 | 0          | 0            |
| 33                 | 0          | 0            |
| 34                 | 0          | 0            |

Tabella 2 – Curva di potenza Vestas V236 e coefficiente di spinta Ct.

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### 3. ANEMOMETRIA.

Per il sito in esame il committente ha fornito i dati anemometrici orari satellitari ERA5 della piattaforma EMD-WRF all'altezza di hub ovvero a 150m per complessivi 23 anni (a partire dal 01/01/1999 al 01/05/2022). Il punto di misura ha coordinate geografiche 16.921234°E 41.585518°N.

Nella **Tabella 3** successiva sono mostrate le principali caratteristiche della torre anemometrica virtuale in oggetto.

| Codice Torre | X      | У       | Z   | measurement | period                  | duration |
|--------------|--------|---------|-----|-------------|-------------------------|----------|
| EMD-WRF      | 660144 | 4605541 | 150 | 150m        | 01/01/1999 - 01/05/2022 | 23 years |

**Tabella 3** – Caratteristiche principali della torre anemometrica virtuale utilizzata per il presente studio – coordinate in WGS84 z33.

Nella **Tabella 4** successiva vengono presentati i risultati dell'analisi anemometrica condotta sui dati della torre virtuale.

| Variable                        | Speed 150 m |
|---------------------------------|-------------|
| Measurement height (m)          | 150         |
| Mean wind speed (m/s)           | 7.168       |
| MoMM wind speed (m/s)           | 7.168       |
| Median wind speed (m/s)         | 6.77        |
| Min wind speed (m/s)            | 0.03        |
| Max wind speed (m/s)            | 28.38       |
| CRMC wind speed (m/s)           | 9.087       |
| Weibull k                       | 1.856       |
| Weibull c (m/s)                 | 8.061       |
| Mean power density (W/m²)       | 450         |
| MoMM power density (W/m²)       | 450         |
| Mean energy content (kWh/m²/yr) | 3942        |
| MoMM energy content (kWh/m²/yr) | 3942        |
| Energy pattern factor           | 2.042       |
| Frequency of calms (%)          | 0           |
| Possible data points            | 204504      |
| Valid data points               | 204504      |
| Missing data points             | 0           |
| Data recovery rate (%)          | 100         |

Tabella 4 – Riepilogo risultati analisi anemometrica della torre virtuale EMD-WRF.

Dall'esame dei risultati mostrati in **Tabella 4** si evince come il valore medio della velocità misurata sia di 7,17 m/s. Tale valore ricavato da una base di dati temporali così estesa è certamente da ritenersi rappresentativo della ventosità di lungo periodo. Pertanto, come proposto nella **Tabella 5** successiva, la velocità media storicizzata presso il sito di Bari a 150m di quota è pari a 7,17 m/s.

|            | V media  | V media      |
|------------|----------|--------------|
| Sensore di | misurata | storicizzata |
| velocità   | m/s      | m/s          |
| 150m       | 7.17     | 7.17         |

**Tabella 5** – Confronto tra le velocità medie misurate e storicizzate per la torre anemometrica virtuale.

Dall'analisi delle successive **Figure 3** e **4** si osserva la tipica direzionalità del vento Nord -Sud che caratterizza i siti dell'Adriatico meridionale. La discretizzazione delle rose dei venti è attuata in 36 settori.

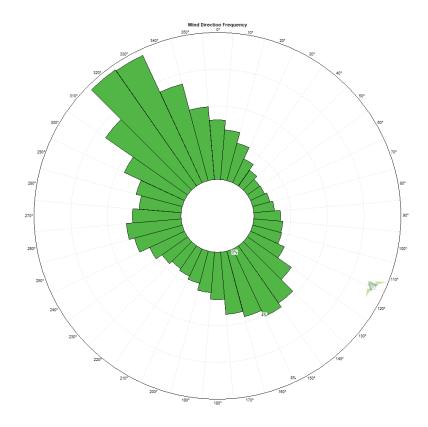



Figura 3 – Rosa dei venti in frequenza di lungo periodo a 150m per la torre anemometrica virtuale.

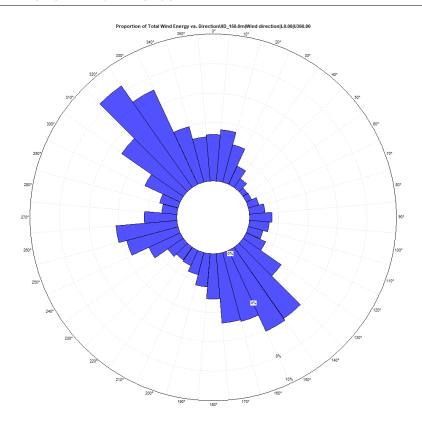



Figura 4 – Rosa dei venti in energia di lungo periodo a 150m di quota per la torre anemometrica virtuale.

Si osserva come in termini energetici il contributo dei venti settentrionali sia solo lievemente inferiore a quello dei venti meridionali.

#### 4. STUDIO ANEMOLOGICO

Per poter calcolare correttamente la risorsa eolica in corrispondenza delle turbine del sito in esame che tenga conto delle perdite per scia è necessario modellare il campo di vento per il sito in questione a partire dai dati anemometrici riportati nel precedente Capitolo. Si è utilizzato a questo scopo il software WindSim basato su modello CFD.

#### 4.1. METODOLOGIA DI ANALISI CFD.

Per la corretta modellazione del campo di vento del sito in esame si è elaborato un modello Fluido-Dinamico Computazionale (CFD) che risolve le equazioni di Navier-Stokes agli elementi finiti. La Fluido-Dinamica Computazionale (CFD) non linearizza infatti la complessa serie di equazioni differenziali delle leggi che governano numericamente la dinamica dei fluidi, quindi non introduce alcuna semplificazione o approssimazione: la soluzione viene cercata tramite procedimenti iterativi, dividendo il dominio geometrico tridimensionale in piccoli volumi comunemente noti come mesh, sino ad arrivare alla convergenza di tutto il modello.

In pratica, una volta dati in input il modello orografico digitale del terreno (in questo particolare caso ovviamente piatto unitamente alle informazioni sulla rugosità del mare), le varie climatology e le caratteristiche delle turbine installate, il software calcola in output le curve isovento comprensive degli effetti scia per l'intera area.

#### 4.2. IL DOMINIO DI ANALISI.

Il modello digitale utilizzato come input per la simulazione del campo di vento sul sito, eseguita tramite il software WindSim, consiste in un dominio rettangolare di 30 km x 24 km (centrato sul sito in esame) con grid di 100m, come riportato nella successiva **Tabella 6**.

|                  | Min (m) | Max (m)  | Extension<br>(m) | Resolution<br>Terrain Data<br>(m) |
|------------------|---------|----------|------------------|-----------------------------------|
| Easting (m)      | 640400  | 680000   | 39600            | 100                               |
| Northing (m)     | 4586000 | 4626000  | 39600            | 100                               |
|                  |         |          |                  |                                   |
|                  | Easting | Northing | Z                | Total                             |
| Grid spacing (m) | 100     | 100      | Variable         | -                                 |
| Number of cells  | 396     | 396      | 60               | 9408960                           |

Tabella 6 – Caratteristiche del dominio utilizzato per la simulazione CFD in coordinate WGS84 z33.

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### 4.3. LA CLIMATOLOGY UTILIZZATA IN INPUT.

Si riporta nella successiva **Tabella 7** la climatology in input utilizzata sulla base delle considerazioni fin qui svolte.

| ite name   |            | EMD-WRF         | Bari Offsho  | ore 150m_    | 02.windog     |             |               |             |          |      |      |     |
|------------|------------|-----------------|--------------|--------------|---------------|-------------|---------------|-------------|----------|------|------|-----|
| ilename    |            | EMD W/PE        | Bari_Offsl   | hore 150n    | 2             |             |               |             |          |      |      |     |
| neasure    |            | LIVID-VVIXI     | _baii_Oiisi  | 1016_1301    | ı             |             |               |             |          |      |      | -   |
| nent       |            |                 |              |              |               |             |               |             |          |      |      |     |
| period     |            | 01/01/1999      | 9 01:00 - 01 | /05/2022 (   | 01:00         |             |               | # records = | = 204504 |      |      |     |
| osition    |            |                 |              | y = 460554   | 11.0          |             | z (agl) = 15  | 0.0         |          |      |      |     |
| Neibull    |            |                 |              |              | ,             |             |               |             |          |      |      |     |
| param.,    |            |                 |              |              |               |             |               |             |          |      |      |     |
| average    |            |                 |              |              |               |             |               |             |          |      |      |     |
| speed      |            | k = 1.95        |              | A = 8.21     |               |             | average =     | 7.168       |          |      |      |     |
| Climatolog | y characte | eristics, inclu | ding Weibu   | II (k,A) and | d average wir | nd speed (m | n/s) of all s | ectors.     |          |      |      |     |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
|            | 1          | 2               | 3            | 4            | 5             | 6           | 7             | 8           | 9        | 10   | 11   | 12  |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
| k          | 1.78       | 1.81            | 1.83         | 1.6          | 1.35          | 1.2         | 1.21          | 1.25        | 1.3      | 1.42 | 1.43 | 1.4 |
| Α          | 7.8        | 8.63            | 8.54         | 7.39         | 5.99          | 4.7         | 4.79          | 5.78        | 6.36     | 7.05 | 6.63 | 6.0 |
| freq       | 3.2        | 2.7             | 2.1          | 1.4          | 1.1           | 8.0         | 0.9           | 1           | 1.1      | 1.5  | 1.6  | 1.6 |
| mean       | 6.93       | 7.57            | 7.43         | 6.5          | 5.59          | 4.58        | 4.7           | 5.55        | 6.03     | 6.45 | 6.12 | 5.6 |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
|            | 13         | 14              | 15           | 16           | 17            | 18          | 19            | 20          | 21       | 22   | 23   | 24  |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
| k          | 1.5        | 1.66            | 1.75         | 1.92         | 2.1           | 1.99        | 1.96          | 2.04        | 2.15     | 2.06 | 1.92 | 2.0 |
| Α          | 6.48       | 7.87            | 9.06         | 9.32         | 9.22          | 9.25        | 8.72          | 8.41        | 8.07     | 7.48 | 7.22 | 7.6 |
| freq       | 2          | 2.9             | 3.8          | 4.1          | 3.7           | 3.4         | 2.6           | 2.2         | 1.8      | 1.6  | 1.5  | 1.7 |
| mean       | 6.03       | 7.14            | 8.21         | 8.27         | 8             | 8.11        | 7.67          | 7.3         | 6.92     | 6.4  | 6.26 | 6.5 |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
|            | 25         | 26              | 27           | 28           | 29            | 30          | 31            | 32          | 33       | 34   | 35   | 36  |
|            |            |                 |              |              |               |             |               |             |          |      |      |     |
| k          | 2.01       | 2.05            | 2.06         | 1.93         | 2.18          | 2.17        | 2.25          | 2.76        | 2.81     | 2.58 | 2.21 | 1.8 |
| Α          | 8.63       | 9.22            | 9.36         | 7.72         | 6.57          | 6.76        | 7.74          | 8.82        | 9.31     | 8.68 | 7.67 | 7.2 |
| freq       | 2.1        | 2.7             | 3            | 2.7          | 2.3           | 2.6         | 3.6           | 5.5         | 7.7      | 7.7  | 5.5  | 4   |
| mean       | 7.44       | 7.97            | 8.16         | 6.84         | 5.69          | 5.85        | 6.72          | 7.59        | 8.09     | 7.59 | 6.74 | 6.4 |

**Tabella 7** – Caratteristiche della climatology in input al software relativa all'anemometro di riferimento.

### 5. PRODUCIBILITA' ATTESA.

Sulla base dei dati in input riportati nei precedenti Capitoli si è proceduto alla stima della produzione media annua di lungo periodo attesa per il progetto eolico offshore di Bari nella configurazione di impianto costituita da 74 WTG V236 hub 150m. Nella successiva **Tabella 8** sono proposti i risultati per la climatology utilizzata, con l'indicazione delle perdite per scia (wake loss) e il valore netto della velocità del vento. La producibilità attesa risulta, quindi essere pari a 3.356.654 MWh/anno, corrispondente a **3.024 ore equivalenti.** 

| name      | power | hub height | density   | wind speed<br>without wake<br>losses | power<br>density | gross AEP | AEP with wake losses | wake loss | wind speed<br>with wake<br>losses |
|-----------|-------|------------|-----------|--------------------------------------|------------------|-----------|----------------------|-----------|-----------------------------------|
|           | (kW)  | (m)        | (kg/m**3) | (m/s)                                | (W/m**2)         | (MWh/y)   | (MWh/y)              | (%)       | (m/s)                             |
| Turbine1  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44945                | 9.5       | 6.84                              |
| Turbine2  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45075                | 9.2       | 6.85                              |
| Turbine3  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45767                | 7.8       | 6.90                              |
| Turbine4  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46028                | 7.3       | 6.91                              |
| Turbine5  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46535                | 6.3       | 6.95                              |
| Turbine6  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46209                | 6.9       | 6.93                              |
| Turbine7  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45479                | 8.4       | 6.87                              |
| Turbine8  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44976                | 9.4       | 6.84                              |
| Turbine9  | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45463                | 8.4       | 6.88                              |
| Turbine10 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44390                | 10.6      | 6.80                              |
| Turbine11 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45290                | 8.8       | 6.86                              |
| Turbine12 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46091                | 7.2       | 6.91                              |
| Turbine13 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44663                | 10.0      | 6.81                              |
| Turbine14 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45417                | 8.5       | 6.88                              |
| Turbine15 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44313                | 10.7      | 6.79                              |
| Turbine16 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44718                | 9.9       | 6.81                              |
| Turbine17 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45304                | 8.7       | 6.86                              |
| Turbine18 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44688                | 10.0      | 6.81                              |
| Turbine19 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44565                | 10.2      | 6.81                              |
| Turbine20 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44837                | 9.7       | 6.83                              |
| Turbine21 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46237                | 6.9       | 6.92                              |
| Turbine22 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44789                | 9.8       | 6.82                              |
| Turbine23 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44604                | 10.2      | 6.82                              |
| Turbine24 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44825                | 9.7       | 6.83                              |
| Turbine25 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45030                | 9.3       | 6.84                              |
| Turbine26 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45391                | 8.6       | 6.86                              |
| Turbine27 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46290                | 6.8       | 6.93                              |
| Turbine28 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44724                | 9.9       | 6.82                              |
| Turbine29 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44617                | 10.1      | 6.82                              |
| Turbine30 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45559                | 8.2       | 6.89                              |
| Turbine31 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44541                | 10.3      | 6.82                              |
| Turbine32 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44961                | 9.4       | 6.84                              |
| Turbine33 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45432                | 8.5       | 6.87                              |
| Turbine34 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44728                | 9.9       | 6.83                              |
| Turbine35 | 15000 | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44843                | 9.7       | 6.83                              |

Ing. Cristiano Paoletti

Viale Genova, 27 - 63084 Folignano (AP)

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

| name      | power   | hub height | density   | wind speed<br>without wake<br>losses | power<br>density | gross AEP | AEP with wake losses | wake loss | wind speed<br>with wake<br>losses |
|-----------|---------|------------|-----------|--------------------------------------|------------------|-----------|----------------------|-----------|-----------------------------------|
|           | (kW)    | (m)        | (kg/m**3) | (m/s)                                | (W/m**2)         | (MWh/y)   | (MWh/y)              | (%)       | (m/s)                             |
| Turbine36 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46512                | 6.3       | 6.94                              |
| Turbine37 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44681                | 10.0      | 6.81                              |
| Turbine38 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44373                | 10.6      | 6.79                              |
| Turbine39 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46343                | 6.6       | 6.93                              |
| Turbine40 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46074                | 7.2       | 6.91                              |
| Turbine41 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44798                | 9.8       | 6.83                              |
| Turbine42 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44431                | 10.5      | 6.80                              |
| Turbine43 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44797                | 9.8       | 6.82                              |
| Turbine44 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45639                | 8.1       | 6.88                              |
| Turbine45 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45208                | 8.9       | 6.86                              |
| Turbine46 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44291                | 10.8      | 6.79                              |
| Turbine47 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44452                | 10.5      | 6.79                              |
| Turbine48 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45294                | 8.8       | 6.86                              |
| Turbine49 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44722                | 9.9       | 6.81                              |
| Turbine50 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44277                | 10.8      | 6.79                              |
| Turbine51 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44296                | 10.8      | 6.79                              |
| Turbine52 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44133                | 11.1      | 6.77                              |
| Turbine53 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44988                | 9.4       | 6.84                              |
| Turbine54 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44301                | 10.8      | 6.78                              |
| Turbine55 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44111                | 11.1      | 6.77                              |
| Turbine56 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44491                | 10.4      | 6.80                              |
| Turbine57 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46387                | 6.6       | 6.94                              |
| Turbine58 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44638                | 10.1      | 6.81                              |
| Turbine59 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44212                | 10.9      | 6.78                              |
| Turbine60 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 44430                | 10.5      | 6.79                              |
| Turbine61 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46319                | 6.7       | 6.93                              |
| Turbine62 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45387                | 8.6       | 6.86                              |
| Turbine63 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45363                | 8.6       | 6.85                              |
| Turbine64 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 47064                | 5.2       | 6.97                              |
| Turbine65 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45727                | 7.9       | 6.88                              |
| Turbine66 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45377                | 8.6       | 6.85                              |
| Turbine67 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 45503                | 8.3       | 6.86                              |
| Turbine68 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 46403                | 6.5       | 6.93                              |
| Turbine69 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 48195                | 2.9       | 7.07                              |
| Turbine70 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 47399                | 4.5       | 7.00                              |
| Turbine71 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 47196                | 4.9       | 6.99                              |
| Turbine72 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 47229                | 4.9       | 6.99                              |
| Turbine73 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 47484                | 4.4       | 7.01                              |
| Turbine74 | 15000   | 150        | 1.195     | 7.17                                 | 450              | 49644     | 48806                | 1.7       | 7.10                              |
|           |         |            |           |                                      |                  |           |                      |           |                                   |
| All       | 1110000 | -          | -         | -                                    | -                | 3673656   | 3356654              | 8.6       | 6.86                              |
| Vlean     | -       | -          | 1.195     | 7.17                                 | 450              | -         | -                    | -         | -                                 |

Tabella 8 – Stima di massima della produzione ideale di lungo periodo con la V236.

Report: RELAZIONE TECNICA ANALISI DIPRODUCIBILITA'

#### 6. PRODUCIBILITA' NETTA.

Per quanto riguarda la producibilità netta, questa viene normalmente ottenuta considerando perdite tecniche comprese tra il 12% e il 15%. Nello specifico caso in esame è necessario puntualizzare che al momento non è ancora disponibile sul mercato una turbina specificatamente ottimizzata per classi di vento tipiche del Mediterraneo. Osservando gli sviluppi che si sono avuti finora in ambito onshore, si rileva che le turbine progettate per venti di minore intensità riescono a migliorare sensibilmente le performance di producibilità, con incrementi anche superiori al 10%.

Al fine di tenere in debita considerazione questo scenario si è ritenuto corretto considerare un valore di perdite tecniche più contenuto rispetto a quello normalmente adottato, ma comunque cautelativo, pari al 7%.

Da tutto quanto sopra ne deriva che il valore di producibilità netta da considerare per il parco eolico offshore in esame è pari a **2.812 ore equivalenti**.