

PROGETTISTA	COMMESSA	UNITÀ
(i) techfem	5721	000
LOCALITA' REGIONE PUGLIA	SPC. RT-	
PROGETTO Gasdotto Lucera - San Paolo di Civitate, DN 300 (12"), DP 75 bar e opere connesse	Pagina 1 di 89	Rev. 0

Rif. TFM: 110009-0E-RT-E-5047_Annesso 2

GASDOTTI LUCERA – SAN PAOLO DI CIVITATE DN 300 (12"), DP 75 bar E OPERE CONNESSE:

Tratto Lucera-Foggia (TRATTO 1) DN 300 (12"), DP 75 bar

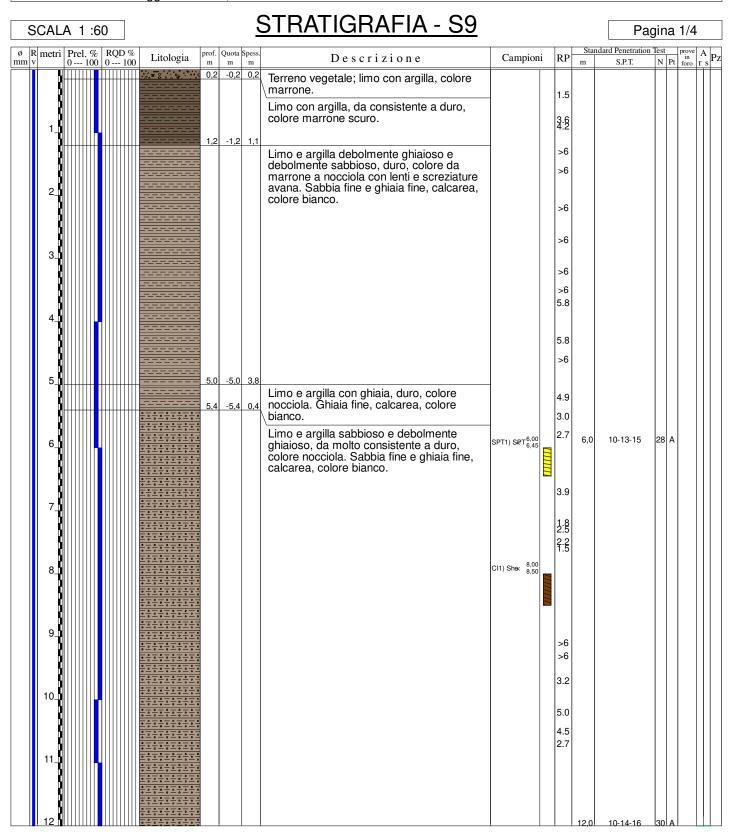
Tratto Foggia-San Severo (TRATTO 2) DN 300 (12"), DP 75 bar

Tratto San Severo-Apricena (TRATTO 3) DN 300 (12"), DP 75 bar

Tratto Apricena-San Paolo di Civitate (TRATTO 4) DN 300 (12"), DP 75 bar

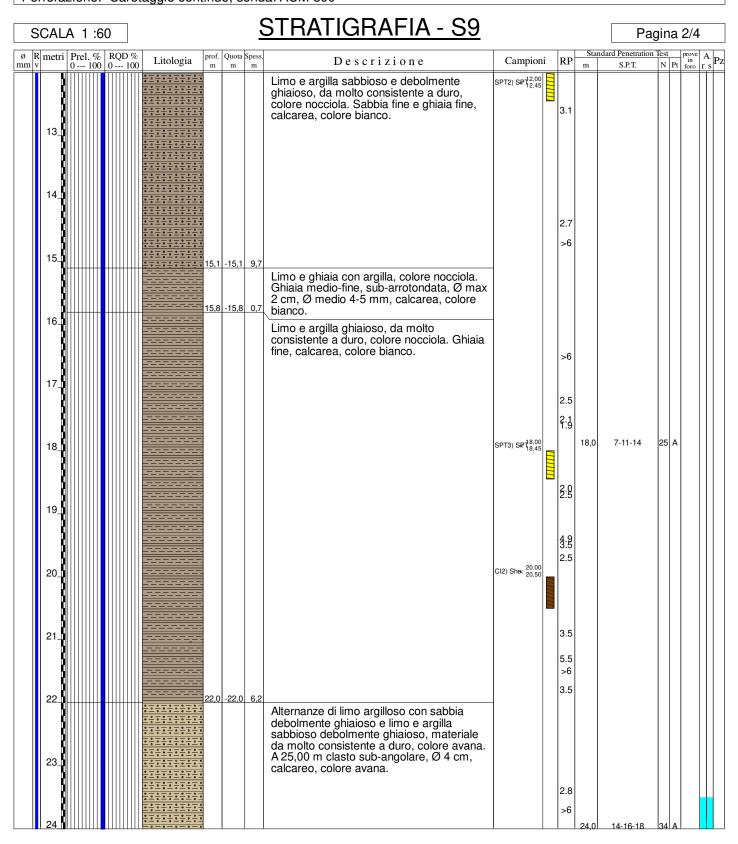
Bretella in Comune di Foggia (Bretella 1) DN 100 (4"), DP 75 bar

Bretella in Comune di San Severo (Bretella 2) DN 100 (4"), DP 75 bar

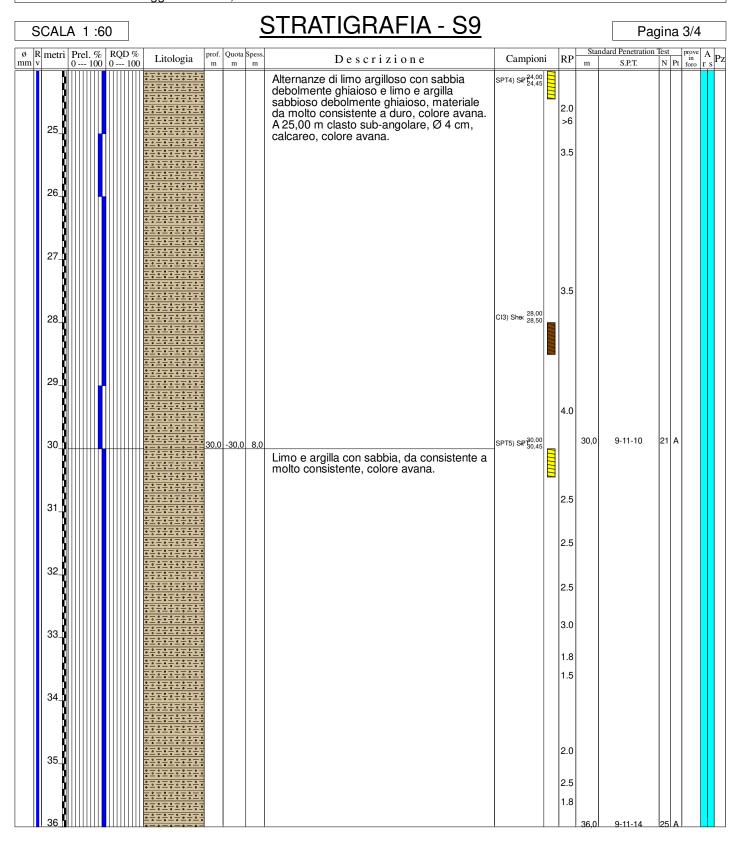

Bretella in Comune di Apricena (Bretella 3) DN 100 (4"), DP 75 bar

ANNESSO 2 - REPORT INDAGINI GEOGNOSTICHE

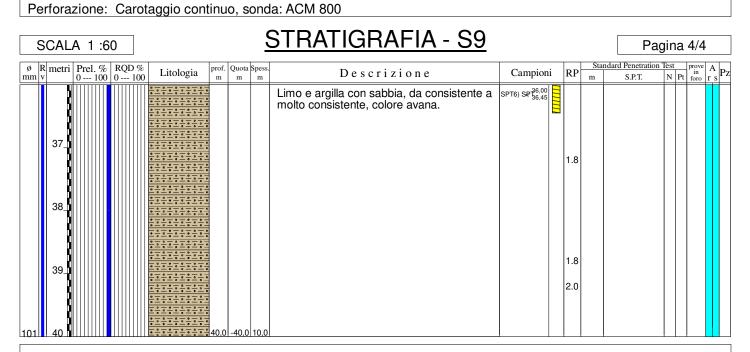
0	Emissione per Enti	A. Tiesi	G. Vecchio	H.D. Aiudi	23/12/2022
Rev.	Descrizione	Elaborato	Verificato	Approvato	Data



Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 del	25/02/21
Committente: Techfem	Sondaggio: S9	
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate		Data: 11/02/2021
Coordinate:		Quota:
Perforazione: Carotaggio continuo, sonda: ACM 8	300	



Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 del	25/02/21
Committente: Techfem	Sondaggio: S9	
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate		Data: 11/02/2021
Coordinate:		Quota:
Perforazione: Carotaggio continuo, sonda: ACM 8	00	


Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 del	25/02/21
Committente: Techfem Sondaggio: S9		
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate		Data: 11/02/2021
Coordinate:		Quota:
Perforazione: Carotaggio continuo, sonda: ACM 8	800	

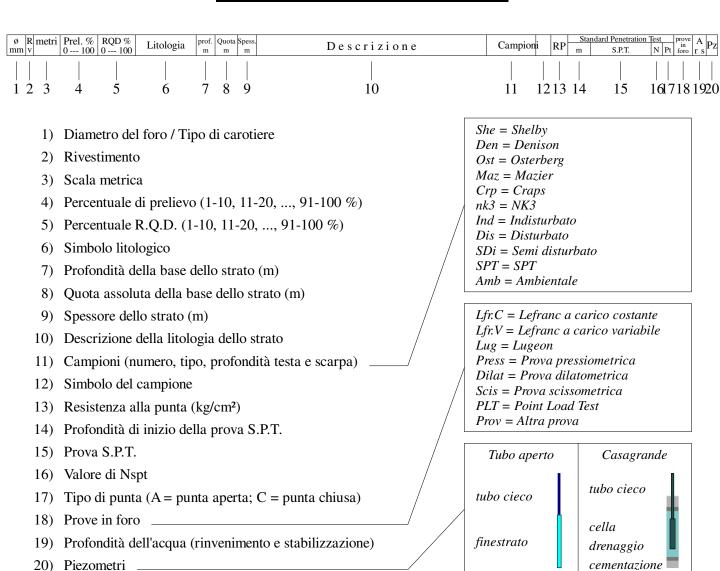
Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ

Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 de	l 25/02/21
Committente: Techfem		Sondaggio: S9
Riferimento: Metanodotto SGI Lucera - San Paolo	o di Civitate	Data: 11/02/2021
Coordinate:		Quota:

Utilizzato carotiere semplice.

Prelevati n. 3 campioni indisturbati.

Prelevati n. 6 campioni rimaneggiati S.P.T.


Eseguite n. 6 prove S.P.T.

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ

Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Certificato n° V6097/21 PS9 del 25/02/21Acceptance note n° V6097 del 25/02/21Committente: TechfemSondaggio: S9Riferimento: Metanodotto SGI Lucera - San Paolo di CivitateData: 11/02/2021Coordinate:Quota:Perforazione: Carotaggio continuo, sonda: ACM 800

LEGENDA STRATIGRAFIA

Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 d	el 25/02/21
Committente: Techfem		Sondaggio: S9
Biferimento: Metanodotto SGLLucera - San Paolo di Civitate		Data: 11/02/2021

Fotografie - Pagina 1/5 Pagina 1

Cassetta nº 1 - profondità da m 0,00 a m 5,00

Cassetta n° 2 - profondità da m 5,00 a m 10,00

Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 d	lel 25/02/21
Committente: Techfem		Sondaggio: S9
Riferimento: Metanodotto SGL Lucera - San Paolo	di Civitate	Data: 11/02/2021

Fotografie - Pagina 2/5 Pagina 2

Cassetta nº 3 - profondità da m 10,00 a m 15,00

Cassetta n° 4 - profondità da m 15,00 a m 20,00

Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097	del	25/02/21
Committente: Techfem			Sondaggio: S9
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate			Data: 11/02/2021

Fotografie - Pagina 3/5 Pagina 3

Cassetta n° 5 - profondità da m 20,00 a m 25,00

Cassetta nº 6 - profondità da m 25,00 a m 30,00

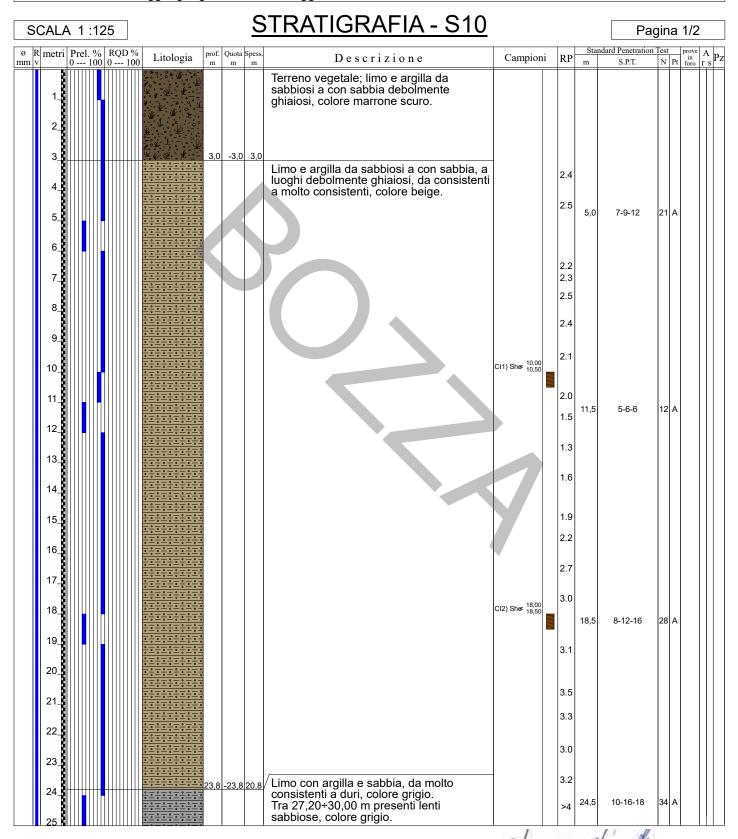
Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097	del	25/02/21
Committente: Techfem			Sondaggio: S9
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate			Data: 11/02/2021

Pagina 4 Fotografie - Pagina 4/5

Cassetta nº 7 - profondità da m 30,00 a m 35,00

Cassetta nº 8 - profondità da m 35,00 a m 40,00

Fotografie - Pagina 5/5


Certificato n° V6097/21 PS9 del 25/02/21	Acceptance note n° V6097 del	25/02/21
Committente: Techfem		Sondaggio: S9
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate		Data: 11/02/2021

Pagina 5



Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022	
Committente: Techfem		Sondaggio: S10	
Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate		Data: 02/11/2022	
Coordinate:		Quota:	
Perforazione: Sondaggio geognostico a carotaggio continuo, sonda: CMV 600			

Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022
Committente: Techfem		Sondaggio: S10
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate	Data: 02/11/2022
Coordinate:		Quota:
Perforazione: Sondaggio geognostico a carotaggio	continuo, sonda: CMV 600	

Utilizzato carotiere semplice. Prelevati n. 3 campioni indisturbati. Eseguite n. 4 prove S.P.T.

> Il Geologo di Cantiere dott.geol. Vincenzo Vessella

Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730 del 04/11/2022	
Committente: Techfem	Sondaggio: S10	
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate Data: 02/11/2022	

Fotografie - Pagina 1/4 Pagina 1

Cassetta n° 1 - profondità da m 0,00 a m 5,00

Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate

Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730 del 04/11/2022
Committente: Techfem	Sondaggio: S10

Data: 02/11/2022

Fotografie - Pagina 2/4 Pagina 2

Cassetta n° 3 - profondità da m 10,00 a m 15,00

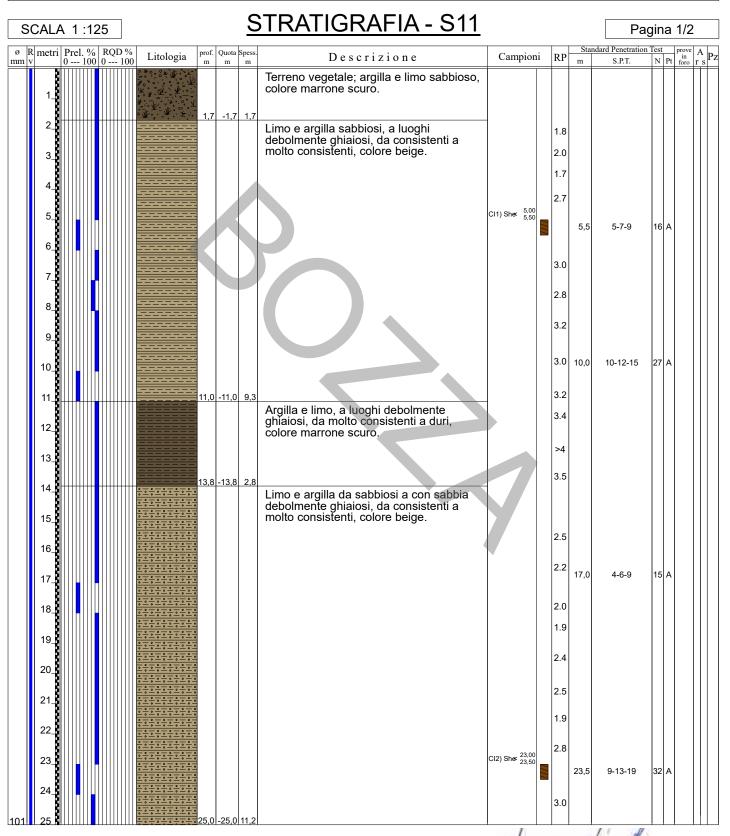
Cassetta n° 4 - profondità da m 15,00 a m 20,00

Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730	del	04/11/2022
Committente: Techfem			Sondaggio: S10
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate		Data: 02/11/2022

Fotografie - Pagina 3/4 Pagina 3

Cassetta n° 5 - profondità da m 20,00 a m 25,00

Cassetta n° 6 - profondità da m 25,00 a m 30,00


Certificato n° V7730/22 PS1 del 07/11/2022	Acceptance note n° V7730 del 04/11/2022	
Committente: Techfem	Sondaggio: S10	
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate Data: 02/11/202	2

Fotografie - Pagina 4/4 Pagina 4

Certificato n° V7730/22 PS2 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022
Committente: Techfem		Sondaggio: S11
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate	Data: 03/11/2022
Coordinate:		Quota:
Perforazione: Sondaggio geognostico a carotaggio	o continuo, sonda: CMV 600	

Certificato n° V7730/22 PS2 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022
Committente: Techfem		Sondaggio: S11
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate	Data: 03/11/2022
Coordinate:		Quota:
Perforazione: Sondaggio geognostico a carotaggio	o continuo, sonda: CMV 600	

SCALA 1:125

STRATIGRAFIA - S11

Pagina 2/2

Utilizzato carotiere semplice. Prelevati n. 2 campioni indisturbati. Eseguite n. 4 prove S.P.T.



Il Geologo di Cantiere dott.geol. Vincenzo Vessella

Certificato n° V7730/22 PS2 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022
Committente: Techfem		Sondaggio: S11
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate	Data: 03/11/2022

Fotografie - Pagina 1/3 Pagina 1

Cassetta n° 1 - profondità da m 0,00 a m 5,00

Cassetta n° 2 - profondità da m 5,00 a m 10,00

Riferimento: Metanodotto SGI Lucera - San Paolo di Civitate

Certificato n° V7730/22 PS2 del 07/11/2022	Acceptance note n° V7730 del 04/11/2022	
Committente: Techfem	Sondaggio: S11	

Data: 03/11/2022

Pagina 2 Fotografie - Pagina 2/3

Cassetta n° 3 - profondità da m 10,00 a m 15,00

Cassetta n° 4 - profondità da m 15,00 a m 20,00

Certificato n° V7730/22 PS2 del 07/11/2022	Acceptance note n° V7730 del	04/11/2022
Committente: Techfem		Sondaggio: S11
Riferimento: Metanodotto SGI Lucera - San Paolo	di Civitate	Data: 03/11/2022

Fotografie - Pagina 3/3

Cassetta n° 5 - profondità da m 20,00 a m 25,00

Sistema di Qualità certificato UNI ISO 9001.2015

Laboratorio Sperimentale prove su materiali de costruzione, geotecnica, prove in sito e su conglomerati bituminosi.
Autorizzato al sensi dell'art. 20 L. 1086 con D,M. n° 394 del 22/01/2014 e succ., prove di cui al. D.P.R. 380/01 art. 59 con D.M. n°388 del 22/01/2014 e succ.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Committente: Techfem s.p.a.

SONDAGGIO			81	S3	84	SS	Se	98	27	00
CAMPIONE			C.I.1	C.I.1	C.I.1	SPT1	C.E.1	C12	5 5	3 -
QUOTA PRELIEVO		m da p.c.	1,40-1,90	2,00-2,50	2,00-2,50	2,50-2,95	2,50-3,00	7,50-8,00	2.00-2.50	8.00-8.50
Sigla id.int.			B564 71	B564 72	B564 T3	8564 74	B564 T5	B564 T6	B564 T7	BEEN TR
DETERMINAZIONI		u.m.								2
MASSA VOLUMICA UMIDA	λ	Mg/m³	1,92	1,47	1,74		1,93	1,93	2.03	1.85
MASSA VOLUMICA APP. GRANULI	74	Mg/m ³	2,62	2,68	2,49	2,50	2,56	2,60	2.70	2.72
UMIDITA	*	%	16,84	27,15	17,01	16,26	25,84	17.17	21.11	27.49
LIMITE LIQUIDO	1	%	35	99	40	42	42	N.D	26	88
INDICE PLASTICO	ПР	%	17	34	22	23	23	N.D	10	37
GRANULOMETRIA	Argilla	%	11,40	24,67	34,55	35,92	17,52	14,67	22,66	25,45
(ASTM)	Limo	%	36,99	59,82	56,58	55,93	60,83	16,38	59,69	46,46
	Sabbia	%	44,70	15,37	7,58	7,29	21,65	68,95	17,65	24,16
	Ghiaia	%	6,91	0,13	1,29	0,87	00'0	00'0	0,00	3,93
	Ciottoli	%	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0
TAGI 10 DIBETTO	÷	7 0	22	21	19		23	0	25	18
	ับ	KPa	29	28	27		21	29	29	24

Laboratorio Sperimentale prove su materiali da costruzione, geotecnica, prove in sito e su conglomerati bituminosi.
Autorizzato al sensi dell'art. 20 L. 1086 con D.M. n° 394 del 22/01/2014 e succ., prove di cui al. D.P.R. 380/01 art. 59 con D.M. n°388 del 22/01/2014 e succ.

Via Collemeroni, 3 - 03040 S. Vittore del Lazio (FR) Tel 0776 335193 P.IVA 02782530600 e-mail: Info@geoserving.it

SONDAGGIO			88	S13
CAMPIONE			C.I.3	C.L.1
QUOTA PRELIEVO		m da p.c.	m da p.c. 28,00-28,50	2,00-2,50
Sigla id.int,			B564 T9	B564 T10
DETERMINAZIONI		m'm		
MASSA VOLUMICA UMIDA	γ	Mg/m³	2,06	2,03
MASSA VOLUMICA APP. GRANULI	7,4	Mg/m ³	2,68	2,72
UMIDITA	3	%	22,01	20,04
LIMITE LIQUIDO	3	%	59	26
INDICE PLASTICO	ď	%	35	11
GRANULOMETRIA	Argilla	%	52,27	15,18
(ASTM)	Limo	%	44,91	62,20
	Sabbia	%	2,82	20,35
	Ghiaia	%	00'0	2,27
	Ciottofi	%	00'0	00,00
TAGI 10 DIRETTO	.0	30 0	23	25
	υ	KPa	22	29

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina:

67 di 96

Sigla rif. Interno: B564

T8

APERTURA E DESCRIZIONE GENERALE DEL CAMPIONE (ASTM D2488-84)

Committente: TECHFEM S.p.A.

Data prelievo: 11-feb-21

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data prova: 16/03/21

Note:

Modalità di prelievo: campionatore Shelby

C.I.1 prelevato da S9 a m da p.c. 8,00+8,50

1) Descrizione:

limo e argilla

2) Colore:

marrone scuro giallo con screziature nere

Munsell soil color chart:

7.5 YR

3) Odore:

nessuno

4) Plasticità:

molto plastico

5) Condizioni di umidità:

umido

6) Reazione con HCl:

nulla

7) Grado di alterazione:

8) Consistenza (terreni coesivi):

molto consistente

9) Addensamento (terreni granulari): -

10) Strutture:

11) Fratturazioni:

12) Scistosità:

Rappresentazione schematica del campione 2 0 2 provino basso

Quote [cm]: P.Penetrometer [kPa]:

Vane test [kg/cm²]:

>400

>400

Prove eseguite: Apertura e descrizione; contenuto d'acqua; massa volumica; massa volumica dei granuli solidi; analisi granulometrica per setacciatura e decantazione; limiti di consistenza (o di Atterberg); taglio diretto.

Lo Sperimer dott.geol. Vincenzo Vessella

THERIAL

Il Direttore del Laboratorio dott.geal Maria Di Donato

GEOSERVING S.r.l. - Via Collemeroni, 3 - San Vittole del Lazio (FR) e-mail: into@geoserving.it
Qualsiasi copia parziale del presente documento potrà avvenire dopo debità autorizzazione scritta da parte della GEOSERVING S.r.l. I risultati del presente documento si riferiscono al solo campione sottoposto a prova

Mod. 127 Rev.: A del 05 12 2013

Emesso da DL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 68 di

96

Sigla rif. Interno: B564

T8

DETERMINAZIONE DEL CONTENUTO DI ACQUA (CNR UNI 10008 - ASTM D2216)

Committente: TECHFEM S.p.A.

Data Inizio prova: 16-mar-21

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data Fine Prova: 17-mar-21

Note:

Data prelievo: 11/02/2021

Modalità di prelievo: campionatore Shelby

C.I.1 prelevato da S9 a m da p.c. 8,00+8,50

CONTENUTO DI ACQUA md:

27,49

0/

Lo Sperimentatore dott geol. Vincenzo Vessella GEOSERVING SRL

Il Direttore del Laboratorio dott geol Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 69 di

96

Sigla rif, Interno: B564

T8

DETERMINAZIONE MASSA VOLUMICA GRANULI SOLIDI

(UNI EN ISO 17892-3, ASTM D854, CNR UNI 10013)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Data prelievo: 11/02/2021 Data inizio prova: 17/03/2021 Data fine prova: 18/03/2021

Note: C.I.1 prelevato da S9 a m da p.c. 8,00÷8,50

a) Determinazione con picnometro:

Met.A (ASTM D854)

2001/10/01/11		Provino n. 1	Provino n. 2
т	[°C]	19,1	19,1
Ys	[Mg/m³]	2,72	2,72
Ys medio		2,	72
Ys medio a 20°C		2,	72

Disaerazione eseguita sotto vuoto

b) Determinazione con picnometro e cestello:

		Provino n. 1	Provino n. 2
Na	[%]		
Nb	[%]		
T	[°C]		
Yna	*		
Υsb	\$7.0		
Ys medio	91		

Lo Sperimentatore dott.geol. Vincenzo Vessella Il Direttore del Laboratorio dott geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e mail, info@geoserving.it

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.i.

I risultati dei presente documento si riferiscono al solo campione sottoposto a prova

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº, 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 70 di

ga:

Sigla rif. Interno: B564

Ta

ANALISI GRANULOMETRICA PER SETACCIATURA E DECANTAZIONE (ASTM D422 - Racc, AGI 1974)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Sheiby

C.I.1 prelevato da S9 a m da p.c. 8,00+8,50

Data Inizio prova: 17-mar-21

Data Fine Prova: 22-mar-21

Data prefievo: 11-feb-21

Setacciatura frazione > 2,0 mm

Peso secco iniziale [N]: 8,742

Apertura setaccio	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo	
[mm]	cumulativo	parziale	[%]	[%]	
70	0,000	0,000	0,00	100,00	
31,5	0,000	0,000	0,00	100,00	
25,4	0,000	0,000	0,00	100,00	
19	0,000	0,000	0,00	100,00	
9,5	0,088	0,088	1,00	99,00	
4,75	0,343	0,256	3,93	96,07	
2	0,732	0,389	8,38	91,62	

Setacciatura frazione < 2,0 mm

Peso secco iniziale INI: 0.491

Apertura	Peso ritenuto [N]		Ritenuto cumulativo	Passante cur	nulativo [%]
[mm]	cumulativo	parziale	[%]	parziale	totale
1,18	0,014	0,014	2,88	97,12	88,98
- 1	0,018	0,003	3,58	96,42	88,34
0,425	0,035	0,018	7,22	92,78	85,01
0,25	0,052	0,017	10,64	89,36	81,88
0,18	0,065	0,013	13,19	86,81	79,53
0,075	0,106	0,041	21,51	78,49	71,91

 $D_{10} = n.d.$

 $D_{50} = 0.024$

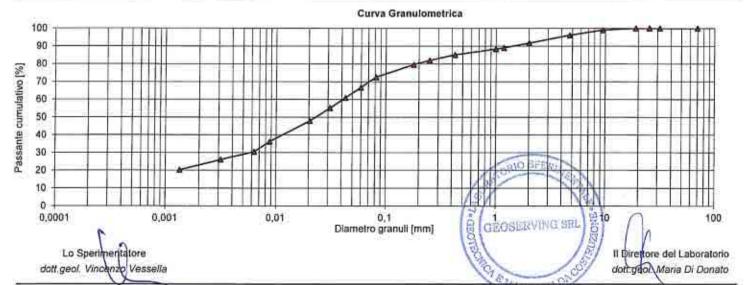
D 80 = 0,043

 $D_{30} = 0.006$

Cu= n.d.

n.d.

Daca	pacco	leisial	o this


Decantazione

[N]:	0,491	Densimetro sene: ASTM 151 H

690 96000	musiane fixt.	0,401	Denameno	CHE MOTH	10111						
t [min]	T I'CI	r	C	R	R'	R"	Z [cm]	V [cm/s]	D [mm]	P[%]	P' [%]
0,25	20	1,027	1,0025	27,0	27,5	25,0	9,021	36,083	0,0818	79,05	72,43
0,5	20	1,025	1,0025	25,0	25,5	23,0	9,55	19,100	0,0595	72,73	66,63
1	20	1,023	1,0025	23,0	23,5	21,0	10,079	10,079	0,0432	66,40	60,84
2	20	1,021	1,0025	21,0	21,5	19,0	10,608	5,304	0,0313	60,08	55,05
5	20	1,019	1,0025	18,5	19,0	16,5	11,269	2,254	0,0204	52,17	47,80
30	20	1,015	1,0025	14,5	15,0	12,5	12,327	0,411	0,0087	39,53	36,21
60	20	1,013	1,0025	12,5	13,0	10,5	12,856	0,214	0,0063	33,20	30,42
250	20	1,011	1,0025	11,0	11,5	9,0	13,253	0,053	0,0031	28,46	26,07
1416	20	1,009	1,0025	9,0	9,5	7,0	13,782	0,010	0,0013	22,13	20,28

Notir: t = tempo di sadimentazionii; T = temperatural; i = lettura al densimetro; C =Correzione per temperatura e soluzione; R = Valore convenzionale della lettura; R' = Valore convenzionale della lett Valore corretto per T, soluzione e minisco; Z = Distanza tra il bericentro dei densimetro e polo libero dell'acqua; V = velocità di caduta dei granuli; D= d'ametro equivalente del granuli; P=Passante cumulativo riferito al campione - Agente disperdente: esametafostato di sodio 40gft.

Classificazione	Argilla	Limo	Sabbia	Ghiaia	Ciottoli
uscs	(< 0,005 mm)	(0,005 mm + 0,074 mm)	(0,075 + 4,75 mm)	(4,75 mm + 75 mm)	(>75 mm)
	28,20 %	43,71 %	24,16 %	3,93 %	0,00 %
AGI	(< 0,002 mm)	(0,002 mm + 0,06 mm)	(0,06 ÷ 2 mm)	(2 mm + 60 mm)	(>60 mm)
	22,46 %	43,43 %	25,73 %	8,38 %	0,00 %

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº, 388 del 22,01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 71 di 96 Sigla rif, Interno: B564 T8

LIMITI DI CONSISTENZA LIQUIDA E PLASTICA (o di Atterberg)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data prelievo: 11/02/21 Data inizio prova: 24/03/21

Data fine prova: 24/03/21

Modalità di prelievo: campionatore Shelby

Note: C.I.1 prelevato da S9 a m da p.c. 8,00+8,50

Normativa di riferimento:

ASTM D4318 Met. A

Metodo di frantumazione:

Pestello in gomma

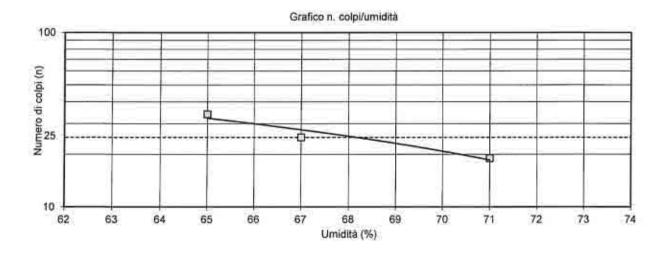
Metodo di essiccazione:

Forno 60 °C

Determinazione del limite liquido

Numero colpi	n	34	25	19
Contenuto in acqua	[%]	65	67	71

Limite Liquido (LL) [%]


Determinazione del limite plastico

Contenuto in acqua [%] 31 32

Contenuto in acqua medio [%] 31

Limite Plastico (LP) [%] 31

Indice di Plasticità (IP): 37

Lo Sperimentatore dott.geol. Vincenzo Vessella GEOSERVING SRL

Il Direttore del Laboratorio dott.geof. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Qualsiasi copia parziate del presente documento potra avvenire dopo debita autorizzazione sentra da garie della GEOSERVING S.r.I.

I risultati del presente documento si riferiscono al solo campione sottoposto a prova

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 72 di 96

Sigla rif, Interno: B564

T8

DETERMINAZIONE PARAMETRI FISICI

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Campione: C.I.1 prelevato da S9 a m da p.c. 8,00+8,50

Modalità di prelievo: campionatore Shelby

Data prelievo: 11-feb-21 Data Inizio prova: 16-mar-21 Data Fine Prova: 18-mar-21

Note:

Pravino	N°	1	2	3		
Diametro / Lato	[mm]	60,00	60,00	60,00		
Altezza	[mm]	22,00	22,00	22,00		
Area	[cm²]	36,00	36,00	36,00		
Volume	[cm ³]	79,20	79,20	79,20		
Massa provino umido	[9]	148,81	146,34	145,20		
Massa volumica umida ¹⁾	[Mg/m³]	1,88	1,85	1,83		
Massa volumica umida _{md}	[Mg/m³]		1,85			
Umidità _{md}	[%]	27,49				
Massa volumica secca _{ma}	[Mg/m³]		1,45			
Massa volumica dei granuli _{md}	[Mg/m³]		2,72			
Indice dei vuoti _{md}			0,87			
Porosità _{ma}	[%]	46,58				
Grado di saturazione _{md}	[%]	86				
Massa volumica satura _{md}	[Mg/m3]	1,92				

¹⁾ UNI EN ISO 17892-2

Lo Sperimentatore dott.geol. Vincenzo vessella O OEOSERVINO SPL

Il Dipetione del Laboratorio dott. geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geosprimi,it
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I
I risultati del presente documento si riferiscono al solo campione sottoposto a prova

MOD:: 018TR REV:: B del 04.10.2019

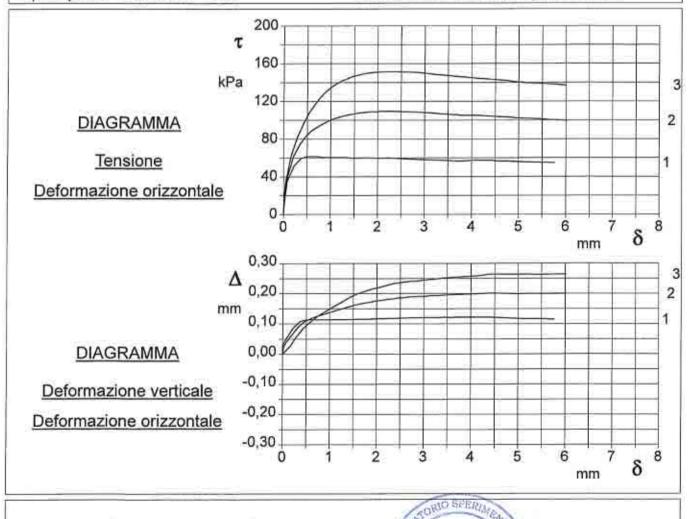
Emesso da DL

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR92/21 Pagina 73/96	DATA DI EMISSIONE:	25/03/21	Inizio analisi;	19/03/21
VERBALE DI ACCETTAZIONE Nº: B564/TR del 08/03/21	Apertura campione:	16/03/21	Fine analisi:	25/03/21

COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse


SONDAGGIO: S9 C.I. 1 CAMPIONE: B564/T8 PROFONDITA': m 8,00-8,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1	2	3
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato
Tempo di consolidazione (ore):	24	24	24
Pressione verticale (kPa):	100,0	200,0	300,0
Umidità naturale (%):	27,5		
Peso di volume (kN/m³):	18,4	18,1	17,6
The attacker Accordance tooks	7724232423	di defense siene e O O	04 mans / main

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,004 mm / min

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vingenzo Vessella

Il Direttore del Laboratorio dott. geol Maria Di Donato

PAWTERIAL P

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA N°: TR92/21 Pagina 74/96 DATA DI EMISSIONE: 25/03/21 Inizio analisi: 19/03/21 VERBALE DI ACCETTAZIONE N°: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21

COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

SONDAGGIO: S9 C.I. 1 CAMPIONE: B564/T8 PROFONDITA': m 8,00-8,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino 1			Provino 2			Provino 3		
Spostam.	Tensione kPa	Deform, vert.	Spostam.	Tensione kPa	Deform, vert,	Spostam. mm	Tensione kPa	Deform, ver
0,001	5,8	0,03	0,020	14.4	0,02	0,008	15,0	0,00
0,221	51.4	0,09	0,205	60,8	0,07	0,158	62,2	0,03
0,483	61,1	0,11	0,470	83,1	0,11	0,427	97,2	0,08
0,718	61,4	0,11	0,696	92,2	0,12	0,644	115,3	0.11
0,957	60,3	0,11	0,927	98,6	0,14	0,867	128,9	0,14
1,198	60,3	0,11	1,167	103,1	0,15	1,105	138,1	0,16
1,431	59,7	0,11	1.401	105,8	0,16	1,340	143,9	0,18
1,662	60,0	0,12	1,625	107,8	0,17	1,558	147,5	0,20
1,896	59,7	0,12	1,860	108,9	0,17	1,793	150,0	0,21
2,136	59,7	0,12	2,099	109,4	0,18	2,031	151,1	0,22
2,376	59,4	0,12	2,336	109,4	0,18	2,265	151,4	0,23
2,613	58,9	0,12	2,571	108,9	0,19	2,498	151,1	0,24
2,848	58,3	0,12	2,808	108,6	0,19	2,737	150,8	0,24
3,087	57,8	0,12	3.045	107,8	0,19	2,972	150,0	0,24
3,333	57,5	0,12	3,289	106,9	0,19	3,214	148,6	0,25
3,567	56,9	0,12	3,523	106,1	0,20	3,448	147,5	0,25
3,802	56,7	0,12	3,757	105,3	0,20	3,682	146,1	0,25
4,039	57,2	0,12	3,996	105,3	0,20	3,923	145,3	0,26
4,289	57,2	0,12	4.244	104,7	0,20	4,168	144.2	0,26
4,529	56,7	0,12	4,486	103,9	0,20	4,412	143,3	0,26
4,767	56,4	0,12	4,725	103,3	0,20	4,653	142,2	0,26
5,011	55,8	0,12	4,970	102,2	0,20	4,899	140,8	0,26
5,365	55,3	0,12	5,496	101,1	0,20	5,147	139,6	0,26
5,769	54,7	0,11	5,896	100,0	0,20	5,784	137,9	0,26
	9.11.	9	0,000	79010	0,20		13710	7,27
						===		
					p(O.SFE)	Rise		
				P.	Jak Co	100		

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

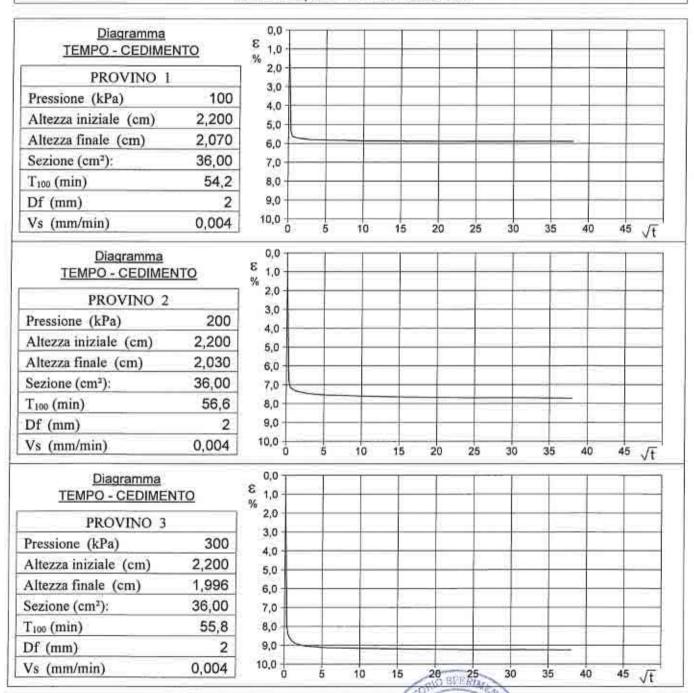
Lo Sperimefitatore dott. geol. Vincenzo Vessella

Il Direttore del Laboratorio dott, geol, Maria Di Donato

GEOSERVING SRL

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

DATA DI EMISSIONE: 25/03/21 Inizio analisi: 19/03/21 CERTIFICATO DI PROVA Nº: TR92/21 Pagina 75/96 VERBALE DI ACCETTAZIONE Nº: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21


COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

CAMPIONE: B564/T8 SONDAGGIO: S9 C.I. 1 PROFONDITA': m 8.00-8.50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

tr = 10 x T₁₀₀

GEOSERVING BRA

 $V_S = Df/tf$

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott, geol, Vincenzo Vessella

Il Direttore del Laboratorio dott, geo. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA N°: TR92/21 Pagina 76/96 DATA DI EMISSIONE: 25/03/21 Inizio analisi: 19/03/21 VERBALE DI ACCETTAZIONE N°: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21

COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

SONDAGGIO: S9_C.I. 1 CAMPIONE: B564/T8 PROFONDITA:: m 8,00-8,50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

Provino 1			Provino 2			Provino 3		
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,10	117,30	5,33	0,10	148,20	6,74	0,10	175,60	7,98
0,25	123,40	5,61	0,25	156,40	7,11	0,25	185,90	8,45
0,50	124,40	5,65	0,50	158,50	7,20	0,50	189,58	8,62
1,00	125,20	5,69	1,00	160,02	7,27	1,00	192,64	8,76
2,00	126,06	5,73	2,00	161,52	7,34	2,00	195,75	8,90
4,00	126,70	5,76	4,00	162,62	7,39	4,00	197,21	8,96
8,00	127,34	5,79	8,00	164,14	7,46	8,00	198,99	9,05
16,00	127,84	5,81	16,00	165,30	7,51	16,00	199,60	9,07
30,00	128,14	5,82	30,00	166,10	7,55	30,00	200,80	9,13
60,00	128,64	5,85	60,00	166,50	7,57	60,00	201,20	9,15
90,00	128,82	5,86	90,00	167,20	7,60	90,00	201,60	9,16
241,67	129,40	5,88	241,67	168,37	7,65	241,67	202,24	9,19
540,00	129,65	5,89	540,00	169,08	7,69	540,00	203,07	9,23
1024,00	129,57	5,89	1024,00	169,31	7,70	1024,00	203,13	9,23
1440,00	129,76	5,90	1440,00	170,03	7,73	1440,00	203,75	9,26
					No. WELL	Name of the last o		
		11			6/	1 44		
			1	- 178	GEOGEBAN	IG SEL TO		

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Spermentatore dott. geol. Vincenzo Vessella Il Direttore del Laboratorio dott. gegi. Maria Di Donato

A CHATERIAL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: Sigla rif. Interno: B564

77 di

TO

APERTURA E DESCRIZIONE GENERALE DEL CAMPIONE (ASTM D2488-84)

Committente:

TECHFEM S.p.A.

Data prelievo: 11-feb-21

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data prova: 16/03/21

Modalità di prelievo: campionatore Shelby

Note:

C.I.3 prelevato da S9 a m da p.c. 28,00+28,50

1) Descrizione:

argilla e limo

2) Colore:

oliva con screziature brune e ocra

Munsell soil color chart:

5/3 - 5/4

3) Odore:

nessuno

4) Plasticità:

molto plastico

5) Condizioni di umidità:

umido

6) Reazione con HCI:

alta

7) Grado di alterazione:

8) Consistenza (terreni coesivi):

molto consistente

Addensamento (terreni granulari):

10) Strutture:

11) Fratturazioni:

12) Scistosità:

Rappresentazione schematica del campione

2 0 provino onivord provino basso

Quote [cm]:

P.Penetrometer [kPa]: Vane test [kg/cm2]:

alto

>400

>400

Prove eseguite: Apertura e descrizione; contenuto d'acqua; massa volumica; massa volumica dei granuli solidi; analisi granulometrica per setacciatura e decantazione; limiti di consistenza (o di Atterberg); taglio diretto.

Lo Sperimentatore dott.geol. Vincenzo Vessella Il Directore del Laboratorio dott.geof Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving it Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.l. I risultati del presente documento si riferiscono al solo campione sottoposto a prova

Mod. 127 Rev.: A del 05 12 2013

Emesso da DL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 78 di

96

Sigla rif. Interno: B564

T9

DETERMINAZIONE DEL CONTENUTO DI ACQUA (CNR UNI 10008 - ASTM D2216)

Committente: TECHFEM S.p.A.

Data Inizio prova: 16-mar-21

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data Fine Prova: 17-mar-21

Note:

Data prelievo: 11/02/2021

Modalità di prelievo: campionatore Shelby

C.I.3 prelevato da S9 a m da p.c. 28,00+28,50

CONTENUTO DI ACQUA md:

22,01

0/

Lo Sperimentatore dott.geol. Vincenzo Vessella AMASERUING SRL

Il Direttore del Laboratorio dott.geol. Maria Di Donato

GEOSERVING S.r.l. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.l.

I risultati del presente documento si riferiscono al solo campione sottoposto a prova

Mod.: 116 Rev.: A del 05.12 2013

Emesso da DL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove în situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº, 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 79 di

96

Sigla rif. Interno: B564

T9

DETERMINAZIONE MASSA VOLUMICA GRANULI SOLIDI

(UNI EN ISO 17892-3, ASTM D854, CNR UNI 10013)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Data prelievo: 11/02/2021 Data inizio prova: 17/03/2021 Data fine prova: 18/03/2021

Note: C.I.3 prelevato da S9 a m da p.c. 28,00+28,50

a) Determinazione con picnometro:

MeLA (ASTM D854)

		Provino n. 1	Provino n. 2
Ť	[°C]	19,1	19,1
Υ ₅	[Mg/m ³]	2,68	2,68
Ys medio		2,	68
Ys medio	a 20°C	2,	69

Disaerazione eseguita sotto vuoto

b) Determinazione con picnometro e cestello:

		Provino n. 1	Provino n. 2
Na	[%]		
Nb	[%]		
T	[c]		
Ysa	31		
Υsb			
Ys medio			

Lo Sperimentatore dott.geol. Vincenzo Vessella GEOSERVING SRL

Il Direttore del Laboratorio dott geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (EB) e-mail: info@geoserving it
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.
I risultati del presente documento si riferiscono al solo campione sottoposto a prova

MOD.:259 REV.: C del 17.04.2020

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 80 di 96 Sigla rif, Interno: B564 T9

ANALISI GRANULOMETRICA PER SETACCIATURA E DECANTAZIONE

(ASTM D422 - Racc, AGI 1974)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shetby C.

C.I.3 prelevato da S9 a m da p.c. 28,00+28,50

Data Inizio prova: 17-mar-21

Data Fine Prova: 22-mar-21

Data prelievo: 11-feb-21

Setacciatura frazione > 2,0 mm

Peso secco iniziale [N]: 9,068

Apertura setaccio	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo
[mm]	cumulativo	parziale	[%]	[%]
70	0,000	0,000	0,00	100,00
31,5	0,000	0,000	0,00	100,00
25,4	0,000	0,000	0,00	100,00
19	0,000	0,000	0,00	100,00
9,5	0,000	0,000	0,00	100,00
4,75	0,000	0,000	0,00	100,00
2	0,000	0,000	0,00	100,00

Setacciatura frazione < 2,0 mm

Peso secco iniziale [N]: 0,491

Apertura	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cur	nulativo [%]
[mm]	cumulativo	parziale	[%]	parziale	totale
1,18	0,000	0,000	0,04	99,96	99,96
1	0,000	0,000	0,06	99,94	99,94
0,425	0,001	0,001	0,22	99,78	99,78
0,25	0,002	0,001	0,48	99,52	99,52
0,18	0,003	0,001	0,66	99,34	99,34
0,075	0,014	0,011	2,82	97,18	97,18

 $D_{10} = n.d.$

 $D_{50} = n.d.$

 $D_{60} = n.d.$

 $D_{00} = n.d.$

 $C_{u} = n.d.$

C_G= n.d.

Decantazione

Peso secco iniziale (NI: 0.491 - Densimetro serie: ASTM 151 H

eso secco	iniziale [N]:	0,491	Densimetro sene. ASTM 151 H								
t [min]	T[*C]	Г	C	R	R'	R"	Z [cm]	V [cm/s]	D [mm]	P [%]	P' [%]
0,25	20	1,032	1,0025	32,0	32,5	30,0	7,698	30,793	0,0767	95,60	95,60
0,5	20	1,031	1,0025	31.0	31,5	29,0	7,963	15,925	0,0552	92,42	92,42
-1	20	1,030	1,0025	30,0	30,5	28,0	8,227	8,227	0,0396	89,23	89,23
2	20	1,028	1,0025	28,0	28,5	26,0	8,756	4,378	0,0289	82,86	82,86
5	20	1,026	1,0025	26,0	26,5	24,0	9,285	1,857	0,0188	76,48	76,48
30	20	1,022	1,0025	21,5	22,0	19,5	10,476	0,349	0,0082	62,14	62,14
60	20	1,020	1,0025	19,5	20,0	17,5	11,005	0,183	0,0059	55,77	55,77
250	20	1,016	1,0025	15,5	16,0	13,5	12,063	0,048	0,0030	43,02	43,02
1399	20	1,011	1,0025	10,5	11,0	8,5	13,385	0,010	0,0014	27,09	27,09

Note: 1 = tempo di sedimentazione; T = temperatura; r = lettura al densinetro; C = Correzione per temperatura e soluzione; R = Valore convenzionale della tettura; R' = Valore correzionale della tettura; R'

Classificazione	Argilla	Limo	Sabbia	Ghiaia	Ciottoli
uscs	(< 0,005 mm)	(0,005 mm + 0,074 mm)	(0,075 + 4,75 mm)	(4,75 mm + 75 mm)	(>75 mm)
	52,27 %	44,91 %	2,82 %	0,00 %	0,00 %
AGI	(< 0,002 mm)	(0,002 mm + 0,06 mm)	(0,06 ÷ 2 mm)	(2 mm + 60 mm)	(>60 mm)
	33,23 %	59,50 %	7,27 %	0,00 %	0,00 %

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 81 di 96

Sigla rif. Interno: B564 T9

LIMITI DI CONSISTENZA LIQUIDA E PLASTICA (o di Atterberg)

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Data prelievo: 11/02/21 Data inizio prova: 17/03/21

Data fine prova: 25/03/21

Modalità di prelievo: campionatore Shelby

Note: C.I.3 prelevato da S9 a m da p.c. 28,00+28,50

Normativa di riferimento:

ASTM D4318 Met. A

Metodo di frantumazione:

Pestello in gomma

Metodo di essiccazione:

Forno 60 °C

Determinazione del limite liquido

Numero colpi

n

34

16

25

59

Contenuto in acqua

[%]

57

61

Limite Liquido (LL)

[%] 59

Determinazione del limite plastico

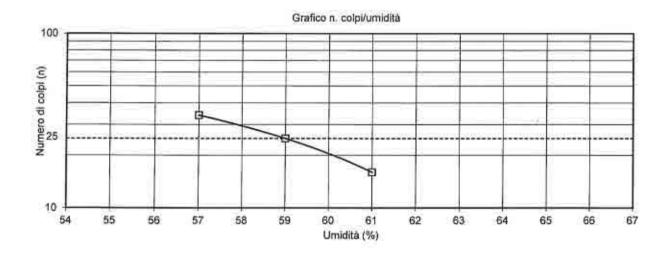
Contenuto in acqua

[%]

24 24

Contenuto in acqua medio

1%1


24

Limite Plastico (LP)

[%] 24

Indice di Plasticità (IP):

35

Lo Sperimentalore dott.geol. Vincenzo Vessella GEOSERVING ORL

Il Direttore del Laboratorio dott-geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR0092/21

Data di emissione: 25-mar-21

Pagina: 82 di 96

Sigla rif. Interno: 8564

T9

DETERMINAZIONE PARAMETRI FISICI

Committente: TECHFEM S.p.A.

Cantiere: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

Campione: C.1.3 prelevato da S9 a m da p.c. 28,00+28,50

Modalità di prelievo: campionatore Shelby

Data prelievo: 11-feb-21 Data Inizio prova: 16-mar-21 Data Fine Prova: 18-mar-21

Note:

Provino	N*	£	2	3
Diametro / Lato	[mm]	60,00	60,00	60,00
Altezza	[mm]	22,00	22,00	22,00
Area	[cm ²]	36,00	36,00	36,00
Volume	[cm³]	79,20	79,20	79,20
Massa provino umido	[9]	163,31	161,84	163,34
Massa volumica umida ¹⁾	[Mg/m³]	2,06	2,04	2,06
Massa volumica umida ind	[Mg/m³]		2,06	
Umiditā _{mā}	[%]		22,01	
Massa volumica secca _{ed}	[Mg/m ³]		1,69	
Massa volumica dei granuli _{md}	[Mg/m ³]		2,69	
Indice dei vuoti _{md}	-	0,59		
Porosità _{ma}	[%]	37,25		
Grado di saturazione _{ma}	[%]	100		
Massa volumica satura _{ind}	[Mg/m3]	2,06		

¹⁾ UNI EN ISO 17892-2

Lo Sperimentatore dott.geol. Vincento Vessella

NO SPERIALIZA

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.
I risultati del presente documento si riferiscono al solo campione sottoposto a prova

MOD:: 016TR REV.: B del 04.10.2019

Emesso da DL

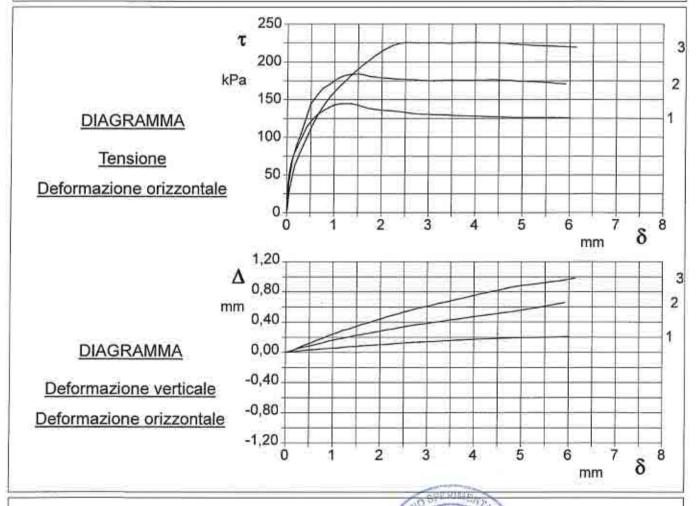
Il Direttore del Laboratorio Maria Di Donato

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA N°: TR92/21 Pagina 83/96 DATA DI EMISSIONE: 25/03/21 Inizio analisi: 22/03/21 VERBALE DI ACCETTAZIONE N°: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21

COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse


SONDAGGIO: S9 C.I. 3 CAMPIONE: B564/T9 PROFONDITA': m 28,00-28,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1	2	3
Condizione del provino:	Indisturbato	Indisturbato	Indisturbato
Tempo di consolidazione (ore):	24	24	24
Pressione verticale (kPa):	300,0	400,0	500,0
Umidità naturale (%):	22,0	10.000	
Peso di volume (kN/m³):	20,4	20,4	20,2
Tino di prova: Consolidata Jenta	Velocità	di deformazione: 0.00	M mm / min

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,004 mm / min

Mod. 46 Rev : C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vincenzo Vessella

Il Direttore del Laboratorio dott. geol. Maria Di Donato

EMADES

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n° 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

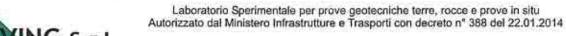
CERTIFICATO DI PROVA N°: TR92/21 Pagina 84/96 DATA DI EMISSIONE: 25/03/21 Inizio analisi: 22/03/21 VERBALE DI ACCETTAZIONE N°: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21

COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

SONDAGGIO: S9 C.I. 3 CAMPIONE: B564/T9 PROFONDITA': m 28,00-28,50

PROVA DI TAGLIO DIRETTO


Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2	,I		Provino 3	
Spostam. mm	Tensione kPa	Deform, vert.	Spostam.	Tensione kPa	Deform. vert.	Spostam. mm	Tensione kPa	Deform, vert
0,004	24,4	0,00	0,048	42,5	0.01	0,056	31,7	0,00
0,083	64,2	0,00	0,198	88,4	0,04	0,277	80,0	0,06
0,421	114,4	0,03	0,496	143,8	0,08	0,535	116,1	0,13
0,662	131,1	0,04	0,745	164,5	0,12	0.792	144,1	0,19
0,775	135,8	0,05	0,915	171,2	0,15	1,018	161,3	0,25
0,996	142,8	0,06	1,119	179,6	0,18	1,205	173,1	0,29
1,237	144,7	0,07	1,359	183,5	0,21	1,445	187,6	0,33
1,496	142,8	0,08	1,625	183,0	0,24	1,718	201,3	0,39
1,734	138,1	0,09	1,855	179,9	0,27	1,940	211,6	0,43
1,946	136,4	0,10	2,059	178,5	0,29	2,136	219,0	0,47
2,186	135,3	0,11	2,290	177,5	0,31	2,358	224,4	0,51
2,427	133,6	0,12	2,548	176,4	0,34	2,633	225,5	0,56
2,667	131,4	0,13	2,787	175,8	0,37	2,871	225,3	0,60
2,891	130,6	0,14	3,002	174,9	0,38	3,077	225,3	0,62
3,124	130,0	0,14	3,229	175,1	0,40	3,298	225,2	0,66
3,368	129,7	0,15	3,490	175,9	0,43	3,576	225,0	0,69
3,614	128,9	0,16	3,741	175,3	0,45	3,832	225,5	0,73
3,841	128,3	0,17	3,959	175,6	0,47	4,041	225,6	0,76
4,063	128,1	0,18	4,176	175,5	0,49	4,253	225,2	0,79
4,305	127,2	0,18	4,436	176,3	0,51	4,531	224,9	0,82
4,541	126,9	0,19	4,682	175,7	0,53	4,787	223,8	0,86
4,771	126,1	0,19	4,912	174,3	0,55	5,017	222,7	0,89
5,005	126,1	0,20	5,587	172,5	0,62	5,593	221,1	0,93
5,485	126,1	0,20	5,916	170,6	0,66	6,136	219,4	0,98
6,011	125,6	0,21	5,510	170,0	0,00	0,130	210,4	0,00
0,011	120,0	0,21						
					OWERIME.			
			- 1	4.7	RIO SAN KIWIE	150		
					DINIVO N	1 E		

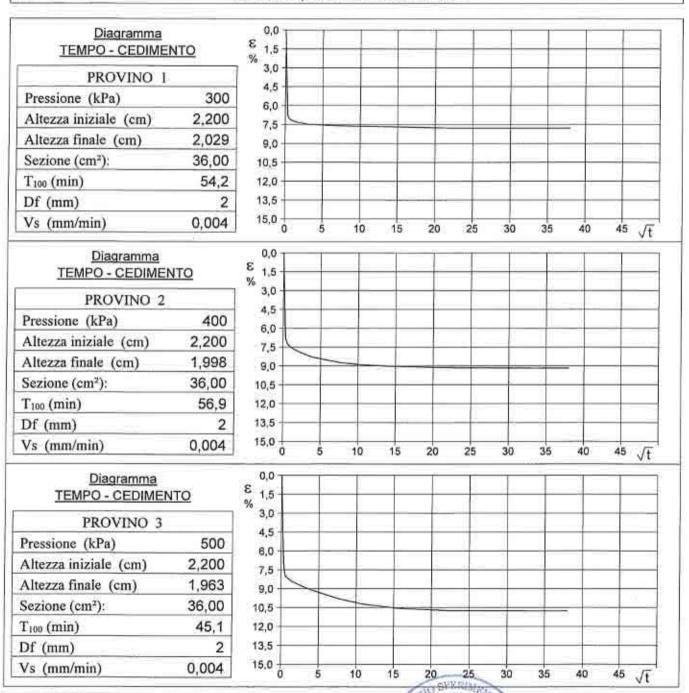
Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vincenzo Vessella

Il Direttore del Laboratorio dott, gedi. Maria Di Donato

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR92/21 DATA DI EMISSIONE: Inizio analisi: 22/03/21 Pagina 85/96 25/03/21 VERBALE DI ACCETTAZIONE Nº: B564/TR del 08/03/21 16/03/21 Fine analisi: 25/03/21 Apertura campione:


COMMITTENTE: TECHFEM S.p.A.

RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

SONDAGGIO: S9 C.I. 3 CAMPIONE: B564/T9 PROFONDITA': m 28.00-28.50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $ff = 10 \times T_{100}$

Chateria!

 $V_s = Df/tf$

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vincenzo Vessella

GEOSERVINO SRL Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n° 388 del 22,01,2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: Info@geoserving.it

CERTIFICATO DI PROVA N°: TR92/21 Pagina 86/96 DATA DI EMISSIONE: 25/03/21 Inizio analisi: 22/03/21 VERBALE DI ACCETTAZIONE N°: B564/TR del 08/03/21 Apertura campione: 16/03/21 Fine analisi: 25/03/21

COMMITTENTE: TECHFEM S.p.A.

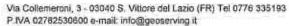
RIFERIMENTO: Metanodotto Lucera - San Paolo di Civitate ed opere connesse

SONDAGGIO: S9_C.I. 3

CAMPIONE: B564/T9

PROFONDITA': m 28,00-28,50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE


Modalità di prova: Norma ASTM D3080

minuti		Provino 1			Provino 2			Provino 3	
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
0,10	minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,50	0,10	148,40	6,75	0,10	149,62	6,80	0,10	151,62	6,89
1,00	0,25	154,10	7,00	0,25	157,43	7,16	0,25	173,92	7,91
1,00	0,50	156,40	7,11	0,50	161,49	7,34	0,50	178,00	8,09
2,00 160,50 7,30 2,00 168,64 7,67 2,00 184,92 4,00 162,11 7,37 5,00 173,86 7,90 4,00 188,92 8,00 164,00 7,45 10,00 179,20 8,15 8,00 194,02 15,00 165,30 7,51 15,00 182,50 8,30 15,00 199,32 30,00 166,30 7,56 30,00 186,89 8,50 30,00 206,82 60,00 167,30 7,60 60,00 192,38 8,74 60,00 216,02 120,00 168,30 7,65 100,00 195,55 8,89 120,00 225,22 240,00 169,40 7,70 200,00 198,58 9,03 240,00 235,92 1440,00 171,25 7,78 1440,00 201,08 9,14 480,00 235,92 1440,00 171,25 7,78 1440,00 201,87 9,18 1440,00 236,79	1,00	158,50		1,00	164,97	7,50	1,00	181,12	8,23
8,00 164,00 7,45 10,00 179,20 8,15 8,00 194,02 15,00 165,30 7,51 15,00 182,50 8,30 15,00 199,32 30,00 166,30 7,56 30,00 186,89 8,50 30,00 206,82 60,00 167,30 7,60 60,00 192,38 8,74 60,00 216,02 120,00 168,30 7,65 100,00 195,55 8,89 120,00 225,22 240,00 169,40 7,70 200,00 198,58 9,03 240,00 232,12 480,00 170,90 7,77 500,00 201,08 9,14 480,00 235,92 1440,00 171,25 7,78 1440,00 201,87 9,18 1440,00 236,79	2,00	160,50	7,30	2,00	168,64	7,67	2,00		8,41
8,00 164,00 7,45 10,00 179,20 8,15 8,00 194,02 15,00 165,30 7,51 15,00 182,50 8,30 15,00 199,32 30,00 166,30 7,56 30,00 186,89 8,50 30,00 206,82 60,00 167,30 7,60 60,00 192,38 8,74 60,00 216,02 120,00 168,30 7,65 100,00 195,55 8,89 120,00 225,22 240,00 169,40 7,70 200,00 198,58 9,03 240,00 232,12 480,00 170,90 7,77 500,00 201,08 9,14 480,00 235,92 1440,00 171,25 7,78 1440,00 201,87 9,18 1440,00 236,79	4,00	162,11	7,37	5,00	173,86	7,90	4,00	188,92	8,59
15,00	8,00	164,00		10,00	179,20	8,15	8,00	194,02	8,82
30,00	15,00	165,30	7,51	15,00	182,50		15,00	199,32	9,06
120,00	30,00	166,30	7,56	30,00	186,89	8,50	30,00	206,82	9,40
120,00	60,00	167,30	7,60	60,00	192,38	8,74	60,00	216,02	9,82
240,00 169,40 7,70 200,00 198,58 9,03 240,00 232,12 480,00 170,90 7,77 500,00 201,08 9,14 480,00 235,92 1440,00 171,25 7,78 1440,00 201,87 9,18 1440,00 236,79	120,00	168,30		100,00	195,55	8,89	120,00	225,22	10,24
1440,00 171,25 7,78 1440,00 201,87 9,18 1440,00 236,79	240,00	169,40		200,00	198,58	9,03	240,00	232,12	10,55
And Syer Manager	480,00	170,90	7,77	500,00	201,08	9,14	480,00	235,92	10,72
STER MEANTER	1440,00	171,25		1440,00	201,87	9,18	1440,00	236,79	10,76
STORIO STERR MONTER									
Second Seem Manager									
						ADPIO SFERIA	(Caty)		
(F) (ODOSERVITIO SEL) (S)			J		S	1	3 870 10	STP 1	

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vincenzo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

CHATERIA

Laboratorio Sperimentale prove su materiali da costruzione, geotecnica, prove in sito e su conglomerati bituminosi. Autorizzato ai sensi dell'art. 20 L. 1086 con D.M. n° 394 del 22/01/2014 e succ., prove di cui al. D.P.R. 380/01 art. 59 con D.M. n°388 del 22/01/2014 e succ.

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

SONDAGGIO			S10	S11
CAMPIONE			Cl3	CI2
QUOTA PRELIEVO		m da p.c.	26,50-27,00	23,00-23,50
Sigla id.int.			B880 T1	B880 T2
DETERMINAZIONI		u.m.		
MASSA VOLUMICA UMIDA	Y	Mg/m ³	2,11	2,01
MASSA VOLUMICA APP. GRANULI	Ys	Mg/m ³	2,72	2,71
UMIDITA'	w	%	19,37	18,10
LIMITE LIQUIDO	LL	%	37	53
INDICE PLASTICO	IP	%	19	32
LIMITE DI RITIRO	LR	%		
GRANULOMETRIA	Argilla	%	45,80	60,85
(ASTM)	Limo	%	43,04	36,88
	Sabbia	%	11,16	2,27
	Ghiaia	%	0,00	0,00
	Ciottoli	%	0,00	0,00
CLASSIFICAZIONE (CNR UNI 10006)				
	E (12,5÷25)	KPa		
	E (25+50)	KPa		
	E (50÷100)	KPa		
	E (100÷200)	KPa		
	E (200+400)	KPa		
	E (400+800)	KPa		
	E (800÷1600)	KPa		
EDOMETRICA	E (1600+3200)	KPa		
THE TAXABLE PARTY.	P	KPa		
		cm²/sec		
	Cv	cm ² /sec		
	15	cm²/sec		
		cm/sec		
	k	cm/sec		
	1000	cm/sec	-	
IDE GENERALISME EN MANAGEM	φ*	0	20	26
TAGLIO DIRETTO	C,	KPa	70	2
	φ'			~
TAGLIO RESIDUO	c'	KPa		
TRIASSIALE UU	Cu	KPa		
The state of the s	φ'			
TRIASSIALE CIU	C,	KPa		
utaana ora tti attania tari	φ,	*		
TRIASSIALE CID	C'	KPa		
COMPRESSIONE ELL	ELL	KPa		
POINT LOAD		1,00		
COLONNA RISONANTE				

Laboratorio Sperimentale per prove geotecniche su terre e rocce, prove in situ.

Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°, 388 del 22.01.2014

IDENTIFICAZIONE DOCUMENTO: CERTIFICATO N. TR00184/22

DATA DI EMISSIONE: 28-nov-22

PAGINA 1 di PAGINE TOTALI: 21

ALLEGATI: -

COMMITTENTE: Techfem S.p.A.

CANTIERE: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

DIRETTORE DEI LAVORI: -

CAMPIONI:

- DESCRIZIONE: campioni di terra indisturbati

- MODALITÀ DI PRELIEVO: C.I. campionatore Shelby

- DATA RICEVIMENTO: 14 novembre 2022

- SIGLA IDENTIFICATIVA INTERNA: B880

T1 Cl3 prelevato da S10 a m dal p.c. 26,50 ÷ 27,00 T2 Cl2 prelevato da S11 a m dal p.c. 23,00 ÷ 23,50

PROVE: Apertura e descrizione; contenuto d'acqua; massa volumica dei granuli

SELO SPERMA

CATERIALIS

solidi; massa volumica; analisi granulometrica per setacciatura e decantazione; limiti di consistenza (o di Atterberg); prova di taglio diretto

CD;

VERBALE DI ACCETTAZIONE N.º DEL: B880 del 14 novembre 2022

IL DIRETTORE, DEL LABORATORIO

(dott.ged) Maria Di Donato)

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 2 di 21

T1 Sigla rif. Interno: B880

APERTURA E DESCRIZIONE GENERALE DEL CAMPIONE (ASTM D2488-84)

Committente:

Techfem S.p.A.

Data prelievo: 02/11/22

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Data prova: 15/11/22

Modalità di prelievo: campionatore Shelby

Note:

CI3 prelevato da S10 a m dal p.c. 26,50 + 27,00

1) Descrizione:

argilla e limo

2) Colore:

grigio

Munsell soil color chart:

2.5 Y

5/1

3) Odore:

nessuno

4) Plasticità:

mediamente plastico

5) Condizioni di umidità:

debolmente umido

6) Reazione con HCI:

alta

7) Grado di alterazione:

8) Consistenza (terreni coesivi):

molto consistente

9) Addensamento (terreni granulari): -

10) Strutture:

11) Fratturazioni:

12) Scistosità:

Rappresentazione schematica del campione

REPARTE 製物物質 alto basso

Quote [cm]:

P.Penetrometer [kPa]:

Vane test [kg/cm2]:

250

270

Prove eseguite: Apertura e descrizione; contenuto d'acqua; massa volumica dei granuli solidi; massa volumica; analisi granulometrica per setacciatura e decantazione; limiti di consistenza (o di Atterberg); prova di taglio

Note: non è stato possibile profilare i provini per la prova triassiale CID; è stata sostituita con una prova di taglio CD

LALIT RIALI

ORIO SPI KALL

Lo Sparimentatore

datt.geol. genzo Vessella del Laboratorio ria Di Donato

San Vittore del Lazio (FR) GEOSERVING S.r.l. - Via Collemeroni 3 e-mail: info@geoserving it Qualsiasi copia parziale del presente documento potra avvenire dopo debita autorizzazione scritta da parte d I risultati del presente documento a riferiscono al solo campione sottoposto a prova e dopo debita autorizzazione scritta da parte della GEOSERVING S.r.l.

Mod. 127 Rev.: A del 05_12_2013

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 3 di

21

Sigla rif. Interno: B880

T1

DETERMINAZIONE DEL CONTENUTO DI ACQUA (CNR UNI 10008 - ASTM D2216)

Committente: Techfem S.p.A.

Data Inizio prova: 15/11/22

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Data Fine Prova: 16/11/22

Data prelievo: 02/11/2022

Note:

Modalità di prelievo: campionatore Shelby

CI3 prelevato da S10 a m dal p.c. 26,50 + 27,00

CONTENUTO DI ACQUA md:

19,37

.

Lo Sperimentatore dott.geol. YinGenzo Vessella STATORIO SPERIMENTA

Il Direttore del Laboratorio dott.gedi. Mane Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 CBan Vittore del Lazio (FR) e-mail. info@geoserving.it.

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento si ideriscono al solo campio e sottoposto a prova

MATHRIAL

Mod.: 116 Rev.: A del 05.12.2013

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 4 di 21 Sigla rif. Interno: B880 T1

DETERMINAZIONE MASSA VOLUMICA GRANULI SOLIDI

(UNI EN ISO 17892-3, ASTM D854, CNR UNI 10013)

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Data prelievo: 02/11/2022 Data inizio prova: 16/11/2022 Data fine prova: 18/11/2022

Note: Cl3 prelevato da S10 a m dal p.c. 26,50 ÷ 27,00

a) Determinazione con picnometro:

Met.A (ASTM D854)

		Provino n. 1	Provino n. 2
Ŧ	[°C]	19,0	19,0
γs	[Mg/m³]	2,72	2,72
Ys medio		2,	72
Ys medio	a 20°C	2,	72

Disaerazione eseguita sotto vuoto

b) Determinazione con picnometro e cestello:

		Provino n. 1	Provino n. 2
Na	[%]		
Nb	[%]		
т	[,c]		
Ysa	=		
Ysb	÷		
s medio	9		

Lo Sperimentatore dott.geol. Vinjenzo Vessella

dott.ge

Il Direttore del Laboratorio dott gedi. Mane Di Donato

GEOSERVING S.r.I. - Via Collemeron, 3 - San Viltore del Lazio (FR) e mail: info@geoserving.it

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.i.

I risultati del presente documento si meriscono al solo cambione sottoposto a prova

MITTERIAL)

SRIO SPIRI

MOD.:259 REV.: C del 17.04.2020 Emesso da DL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina 5 di 21 Sigla rif. Interno: B880 T1

ANALISI GRANULOMETRICA PER SETACCIATURA E DECANTAZIONE (ASTM D422 - Racc, AGI 1974)

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Cl3 prelevato da S10 a m dal p.c. 26,50 + 27,00

Data Inizio prova: 16/11/22 Data Fine Prova: 18/11/22

Data prelievo: 02/11/22

Setacciatura frazione > 2,0 mm

Peso secco iniziale [N]: 8,457

-

Apertura setaccio	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo
[mm]	cumulativo	parziale	[%]	[%]
70	0,000	0,000	0.00	100,00
31,5	0,000	0,000	0,00	100,00
25,4	0,000	0,000	0,00	100,00
19	0,000	0,000	0,00	100,00
9,5	0,000	0,000	0,00	100,00
4,75	0,000	0,000	0,00	100,00
2	0,001	0,001	0,01	99,99

Setacciatura frazione < 2,0 mm

Peso secco iniziale [N]. 8,457

Apertura [mm]	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo
	cumulativo	parziale	[%]	[%]
1,18	0,001	0,001	0,02	99,98
1	0,002	0,000	0.02	99,98
0,425	0,004	0,002	0,05	99,95
0,25	0,006	0,002	0,07	99,93
0,18	0,015	0,009	0,18	99,82
0,075	0,944	0,929	11,16	88,84

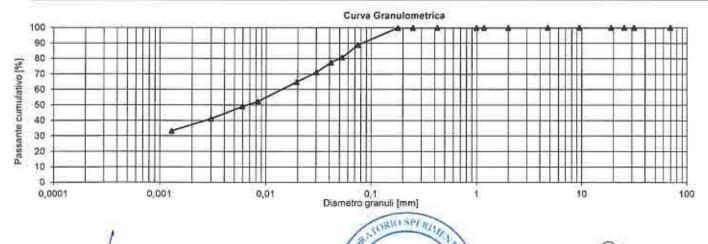
 $D_{10} = n.d.$

D so = 0,007

D 60 = 0,016

D₃₀= n.d.

C u = n.d.


C c = n.d.

Decamazione		
Peso secco iniziale INI:	0.490	Densimetro serie: ASTM 151 H

COU SCHOOL	to transfer for all	01.400	de ser registration de s	Section 1 sec 1 sec.	Service and an artist of the service and an artist of the service and						
t [min]	T ["C]	T .	C	R	R'	R"	Z [cm]	V [cm/s]	D [mm]	P [%]	P' 1%
0,6	19	1,026	1,0010	26,0	26,5	25,5	9,285	15,475	0,0529	80,69	80,68
1	19	1,025	1,0010	25,0	25,5	24,5	9,55	9,550	0,0415	77,52	77,52
2	19	1,023	1,0010	23,0	23,5	22,5	10,079	5,039	0,0302	71,19	71,15
5	19	1,021	1,0010	21,0	21,5	20,5	10,608	2,122	0,0196	64,87	64,86
30	19	1,017	1,0010	17,0	17,5	16,5	11,666	0,389	0,0084	52,21	52,21
60	19	1,016	1,0010	16,0	16,5	15,5	11,93	0,199	0,0060	49,04	49,04
250	19	1,014	1,0010	13,5	14,0	13,0	12,592	0,050	0,0030	41,13	41,13
1428	19	1,011	1,001	11,0	11,5	10,5	13,253	0,009	0,0013	33,22	33,22

Note: 1 = tempo di sedimentazione; T = temperatura, r = tettura al denematro; C =Corrizione per temperatura e soluzione; R = Valtire convenzionale delle tettura; R' = Valtire convenzionale delle tet

Classificazione	Argilla	Limo	Sabbia	Ghiaia	Ciottoli
uscs	(< 0,005 mm)	(0,005 mm + 0,074 mm)	(0,075 + 4,75 mm)	(4,75 mm + 75 mm)	(>75 mm)
	45,80 %	43,04 %	11,16 %	0,00 %	0,00 %
AGI	(< 0,002 mm)	(0,002 mm + 0,06 mm)	(0,06 + 2 mm)	(2 mm = 60 mm)	(>60 mm)
	36,41 %	47,14 %	16,44 %	0,01 %	0,00 %

Lo Sperimentatore dott.geol. Vincenzo Vessella Il Direttore del Laboratorio dott.geol. Maria Di Donato

GEOSERVING S.r.I. - Via Cotterneron 3 - San Viltore del Lazio (FR) o malli info@geoserving it
Qualsiosi copia perziale del presente documento potre quivante tropo sente auropzazione scritta da parte della GEOSERVING S.r.I.
I risultati del presente documento sotteraciono al solo campione sottoposto a prova

MARRIAGIN

Mod: 029 Rev.: D del 12.09.2022

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº, 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22 Pagina: 6 di 21 Sigla rif. Interno: B880

LIMITI DI CONSISTENZA LIQUIDA E PLASTICA (o di Atterberg)

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Data inizio prova: 17/11/22 Data fine prova: 21/11/22

Data prelievo: 02/11/22

Modalità di prelievo; campionatore Shelby

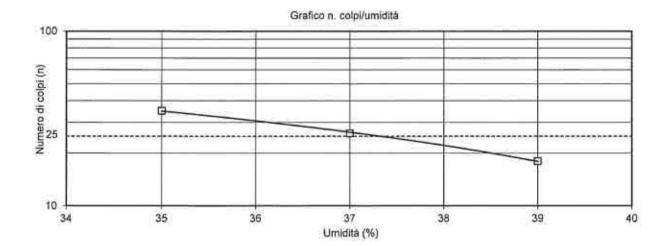
Note: Cl3 prelevato da S10 a m dal p.c. 26,50 + 27,00

Normativa di riferimento: ASTM D4318 Met. A Metodo di frantumazione: Pestello in gomma Metodo di essiccazione: Forno 60 °C

Determinazione del limite liquido

Numero colpi 35 26 18 Contenuto in acqua 39 35 37 [%]

Limite Liquido (LL) [%] 37


Determinazione del limite plastico

Contenuto in acqua 18 18

Contenuto in acqua medio 1%1 18

Limite Plastico (LP) 1%1 18

Indice di Plasticità (IP): 19

Lo Sperimentatore dott.geol. Vincenzo Vessella

Il Direttore del Laboratorio Maria Di Donato dott.geol.

GEOSERVING S.r.I. - Via Collemeroni, 3 : San Vittore del Lazio (FR) e mail: info@geoserving it
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I. I risultati del presente documento si dieriscono al solo semptone sottoposto a prova

ORIO SPI RIM

Mod::027 Rev.:B del 04.10.2019

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 7 di

21

Sigla rif. Interno: B880

T1

DETERMINAZIONE PARAMETRI FISICI

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Campione: CI3 prelevato da S10 a m dal p.c. 26,50 ÷ 27,00

Modalità di prelievo: campionatore Shelby

Data prelievo: 02/11/22 Data Inizio prova: 15/11/22 Data Fine Prova: 17/11/22

Note:

Provino	N*	3	2	3		
Diametro / Lato	[mm]	60,00	60,00	60,00		
Altezza	[mm]	20,00	20,00	20,00		
Area	[cm²]	36,00	36,00	36,00		
Volume	[cm³]	72,00	72,00	72,00		
Massa provino umido	[9]	151,50	151,96	151,95		
Massa volumica umida ¹⁾	[Mg/m ³]	2,10	2,11	2,11		
Massa volumica umida md	[Mg/m ³]		2,11			
Umidità _{md}	[%]		19,37			
Massa volumica secca _{md}	{Mg/m³}		1,77			
Massa volumica dei granuli _{md}	[Mg/m ³]		2,72			
Indice dei vuoti _{md}	Ę		0,54			
Porosità _{rad}	[%]	35,01				
Grado di saturazione _{ind}	[%]	98				
Massa volumica satura _{ma}	[Mg/m3]	2,12				

1) UNI EN ISO 17892-2

Lo Sperimentatore dott geol. Viutginzo Vessella

ORIO SPERING

MATERIAL)

Il Direttore del Laboratorio dott geo Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3'. Sari Vittore del Lazio (FR) a-mail, info@geosarving.it

Qualstasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento si meriscono al solo

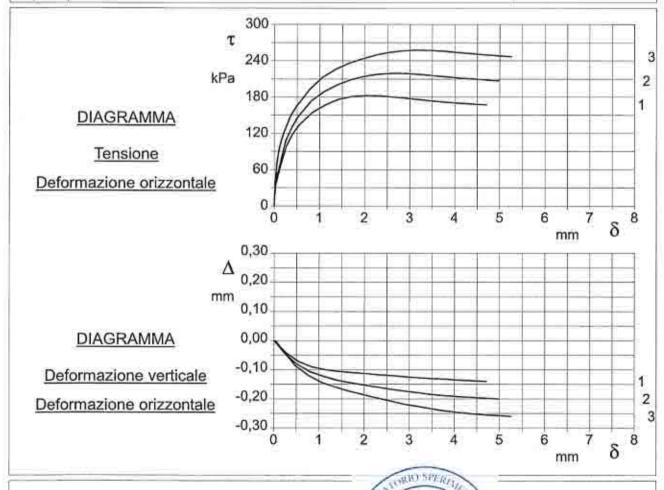
MOD.: 016TR REV.: B del 04.10.2019

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA N": TR184/22 Pagina 8/21	DATA DI EMISSIONE:	28/11/22	Inizio analisi:	15/11/22
VERBALE DI ACCETTAZIONE N°: B880 del 14/11/22	Apertura campione:	15/11/22	Fine analisi:	18/11/22

COMMITTENTE: Techfem S.p.A.

RIFERIMENTO: Metanodotto Lucera-San Paolo di Civitate ed opere connesse


SONDAGGIO: S10 CAMPIONE: PROFONDITA': m 26,50-27,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1	2	3			
Condizione del provino:	Ricostituito	Ricostituito	Ricostituito			
Tempo di consolidazione (ore):	24	24	24			
Pressione verticale (kPa):	300,0	400,0	500,0			
Umidità naturale (%):	19,4	19,4	19,4			
Peso di volume (kN/m³):	20,6	20,7	20,6			
Tipo di prova: Consolidata - lenta	Velocità di deformazione: 0.002 mm / min					

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sper/mentatore dott, geol. Vincenzo Vessella

GEOSERVING SRI

Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n° 388 del 22,01.2014

Via Collemeroni, 3 - San Vittore de! Lazio (FR) - e-mail: info@geoserving.it

 CERTIFICATO DI PROVA N°:
 TR184/22
 Pagina 9/21
 DATA DI EMISSIONE:
 28/11/22
 Inizio analisi:
 15/11/22

 VERBALE DI ACCETTAZIONE N°:
 B880 del 14/11/22
 Apertura campione:
 15/11/22
 Fine analisi:
 18/11/22

COMMITTENTE: Techfem S.p.A.

RIFERIMENTO: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

SONDAGGIO: S10 CAMPIONE: Cl3 PROFONDITA': m 26,50-27,00

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2			Provino 3	
Spostam. mm	Tensione kPa	Deform, vert.	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform, ver
0,001	5,3	0,00	0,007	13,9	0,00	0,007	22,5	0,00
0,012	28,6	0,00	0,030	37,2	0,00	0,052	68,1	0,00
0,138	67,6	-0,02	0,055	49,4	-0,01	0,103	92,8	-0,01
0,264	99,2	-0,04	0,081	57,1	-0,01	0,154	108,1	-0,03
0,407	119,2	-0,06	0,108	63,8	-0,02	0,208	121,4	-0,04
0,549	134,2	-0,07	0,181	86,7	-0,03	0,349	147,8	-0,06
0,840	154,7	-0,09	0,254	109,2	-0,05	0,489	164,7	-0,09
1,128	166,9	-0,10	0,387	129,7	-0,06	0,769	191,9	-0,12
1,427	176,3	-0.11	0,520	147,2	-0,08	1,063	212,8	-0.14
1,725	181,1	-0,11	0,809	173,3	-0,11	1,356	226,0	-0,16
2,024	182,5	-0,11	1,101	189,0	-0,12	1,648	235,9	-0,17
2,322	181,9	-0,12	1,391	200,3	-0,14	1,947	243,1	-0,18
2,619	180,3	-0,12	1,690	208,6	-0,14	2,246	249,4	-0,20
2,916	178,2	-0,12	1,989	214,3	-0,15	2,545	253,8	-0,21
3,213	175,9	-0,13	2,287	217,7	-0,16	2,844	256,4	-0,22
3,510	173,6	-0,13	2,586	219,2	-0,17	3,143	257,6	-0,22
3,809	171,7	-0,13	2,884	219,0	-0,17	3,442	257,2	-0,23
4,109	170,0	-0.14	3,182	217,8	-0,18	3,740	255,8	-0,24
4,408	168,6	-0.14	3,480	215,9	-0,18	4,039	253,9	-0,25
4,707	167,2	-0,14	3,778	213,8	-0,19	4,343	252,0	-0,25
			4,080	211,8	-0,19	4,647	250,2	-0,25
			4,381	210,1	-0,20	4,950	248,4	-0,26
			4,683	208,5	-0,20	5,254	246,7	-0,26
			4,984	206,9	-0,20			77,165
			113.5.1	222,0				
					1			
								1
								-
Vi -								
		1						
					STORIO SPER	_		
					- STANKER	10		
				- 0	3	131-		
				/	1	151		
				- 1.	1 mine	SRIJ		

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vincenzo Vessella

KITERIAL

Il Direttore del Laboratorio dott. gegl. Maria Di Donato

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

15/11/22

CERTIFICATO DI PROVA Nº: TR184/22 Pagina 10/21

DATA DI EMISSIONE: 28/11/22

Apertura campione:

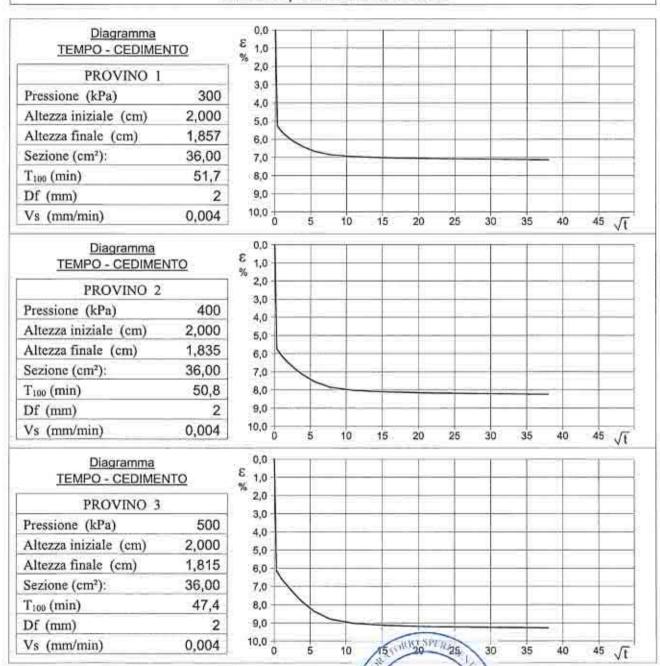
Inizio analisi: 15/11/22

18/11/22

Fine analisi:

COMMITTENTE: Techfem S.p.A.

VERBALE DI ACCETTAZIONE Nº:


RIFERIMENTO: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

B880 del 14/11/22

CAMPIONE: CI3 26.50-27.00 SONDAGGIO: PROFONDITA': m

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

GEOSERVING SRL Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

10 x T₁₀₀

WHEN !

Vs = Df / tf

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sper/mentatore dott. geol. Vihoenzo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geolecniche terre, rocce e prove in situ Autorizzato dal Ministero infrastrutture e Trasporti con decreto nº 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR184/22 Pagina 11/21

DATA DI EMISSIONE:

28/11/22

Inizio analisi: 15/11/22

VERBALE DI ACCETTAZIONE N°:

B880 del 14/11/22

Apertura campione:

15/11/22

Fine analisi: 18/11/22

COMMITTENTE:

Techfem S.p.A.

RIFERIMENTO:

SONDAGGIO:

: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

CAMPIONE: CI3

PROFONDITA': m

26,50-27,00

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2		Provino 3		
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,10	105,30	5,27	0,10	114,65	5,73	0,10	122,80	6,14
0,25	107,40	5,37	0,25	116,75	5,84	0,25	124,90	6,25
0,50	109,60	5,48	0,50	119,10	5,96	0,50	127,40	6,37
1,00	112,10	5,61	1,00	122,20	6,11	1,00	131,10	6,56
2,00	115,40	5,77	2,00	125,90	6,30	2,00	135,20	6,76
4,00	119,20	5,96	4,00	130,55	6,53	4,00	140,70	7,04
8,00	123,60	6,18	8,00	136,55	6,83	8,00	148,30	7,42
15,00	128,20	6,41	15,00	143,05	7,15	15,00	156,70	7,84
30,00	133,20	6,66	30,00	150,60	7,53	30,00	166,80	8,34
60,00	137,10	6,86	60,00	157,00	7,85	60,00	175,70	8,79
120,00	139,20	6,96	120,00	160,45	8,02	120,00	180,50	9,03
240,00	140,40	7,02	240,00	162,15	8,11	240,00	182,70	9,14
480,00	141,20	7,06	480,00	163,30	8,17	480,00	184,20	9,2
1440,00	142,80	7,14	1440,00	164,75	8,24	1440,00	185,50	9,2
					ASTORACI SPICE	THE LEWIS CO.		

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Spermentatore dott. geol. Vincenzo Vessella

CALIFRATA

Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data prova: 06/10/22

Note:

Data di emissione: 28-nov-22 Pagina: 12 di 21 Sigla rif. Interno: B880 T2

APERTURA E DESCRIZIONE GENERALE DEL CAMPIONE (ASTM D2488-84)

Committente: Techfem S.p.A.

Data prelievo: 03/11/22 Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Cl2 prelevato da S11 a m dal p.c. 23,00 ÷ 23,50

1) Descrizione: argilla con limo

2) Colore: marrone oliva chiaro

> Munsell soil color chart: 2.5 Y 5/4

3) Odore: nessuno

4) Plasticità: molto plastico

Condizioni di umidità: molto umido

6) Reazione con HCI: alta

7) Grado di alterazione:

8) Consistenza (terreni coesivi): molto consistente

9) Addensamento (terreni granulari): -

10) Strutture:

11) Fratturazioni:

12) Scistosità:

Rappresentazione schematica del campione

直型短回車 alto basso

>400

>400

P.Penetrometer [kPa]: Vane test [kg/cm2]:

Quote [cm]:

Prove eseguite: Apertura e descrizione; contenuto d'acqua; massa volumica dei granuli solidi; massa volumica; analisi granulometrica per setacciatura e decantazione; limiti di consistenza (o di Atterberg); prova di taglio diretto CD;

ORW SPIRIL

DRIME

INC SEL

Lo Sporimentatore dott.geol. Vincknzo Vessella Il Direttore del Laboratorio iria Di Donato

GEOSERVING S.r.I. - Via Collemeronii 3 - San Vittore del Lazio (FF) e-mail: info@geoserving.it

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento ai prevscono al solo campione sottoposto a prova

Mod. 127 Rev.: A del 05_12_2013

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 13 di

21

Sigla rif. Interno: B880

T2

DETERMINAZIONE DEL CONTENUTO DI ACQUA (CNR UNI 10008 - ASTM D2216)

Committente: Techfem S.p.A.

Data Inizio prova: 06/10/22

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Data Fine Prova: 07/10/22

Note:

Data prelievo: 03/11/2022

Modalità di prelievo: campionatore Shelby

Cl2 prelevato da S11 a m dal p.c. 23,00 ÷ 23,50

CONTENUTO DI ACQUA md:

18,10

%

Lo Sperimentatore dott.geol Vincenzo Vessella WASTER TO SPERMING THE SPECIAL SPECIAL

Il Direttore del Laboratorio dott.geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, a San Vittore del Lazio (FR) e-mail: info@geoserving.it

Qualsiasi copia parziale del presente documento potra avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento si inferiscono al solo campione sottoposto a prova

AVTTEMALL

Mod.: 116 Rev.: A del 05.12.2013

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina 15 di 21

Sigla rif. Interno: B880

ANALISI GRANULOMETRICA PER SETACCIATURA E DECANTAZIONE (ASTM D422 - Racc, AGI 1974)

Committente: Techfern S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby CI2 prelevato da S11 a m dal p.c. 23,00 = 23,50

Data inizio prova: 07/10/22 Data Fine Prova: 12/10/22

T2

Data prelievo: 03/11/22

Setacciatura frazione > 2,0 mm

Peso secco iniziale [N]: 6,943

Apertura setaccio	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo	
[mm]	cumulativo	parziale	[%]	[%]	
70	0,000	0,000	0,00	100,00	
31,5	0,000	0,000	0,00	100,00	
25,4	0,000	0,000	0,00	100,00	
19	0,000	0,000	0,00	100,00	
9,5	0,000	0,000	0,00	100,00	
4,75	0,000	0,000	0,00	100,00	
2	0,000	0,000	0,00	100,00	

Setacciatura frazione < 2,0 mm

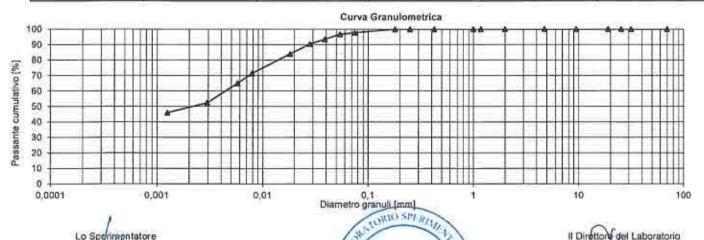
Peso secco iniziale INI: 6 943

Apertura [mm]	Peso rite	nuto [N]	Ritenuto cumulativo	Passante cumulativo [%]	
	cumulativo	parziale	[%]		
1,18	0,000	0,000	0,00	100,00	
1	0,001	0,001	0,02	99,98	
0,425	0,002	0,001	0,03	99,97	
0,25	0,004	0,002	0,05	99,95	
0,18	0,005	0,001	0,07	99,93	
0,075	0,158	0,153	2,27	97,73	

 $D_{10} = n.d.$ D₃₀ = n.d.

 $D_{50} = 0.002$ C u = n.d.

D 60 = 0,005 Cc= n.d.


Decantazione

Dana annea inivista (M) 0 400 Decembers sand ASTM 151 H

850 SECCO	miziale [M]	0,430	Densmicho	CIIC. MOIN	TO CAL						
t [min]	T[°C]	r	C	R	R'	R"	Z [cm]	V (cm/s)	D [mm]	P.[%]	P 1%
0,5	18	1,031	1,0010	31,0	31,5	30,5	7,963	15,925	0,0543	96,65	96,65
1	18	1,030	1,0010	30,0	30,5	29,5	8,227	8,227	0,0390	93,48	93,48
2	18	1,029	1,0010	29,0	29,5	28,5	8,492	4,246	0,0280	90,31	90,31
5	18	1,027	1,0010	27,0	27,5	26,5	9,021	1,804	0,0183	83,97	83,97
30	18	1,023	1,0010	23,0	23,5	22,5	10,079	0,336	0,0079	71,30	71,30
60	18	1,021	1,0010	21,0	21,5	20,5	10,608	0,177	0,0057	64,96	64,96
250	18	1,017	1,0010	17,0	17,5	16,5	11,666	0,047	0,0029	52,29	52,29
1440	18	1,015	1,001	15,0	15,5	14,5	12,195	0,008	0,0013	45,95	45,95

Note: 1 = tempo di sedimentazione; T = temperatura; r = tettura al denalmetro; C = Cortezione per temperatura e seluzione; R = Valore convenzionale della tettura; R = Valore convenzionale correlto per menisco; R° = Valore convenzionale con entre dell'acque; V = velocità di caduta del granult. D= diametro equivalente del granult; P=Passante cumulativo riferile al provinci, P = Passante cumulativo riferilo al complene - Agente disperdente: esametafosfato di sodio 40gf.

Classificazione	Argilla	Limo	Sabbia	Ghiaia	Ciottoli
USCS (< 0,005 mm		(0,005 mm + 0,074 mm)	(0,075 + 4,75 mm)	(4,75 mm + 75 mm)	(>75 mm)
60,65 %		36,85 %	2,27 %	0,00 %	0,00 %
AGI	(< 0,002 mm)	(0,002 mm + 0,06 mm)	(0,05 + 2 mm)	(2 mm + 60 mm)	(>60 mm)
	48,81 %	47,59 %	3,60 %	0,00 %	0,00 %

Lo Sperimentatore nzo Vessella

Il Direttore del Laboratorio via Di Donato

GEOSERVING S.r.I. - Via Collembront, 3., Spin Vittore del Lazio (FR) e mait: info@geoserving.it
Qualsiasi copia parziale del presente documento por a a ventre dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.
I risultati del presente documento si riferiscono al soto campione sottoposto a prova

WATERIALION

Mod.: 029 Rev : D del 12.09.2022

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 14 di 21

Sigla rif. Interno: B880

T2

DETERMINAZIONE MASSA VOLUMICA GRANULI SOLIDI

(UNI EN ISO 17892-3, ASTM D854, CNR UNI 10013)

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Modalità di prelievo: campionatore Shelby

Data prelievo: 03/11/2022 Data inizio prova: 07/10/2022 Data fine prova: 11/10/2022

Note: CI2 prelevato da S11 a m dal p.c. 23,00 + 23,50

a) Determinazione con picnometro:

Met.A (ASTM D854)

47.		Provino n. 1	Provino n. 2	
T	[,c]	19,0	19,0	
Υs	[Mg/m³]	2,71	2,71	
Ys medio		2,71		
Ys medio	a 20°C	2,	71	

Disaerazione eseguita sotto vuoto

b) Determinazione con picnometro e cestello:

		Provino n. 1	Provino n. 2
Na	[%]		
Nb	[%]		
T	[°C]		
Ysa	×		
Ysb	٩		
Ys medio	9		

Lo Sperimentatore dott.geol. Vintenzo Vessella Il Direttore del Laboratorio dott.geol. Makia Di Donato

GEOSERVING S.r.I. - Via Collemeron, 3 - San Viltore del Lazio (FR) e-mail: info@geoserving.it.

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento si riferiscono al solo cambione sottoposto a prova

MAINTALL

CORNO SPERIN

MOD. 259 REV.: C del 17.04 2020

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22 Pagina: 16 di 21 Sigla rif. Interno: B880 T2

LIMITI DI CONSISTENZA LIQUIDA E PLASTICA (o di Atterberg)

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Data inizio prova: 10/10/22 Data fine prova: 11/10/22

Data prelievo: 03/11/22

Modalità di prelievo: campionatore Shelby

Note: Cl2 prelevato da S11 a m dal p.c. 23,00 + 23,50

Normativa di riferimento: Metodo di frantumazione: ASTM D4318 Met. A

Metodo di essiccazione:

Pestello in gomma Forno 60 °C

Determinazione del limite liquido

Numero colpi

35 26

50

19 55

Contenuto in acqua

[%]

53

Limite Liquido (LL)

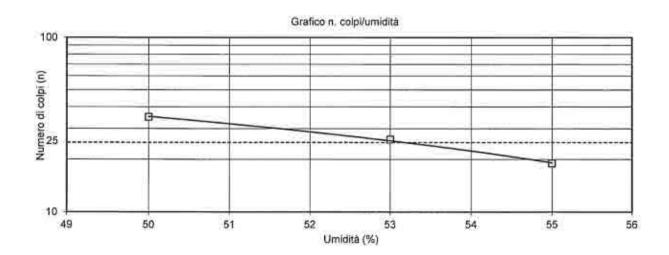
[%] 53

Determinazione del limite plastico

Contenuto in acqua

[%]

21 21


Contenuto in acqua medio

1%1 21

Limite Plastico (LP)

[%] 21

Indice di Plasticità (IP): 32

Lo Spermentatore dott geol. Vihcelizo Vessella ORW SPERMA

Il Direttore del Laboratorio dott.deol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni S. San Vittore del Lazio (FR) e-mail: info@geoserving.it

Qualsiasi copia parziale del presente documento potrà avvenire sopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

I risultati del presente documento si dieriscopo al solo esmpione sottoposto a prova

Rev :B del 04.10.2019

Emesso da DI.

Mod.:027 Rev.:B del 04.10.2019

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°. 388 del 22.01.2014 Identificazione documento: CERTIFICATO N. TR00184/22

Data di emissione: 28-nov-22

Pagina: 17 di 21 Sigla rif. Interno: B880 T2

DETERMINAZIONE PARAMETRI FISICI

Committente: Techfem S.p.A.

Cantiere: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

Campione: Cl2 prelevato da S11 a m dal p.c. 23,00 ÷ 23,50

Modalità di prelievo: campionatore Shelby

Data prelievo: 03/11/22 Data Inizio prova: 06/10/22 Data Fine Prova: 07/10/22

Note:

Provino	Ne	3	2	3	
Diametro / Lato	[mm]	60,00	60,00	60,00	
Altezza	[mm]	22,00	22,00	22,00	
Area	[cm ²]	36,00	36,00	36,00	
Volume	[cm³]	79,20	79,20	79,20	
Massa provino umido	[9]	158,55	159,05	158,80	
Massa volumica umida ¹⁾	[Mg/m³]	2,00	2,01	2,01	
Massa volumica umida _{md}	[Mg/m ³]	2,01			
Umidità _{md}	[%]	18,10			
Massa volumica secca _{nd}	[Mg/m³]		1,70		
Massa volumica dei granuli _{md}	[Mg/m³]	2,71			
Indice dei vuoti _{nd}		- 0,60 [%] 37,38			
Porosità _{mid}	[%]				
Grado di saturazione _{mo}	[%]	82			
Massa volumica satura _{md}	[Mg/m3]		2,07		

1) UNI EN ISO 17892-2

Lo Sperimentatore dott.geol. Yuloprizo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, S. San Vittora del Lazio (FR) e mail inflo@geoserving it

Qualsiasi copia parziale del presente documento potrà avventire dopo debita autorizzazione solita da parte della GEOSERVING S.r.I.

I risultati del presente documento si metiscono al solo campione solitoposto a prova

CORN SPERING

4 HERIALIS

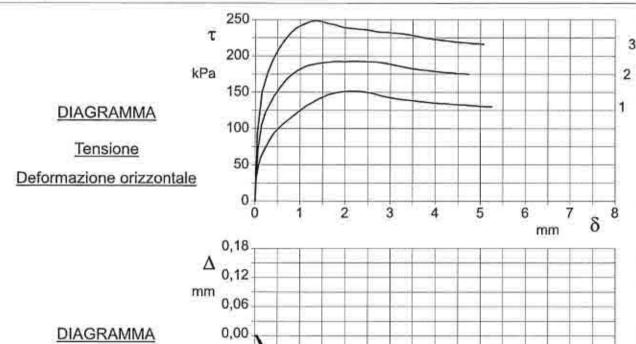
MOD.: 016TR REV.: B del 04.10.2019

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR184/22 Pagina 18/21 DATA DI EMISSIONE: 28/11/22 Inizio analisi: 17/11/22 VERBALE DI ACCETTAZIONE Nº: B880 del 14/11/22 Apertura campione: 17/11/22 Fine analisi: 21/11/22

COMMITTENTE: Techfem S.p.A.

Metanodotto Lucera-San Paolo di Civitate ed opere connesse RIFERIMENTO:


SONDAGGIO: S11 CAMPIONE: PROFONDITA': m 23,00-23,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	-1	2	3	
Condizione del provino:	Ricostituito	Ricostituito	Ricostituito	
Tempo di consolidazione (ore):	24	24	24	
Pressione verticale (kPa):	300,0	400,0	500,0	
Umidità naturale (%):	18,1	18,1	18,1	
Peso di volume (kN/m³):	21,5	21,7	21,6	
The disease Consultate tests	17-116A		00 /!-	

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,002 mm / min

Deformazione verticale

Deformazione orizzontale

-0.06-0,12-0,18δ mm TORIO SPERINE

GEOSFRUNG SRL

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sperimentatore dott. geol. Vihçenzo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n° 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR184/22 Pagina 19/21 DATA DI EMISSIONE: 28/11/22 VERBALE DI ACCETTAZIONE N°: B880 del 14/11/22

17/11/22 Inizio analisi: Apertura campione: 17/11/22 Fine analisi: 21/11/22

COMMITTENTE: Techfem S.p.A.

Metanodotto Lucera-San Paolo di Civitate ed opere connesse RIFERIMENTO:

SONDAGGIO: CAMPIONE: CI2 PROFONDITA': m 23,00-23,50

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2		Provino 3			
Spostam. mm	Tensione kPa	Deform. vert.	Spostam.	Tensione kPa	Deform. vert.	Spostam. mm	Tensione kPa	Deform, ver	
0,025	32,2	0.00	0.005	4.9	0,00	0,003	9,7	0,00	
0,123	59,7	-0,02	0.062	70,7	0,00	0,047	93,1	0,00	
0,249	75,6	-0,04	0.229	121,9	-0,03	0,274	176,4	-0,04	
0,390	91,1	-0.07	0,557	156,8	-0,08	0,520	209,2	-0,06	
0,587	104,4	-0,10	0,746	170,7	-0,10	0,778	230,8	-0,08	
0,823	116,1	-0,13	0,915	178,6	-0,11	1,001	241,1	-0,09	
1,044	126,4	-0,15	1,072	184,0	-0,11	1,204	246,7	-0,09	
1,278	136,1	-0,16	1,253	187,9	-0,12	1,456	247,8	-0,09	
1,520	143,9	-0.16	1,474	190,4	-0,12	1,724	243,6	-0,09	
1,767	148,9	-0,16	1,651	191,5	-0.13	1,961	239,2	-0,09	
1,984	151,1	-0,16	1,851	192,5	-0,13	2,176	237,8	-0,09	
2,233	151,4	-0,16	2,096	192,6	-0,13	2,419	236,4	-0,09	
2,471	150,0	-0,16	2,339	192,2	-0,13	2,688	233,3	-0,09	
2,710	146,7	-0,16	2.581	191,9	-0,13	2,922	232,5	-0,09	
2,928	143,3	-0.16	2,806	190,6	-0.13	3,135	231,1	-0,10	
3,154	140,8	-0.16	3.040	188,1	-0.13	3,363	229,4	-0,10	
3,406	138,9	-0,16	3.285	184,9	-0.13	3,635	226,4	-0,10	
3,662	136,9	-0,16	3,520	182,2	-0,13	3,880	223,6	-0,10	
3,905	135,6	-0,16	3,755	180,4	-0.13	4,097	221,9	-0,11	
4,142	134,4	-0,16	3,995	178,6	-0.13	4,322	220,3	-0,11	
4,391	133,3	-0,16	4,248	176,9	-0,13	4,585	218,3	-0,11	
4,642	132,5	-0,16	4,498	175,7	-0,13	4,847	216,9	-0,11	
4,884	131,4	-0,16	4,734	174,7	-0.14	5,070	216,1	-0,11	
5,124	130,3	-0,16				2,07.0	2,10,1	3,11	
9,152	,,,,,,	0,10							
	0								
	M-								
					STORIO SPER	14/1			
				/	130	13/-			
				:	7/	SRI .			

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

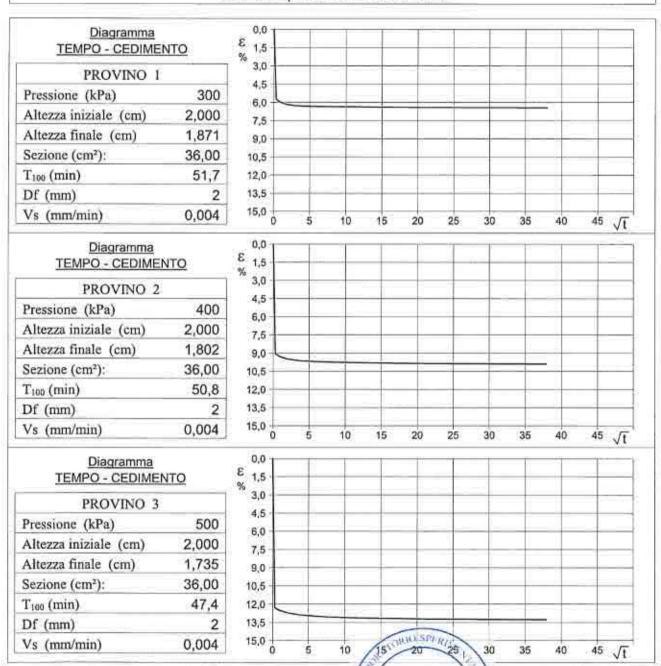
Lo Sperimentatore dott. geol. Vincenzo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

CERTIFICATO DI PROVA Nº: TR184/22 Pagina 20/21 DATA DI EMISSIONE: 28/11/22 Inizio analisi: VERBALE DI ACCETTAZIONE N°: B880 del 14/11/22

Apertura campione: 17/11/22 Fine analisi: 21/11/22

17/11/22


COMMITTENTE: Techfem S.p.A.

RIFERIMENTO: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

SONDAGGIO: S11 CAMPIONE: PROFONDITA': m 23.00-23.50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata di prova Df = Deformazione a rottura stimata di prova Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

> Lo Sperimentatore dott, geol. Vincenzo Vessella

Il Direttore del Laboratorio dott. geol. Maria Di Donato

Vs = Df/tf

10 x T₁₀₀

tf=

WHI RIAL

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

VERBALE DI ACCETTAZIONE N°: B880 del 14/11/22 | Apertura campione:

DATA DI EMISSIONE: 28/11/22 Inizio analisi: 17/11/22

Apertura campione: 17/11/22 Fine analisi: 21/11/22

COMMITTENTE: Techfem S.p.A.

RIFERIMENTO: Metanodotto Lucera-San Paolo di Civitate ed opere connesse

SONDAGGIO: S11 CAMPIONE: CI2 PROFONDITA': m 23,00-23,50

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D3080

Provino 1				Provino 2		Provino 3			
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%	
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
0,10	114,70	5,74	0,10	180,80	9,04	0,10	245,70	12,29	
0,25	116,50	5,83	0,25	182,50	9,13	0,25	247,30	12,37	
0,50	118,30	5,92	0,50	184,10	9,21	0,50	248,70	12,44	
1,00	120,40	6,02	1,00	185,90	9,30	1,00	250,20	12,5	
2,00	122,20	6,11	2,00	187,65	9,38	2,00	251,90	12,60	
4,00	123,80	6,19	4,00	189,65	9,48	4,00	254,30	12,72	
8,00	125,50	6,28	8,00	191,35	9,57	8,00	256,00	12,80	
15,00	126,30	6,32	15,00	192,75	9,64	15,00	258,00	12,90	
30,00	126,80	6,34	30,00	193,80	9,69	30,00	259,60	12,98	
60,00	127,30	6,37	60,00	194,90	9,75	60,00	261,30	13,07	
120,00	127,60	6,38	120,00	195,70	9,79	120,00	262,60	13,13	
240,00	128,00	6,40	240,00	196,40	9,82	240,00	263,60	13,18	
480,00	128,40	6,42	480,00	197,10	9,86	480,00	264,60	13,23	
1440,00	128,90	6,45	1440,00	197,80	9,89	1440,00	265,50	13,2	
					ASTORICI SPER	Clark -			

Mod. 46 Rev.: C del 21/11/2016 Emesso da DL

Lo Sper/mentatore dott. geol. Vincenzo Vessella Il Direttore del Laboratorio dott. geol. Maria Di Donato

Laboratorio Sperimentale per prove geotecniche su terre e rocce, prove in situ. Autorizzato dal Ministero Infrastrutture e Trasporti con decreto n°. 388 del 22.01.2014.

IDENTIFICAZIONE DOCUMENTO: V6097/21 PS14/21

DATA DI EMISSIONE: 08-mar-21

PAGINA 1 di PAGINE TOTALI: 5

ALLEGATI: -

COMMITTENTE: Techfem

CANTIERE: Metanodotto SGI Lucera - San Paolo di Civitate (FG)

DIRETTORE DEI LAVORI:

CAMPIONI

- DESCRIZIONE: -

- MODALITÀ DI PRELIEVO: -

- DATA RICEVIMENTO: 25-feb-21

- SIGLA IDENTIFICATIVA INTERNA: V6097 PS17+PS20

PROVE RICHIESTE: Prove penetrometriche dinamiche superpesanti DPSH.

VERBALE DI ACCETTAZIONE N.º DEL: V6097 del 25 febbraio 2021

IL DIRETTORE DEL LABORATORIO

(dott.geol. Maria Di Donato)

Identificazione documento: V6097/21 PS14/21

Data di emissione: 08-mar-21

Pagina: 2 di Sigla rif. Interno: V6097

PS17+PS20

PROVA PENETROMETRICA DINAMICA (DPSH)

Prova n°.: DPSH 4

Data prova: 18-feb-21

Caratteristiche punta:

modello tipo chiusa; ϕ : 50,5 ± 0,5 mm, h= 73 mm; angolo: 90°, area: 20 cm².

Caratteristiche massa battente:

peso: 63,5 ± 0,5 kg; altezza di caduta: 0,75 ± 0,02 m

Note: falda rilevata a 3,00 m da p.c.

GEOSERVING S.r.I. - Via Collemerorii, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it
RIPRODUZIONE VIETATA
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

Identificazione documento: V6097/21 PS14/21

Data di emissione: 08-mar-21

Sigla rif. Interno: V6097

Pagina 3 di

PS17+PS20

PROVA PENETROMETRICA DINAMICA (DPSH)

Prova no.: DPSH 5 Data prova: 18-feb-21

Caratteristiche punta:

modello tipo chiusa; \$\phi\$: 50,5 \pm 0,5 mm, h= 73 mm; angolo: 90°, area: 20 cm2.

Caratteristiche massa battente: peso: 63,5 ± 0,5 kg; altezza di caduta: 0,75 ± 0,02 m

falda non rilevata

Quota [m da p.c.]	N° colpi	Quota [m da p.c.]	N° colpì	N° colpi 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1
0,0		8,20	9	0,20
0,20	2	8,40	8	0,40 =
0,40	3	8,60	6	0,60
0,60	6	8,80	5	0,80 DMetanodotto SGI Lucera - San Paolo di 1,00 Civitate (FG)
0,80	5	9,00	6	1,20
1,00	6	9,20	6	1,40
1,20	8	9,40	6	1,60
1,40	4	9,60	5	1,80
1,60	4	9,80	6	2,20
1,80	4	10,00	6	2,40
2,00	5			2,60
2,20	4			2,80
2,40	4			3,20
2,60	5			3,40
2,80	5			3,60
3,00	7			4,00
3,20	6			4,20
3,40	5			4,40
3,60	6			7 4,60 A,80 A,80 A,80 A,80 A,80 A,80 A,80 A,8
3,80	5			a 5,00
4,00	11			5,20
4,20	5			E 5,40]
4,40	5			Ty 4,80
4,60	6			ỡ _{6,00} □
4,80	7			6,20]
5,00	9			6,40
5,20	8			6,80
5,40	12			7,00
5,60	8			7,20
5,80	8			7,40
6,00	8			7,80
6,20	7			8,00]
6,40	6			8,20 -
6,60	7			8,40
6,80	7			8,80
7,00	8			9,00 ===
7,20	9			9,20
7,40	10			9,40 9,60
7,60	9			9,40 9,60 9,80 10,00
7,80	10			
8,00	9			() () () () () () () () () ()

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Identificazione documento: V6097/21 PS14/21

Data di emissione: 08-mar-21

Sigla rif. Interno: V6097

Pagina 4 di

PS17+PS20

PROVA PENETROMETRICA DINAMICA (DPSH)

Prova n°.: DPSH 6 Data prova: 18-feb-21

Caratteristiche punta: modello tipo chiusa; φ: 50,5 ± 0,5 mm, h= 73 mm; angolo: 90", area: 20 cm².

Caratteristiche massa battente: peso: 63,5 ± 0,5 kg; altezza di caduta: 0,75 ± 0,02 m

Note: falda rilevata a 3,00 m da p.c.

GEOSERVING S.r.l. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

RIPRODUZIONE VIETATA

Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

Identificazione documento: V6097/21 PS14/21

Data di emissione: 08-mar-21

Pagina 5 di Sigla rif, Interno: V6097

PS17+PS20

PROVA PENETROMETRICA DINAMICA (DPSH)

Prova nº .: DPSH 6 bis

Data prova: 18-feb-21

Caratteristiche punta:

modello tipo chiusa; ϕ : 50,5 ± 0,5 mm, h= 73 mm; angolo: 90°, area: 20 cm².

Caratteristiche massa battente:

peso: 63,5 ± 0,5 kg; altezza di caduta: 0,75 ± 0,02 m

Note: falda rilevata a 2,00 m da p.c.

Quota [m da p.c.]	N° colpi	Quota [m da p.c.]	N° colpi		Nº colpi 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0,0	-	8,20	6		0.20
0,20	1	8,40	7		0.40 }
0,40	1	8,60	8	1	0,60
0,60	2	8,80	8	1	0,80 DMetanodotto SGI Lucera - San Paolo di Civitate (FG)
0,80	2	9,00	8	1	1,20
1,00	3	9,20	7	1	1,40
1,20	4	9,40	8	1	1,60
1,40	4	9,60	9	1	1,80
1,60	6	9,80	8	1	2,20
1,80	5	10,00	8		2,40
2,00	4		24141/	1	2,60 =
2,20	7			1	2,80
2,40	3			7	3,20
2,60	2			1	3,40
2,80	4			1	3,60
3,00	3				4,00
3,20	4			1	4,20
3,40	4			1	4.40
3,60	5			177	3 4,60 TOLIS
3,80	5			Quota [m da p.c.]	5,00
4,00	5			g	5,20
4,20	8			1 5	5,40
4,40	7			향	5,60
4,60	6			ő	6,00
4,80	9			1	6,20
5,00	9			1	6,40
5,20	13			1	6,60
5,40	13			1	7,00 ===
5,60	8			1	7,20
5,80	8			1	7,40
6,00	8			1	7,80
6,20	7			1	8,00 =
6,40	7			1	8,20
6,60	7			1	8,40
6,80	6			1	8,80
7,00	6			1	9,00 -
7,20	6			1	9,20
7,40	6			1	9.40 9.60
7,60	7				9,60
7,80	7	-			10,00
8,00	6			1	(8) sept 8 6

IL TECNICO RESPONSABILE

Giuseppe Cioffi

IL DIRETTORE DEL LABORATORIO
dott geol Marie Di Donato

PMATERIA!

GEOSERVING S.r.t. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.lt RIPRODUZIONE VIETATA

Laboratorio Sperimentale prove su materiali da costruzione, geotecnica, prove in sito e su conglomerati bituminosi Autorizzato ai sensi dell'art. 20 L. 1086 con D.M. n° 394 del 22/01/2014 e prove di cui al. D.P.R. 380/01 art. 59 con D.M. n° 388 del 22/01/2014

COMUNE DI SAN PAOLO DI CIVITATE (FG)

METANODOTTO SGI LUCERA - SAN PAOLO DI CIVITATE (FG)

INDAGINI SISMICHE A RIFRAZIONE

FEBBRAIO 2021

DATA ID DOCUMENTO ID DIRETTORS DEL LABORATORIO
Febbraio 2021 V6097/21 Dott.geol Marié Di Donato

INDICE

		Pag	ina
1.	PREMESSA		2
2.	PROFILI SISMICI A RIFRAZIONE	•••	3
2.1	STRUMENTAZIONE IMPIEGATA	•••	3
2.2	METODOLOGIA OPERATIVA		4
2.3	METODOLOGIA INTERPRETATIVA		4
2.4	ESAME DEI RISULTATI		6
ALLEGATI			7

1. PREMESSA

A seguito dell'incarico ricevuto dalla GEOSERVING per conto della Techfem S.p.A., è stata eseguita una campagna di indagini geofisiche per la ricostruzione della sismostratigrafia.

Il rilievo geofisico, basato sull'impiego della sismica a rifrazione è stato eseguito allo scopo di caratterizzare da un punto di vista sismico le formazioni litologiche presenti nell'area in esame e determinare gli spessori delle coperture.

Sono state effettuate 6 tomografie sismiche a rifrazione della lunghezza di 120 e di 84 m , per un totale di 528 m lineari, in località San Paolo di Civitate nell'ambito dei lavori del Metanodotto SGI Lucera – San Paolo di Civitate.

Figura 1 – Ubicazione schematica dei profili sismici effettuati

2. PROFILI SISMICI A RIFRAZIONE

2.1. STRUMENTAZIONE IMPIEGATA

L'indagine è stata eseguita utilizzando un sismografo a 24 canali della PASI di Torino, modello 16SG24, con processore Pentium IV, display VGA a colori in LCD-TFT 10.4" TouchScreen, trattamento del segnale a 16 bit, trattamento dei dati Floating Point 32 bit, supporto di memorizzazione mediante Hard-Disk da 40 Gb, con funzione di incremento multiplo del segnale ad opzione per l'inversione di polarità, attivazione di filtri "passa alto", "passa basso" e "notch" in acquisizione o post-acquisizione. I guadagni sono selezionabili da softwhare manualmente per ogni canale o in modo automatico e le acquisizioni sono automaticamente registrate sullo strumento.

Sono stati utilizzati 12 geofoni per i profili sismici a rifrazione. La sorgente energizzante è costituita da massa battente (martello) battuta su piastra metallica.

2.2. METODOLOGIA OPERATIVA

Sei profili sismici a rifrazione, della lunghezza di 120 m, sono stati effettuati utilizzando 12 geofoni posizionati sul terreno con un interdistanza di 10 m e battute, localizzate alle due estremità del profilo, a 5 m dai geofoni n° 1 e n° 12; battute interne al profilo sono state effettuate tra i geofoni 3 e 4, 6 e 7, 9 e 10.

Nella sezione sismica riportata in appendice, il punto A coincide con il punto di intersezione con l'asse Y.

2.3. METODOLOGIA INTERPRETATIVA

Le dromocrone, allegate alla presente relazione, sono state interpretate con l'ausilio dell'elaboratore elettronico, utilizzando il programma ZONDST2D. Il programma ZONDST2D è finalizzato all'elaborazione bidimensionale e all'interpretazione dei dati di prospezione sismica basati su onde rifratte e sul metodo di correlazione delle onde rifratte (RWCM) nelle variazioni di superficie, Down-Hole e Cross-Hole. ZondST2d è una soluzione completa per la tomografia sismica che risolve un'ampia gamma di problemi dalla modellizzazione matematica e l'analisi della sensibilità, all'elaborazione e all'interpretazione dei dati sul campo. L'ampia funzionalità consente di definire un problema geologico con alta efficienza.

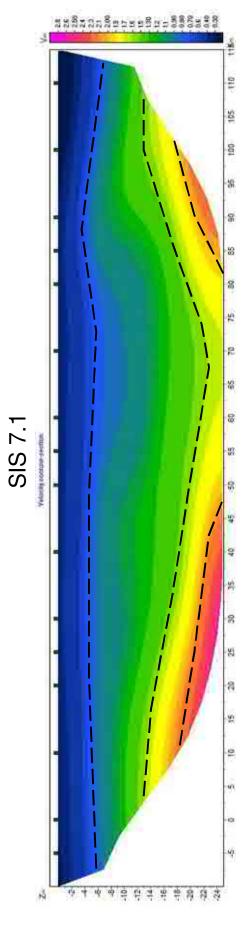
2.4 ESAME DEI RISULTATI

Sono stati individuati quattro sismostrati principali:

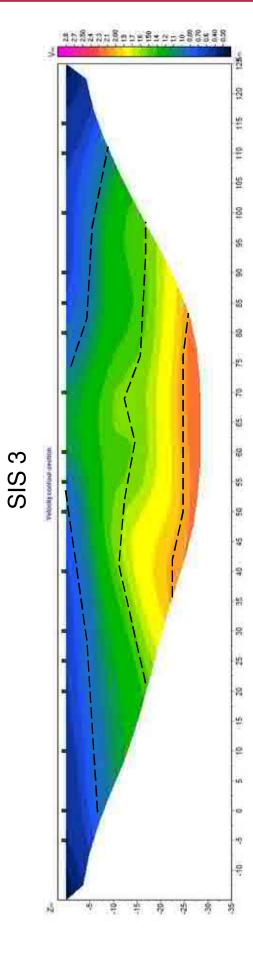
Le velocità rilevate, possono essere associata a materiali di copertura, argille e sabbie, nel caso del primo strato, per quanto riguarda il secondo strato, argille consistenti e limi. Infine, il terzo strato è costituito da materiali molto consistenti. Pre un maggior dettaglio delle velocità e delle profondità e per valutazioni di tipo puntuale, si rimanda alle singole sezioni tomografiche allegate.

ALESSANDRO PINTO Geologo

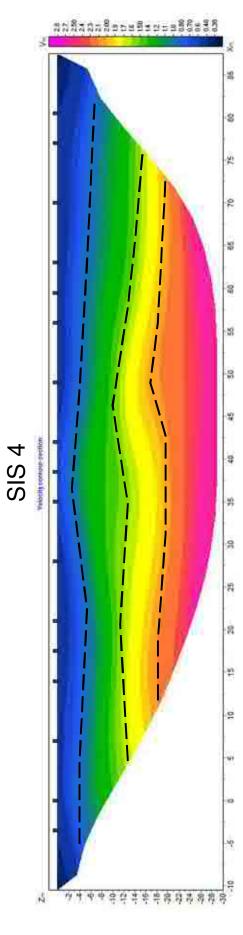
Cassino, marzo 2021

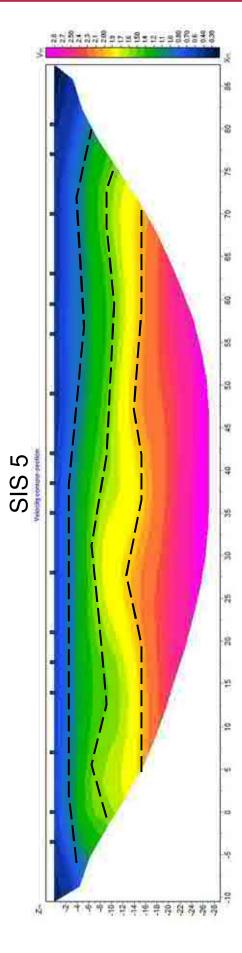

Il tecnico prospettore

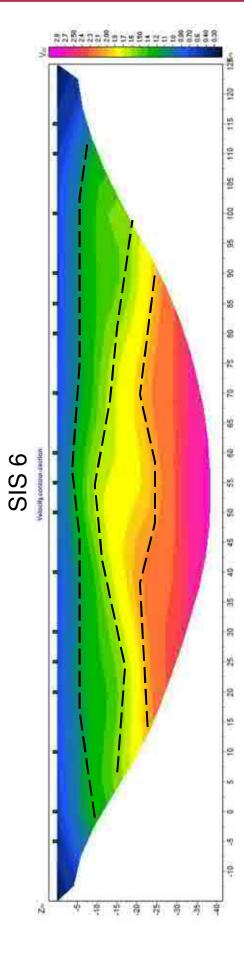
Dott. Geol. Alessandro Pinto

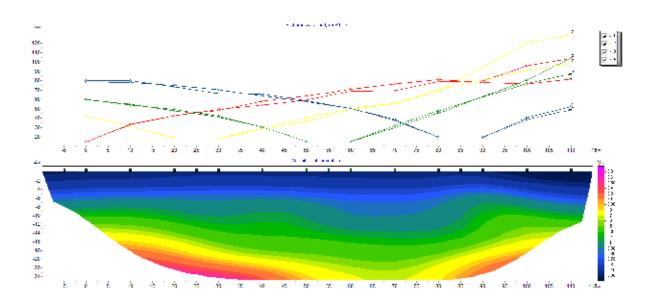


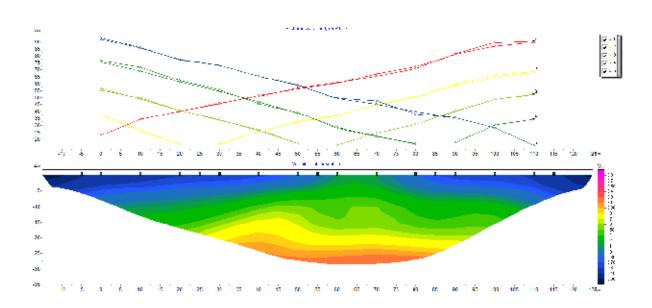
ALLEGATO 1 ELABORATI PROFILI TOMOGRAFICI SISMICI

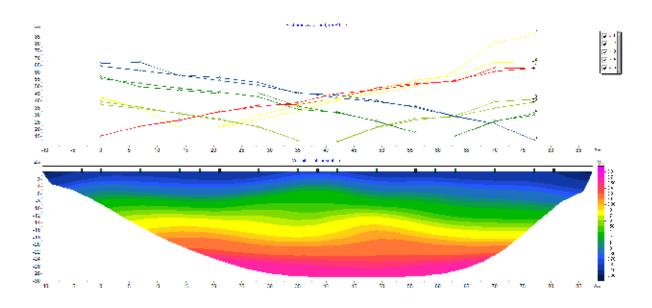


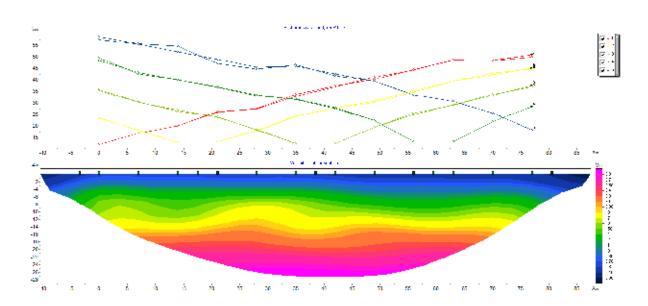


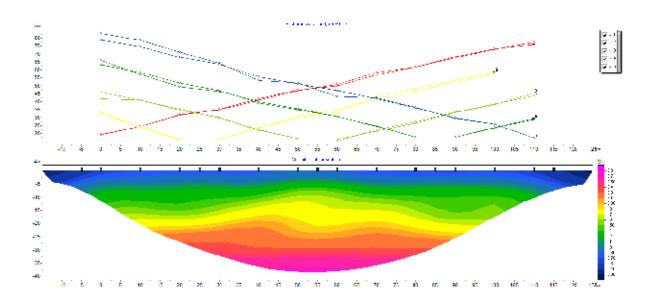


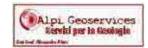


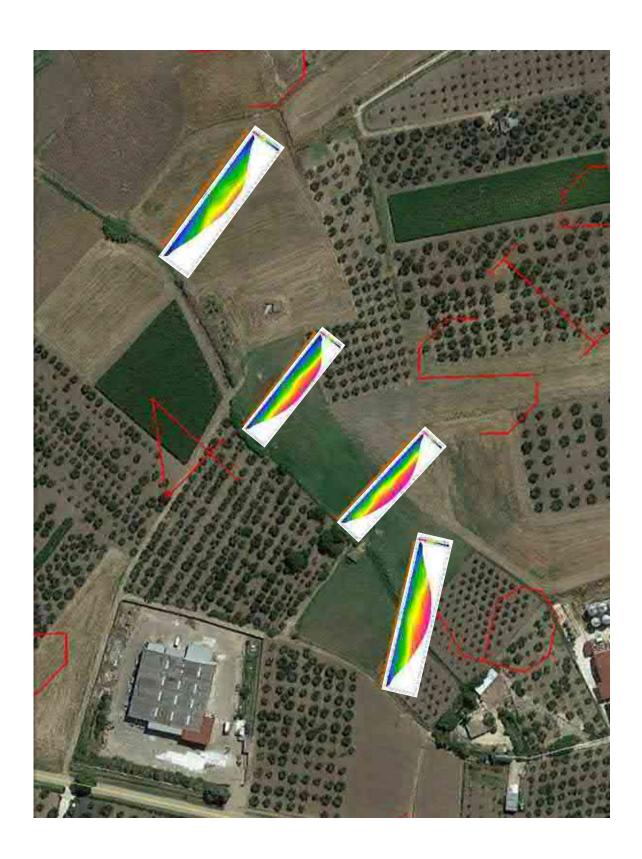


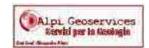












ALLEGATO 2 IMMAGINI DELLE INDAGINI EFFETTUATE

Foto 1 – Esecuzione del profilo sismico e della MASW $\,$ n° 1