REGIONE PUGLIA

Comune CASTELLANETA

Provincia di TARANTO

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO DENOMINATO "CASTELLANETA 1" COSTITUITO DA 14 AEROGENERATORI CON POTENZA COMPLESSIVA DI 92,4 MW E RELATIVE OPERE DI CONNESSIONE ALLA R.T.N.

Studio Anemologico

ELABORATO

PR 12

PROPONENTE:

GREEN ENERGY S.R.L.

Contrada Cacapentima snc 74014 Laterza (TA)

pec: greenenergycast.1@pec.it

cod. id.: E-GREEN

CONSULENTI:

Dott.ssa Elisabetta NANNI

Dott. Ing. Rocco CARONE

Dott. Biol. Fau. Lorenzo GAUDIANO

Dott. Agr. For. Mario STOMACI

Dott. Geol. Michele VALERIO

0	Agosto 2023	B.C.C - C.C	A.A.	O.T.	Progetto definitivo
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE

- biogas
- biometano
- eolico
- fotovoltaico
- efficienza energetica

Studio anemologico e analisi producibilità

Progetto definitivo Impianto Eolico "Castellaneta01" Comune di Laterza

ElaboratoAndreas Wolf Ciavarra

ControllatoSalvatore Leggieri

ApprovatoVincenzo Pace

IT/EOL/E-GREEN/PDF/A/SA/PR12 19/07/2023

> Via Ivrea, 70 (To) Italia T +39 011.9579211 F +39 011.9579241 info@asja.energy

Indice

Intro	oduzione	3
Desc	crizione progetto	3
3.2		
3.3		
3.4.1		
Conf		
Calc	-	
	Simulazione con WAsP 12	
5.1.1	La modellazione del terreno	13
5.1.3	3 Stima della producibilità dell'impianto P50	16
5.1.4		
Cond		
	Desc Aner 3.1 3.2 3.3 3.4 3.4.1 Conf 4.1 Calco 5.1 5.1.2 5.1.3	Anemometria 3.1 Stazione Anemometrica 3.2 Elaborazione dei dati anemometrici 3.3 Analisi Dati Vento 3.4 Analisi Anemometrica 3.4.1 Wind Shear Configurazione dell'impianto 4.1 Aerogeneratore Calcolo della resa energetica 5.1 Simulazione con WASP 12 5.1.1 La modellazione del terreno 5.1.2 Risultati della simulazione con WASP 12 5.1.3 Stima della producibilità dell'impianto P50 5.1.4 Livelli di eccedenza e calcolo P75 e P90

1. Introduzione

La presente relazione ha lo scopo di quantificare e valutare la risorsa eolica di un progetto, proposto dalla società "Green Energy Cast.1 S.r.l.", per la realizzazione di un impianto eolico costituito da 14 turbine, e relative opere di connessione alla RTN, avente potenza complessiva pari a 92.4 MW, da ubicare nel territorio del Comune di Laterza, in provincia di Taranto.

Il valore di produzione è stato stimato con l'utilizzo del software WAsP12, un software affidabile e tra i più utilizzati dagli operatori del mercato eolico a livello mondiale, combinando i dati vento con l'orografia e la rugosità del terreno e considerando tutti i possibili fattori di perdita, come l'effetto scia tra le turbine.

Nel calcolo della produzione attesa è stata considerata la presenza di tutti gli impianti eolici attualmente in esercizio nella zona interessata dal progetto.

2. Descrizione progetto

L'impianto eolico proposto è localizzato nel territorio centrale della regione Puglia, a circa 4,5 km in direzione Nord-Ovest dalla città di Laterza (Figura 1). Gli aerogeneratori in progetto si trovano su un'area pianeggiante ad un'altitudine media di 360 m s.l.

Figura 1.Individuazione dell'area di impianto

3. Anemometria

3.1 Stazione Anemometrica

La stazione anemometrica utilizzata per l'analisi del vento e le stime di producibilità è costituita da una torre anemometrica (TA), installata in data 09/07/2021, localizzata nel Comune di Laterza (TA) all'interno della sezione settentrionale dell'impianto. La TA, le cui coordinate sono riportate in Tabella 2, è caratterizzata da una struttura autoportante con un'altezza massima di 80 m, con sensori di velocità e direzione, regolarmente calibrati e certificati, posizionati accoppiati ad altezze di 80 e 25 m (Figura 2).

Le caratteristiche dei bracci di sostegno dei sensori, nonché di tutta la componentistica ancillare (parafulmine, ecc.), rispettano le prescrizioni imposte dallo standard internazionale previsto dall'IEA (International Energy Agency).

Per una descrizione completa della stazione anemometrica, si rimanda all'Allegato "Report di Installazione Anemometro e certificati di calibrazione" emesso dalla ditta installatrice.

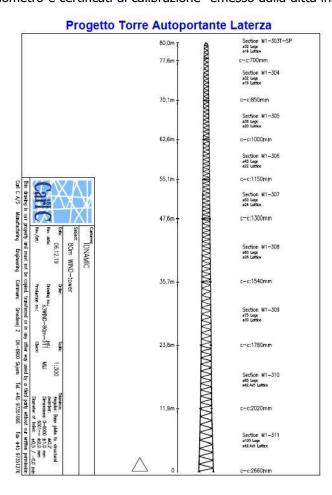


Figura 2. Profilo della TA installata

Descrizione	Tipo
Anemometro 80 m	THIES 4.3351000
Anemometro 25 m	THIES 4.3351000
Banderuola 80 m	THIES 4.3151020
Banderuola 25 m	THIES 4.3151020
Sensore Pressione 2m	THIES 3.1157.1000
Sensore Temperatura 5m	Galltec Mela KPC 1/6-ME
Data Logger	Campbell CR1000X
Torre	Autoportante Carl -C
Calata in rame per scarico a terra	Gialloverde
Captatore di fulmini	Asta + Punta Franklin
Dispersore di terra	Maglia di Rete

Tabella 1. Elenco dei componenti installati sulla TA

Sistema di coordinate	UTM-WGS84 33 Coordinate metriche	UTM-WGS84 33 Coordinate geografiche		
Est/Longitudine	649590	16.771051°		
Nord/Latitudine	4508699	40.715635°		
Altitudine [m]	367	367		

Tabella 2. Posizionamento della TA

3.2 Elaborazione dei dati anemometrici

Come già anticipato nel precedente paragrafo, la torre anemometrica è stata installata a luglio 2021 ed il periodo di acquisizione dei dati è iniziato a novembre 2021. Tutt'ora la strumentazione di acquisizione dati è in esercizio, senza che vi siano mai state registrate interruzioni e di conseguenza il periodo temporale selezionato per la stima della producibilità dell'impianto proposto, copre un intervallo di tempo di un anno e 8 mesi e coincide con l'intero arco temporale di funzionamento dei sensori (dal 04/11/2021 al 19/07/2023).

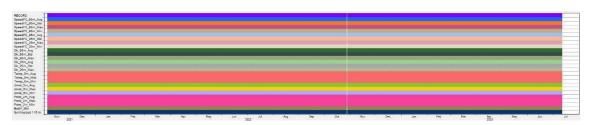


Figura 3. Rappresentazione grafica della disponibilità dei dati

3.3 Analisi Dati Vento

Considerando l'intervallo di dati vento menzionato precedentemente è stata eseguita un'opportuna azione di filtraggio tramite il software Windographer, seguendo i criteri elencati in Tabella 3 mediante i quali è stato possibile individuare ed eliminare i dati registrati erroneamente dai sensori elencati in Tabella 1. In Tabella 4 è riportata la disponibilità prima e dopo il filtraggio.

Velocità orizzontale del vento	
Velocità media (avg_ws)	0 < avg_ws < 30 m/s
Deviazione Standard (Dev Std)	0 < Dev Std < 3 m/s
Velocità massima (V_max)	0 < V_max < 30 m/s
Direzione del Vento	
Direzione media (avg_wd)	0° < avg_wd < 360°
Variazione minima in 1 hr	La direzione del vento deve variare di 1º in un'ora

Tabella 3. Elenco dei criteri di filtraggio

Darametre	Disponibilità complessiva prima	Disponibilità complessiva dopo		
Parametro	del filtraggio [%]	il filtraggio [%]		
Velocità e Direzione a 80 m	100	99,99		

Tabella 4. Disponibilità dei dati vento

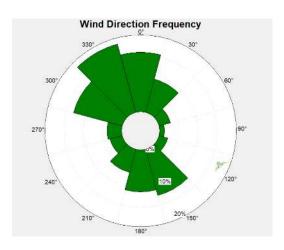


Figura 4. Rosa dei venti a 80 m - 12 settori

La distribuzione delle frequenze delle velocità del vento è rappresentata dalla curva di Weibull (Figura 5). Tale curva, è caratterizzata da due parametri: k, parametro di forma e A, il parametro di scala. Il primo rappresenta l'ampiezza della curva e assume un valore tra 1 e 3, mentre il secondo, espresso in m/s, è correlato con la velocità media del vento. In Tabella 5 sono riportati i valori misurati dal sensore a 80 metri, suddivisi in 12 settori di direzione, mentre

in Tabella 6 sono riportati gli stessi parametri di Weibull mediati per i 12 settori di direzione e la velocità media del vento. Definiti questi parametri si può generare il file di input per il software di calcolo, WAsP11.

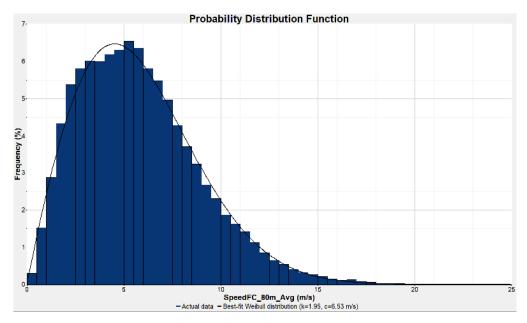


Figura 5. Distribuzione di Weibull per l'anemometro a 80 m

Altezza [m]	Weibull Parameter	345° - 15°		45° - 75°		105° - 135°							315° - 345°
H = 80	k	2,211	2,611	2,178	1,608	1,578	2,006	2,007	1,625	1,585	1,570	2,135	2,394
	A	7,97	6,15	4,55	4,085	4,551	6,205	5,842	5,196	3,925	4,623	6,44	7,924

Tabella 5. Valori dei parametri di Weibull per tutte le direzioni per l'altezza di misura

	H = 80 m
Weibull k	1,95
Weibull A	6,53
Velocità Media del vento [m/s]	5,78

Tabella 6. Parametri di Weibull mediati e velocità media del vento a 80

3.4 Analisi Anemometrica

3.4.1 Wind Shear

L'estrazione della velocità del vento a diverse altezze, permette di stimare il fenomeno di Wind Shear, ovvero l'evoluzione verticale della velocità del vento tra il suolo e lo strato limite del "Surface layer". Quest'ultimo termine definisce lo strato atmosferico dove il vento è influenzato dalla frizione generata dall'orografia, dalla rugosità del terreno, dal gradiente di pressione e dalla forza di Coriolis.

Il fenomeno del Wind Shear può essere descritto mediante la seguente equazione

$$V_h = V_{ref} \bullet (\frac{h}{h_{ref}})^{\alpha}$$

dove:

 α = coefficiente di wind shear

h = velocità vento ad altezza h sls

Vref = velocità vento ad altezza di riferimento h=href sls

Il coefficiente di wind shear α , con cui è stata determinata la velocità media del vento ad altezza mozzo dell'aerogeneratore (115 m), è stato calcolato prendendo in considerazione i sensori di velocità a 80m e 25m e risulta essere pari a 0,213. L'andamento verticale delle velocità è riportato numericamente in Tabella 7 e graficamente in Figura 6. Schema dell'evoluzione della velocità verticale del vento (Wind Shear).

Altezza [m]	Velocità [m/s]		
115	6,31		
80	5,78		
25	4,57		

Tabella 7. Velocità media del vento alle diverse altezze analizzate

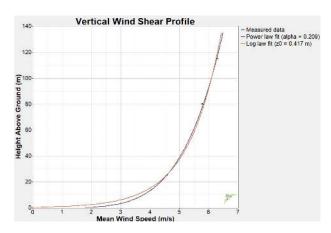


Figura 6. Schema dell'evoluzione della velocità verticale del vento (Wind Shear)

4. Configurazione dell'impianto

L'impianto eolico in esame è caratterizzato da 14 aerogeneratori modello Siemens-Gamesa SG170 di potenza unitaria 6,6 MW, caratterizzati da un diametro di 170 m e altezza mozzo 115 m. Il layout proposto (Figura 7) prevede il posizionamento degli aerogeneratori tale per cui l'interferenza reciproca dovuta all'effetto scia generato da quest'ultimi, sia minimo. In Tabella 8 sono riportate le coordinate in UTM-WGS84 di ogni singolo aerogeneratore.

Figura 7.Layout di impianto. Vista in direzione Nord

Site	x-UTM WGS84 (m)	y-UTM WGS84 (m)
GRE01	654981.0	4504835.0
GRE02	655072.0	4505483.0
GRE03	655934.0	4505726.0
GRE04	655350.0	4505997.0
GRE05	655802.0	4506507.0
GRE06	656303.0	4506765.0
GRE07	656586.0	4506260.0
GRE08	658045.0	4507288.0
GRE09	658688.0	4507370.0
GRE10	658620.0	4505176.0
GRE11	658136.0	4504400.0
GRE12	657725.0	4503307.0
GRE13	658788.0	4503507.0
GRE14	659948.0	4504046.0

Tabella 8. Coordinate degli aerogeneratori nel layout

4.1 Aerogeneratore

In funzione all'attuale tecnologia disponibile sul mercato sono stati scelti gli aerogeneratori modello Siemens-Gamesa SG 170 da 6,6 MW. Mentre la differenza di potenza è ottenuta mediante un'impostazione al software nel generatore, i parametri dimensionali dei due aerogeneratori coincidono e sono elencati a seguire:

- diametro rotore 170 m;
- altezza mozzo 115 m;

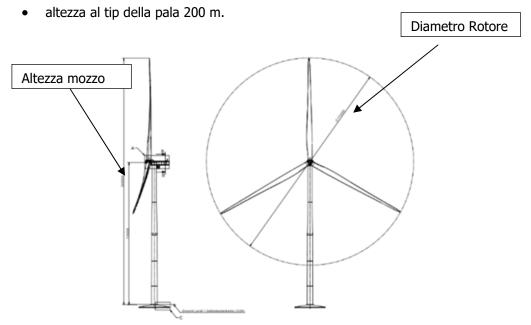


Figura 8. Aerogeneratore modello SG 170 - 6,6 MW, diametro rotore 170 m, altezza 115 m

Di seguito sono elencate le principali caratteristiche dell'aerogeneratore.

Rotore

Diametro: 170 m;

Area spazzata: 22698 m²; Rivoluzioni: 8,83 rpm; Numero di pale: 3;

Senso di rotazione: Orario;

Inclinazione del rotore (Rotor Tilt): 6°;

Pale

Lunghezza: 83,5 m;

Materiale: fibra di vetro rinforzata in resina epossidica e carbone.

Torre

Altezza Torre: 115 m;

Tipo: Torre conica tubolare;

Materiale: Acciaio;

Sezioni: 5

Dati Operativi

Classe: IEC S;

Potenza nominale: 6600 kW; Velocità del vento in Cut-in: 3 m/s; Velocità a potenza nominale: 15 m/s;

Velocità Cut-out: 25 m/s; Emissioni max.: 105.5 dBA;

Generatore

Poli: 4/6;

Tipo: Asincrono;

Potenza nominale: 6600 kW;

Frequenza: 50 Hz.

Moltiplicatore di giri

Tipologia: 2 stadi epicicloidali e uno stadio parallelo;

Materiale: ghisa;

Sistema di lubrificazione: Olio in pressione;

Pesi

Navicella: 80 t; Torre: 46831 t; Mozzo: 58.625 t; Singola pala: 32.677 t.

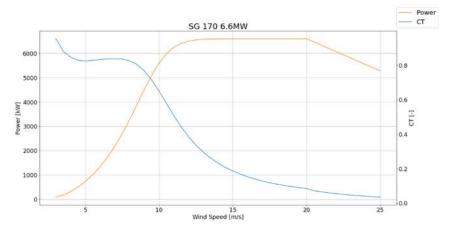


Figura 9. Curva di potenza e di CT(Thrust Coefficient) per l'aerogeneratore SG170 6,6 MW

5. Calcolo della resa energetica

La produzione lorda dell'impianto è stata stimata tramite l'utilizzo del software WAsP.

WAsP è un programma di calcolo per stimare la producibilità degli impianti eolici basato su un'approssimazione lineare delle equazioni di Navier-Stokes ed è stato sviluppato da DTU Wind Energy and Energy Systems (Danimarca).

Il programma permette l'estrapolazione delle caratteristiche verticali e orizzontali del vento e di calcolare la produzione di impianti eolici, combinando l'orografia e la rugosità del terreno con i dati vento.

WAsP utilizza un metodo di calcolo più semplice rispetto a tecniche più complesse quali RANS o LES, restituendo risultati in tempi più brevi e trova grande applicazione in siti pianeggianti ed orograficamente semplici.

5.1 Simulazione con WAsP 12

La stima della produzione lorda dell'impianto eolico, in questa prima simulazione, è stata effettuata con il software WAsP 12.

La resa energetica di ogni turbina è stata calcolata tenendo in considerazione la densità dell'aria, caratteristica del sito in esame calcolata da parte del software stesso, e le perdite di scia dovute all'interferenza reciproca tra i vari aerogeneratori, modellate in modo lineare secondo il metodo N.O. Jensen.

In Figura 10 è rappresentata la mappa dell'intensità del vento a 115 m (altezza mozzo).

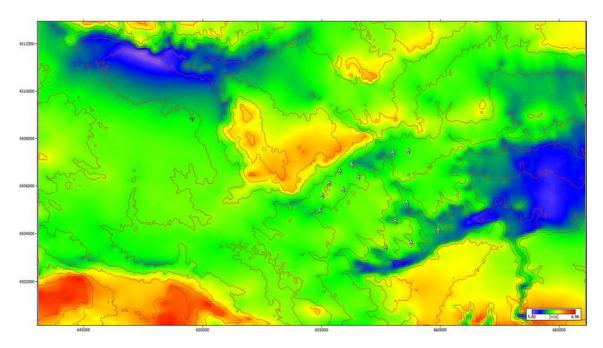


Figura 10. Mappa dell'intensità del vento ad altezza mozzo (115 m)

5.1.1 La modellazione del terreno

L'area presa in esame per le simulazioni anemologiche del sito in oggetto si estende su una superficie di 4126 km² per cui è stato creato un modello che potesse rappresentare fedelmente il terreno su cui ricade l'impianto eolico proposto. L'orografia della mappa è stata modellata con l'uso del software Global Mapper, tramite la metodologia SRTM (Shuttle Radar Topography Mission), utilizzando un passo per le curve di livello pari a 5 m. Per quanto riguarda la determinazione dei valori di rugosità del terreno è stato utilizzato il database CORINE 2018. Questo è un archivio di dati di origine satellitare che rappresentano la rugosità del terreno ed è prodotto da 'Copernicus', la componente di osservazione della terra del programma spaziale europeo. Una sintesi dei valori principali è riportata in Tabella 9 e raffigurata in Figura 11. L'effetto del terreno sulla vena fluida e l'evoluzione verticale di quest'ultima, viene calcolato in WASP utilizzando la legge logaritmica riportata in seguito:

$$u_z = \frac{u_*}{\kappa} * \left[ln \left(\frac{z - d}{z_0} \right) \right]$$

dove:

- ullet u_z : velocità ad un'altezza z, in questo caso z coincide con l'altezza del mozzo dell'aerogeneratore
- u_{*}: velocità di attrito
- κ : costante di von Karman (0.41)
- z: altezza di studio, in questo caso coincide con l'altezza del mozzo dell'aerogeneratore
- d : zero plane displacement, è l'altezza in metri al di sopra del suolo dove la velocità del vento risulta essere nulla a causa della presenza di alberi e/o edifici
- z₀: valore di rugosità applicato

Mentre gli altri valori sopra citati vengono calcolati sulla base del valore di rugosità (z_0) , quest'ultimo è ottenuto sulla base del sopracitato database CORINE 2018 e permette di includere informazioni non presenti dell'orografia del terreno, correggendo l'evoluzione del flusso del vento.

Tipologia di Terreno	Rugosità, z_0 [m]
Terreno ad uso agricolo e vegetazione sparsa (in blu)	0,01 – 0,05
Paesi e Terreno ad uso agricolo non coltivato (in verde)	0,06 – 0,5
Boschi poco fitti e aree industriali (in giallo)	0,6 - 0,8
Città e foreste (in rosso)	1,2 - 1,5

Tabella 9. Descrizione dei valori di rugosità utilizzati nella simulazione

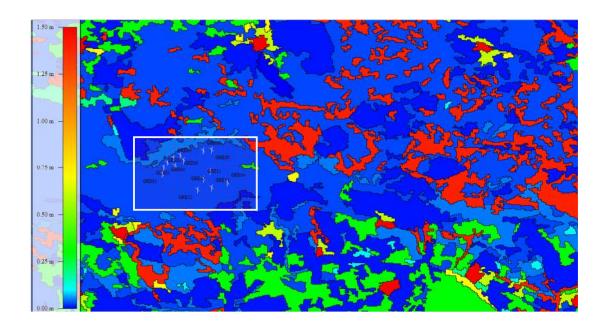


Figura 11. Individuazione delle aree di rugosità su Google Earth. In bianco è rappresentata l'area di ubicazione dell'impianto

5.1.2 Risultati della simulazione con WAsP 12

In seguito alla modellazione del terreno, WASP combina il file di input dei dati vento con i dati del terreno per simulare il flusso del vento geostrofico e la producibilità dell'impianto tenendo in conto i fattori orografia e rugosità.

Le producibilità attese delle singole turbine e dell'intero impianto, sia lorda che al netto delle perdite di scia, sono riportate rispettivamente in Tabella 10 e in Tabella 11.

Site	Altitudine [m]	Altezza mozzo [m]	Produzione Lorda [GWh]	Perdite di scia [%]	Produzione al netto delle perdite di scia [GWh]
GRE01	319,4	115	18,688	12,65	16,323
GRE02	332,1	115	19,226	10,27	17,251
GRE03	323,8	115	19,068	14,92	16,223
GRE04	338,9	115	19,332	8	17,785
GRE05	335,4	115	18,931	7,56	17,5
GRE06	326,5	115	18,647	8,52	17,059
GRE07	323,5	115	19,182	15,23	16,261
GRE08	303,2	115	18,522	6,31	17,353
GRE09	310,7	115	19,015	6,77	17,728
GRE10	266,2	115	18,533	12,96	16,131
GRE11	279,8	115	18,963	15,28	16,066
GRE12	288,6	115	18,992	13,88	16,357
GRE13	281	115	19,54	16,45	16,325
GRE14	258,6	115	18,402	14,9	15,66
TOTALE			265,041		234,022

Tabella 10. Produzione e perdite di scia stimate per i singoli aerogeneratori

Numero di turbine	14
Potenza Nominale Aerogeneratori [MW]	6,6
Potenza Nominale Installata [MW]	92,4
Produzione energetica annua stimata [GWh]	234,022
Numero di ore equivalenti annue	2532

Tabella 11. Produzione dell'impianto al netto delle perdite di scia

5.1.3 Stima della producibilità dell'impianto P50

La producibilità calcolata nel precedente paragrafo è da ritenersi teorica, ipotizzando un impianto in cui non ci sono perdite, fatta eccezione per quelle di scia. Ai fini del calcolo della producibilità reale di impianto, ovvero quella effettivamente messa in rete, sono stati considerati diversi fattori di perdita, come ad esempio l'efficienza elettrica dei cavi, del trasformatore e la disponibilità degli aerogeneratori.

La Tabella 12 elenca le perdite ipotizzate per l'impianto in progetto con il relativo valore assegnato. In definitiva, si stima tramite l'ausilio del tool WAT (Wind Farm Assestment Tool) del software WAsP, una perdita totale pari al 10%.

Produzione energetica teorica [GWh/anno]	
Efficienza elettrica [%]	3 %
Disponibilità aerogeneratori [%]	3 %
Regolazione di potenza [%]	1 %
Condizioni atmosferiche e degradazione pale [%]	1 %
Manutenzione sottostazione [%]	1 %
Fermo Utility [%]	1 %
Produzione energetica annua netta stimata [GWh/anno] – P50	212,96
Ore equivalenti – P50	2.304
Fattore di capacità stimato	28,88

Tabella 12. Fattori di perdita considerati per la stima della produzione P50

Sulla base delle suddette considerazioni, si può stimare che la producibilità media annua dell'impianto eolico sia pari a 213 GWh/anno, corrispondente a 2.304 ore equivalenti. Tuttavia, tali dati sono da considerarsi con una probabilità di superamento pari al 50%, per questo motivo, i valori così ottenuti vengono definiti P50.

5.1.4 Livelli di eccedenza e calcolo P75 e P90

Per un'analisi finale sulla produzione dell'impianto, è stato eseguito nuovamente un calcolo, tramite l'ausilio del tool WAT, sui livelli di eccedenza di produzione, cioè sulla probabilità che ha l'impianto stesso d'eccedere il numero medio di ore equivalenti annue calcolato in precedenza. Per i progetti eolici, hanno una particolare importanza le probabilità di eccedenza al 75% e 90%, che individuano rispettivamente la produzione e di conseguenza le ore equivalenti P75 e P90.

Per determinare i livelli di eccedenza si deve fare una valutazione delle incertezze a cui è soggetto il modello virtuale, che per la sua natura di prevedere un comportamento futuro non può essere preso come una rappresentazione univoca delle condizioni reali di funzionamento dell'impianto. I parametri di incertezza utilizzati per tenere conto della natura stocastica del vento e della variazione della produzione dell'impianto sono elencati rispettivamente in Tabella 13 ed in Tabella 14.

Incertezza della velocità del vento	
Misurazione del vento	4 %
Correzione del dato vento su lunga durata	2 %
Variazione annuale della ventosità	3 %
Estrapolazione verticale del modello di flusso	2 %
Estrapolazione orizzontale del modello di flusso	2 %

Tabella 13. Fattori di incertezza sulla velocità del vento considerati per la stima della produzione P75 e P90

Incertezza sulla stima dell'AEP	
Curva di potenza	4 %
Misurazione della potenza	1 %
Modellazione delle perdite di scia	3 %
Disponibilità delle turbine	2 %
Disponibilità dell'impianto	2 %
Disponibilità di rete	1 %

Tabella 14. Fattori di incertezza sulla produzione di energia considerati per la stima della produzione P75 e P90

6. Conclusione

In Tabella 15 sono illustrati i risultati per la stima della producibilità per l'impianto eolico proposto e considerando che il terreno su cui è ubicato risulta essere di semplice complessità e quindi ideale per eseguire stime di produzione tramite WAsP, i risultati ottenuti possano essere considerati più affidabili.

Quindi si può concludere che il sito su cui è stato posizionato l'impianto gode di un'ottima risorsa eolica ed ha dei valori sopra la media in termini di resa energetica.

Livello di Incertezza	Produzione Stimata [GWh]	Ore equivalenti [heq]
P50	212,96	2.305
P75	193,79	2.097
P90	176,35	1.909

Tabella 15. Confronto produzione P50, P75 e P90

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 1 di 17

COMMITTENTE

ASJA Ambiente Italia S.p.A.

Via Ivrea, 70
10098 CASCINE VICA-RIVOLI (TO)

STAZIONE ANEMOMETRICA DI

LAI	EKZ	4 H80	

١
۱
۰
٦

CODICE STAZIONE

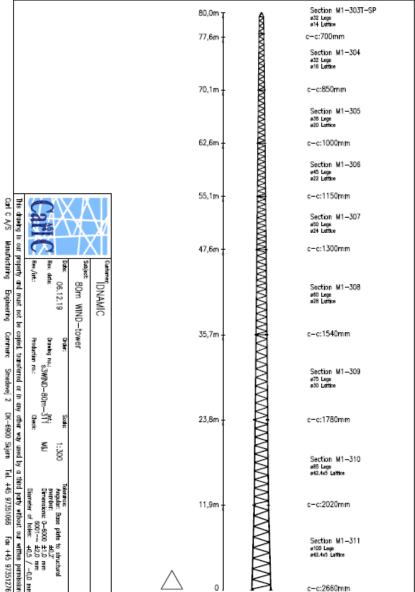
Gestione stazione anemometrica Allegati alla pratica operativa

Data: 09/07/2021	Redattore: Daniele De leso	De Seso famile

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 2 di 17

ALLE	GATO A 1	1 alla	pratica	ope	rativ	⁄a									
Rapporto di prima installazione stazione															
	Stazione Anemometrica di							LATERZAH80							
	Cod	dice S	Stazio	ne											
	Reticolo UTM		Map dat Europe			Altitudine					Idine X: EST Latitudine Y: NOF 4508888			RD	
Q	Reticolo UTM		Map datu			Altitudine: qt. s.l.m.	371	Zone 33 1	Γ 0	6495	udine X: EST La 649590		4508699		
Ī	Suolo		Pr	evaler		erra		sto Terra-Roccia		ì	Prev		alenza Roccia		
T 0	Terreno		Incol		Se	minativo	Frutt		Abitat		Indus	_		Pasco	
	Vegetazione	1		ente		Brullo X Collina			chia		oresta	:42	Alk	oeri Spa	
	Morfologia		Pianu			X	Fondo		Altopia		Somi			Crinal	е
		crizione	m 00	Matr 0521			ipo 3351.00.00	<u>o</u> di	entament rezioni		ntamento orti sens 250°			hezza orti sens	sori
	Sensore Velo Sensore Velo Sensore Velo	ocità a r	m 25	0521			3351.00.00				250°			3.00 m 4.00 m	
	Sensore Velo	ocità a r	n												
S	Sensore Velocità a m Sensore Direzione a m 80 Sensore Direzione a m 25		m	n 80 4210109		THIES 4.	3151.00.02	0 250°			70°			7.00 m	
R				4210	108	THIES 4.	3151.00.02	0	250°	70°				7.00 m	
U M	Sensore Dire	ezione a	ı m												
E		Sensore Pressione a m 2 0121			210242 THIES 3.1157.10.000 40507				0 Galltec Mela KPC 1/6-ME						
N T	Linea di Vita Logger			IT1 243		Miller Soll CAMPBELL CR1000X									
I	Luce di Segr Memory Caro		ie	NO	> *<	Lampada LXS MIOL-B5 S/N: 210175/MB05 – 2000cd Campbell Scientific									
	Torre tipo Cavo scherm		olare				Autoportante Carl-C					Altezza: m 80 Metri: m			
	Cavo scherm	nato bip	olare	torra			Gialloverde Ø 35				Metri: m Metri: m Metri: m 83				
	Calata in rame per scarico a terra Captatore di fulmini						Asta + Punta Franklin Maglia di Rete					Metri: m 3.00 Metri: m 4			
М	Installazione					IDNAMIC ITALIA S.r.I.									
N T						Data: 0	9/07/20	21							
A G	A Avvio Logger				Data: 0	9/07/20	21		Ora	a: 12.0 0)				
G Verifica corretta installazione e regist					trazione	razione (Allegato A 6)				St NO					
Data: 09/07/2			e De le		0:					e Se	od fe	since	l		
	_	Pasnona	ahila Ca	etions				irma:							
Responsabile Gestione:						F	a.								

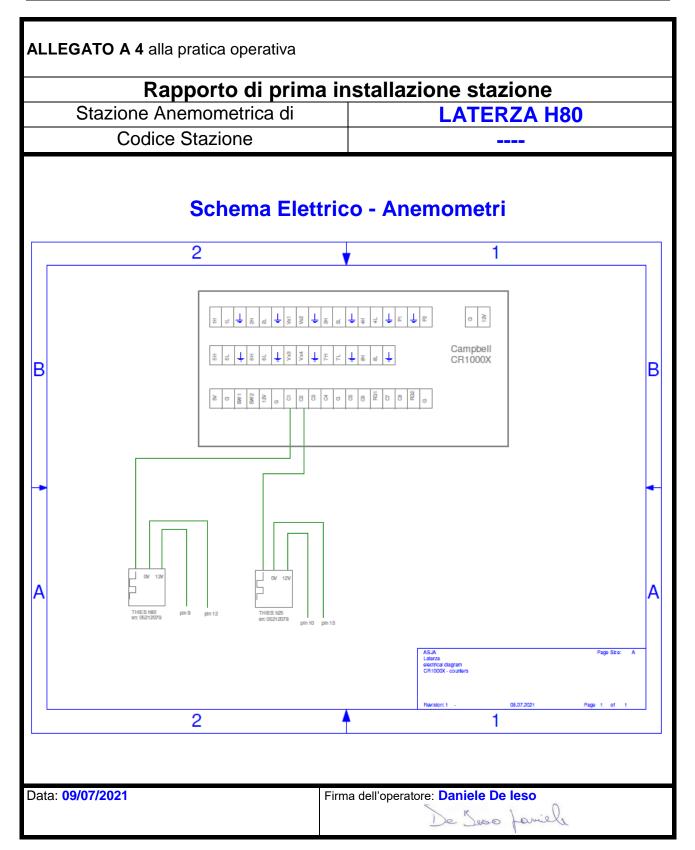
Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 3 di 17


		Ran	norte	di n	rima	inst	allazi	one s	tazior	16		
	Stazior	ne Aner	-				nstallazione stazione LATERZA H80					
		odice S			•		LATERZA HOU					
		COL	ICI E	CAF	RATI	ERIS	TICH	IE DE	I TRA	MI		
		section		height	top	bottom	bracing	legs	bracing	deflection / torsion		
	Special 1	M1-303		2,40 m	0,70 m	0,70 m	0,300	R32	R14	2,85° / 0,76°		
	2	M1-304		7,50 m	0,70 m	0,85 m	0,375	R32	R16	2,75° / 0,71°		
	3	M1-305		7,50 m	0,85 m	1,00 m	0,375	R38	R20	2,44° / 0,51°		
	4	M1-306		7,50 m	1,00 m	1,15 m	0,375	R45	R22	2,12° / 0,42°		
	5	M1-307		7,50 m	1,15 m	1,30 m	0,375	R50	R24	1,79" / 0,35"	8	
	6	M1-308		11,90 m	1,30 m	1,54 m	0,425	R60	R28	1,48° / 0,29°		
	8	M1-309 M1-310		11,90 m 11,90 m	1,54 m	1,78 m 2,02 m	0,595	R75 R85	R30 Ø42,4x5	1,03° / 0,21° 0,63° / 0,14°		
	9	M1-311		11,90 m	2,02 m	2,66 m	0,744	R100	Ø42,4x5	0,27° / 0,05°		
	10					- 1- 2 · · · ·			40° 70° 8.00° 8.	-1		
				- 6								
	11											
	11		height	80,00 m		tower tot	al surplus	18%	32%			
			height	80,00 m		tower to	al surplus	18%	32%			
M		tori	height	80,00 m	IDNA		al surplus		32%			
0	12		height	80,00 m			ALIA S.r.		32%			
O N T	Installat	zione	height	80,00 m	Data	AMIC IT <i>i</i> : 09/07/2	ALIA S.r.			12.00		
O N T A	12 Installat	zione	height	80,00 m	Data	AMIC ITA	ALIA S.r.		32% Ora:	12.00		
O N T A	Installat	zione	height	80,00 m	Data	AMIC IT <i>i</i> : 09/07/2	ALIA S.r.			12.00		
O N T A	Installat	zione	height	80,00 m	Data	AMIC IT <i>i</i> : 09/07/2	ALIA S.r.			12.00		
O N T A G	Installat Installaz Avvio Lo	zione ogger			Data	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:		NO	
O N T A	Installat Installaz Avvio Lo	zione			Data	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:	12.00	NO	
O N T A G G	Installat Installaz Avvio Lo	zione ogger corretta ir	nstallazio	ne e reç	Data Data pistrazio	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:	S I		
O N T A G G I O	Installat Installaz Avvio Lo	zione ogger corretta ir	nstallazio	ne e reg	Data Data pistrazio	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:	S I		
O N T A G G I O	Installat Installaz Avvio Lo	zione ogger corretta ir	nstallazio	ne e reg	Data Data pistrazio	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:			
O N T A G G I O	Installat Installaz Avvio Lo	zione ogger corretta ir	nstallazio	ne e reg	Data Data pistrazio	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	I.	Ora:	S I		
O N T A G	Installat Installaz Avvio Lo	corretta ir	nstallazio	ne e reç ntaggio:	Data Data pistrazio	AMIC IT. : 09/07/2 : 09/07/2	ALIA S.r. 2021 2021	J.	Ora:	S I		

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 4 di 17

ALLEGATO A 3/1 alla pratica operativa Rapporto di prima installazione stazione Stazione Anemometrica di Codice Stazione Progetto Torre Autoportante Laterza Progetto Torre Autoportante Laterza Section M1-303T-5P Set Lumba Section M1-303T-5P Section M1-303T-



Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 5 di 17

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 6 di 17

ALLEGATO A 4 alla pratica operativa Rapporto di prima installazione stazione Stazione Anemometrica di **LATERZA H80** Codice Stazione Schema Elettrico - Banderuole 2 В В © \Z Campbell CR1000X 2 Firma dell'operatore: Daniele De leso Data: 09/07/2021 De Seso Jamiela

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 7 di 17

ALLEGATO A 4 alla pratica operativa Rapporto di prima installazione stazione Stazione Anemometrica di **LATERZA H80** Codice Stazione Schema Elettrico – Analogici 2 1 Campbell CR1000X В В Temp + Temp οv Thies a 2m sn 01210242 2 Data: 09/07/2021 Firma dell'operatore: Daniele De leso De Seso famiele

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 8 di 17

ALLEGATO A 5/1 alla pratica operativa

Rapporto di prima installazione stazione
--

Stazione Anemometrica di LATERZAH80

Codice Stazione ----

Orientamento Supporti Sensori di Velocità

VEL 80 m / 250°

VEL 25 m / 250°

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 9 di 17

ALLEGATO A 5/2 alla pratica operativa

Rapporto di prima	installazione stazione
Stazione Anemometrica di	I ATEDZAUSO

Codice Stazione ----

Orientamento Supporti Sensori di Direzione

DIR 80 m / 70°

DIR 25 m / 70°

Lo Zero delle due banderuole è settato a 250°

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 10 di 17

ALLEGATO A 6/1 alla pratica operativa

Rapporto di prima installazione stazione

Stazione Anemometrica di LATERZAH80

Codice Stazione

Immagine Satellitare del Sito

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 11 di 17

ALLEGATO A 6/2 alla pratica operativa

Rapporto di prima installazione stazione

Stazione Anemometrica di LATERZAH80

Codice Stazione

Foto del sito prima del sollevamento

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

De Jeso Jamiela

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 12 di 17

ALLEGATO A 6/3 alla pratica operativa

Rapporto di prima installazione stazione

Stazione Anemometrica di LATERZAH80

Codice Stazione

Foto del sito dopo l'intervento

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

De Seso famile

ALLEGATO A 6/4 alla pratica operativa

Codice:
Data Emissione:
Revisione:
Pagina:

DTP.08.MO 03/12 12 13 di 17

Stazione Anemometrica di	tallazione stazione LATERZAH80
Codice Stazione	
	基础
NORD	EST
NORD	EG I
	/
and the same of th	The state of the s
	AND THE RESERVE OF THE PARTY OF
	The state of the s
SUD	OVEST

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice: Data Emissione: Revisione: Pagina: DTP.08.MO 03/12 12 14 di 17

ALLEGATO A 7 alla pratica operativa							
Verifica prima installazione							
Stazione Anemometrica				LATERZAH80			
Codice Stazione							
N° codice sensore di velocità a m 80	052120	79	Verifi	ca Struttura	C NC		
N° codice sensore di velocità a m 25	052120	78		a ancoraggi			
N° codice sensore di velocità a m				one degli stralli			
N° codice sensore di velocità a m			Linearità della torre Perpendicolarità della torre				
N° codice sensore di velocità a m N° codice sensore di velocità a m			Controllo parafulmine				
N° codice sensore di direzione a m 80	42101	09					
N° codice sensore di direzione a m 25	42001			ollo angolo di direzione			
N° codice sensore di direzione a m							
N° codice sensore di direzione a m							
N° codice sensore di direzione a m							
N° codice sensore di pressione a m 2	012102	42	Verifi	ca Trasmissione Dati			
N° codice sensore di umidità a m 5	24050	7	Test e				
N° codice sensore di temperatura a m				collegamento			
N° codice logger Campbell CR1000X	2434	6	Coper	Copertura GSM %			
Verifica Strumentazione Elettrica		С	NC	Note			
Controllo orario e data		X					
ora e data logger ora attuale							
12.00 09/07/2021 12.00							
Controllo voltaggio batterie		X			Batt = 13.7V;		
Controllo presenza segnale canale		X					
Controllo presenza segnale canale		X					
Controllo presenza segnale canale		X					
Controllo presenza segnale canale		X					
Controllo luce di segnalazione Controllo allacciamento cavi elettrici		v	1				
Controllo sensore di velocità a m 80		X	1	3.4 m/s velocità all'inseriment	o della scheda		
Controllo sensore di velocità a m 25		X		3.6 m/s velocità all'inseriment			
Controllo sensore di velocità a m				m/s velocità all'inseriment			
Controllo sensore di velocità a m				m/s velocità all'inseriment			
Controllo sensore di velocità a m				m/s velocità all'inseriment			
Controllo sensore di velocità a m				m/s velocità all'inseriment	o della scheda		
Controllo sensore di direzione a m 80		X		151 ° direzione all'inseriment			
Controllo sensore di direzione a m 25		X		148 ° direzione all'inseriment			
Controllo sensore di direzione a m				° direzione all'inseriment			
Controllo sensore di direzione a m				° direzione all'inseriment			
Controllo sensore di direzione a m Controllo sensore di pressione a m 2				° direzione all'inserimento della sched 974.54 mB pressione all'inserimento della sched			
Controllo sensore di pressione a m 2 Controllo sensore di umidità a m				19.62 % umidità all'inserimento della schedi			
Controllo sensore di temperatura a m 5				37.0 ° C temperatura all'inserimento della scheda			
	Controllo sensore di temperatura a m 5 X 37.0 ° C temperatura all'inserimento della sched Controllo della Memory Card % file stored days le						
LEGENDA: C = CONFORME ÷ NC = NON CONFORME							
Note aggiuntive:							
Data: 09/07/2021	Data: 09/07/2021 Firma dell'operatore: Daniele De leso						

Codice: Data Emissione: Revisione: Pagina:

De Seso famille

DTP.08.MO 03/12 12 15 di 17

ALLEGATO A 8 alla pratica operativa						
Rapporto di prima installazione stazione						
Stazione Anemometrica di	LATERZAH80					
Codice Stazione						
RACCOMANDA	ZIONI IMPORTANTI					
definitivo nel suo sito d'installazione. Si consiglia di eseguir	anche se essa è stata studiata per un uso temporaneo e non e un controllo dei picchetti e della tensione dei tiranti entro il 1° da tenere presente che la tensione dei cavi è soggetta a piccole					
Non eseguire alcuna riparazione sui cavi in condizioni di forte	vento.					
Si raccomanda la revisione periodica della struttura nelle zo ambienti corrosivi.	one di alta concentrazione di salinità (zone costiere) e zone con					
È importante che le installazioni e le manutenzioni delle torri v	vengano valutate ed eseguite solo da personale specializzato					
Data: 09/07/2021 Fir	ma dell'operatore: Daniele De leso					

Codice: Data Emissione: Revisione: Pagina:

DTP.08.MO 03/12 12 16 di 17

ALLEGATO A 9/1 alla pratica operativa

Rapporto di prima installazione stazione

Stazione Anemometrica di LATERZAH80

Codice Stazione

CERTIFICATO UNI EN ISO 9001:2015

SISTEMA GESTIONE QUALITÀ CERTIFICATO Nº 453/A/2008

Si attesta che il Sistema di Gestione per la Qualità di:

IDNAMIC ITALIA S.r.I.

Area PIP Strada Statale 212 km 9,00 snc - 82020 Pietreicina (BN)

Applicato nell'Unità Operativa sita in Area PIP Strada Statale 212 km 9,00 snc - 82020 Pietrelcina (BN)

Sistema di Gestione per la Qualità conforme alla norma

UNI EN ISO 9001:2015

valutato secondo le prescrizioni del Regolamento Tecnico RT-05 (*)

Relativamente a:

settore IAF Campo di applicazione:

Progettazione, fornitura, assemblaggio, installazione, manutenzione, rimozione di torri anemometriche e relativa strumentazione

settore IAF Campo di applicazione:

35 Elaborazione ed analisi dei dati del vento

Data 1" emissione 2008-06-03
 Data di aggiornamento
 2020-06-22

 Data di scadenza
 2023-06-02

La Direzione

Hadroy of EA MEA for the accordance ordering GAD, EASC, PAIG PROC AND Fined TL of MEA ALLAND XII-SURREDUCT COMMITTEE CORD, PAIGS, STANS, SHAND AND PROC For TLAND AND AND AND AND PROC For TLAND AND AND AND AND AND AND A

La presente certificazione si intende rifenta agri aspatti gestionei del Impresa nel suo compiesso ed è utilizzado ai firi della certificazione delle impresa di costruzione ai sensi dell'articolo 84 del D.Lgs. 902016 e a.m. e. Euree Guide AMCA application.

La validità del presente certificato è subordinata a sorvegilanza periodica e al riesame complieto del sistema di gestione aziendale con periodicità trierinale.

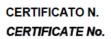
Per informazioni puntusii ed aggiornate circa eventuali variacioni intervenuto nello stato dalla certificazione di cui al presente certificato, si prega di contattare ii n' telefonico 06 85352830 o l'indirizzo e-mail integiorni con:

Data: 09/07/2021 Firma dell'operatore: Daniele De leso

Codice: Data Emissione: Revisione: Pagina:

DTP.08.MO 03/12 12 17 di 17

ALLEGATO A 9/2 alla pratica operativa


Rapporto di prima installazione stazione

Stazione Anemometrica di **LATERZAH80**

Codice Stazione

CERTIFICATO ISO 45001:2018

OHS-806

Si certifica che il Sistema di Gestione della Sicurezza e della Salute sul luogo di lavoro di it is hereby certified that the Occupational Health and Safety Management System of

IDNAMIC ITALIA S.R.L.

S.S. 212 KM 9 AREA P.I.P. 82020 Pietreidina (BN) ITALIA

S.S. 212 KM 9 AREA P.I.P. 82020 Pietreicina (BN) ITALIA E CANTIERI OPERATIVI

ISO 45001:2018

Data decisione di rinn
26.01.2012 Renewal decision dat

19.01.2021

Data revisione
19.01.2024 Revision date

Data: 09/07/2021

Firma dell'operatore: Daniele De leso

Svend Ole Hansen ApS

SCT. JØRGENS ALLÉ 5C · DK-1615 KØBENHAVN V · DENMARK

TEL: (+45) 33 25 38 38 · WWW.SOHANSEN.DK

CERTIFICATE OF CALIBRATION

Calibrated item

Type Thies 4.3351.00.000

Serial no. 05212078

Manufacturer ADOLF THIES GmbH & Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany

Item received June 01, 2021

Remarks -

Calibration

Calibration institute Svend Ole Hansen ApS, Sct. Jørgens Allé 5C, DK-1615 København V

Procedure IEC 61400-12-1:2017, Annex F

Client IDNAMIC Italia S.r.I., S.S. 212 km 9 Area PIP, 82020 Pietrelcina (BN), Italy

San J. Chin

Calibrated by Calibrator, JPK

Date of calibration June 06, 2021

Approved by Calibration engineer, sfo

Post calibration No

Re-calibration due -

Certificate

 Certificate no.
 21.02.02872

 Date of issue
 June 07, 2021

Issued by ca Number of pages 4

Accreditation

Accredited to ISO 17025:2017 by DANAK. DANAK is signatory to the European co-operation for Accreditation (EA) Multilateral Agreement and to the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement.

The calibration institute is approved by MEASNET and IECRE.

Calibration conditions

Turbulence intensity 1-2 % (alongwind)

Air temperature 29.7 °C (average value)

Barometric pressure 1020.9 hPa (average value)

Relative humidity 30.9 % (average value)

Air density 1.17 kg/m³ (average value)

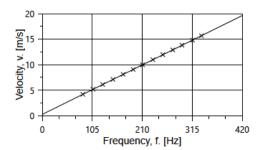
Flow inclination $< 0.2^{\circ}$

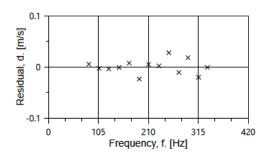
Anemometer yaw orientation Not relevant

Remarks (none)

Calibration results

Calibration equation $v \text{ [m/s]} = 0.04615 \cdot \text{ f [Hz]} + 0.24184$


The calibration equation is obtained from a linear regression of the reference air velocity upon the Device Under Test (DUT) output. The residual is the deviation of the calibration equation prediction from the reference air velocity.


The calibration results relate only to the calibrated item.

Succession	Velocity	Air	Air	Ref. air	Uncertainty	DUT output	Residual,
	pressure	temperature	density	velocity, v	$u_{\rm c} (k=2)$	Frequency, f	d
#	[Pa]	[°C]	$[kg/m^3]$	[m/s]	[m/s]	[Hz]	[m/s]
2	10.18	29.7	1.17	4.174	0.025	85.0975	0.005
4	15.56	29.8	1.17	5.160	0.029	106.6396	-0.003
6	21.75	29.8	1.17	6.101	0.033	127.0529	-0.004
8	29.45	29.7	1.17	7.099	0.037	148.6037	-0.001
10	38.27	29.7	1.17	8.091	0.041	169.9266	0.007
12	47.77	29.6	1.17	9.040	0.046	191.1604	-0.024
13-last	58.08	29.6	1.17	9.968	0.050	210.6421	0.005
11	70.34	29.7	1.17	10.970	0.054	232.4126	0.002
9	83.57	29.7	1.17	11.958	0.059	253.2764	0.028
7	96.98	29.8	1.17	12.884	0.063	274.1758	-0.011
5	111.36	29.8	1.17	13.807	0.068	293.5480	0.018
3	127.86	29.8	1.17	14.796	0.072	315.7917	-0.020
1-first	143.60	29.7	1.17	15.675	0.076	334.4264	-0.001

Visual presentation of calibration results

Linear regression results

Method Least squares linear regression

Slope 0.04615 (m/s)/Hz

Offset 0.24184 m/s
 Coefficient of correlation $\rho = 0.999993$

Standard error of estimate 0.0145 m/s

Slope standard error 0.00005 (m/s)/Hz

Offset standard error 0.01164 m/s

Slope and offset covariance -0.000000565 (m/s)²/Hz

Remarks Linearity complies with IEC 61400-12-1:2017, Annex F.

Uncertainties

The uncertainties stated under *Calibration results* relate to the reference air velocity at each calibration point. The uncertainty is the total combined uncertainty at 95 % confidence level (coverage factor k = 2) in accordance with EA-4/02. The uncertainty complies with the requirements in IEC 61400-12-1:2017, Annex F. The uncertainty due to the wind tunnel correction function has been documented to be 0.1 % (k = 2).

The slope and offset uncertainties and their covariance stated under *Linear regression results* are related to the linear regression only, and do not relate to the reference air velocity uncertainties. The slope and offset uncertainties have v = 11 degrees of freedom.

Calibration wind tunnel

ID DK1

Test section Octagonal, hxw = 1.20x1.75 m

Effective area of test section 2.10 m²

Setup report SOH document no. 18.1.001

Blockage ratio* ~1.3 % (Anemometer and mounting pole)

Equipment used

Function	ID	Model / comments	Re-calibration due
QC Anemometer	03113415	03113415	-
Mounting	-	Mounting tube, diameter = 35 mm	-
Tunnel Temperature	T4	PT100 Temperature sensor	2023-04-06
Differential Pressure	1501197	FCO560 Pressure manometer	2023-03-24
Relative Humidity	Z0420014	HMW71U Humidity transmitter	2023-04-06
Barometric Pressure	U4220037	PTB100AAnalogue barometer	2023-04-12
Pitot tube	A37AB	Ellipsoidal tip pitot tube	2027-02-22
Data acquisition	1A841F0	Computer Board: ME-REDLAB 1608GX.	-
Computer	-	PC dedicated to data acquisition	-

Calibrations of the relevant equipment are carried out by external accredited institutions, and are traceable to national standards. A real-time analysis module within the data acquisition software detects pulse frequency.

Setup photo

The shown anemometer is of the same type as the one calibrated.

End of certificate

^{*} The effect of blockage is taken into account in the calibration results.

Svend Ole Hansen ApS

SCT. JØRGENS ALLÉ 5C · DK-1615 KØBENHAVN V · DENMARK

TEL: (+45) 33 25 38 38 · WWW.SOHANSEN.DK

CERTIFICATE OF CALIBRATION

Calibrated item

Type Thies 4.3351.00.000

Serial no. 05212079

Manufacturer ADOLF THIES GmbH & Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany

Item received June 01, 2021

Remarks -

Calibration

Calibration institute Svend Ole Hansen ApS, Sct. Jørgens Allé 5C, DK-1615 København V

Procedure IEC 61400-12-1:2017, Annex F

Client IDNAMIC Italia S.r.I., S.S. 212 km 9 Area PIP, 82020 Pietrelcina (BN), Italy

San J. Chin

Calibrated by Calibrator, JPK

Date of calibration June 06, 2021

Approved by Calibration engineer, sfo

Post calibration No

Re-calibration due -

Certificate

 Certificate no.
 21.02.02873

 Date of issue
 June 07, 2021

Issued by ca Number of pages 4

Accreditation

Accredited to ISO 17025:2017 by DANAK. DANAK is signatory to the European co-operation for Accreditation (EA) Multilateral Agreement and to the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement.

The calibration institute is approved by MEASNET and IECRE.

Calibration conditions

Turbulence intensity 1-2 % (alongwind)

Air temperature 28.4 °C (average value)

Barometric pressure 1021.0 hPa (average value)

Relative humidity 32.1 % (average value)

Air density 1.17 kg/m³ (average value)

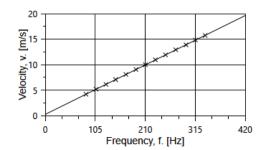
Flow inclination $< 0.2^{\circ}$

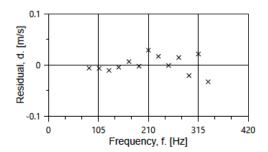
Anemometer yaw orientation Not relevant

Remarks (none)

Calibration results

Calibration equation $v \text{ [m/s]} = 0.04614 \cdot \text{ f [Hz]} + 0.24963$


The calibration equation is obtained from a linear regression of the reference air velocity upon the Device Under Test (DUT) output. The residual is the deviation of the calibration equation prediction from the reference air velocity.


The calibration results relate only to the calibrated item.

Succession	Velocity	Air	Air	Ref. air	Uncertainty	DUT output	Residual,
	pressure	temperature	density	velocity, v	$u_{\rm c} \ (k=2)$	Frequency, f	d
#	[Pa]	[°C]	$[kg/m^3]$	[m/s]	[m/s]	[Hz]	[m/s]
2	10.32	28.3	1.17	4.192	0.025	85.5866	-0.006
4	15.66	28.4	1.17	5.165	0.029	106.6751	-0.007
6	22.01	28.4	1.17	6.123	0.033	127.5159	-0.011
8	29.33	28.4	1.17	7.068	0.037	147.8778	-0.005
10	38.26	28.4	1.17	8.072	0.041	169.3893	0.006
12	48.01	28.4	1.17	9.043	0.046	190.6310	-0.003
13-last	58.52	28.3	1.17	9.983	0.050	210.3210	0.029
11	70.29	28.4	1.17	10.941	0.054	231.3536	0.017
9	83.24	28.4	1.17	11.908	0.059	252.6898	-0.001
7	97.86	28.4	1.17	12.912	0.063	274.1107	0.014
5	113.00	28.5	1.17	13.875	0.068	295.7599	-0.021
3	129.02	28.4	1.17	14.826	0.072	315.4416	0.021
1-first	145.13	28.2	1.18	15.717	0.076	335.9417	-0.033

Visual presentation of calibration results

Linear regression results

Method Least squares linear regression

Slope 0.04614 (m/s)/Hz

Standard error of estimate 0.0180 m/s

Slope standard error 0.00006 (m/s)/Hz

Offset standard error 0.01436 m/s

Slope and offset covariance -0.000000859 (m/s)²/Hz

Remarks Linearity complies with IEC 61400-12-1:2017, Annex F.

Uncertainties

The uncertainties stated under *Calibration results* relate to the reference air velocity at each calibration point. The uncertainty is the total combined uncertainty at 95 % confidence level (coverage factor k = 2) in accordance with EA-4/02. The uncertainty complies with the requirements in IEC 61400-12-1:2017, Annex F. The uncertainty due to the wind tunnel correction function has been documented to be 0.1 % (k = 2).

The slope and offset uncertainties and their covariance stated under *Linear regression results* are related to the linear regression only, and do not relate to the reference air velocity uncertainties. The slope and offset uncertainties have v = 11 degrees of freedom.

Calibration wind tunnel

ID DK1

Test section Octagonal, hxw = 1.20x1.75 m

Effective area of test section 2.10 m²

Setup report SOH document no. 18.1.001

Blockage ratio* ~1.3 % (Anemometer and mounting pole)

Equipment used

Function	ID	Model / comments	Re-calibration due
QC Anemometer	03113415	03113415	-
Mounting	-	Mounting tube, diameter = 35 mm	-
Tunnel Temperature	T4	PT100 Temperature sensor	2023-04-06
Differential Pressure	1501197	FCO560 Pressure manometer	2023-03-24
Relative Humidity	Z0420014	HMW71U Humidity transmitter	2023-04-06
Barometric Pressure	U4220037	PTB100AAnalogue barometer	2023-04-12
Pitot tube	A37AB	Ellipsoidal tip pitot tube	2027-02-22
Data acquisition	1A841F0	Computer Board: ME-REDLAB 1608GX.	-
Computer	-	PC dedicated to data acquisition	-

Calibrations of the relevant equipment are carried out by external accredited institutions, and are traceable to national standards. A real-time analysis module within the data acquisition software detects pulse frequency.

Setup photo

The shown anemometer is of the same type as the one calibrated.

End of certificate

^{*} The effect of blockage is taken into account in the calibration results.