

Nuova S.S.195 "Sulcitana" Tratto Cagliari - Pula

Collegamento con la S.S.130 e aeroporto di Cagliari Elmas Opera Connessa Nord

PROGETTO DEFINITIVO

OPERE D'ARTE MINORI

MURI DI APPROCCIO AL PONTE SCAVALCO DEVIAZIONE CANALE IMBOI ALLA PROG. 8+025

RELAZIONE DI CALCOLO

CODICE PROGETTO	ROGETTO LIV. ANNO	NOME FILE P000S04STRRE01_A			REVISIONE	SCALA
DPCA	0150 D 23	CODICE POOOSO4STRRE01			A	-
D						
С						
В						
Α	Emissione		Giugno '23	Belà	Signorelli	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

1. INDICE

<u>1.</u>	INDICE		<u> 1</u>
<u>2.</u>	PREME	SSA	2
<u>3.</u>	NORMA	ATIVE DI RIFERIMENTO	3
<u>4.</u>	CARAT	TERISTICHE DEI MATERIALI	3
<u>5.</u>	DESCR	IZIONE DELL'OPERA	4
<u>6.</u>	CARAT	TERIZZAZIONE GEOTECNICA	<u> 7</u>
	6.1. Az	IONI SISMICHE	8
	6.1.1.	Accelerazione massima in sito e coefficienti sismici	8
<u>7.</u>	CRITER	RI DI VERIFICA	<u> 9</u>
<u>8.</u>	METOD	I DI ANALISI E VERIFICHE	<u> 11</u>
	8.1. ME	TODO DI CALCOLO	11
	8.2. Co	NDIZIONI DI CARICO	11
	8.2.1.	Carichi permanenti	11
	8.2.2.	Carichi accidentali	11
	8.2.3.	Carichi sismici	11
	8.2.4.	Carichi dovuti all'urto dei veicoli in svio	12
	8.3. RIS	SULTATI DELLE ANALISI	13
	8.3.1.	Sezione tipo 1	13
	8.3.2.	sezione tipo 2	17
	8.4. VE	RIFICHE STRUTTURALI E GEOTECNICHE	21
	8. <i>4</i> .1.	Verifiche strutturali	21
	8.4.2.	Verifiche geotecniche	36
<u>9.</u>	ALLEG	ATI DI CALCOLO	47
	9.1.1.	Sezione tipo 1	47

PROGETTAZIONE ATI:

9.1.2.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

2. PREMESSA

La presente relazione è parte integrante della documentazione per il Progetto Definitivo per la SS195 "Sulcitana", tratto Cagliari – Pula, Opera Connessa Nord.

La presente relazione di calcolo illustra il dimensionamento e le verifiche geotecniche e strutturali del muro di sostegno OS04 tra la p.k. 7+987.00 e la p.k. 8+117.90 della SS195 "Sulcitana", tratto Cagliari – Pula, dell' Opera Connessa Nord.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

3. NORMATIVE DI RIFERIMENTO

- [1]. Decreto Ministero Infrastrutture 17 gennaio 2018: Aggiornamento delle "Nuove norme tecniche per le costruzioni"
- [2]. Circolare n.7 del 21 gennaio 2019 del C.S.LL.PP. Ministero Infrastrutture e Trasporti: Istruzioni per l'applicazione dell'Aggiornamento delle "Nuove norme tecniche per le costruzioni"
- [3]. UNI EN 1997-1:2013: Eurocode 7 Geotechnical design Part 1: General rules
- [4]. UNI EN 1997-1:2007: Eurocode 7 Geotechnical design Part 2: Ground investigation and testing

4. CARATTERISTICHE DEI MATERIALI

Calcestruzzo fondazione ed elevazioni conforme UNI EN 206-1

Classe di resistenza: C35/45Classe di esposizione: XC2Diametro massimo inerti: 30mm

- Rapporto a/c ≤ 0.50

Calcestruzzo pali di fondazione conforme UNI EN 206-1

Classe di resistenza: C35/45Classe di esposizione: XC2Diametro massimo inerti: 30mm

- Rapporto a/c ≤ 0.60

Calcestruzzo magro

Dosaggio: 150 kg/m³

Acciaio armatura

- Acciaio ordinario: B450C

- Tensione caratteristica a rottura ftk: 540MPa

- Tensione di snervamento, f_{vk}: 450MPa

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

5. DESCRIZIONE DELL'OPERA

L'opera OS04 si estende dal km 7+987.00 e il km 8+117.93 per una lunghezza complessiva pari a 60.00 m. La soluzione progettuale prevede la realizzazione di muri di sostegno su pali, con altezze del paramento variabili tra 6.10m e 7.60m e la lunghezza dei pali pari a 18.0m.

Il calcolo del muro OS04 in destra (pk 7+987 e pk 8+002) è stato eseguito con riferimento alla sezione "Tipo 1".

Il calcolo del muro OS04 in sinistra (pk 8+014 e pk 8+029) è stato eseguito con riferimento alla sezione "Tipo 2".

Il calcolo del muro OS04 in destra (pk 8+076 e pk 8+091) è stato eseguito con riferimento alla sezione "Tipo 2".

Il calcolo del muro OS04 in sinistra (pk 8+103 e pk 8+118) è stato eseguito con riferimento alla sezione "Tipo 2".

La sezione di tipo 1 è caratterizzata da una fondazione di spessore 1.20m, di altezza 6.0m e una larghezza di 5.50m. I pali della fondazione della sezione tipo 1 hanno un diametro pari a 1.0m e una lunghezza di 18.0m, con un interasse trasversale di 3.50m e un interasse longitudinale di 3.0m. La sezione di tipo 2 è caratterizzata da una fondazione di spessore 1.20m, di altezza 7.6m e una larghezza di 5.50m. I pali della fondazione della sezione tipo 1 hanno un diametro pari a 1.0m e una lunghezza di 20.0m, con un interasse trasversale di 3.50m e un interasse longitudinale di 3.0m.

Tabella 5.1: OS04 - Caratteristiche geometriche dei muri analizzati

Sezioni di calcolo	H _{paramento_calcolo} [m]	H _{fondazione} [m]	L _{fondazione} [m]
Tipo 1	6.00	1.20	5.50
Tipo 2	7.60	1.20	5.50

Nella seguente tabella sono riassunte le caratteristiche della sezione del muro in corrispondenza della progressiva indicata e la rispettiva altezza della sezione di calcolo utilizzata per l'analisi.

Tabella 5.2: OS04 – Caratteristiche geometriche dei muri analizzati

Sezioni	Sezioni Tipo	H _{paramento}	H _{fondazione}	L _{fondazione}
p.k.		[m]	[m]	[m]
7+987 - 8+002	1	6.10	1.20	5.50
8+014 - 8+029	2	7.30	1.20	5.50
8+076 - 8+091	2	7.60	1.20	5.50
8+103 - 8+118	2	7.40	1.20	5.50

Nelle figure successive vengono riportate le sezioni trasversali e in piante delle sezioni tipo 1 e di tipo 2. Per i dettagli si rimanda agli elaborati grafici (P00OS04STRDI01_A; P00OS04STRDI02_A).

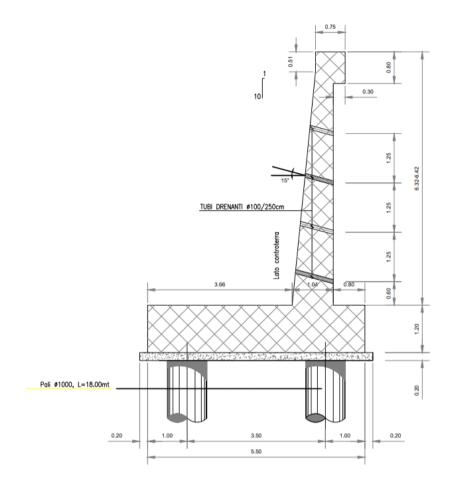


Figura 5-1: Sezione tipologica muro di sostegno su pali "Tipo 1".

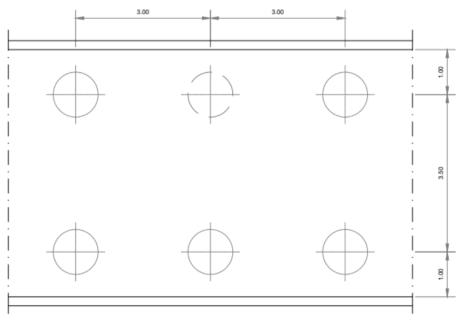


Figura 5-2: Pianta muro di sostegno su pali "Tipo 1".

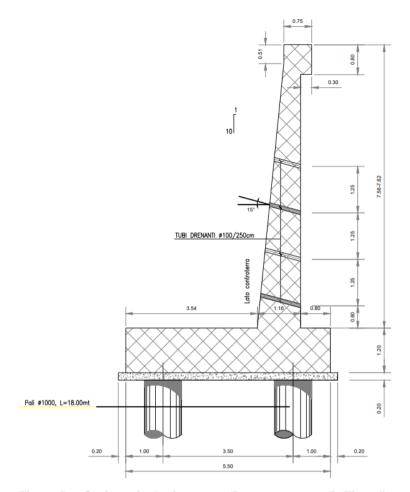


Figura 5-3: Sezione tipologica muro di sostegno su pali "Tipo 2".

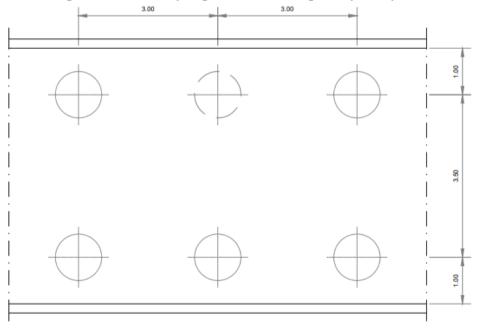


Figura 5-4: Pianta muro di sostegno su pali "Tipo 2".

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

6. CARATTERIZZAZIONE GEOTECNICA

Le verifiche geotecniche dell'opera in oggetto (OS04) sono state eseguite facendo riferimento ai parametri geotecnici caratteristici riportati nella Relazione geotecnica e nel Profilo geotecnico allegato al progetto. Si riporta di seguito la tabella riassuntiva dei parametri geotecnici per i terreni presenti lungo il tracciato:

Tabella 3:Parametri geotecnici caratteristici.

Descrizione	Unità geotecnica			φ'	E
		(kN/m³)	(kPa)	(°)	(MPa)
Deposito ghiaioso	UG1a	20-22	0-5	34-38	40-100
Deposito sabbioso	UG1b	19-20	5-15	32-36	20-80
Deposito limoso-argilloso	UG1c	19-20	15-20	26-28	10-30
Deposito sabbioso-argilloso	UG2	18-20	0-5	28-32	20-30

dove:

γ peso di volume

 ϕ' angolo di attrito efficace

c' coesione efficace

E modulo elastico

La falda è stata considerata alla profondità di 8.0m dal piano di posa delle fondazioni. Si riporta la stratigrafia di calcolo e i parametri utilizzati per le verifiche strutturali e geotecniche:

Tabella 4:Stratigrafia di calcolo e parametri geotecnici utilizzati nelle verifiche.

Descrizione	Unità geotecnica	Spessore strato	γ	c'	φ'	E
		(m)	(kN/m³)	(kPa)	(°)	(MPa)
Deposito ghiaioso	UG1a	5	20	0	34	40
Deposito sabbioso	UG1b	20	19	0	32	20

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

6.1. AZIONI SISMICHE

Per la caratterizzazione sismica dell'area interessata dall'opera in esame (OS04) si rimanda alla Relazione Sismica del Progetto Definitivo della SS 195 "Sulcitana", del tratto Cagliari-Pula, dell'Opera Connessa Nord.

6.1.1. ACCELERAZIONE MASSIMA IN SITO E COEFFICIENTI SISMICI

L'azione sismica di progetto per l'opera OS04, ai sensi della normativa vigente italiana (DM del 17/01/2018), è stata definita calcolando i parametri sismici necessari direttamente per il sito in esame.

Le coordinate di riferimento sono: latitudine 39.214903 e longitudine 9.109499.

Nella tabella seguente si riportano i valori dell'accelerazione massima su suolo roccioso (a_g) e dei parametri spettrali (F_0, T_c^*) per lo SLV.

Tabella 6-1 Parametri spettrali del sito

a _g [g]	F ₀ [-]	T*c [sec]
0.598	2.976	0.370

Gli effetti di amplificazione locale dovuti alla stratigrafia e alla conformazione topografica vengono messi in conto mediante i parametri \underline{S}_S ed S_T .

Il sito dell'opera in esame è stato classificato nella categoria di suolo B, alla quale corrisponde un valore del coefficiente $\underline{S_S}$ pari a 1.2, e rientra nella categoria topografica T1, per la quale il valore del coefficiente topografico S_T è pari a 1.0.

L'accelerazione massima orizzontale al sito (a_{max}) è calcolata come prodotto dell'accelerazione su suolo roccioso e dei fattori di amplificazione:

$$a_{max} = a_g \cdot S_S \cdot S_T$$

Per il caso in esame l'accelerazione massima orizzontale al sito per lo stato limite di salvaguardia della vita (SLV) risulta pari a:

$$a_{max} = 0.587 \cdot 1.20 \cdot 1.00 = 0.704g$$

I coefficienti sismici orizzontale e verticale sono espressi come:

$$k_h = \beta_m \cdot a_{max}/g$$

 $k_v = \pm 0.5 \cdot k_h$

Per le opere che non subiscono spostamenti relativi rispetto al terreno, come ad esempio i muri su pali, il coefficiente riduttivo dell'accelerazione sismica assume valore unitario: $\beta_m = 1.0$. Pertanto, i coefficienti sismici orizzontale e verticale adottati per le analisi sono i seguenti:

$$k_h = 0.704$$

$$k_v = 0.352$$

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

7. CRITERI DI VERIFICA

Nel presente capitolo sono descritti i metodi, le assunzioni di calcolo e i parametri di progetto adottati per le verifiche geotecniche e strutturali delle opere in oggetto. Le verifiche sono state condotte secondo il metodo degli stati limite.

Le verifiche agli stati limite prevedono un approccio di tipo semiprobabilistico in base al quale le azioni e le resistenze di progetto sono definite sulla base dei valori caratteristici applicando i coefficienti parziali di seguito definiti:

Azioni: $F_d = (F_k \times \psi) \times \gamma_F$

Proprietà del terreno: $X_d = X_k / \gamma_M$ Resistenza del terreno: $R_d = R_k / \gamma_R$

Dove:

- F: indica genericamente un'azione,

- ψ: indica un fattore ≤1.0 che è definito nell'ambito della combinazione di carico;

X: indica genericamente un parametro di resistenza del terreno;

- R: indica genericamente la resistenza limite calcolata;

- V_F, V_M, V_R: indicano i coefficienti parziali.

Una volta definiti i parametri di progetto si verifica che valga la relazione:

 $E_d \leq R_d$

Dove:

- $E_d = F_k \times \psi \times \gamma_F$ [effetti delle azioni];

- $R_d = 1 / \gamma_R \times R_d (F_k \times \psi \times \gamma_F, X_k / \gamma_M)$ [resistenza del terreno].

Azioni e resistenze di progetto

Le verifiche dell'opera sono state condotte secondo l'approccio 2, considerando la combinazione:

• Combinazione 1 - (A1 + M1 + R3).

Le verifiche di stabilità globale del complesso opera di sostegno – terreno, sono state condotte secondo l'approccio 1, considerando la combinazione:

Combinazione 2 - (A2 + M2 + R2).

I coefficienti parziali per i parametri geotecnici del terreno e per le azioni sono riportati nelle tabelle seguenti.

Tabella 7-1 Coefficienti parziali per le azioni (combinazioni statiche)

Carichi	Effetto	Coefficiente parziale γ _F	EQU	A1	A2
Permanenti	Favorevole	∀ Gfav	1.00	1.00	1.00
Permanenti	Sfavorevole	γ Gsfav	1.30	1.30	1.00
Variabili	Favorevole	γ Qfav	0.00	0.00	0.00
Variabili	Sfavorevole	Y Qsfav	1.50	1.50	1.30

Tabella 7-2 Coefficienti parziali per i parametri geotecnici del terreno (combinazioni statiche)

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ м	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tanφ _k '	γ φ'	1.0	1.25
Coesione efficace	Ck'	γ c'	1.0	1.25
Resistenza non drenata	Cuk	Y cu	1.0	1.40
Peso dell'unità di volume	Υ	Υγ	1.0	1.0

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90

RELAZIONE DI CALCOLO

Tabella 7-3 Coefficienti parziali per le azioni (combinazioni sismiche)

Carichi	Effetto	Coefficiente parziale γ ⊧	EQU	A1	A2
Permanenti	Favorevole	∀ Gfav	1.00	1.00	1.00
Permanenti	Sfavorevole	∀ Gsfav	1.00	1.00	1.00
Variabili	Favorevole	Y Qfav	0.00	0.00	0.00
Variabili	Sfavorevole	∀ Qsfav	1.00	1.00	1.00

Tabella 7-4 Coefficienti parziali per le resistenze (combinazioni sismiche)

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ м	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tanφ _k '	γ φ΄	1.0	1.0
Coesione efficace	Ck'	γ c'	1.0	1.0
Resistenza non drenata	Cuk	Y cu	1.0	1.0
Peso dell'unità di volume	γ	Υγ	1.0	1.0

Tabella 7-5 Pali trivellati - coefficienti parziali y R da applicare alle resistenze caratteristiche

Darametra		Coefficienti parziali	
Parametro	R1	R2	R3
Base	1.00	1.70	1.35
Laterale compressione	1.00	1.45	1.15
Totale compressione	1.00	1.60	1.30
Laterale trazione	1.00	1.60	1.25

Tabella 7-6 Pali trivellati - coefficienti parziali y_T da applicare alle resistenze caratteristiche

Darametra	Coefficienti par	Coefficienti parziali	
Parametro	R1	R2	R3
Carichi orizzontali	1.00	1.60	1.30

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90

8. METODI DI ANALISI E VERIFICHE

8.1. METODO DI CALCOLO

Per le analisi dell'opera si è utilizzato il codice di calcolo MAX versione 16 di AZTEC Informatica. Il muro è stato schematizzato con elementi *beam* a sei gradi di libertà (due traslazioni ed una rotazione per nodo), mentre il terreno è stato schematizzato con una serie di molle distribuite lungo l'altezza del muro. Il procedimento iterativo di risoluzione del modello considera il comportamento non lineare del terreno (non linearità meccanica), mentre agli altri elementi assegna un comportamento elastico lineare.

In allegato si riportano i criteri e i parametri di calcolo, i risultati delle analisi e le caratteristiche geometriche dei muri su pali.

Nella seguente tabella si riportano le caratteristiche delle sezioni di calcolo considerate per l'analisi.

Tabella 8.1: OS04 – Caratteristiche geometriche dei muri analizzati

Sezioni di calcolo	H _{paramento_calcolo} [m]	H _{fondazione} [m]	L _{fondazione} [m]
Tipo 1	6.00	1.20	5.50
Tipo 2	7.60	1.20	5.50

Nei prossimi capitoli si riportano le analisi svolte per le sezioni di Tipo 1 e di Tipo 2.

8.2. CONDIZIONI DI CARICO

8.2.1. CARICHI PERMANENTI

Peso proprio

Il peso proprio della struttura si ottiene moltiplicando i singoli spessori per il peso specifico del cemento armato, pari a 25kN/m³.

Spinta del terreno

La spinta del terreno è stata calcolata in condizioni di spinta a riposo.

8.2.2. CARICHI ACCIDENTALI

Come sovraccarico accidentale si è considerato il sovraccarico stradale, assunto pari a 20kPa, applicato a monte dell'opera di sostegno. In condizioni sismiche il carico accidentale è stato ridotto a 5 kPa.

8.2.3. CARICHI SISMICI

Per il caso in esame si ottengono i seguenti coefficienti sismici:

$$k_h = 0.704 = (a_g/g^*\beta_m^*S_T^*S_S)$$

$$k_v = 0.352$$

Nelle analisi è stato assunto $\beta_m = 1.0$.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

8.2.4. CARICHI DOVUTI ALL'URTO DEI VEICOLI IN SVIO

Ai fini della valutazione dei carichi derivanti dall'urto di veicoli in svio sulla barriera ancorata sulla sommità del cordolo di testa dell'opera in esame, il D.M. 17/01/2018 ai paragrafi 5.1.3.10 e 3.6.3.3.2. prevede l'applicazione di una forza orizzontale equivalente di collisione di 100 kN agente a 1.0 m al di sopra del livello del piano di marcia.

Considerando che ogni paletto costituente la barriera può trasmettere al cordolo al massimo un momento corrispondente al suo momento di plasticizzazione M_{pl} , in fase di calcolo è stata assunta una forza orizzontale di collisione pari a $F_h = M_{pl} / 1.0$ m. In particolare:

$$M_{pl} = \alpha f_{yd} W_{pl} = 55 \text{ kNm}$$

con:

- $f_{vd} = f_{vk} / 1.05 = 275 \text{ MPa} / 1.05 = 261.9 \text{ MPa}$, tensione di snervamento di progetto;
- $W_{pl} = 132.7 \text{ cm}^3$, modulo di resistenza plastico della sezione;
- $\alpha = 1.5$, coefficiente di amplificazione, in accordo con l'Eurocodice 2.

Pertanto, la forza orizzontale di collisione impiegata in fase di calcolo risulta essere pari a: $F_h = 55 \text{ kN}$.

Secondo quanto indicato nel cap. 3.6 delle NTC18, in caso di urto deve essere considerata la combinazione di carico eccezionale.

8.3. RISULTATI DELLE ANALISI

8.3.1. **SEZIONE TIPO 1**

Di seguito si riporta l'inviluppo delle sollecitazioni del paramento nella sezione in esame.

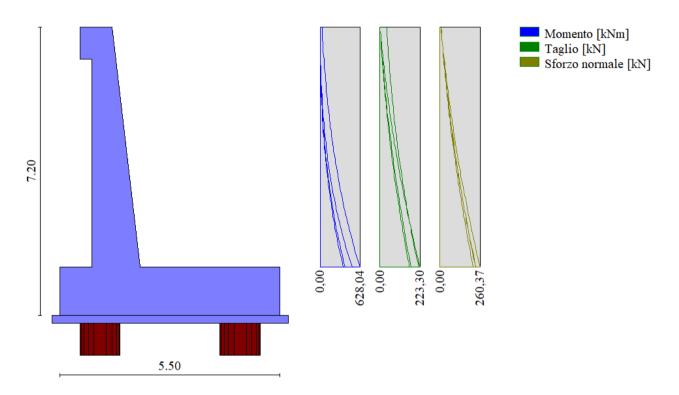


Figura 8-1: Inviluppo delle sollecitazioni del paramento del muro

I contour delle sollecitazioni sulla fondazione del muro in esame, per le combinazioni di carico più sfavorevoli, sono riportati a seguire.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

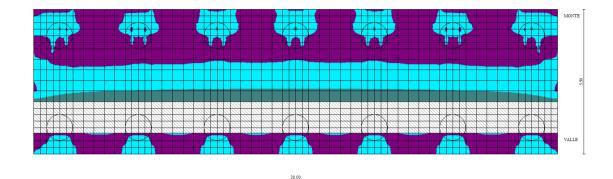
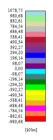



Figura 8-2:Mxx sulla fondazione del muri – Comb. 2 – Mxx,max = 164.6 kN

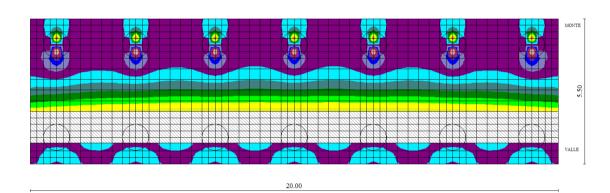


Figura 8-3: Myy sulla fondazione del muro - Comb. 2 - Myy,max = 542.9 kN

-98,07 -196,14 -294,20 -392,27 -490,34 -588,41 -686,48 -784,54 -882,61 [kN]

> -196,14 -294,20 -392,27 -490,34 -588,41 -686,48 -784,54 -882,61

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

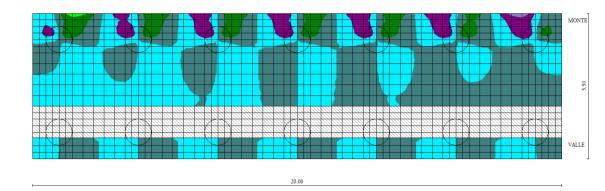


Figura 8-4:Txx sulla fondazione del muro - Comb.2 - |Txx,max|=182.4 kN

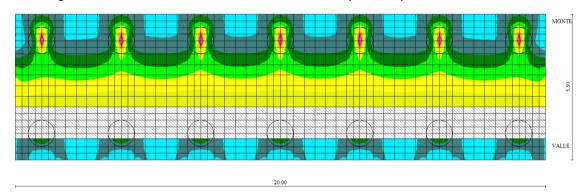


Figura 8-5:Tyy sulla fondazione del muro - Comb.2 - |Tyy,max|=464.8 kN

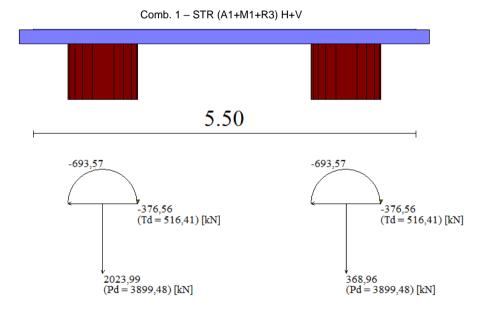


Figura 8-6: Scarichi in testa ai pali di fondazione del muro per la combinazione piu sfavorevole (Comb.1)

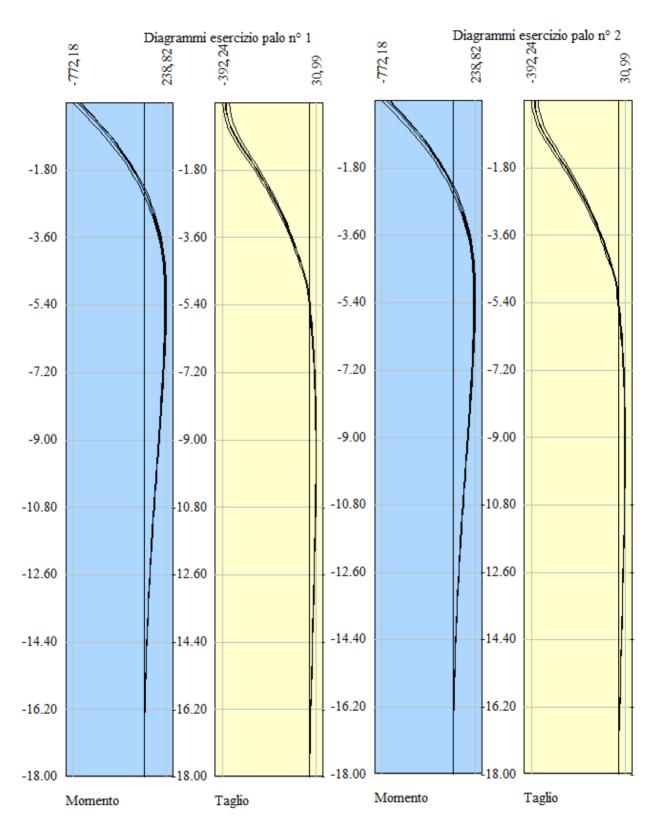


Figura 8-7: Inviluppo delle sollecitazioni flettenti e taglianti lungo i pali di fondazione.

8.3.2. SEZIONE TIPO **2**

Di seguito si riporta l'inviluppo delle sollecitazioni del paramento nella sezione in esame.

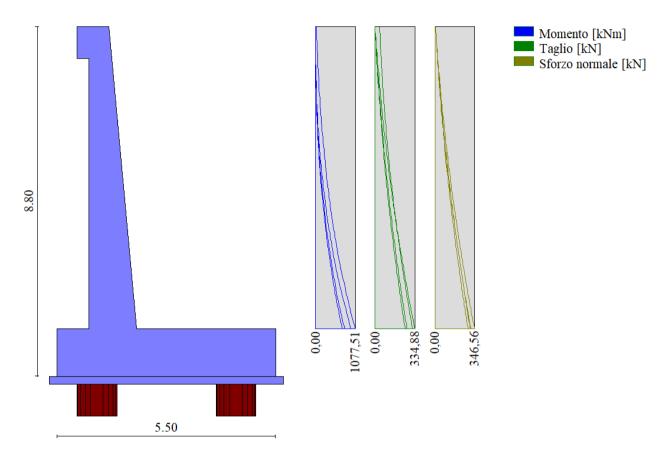


Figura 8-8: Inviluppo delle sollecitazioni del paramento del muro

I contour delle sollecitazioni sulla fondazione del muro in esame, per le combinazioni di carico più sfavorevoli, sono riportati a seguire.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

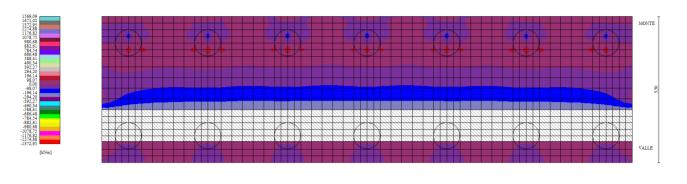


Figura 8-9:Mxx sulla fondazione del muri – Comb. 2 – Mxx,max = 264.5 kN

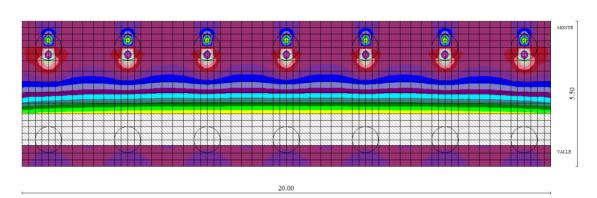


Figura 8-10: Myy sulla fondazione del muro – Comb. 2 – Myy,max = 882.6 kN

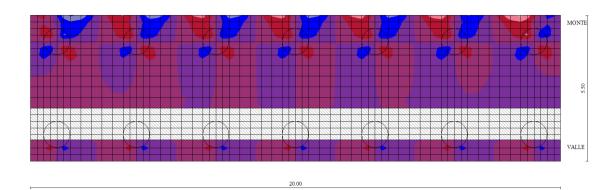


Figura 8-11:Txx sulla fondazione del muro - Comb.2 - |Txx,max|=254 kN

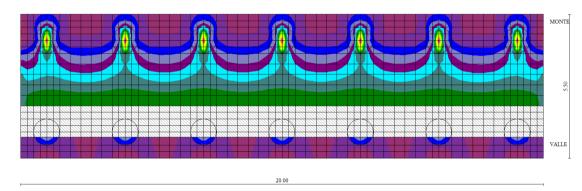


Figura 8-12:Tyy sulla fondazione del muro – Comb.2 - |Tyy,max|=681 kN

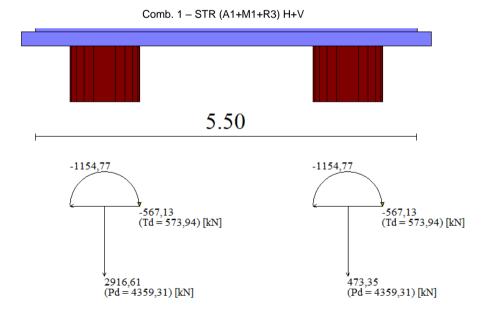


Figura 8-13: Scarichi in testa ai pali di fondazione del muro per la combinazione piu sfavorevole (Comb.1)

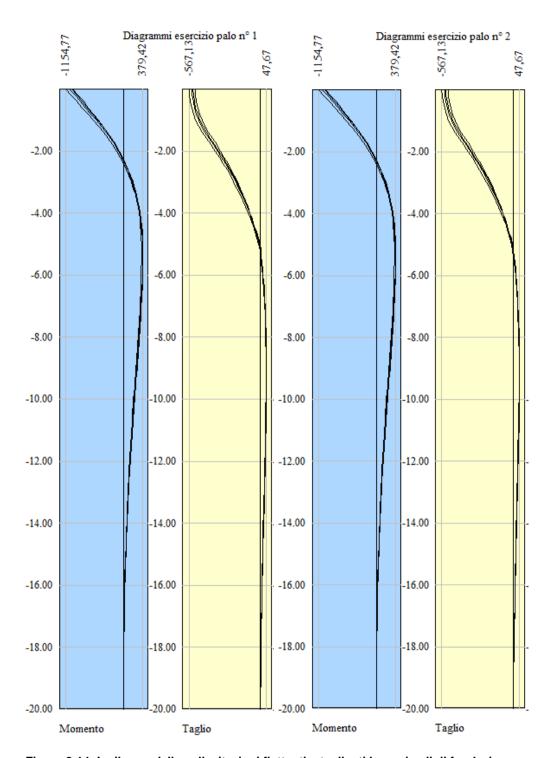


Figura 8-14: Inviluppo delle sollecitazioni flettenti e taglianti lungo i pali di fondazione.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

8.4. VERIFICHE STRUTTURALI E GEOTECNICHE

8.4.1. VERIFICHE STRUTTURALI

Le verifiche sono state condotte, sulla base dell'inviluppo delle sollecitazioni, secondo il metodo semiprobabilistico degli stati limite.

Le sollecitazioni di output del codice di calcolo per i pali di fondazione dei muri di sostegno sono riferite al singolo palo.

Sono effettuate le seguenti verifiche:

- in condizioni statiche (condizioni di normale esercizio):
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio;
- in condizioni sismiche
 - Verifica a S.L.U. per flessione;
 - Verifica a S.L.U. per taglio;

I valori di calcolo delle resistenze dei materiali si ricavano dividendo ciascun valore caratteristico per il fattore di sicurezza parziale γ_m specifico del materiale considerato.

Tabella 8.2: fattore di sicurezza parziale dei materiali

Stato limite	Acciaio γ _s	Calcestruzzo γ _c
SLU	1.15	1.50

Di seguito si riportano i valori delle resistenze di calcolo, ottenute come rapporto tra la resistenza caratteristica e il coefficiente γ_m : $f_d = f_k/\gamma_m$.

Tabella 8.3: tensione di snervamento di calcolo

Acciaio	fyd [MPa]	$\sigma_{s,max} (0.8*f_{yk}) [MPa]$
B450C	391	360

Tabella 8.4: resistenze di calcolo calcestruzzo

Elemento strutturale	Calcestruzzo	$f_{\text{cd}} \hspace{1cm} f_{\text{ctd}} \hspace{1cm} f_{\text{cfd}} \hspace{1cm} \sigma_{\text{c,max}} \hspace{1cm} (0.45^* f_{\text{ck}})$			
Elemento strutturale	Classe	[MPa]	[MPa]	[MPa]	[MPa]
Fondazioni ed elevazioni	C35/45	23.33	2.13	2.56	10.5

dove:

- f_{cd} = resistenza a compressione cilindrica di calcolo
- σ_{c,max} = tensione limite del calcestruzzo per la lo stato limite di esercizio (=0.45*f_{cd})
- f_{ctd} = resistenza a trazione di calcolo
- f_{cfd} = resistenza a trazione per flessione di calcolo (=1.2*f_{ctd})

8.4.1.1. Sezione Tipo 1

Nelle tabelle seguenti si riportano le armature previste per il muro in esame.

Tabella 8.5: Armature fondazione del muro nella sezione di verifica

Elemento strutturale [-]	Altezza sezione [cm]	Armatura superiore [-]	Armatura inferiore [-]	Copriferro [cm]	Armatura a taglio (staffe) [-]
Fondazione	120	Ø 22/20	Ø 22/20	7	Ø 12/20

Tabella 8.6: Armature paramento del muro nella sezione di verifica

Elemento strutturale [-]	Altezza sezione [cm]	Armatura tesa [-]	Armatura compressa [-]	Copriferro [cm]	Armatura a taglio [-]
Paramento	600	Ø 22/20	Ø 22/20	5	Ø 12/20

Tabella 8.7: Armature dei pali nella sezione di verifica

Elemento strutturale [-]	Diametro sezione [cm]	Armatura longitudinale [-]	Copriferro [cm]	Armatura a taglio (spirale) [-]
Palo	100	24 Ø 22	8	Ø 10/10

Nei paragrafi seguenti si riportano i risultati delle verifiche per le combinazioni di carico più gravose e per le sezioni più sollecitate.

Paramento

Verifiche SLU

Verifica a flessione

Di seguito si riporta la verifica SLU a flessione del paramento nella sezione d'incastro.

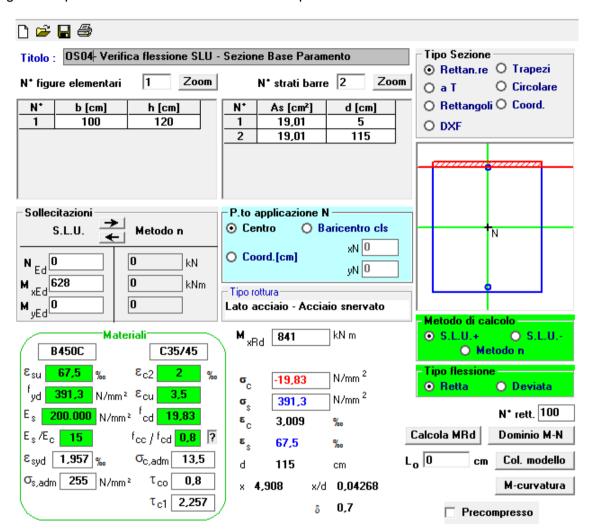


Figura 8-15: Verifica a flessione del paramento nella sezione di base

La verifica risulta soddisfatta.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Verifica a taglio

Di seguito si riporta la verifica SLU a taglio del paramento nella sezione d'incastro.

Taglio resistente nelle sezioni con armatura	trasversale a taglio		
Taglio age	nte V _{Ed} =	223	kN
Larghezza minima della sezione		$b_{\rm w}$	1000 mm
Altezza della sezione		h	1200 mm
Copriferro della sezione		δ	50 mm
Altezza utile della sezione		d	1150 mm
Diametro delle staffe		d_w	12 mm
Numero di braccia		n _w	1
Area totale staffe		A_{sw}	113,04 mm ²
Passo delle staffe		s	200 mm
Inclinazione delle staffe		α	90 deg
Inclinazione delle bielle compresse		θ	21,8 deg
Coeff. maggiorativo per sezioni compresse		α_{c}	1
Resistenza di calcolo a "taglio-trazione"	V _{Rsd} =	572,3	$\textbf{kN} \qquad V_{R_{3d}} = 0, 9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$
Resistenza di calcolo a "taglio-compressione"	V _{Red} =	3776,9	$\textbf{kN} \qquad \boxed{V_{Red} = 0, 9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{ed} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^2\theta)}$
Resistenza a taglio della sezione	V _{Rd} =	572,3	$\textit{kN} \hspace{0.5cm} \boxed{V_{Rd} = \min \; (V_{Rtd}, \; V_{Rcd})}$
Esito della verifica	soddisfatta		

La verifica risulta soddisfatta.

Fondazione

Verifiche SLU

Verifica a flessione

Di seguito si riporta la verifica SLU a flessione della fondazione nella sezione trasversale più sollecitata.

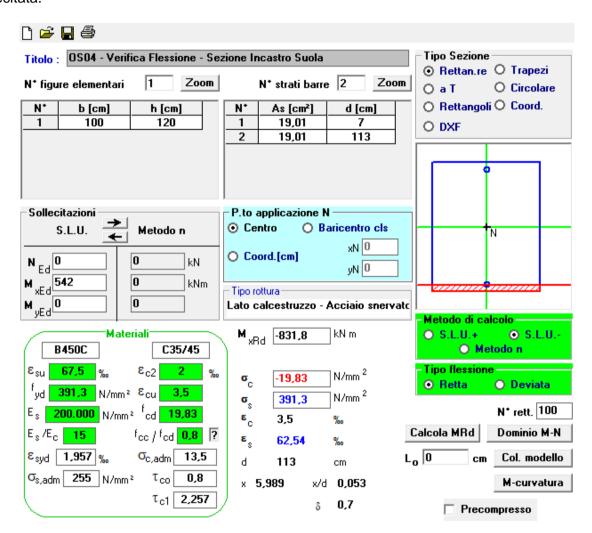


Figura 8-16: Verifica a flessione della fondazione

La verifica risulta soddisfatta.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Verifica a taglio

Di seguito si riporta la verifica SLU a taglio della fondazione nella sezione più sollecitata.

	Taglio agente	$V_{Ed} =$	465	kN			
Larghezza minima della sezione		b_w	1000	mm			
Altezza della sezione		h	1200	mm			
Copriferro della sezione		δ	70	mm			
Altezza utile della sezione		d	1130	mm			
Diametro delle staffe		$d_{\mathbf{w}}$	12	mm			
Numero di braccia		n_w	5				
Area totale staffe		A_{sw}	565,20	mm ²			
Passo delle staffe		s	200	mm			
nclinazione delle staffe		α	90	deg			1
nclinazione delle bielle compresse		θ	21,8	deg	cot(θ)	2,50	2
Coefficiente maggiorativo per sezioni compre	esse	α_{c}	1				2,5
Resistenza di calcolo a "taglio-trazione"		V _{Rsd} =	2811,6	kN	$V_{Rod} = 0,9 \cdot d \cdot \frac{A}{}$	s · f _{yd} · (ctge	$\alpha + \operatorname{ctg}\theta$) $\cdot \sin \alpha$
Resistenza di calcolo a "taglio-compres:	sione"	V _{Red} =	3711,2	kN	$V_{Red} = 0, 9 \cdot d \cdot b_{w}$, ·α _c ·f' _{cd} ·(c	$tg\alpha + ctg\theta)/(1 + ctg^2\theta)$
Resistenza a taglio della sezione		V _{Rd} =	2811,6	kN	$V_{Rd} = \min (V_{Rsd})$	l, V _{Red})	

La verifica risulta soddisfatta

Pali di fondazione

Verifiche SLU

La seguente tabella mostra i risultati della verifica SLU a flessione e a taglio dei pali di fondazione nella sezione d'incastro per la combinazione più gravosa.

Tabella 8.8: Riepilogo verifiche SLU dei pali

File [-]	Diametro sezione [cm]	N _d [kN]	V _d [kN]	M _d [kNm]	V _{Rd} [kN]	M _{Rd} [kNm]
2	100	2024	377	694	1002	1359

Di seguito si riporta la verifica a flessione per i pali.

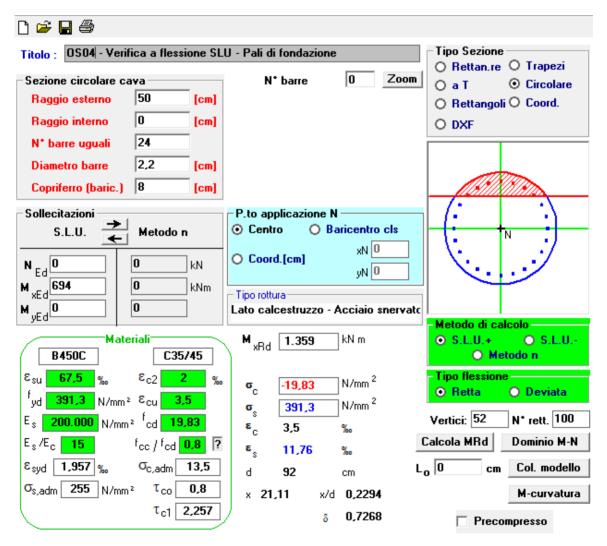


Tabella 8.9: Verifiche a flessione dei pali di fondazione - fila 2

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Di seguito si riporta la verifica a taglio dei pali.

Taglio resistente nelle sezio	ni con ar	matura	trasv	ersale a taglio
Taglio agente	V _{Ed} =	377	kN	
arghezza minima della sezione		b_w	1000	mm
Altezza della sezione		h	800	mm
Copriferro della sezione		δ	75	mm
Altezza utile della sezione		d	725	mm
Diametro delle staffe		d_w	10	mm
Numero di braccia		n_w	2	
Area totale staffe		A_{sw}	157,00	mm ²
Passo delle staffe		s	100	mm
Inclinazione delle staffe		α	90	deg
nclinazione delle bielle compresse		θ	21,8	deg
Coeff. maggiorativo per sezioni compr	esse	α_{c}	1	
Resistenza di calcolo a "taglio- trazione"	V _{Rsd} =	1002,2	kN	$V_{\text{Rod}} = 0,9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin \alpha$
Resistenza di calcolo a "taglio- compressione"	V _{Rcd} =	2364,6	kN [$V_{Red} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$
Resistenza a taglio della sezione	V _{Rd} =	1002,2	kN [$V_{Rd} = \min(V_{Rsd}, V_{Red})$
Esito della verifica	soddisfat	ta		

Tabella 8.10: Verifiche a flessione dei pali di fondazione.

Le verifiche risultano entrambe soddisfatte.

8.4.1.2. **Sezione Tipo 2**

Nelle tabelle seguenti si riportano le armature previste per il muro in esame.

Tabella 8.11: Armature fondazione del muro nella sezione di verifica

Elemento strutturale [-]	Altezza sezione [cm]	Armatura superiore [-]	Armatura inferiore [-]	Copriferro [cm]	Armatura a taglio (staffe) [-]
Fondazione	120	Ø 22/10	Ø 22/10	7	Ø 12/20

Tabella 8.12: Armature paramento del muro nella sezione di verifica

Elemento strutturale [-]	Altezza sezione [cm]	Armatura tesa [-]	Armatura compressa [-]	Copriferro [cm]	Armatura a taglio [-]
Paramento	760	Ø 22/10	Ø 22/20	5	Ø 12/20

Tabella 8.13: Armature dei pali nella sezione di verifica

Elemento strutturale [-]	Diametro sezione [cm]	Armatura longitudinale [-]	Copriferro [cm]	Armatura a taglio (spirale) [-]
Palo	100	24 Ø 24	8	Ø 10/10

Nei paragrafi seguenti si riportano i risultati delle verifiche per le combinazioni di carico più gravose e per le sezioni più sollecitate.

Paramento

Verifiche SLU

Verifica a flessione

Di seguito si riporta la verifica SLU a flessione del paramento nella sezione d'incastro.

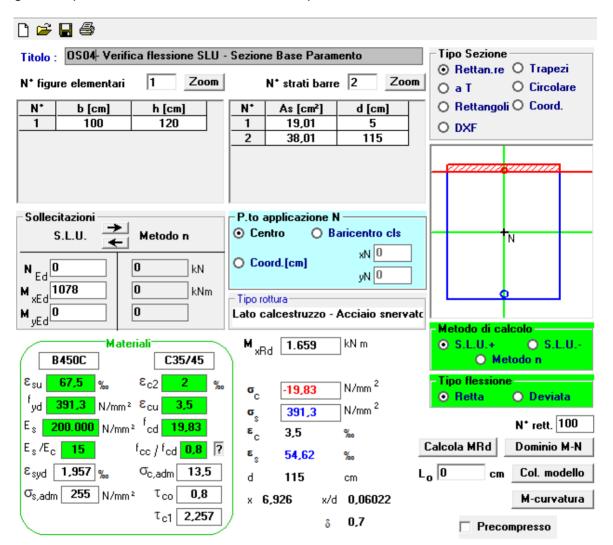


Figura 8-17: Verifica a flessione del paramento nella sezione di base.

La verifica risulta soddisfatta.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Verifica a taglio

Di seguito si riporta la verifica SLU a taglio del paramento nella sezione d'incastro.

Taglio resistente nelle sezioni con armatura	a trasversale a taglio		
Taglio ag	gente V _{Ed} =	335	kN
Larghezza minima della sezione		b_{w}	1000 mm
Altezza della sezione		h	1200 mm
Copriferro della sezione		δ	50 mm
Altezza utile della sezione		d	1150 mm
Diametro delle staffe		d_w	12 mm
Numero di braccia		n_w	1
Area totale staffe		A_{sw}	113,04 mm ²
Passo delle staffe		s	200 mm
Inclinazione delle staffe		α	90 deg
Inclinazione delle bielle compresse		θ	21,8 deg
Coeff. maggiorativo per sezioni compresse		α_{c}	1
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd} =$	572,3	$\textbf{kN} \qquad \boxed{ V_{\text{Rod}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha }$
Resistenza di calcolo a "taglio-compressione"	V _{Rod} =	3776,9	$\textbf{kN} \qquad \boxed{V_{\text{Red}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{ed}} \cdot (\text{ctg}\alpha + \text{ctg}\theta)/(1 + \text{ctg}^2\theta)}$
Resistenza a taglio della sezione	V _{Rd} =	572, 3	$\textit{kN} \boxed{V_{Rd} = \min{(V_{Rsd}, V_{Red})}}$
Esito della verifica	soddisfatta		

La verifica risulta soddisfatta.

Fondazione

Verifiche SLU

Verifica a flessione

Di seguito si riporta la verifica SLU a flessione della fondazione nella sezione trasversale più sollecitata.

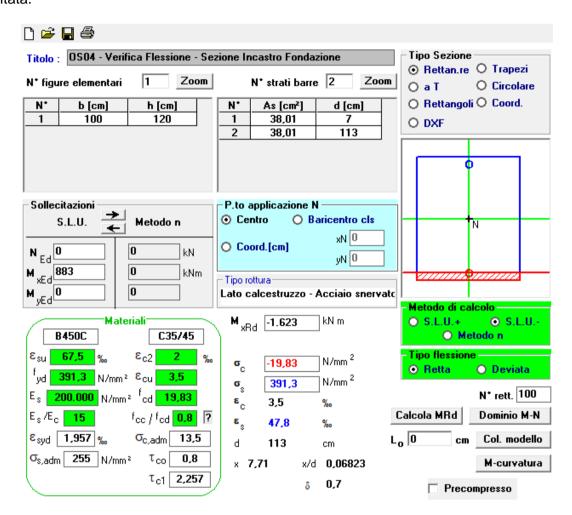


Figura 8-18: Verifica a flessione della fondazione

La verifica risulta soddisfatta.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Verifica a taglio

Di seguito si riporta la verifica SLU a taglio della fondazione nella sezione più sollecitata.

Taglio resistente nelle sezioni con arr	natura trasversa	ale a taglio			
	Taglio agente	$V_{Ed} =$	681	kN	
Larghezza minima della sezione		b_{w}	1000	mm	
Altezza della sezione		h	1500	mm	
Copriferro della sezione		δ	70	mm	
Altezza utile della sezione		d	1430	mm	
Diametro delle staffe		$d_{\mathbf{w}}$	12	mm	
Numero di braccia		n_w	5		
Area totale staffe		A_{sw}	565,20	mm ²	
Passo delle staffe		s	200	mm	
Inclinazione delle staffe		α	90	deg	
Inclinazione delle bielle compresse		θ	21,8	deg	
Coefficiente maggiorativo per sezioni compresse		α_{c}	1		
Resistenza di calcolo a "taglio-trazione"		V _{Rsd} =	3558,0	kN	$\boxed{ V_{Rid} = 0,9 \cdot d \cdot \frac{A_{vw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha }$
Resistenza di calcolo a "taglio-compressione		V _{Red} =	3711,2	kN	$\boxed{ V_{\text{Red}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f^{*}_{\text{ed}} \cdot \left(\text{ctg}\alpha + \text{ctg}\theta \right) / (1 + \text{ctg}^2\theta) }$
Resistenza a taglio della sezione		V _{Rd} =	3558,0	kN	$V_{Rd} = \min \left(V_{Rsd}, V_{Rcd} \right)$
Esito della verifica		soddisfatta			

La verifica risulta soddisfatta

Pali di fondazione

Verifiche SLU

La seguente tabella mostra i risultati della verifica SLU a flessione e a taglio dei pali di fondazione nella sezione d'incastro per la combinazione più gravosa.

Tabella 8.14: Riepilogo verifiche SLU dei pali

File [-]	Diametro sezione [cm]	N _d [kN]	V _d [kN]	M _d [kNm]	V _{Rd} [kN]	M _{Rd} [kNm]
2	100	3353	567	1155	1002	1585

Di seguito si riporta la verifica a flessione per i pali.

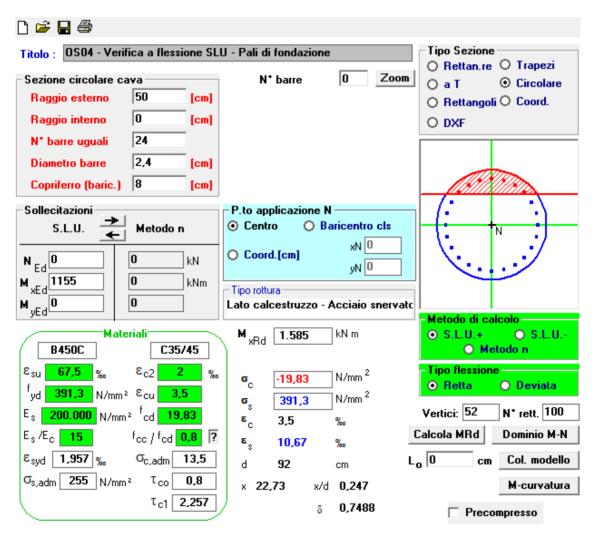


Tabella 8.15: Verifiche a flessione dei pali di fondazione.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Di seguito si riporta la verifica a taglio dei pali.

Taglio resistente nelle sezioni con armatura trasversale a taglio						
Taglio agente	V _{Ed}	=	567	kN		
Larghezza minima della sezione			b _w	1000	mm	
Altezza della sezione			h	800	mm	
Copriferro della sezione			δ	75	mm	
Altezza utile della sezione			d	725	mm	
Diametro delle staffe			d_w	10	mm	
Numero di braccia			n _w	2		
Area totale staffe			A_{sw}	157,00	mm ²	
Passo delle staffe			s	100	mm	
Inclinazione delle staffe			α	90	deg	
Inclinazione delle bielle compresse			θ	21,8	deq	
Coeff. maggiorativo per sezioni compr	esse		α_{c}	1		
Resistenza di calcolo a "taglio- trazione"	V_{Rsd}	=	1002,2	kN	$V_{Rod} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$	
Resistenza di calcolo a "taglio- compressione"	V _{Red}	=	2364,6	kN	$V_{\text{Red}} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{e} \cdot f'_{ed} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^{2}\theta)$	
Resistenza a taglio della sezione	V _{Rd}	=	1002,2	kN [$V_{Rd} = \min(V_{Rsd}, V_{Red})$	
Esito della verifica	soddi	sfat	ta			

Tabella 8.16: Verifiche a flessione dei pali di fondazione - fila 2

Le verifiche risultano entrambe soddisfatte.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

8.4.2. VERIFICHE GEOTECNICHE

8.4.2.1. Capacità portante verticale del palo

Per quanto riguarda l'espressione del carico limite del singolo palo (Q_{lim}) , questo viene convenzionalmente espresso come somma di due contributi, un contributo legato alla capacità portante limite alla base (Q_b) e una capacità portante limite di fusto (Q_l) .

$$Q_{lim} = Q_b + Q_l$$

Per quanto concerne la capacità portante limite alla base (Q_b), in generale, per un mezzo dotato di coesione e attrito si pone:

$$q_b = N_q \cdot \sigma_{vL} + N_c \cdot c$$

in cui σ_{VL} rappresenta la tensione litostatica verticale alla profondità della base del palo ed N_q e N_c sono fattori adimensionali funzioni dell'angolo d'attrito e del rapporto L/D.

Tra i due parametri sussiste la relazione:

$$N_c = (N_q - 1) \cot \varphi$$

Per quanto riguarda invece, la capacità portante di fusto, questa assumerà espressioni diverse a seconda che venga valutata in termini di tensioni efficaci o in termini di tensioni totali, in funzione del comportamento dei terreni attraversati.

L'espressione di tale capacità portante limite, in termini di tensioni efficaci, sarà valutata con la sequente formulazione:

$$Q_I = \pi^* D \int \mu^* k^* \sigma'_{v}^* dz$$

dove:

- D = diametro del palo;
- μ = coefficiente di attrito palo-terreno;
- k = coefficiente adimensionale che esprime il rapporto tra la tensione normale che agisce alla profondità z sulla superficie laterale del palo e la tensione verticale alla stessa profondità:
- σ'_v = tensione verticale efficace alla profondità z.

L'integrale avrà come estremi di integrazione la profondità dal piano di campagna a cui inizia lo strato in esame (z_1) e la profondità alla quale termina lo strato (z_2) .

La stratigrafia di calcolo del terreno presente in sito è a grana grossa, pertanto non si sono considerate le condizioni di breve termine.

La capacità portante di un palo di fondazione è funzione del diametro del singolo palo e dell'interasse tra i pali, e può essere valutata tramite la seguente disuguaglianza:

$$i \ge 3 \cdot D_{\mathrm{palo}} \implies A_{\mathrm{friction}} = \pi \cdot D_{\mathrm{palo}}$$

Il valore interasse tra i singoli pali dell'opera in oggetto soddisfa la disuguaglianza, pertanto non è necessario valutare le possibili riduzioni della resistenza disponibile per effetto di gruppo.

In accordo con la vigente normativa (DM del 17 Gennaio 2018), le verifiche sono state effettuate considerando l'Approccio 2:

• A1+M1+R3

in cui:

PROGETTAZIONE ATI:

- o A1 sono i coefficienti parziali per le azioni, riportato nella tabella 6.2.I;
- o M1 sono i coefficienti parziali per i parametri geotecnici riportati nella tabella 6.2.II;
- R3 sono i coefficienti parziali da applicare alle resistenze caratteristiche (resistenza di base e laterale) riportati nella tabella 6.4.II.

GESTIONE PROGETTI INGEGNERIA srl

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Per il calcolo della resistenza si applica inoltre il fattore di correlazione ζ riportato nella tabella 6.4.IV (ζ =1.7). La portata totale di progetto del palo è così calcolata:

$$Q_{d,tot} = \frac{\frac{Q_L}{R3} + \frac{Q_B}{R3}}{\xi}$$

dove il coefficiente R3 è pari a 1.15 relativamente alla resistenza laterale di compressione e 1.35 per la resistenza alla base.

Nel caso di pali soggetti a forze di trazione, il coefficiente R3 da applicare alla portata per attrito laterale vale 1.25. La verifica risulta soddisfatta quando il carico massimo di progetto del palo, risulta inferiore alla portata totale di progetto del palo.

Nel seguito si riportano i risultati delle verifiche condotte in condizioni drenate.

Sezione Tipo 1

Nelle tabelle seguenti sono riportati i valori dei carichi assiali massimi e delle portanze verticali dei pali di fondazione. Inoltre, si moltiplica il valore dell'azione permanente del peso del palo per il coefficiente di amplificazione $\gamma_G=1.3$.

Tabella 8.17: Azioni assiali sui pali (SLU/SLV)

File	Comb.	N _d [kN]	Peso palo [kN]	S _{idr} [kN]	γG	N _{d,tot}
2	SLU	2024	353.4	153.2	1.3	2954.8

dove:

N_{d,tot} è il carico massimo di progetto del palo allo stato limite ultimo, ottenuto sommando al
carico agente in testa al palo, il peso proprio dello stesso e sottraendo l'eventuale
sottospinta idraulica S_{idr}.

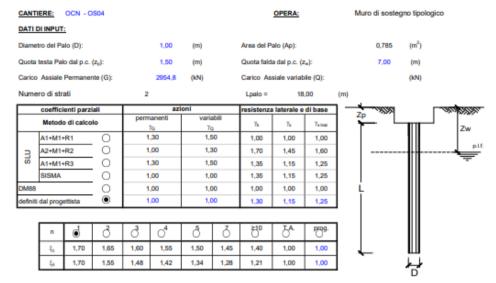
Tabella 8.18: Verifiche di capacità portante dei pali

File	Diametro	Lunghezza	Q _{CD}
[-]	[cm]	[m]	[kN]
2	100	18	3182.1

dove:

Q_{CD} è il valore di progetto della capacità portante del palo in condizioni drenate;

Di seguito è riportato il procedimento di calcolo del carico limite verticale per i pali.



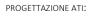
OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

					TRI MEDI			
Strato	Spess			Parametri del terreno				
otrato	opess	Tipo di terreno	7	C' med	med	Curred		
(-)	(m)		(kN/m²)	(kPa)	(*)	(kPa)		
1	5,00	Deposito ghialoso	20,00	0,0	36,0			
2	13,00	Deposito sabbioso	19,00	0,0	34.0			
	-		+					
	-1							

	coemicient	i di Calcoi	
k	μ	a	Œ.
(-)	(-)	(-)	(-)
0,41	0,73		
0,44	0,67		

			PARAME'	TRI MIN	IMI (solo p	per SLU)
Strato	Spess		1	arametri	del terren	o
otrato	opess	Tipo di terreno	7	C'min	♥ min	C _{u min}
(-)	(m)		(kN/m²)	(kPa)	(*)	(kPa)
1	5,00	Deposito ghialoso	20,00	0,0	34,0	
2	13,00	Deposito sabbioso	19,00	0,0	32,0	
			_			
			_			
_			_			
_	_		_			
_	_		_			
_						


	Coefficienti di Calcolo							
k	Д	a	α					
(-)	(-)	(-)	(-)					
0,44	0,67							
0,47	0,62							

	C				media			minima (solo SLU)				
strato	Spess	Tipo di terreno	Qsi	Nq	No	qb	Qbm	Qsi	Nq	No	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	5,00	Deposito ghialoso	376,4					373,6				
2	13,00	Deposito sabbioso	2348,5	25,50	0,00	6426,0	5047,0	2320,2	20,15	0,00	5076,6	3987,2

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	IA.	CAPACIT	A' PORTANTE MINIMA	
Nd = N _G · y _G + N _Q · y _Q	base	R _{b;cal med} =	5047,0 (kN)	base	R _{b;cal min} =	3987,2 (kN)
Nd = 2954,8 (kN)	laterale	R _{s;cal med} =	2724,9 (kN)	laterale	R _{s;cal min} =	2693,8 (kN)
	totale	R _{c;cal med} =	7771,8 (kN)	totale	R _{c;cal min} =	6681,0 (kN)
CAPACITA' PORTANTE CARATTERISTICA		CAPACITA' PORTA	ANTE DI PROGETTO			

CAPACITA' PORTANTE CARATTERI	STIC	Δ	CAPACITA' PORTANTE DI PROGETTO		
R _{b,k} = Min(R _{b,cal med} /E ₁ ; R _{b,cal min} /E ₄)=	2345,4 (kN)	$R_{c,d} = R_{bb}/yb + R_{ab}/ys$	Fs = Rc	,d / Nd
R _{s,k} = Min(R _{s,cal med} /\$ ₀ ; R _{s,cal min} /\$ ₆)=	1584,6 (kN)	R _{c,d} = 3182,1 (kN)	Fs =	1,08
R _{c,k} = R _{b,k} + R _{s,k}	-	3930,0 (kN)			

Figura 8-19: Verifica a carico limite verticale del singolo – Condizioni drenate

DICLUITATI

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Sezione Tipo 2

Nelle tabelle seguenti sono riportati i valori dei carichi assiali massimi e delle portanze verticali dei pali di fondazione. Inoltre, si moltiplica il valore dell'azione permanente del peso del palo per il coefficiente di amplificazione $\gamma_G=1.3$.

Tabella 8.19: Azioni assiali sui pali (SLU/SLV)

_	File	Comb.	Nd	Peso palo	Sidr	γG	N _{d,tot}
	[-]	[-]	[kN]	[kN]	[kN]	•	[kN]
_	2	SLU	2917	392.7	176.7	1.3	3197.8

dove:

N_{d,tot} è il carico massimo di progetto del palo allo stato limite ultimo, ottenuto sommando al
carico agente in testa al palo, il peso proprio dello stesso e sottraendo l'eventuale
sottospinta idraulica S_{idr}.

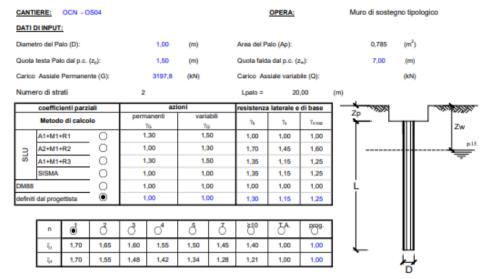
Tabella 8.20: Verifiche di capacità portante dei pali

File	Diametro	Lunghezza	Q _{CD}
[-]	[cm]	[m]	[kN]
2	100	20	3533.1

dove:

• Q_{CD} è il valore di progetto della capacità portante del palo in condizioni drenate;

Di seguito è riportato il procedimento di calcolo del carico limite verticale per i pali.



OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

					TRI MEDI	
Strato	Spess			arametri	del terren	0
Strato	opess	Tipo di terreno	T	C' med	med	Curred
(-)	(m)		(kN/m ²)	(kPa)	(*)	(kPa)
1	5,00	Deposito ghialoso	20,00	0,0	36,0	
2	15,00	Deposito sabbioso	19,00	0,0	34,0	
(n.b.: lo	spessore	degli strati è computato dalla quota di intrad	osso del plint	0)		

	oefficient	i di Calcol	0
k	μ	a	Œ.
(-)	(-)	(-)	(-)
0,41	0,73		
0,44	0,67		

Strato	Spess			arametri	Parametri del terreno						
otrato	opess	Tipo di terreno	7	C'min	♥ min	C _{u min}					
(-)	(m)		(kN/m²)	(kPa)	(*)	(kPa)					
1	5,00	Deposito ghiaioso	20,00	0,0	34,0						
2	15,00	Deposito sabbioso	19,00	0,0	32,0						
	_										
	_		_			_					
	_		_			_					
	_										

	oefficient	i di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0,44	0,67		
0,47	0,62		

Strato	Spess			media				minima (solo SLU)				
Strato	apess	Tipo di terreno	Qsi	Nq	No	qb	Qbm	Qsi	Nq	No	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	5,00	Deposito ghialoso	376,4					373,6				
2	15,00	Deposito sabbioso	2836,1	25,21	0,00	6807,9	5346,9	2801,9	19,89	0,00	5371,0	4218,4
	_											
	_											
	_											
	_											_

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	IA	CAPACITA' PORTANTE MINIMA			
$Nd = N_G \cdot y_G + N_Q \cdot y_Q$	base	R _{b;cal med} =	5346,9 (kN)	base	R _{b;cal min} =	4218,4 (kN)	
Nd = 3197,8 (kN)	laterale	R _{s;cal med} =	3212,5 (kN)	laterale	R _{s;cal min} =	3175,5 (kN)	
	totale	R _{c;cal med} =	8559,3 (kN)	totale	R _{c;cal min} =	7393,9 (kN)	
CAPACITA' PORTANTE CARATTERISTICA		CAPACITA' PORTA	ANTE DI PROGETTO				

$R_{b,k} = Min(R_{b,cal mod}/\xi_1; R_{b,cal min}/\xi_1)=$	2481,4 (kN)	R _{c,d} = R _{bb} /yb + R _{sb} /ys	Fs = Ro	,d / Nd
$R_{x,k} = Min(R_{x,cal med}/\xi_0; R_{x,cal min}/\xi_0)=$	1867,9 (kN)	R _{c,d} = 3533,1 (kN)	Fs =	1,10
R_1 = R_1 + R_1 =	4349,3 (kN)			

Figura 8-20: Verifica a carico limite verticale del singolo palo – Condizioni drenate

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

8.4.2.2. Capacità portante orizzontale del palo

Per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali valgono le indicazioni riportate al paragrafo 6.4.3.1.1 del DM del 17/01/2018.

Per la determinazione del valore di progetto della resistenza è stato applicato il coefficiente parziale della Tab. 6.4.VI.

La presenza della struttura di fondazione in testa ai pali garantisce il collegamento tra i singoli pali e permette di effettuare la verifica tenendo conto delle condizioni di vincolo in testa.

Essendo la distanza tra i singoli pali sufficiente a garantire la massima resistenza del singolo, non è necessario tenere conto delle possibili riduzioni della resistenza per effetto di gruppo.

Di seguito è riportato il procedimento di calcolo del carico limite orizzontale per i pali.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Sezione Tipo 1

opera Muro di sostegno tipologico OCN - OS04

										r===	
	coefficie	enti parziali		<i>I</i>	4	M		R	quota	strato 1	m :
	Metodo	di calcolo		permanenti γc	variabili Yo	γ_{ϕ}	γ _{cu}	γт		g, falda	13/13/1
	A1+M1+R	1	0	1,30	1,50	1,00	1,00	1,00	1	q. falda	11
SLU	A2+M1+R	2	0	1,00	1,30	1,00	1,00	1,60	quota	strato 2	
꺙	A1+M1+R	3	0	1,30	1,50	1,00	1,00	1,30		8	41
l	SISMA		0	1,00	1,00	1,00	1,00	1,30		. ≥	1112
DM88	•		0	1,00	1,00	1,00	1,00	1,00			
definiti da	l progettista	ı	•	1,00	1,00	1,00	1,00	1,30	quota	strato	
										. 3	
n	1 •	2	°	o ⁴	5	7	≥10	T.A .	prog.		l If
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00		11
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00		

						Parametri m	edi	Parametri minimi		
strati terreno	descrizione	quote	γ	y'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	Deposito ghiaioso	100,00	20	10	36	3,85		34	3,54	
✓ strato 2	Deposito sabbioso	95,00	19	9	34	3,54		32	3,25	
strato 3						1,00			1,00	
strato 4						1,00			1,00	
strato 5						1,00			1,00	
strato 6						1,00			1,00	

 Quota falda
 93 (m)

 Diametro del palo D
 1,00 (m)

 Lunghezza del palo L
 18,00 (m)

 Momento di plasticizzazione palo My
 1350,14 (kNm)

 Step di calcolo
 0,01 (m)

palo impedito di ruotare

C palo libero

	н	medio				н	minimo		
Palo lungo	_	1239,4	(kN)			_	1201,6	(kN)	
Palo intermedio		8050,3	(kN)				7402,0	(kN)	
Palo corto		27300,4	(kN)				25114,4	(kN)	
	H_{med}	1239,4	(kN)	Palo lungo		H _{min}	1201,6	(kN)	Palo lungo
	H _k =	Min(H _{med} /l	ξ₃;R _{min}	/ ξ 4)		706,8	0	(kN)	
	н	$I_d = H_k/\gamma_T$				543,6	9	(kN)	
	Carico Assial	e Permane	nte (G):		G =	377		(kN)	
	Carico Assial	e variabile	(Q):		Q =	0		(kN)	
	F _d = G-	γ _G + Q · γ _Q	=			377,0	0	(kN)	
	FS =	= Hd / Fd =				1,44			

Figura 8-21. Verifica a carico limite verticale per il singolo palo – condizioni drenate

PROGETTAZIONE ATI:

ĮΦĮ

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Н

Sezione Tipo 2

opera Muro di sostegno tipologico OCN - OS04

										, 	
	coefficie	enti parziali			1	N		R	quota	strato 1	
	Metodo	di calcolo		permanenti Y _G	variabili Yo	Yφ	Yeu	γт		مراکز ارتاری <u>q. tal</u> da	13/1/21
	A1+M1+R	1	0	1,30	1,50	1,00	1,00	1,00	1	_	
SLU	A2+M1+R	2	0	1,00	1,30	1,00	1,00	1,60	quota	strato 2	
ਲ	A1+M1+R	3	0	1,30	1,50	1,00	1,00	1,30	1	2	11 11
	SISMA		0	1,00	1,00	1,00	1,00	1,30	1	>	1112
DM88			0	1,00	1,00	1,00	1,00	1,00	1	<i>≫</i>	
definiti da	l progettista	1	●	1,00	1,00	1,00	1,00	1,30	quota :	strato	ا الخيا ا
									•	3	
n	1 •	0	ೆ	o ⁴	O	7	≥10 ○	T.A.	prog.	×	
ξ,	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00		

						Parametri m	edi	Parametri minimi			
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu	
		(m)	(kN/m ³)	(kN/m ³)	(")		(kPa)	(°)		(kPa)	
p.c.=strato 1	Deposito ghiaioso	100,00	20	10	36	3,85		34	3,54		
⊽ strato 2	Deposito sabbioso	95,00	19	9	34	3,54		32	3,25		
□ strato 3						1,00			1,00		
□ strato 4						1,00			1,00		
strato 5						1,00			1,00		
□ strato 6						1,00			1,00		

1,28

1,21

1,00

1,00

 Quota falda
 93 (m)

 Diametro del palo D
 1,00 (m)

 Lunghezza del palo L
 20,00 (m)

 Momento di plasticizzazione palo My
 1581,43 (kNm)

 Step di calcolo
 0,01 (m)

1,70

1,55

1,48

1,42

1,34

C palo libero

	н	medio				н	minimo		
Palo lungo	_	1371,4	(kN)			_	1333,5	(kN)	
Palo intermedio		9625,0	(kN)				8850,9	(kN)	
Palo corto		32521,2	(kN)				29918,2	(kN)	
	H _{med}	1371,4	(kN)	Palo lungo		H _{min}	1333,5	(kN)	Palo lungo
	H _k =	Min(H med/	ξ₃;R _{min}	/ Ę 4)		784,4	3	(kN)	
	н	$_{\rm d}$ = $H_{\rm k}/\gamma_{\rm T}$				603,4	11	(kN)	
	Carico Assial	e Permane	nte (G):		G =	567		(kN)	
	Carico Assial	e variabile	(Q):		Q =	0		(kN)	
	F _d = G·	γ ₀ + Q · γ ₀	=			567,0	0	(kN)	
	FS =	Hd/Fd =				1,06	i		

Figura 8-22. Verifica a carico limite verticale per il singolo palo – condizioni drenate

palo impedito di ruotare

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

8.4.2.3. Stabilità globale

Per le verifiche di stabilità globale è stato utilizzato il codice di calcolo MAX versione 16 di AZTEC Informatica.

Le verifiche di stabilità sono state svolte, con il metodo dell'equilibrio limite (Bishop), analizzando le combinazioni di carico statica e sismica.

L'analisi sismica è stata condotta con il metodo pseudo-statico, dove l'azione del sisma è rappresentata da una forza statica equivalente che non varia nel tempo, pari al prodotto di un coefficiente k (coefficiente sismico) per il peso della massa potenzialmente instabile.

Le verifiche di stabilità globale sono state eseguite considerando la Combinazione 2 dell'Approccio 1 del DM del 17/01/2018 (A2+M2+R2, dove R2=1.1, par. 6.8.2 NTC18). Il fattore di sicurezza deve pertanto essere ≥1.1 (R2) in condizioni statiche e in condizioni sismiche.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Sezione Tipo 1

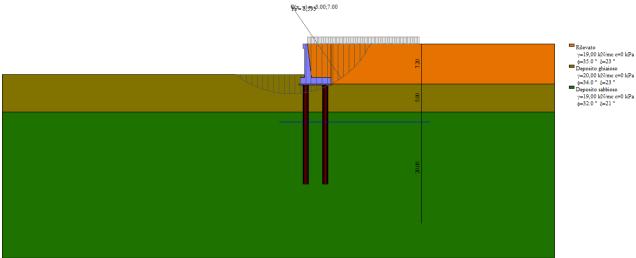


Figura 8-23. Analisi stabilità – Combinazione piu sfavorevole (Comb. 5) – FS=3.59

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Sezione Tipo 2

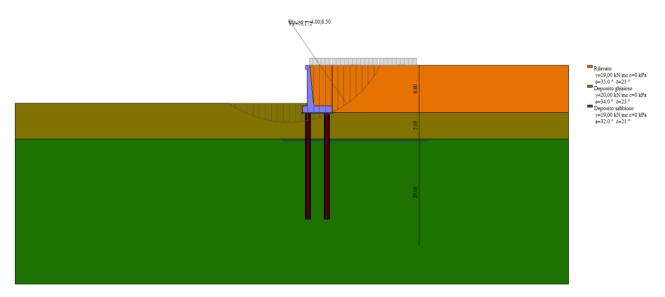


Figura 8-24. Analisi stabilità - Combinazione piu sfavorevole (Comb. 5) - FS=3.17

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

9. ALLEGATI DI CALCOLO

9.1.1. **SEZIONE TIPO 1**

Dati

Materiali

Simbologia adottata Indice materiale Descr Descrizione del materiale

Calcestruzzo armato

Classe di resistenza del cls Α Classe di resistenza dell'acciaio Peso specifico, espresso in [kN/mc]

Resistenza caratteristica a compressione, espressa in [kPa]

Modulo elastico, espresso in [kPa] Coeff. di Poisson Ε

Coeff. di omogenizzazione acciaio/cls n Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	Α	γ	Rck	E	ν	n	ntc
				[kN/mc]	[kPa]	[kPa]			
1	C35/45	C35/45	B450C	24,5170	45000	34625349	0.30	15.00	0.50

Acciai

Descr	fyk	fuk
	[kPa]	[kPa]
B450C	450000	540000

Tipologie pali

Simbologia adottata

Indice tipologia palo Descr Descrizione tipologia palo

Contributo portanza palo (laterale e/o punta)

Tecnologia costruttiva (trivellato, infisso o elica continua)

Vincolo palo-fondazione: Cerniera o Incastro (libero o impedito di ruotare in testa) Imat Indice materiale che lo costituisce

usa metodo di Bustamante-Doix

ΡN Portanza nota

Portanza di punta e laterale caratteristica, espressa in [kN] Pp, Pl

n°	Descr	P	Т	V	Imat	BD	PN	Pp	Pi
1	Tipologia palo	Laterale + Punta	Elica continua	Incastro	1	NO	NO		

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	Α
	[m]	[m]	[°]
1	0,00	0,00	0.000
2	20,00	0,00	0.000

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Falda

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	Х	Y	Α
	[m]	[m]	[°]
1	-5,00	-13.50	0.000
2	22,00	-13.50	0.000

Geometria muro

Geometria paramento e fondazione

Lunghezza muro	10,00	[m]
<u>Paramento</u>		
Materiale	C35/45	
Altezza paramento	6,00	[m]
Altezza paramento libero	5,50	[m]
Spessore in sommità	0,50	[m]
Spessore all'attacco con la fondazione	•	
	1,20	[m]
Inclinazione paramento esterno	0,00 6.70	[0]
Inclinazione paramento interno	6,70	[°]
Mensola di marciapiede		
Posizione rispetto alla testa del muro	0,00	[m]
Lunghezza	0,30	[m]
Spessore all'estremità libera	0,80	[m]
Spessore all'incastro	0,80	[m]
Spessore all incastro	0,00	נייין
Fondazione		
Materiale	C35/45	
Lunghezza mensola di valle	0,80	[m]
Lunghezza mensola di monte	3,50	[m]
Lunghezza totale	5,50	[m]
Inclinazione piano di posa	0,00	[°]
Spessore	1,20	[m]
Spessore magrone	0,20	[m]
Spessore magnone	0,20	נייין

Descrizione pali di fondazione

Simbologia adottata

numero d'ordine della fila n° X I

ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m] interasse tra i pali, espressa in [m]

franco laterale (distanza minima dal bordo laterale), espressa in [m]

Numero di pali della fila Np

diametro dei pali della fila espresso in [m] lunghezza dei pali della fila espressa in [m]

inclinazione dei pali della fila rispetto alla verticale espressa in [°] allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI) ALL

n°	Tipologia	Х	I	f	Np	D	L	α	ALL
		[m]	[m]	[m]		[m]	[m]	[°]	
1	Tipologia palo	1,00	4,00	0,50	3	1,0000	18,00	0,00	Centrati
2	Tipologia palo	4,50	4,00	0,50	3	1,0000	18,00	0,00	Centrati

Descrizione terreni

Parametri di resistenza

Simbologia adottata

γs

Cesp

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Indice del terreno Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]

Peso di volume saturo del terreno espresso in [kN/mc]

 $_{\delta}^{\varphi}$ Angolo d'attrito interno espresso in [°] Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa] Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tensione tangenziale limite, espressa in [kPa]

n°	Descr	γ	γsat	ф	δ	С	са	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	Rilevato	19,0000	19,0000	35.000	23.333	0	0	1.000	0	(CAR)
				35.000	23.333	0	0		0	(MIN)
				35.000	23.333	0	0		0	(MED)
2	Deposito ghiaioso	20,0000	20,0000	34.000	22.670	0	0	1.000	0	(CAR)
				34.000	22.667	0	0		0	(MIN)
				36.000	24.000	0	0		0	(MED)
3	Deposito sabbioso	19,0000	19,0000	32.000	21.333	0	0	1.000	0	(CAR)
				32.000	21.333	0	0		0	(MIN)
				34.000	22.667	0	0		0	(MED)

Stratigrafia

Simbologia adottata

Indice dello strato

Н Spessore dello strato espresso in [m] Inclinazione espressa in [°]

Terreno dello strato Terreno

Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm²/cm

Per calcolo pali (solo se presenti)

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Coefficiente di spinta

Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kststa, Kstsis Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm ³]	[Kg/cm³]	[Kg/cm³]				
1	7,20	0.000	Rilevato	0.000	0.000	2,157	0,500	1,000		
2	5,00	0.000	Deposito ghiaioso	0.000	0.000	2,157	0,500	1,000		
3	20,00	0.000	Deposito sabbioso	0.000	0.000	1,018	0,500	1,000		

Terreno di riempimento:

Rilevato

Inclinazione riempimento (rispetto alla verticale): 0.00 [0]

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN] Fy M Xi Xf Momento espresso in [kNm]

Ascissa del punto iniziale del carico ripartito espressa in [m] Ascissa del punto finale del carico ripartito espressa in [m]

Intensità del carico per x=Xi espressa in [kN]

Qi Qi Intensità del carico per x=X_f espressa in [kN]

Condizione nº 1 (Carico stradale) - VARIABILE

Coeff. di combinazione $\Psi_0=1.00 - \Psi_1=1.00 - \Psi_2=1.00$

Carichi sul terreno

n°	Tipo	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0,00	20,00	20,0000	20,0000

Condizione nº 2 (Urto) - ECCEZIONALE

Carichi cul muro

Cai	ici ii Sui Illul O									
n°	Tipo	Dest	X; Y	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

n°	Tipo	Dest	X; Y	Fx	Fy	M	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00; 0,00	37,5000	0,0000	25,0000				

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche Combinazioni					nazioni sismi	
			UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	γQT,sfav	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	ni statiche	Combinazioni sismiche		
		M1	M1 M2		M2	
Tangente dell'angolo di attrito	γtan(_φ ')	1.00	1.25	1.00	1.00	
Coesione efficace	γc'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali yr per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	Combinazioni statiche			Combinazioni sismiche		
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

Carichi verticali. Coeff. parziali γ_R da applicare alle resistenze caratteristiche

Resistenza		Pali infissi		Pali trivellati			Pali ad elica continua			
		R1	R2	R3	R1	R2	R3	R1	R2	R3
Punta	γь			1.15			1.30			1.30
Laterale compressione	γs			1.15			1.15			1.15
Totale compressione	γt			1.15			1.25			1.25
Laterale trazione	γst			1.25			1.25			1.25

Carichi trasversali. Coeff. parziali y_R da applicare alle resistenze caratteristiche

		R1	R2	R3
Trasversale	γt			1.30

Coefficienti di riduzione ζ per la determinazione della resistenza caratteristica dei pali Numero di verticali indagate 1 ζ_3 =1.70 ζ_4 =1.70

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_{Q1} \; Q_{k1} \; + \; \gamma_{Q2} \; Q_{k2} \; + \; \gamma_{Q3} \; Q_{k3} \; + \; ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j},\ \Psi_{1,j},\ \Psi_{2,j}$ sono definiti nelle singole condizioni variabili.

I valori dei coeff. γ_G e γ_Q , sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Simbologia adottata

γ Coefficiente di partecipazione della condizione Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Carico stradale	1.50	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Carico stradale	1.30	1.00	Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 7 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 8 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Carico stradale	1.50	1.00	Sfavorevole

Combinazione nº 10 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Condizione	γ	Ψ	Effetto
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 11 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 12 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

Comune Cagliari Provincia Cagliari Regione Sardegna Latitudine 39.214903 Longitudine 9.109499 Indice punti di interpolazione -1 - -1 - -1 - -1 Vita nominale 50 anni Classe d'uso ΙV

Tipo costruzione Normali affollamenti

Vita di riferimento 100 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a g	[m/s ²]		0.600	0.310
Accelerazione al suolo	a ₉ /g	[%]		0.061	0.032
Massimo fattore amplificazione spettro orizzontale	F0			2.976	2.730
Periodo inizio tratto spettro a velocità costante	Tc*			0.371	0.307
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.200	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh [%]	kv [%]
Ultimo	1.000	7.339	3.670
Ultimo - Ribaltamento	1.000	7.339	3.670
Esercizio	1.000	3.792	1.896

Forma diagramma incremento sismico Rettangolare

Opzioni di calcolo

<u>Spinta</u>

Metodo di calcolo della spinta Culmann

Tipo di spinta Spinta a riposo

Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

. . .

Partecipazione spinta passiva terreno antistante 0.00
Partecipazione resistenza passiva dente di fondazione 50.00
Componente verticale della spinta nel calcolo delle sollecitazioni NO
Considera terreno sulla fondazione di valle NO
Considera spinta e peso acqua fondazione di valle NO

<u>Spostamenti</u>

Modello a blocchi

Non è stato richiesto il calcolo degli spostamenti

Spostamento limite 0,0500 [m]

Opzioni calcolo pali

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Portanza verticale

Metodo di calcolo della portanza alla punta Berezantzev

Metodo di calcolo della portanza alla laterale Integrazione delle tensioni tangenziali (ks σ_v tan(δ)+ca)

Correzione angolo di attrito in funzione del tipo di palo (infisso/trivellato)

Non attiva

Andamento pressione verticale nel calcolo della portanza alla punta σ_v con la profondità Pressione geostatica

Andamento pressione verticale nel calcolo della portanza laterale Pressione geostatica

Portanza trasversale

Costante di Winkler: da strato Criterio rottura palo-terreno

- Spostamento limite

- Pressione limite

- Palo infinitamente elastico

Cedimenti

Metodo di calcolo

Spostamento limite alla punta Spostamento limite laterale Non attivo

Pressione passiva con moltiplicatore M=3,00

Non attivo

Metodo agli elementi finiti

0,0100 [m] 0,0050 [m]

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Tipo azione

Inclinazione della spinta, espressa in [°] Valore dell'azione, espressa in [kN] Componente in direzione X ed Y dell'azione, espressa in [kN]

Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	Py
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	299,02	23,33	274,57	118,44	4,20	-4,23
	Peso/Inerzia muro			0,00	293,23/0,00	0,77	-5,11
	Peso/Inerzia terrapieno			0,00	565,32/0,00	2,24	-2,89
	Peso dell'acqua sulla fondazione di valle				0,00	0,00	0,00
	Resistenza pali			-294,04			

Scarichi in testa ai pali

Simbologia adottata

Indice/Tipo combinazione

Indice palo

Ip N M Sforzo normale, espresso in [kN] Momento, espresso in [kNm] Taglio, espresso in [kN]

Cmb	Ip	N	М	Т
		[kN]	[kNm]	[kN]
1 - STR (A1-M1-R3)	1	884,44	-888,22	-457,61
	2	2372 19	-888 22	-457 61

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmh Indice/Tipo combinazione

Sisma (H: componente orizzontale, V: componente verticale)

FSsco Coeff. di sicurezza allo scorrimento **FS**RIB Coeff. di sicurezza al ribaltamento FSOLIM Coeff. di sicurezza a carico limite FSSTAB Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento **FSUPL** Coeff, di sicurezza a sollevamento

Cmb	Sismica	FSsco	FS RIB	FS QLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		1.071					
2 - STR (A1-M1-R3)		1.193					
3 - STR (A1-M1-R3)	H + V	1.155					
4 - STR (A1-M1-R3)	H - V	1.220					
5 - GEO (A2-M2-R2)					3.593		
6 - GEO (A2-M2-R2)					4.373		
7 - GEO (A2-M2-R2)	H + V				3.992		
8 - GEO (A2-M2-R2)	H - V				4.053		
9 - EQU (A1-M1-R3)			20.413				
10 - EQU (A1-M1-R3)			17.202				
11 - EQU (A1-M1-R3)	H + V		19.901				
12 - EOU (A1-M1-R3)	H - V		18.958				

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione Ic C R

Centro superficie di scorrimento, espresso in [m] Raggio, espresso in [m]

Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
5 - GEO (A2-M2-R2)	-3.00: 7.00	15.93	3,593

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) neso della striscia espresso in [kN] Qy Qf carico sulla striscia espresso in [kN]

carico acqua sulla striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kPa]

b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kPa]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa] Tx: Tv

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	15,54	25,19	0,00	11,32 - 0,97	60.161	29.256	0	0,0	
2	43,35	25,19	0,00	0,97	53.989	29.256	0	0,0	
3	65,65	25,19	0,00	0,97	48.401	29.256	0	0,0	
4	84,12	25,19	0,00	0,97	43.380	29.256	0	0,0	
5	99,70	25,19	0,00	0,97	38.749	29.256	0	0,0	
6	112,96	25,19	0,00	0,97	34.404	29.256	0	0,0	
7	124,27	25,19	0,00	0,97	30.275	29.256	0	0,0	
8	140,56	25,19	0,00	0,97	26.314	28.352	0	0,0	
9	148,39	25,19	0,00	0,97	22.486	28.352	0	0,0	
10	155,11	25,19	0,00	0,97	18.760	28.352	0	0,0	
11	160,58	25,19	0,00	0,97	15.116	28.352	0	0,0	
12	186,34	17,38	0,00	0,97	11.534	28.352	0	0,0	
13	85,65	0,00	0,00	0,97	7.997	28.352	0	0,0	
14	62,36	0,00	0,00	0,97	4.490	28.352	0	0,0	
15	63,01	0,00	0,00	0,97	1.001	28.352	0	0,0	
16	62,78	0,00	0,00	0,97	-2.485	28.352	0	0,0	
17	61,46	0,00	0,00	0,97	-5.980	28.352	0	0,0	
18	59,03	0,00	0,00	0,97	-9.498	28.352	0	0,0	
19	55,47	0,00	0,00	0,97	-13.052	28.352	0	0,0	
20	50,74	0,00	0,00	0,97	-16.659	28.352	0	0,0	
21	44,77	0,00	0,00	0,97	-20.335	28.352	0	0,0	
22	37,48	0,00	0,00	0,97	-24.101	28.352	0	0,0	
23	28,75	0,00	0,00	0,97	-27.983	28.352	0	0,0	
24	18,44	0,00	0,00	0,97	-32.010	28.352	0	0,0	
25	6,34	0,00	0,00	-12,89 - 0,97	-35.824	28.352	0	0,0	

Resistenza al taglio pali 1054,81 [kN]

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Indice della sezione

Posizione della sezione, espresso in [m]

Sforzo normale, espresso in [kN]. Positivo se di compressione. Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

M Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)
La posizione delle sezioni di verifica fanno riferimento al sistema di riferimento globale la cui origine è nello spigolo in alto a destra del paramento.

Elementi calcolati a piastra

Simbologia adottata

Mx, My Momenti flettenti, espresso in [kNm]

Mxy Tx, Ty Momento torcente, espresso in [kNm]. Positivo se diretto da monte verso valle Tagli, espresso in [kN]. Positivo se tende le fibre contro terra (a monte)

I momenti flettenti sono positivi se tendono le fibre inferiori (intradosso fondazione, paramento esterno)

Paramento

n°	X	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	5,88	6,10	0,00	37,50	0,88	25,88
2	-0,10	7,08	7,39	1,23	38,61	0,95	29,69
3	-0,20	8,30	8,70	2,52	39,78	1,14	33,62
4	-0,30	9,55	10,05	3,85	41,02	1,48	37,68
5	-0,40	10,83	11,42	5,23	42,32	1,96	41,87
6	-0,50	12,14	12,83	6,67	43,68	2,59	46,21
7	-0,60	13,47	14,26	8,15	45,11	3,37	50,69
8	-0,70	14,83	15,73	9,68	46,59	4,31	55,32
9	-0,80	16,22	17,22	11,27	48,14	5,41	60,12
10	-0,90	17,64	18,75	12,90	49,75	6,68	65,08

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

n°	х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
11	-1,00	19,08	20,30	14,59	51,43	8,13	70,21
12	-1,10	20,55	21,89	16,32	53,17	9,76	75,53
13	-1,20	22,05	23,50	18,11	54,97	11,57	81,03
14	-1,30	23,58	25,14	19,95	56,83	13,57	86,72
15	-1,40	25,14	26,82	21,83	58,75	15,77	92,61
16	-1,50	26,72	28,52	23,77	60,74	18,17	98,71
17	-1,60	28,33	30,26	25,76	62,79	20,77	105,02
18	-1,70	29,97	32,02	27,79	64,91	23,58	111,54
19	-1,80	31,63	33,81	29,88	67,08	26,61	118,29
20	-1,90	33,33	35,64	32,02	69,32	29,86	125,27
21	-2,00	35,05	37,49	34,21	71,62	33,34	132,49
22	-2,10	36,80	39,37	36,45	73,99	37,05	139,96
23	-2,20	38,58	41,28	38,74	76,41	41,00	147,67
24	-2,30	40,38	43,23	41,08	78,90	45,18	155,64
25	-2,40	42,22	45,20	43,47	81,46	49,62	163,87
26	-2,50	44,08	47,20	45,91	84,07	54,31	172,38
27	-2,60	45,96	49,23	48,40	86,75	59,25	181,16
28	-2,70	47,88	51,30	50,94	89,49	64,46	190,22
29	-2,80	49,82	53,39	53,53	92,29	69,93	199,57
30	-2,90	51,80	55,51	56,17	95,16	75,68	209,21
31	-3,00	53,79	57,66	58,86	98,09	81,71	219,16
32	-3,10	55,82	59,84	61,61	101,08	88,02	229,42
33	-3,20	57,88	62,05	64,40	104,13	94,62	239,99
34	-3,30	59,96	64,30	67,24	107,25	101,51	250,88
35	-3,40	62,07	66,57	70,14	110,43	108,70	262,10
36	-3,50	64,21	68,87	73,08	113,67	116,20	273,66
37	-3,60	66,37	71,20	76,07	116,98	124,01	285,55
38	-3,70	68,57	73,56	79,12	120,35	132,13	297,79
39	-3,80	70,79	75,95	82,21	123,78	140,57	310,39
40	-3,90	73,04	78,37	85,36	127,27	149,34	323,34
41	-4,00	75,31	80,82	88,56	130,82	158,43	336,66
42	-4,10	77,62	83,30	91,80	134,44	167,86	350,35
43	-4,20	79,95	85,81	95,10	138,12	177,64	364,43
44	-4,30	82,31	88,35	98,44	141,87	187,76	378,88
45	-4,40	84,70	90,92	101,84	145,68	198,23	393,73
46	-4,50	87,11	93,52	105,29	149,54	209,05	408,98
47	-4,60	89,56	96,15	108,79	153,48	220,24	424,64
48	-4,70	92,03	98,81	112,33	157,47	231,79	440,70
49	-4,80	94,53	101,50	115,93	161,53	243,72	457,18
50	-4,90	97,05	104,22	119,58	165,65	256,02	474,09
51	-5,00	99,61	106,96	123,28	170,41	268,71	491,43
52	-5,10	102,19	109,74	127,03	175,42	281,78	509,20
53	-5,20	104,80	112,55	130,83	180,49	295,25	527,42
54	-5,30	107,44	115,39	134,68	185,62	309,11	546,09
55	-5,40	110,10	118,26	138,58	190,82	323,38	565,21
56	-5,50	112,79	121,16	142,53	196,07	338,05	584,80
57	-5,60	115,52	124,08	146,53	201,39	353,14	604,85
58	-5,70	118,26	127,04	150,58	206,78	368,65	625,39
59	-5,80	121,04	130,03	154,69	212,22	384,58	646,40
60	-5,90	123,84	133,05	158,84	217,73	400,94	667,90
61	-6,00	126,68	136,09	163,04	223,30	417,74	689,90

Mensola valle

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-0,80	0,00	0,00	0,00	0,00	0,00	0,00
2	-0,73	0,00	0,00	1,47	1,53	0,06	0,06
3	-0,65	0,00	0,00	2,94	3,05	0,22	0,23
4	-0,57	0,00	0,00	4,41	4,58	0,50	0,51
5	-0,50	0.00	0.00	5.88	6,10	0.88	0,92

Piastra fondazione

In	Mx	Му	Мху	Tx	Ту	
	[kNm]	[kNm]	[kNm]	[kN]	[kN]	
1144	152,91 (1)	32,13 (1)	-27,59 (1)	24,33 (1)	36,67 (1)	MAX
657	-257,76 (1)	-1720,97 (1)	72,34 (1)	-47,76 (1)	-977,95 (1)	MIN
559	92,32 (1)	1787,96 (1)	74,20 (1)	-34,72 (1)	-813,89 (1)	MAX
702	-242,99 (1)	-1729,68 (1)	0,00 (1)	0,00 (1)	-999,98 (1)	MIN
608	-71,75 (1)	28,36 (1)	700,10 (1)	-134,92 (1)	-296,08 (1)	MAX
1420	-71,75 (1)	28,36 (1)	-700,10 (1)	134,92 (1)	-296,08 (1)	MIN
1333	11,15 (1)	2,81 (1)	-32,45 (1)	547,66 (1)	-9,94 (1)	MAX
941	11,15 (1)	2,81 (1)	32,45 (1)	-547,66 (1)	-9,94 (1)	MIN
602	0,49 (1)	68,68 (1)	15,34 (1)	26,37 (1)	275,68 (1)	MAX
701	-68,25 (1)	12.60 (1)	0.00(1)	0.00(1)	-1181,22 (1)	MIN

Sollecitazioni pali

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Palo nº 1

n°	Y	N	Nr	Т	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	884,44	12744,89	-457,61	-637,08	-888,22	-1236,56
32	5,58	966,95	12537,40	0,60	8,46	250,86	411,79
54	9,54	1001,32	12196,21	32,95	53,63	162,24	254,47
101	18,00	1036,92	11189,01	0,42	0,62	0,00	0,00

Palo nº 2

n°	Y	N	Nr	Т	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2372,19	12744,97	-457,61	-637,08	-888,22	-1236,56
32	5,58	2424,57	12537,47	0,60	8,46	250,86	411,79
33	5,76	2424,63	12524,83	4,00	13,49	250,75	410,26
54	9,54	2408,33	12196,26	32,95	53,63	162,24	254,47
101	18,00	2290,08	11188,99	0,42	0,62	0,00	0,00

Palo nº 1

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	441,57	11039,15	-439,32	-681,29	-797,40	-1236,59
31	5,40	530,54	10843,88	3,59	16,77	265,06	512,64
52	9,18	578,31	10525,38	34,44	66,31	173,40	319,63
101	18,00	663,89	9482,95	0,38	0,65	0,00	0,00

Palo nº 2

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2324,88	12745,06	-439,32	-681,29	-797,40	-1236,59
31	5,40	2377,99	12549,83	3,59	16,77	265,06	512,64
34	5,94	2378,36	12511,92	12,94	32,76	261,36	500,56
52	9,18	2366,01	12231,41	34,44	66,31	173,40	319,63
101	18,00	2250,23	11189,19	0,38	0,65	0,00	0,00

Palo nº 1

n°	Y	N	Nr	T	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	568,57	12744,83	-441,99	-663,50	-823,66	-1236,45
31	5,40	655,12	12549,59	0,89	11,33	255,44	472,79
53	9,36	700,74	12213,72	33,33	61,14	165,24	290,37
101	18,00	770,86	11188,86	0,39	0,64	0,00	0,00

Palo nº 2

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2266,39	12744,93	-441,99	-663,50	-823,66	-1236,45
31	5,40	2320,62	12549,67	0,89	11,33	255,44	472,79
34	5,94	2321,21	12511,75	10,44	26,96	253,15	463,71
53	9,36	2309,41	12213,77	33,33	61,14	165,24	290,37
101	18,00	2200,97	11188,83	0,39	0,64	0,00	0,00

Palo nº 1

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	512,79	12742,83	-421,04	-667,58	-779,91	-1236,58
31	5,40	600,40	12547,55	0,96	12,56	241,96	481,81
53	9,36	647,89	12211,62	31,56	62,25	156,33	294,30
101	18,00	723,88	11186,57	0,37	0,64	0,00	0,00

Palo nº 2

n°	Y	N	Nr	T	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2124,92	12744,55	-421,04	-667,58	-779,91	-1236,58
31	5,40	2181,84	12549,30	0,96	12,56	241,96	481,81
36	6,30	2183,24	12484,22	14,93	36,75	235,68	461,08
53	9,36	2175,36	12213,44	31,56	62,25	156,33	294,30

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
101	18,00	2081,80	11188,58	0,37	0,64	0,00	0,00

9.1.2. **SEZIONE TIPO 2**

Dati

Materiali

Simbologia adottata Indice materiale Descr Descrizione del materiale Calcestruzzo armato Classe di resistenza del cls C A Classe di resistenza dell'acciaio

Peso specifico, espresso in [kN/mc]

Rck Resistenza caratteristica a compressione, espressa in [kPa]

Ε Modulo elastico, espresso in [kPa]

Coeff, di Poisson

Coeff. di omogenizzazione acciaio/cls ntc Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	A	γ	Rck	Е	ν	n	ntc
				[kN/mc]	[kPa]	[kPa]			
1	C35/45	C35/45	B450C	24,5170	45000	34625349	0.30	15.00	0.50

Acciai

Descr	fyk	fuk
	[kPa]	[kPa]
B450C	450000	540000

Tipologie pali

Simbologia adottata

Indice tipologia palo Descr Descrizione tipologia palo

Contributo portanza palo (laterale e/o punta)

Tecnologia costruttiva (trivellato, infisso o elica continua)

Vincolo palo-fondazione: Cerniera o Incastro (libero o impedito di ruotare in testa) Indice materiale che lo costituisce

Imat BD usa metodo di Bustamante-Doix

PΝ Portanza nota

Pp, Pl Portanza di punta e laterale caratteristica, espressa in [kN]

n°	Descr	P	Т	V	Imat	BD	PN	Pp	Pl
1	Tipologia palo	Laterale + Punta	Elica continua	Incastro	1	NO	NO		

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	Х	Y	Α
	[m]	[m]	[°]
1	0,00	0,00	0.000
2	20,00	0,00	0.000

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

20.00

[m]

<u>Falda</u>

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	A
	[m]	[m]	[°]
1	-5,00	-14,10	0.000
2	22,00	-14,10	0.000

Geometria muro

Lunghozza muro

Geometria paramento e fondazione

Lungnezza muro	20,00	[m]
Paramento Materiale Altezza paramento Altezza paramento libero Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno	C35/45 7,60 7,10 0,50 1,20 0,00 5,25	[m] [m] [m] [°]
Mensola di marciapiede Posizione rispetto alla testa del muro Lunghezza Spessore all'estremità libera Spessore all'incastro	0,00 0,30 0,80 0,80	[m] [m] [m]
Fondazione Materiale Lunghezza mensola di valle Lunghezza mensola di monte Lunghezza totale Inclinazione piano di posa Spessore Spessore magrone	C35/45 0,80 3,50 5,50 0,00 1,20 0,20	[m] [m] [m] [m] [m]

Descrizione pali di fondazione

Simbologia adottata

numero d'ordine della fila X I

ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m]

interasse tra i pali, espressa in [m] franco laterale (distanza minima dal bordo laterale), espressa in [m]

Numero di pali della fila Np diametro dei pali della fila espresso in [m] D

L

lunghezza dei pali della fila espressa in [m] inclinazione dei pali della fila rispetto alla verticale espressa in [°]

allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

n°	Tipologia	Х	I	f	Np	D	L	α	ALL
		[m]	[m]	[m]		[m]	[m]	[°]	
1	Tipologia palo	1,00	3,00	0,50	7	1,0000	20,00	0,00	Centrati
2	Tipologia palo	4,50	3,00	0,50	7	1,0000	20,00	0,00	Centrati

Descrizione terreni

Parametri di resistenza

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 **RELAZIONE DI CALCOLO**

Simbologia adottata

С

Indice del terreno Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]

Peso di volume saturo del terreno espresso in [kN/mc] γs

Angolo d'attrito interno espresso in [°] Ŕ Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [kPa]

Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix

Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix) Tensione tangenziale limite, espressa in [kPa] Cesp

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	Rilevato	19,0000	19,0000	35.000	23.333	0	0	1.000	0	(CAR)
				35.000	23.333	0	0		0	(MIN)
				35.000	23.333	0	0		0	(MED)
2	Deposito ghiaioso	20,0000	20,0000	34.000	22.670	0	0	1.000	0	(CAR)
				34.000	22.667	0	0		0	(MIN)
				36.000	24.000	0	0		0	(MED)
3	Deposito sabbioso	19,0000	19,0000	32.000	21.333	0	0	1.000	0	(CAR)
				32.000	21.333	0	0		0	(MIN)
				34.000	22,667	0	0		0	(MED)

Stratigrafia

Simbologia adottata

Indice dello strato

Spessore dello strato espresso in [m]

Inclinazione espressa in [°]

Terreno dello strato Terreno Kwn, Kwt

Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm²/cm

Per calcolo pali (solo se presenti)

Κw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta Ks

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kststa, Kstsis Coeff, di spinta statico e sismico

n	0	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kststa	Kstsis
		[m]	[°]		[Kg/cm ³]	[Kg/cm³]	[Kg/cm³]				
	1	8,80	0.000	Rilevato	0.000	0.000	2,157	0,500	1,000		
	2	5,00	0.000	Deposito ghiaioso	0.000	0.000	2,157	0,500	1,000		
	3	20.00	0.000	Denosito sabbioso	0.000	0.000	1 018	0.500	1 000		

Terreno di riempimento:

Rilevato

Inclinazione riempimento (rispetto alla verticale):

0.00 [0]

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN]

Fx Fy M Componente verticale del carico concentrato espressa in [kN] Momento espresso in [kNm]

Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per x=Xi espressa in [kN]

Xi Xf Qi Qi Intensità del carico per x=X_f espressa in [kN]

Condizione nº 1 (Carico stradale) - VARIABILE

Coeff. di combinazione $\Psi_0 = 1.00 - \Psi_1 = 1.00 - \Psi_2 = 1.00$

Carichi sul terreno

n°	Tipo	Х	Fx	Fy	M	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0,00	20,00	20,0000	20,0000

Condizione nº 2 (Urto) - ECCEZIONALE

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Carichi sul muro

n°	Tipo	Dest	X; Y	Fx	Fy	М	Χi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00; 0,00	37,5000	0,0000	25,0000				

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Combi	nazioni sta	tiche		Combi	nazioni sisr	miche
			UPL	EQU	A1	A2	EQU	A1	A2	
Permanenti strutturali	Favorevoli	γG1,fav	0.90	1.00	1.00	1.00	1.00	1.00	1.00	
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.10	1.30	1.30	1.00	1.00	1.00	1.00	
Permanenti non strutturali	Favorevoli	γG2,fav	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili	Sfavorevoli	γQ,sfav	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili da traffico	Sfavorevoli	VOT.sfav	1.50	1.35	1.35	1.15	1.00	1.00	1.00	

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	Combinazioni statiche		ni sismiche
		M1	M2	M1	M2
Tangente dell'angolo di attrito	γtan(_φ ')	1.00	1.25	1.00	1.00
Coesione efficace	γc'	1.00	1.25	1.00	1.00
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00
Peso nell'unita di volume	ν,	1.00	1.00	1.00	1.00

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	Combinazioni statiche			Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3		
Capacità portante			1.40			1.20		
Scorrimento			1.10			1.00		
Resistenza terreno a valle			1.40			1.20		
Ribaltameno			1.15			1.00		
Stabilità fronte di scavo		1.10			1.20			

Carichi verticali. Coeff. parziali yR da applicare alle resistenze caratteristiche

Resistenza			Pali infissi		P	ali trivellati	i	Pali a	d elica cont	inua
		R1	R2	R3	R1	R2	R3	R1	R2	R3
Punta	γь			1.15			1.30			1.30
Laterale compressione	γs			1.15			1.15			1.15
Totale compressione	γt			1.15			1.25			1.25
Laterale trazione	7st			1.25			1.25			1.25

$\underline{\text{Carichi trasversali. Coeff. parziali } \gamma_{R} \text{ da applicare alle resistenze caratteristiche}}$

		R1	R2	R3
Trasversale	γt			1.30

Coefficienti di riduzione ζ per la determinazione della resistenza caratteristica dei pali Numero di verticali indagate 1

 $\zeta_3 = 1.70 \quad \zeta_4 = 1.70$

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_{Q1} \; Q_{k1} \; + \; \gamma_{Q2} \; Q_{k2} \; + \; \gamma_{Q3} \; Q_{k3} \; + \; ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + \dots$$

I valori dei coeff. $\Psi_{0,j},\,\Psi_{1,j},\,\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.

I valori dei coeff. $\gamma_{\rm G}$ e $\gamma_{\rm Q}$, sono definiti nella tabella normativa.

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

γ Coefficiente di partecipazione della condizione Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Carico stradale	1.50	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Carico stradale	1.30	1.00	Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 7 - GEO (A2-M2-R2) H + V

γ	Ψ	Effetto
1.00		Sfavorevole
1.00		Sfavorevole
1.00		Sfavorevole
	1.00	1.00 1.00

Combinazione nº 8 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Carico stradale	1.50	1.00	Sfavorevole

Combinazione nº 10 - EQU (A1-M1-R3)

Condizione γ Ψ Effetto

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
Urto	1.00	1.00	Sfavorevole

Combinazione nº 11 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 12 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

Cagliari Comune Cagliari Provincia Sardegna Regione Latitudine 39.214903 Longitudine 9.109499 Indice punti di interpolazione -1 - -1 - -1 - -1 Vita nominale 50 anni Classe d'uso ΙV

Tipo costruzione Normali affollamenti

Vita di riferimento 100 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a g	[m/s ²]		0.600	0.310
Accelerazione al suolo	a _g /g	[%]		0.061	0.032
Massimo fattore amplificazione spettro orizzontale	F0			2.976	2.730
Periodo inizio tratto spettro a velocità costante	Tc*			0.371	0.307
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.200	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh [%]	kv [%]
Ultimo	1.000	7.339	3.670
Ultimo - Ribaltamento	1.000	7.339	3.670
Esercizio	1,000	3.792	1.896

Forma diagramma incremento sismico Rettangolare

Opzioni di calcolo

<u>Spinta</u>

Metodo di calcolo della spinta Culmann
Tipo di spinta Spinta Spinta a riposo

Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

Altro
Partecipazione spinta passiva terreno antistante 0.00
Partecipazione resistenza passiva dente di fondazione 50.00
Componente verticale della spinta nel calcolo delle sollecitazioni SI
Considera terreno sulla fondazione di valle SI
Considera spinta e peso acqua fondazione di valle SI

Spostamenti

Modello a blocchi

Non è stato richiesto il calcolo degli spostamenti

Spostamento limite 0,0500 [m]

PROGETTAZIONE ATI:

Pag. **63** di **69**

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Opzioni calcolo pali

Portanza verticale

Metodo di calcolo della portanza alla punta Berezantzev

Metodo di calcolo della portanza alla laterale Integrazione delle tensioni tangenziali (ks σ_V tan(δ)+ca)

Correzione angolo di attrito in funzione del tipo di palo (infisso/trivellato)

Non attiva

Andamento pressione verticale nel calcolo della portanza alla punta σ_{v} con la profondità Pressione geostatica

Andamento pressione verticale nel calcolo della portanza laterale Pressione geostatica

Portanza trasversale

Costante di Winkler: da strato Criterio rottura palo-terreno

Spostamento limite
 Pressione limite
 Palo infinitamente elastico
 Non attivo
 Non attivo

Cedimenti

Metodo di calcolo Metodo agli elementi finiti

Spostamento limite alla punta 0,0100 [m]
Spostamento limite laterale 0,0050 [m]

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Tipo azione

Inclinazione della spinta, espressa in [°] Valore dell'azione, espressa in [kN] Componente in direzione X ed Y dell'azione, espressa in [kN]

Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	Py
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	432,35	23,33	396,99	171,24	4,20	-5,19
	Peso/Inerzia muro			0,00	325,87/0,00	0,68	-6,18
	Peso/Inerzia terrapieno			0,00	681,77/0,00	2,24	-3,67
	Peso/Inerzia terreno sulla fondazione di valle			0,00	7,60	-0,90	-7,35
	Peso dell'acqua sulla fondazione di valle				0,00	0,00	-8,80
	Resistenza pali			-401,76			

Scarichi in testa ai pali

Simbologia adottata

Cmb Indice/Tipo combinazione

Ip N Indice palo

Sforzo normale, espresso in [kN] M Momento, espresso in [kNm] Taglio, espresso in [kN]

Cmb	Ip	N	M	T
		[kN]	[kNm]	[kN]
1 - STR (A1-M1-R3)	1	473,35	-1154,77	-567,13
	2	2916 61	-1154 77	-567.13

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Indice/Tipo combinazione Cmb

Sisma (H: componente orizzontale, V: componente verticale)

FSsco Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite **FS**_{RTR} **FS**OLIM Coeff. di sicurezza a stabilità globale **FS**STAB FS_{HYD} Coeff. di sicurezza a sifonamento **FSUP** Coeff, di sicurezza a sollevamento

Cmb	Sismica	FS sco	FS RIB	FS QLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		1.012					
2 - STR (A1-M1-R3)		1.129					
3 - STR (A1-M1-R3)	H + V	1.090					
4 - STR (A1-M1-R3)	H - V	1.160					
5 - GEO (A2-M2-R2)					3.172		
6 - GEO (A2-M2-R2)					3.703		
7 - GEO (A2-M2-R2)	H + V				3.486		
8 - GEO (A2-M2-R2)	H - V				3.543		
9 - EQU (A1-M1-R3)			13.975				
10 - EQU (A1-M1-R3)			12.738				
11 - EQU (A1-M1-R3)	H + V		13.724				
12 - EQU (A1-M1-R3)	H - V		13.493				

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic C Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] Fattore di sicurezza

Ιc

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Ic	С	R	FS
	[m]	[m]	
5 - GEO (A2-M2-R2)	-4,00; 8,50	19,15	3.172

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) peso della striscia espresso in [kN] Qy Qf α

carico sulla striscia espresso in [kN] carico acqua sulla striscia espresso in [kN] angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kPa]

larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [kPa]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	21,12	29,44	0,00	13,18 - 1,13	60.027	29.256	0	0,0	
2	59,00	29,44	0,00	1,13	54.006	29.256	0	0,0	
3	89,56	29,44	0,00	1,13	48.564	29.256	0	0,0	
4	114,98	29,44	0,00	1,13	43.663	29.256	0	0,0	
5	136,51	29,44	0,00	1,13	39.138	29.256	0	0,0	
6	154,91	29,44	0,00	1,13	34.889	29.256	0	0,0	
7	170,68	29,44	0,00	1,13	30.851	29.256	0	0,0	
8	193,67	29,44	0,00	1,13	26.978	29.256	0	0,0	
9	203,08	29,44	0,00	1,13	23.234	28.352	0	0,0	
10	212,64	29,44	0,00	1,13	19.593	28.352	0	0,0	
11	220,48	29,44	0,00	1,13	16.033	28.352	0	0,0	
12	258,53	18,77	0,00	1,13	12.536	28.352	0	0,0	
13	87,75	0,00	0,00	1,13	9.086	28.352	0	0,0	
14	74,26	0,00	0,00	1,13	5.669	28.352	0	0,0	
15	75,96	0,00	0,00	1,13	2.272	28.352	0	0,0	
16	76,20	0,00	0,00	1,13	-1.117	28.352	0	0,0	
17	75,00	0,00	0,00	1,13	-4.510	28.352	0	0,0	
18	72,35	0,00	0,00	1,13	-7.919	28.352	0	0,0	
19	68,21	0,00	0,00	1,13	-11.356	28.352	0	0,0	
20	62,54	0,00	0,00	1,13	-14.836	28.352	0	0,0	
21	55,27	0,00	0,00	1,13	-18.372	28.352	0	0,0	
22	46,31	0,00	0,00	1,13	-21.983	28.352	0	0,0	
23	35,53	0,00	0,00	1,13	-25.689	28.352	0	0,0	
24	22,78	0,00	0,00	1,13	-29.515	28.352	0	0,0	
25	7,83	0,00	0,00	-15,13 - 1,13	-33.113	28.352	0	0,0	

Resistenza al taglio pali 1230,61 [kN]

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata nº

Indice della sezione

Posizione della sezione, espresso in [m]

Sforzo normale, espresso in [kN]. Positivo se di compressione. Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

La posizione delle sezioni di verifica fanno riferimento al sistema di riferimento globale la cui origine è nello spigolo in alto a destra del paramento.

Elementi calcolati a piastra

Simbologia adottata

Mx, My Mxv

Momenti flettenti, espresso in [kNm] Momento torcente, espresso in [kNm]. Positivo se diretto da monte verso valle Tagli, espresso in [kN]. Positivo se tende le fibre contro terra (a monte)

I momenti flettenti sono positivi se tendono le fibre inferiori (intradosso fondazione, paramento esterno)

Paramento

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	5,88	6,10	0,00	37,50	0,88	25,88
2	-0,10	7,85	8,27	1,51	38,87	0,70	29,51
3	-0,20	9,86	10,71	3,06	40,29	0,71	33,27
4	-0,30	11,91	13,21	4,66	41,78	0,94	37,17
5	-0,40	14,02	15,77	6,32	43,33	1,30	41,21
6	-0,50	16,17	18,38	8,02	44,94	1,78	45,40
7	-0.60	18 37	21 04	9 77	46.62	2 44	49 73

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

n°	X	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
8	-0,70	20,62	23,76	11,56	48,35	3,25	54,23
9	-0,80	22,91	26,54	13,41	50,14	4,25	58,89
10	-0,90	25,25	29,38	15,31	52,00	5,42	63,72
11	-1,00	27,64	32,27	17,25	53,91	6,77	68,73
12	-1,10	30,08	35,21	19,24	55,89	8,30	73,92
13	-1,20	32,56	38,21	21,28	57,93	10,03	79,30
14	-1,30	35,09	41,27	23,38	60,03	11,96	84,87
15	-1,40	37,67	44,38	25,51	62,19	14,08	90,64
16	-1,50	40,30	47,55	27,70	64,42	16,41	96,61
17 18	-1,60 -1,70	42,97	50,78 54,06	29,94 32,23	66,70 69,05	18,95	102,80
19	-1,80	45,69 48,46	57,39	34,56	71,45	21,70	109,20 115,82
20	-1,90	51,27	60,79	36,94	73,92	24,67 27,87	122,68
21	-2,00	54,13	64,23	39,37	76,45	31,29	129,76
22	-2,10	57,04	67,74	41,86	79,04	34,94	137,09
23	-2,10	60,00	71,30	44,38	81,69	38,84	144,66
24	-2,30	63,01	74,92	46,96	84,41	42,97	152,48
25	-2,40	66,06	78,59	49,59	87,18	47,35	160,56
26	-2,50	69,16	82,32	52,27	90,02	51,98	168,90
27	-2,60	72,30	86,10	54,99	92,91	56,87	177,50
28	-2,70	75,50	89,94	57,76	95,87	62,02	186,39
29	-2,80	78,74	93,84	60,59	98,89	67,43	195,55
30	-2,90	82,03	97,79	63,46	101,97	73,11	205,00
31	-3,00	85,36	101,79	66,38	105,11	79,07	214,74
32	-3,10	88,75	105,86	69,34	108,32	85,30	224,77
33	-3,20	92,18	109,98	72,36	111,58	91,82	235,11
34	-3,30	95,66	114,15	75,43	114,90	98,63	245,76
35	-3,40	99,18	118,38	78,54	118,29	105,73	256,73
36	-3,50	102,76	122,67	81,71	121,74	113,13	268,01
37	-3,60	106,38	127,01	84,92	125,25	120,82	279,62
38	-3,70	110,04	131,41	88,18	128,82	128,83	291,56
39	-3,80	113,76	135,87	91,49	132,45	137,15	303,84
40	-3,90	117,52	140,38	94,85	136,14	145,78	316,46
41	-4,00	121,33	144,94	98,25	139,90	154,73	329,43
42	-4,10	125,19	149,57	101,71	143,71	164,01	342,75
43	-4,20	129,09	154,24	105,21	147,59	173,62	356,44
44	-4,30	133,04	158,98	108,77	151,53	183,56	370,49
45	-4,40	137,04	163,77	112,37	155,53	193,84	384,92
46	-4,50	141,09	168,61	116,02	159,59	204,46	399,72
47	-4,60	145,18	173,52	119,72	163,71	215,44	414,91
48	-4,70	149,33	178,47	123,47	167,89	226,76	430,48
49	-4,80	153,52	183,49	127,27	172,14	238,44	446,45
50	-4,90	157,75	188,56	131,11	176,44	250,49	462,82
51	-5,00	162,03	193,68	135,01	180,81	262,90	479,60
52	-5,10	166,37	198,86	138,95	185,68	275,68	496,79
53	-5,20	170,74	204,10	142,94	190,91	288,84	514,40
54	-5,30	175,17	209,39	146,99	196,20	302,38	532,44
55	-5,40	179,64	214,74	151,08	201,56	316,30	550,90
56	-5,50	184,16	220,15	155,21	206,97	330,61	569,80
57	-5,60	188,73	225,61	159,40	212,45	345,32	589,14
58	-5,70	193,35	231,13	163,64	217,99	360,43	608,92
59	-5,80	198,01	236,70	167,92	223,59	375,94	629,16
60	-5,90	202,72	242,33	172,26	229,25	391,86	649,86
61	-6,00	207,48	248,01	176,64	234,98	408,19	671,03
62	-6,10	212,28	253,75	181,07	240,76	424,94	692,66
63	-6,20	217,13	259,55	185,55	246,61	442,11	714,77
64	-6,30	222,03	265,40	190,08	252,51	459,71	737,36
65	-6,40	226,98	271,31	194,66	258,48	477,74	760,44
66	-6,50	231,97	277,27	199,28	264,51	496,21	784,01
67	-6,60	237,01	283,29	203,96	270,60	515,11	808,08
68	-6,70	242,10	289,37	208,68	276,75	534,46	832,66
69	-6,80	247,24	295,50	213,46	282,97	554,26	857,74
70	-6,90	252,42	301,69	218,28	289,24	574,52	883,35
71	-7,00	257,65	307,93	223,15	295,58	595,23	909,47
72	-7,10	262,93	314,23	228,07	301,97	616,41	936,12
73	-7,20	268,26	320,58	233,03	308,43	638,06	963,31
74	-7,30	273,63	326,99	238,05	314,95	660,18	991,04
75	-7,40	279,05	333,46	243,12	321,53	682,78	1019,31
76	-7,50	284,52	339,98	248,23	328,17	705,86	1048,13
77	-7,60	290,03	346,56	253,39	334,88	729,42	1077,51

Mensola valle

n°	X	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-0,80	0,00	0,00	0,00	0,00	0,00	0,00
2	-0,73	0,00	0,00	1,47	1,53	0,06	0,06
3	-0,65	0,00	0,00	2,94	3,05	0,22	0,23
4	-0,57	0,00	0,00	4,41	4,58	0,50	0,51
5	-0,50	0,00	0,00	5,88	6,10	0,88	0,92

OPERE D'ARTE - OPERE D'ARTE MINORI - ASSE PRINCIPALE - MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90 RELAZIONE DI CALCOLO

Piastra fondazione

In	Mx	My	Mxy	Tx	Ту	
	[kNm]	[kNm]	[kNm]	[kN]	[kN]	
224	186,07 (3)	1459,34 (3)	11,81 (3)	2,44 (3)	-921,31 (3)	MAX
629	-265,23 (2)	-884,09 (2)	0,00 (2)	0,00 (2)	-684,68 (2)	MIN
215	153,18 (1)	1565,15 (1)	40,80 (1)	-17,96 (1)	-956,04 (1)	MAX
637	-206,03 (1)	-1354,65 (1)	0,00 (1)	0,00 (1)	-1032,58 (1)	MIN
246	-12,18 (1)	106,89 (1)	561,47 (1)	-83,98 (1)	-239,05 (1)	MAX
1156	-12,18 (1)	106,89 (1)	-561,47 (1)	83,98 (1)	-239,05 (1)	MIN
1140	-5,02 (1)	5,77 (1)	-44,42 (1)	407,73 (1)	-48,31 (1)	MAX
387	-5,02 (1)	5,77 (1)	44,42 (1)	-407,73 (1)	-48,31 (1)	MIN
274	-8,24 (1)	99,09 (1)	4,57 (1)	49,68 (1)	190,66 (1)	MAX
636	-22,04 (1)	83,60 (1)	0,00 (1)	0,00 (1)	-1324,85 (1)	MIN

Sollecitazioni pali

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle N T M

Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Palo nº 1

n°	Y	N	Nr	T	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	473,35	11833,78	-567,13	-746,13	-1154,77	-1519,25
28	5,40	561,47	11637,31	1,10	9,42	379,01	590,44
48	9,40	612,82	11328,19	47,67	74,04	248,01	373,43
101	20,00	712,38	10102,10	0,20	0,27	0,00	0,00

Palo nº 2

n°	Y	N	Nr	Т	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2916,61	13095,15	-567,13	-746,13	-1154,77	-1519,25
24	4,60	2960,50	12950,26	-41,76	-53,07	362,22	572,25
28	5,40	2959,61	12898,71	1,10	9,42	379,01	590,44
48	9,40	2937,89	12589,66	47,67	74,04	248,01	373,43
101	20,00	2739,87	11363,78	0,20	0,27	0,00	0,00

Palo nº 1

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	121,87	3046,63	-536,06	-786,50	-1035,39	-1519,11
27	5,20	213,27	2919,48	1,81	13,91	379,42	708,84
47	9,20	275,35	2733,52	47,63	88,71	247,22	444,17
101	20,00	420,70	2156,35	0,17	0,25	0,00	0,00

Palo nº 2

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2835,22	13095,19	-536,06	-786,50	-1035,39	-1519,11
24	4,60	2880,21	12950,29	-32,17	-44,83	368,65	696,69
27	5,20	2879,93	12911,82	1,81	13,91	379,42	708,84
47	9,20	2862,07	12607,25	47,63	88,71	247,22	444,17
101	20,00	2672,33	11363,64	0,17	0,25	0,00	0,00

Palo nº 1

n°	Y	N	Nr	Т	Tr	M	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	205,68	5142,03	-544,45	-771,81	-1071,78	-1519,33
28	5,40	298,75	4945,59	5,16	18,50	377,55	667,04
47	9,20	355,26	4655,01	47,45	83,81	249,73	425,46
101	20.00	490.26	3672.12	0.18	0.26	0.00	0.00

Palo nº 2

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
	0,00	2816,87	13095,14	-544,45	-771,81	-1071,78	-1519,33
2	4,80	2862,11	12937,67	-20,38	-23,25	372,08	664,16
2	5,40	2861,71	12898,73	5,16	18,50	377,55	667,04
4	9,20	2844,58	12607,31	47,45	83,81	249,73	425,46
10	20,00	2657,10	11363,95	0,18	0,26	0,00	0,00

OPERE D'ARTE – OPERE D'ARTE MINORI – ASSE PRINCIPALE – MURO IN C. A. TRA LA PK 7+987.00 E LA PK 8+117.90
RELAZIONE DI CALCOLO

Palo nº 1

n°	Y	N	Nr	Т	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	175,57	4389,37	-517,63	-780,90	-1007,01	-1519,17
27	5,20	266,05	4209,08	0,11	12,26	354,58	694,59
47	9,20	326,56	3940,98	44,56	86,96	233,69	437,55
101	20,00	465,27	3108,86	0,16	0,26	0,00	0,00

Palo nº 2

n°	Υ	N	Nr	T	Tr	М	Mr
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	2638,95	13095,78	-517,63	-780,90	-1007,01	-1519,17
27	5,20	2687,03	12912,37	0,11	12,26	354,58	694,59
28	5,40	2687,07	12899,28	5,34	21,54	354,56	692,14
47	9,20	2674,96	12607,73	44,56	86,96	233,69	437,55
101	20,00	2509,45	11363,90	0,16	0,26	0,00	0,00

