

Nuova S.S.195 "Sulcitana" Tratto Cagliari - Pula

Collegamento con la S.S.130 e aeroporto di Cagliari Elmas Opera Connessa Nord

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA — CASIC RELAZIONE DI CALCOLO — Impalcato

CODICE PI	ROGETTO	NOME FILE POOVIO3STRR	E01_A		REVISIONE	SCALA
DPC	0150 D 23	CODICE POOVIO3STRRE01		Α	_	
D						
С						
В						
А	Emissione		Gen. 23	Toreno	Signorelli	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

<u>1.</u>	PRE	ME	SSA	4
<u>2.</u>	DES	CR	IZIONE DELL'OPERA	4
<u>3.</u>			TIVE DI RIFERIMENTO	
<u>4.</u>	MA	ΓER	IALI	11
<u>5.</u>	CRI	TER	I DI CALCOLO E VERIFICA	15
<u>6.</u>	ANA	ALIS	SI STRUTTURALE E FASI DI CALCOLO	17
	6.1.	FA	SI DI CALCOLO	17
	6.2.	PR	OGRAMMA DI CALCOLO	17
<u>7.</u>	CAF	RICH	II DI PROGETTO	20
	7.1.	ELI	ENCO DELLE CONDIZIONI ELEMENTARI DI CARICO	20
	7.2.	CR	ITERI PER LA VALUTAZIONE DELLE AZIONI SULLA STRUTTURA	20
	7.2	.1.	Carichi permanenti	20
	7.2	.2.	Ritiro e viscosità del calcestruzzo	20
	7.2	.3.	Azioni dei carichi variabili	20
	7.2	.4.	Effetto dinamico dei carichi mobili	20
	7.2		Azioni del vento	
<u>8.</u>	ANA	ALIS	SI DEI CARICHI	22
	8.1.		SO PROPRIO DELLA STRUTTURA (G1)	
	8.2.	СА	RICHI PERMANENTI PORTATI (G2)	22
	8.3.	EF	FETTO DEL RITIRO DELLA SOLETTA DI CALCESTRUZZO (ε2)	22
	8.4.		DIMENTI VINCOLARI (84)	
	8.5.		IONI VARIABILI DA TRAFFICO (Q1)	
	8.6.	Az	IONI LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE (Q3)	27
	8.7.	Az	IONE DEL VENTO (Q5)	27
	8.8.	VA	RIAZIONI TERMICHE (Q7)	29
	8.8	.1.	Variazione termica uniforme (stagionale)	29
	8.8	.2.	Variazione termica differenziale (giornaliera)	32
	8.9.	Az	IONE SUI PARAPETTI E URTO DEL VEICOLO IN SVIO (Q8)	32
	8.10.	Az	IONE SISMICA (E)	32
	8.1	0.1.	Definizione dei parametri sismici	32
	8.1	0.2.	Spettri di risposta	34
<u>9.</u>	CO	MBII	NAZIONI DELLE AZIONI	39
	9.1.	ME	TODOLOGIA DI ANALISI	49
	9.1	.1.	Analisi in condizioni non sismiche	49
PRO	OGETTAZION	E ATI:		

9.1	1.2.	Analisi sismica	49
<u>10.</u> <u>MO</u>	DELL	AZIONE DELL'IMPALCATO	<u>50</u>
10.1.	Fasi	COSTRUTTIVE E DI CALCOLO	50
10.2.	GEO	METRIA DEL MODELLO DI CALCOLO	50
10.3.	VINC	OLI	56
10.	.3.1.	Vincoli esterni	56
10	.3.2.	Vincoli interni	56
10.4.	DEF	NIZIONE DELLE SEZIONI	59
10.5.	Car	CHI E MASSE	61
10	.5.1.	Applicazione dei carichi strutturali	61
10	.5.2.	Applicazione dei carichi fissi non strutturali	61
10	.5.3.	Applicazione dei carichi variabili	62
10	.5.4.	Masse sismiche	65
10	.5.5.	Spettri di progetto	65
11. RIS	ULTA	TI DELLE ANALISI	68
11.1.	Ana	LISI DINAMICA MODALE	68
11.2.	PRIN	CIPALI DIAGRAMMI DELLE SOLLECITAZIONI	71
11.3.	DEF	DRMATE	76
12. GIU	IDIZIC	MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	81
13. VEF	RIFICI	IE TRAVI PRINCIPALI	83
13.1.	VER	FICHE AGLI STATI LIMITE ULTIMI	83
13	.1.1.	Verifiche di resistenza	83
13	12	1 0 mene an electrica	
13	. 1 . Z .	Collegamenti conci della travata	83
13.2.	.1.3.	Collegamenti conci della travata	83
	.1.3. VER	Collegamenti conci della travata Verifiche a fatica	83 85
13.2.	.1.3. VER VER	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO	83 85 85
13.2. 13.3.	.1.3. VER VER CAL	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ	83 85 85
13.2. 13.3. 13.4. 13.5.	.1.3. VER VER CALO	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA.	
13.2. 13.3. 13.4. 13.5.	.1.3. VER VER CALI VER	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI	
13.2. 13.3. 13.4. 13.5. 14. VEF	.1.3. VER VER CALO VER RIFICA	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI	
13.2. 13.3. 13.4. 13.5. 14. VEF 14.1. 14.2.	.1.3. VER VER CALL VER RIFICA GEO MOD	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI A DELLA SOLETTA METRIA DELLA SOLETTA	
13.2. 13.3. 13.4. 13.5. 14. VEF 14.1. 14.2.	.1.3. VER VER CALC VER RIFICA GEO MODE	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI A DELLA SOLETTA METRIA DELLA SOLETTA ELLAZIONE STRUTTURALE E ANALISI DEI CARICHI	
13.2. 13.3. 13.4. 13.5. 14. VEF 14.1. 14.2.	VER VER CALC VER RIFICA GEC MODE .2.1.	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI METRIA DELLA SOLETTA ELLAZIONE STRUTTURALE E ANALISI DEI CARICHI Combinazione delle azioni agli SLU	
13.2. 13.3. 13.4. 13.5. 14. VEF 14.1. 14.2.	.1.3. VER VER CALO VER GEO MODE .2.1. .2.2. VER	Collegamenti conci della travata Verifiche a fatica FICHE AGLI STATI LIMITE DI ESERCIZIO FICA DI DEFORMABILITÀ COLO DELLA PRE-MONTA FICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI A DELLA SOLETTA METRIA DELLA SOLETTA ELLAZIONE STRUTTURALE E ANALISI DEI CARICHI Combinazione delle azioni agli SLU Combinazione delle azioni agli SLE	

14.5.	VER	RIFICA ALLO SLU	.103
14.	.5.1.	Sollecitazioni agli SLU	.103
14.	.5.2.	Verifica delle sollecitazioni nelle sezioni notevoli	.105
14	.5.3.	Verifica a flessione per le sezioni di verifica	.105
14	.5.1.	Verifica a taglio per le sezioni di verifica	.107
14	.5.2.	Verifica cordolo per l'urto del veicolo in svio	.109
14.6.	VER	RIFICA ALLO SLE	.109
14	.6.1.	Verifiche tensionali – combinazione rara	.114
14	.6.2.	Verifiche tensionali – combinazione quasi permanente	.115
14	.6.3.	Verifica fessurazione	.117
14	.6.4.	Fessurazione – caso Frequente	.117
14	61	Fessurazione – caso Quasi Permanente	119

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

1. PREMESSA

La presente relazione riguarda il progetto definitivo del cavalcavia di scavalco dell'asse principale in corrispondenza dello svincolo Capoterra-CASIC. L'opera ricade tra quelle previste nella realizzazione della SS 195 "Sulcitana" e, in particolare, dell'Opera connessa Nord, costituita dal tronco "Nuovo svincolo Casic – Dorsale Consortile" (km 10+200) – punto intermedio del tronco 106-107 (km 5+216) località Santu Inesu.

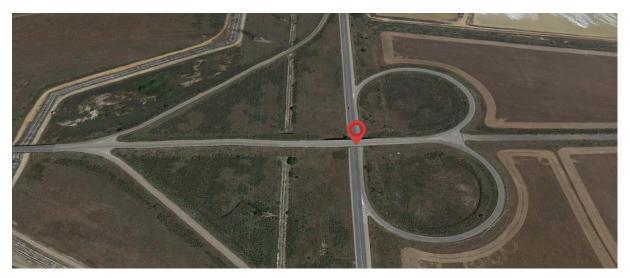


Figura 1.1 Ubicazione dell'opera

2. <u>DESCRIZIONE DELL'OPERA</u>

L'opera si sviluppa su in un'unica campata di luce 40m ed è ubicata su una porzione del tracciato sostanzialmente in rettilineo e con pendenza longitudinale compresa tra 0.5 e 4%.

L'impalcato ha una larghezza di 10.5m complessivi, il pavimentato ha larghezza 9.0m mentre i cordoli da hanno una larghezza di 0.75m ciascuno.

La struttura dell'impalcato, che ha schema a travata semplicemente appoggiata, è realizzata in sistema misto acciaio-calcestruzzo ed è di tipo bi-trave con sezione aperta. La sezione resistente della travata è costituita da travi principali con sezione a doppio T di altezza 2.0m sulle quali è realizzata una soletta in c.a. ordinario gettato in opera su predalle prefabbricate per uno spessore complessivo di 30cm.

La "collaborazione" tra soletta e carpenteria metallica è realizzata mediante connettori a piolo tipo Nelson.

I diaframmi intermedi sono realizzati con profili laminati IPE500 mentre quelli di testata sono realizzati con sezione a doppio T a parete piena.

Le connessioni delle travi principali saranno prevalentemente di tipo saldato mentre quelle degli elementi secondari (diaframmi di testata e intermedi) di tipo bullonato.

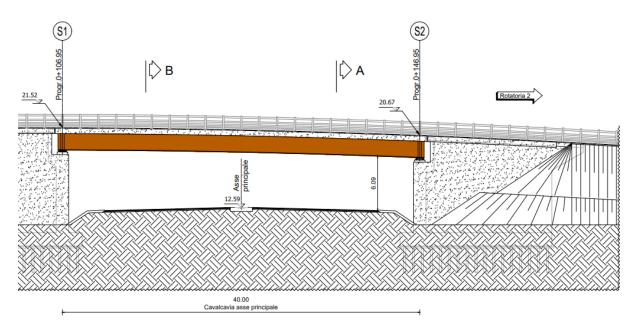


Figura 2.1 Prospetto dell'opera

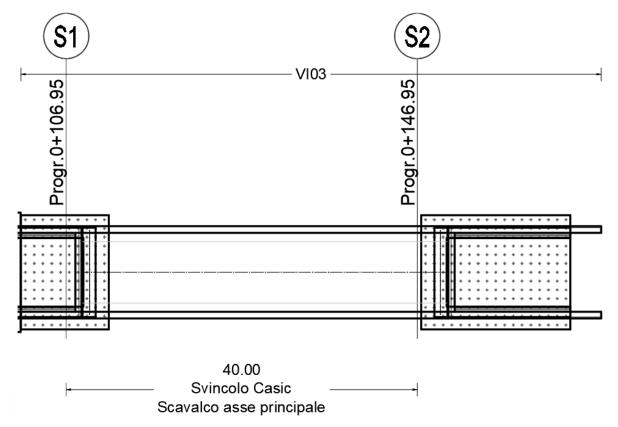


Figura 2.2 Pianta dell'opera

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

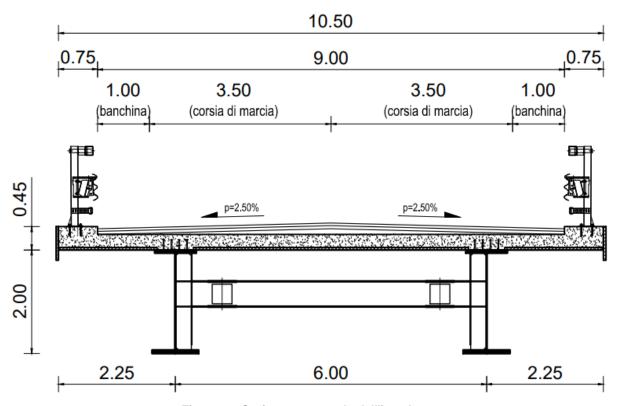


Figura 2.3 Sezione trasversale dell'impalcato

Il sistema di vincolo è realizzato mediante l'impiego di appoggi a disco elastomerico confinato di tipo fisso e di tipo scorrevole uni-direzionale e/o multi-direzionale. Il layout degli appoggi è stato definito in modo da rendere l'impalcato isostatico evitando la nascita di coazioni per effetto delle dilatazioni termiche. Si rimanda agli specifici elaborati per le caratteristiche dei dispositivi. Lo schema di vincolo è riportato nella seguente figura.

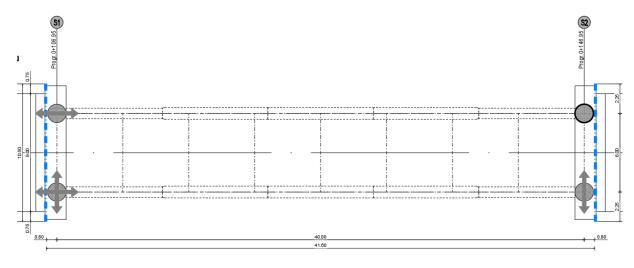


Figura 2.4 Schema di vincolo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

In corrispondenza delle spalle, per consentire gli spostamenti dell'opera in esercizio (dovuti principalmente alle dilatazioni termiche) si prevede l'installazione di giunti di dilatazione in gomma armata.

Si prevede di realizzare due spalle in calcestruzzo armato composte da un muro frontale, due muri andatori e un muro paraghiaia. Le spalle saranno fondate su platee e plinti su micropali.

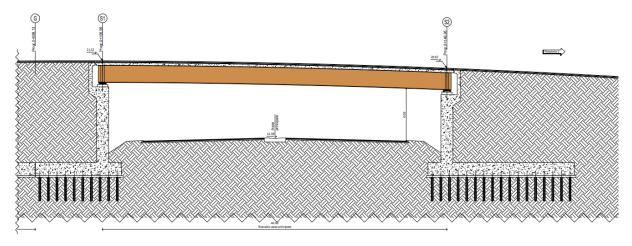


Figura 2.5 Sezione longitudinale

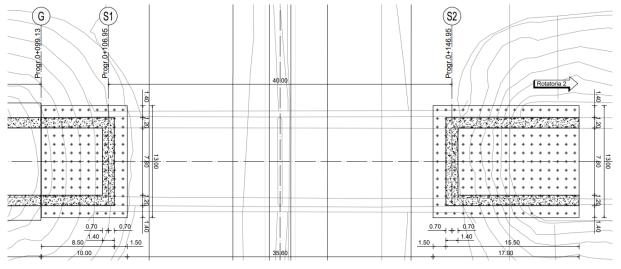


Figura 2.6 Pianta fondazioni

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

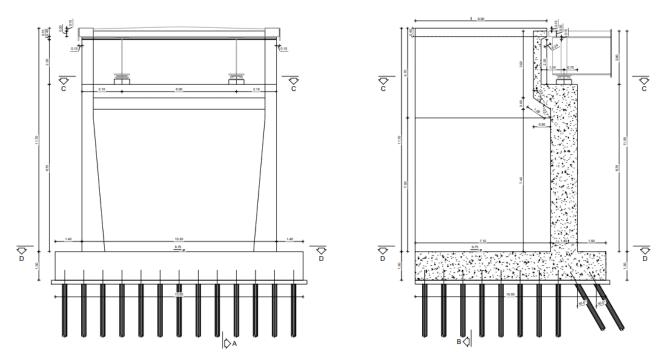


Figura 2.7 Prospetto e Sezione spalla "SP1" lato Rotatoria 1

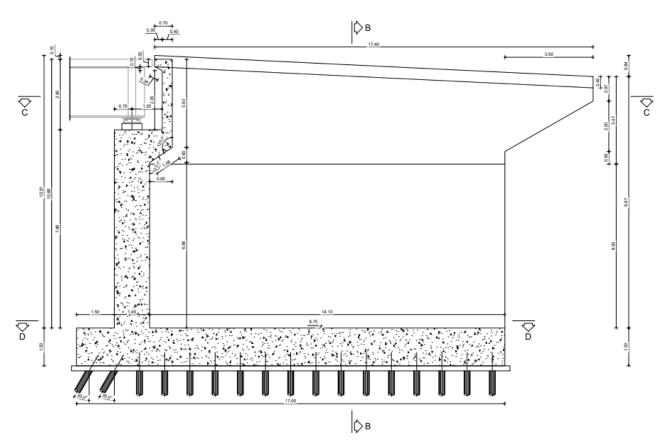


Figura 2.8 Sezione spalla "SP2" lato Rotatoria 2

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Gli spessori degli elementi sono tali da soddisfare le verifiche riportate nei capitoli successivi. In particolare per le spalle si prevede un muro frontale di spessore di 1.40m e uno sviluppo lungo l'asse trasversale dell'opera di 10.20m. I due muri andatori sono tali da raccordarsi con i muri di sostegno del rilevato e hanno uno spessore di 1.20m, per la spalla "SP1" lato Rotatoria 1 si estendono per 8.50m e sono alti 11.70m, mentre per la spalla "SP2" lato Rotatoria 2 si estendono per 15.50m e hanno un'altezza compresa tra 10m e 10.8m.

Le platee al di sotto delle spalle hanno uno spessore di 1.5m e una dimensione in pianta di 10m x 13m per la spalla "SP1" lato Rotatoria 1 e 17m x 13m per la spalla "SP2" lato Rotatoria 2. Al di sotto di essa sono disposti 13 file di micropali, distanti 1m l'una dall'altra. Il passo trasversale è di 1m. Ciascun micropalo ha un diametro di 0.240m, e si estende in profondità per 15m. Nelle prime due file i micropali sono stati inclinati per consentire un maggior assorbimento delle spinte statiche.

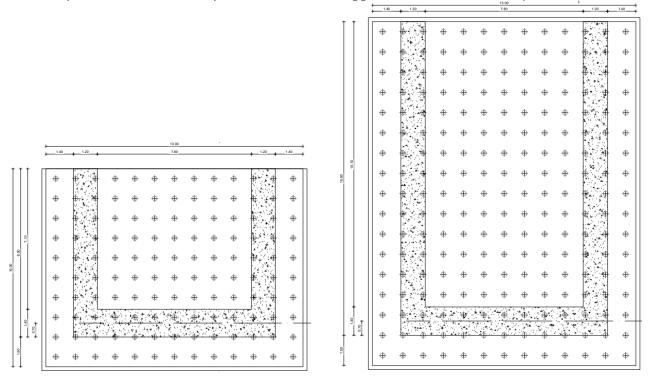


Figura 2.9 Platee su micropali

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

3. NORMATIVE DI RIFERIMENTO

Il progetto e la verifica delle strutture sono stati svolti nel rispetto delle seguenti norme:

- D.M. 17.01.2018 "Aggiornamento delle Norme tecniche per le Costruzioni".
- Circolare n° 7 del 21/01/2019 Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni" di cui al D.M. del 17/01/2018.
- D.M. 31.07.2012 Approvazione delle Appendici Nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici.
- UNI EN 1991-1-4:2005 EUROCODICE 1 Parte 1-4 "Azioni in generale Azioni del vento" con il relativo NAD del 24.09.2010;
- UNI EN 1991-1-5:2004 EUROCODICE 1 Parte 1-5 "Azioni in generale Azioni termiche" con il relativo NAD del 24.09.2010;
- UNI EN 1992-1-1:2005 EUROCODICE 2 Parte 1-1 "Progettazione delle strutture di calcestruzzo Regole generali e regole per gli edifici" con il relativo NAD del 24.09.2010;
- UNI EN 1993-1-5 (2006). EUROCODICE 3 Part 1-5 "Elementi strutturali a lastra";
- UNI EN 1993-1-5 (2006). EUROCODICE 3 Part 1-8 "Progettazione dei collegamenti";
- UNI EN 1993-1-5 (2006). EUROCODICE 3 Part 1-9 "Fatica";
- UNI EN 1993-2: 2006 EUROCODICE 3 Parte 2: "Progettazione delle strutture di acciaio Ponti di acciaio";
- UNI EN 1994-2: (2005) EUROCODICE 4 Parte 2: "Progettazione delle strutture composte acciaio-calcestruzzo Ponti":
- UNI EN 1998-1:2005. EUROCODICE 8. Parte 1: "Regole generali, azioni sismiche e regole per gli edifici";
- UNI EN 1998-2:2009. EUROCODICE 8. Parte 2: "Ponti"

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

4. MATERIALI

Al fine delle verifiche strutturali verranno utilizzati i parametri relativi ai materiali di seguito indicati:

Calcestruzzo pali e fondazioni

 $R_{ck} \ge 45 \text{ MPa}; (C35/45)$ $f_{ck} = 0.83 \times 45 = 37.35 \text{ MPa}$

 $f_{cd} = 0.85 \times 37.35 / 1.50 = 21.17 \text{ MPa}$

$$\begin{split} f_{cm} &= f_{ck} + 8 = 45.35 \text{ MPa} \\ f_{ctm} &= 0.30 \text{ x } f_{ck}^{2/3} = 3.35 \text{ MPa} \end{split}$$

 $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.35 \text{ MPa}$

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.02 \text{ MPa}$ $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$

 $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 34625.49 \text{ MPa}$

S4

XC2+XS2 32 mm 0.45

360 kg/m³ 55 mm

70 mm

resistenza cilindrica caratteristica

resistenza di calcolo

resistenza media cilindrica

resistenza media a trazione assiale

resistenza a trazione

resistenza media a trazione per flessione

resistenza a trazione di calcolo modulo elastico istantaneo Classe di consistenza Slump

Classe di esposizione Dimensione Max aggregati

Rapporto Max A/C Contenuto Min. cemento Copriferro (fondazioni) Copriferro (pali)

Calcestruzzo sottostrutture

R_{ck} ≥ 45 MPa; (C35/45)

 $f_{ck} = 0.83 \times 45 = 37.35 \text{ MPa}$

 $f_{cd} = 0.85 \times 37.35 / 1.50 = 21.17 \text{ MPa}$

 $f_{cm} = f_{ck} + 8 = 45.35 \text{ MPa}$

 $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.35 \text{ MPa}$

 $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.35 \text{ MPa}$

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.02 \text{ MPa}$

 $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$ $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 34625.49 \text{ MPa}$

S4

XC4+XS1

32 mm

0.5

340 kg/m³

45 mm

resistenza cilindrica caratteristica

resistenza di calcolo

resistenza media cilindrica

resistenza media a trazione assiale

resistenza a trazione

resistenza media a trazione per flessione

resistenza a trazione di calcolo modulo elastico istantaneo Classe di consistenza Slump

Classe di esposizione

Dimensione Max aggregati Rapporto Max A/C

Contenuto Min. cemento

Copriferro

Calcestruzzo soletta

R_{ck} ≥ 45 MPa; (C35/45)

 $f_{ck} = 0.83 \times 45 = 37.35 \text{ MPa}$

 $f_{cd} = 0.85 \times 37.35 / 1.50 = 21.17 \text{ MPa}$

 $f_{cm} = f_{ck} + 8 = 45.35 \text{ MPa}$

 $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.35 \text{ MPa}$ $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.35 \text{ MPa}$

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.02 \text{ MPa}$

 $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$

 $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 34625.49 \text{ MPa}$

S4

XC4+XS1

16 mm 0.5

PROGETTAZIONE ATI:

resistenza cilindrica caratteristica

resistenza di calcolo

resistenza media cilindrica

resistenza media a trazione assiale

resistenza a trazione

resistenza media a trazione per flessione

resistenza a trazione di calcolo modulo elastico istantaneo Classe di consistenza Slump

Classe di esposizione

Dimensione Max aggregati

Rapporto Max A/C

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

340 kg/m³ Contenuto Min. cemento

40 mm Copriferro

Calcestruzzo baggioli e chiavi di taglio

 $R_{ck} \ge 45 \text{ MPa}; (C35/45)$ $f_{ck} = 0.83 \times 45 = 37.35 \text{ MPa}$ resistenza cilindrica caratteristica

 $f_{cd} = 0.85 \times 37.35 / 1.50 = 21.17 \text{ MPa}$ resistenza di calcolo

 $f_{cm} = f_{ck} + 8 = 45.35 \text{ MPa}$ resistenza media cilindrica $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.35 \text{ MPa}$ resistenza media a trazione assiale

 $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.35 \text{ MPa}$ resistenza a trazione

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.02 \text{ MPa}$ resistenza media a trazione per flessione

 $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$ resistenza a trazione di calcolo $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 34625.49 \text{ MPa}$ modulo elastico istantaneo Classe di consistenza Slump

XC4+XS1 Classe di esposizione Dimensione Max aggregati 16 mm

0.45 Rapporto Max A/C

340 kg/m³ Contenuto Min. cemento 45 mm Copriferro

Calcestruzzo predalle

 $R_{ck} \ge 45 \text{ MPa}; (C35/45)$ $f_{ck} = 0.83 \text{ x } 45 = 37.35 \text{ MPa}$ resistenza cilindrica caratteristica

 $f_{cd} = 0.85 \times 37.35 / 1.50 = 21.17 MPa$ resistenza di calcolo

 $f_{cm} = f_{ck} + 8 = 45.35 \text{ MPa}$ resistenza media cilindrica $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.35 \text{ MPa}$ resistenza media a trazione assiale

 $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.35 \text{ MPa}$ resistenza a trazione

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.02 \text{ MPa}$ resistenza media a trazione per flessione

 $f_{ctd} = f_{ctk} / \gamma_c = 1.56 \text{ MPa}$ resistenza a trazione di calcolo $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 34625.49 \text{ MPa}$ modulo elastico istantaneo **S4** Classe di consistenza Slump

XC3+XS1 Classe di esposizione 16 mm Dimensione Max aggregati

0.5 Rapporto Max A/C 340 kg/m³ Contenuto Min. cemento

35 mm Copriferro

Acciaio in barre ad aderenza migliorata

Si utilizzano barre ad aderenza migliorata tipo B450C controllato in stabilimento, pertanto nei calcoli statici saranno assunti i seguenti parametri:

 $f_{vk} = 450 \text{ MPa}$ tensione caratteristica di snervamento $f_{tk} = 540 \text{ MPa}$ tensione caratteristica di rottura

 $f_{yd} = f_{yk} / \gamma_S = 391.3 \text{ MPa}$ tensione di calcolo

 $E_s = 210000 \text{ MPa}$ modulo elastico $\varepsilon_{vd} = f_{vd} / E_s = 1.863 \%$

deformazione di snervamento ultima $\varepsilon_{uk} = (A_{gt})_k = 7.5 \%$ deformazione uniforme caratteristica $\varepsilon_{ud} = 0.9 \times \varepsilon_{uk} = 6.75 \%$ deformazione uniforme ultima

 $y_{s=} 78.5 \text{ kN/mc}$ peso per unità di volume

Acciaio per carpenteria

I profili metallici sia saldati che laminati ed il piastrame sono realizzati con l'impiego di acciaio strutturale per carpenteria dotato delle caratteristiche sottoindicate, in accordo con la norma UNI EN 10025-2 (2005).

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Le giunzioni di tipo saldato o bullonato saranno conformi alle prescrizioni del paragrafo 11.3.4 delle NTC.

I criteri di accettazione ed i relativi controlli verranno definiti in accordo alle prescrizioni del paragrafo 11.3.4 delle NTC.

Travi principali, elementi composti saldati e coprigiunti:

Acciaio S355 J0 per spessori t ≤ 20mm;

Acciaio S355 J2 per spessori 20mm < t ≤ 40mm;

Acciaio S355 K2 per spessori > 40mm.

Angolari, profilati e piastre sciolte (elementi non saldati):

Acciaio S355 J0W per qualsiasi spessore

 $\begin{array}{ll} f_{yk} \geq 355 \text{ MPa} & f_d = f_{yk}/\gamma_{M0} = 338.1 \text{MPa} & \text{per spessori 0mm} \leq t \leq 40 \text{mm} \\ f_{yk} \geq 335 \text{ MPa} & f_d = f_{yk}/\gamma_{M0} = 319.0 \text{MPa} & \text{per spessori 40mm} \leq t \leq 100 \text{mm} \end{array}$

Unioni bullonate:

Secondo NTC, UNI 3740 e 20898 parte I e II

Giunzioni a taglio:

Viti classi 10.9 (UNI5712)

Dadi classe 10 (UNI 5713)

Rosette in acciaio C50 EN10083 (HRC 32-40) (UNI5714)

Giunzioni ad attrito:

Viti classi 10.9 (UNI5712)

Dadi classe 10 (UNI 5713)

Rosette in acciaio C50 EN10083 (HRC 32-40) (UNI5714)

Precarico e coppia di serraggio: secondo UNI EN 1993-1-8 e UNI ENV 1090

Giunzioni a taglio (Cat. A) – ove di seguito specificato;

F_{v.Rd} = secondo UNI EN 1993-1-8 (resistenza di progetto a taglio bullone)

F_{b.Rd} = secondo UNI EN 1993-1-8 (resistenza di progetto a rifollamento bullone)

Giunzioni ad attrito (Cat. B, C) – ove di seguito specificato;

 $\mu = 0.30$ (coefficiente di attrito)

F_{s.Rd} = secondo UNI EN 1993-1-8 (resistenza di progetto a taglio bullone)

F_{p,C} = secondo UNI EN 1993-1-8 (precarico bullone per giunti tipo B e C)

I bulloni devono essere disposti in opera con una rosetta posta sotto il dado ed una sotto la testa della vite.

<u>Unioni saldate</u>:

Secondo NTC e UNI ENV 1090 (cfr. [24]) - Calcolo secondo EC3

A cordone d'angolo o a parziale penetrazione – ove di seguito specificato;

 $\gamma_{Mw} = \gamma_{M2}$ come di seguito indicato

f_{v.wd} = secondo UNI EN 1993-1-8 (resistenza di progetto a taglio della saldatura)

A completa penetrazione – ove di seguito specificato;

f_d = per il materiale base più debole connesso

Connettori a piolo:

I connettori a piolo, tipo Nelson, conformi a quanto prescritto al paragrafo 11.3.4.7 delle NTC2018 secondo UNI EN ISO 13918

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Pioli tipo NELSON, ϕ 19 Acciaio ex ST 37-3K (S235J2G3+C450) $f_y > 350$ MPa $f_u > 450$ MPa

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

5. CRITERI DI CALCOLO E VERIFICA

Il calcolo delle sollecitazioni è stato effettuato considerando le azioni sui ponti stradali secondo quanto indicato al paragrafo 5.1.3. del D.M. 17/01/2018.

Le verifiche delle sezioni in c.a. sono state condotte sulla base delle prescrizioni contenute nel D.M. 17/01/2018.

Per le resistenze dei materiali in condizioni ultime e per i limiti tensionali allo SLE si fa riferimento ad i valori riportati in precedenza.

Stato Limite Ultimo

Resistenza di calcolo a compressione del calcestruzzo (punto 4.1.2.1.1.1 delle NTC):

 $f_{cd} = \gamma_{cc} \bullet f_{ck} / \gamma_{C}$

 γ_{cc} = 0,85 Coefficiente riduttivo per le resistenze di lunga durata

γ_C=1,5 Coefficiente parziale di sicurezza relative al calcestruzzo

Resistenza di calcolo a trazione del calcestruzzo (punto 4.1.2.1.1.2 delle NTC):

 $f_{ctd} = f_{ctk} / \, \gamma_c$

 $f_{ctk} = 0.7 \bullet f_{ctm}$

Tensione di snervamento di calcolo dell'acciaio (punto 4.1.2.1.1.4 delle NTC):

 $f_{yd} = f_{yk} / \gamma_s$

con y_S = 1,15 Coefficiente di sicurezza parziale dell'acciaio

Stato Limite di esercizio

Tensione max di compressione - Comb. rara	$\sigma_c\!<0.60f_{ck}$
Tensione max di compressione - Comb. quasi permanente	$\sigma_c < 0.45 f_{ck}$
Tensione massima di trazione dell'acciaio	$\sigma_s < 0.80 f_{yk}$

Stati limite di fessurazione

Le classi di esposizione dei vari calcestruzzi sono indicate in precedenza congruentemente a quanto riportato in tabella materiali.

In funzione della classe di esposizione, le condizioni ambientali rientrano in una delle seguenti tre categorie:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Lo stato limite di fessurazione viene determinato attraverso la seguente tabella:

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Condizioni	Combinazione	Armatura				
ambientali	di azioni	Sensibile	Poco sensibile			
amolentan	ui azioiii	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$	
Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃	
Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq W ₂	
Aconoggizzo	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq W ₂	
Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
Malta aggregativa	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Con

W1 = 0.2mm

W2 = 0.3mm

W3 = 0.4 mm

La verifica a fessurazione è soddisfatta se $w_d = 1.7~w_m = 1.7~(\epsilon_{sm}~\Delta_{sm}) < (w_1, w_2, w_3)$ Per il calcolo di ϵ_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura; a tal scopo si veda C4.1.2.2.4.6., Tab C4.1.II e Tab C4.1.III.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

6. ANALISI STRUTTURALE E FASI DI CALCOLO

La struttura composta acciaio-calcestruzzo verrà analizzata secondo il metodo classico adottato per questi tipi di strutture, che prevede il calcolo delle caratteristiche geometrico-statiche delle varie sezioni sulla base di una sezione equivalente, in cui la porzione in calcestruzzo viene "omogeneizzata" ad acciaio in funzione del rapporto $E_s/E_{c(t)}$, essendo $E_{c(t)}$ il modulo elastico del calcestruzzo valutato in funzione del tipo di carico applicato, tenendo conto, ove opportuno, dei fenomeni a lungo termine.

Viene pertanto effettuata l'analisi separata e conseguente sovrapposizione dei quadri tensionali afferenti alle varie "fasi" attraversate dalla struttura, ciascuna delle quali si differenzia dalle altre per lo schema statico di analisi e/o per la proprietà delle sezioni.

6.1. FASI DI CALCOLO

Gli impalcati da ponte in generale sono strutture per le quali le fasi realizzative hanno una forte influenza sul comportamento della struttura e vanno dunque necessariamente tenute in considerazione nell'analisi strutturale; pertanto, gli effetti (sollecitazioni, deformazioni, ecc.) prodotti da ciascuna categoria di azioni applicata all'impalcato vengono calcolati considerando la configurazione del sistema strutturale all'atto dell'applicazione dei carichi così come descritto di seguito:

Configurazione 1: La sezione resistente è costituita dalla sola parte metallica.

Corrisponde alla fase in cui è completo l'assemblaggio della carpenteria metallica e viene eseguito il getto della soletta. In tale fase agiscono il peso proprio della carpenteria metallica ed il peso del getto di soletta (inerte).

Le sezioni resistenti sono composte dalla sola trave metallica (in questa fase la soletta è fluida e non da apporto alla resistenza delle sezioni, $n=\infty$).

Configurazione 2: La sezione resistente è costituita dalla sezione composta acciaio-calcestruzzo; per l'omogeneizzazione del calcestruzzo all'acciaio si considera un modulo n=15.70; si tiene conto degli effetti di lungo termine del calcestruzzo (fluage, ritiro, ecc.)

Viene utilizzata per valutare gli effetti delle seguenti azioni variabili e permanenti (di lunga durata):

g₂ carichi permanenti portati (pavimentazione, sicurvia, cordoli, parapetti, ecc.)

ε₂ ritiro del calcestruzzo

Configurazione 3: La sezione resistente è costituita dalla sezione composta acciaio-calcestruzzo; per l'omogeneizzazione del calcestruzzo all'acciaio si considera un modulo n=6.24.

Viene utilizzata per valutare gli effetti delle seguenti azioni variabili istantanee (di breve durata):

q₁ carichi mobili

q₂ effetto dinamico dei carichi mobili

q₃ frenatura

q₅ azione del vento

q₇ variazioni termiche differenziali

q₈ azioni sui parapetti e urto di veicolo in svio

E azione sismica

6.2. PROGRAMMA DI CALCOLO

In base a quanto esposto al paragrafo precedente, per una corretta analisi dell'impalcato è stato necessario implementare due diversi modelli di calcolo.

L'analisi della struttura è stata eseguita impiegando il software di calcolo automatico Sap2000 della Computers and Structures, Inc.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Nel seguito si riportano le caratteristiche generali del codice di calcolo utilizzato, nonché i dati generali sul modello realizzato comprensivi di numerazione di nodi ed aste.

Le unità di misura, ove non espressamente indicate, sono le seguenti:

lunghezze:mforze:kNcoppie:kN-mtemperature:°Ctempo:sec

Una descrizione completa ed esauriente del programma, con il campo di applicazione, le informazioni sui fondamenti teorici e sui metodi di calcolo numerico usati possono essere consultati nella guida in linea del codice di calcolo.

In sintesi, si riportano gli elementi di valutazione del codice forniti dal distributore del programma, necessari alla formulazione del grado di affidabilità del codice richiesto al progettista utilizzatore, secondo quanto prescritto dalla CNR-10024/'86 "Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo".

I modelli numerici fanno riferimento ad un comportamento generale spaziale o piano a seconda dei gradi di libertà imposti ai nodi della struttura.

Ogni modello è riferito ad uno spazio fisso individuato da un sistema di riferimento globale nel quale sono da leggersi le coordinate di tutti i nodi della struttura.

Per ogni singola asta è poi considerato un sistema di riferimento locale, che assume l'asse "1" dell'asta orientato dal "primo nodo" (nodo I) al "secondo nodo" (nodo J) (essendo tali i nodi di definizione dell'asta. L'asse "3" viene definito (per direzione e verso) per ogni asta nella dichiarazione dei nodi della stessa e il suo significato fisico rispetto alla terna locale e indicato in figura. L'asse "2" (con il verso opportuno) completa la terna locale definita secondo la "regola della mano destra"

Il programma SAP presenta i chiari capitoli d'ingresso dati che vengono di seguito indicati:

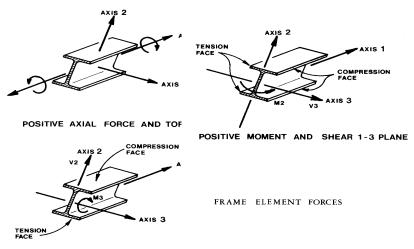
JOINTS Specifica le coordinate dei nodi del modello. È da precisare come sia possibile fare uso di subroutines di generazione automatica.

RESTRAINTS Specifica i gradi di libertà inattivi dei nodi del modello (0 = attivo, 1 = inattivo).

SPRINGS Specifica le caratteristiche di elasticità dei supporti se non considerati vincoli rigidi.

FRAME Specifica le caratteristiche meccaniche di ogni asta ed i carichi ripartiti o concentrati lungo le stesse. Specifica inoltre le aste che costituiscono la struttura, assegnando ad ognuna il nodo di inizio (start) e di fine (end) nonché gli altri dati necessari ai fini della individuazione del sistema di riferimento locale. È da precisare come sia possibile fare uso di subroutines di generazione automatica.

LOADS Specifica i carichi concentrati nei nodi della struttura.



CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

POSITIVE MOMENT AND SHEAR 1-2 PLANE

Le travi principali sono state modellate con elementi di tipo frame. Le sezioni assegnate alle travi sono quelle relative alla sola sezione d'acciaio o alla sezione composta con soletta collaborante e omogeneizzata tenendo conto dei diversi coefficienti di omogeneizzazione in base ai vari tipi di carico (di breve o lunga durata), in base alla fase di calcolo in esame.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

7. CARICHI DI PROGETTO

7.1. ELENCO DELLE CONDIZIONI ELEMENTARI DI CARICO

L'impalcato è sottoposto alle azioni indotte da:

- g₁ peso proprio delle strutture: acciaio-cls. di soletta
- g₂ carichi permanenti portati: pavimentazione, velette, guardrail, marciapiedi e parapetto
- ε₁ distorsioni
- ε₂ ritiro del calcestruzzo
- ε₃ effetti viscosi del calcestruzzo
- ε₄ cedimenti vincolari
- q₁ carichi mobili
- q₂ effetto dinamico dei carichi mobili
- q₃ azione di frenamento
- q₅ azione del vento
- q₇ azioni della temperatura
- q₈ azioni sui parapetti e urto di veicolo in svio

Tali azioni saranno combinate secondo le prescrizioni delle normative vigenti.

7.2. CRITERI PER LA VALUTAZIONE DELLE AZIONI SULLA STRUTTURA

7.2.1. CARICHI PERMANENTI

I carichi permanenti sono costituiti dai pesi propri delle strutture portanti e delle sovrastrutture. Essi sono valutati moltiplicando il volume calcolato geometricamente per i pesi specifici dei materiali

7.2.2. RITIRO E VISCOSITÀ DEL CALCESTRUZZO

Il calcolo degli effetti del ritiro del calcestruzzo e della viscosità deve essere effettuato in accordo al carattere ed all'intensità di tali distorsioni definiti ai §11.2.10.6 e §11.2.10.7 delle NTC2018.

Le azioni indotte da queste azioni e dall'interazione tra esse sono valutate secondo le più recenti indicazioni contenute nella norma EC4 (vedere verifica delle sezioni) e nella bibliografia specialistica.

7.2.3. AZIONI DEI CARICHI VARIABILI

I carichi accidentali agenti sull'impalcato sono definiti dalle NTC 2018 e vanno posizionati in modo da produrre gli effetti più sfavorevoli ai fini della valutazione della resistenza e stabilità degli elementi dell'impalcato (travi, soletta, traversi).

7.2.4. EFFETTO DINAMICO DEI CARICHI MOBILI

Il coefficiente di incremento dinamico addizionale da applicare alle azioni indotte dai carichi mobili è valutato secondo NTC 2018: per l'analisi globale dell'impalcato e nell'ipotesi di pavimentazione di media rugosità si assume $q_2 = 1$; effetti locali in prossimità di interruzioni della continuità strutturale

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

della soletta che possono richiedere l'adozione di coefficienti superiori all'unità verranno eventualmente analizzati in sede di verifica della soletta.

7.2.5. AZIONI DEL VENTO

Le azioni del vento sono valutate calcolando la pressione cinetica di riferimento q_{ref} secondo le indicazioni contenute nelle NTC 2018, da applicarsi alla sagoma trasversale del ponte a ponte scarico ed a ponte carico tenendo conto dell'ingombro dei carichi accidentali presenti.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

8. ANALISI DEI CARICHI

Di seguito si riporta la descrizione dei vari contributi di carico presi in esame ai fini dell'analisi globale della struttura.

Le sollecitazioni per le verifiche sezionali sono state dedotte dall'analisi globale.

8.1. PESO PROPRIO DELLA STRUTTURA (G1)

Il peso della struttura in acciaio è stato calcolato considerando un'incidenza della carpenteria metallica pari a 300kN/mq, comprensiva delle travi longitudinali, dei traversi spalla e dei diaframmi intermedi.

Si è assunta una densità di massa convenzionale di 7850 kg/m³.

Il peso della soletta di impalcato è pari a:

- soletta incluse predalles

 $0.3 \text{ m} * 25 \text{ KN/m}^3 = 7.5 \text{ KN/m}^2$

Il contributo equivalente al peso della soletta + predalles è stato implementato nel modello tramite un sovraccarico uniformemente distribuito agente sugli allineamenti delle travi longitudinali.

Si riportano in forma tabellare i valori dei carichi elementari.

Tot. G1 per singo	54.375	
Tot. G1		108.75
Soletta (30cm)	7.5	78.75
Carpenteria metallica		30
	Peso unit. [KN/m2]	Peso unit. [kN/m]

8.2. CARICHI PERMANENTI PORTATI (G2)

I valori unitari caratteristici dell'impalcato sono riassunti nella seguente tabella.

elemento	h [m]	b [m]	P [kN/m³]	P [kN/m²]	P [kN/m]
Pavimentazione	0.14	9.00	23.00	3.22	28.98
Barriera di sicurezza	-	-	-	-	1.50
Cordolo	0.15	0.75	25.00	3.75	2.81
Veletta					1.00
Presidi idraulici					0.50
	TOTA	LE G2			40.61
	ΓALE G2 pe				20.30

I sovraccarichi permanenti vengono implementati nel modello come carichi uniformemente distribuiti, agenti sugli elementi delle travi.

8.3. EFFETTO DEL RITIRO DELLA SOLETTA DI CALCESTRUZZO (E2)

Nei punti precedenti sono stati valutati i parametri di base inerenti alla reologia del calcestruzzo (ritiro/viscosità). Gli effetti del creep vengono valutati con l'ausilio di coefficienti di

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

omogeneizzazione opportunamente modificati e della deformazione di ritiro come esposto nel paragrafo relativo ai materiali.

Per quanto riguarda il ritiro della soletta, si valuta, in linea generale, l'effetto coattivo indotto dalla contrazione della soletta, primariamente rispetto alla trave composta acciaio calcestruzzo (effetti primari del ritiro), secondariamente rispetto alla statica globale della struttura continua (effetti secondari, o iperstatici).

Gli effetti primari vengono valutati con la formula:

$$N_r = \varepsilon_{cs} * E_c / n_{f2b} * b_{eff} * t_{cls}$$

 $M_r = N_r * e$

In particolare, con "e" si è indicata l'eccentricità fra il baricentro della soletta ed il baricentro della sezione composta omogeneizzata in fase 2. In sede di verifica tensionale, nella soletta, alle tensioni indotte da N_r ed M_r si aggiunge lo stato di coazione locale di trazione $\sigma_{cs} = \epsilon_{cs} * E_c/n_{f2b}$.

Si riporta di seguito in forma tabellare il calcolo della deformazione per ritiro.

Dati di ingresso

<u> </u>	nigico	<u> </u>	•	
	R _{ck} =	45	MPa	Resistenza cubica caratteristica
	$f_{ck} =$	37.4	MPa	Resistenza cilindrica caratteristica
	E _{c,m} =	34625	MPa	Modulo elastico del cls
	A _C =	2675000	mmq	Area della sezione in cls
	u =	11000	mm	Perimetro della sezione in cls esposto all'aria
	h ₀ =	486.4	mm	dimensione fittizia
	$k_h =$	0.703		parametro funzione di h₀ secondo la Tab. 11.2.Vb
	RH =	70	%	Umidità Relativa ambientale

Deformazione per ritiro a tempo infinito

β _{RH} =	1.02		
f _{cm} =	45.4	MPa	resistenza media cilindrica a compressione
f _{cm0} =	10.0	MPa	
Classe:	N		Classe del cemento
a _{ds1} =	4.00		coefficiente dipendente dal tipo di cemento
a _{ds2} =	0.12		coefficiente dipendente dal tipo di cemento
$\epsilon_{cd,0} =$	-0.332	‰	Deformazione da ritiro per essiccamento
e _{cd} =	-0.233	‰	Valore medio a t=∞ della deformazione per ritiro da essiccamento
e _{ca} =	-0.068	‰	Valore medio a t=∞ della deformazione per ritiro autogeno
e _{cs} =	-0.302	‰	Valore medio a t=∞ della deformazione per ritiro (totale)

Dove il coefficiente di viscosità a tempo infinito $f(\infty, t_0)$ è calcolato utilizzando i valori presenti nelle tabelle 11.2.VI e 11.2.VII al §11.2.7 delle NTC2018, e lo sforzo assiale dovuto al ritiro su ciascuna trave è pari a:

 $N_{cs} = \varepsilon_{cs} \times A_{cls} \times E_{c\infty}/2 = 2048 \text{ kN}$

L'eccentricità tra il baricentro della soletta e quello della sezione trave+soletta+armature. Varia quindi per i vari conci; viene stimata in questa fase con un valore pari a:

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

 $e_r = 0.6 \text{ m}$

Dunque sulla i-esima sezione agisce un momento pari a:

 $M_{ri} = N_{ri} \times e_{\epsilon 2} = 2048 \times 0.6 = 1229 \text{ kNm}$

8.4. CEDIMENTI VINCOLARI (£4)

Lo schema vincolare è tale da rendere trascurabile l'effetto dei cedimenti vincolari (schema a trave appoggiata).

8.5. AZIONI VARIABILI DA TRAFFICO (Q1)

I carichi mobili agenti sull'impalcato sono definiti al § 5.1.3.3 del D.M. 17.01.2018 e vanno posizionati in modo da produrre gli effetti più sfavorevoli ai fini della verifica delle sottostrutture e degli apparecchi di appoggio. Si fa riferimento allo Schema di Carico 1 (Figura 8.1) per le verifiche globali.

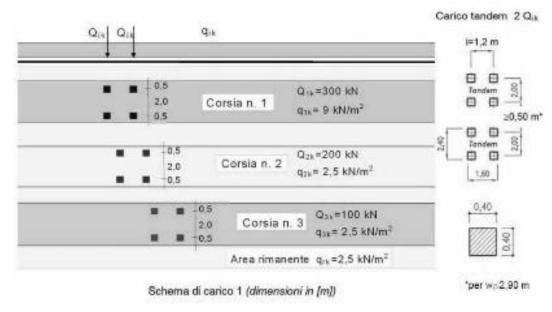


Figura 8.1: Schema di carico convenzionale 1

La larghezza impalcato è costante e pari a 10.5m di cui 9m di pavimentazione: il numero delle corsie di carico convenzionali considerate ai fini del calcolo dell'impalcato e delle sottostrutture è stato definito in base a quanto riportato nella Tabella 5.1.1 del D.M. 17/01/18 (Figura 8.2):

Larghezza di carreggiata	Numero di corsie	Larghezza di una corsia	Larghezza della zona
"w"	convenzionali	convenzionale [m]	rimanente [m]
w < 5,40 m	$n_l = 1$	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _i)

Figura 8.2 Criteri per la definizione del numero e della larghezza delle corsie convenzionali per l'applicazione dei carichi da traffico

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Nel caso in esame, la carreggiata ha una larghezza utile costante pari a 9.0 m, ed è in grado di ospitare 3 corsie di carico di larghezza convenzionale pari a 3.0 m.

Al fine di ottenere gli effetti più gravosi in termini di reazioni vincolari, sollecitazioni e deformazioni, sono state considerate differenti disposizioni dei carichi sia in senso trasversale che longitudinale. Si considerano i carichi variabili caratteristici riportati in Tabella 8.1

Intensità dei carichi Qik e qik per le diverse corsie

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Tabella 8.1 Valori caratteristici dei carichi mobili (schema 1) per ponti di 1° categoria

Per ciascuna corsia si ha:

Corsia n.1:

$q_{1distr} = q_{1k} x w_1 = 9.00 x 3.00 = 27 kN/m$	carico uniformemente distribuito
$Q_{1tan} = 2 \times Q_{1k} = 2 \times 300 = 600 \text{ kN}$	carico su 2 assi tandem

Corsia n.2:

$q_{2distr} = q_{2k} \times w_1 = 2.50 \times 3.0 = 7.5 \text{ kN/m}$	carico uniformemente distribuito
Q_{2tan} = 2 x Q_{2k} = 2 x 200 = 400 kN	carico su 2 assi tandem

Corsia n.3:

$q_{3distr} = q_{3k} \times w_1 = 2.50 \times 3.0 = 7.5 \text{ kN/m}$	carico uniformemente distribuito
$Q_{3tan} = 2 \times Q_{3k} = 2 \times 100 = 200 \text{ kN}$	carico su 2 assi tandem

La disposizione e la numerazione delle corsie viene determinata in modo da indurre le più sfavorevoli condizioni di progetto. Per ogni singola verifica il numero di corsie da considerare caricate, la loro disposizione sulla carreggiata e la loro numerazione vengono scelte in modo che gli effetti della disposizione dei carichi risultino i più sfavorevoli. La corsia che, caricata, dà l'effetto più sfavorevole è numerata come Corsia 1; la corsia che dà il successivo effetto più sfavorevole è numerata come Corsia 2, ecc.

Ai fini del calcolo delle strutture secondarie dell'impalcato si considera, se più gravoso, il carico associato allo Schema 2, disposto nel modo più sfavorevole e supposto viaggiante in direzione longitudinale.

Schema di Carico 2: è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

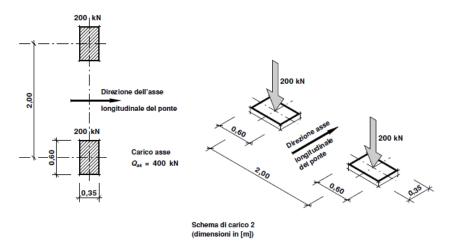


Figura 8.3: Schema di carico convenzionale 2

Dettagli riguardo alle posizioni più significative di tale carico vengono forniti nel paragrafo relativo alle verifiche locali della soletta.

Tale modello veicolare verrà impiegato anche in concomitanza all'urto.

Le verifiche a fatica vengono effettuate con riferimento al metodo dei coefficienti λ . Pertanto si considera il transito sulla corsia lenta del veicolo formato da 4 assi da 120.0 kN ciascuno, ed avente la configurazione planimetrica indicata in figura.

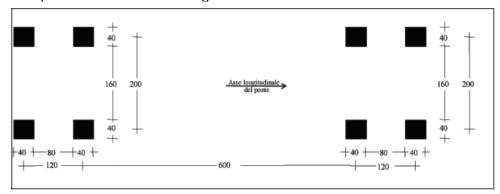


Figura 8.4: Carico convenzionale per verifiche a fatica

La struttura in esame è a carreggiata pertanto si considera la presenza di una corsia lenta, posizionata nelle corsie convenzionali.

Schema di carico 5: Si considera per la folla compatta un carico uniformemente distribuito comprensivo degli effetti dinamici pari a 5.0 kN/mq (il valore di combinazione è invece di 2.5 kN/mq) applicato sul cordolo pedonabile.

Figura 8.7 Schema di carico 5

Per tale opera non sono previsti marciapiedi pedonabili.

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

8.6. AZIONI LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE (Q3)

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a:

 $180 \text{ kN} \le Q_{3k} = 0.6*(2*Q_{1k}) + 0.1*q_{1k}*w_1*L \le 900 \text{ kN}$

Essendo in questo caso:

w [m]	L [m]	q _{ik} [kN/m ²]	Q _{ik} /asse [kN]	q ₃ [kN]	q ₃ [kN/m]
3.00	40	9.00	300	468	11.70

8.7. AZIONE DEL VENTO (Q5)

Le azioni del vento vengono valutati con riferimento ai criteri contenuti in EN 1991-1-4, corredata dal relativo annesso nazionale.

Ai fini della valutazione delle pressioni, si è considerata la singola via di corsa.

Qui di seguito di riporta la tabella contenente i parametri di sito ed il calcolo della pressione del vento.

L'azione del vento è valutata, in termini di pressione, attraverso la seguente espressione (fornita dal D. Min. 17/01/2018): $p=q_b \cdot c_e \cdot c_p \cdot c_d$.

In funzione della regione su cui sorge l'opera (Sardegna) si assume che la zona geografica di riferimento sia la "5" ed in relazione alla posizione geografica e topografica dell'opera, si adotta la classe di rugosità D ("Aree costiere"). Di seguito vengono riportate le tabelle inerenti al calcolo dell'azione del vento:

Velocità base di riferimento

Velocità base di riferimento al livello del mare	v _{b,0} [m/s]	28
Parametri:	a₀ [m]	750.0
	k s	0.4
Coefficiente di altitudine	Ca	1.0
Velocità di riferimento	v _b [m/s]	28.00

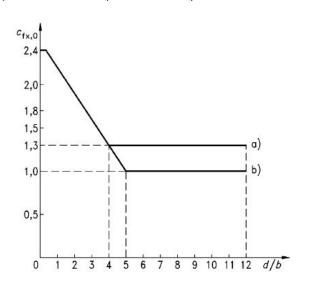
Velocità di riferimento

Coefficiente di ritorno	C _r	1.00
Velocità di riferimento	v _r [m/s]	28.02

Pressione del vento

Pressione cinetica di riferimento	q _r [N/m²]	490.72
Parametri:	K _r	0.17
	z ₀ [m]	0.01
	z _{min} [m]	2
Coefficiente di esposizione	C _e (z)	2.86
Coefficiente dinamico	C _d	1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO


Il valore di riferimento q_r =0.49kPa è calcolato considerando un'altezza media rispetto al suolo di 10m.

I coefficienti di pressione per l'impalcato e le pile sono determinati con riferimento alle indicazioni dell'Eurocodice 1 Parte 4.

Con riferimento all'impalcato, i rapporti b/d nelle condizioni di ponte carico e ponte scarico sono rispettivamente pari a:

Ponte carico: 10.50/5.45 = 1.93
Ponte scarico: 10.50/2.95 = 3.56

Da cui si ricavano, leggendo il grafico seguente (EC1-P4) i coefficienti di forza, che valgono rispettivamente: $c_{f,pc} = 1.90$ e $c_{f,ps} = 1.45$.

tipo di ponte	piastra accoppiata o trave	piastra multipla o trave	sezioni scatolari	curva
senza barriere o traffico	<i>d Q</i>	9	<i>d Q</i>	a)
con barriere o traffico	d	d d	d	b)
	per piastre/por	nti a trave aperta	Aperto separatamente	b)

Coefficiente di pressione

	2° caso - ponte scarico	Cfx, 2	1.45
Coefficiente di forza in direzione x:	1° caso - ponte carico	Cfx, 1	1.90
	2° caso - ponte scarico	b/H ₂	3.56
Rapporto larghezza/altezza:	1° caso - ponte carico	b/H₁	1.93
vento:	2° caso - ponte scarico	H ₂ [m]	2.95
Altezza totale dell'impalcato direzione	e 1° caso - ponte carico	H₁ [m]	5.45

Pressione del vento	in direzione x:	1° caso -	ponte carico	p [N/m²]	2667.60	
		2° caso -	ponte scarico	p [N/m²]	2035.80	

L'azione del vento è applicata come carico uniforme in direzione Y sulle travi di bordo impalcato. Si ha:

Forza orizzontale:	ale: 1° caso - ponte carico		14.54
	2° caso - ponte scarico	[kN]	6.01
Braccio dal punto di applicazione sul	1° caso - ponte carico	d [m]	0.43
modello:	2° caso - ponte scarico	d [m]	-0.83

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Momento:	1° caso - ponte carico	[kNm]	6.18
	2° caso - ponte scarico	[kNm]	-4.95
Coppia di forze \rightarrow su singola trave:	1° caso - ponte carico	[kN]	1.03
	2° caso - ponte scarico	[kN]	-0.83

Con particolare riferimento alla condizione "ponte carico", si osserva una eccentricità di 0.43m tra il baricentro della sezione dell'impalcato ed il baricentro geometrico della superficie esposta al vento. Pertanto, il modello di calcolo viene caricato con l'azione distribuita dovuta al vento abbinata ad una coppia torcente distribuita la cui intensità è pari a quella del carico distribuito moltiplicato per il braccio di 0.43m.

Per la condizione "ponte scarico", si osserva una eccentricità di 0.83m tra il baricentro della sezione dell'impalcato ed il baricentro geometrico della superficie esposta al vento. Pertanto, il modello di calcolo viene caricato con l'azione distribuita dovuta al vento abbinata ad una coppia torcente distribuita la cui intensità è pari a quella del carico distribuito moltiplicato per il braccio di 0.83m.

8.8. VARIAZIONI TERMICHE (Q7)

I criteri per la determinazione degli effetti della temperatura sono contenuti in NTC-18, cap. 3.5 (rif. Eurocodici EN 1991-1-5). Dal momento che NTC-18 non riporta prescrizioni specifiche per il calcolo degli effetti della temperatura (in particolare i gradienti termici) per i ponti si farà riferimento ai criteri contenuti negli Eurocodici.

La condizione vincolare è tale da permettere una libera deformazione dell'impalcato sotto effetti termici. Non vi saranno sollecitazioni derivate, ma l'azione termica viene calcolata e applicata al modello di calcolo influendo al dimensionamento di appoggi e giunti in termini di spostamenti.

L'effetto delle variazioni termiche viene valutato con riferimento ai criteri contenuti in EN 1991-1-5, corredato dall'annesso nazionale.

Si fa riferimento ad un manufatto da ponte di gruppo 2, sito in Sardegna.

La temperatura media ambientale viene posta pari a T_0 a 0 °C poiché l'opera si trova quasi a livello del mare.

Gli effetti delle variazioni termiche vengono modellati attraverso l'applicazione di una variazione termica uniforme ed una variazione termica lineare (gradiente).

8.8.1. VARIAZIONE TERMICA UNIFORME (STAGIONALE)

La variazione termica uniforme viene calcolata in base a quanto indicato al §3.5.2 NTC2018 e relativa circolare (circ.21/01/2019) al §C5.1.4.5 che fanno riferimento all'eurocodice EC1-1-5 al §6.1.3. Si considera una quota di 10m.l.m.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

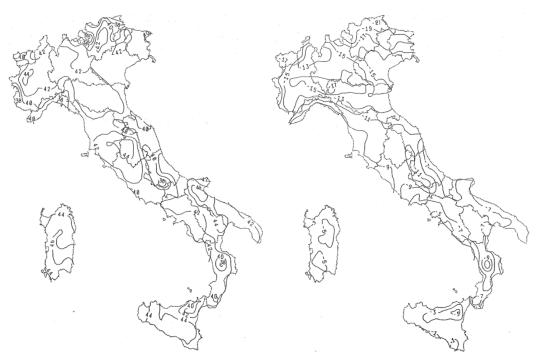


Figura 8.5 Mappe delle temperature estreme dell'aria

Le temperature massime e minime dell'aria per il sito in esame risultano:

Н	T _{est, max}	T _{est, min}
10m	46	-5

A tali valori delle temperature massima e minima corrispondono per impalcati di tipo 2 (struttura mista) le seguenti temperature minima e massima:

T _{e, max}	T _{e, min}	
50	-1	

Gruppi di impalcati di ponte

P(1) Un impalcato di un ponte deve essere considerato appartenente ad uno dei seguenti gruppi di sovrastrutture:

Gruppo 1 Impalcati di ponti di acciaio su profili di acciaio scatolari, travature

reticolari o travi pareti;

Gruppo 2 Impalcati di ponti di calcestruzzo su profili di acciaio scatolari, tra-

vature reticolari o travi parete;

Gruppo 3 Solette o impalcati di calcestruzzo su travi o travi parete di calce-

struzzo.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

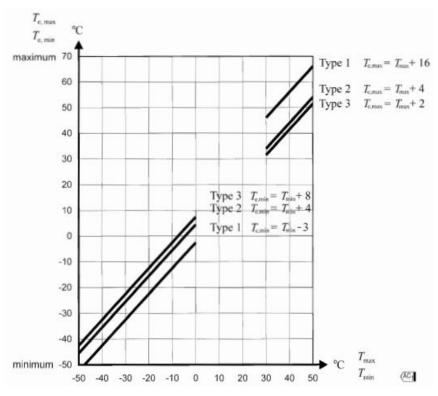


Figura 8.6 Correlazione tra la temperatura dell'aria e la componente uniforme della temperatura del ponte

Tenendo conto di una $T_0=0^\circ$ secondo il paragrafo 3.5.3 delle NTC si ottengono i valori caratteristici della variazione termica uniforme:

$\Delta T_{N,con}$	$\Delta T_{N,exp}$	
1	50	

I valori di calcolo si ottengono poi:

ΔT_0 = 5°C per strutture di c.a., c.a.p. e acciaio/cls	Installazione con la misurazione accurata della temperatura della struttura e con preregolazione per effetti termici a fine
ΔT_0 = 5°C per strutture di acciaio	costruzione.
ΔT_0 = 10°C per strutture di c.a., c.a.p. e acciaio/cls ΔT_0 = 15°C per strutture di acciaio	Installazione con la stima della temperatura della struttura e con preregolazione per effetti termici a fine costruzione. Per stima della temperatura della struttura si intende la valutazione secondo quanto indicato nel Capitolo 6 delle UNI EN 1991-1-5 con una accurata misura della temperatura dell'aria esterna.
ΔT_0 = 20°C per strutture di c.a., c.a.p. e acciaio/cls ΔT_0 = 30°C per strutture di acciaio	Installazione senza alcuna preregolazione per effetti termici.

ΔT_0	$\Delta T_{N,con,d}$	$\Delta T_{N,exp,d}$
20	21	70

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

8.8.2. VARIAZIONE TERMICA DIFFERENZIALE (GIORNALIERA)

In aggiunta alla variazione termica uniforme, andrà considerato un gradiente di temperatura di 5 °C fra estradosso ed intradosso di impalcato con verso da determinare caso per caso.

Nei ponti a struttura mista acciaio-calcestruzzo, andrà considerata anche una differenza di temperatura di 5 °C tra la soletta in calcestruzzo e la trave in acciaio.

Lo sforzo assiale dovuto alla variazione di temperatura su ciascuna trave è pari a:

 $N = \varepsilon_{cs} x E x A_{cls} / 2 = 400 kN$

L'eccentricità tra il baricentro della soletta e quello della sezione composta. Varia quindi per i vari conci; viene stimata in questa fase con un valore pari a:

e = 0.6 m

Dunque sulla i-esima sezione agisce un momento pari a:

 $M = N \times e = 400 \times 0.6 = 240 \text{ kNm}$

8.9. AZIONE SUI PARAPETTI E URTO DEL VEICOLO IN SVIO (Q8)

Si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100kN. Essa viene considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. Questa forza viene applicata su una linea lunga 0,5 m.

Per la verifica si considera una combinazione di carico eccezionale nella quale al carico orizzontale applicato al sicurvia si associa un carico verticale isolato pari ad una ruota del secondo schema di carico 2 (200 kN su un'impronta 0.35 x 0.60 m).

8.10. AZIONE SISMICA (E)

L'azione sismica di progetto/verifica è calcolata secondo le indicazioni delle NTC'18.

8.10.1. DEFINIZIONE DEI PARAMETRI SISMICI

L'azione sismica si definisce a partire dalla "pericolosità sismica di base" del sito; Le forme spettrali sono definite in funzione di tre parametri:

- Accelerazione orizzontale massima attesa a_q.
- F_o, valore massimo del fattore di amplificazione dello spettro di accelerazione orizzontale;
- T_c*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Un altro parametro essenziale per la definizione delle azioni sismiche di progetto è la vita di riferimento che è definita come: $V_R = C_u^* V_N$ ove:

- C_u è il coefficiente d'uso che, nel caso trattato, può essere posto pari a 2.0; in quanto appartenendo il viadotto ad un itinerario di collegamento tra capoluoghi di Provincia di importanza critica per il mantenimento delle vie di comunicazione ricade nella Classe d'uso IV.
- V_N è la vita nominale delle strutture che viene considerata pari a 50 anni;

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Di conseguenza si ha: V_R = 100anni

Le accelerazioni spettrali di progetto dipendono dalla probabilità, P_{Vr}, di superamento da parte della struttura di determinati Stati Limite durante la vita di riferimento.

In particolare, vengono considerati:

- Per lo stato limite ultimo, lo stato limite di salvaguardia della vita (SLV), per il quale a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni strutturali ai quali si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva, invece, una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali. Per lo SLV la probabilità di superamento delle accelerazioni di progetto nel periodo di riferimento è PVr= 10 % (Tabella 8.2; tratta da NTC'18).
- Per lo stato limite di esercizio, lo stato limite di danno (SLD), per il quale, a seguito del terremoto, la costruzione, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi immediatamente utilizzabile. Per lo SLD la probabilità di superamento delle accelerazioni di progetto nel periodo di riferimento è P_{Vr}=63 % (Tabella 8.2; tratta da NTC'18).

Stati Limite		P_{V_R} : Probabilità di superamento nel periodo di riferimento V_R	
Stati limite di	SLO	81%	
esercizio	SLD	63%	
Stati limite	SLV	10%	
ultimi	SLC	5%	

Tabella 8.2 Probabilità di superamento del sisma di progetto

Considerando per la struttura in esame una vita di riferimento pari a 100 anni (NTC 2018, tabella (2.4.1)) è possibile calcolare il periodo di ritorno dell'azione sismica (1.4.1)R, come:

$$T_R = -\frac{V_R}{\ln{(1 - P_{Vr})}}$$

Si ottiene:

• SLC: $P_{vr} = 0.05$ $T_{R(SLC)} = 1950$ anni

• SLV: $P_{vr} = 0.1$ $T_{R(SLV)} = 949$ anni

• SLD: $P_{vr} = 0.63$ $T_{R(SLD)} = 101$ anni

Dalla consultazione della microzonazione sismica nazionale per il sito in esame, si ottengono i seguenti parametri:

Parametri di pericolosità sismica					
Stato T_r A_g/g T_C^* F_O F_V					
limite	[anni]	[g]	[s]	[-]	[-]
SLO	60	0.025	0.299	2.685	0.573

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

SLD	101	0.031	0.307	2.730	0.649
SLV	949	0.060	0.371	2.976	0.984
SLC	1950	0.071	0.393	3.061	1.101

Tabella 8.3 Parametri per la definizione dell'azione sismica

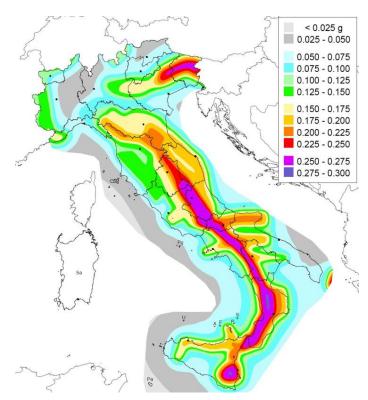


Figura 8.7 - Mappa di pericolosità sismica territorio italiano

8.10.2. SPETTRI DI RISPOSTA

Gli spettri elastici vengono definiti dalla norma per sito di riferimento rigido con superfice topografica orizzontale, per cui è necessario caratterizzare "geologicamente e topograficamente" il sito in cui l'edificio sorge. In assenza di studi più approfonditi la normativa consiglia di utilizzare coefficienti correttivi S e C_c, funzione della categoria di sottosuolo e dell'ubicazione dell'edificio.

In base alla classificazione proposta dalla norma Figura 8.7 si attribuiscono al sito le categorie B (tipo di suolo) e T1.

Effettuata tale classificazione è possibile ottenere gli spettri di risposta elastici in base alle successive equazioni:

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

$$\begin{aligned} 0 &\leq T < T_B \\ S_d(T) &= a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_d(T) &= a_g \cdot S \cdot \eta \cdot F_0 \\ T_C &\leq T < T_D \\ S_d(T) &= a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{aligned}$$

$$S_d(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2} \right)$$

Nelle quali:

- T ed S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale;
- S è il coefficiente introdotto in precedenza che tiene conto della categoria di sottosuolo e delle condizioni topografiche, mediante la seguente relazione:

$$S = S_S \cdot S_T$$

essendo S_S il coefficiente di amplificazione stratigrafica (Tabella 8.6) e ST il coefficiente di amplificazione topografica (Tabella 8.7).

- η, il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%;
- T_C, è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante dato da:

$$T_C = C_C \cdot T_c^*$$

Dove Cc è un coefficiente funzione della categoria di sottosuolo (vedi tabella 4).

• T_B, è il periodo corrispondente all'inizio del tratto dello spettro di accelerazione costante,

$$T_B = T_c/3$$

• T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro espresso in secondi mediante la relazione:

$$T_D = 4 \cdot \frac{a_g}{g} + 1.6$$

Gli spettri di risposta in termini di accelerazioni elastiche determinati secondo le istruzioni delle NTC'18 sono riportati in Figura 8.8 per tutti gli stati limite previsti dalla normativa.

GESTIONE PROGETTI INGEGNERIA sri

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 \le N_{SPT,30} \le 50$ nei terreni a grana grossa e $70 \le c_{u,30} \le 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{\text{SPT},30} \le 15$ nei terreni a grana grossa e $c_{u,30} \le 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Tabella 8.4 Categorie di sottosuolo

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i ≥ 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 8.5 Categorie topografiche

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_{C}^{*})^{-0.50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Tabella 8.6 Espressioni di Ss e Cc

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Categoria topografica	Categoria topografica Ubicazione dell'opera o dell'intervento		
T1	-	1,0	
T2	In corrispondenza della sommità del pendio	1,2	
Т3	In corrispondenza della cresta del rilievo	1,2	
T4	In corrispondenza della cresta del rilievo	1,4	

Tabella 8.7 Valori del coefficiente di amplificazione topografica St

Si hanno infine:

Stato Limite	Suolo	Ss	S _T	S	Cc	Тв	Tc	T _D
SLO	В	1.20	1	1.20	1.40	0.1396	0.4187	1.7000
SLD	В	1.20	1	1.20	1.39	0.1426	0.4277	1.7240
SLV	В	1.20	1	1.20	1.34	0.1659	0.4976	1.8400
SLC	В	1.20	1	1.20	1.33	0.1737	0.5211	1.8840

Tabella 8.8 Parametri per la definizione dello spettro elastico orizzontale

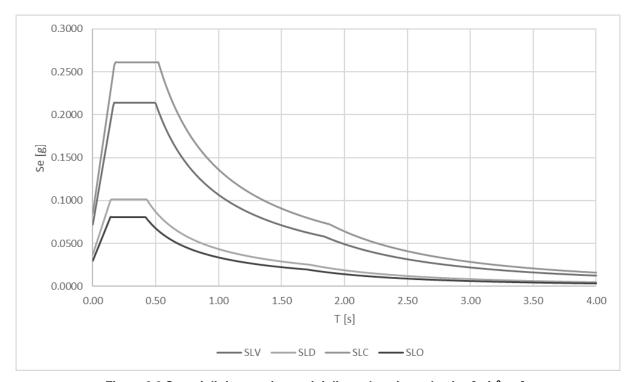


Figura 8.8 Spettri di risposta in termini di accelerazione elastica $[m/s^2 - s]$

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

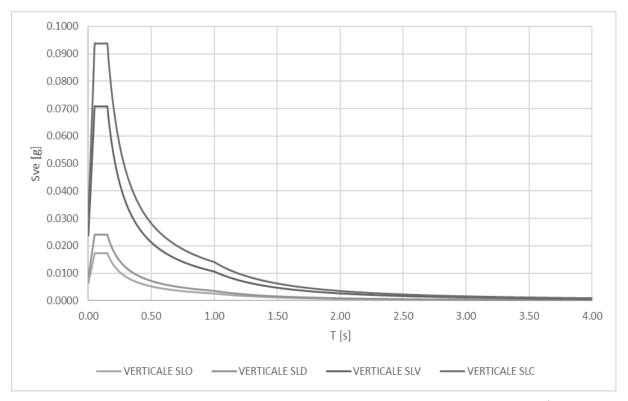


Figura 8.9 – Spettro elastico della componente verticale dell'accelerazione sismica [m/s² – s]

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

9. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si sono considerate le seguenti combinazioni delle azioni (si veda D.M. 17.01.2018 §2.5.3):

Combinazione fondamentale per gli SLU

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara) per gli SLE irreversibili

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente per gli SLE reversibili

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente per gli SLE a lungo termine

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

 G_1 = peso proprio di tutti gli elementi strutturali

 G_2 = peso proprio di tutti gli elementi non strutturali

P = eventuale pretensione o precompressione

 Q_{Ki} = azioni variabili

 γ_j = coefficienti parziali di sicurezza

 Ψ_{ij} = coefficiente di combinazione delle azioni variabili

I coefficienti parziali di sicurezza y_j da utilizzare sono riportati nella tabella seguente (Estratto tabella 5.1.V) nella colonna "A1 STR".

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ^(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Y _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

I coefficienti di combinazione Ψ_{0j} sono riportati nella tabella seguente (Estratto tabella 5.1.VI).

Tab. 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi-	Coefficiente Ψ ₁ (valori	Coefficiente ψ ₂ (valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Nel combinare le varie condizioni di carico si sono massimizzati i valori delle caratteristiche della sollecitazione (sforzo normale, momento flettente, taglio).

Per quanto riguarda i carichi mobili, la simultaneità dei sistemi di carico definiti nel DM 2018 (modelli di carico 1, 2, 3, 4, 6 - forze orizzontali - carichi agenti su ponti pedonali), deve essere tenuta in conto considerando i "gruppi di carico" definiti nella tabella seguente.

Ognuno dei "gruppi di carico", indipendente dagli altri, deve essere considerato come azione caratteristica per la combinazione con gli altri carichi agenti sul ponte.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

	Carichi sulla carreggiata					Carichi su marciapiedi e piste ciclabili
	Carichi verticali			Carichi orizz	Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(**) Ponti di 3 (**) Da cons (***) Da cons	3ª categoria siderare solo se richies siderare solo se si con	sto dal particola siderano veicoli	re progetto (ad es speciali	. ponti in zona	urbana)	

Per l'impalcato in esame, si evidenzia preliminarmente che, tra le azioni variabili da traffico nelle verifiche globali, si considereranno solamente i carichi di gruppo 1 e di gruppo 2a.

S.L.U. - fondamentale

Con riferimento ai carichi significativi, la combinazione assume la seguente forma:

 $E_{d} = \gamma_{G1} \ G_{k1} + \gamma_{Sp} \ G_{Sp} + \gamma_{G2} \ G_{k2} + \gamma_{sett.} \ G_{ksett.} + \gamma_{sh} \ G_{sh} + \gamma_{q,1} \ (Q_{k,TS} + Q_{k,UDL}) + \gamma_{q,2} \ \psi_{0,2} \ Q_{k,T} + \gamma_{q,3} \ \psi_{0,3} \ Q_{k,v} \\ \text{Per quanto riguarda i coefficienti moltiplicativi, si fa riferimento a quanto contenuto in NTC-18, cap. 5.1.3.12, tab. 5.1.V, ripreso da EN 1990, annex A.2, e relativo N.A.D.. Per i coefficienti si considera quanto segue:$

γG1	1.35 - 1	coefficiente moltiplicativo dei sovraccarichi permanenti strutturali
γsp	1.0 - 1.0	coefficiente moltiplicativo degli spostamenti o deformazioni impresse
γG2	1. 5 – 1	dal momento che non sono di carattere compiutamente definiti
γ_{sett}	1.2 - 0	coefficiente moltiplicativo per i cedimenti vincolari
$\gamma_{\sf sh}$	1.2 - 1.2	coefficiente moltiplicativo per le azioni dovute al ritiro,
γQ1	1.35 - 0	coefficiente moltiplicativo per i carichi da traffico.
γQ2	1.2	coefficiente moltiplicativo per i carichi di origine termica.
γQз	1.5	coefficiente moltiplicativo per i carichi dovuti al vento.

I coefficienti di combinazione dell'azione di temperatura e del vento, risultano (cfr. NTC-18, tab. 5.1.VI):

$$\psi_{0.2} = 0.6$$
 $\psi_{0.3} = 0.6$

Quanto evidenziato è relativo alla verifica allo S.L.U. della trave d'impalcato, per la quale risulta significativa la sola combinazione con carichi mobili dominanti.

S.L.E. – fondamentale (rara)

Con riferimento ai carichi significativi, si ha la seguente combinazione dei valori caratteristici dei carichi (indice "k").

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

 $E_{d} = G_{k1} + G_{Sp} + G_{k2} + G_{ksett.} + G_{sh} + (Q_{k,TS} + Q_{k,UDL}) + \psi_{0,2} Q_{k,T} + \psi_{0,3} Q_{k,v}$

Il coefficiente di combinazione dell'azione di temperatura e del vento, risultano (cfr. NTC-18, tab. 5.1.VI):

$$\psi_{0,2} = 0.6 \ \psi_{0,3} = 0.6$$

La combinazione S.L.E. fondamentale verrà impiegata ai fini delle seguenti verifiche:

- verifica allo S.L.E., limitazione delle tensioni

S.L.E. - frequente

 $E_d = G_{k1} + G_{Sp} + G_{k2} + G_{ksett.} + G_{sh} + (\psi_{1,1TS} Q_{k,TS} + \psi_{1,1UDL} Q_{k,UDL}) + \psi_{2,2} Q_{k,T} + \psi_{2,3} Q_{k,v}$ I coefficienti di combinazione (NTC-18, tab. 5.1.VI, EN 1991-2) risultano:

 $\psi_{1,1} = 0.75$ per i carichi da traffico concentrati

 $\psi_{1,1} = 0.4$ per i carichi da traffico distribuiti

 $\psi_{2,2} = 0.5$ per la temperatura

 $\psi_{2,3}$ = 0.0 per il vento

La combinazione S.L.E. frequente viene impiegata per:

- verifiche a fessurazione
- verifiche di deformabilità
- verifica "web breathing" per la struttura composta

Si evidenzia che tale relazione costituisce anche la combinazione "base" da prendere in esame per la valutazione della parte non ciclica delle verifiche a fatica (cfr. pp seguenti).

S.L.E. - quasi permanente

$$E_d = G_{k1} + G_{Sp} + G_{k2} + G_{ksett.} + G_{sh} + + \psi_{2,2} Q_{k,T} + \psi_{2,3} Q_{k,v}$$

Risultano assenti i carichi mobili da traffico, i cui coefficienti quasi permanenti di combinazione sono nulli, mentre la temperatura viene associata al coefficiente di combinazione $\psi_{2,2}=0.5$. e $\psi_{2,3}=0.0$ per il vento.

S.L.U. - S.L.E. - sismica

 $E_d = E + G_{k1} + G_{k2} + G_{ksett.} + G_{sh} + (\psi_{2,1TS} Q_{k,TS} + \psi_{2,1UDL} Q_{k,UDL}) + \psi_{2,2} Q_{k,T} + \psi_{2,3} Q_{k,v}$ I coefficienti di combinazione (NTC-18, tab. 5.1.VI, EN 1991-2) risultano:

 $\psi_{2,1} = 0$ per i carichi da traffico concentrati

 $\psi_{2,1} = 0$ per i carichi da traffico distribuiti

 $\psi_{2,2} = 0.5$ per la temperatura

 $\psi_{2,3} = 0.0$ per il vento

S.L.U. - eccezionale

 $E_d = G_{k1} + G_{k2} + G_{ksett.} + G_{sh} + (\psi_{2,1TS} \, Q_{k,TS} + \psi_{2,1UDL} \, Q_{k,UDL}) + \, \psi_{2,2} \, Q_{k,T} + \, \psi_{2,3} \, Q_{k,v}$ I coefficienti di combinazione (NTC-18, tab. 5.1.VI, EN 1991-2) risultano:

 $\psi_{2,1} = 0$ per i contributi TS

 $\psi_{2,1} = 0$ per i contributi UDL

 $\psi_{2.2}$ = 0.5 per la temperatura

 $\psi_{2,3} = 0.0$ per il vento

S.L.U. - fatica

L'approccio scelto per le verifiche a fatica è quello definito "a danneggiamento".

Per la modellazione della parte ciclica dei carichi si adotta il modello di carico per fatica n.3, unitamente al metodo dei coefficienti λ , i cui criteri generali sono contenuti nelle istruzioni NTC-18 C.4.2.4.1.4.6.3 (rif. Eurocodice EN1993-1-8 cap. 6.3).

L'elaborazione della combinazione di verifica a fatica viene effettuata con riferimento a quanto previsto in EN 1992-1-1 cap. 6.8.3(P)1), sovrapponendo le sollecitazioni indotte dalla parte ciclica

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

dei carichi a quello indotto dalla parte non ciclica. Relativamente alla parte non ciclica, si fa riferimento alla combinazione S.L.E. frequente, in cui i carichi variabili sono costituiti dai contributi "non leading" significativi (in questo caso la sola temperatura), mentre la parte ciclica è costituita dalle sollecitazioni indotte dal transito del veicolo, sulla corsia lenta reale predisposta sul piano viabile.

Pertanto, l'ampiezza del Δ di tensione viene valutata sulla base di:

$$\Sigma~G_{k,j} + \psi_{2,2}~Q_{k,T} + Q_{\text{fat(FLM3)}}$$

Si evidenzia che, come necessario, si tiene conto, nell'ambito del calcolo del massimo/minimo effetto, dell'eventuale cambio di "stato" (cracked/uncracked) della soletta.

TABLE: Combination ComboName	ComboType	CaseType	CaseName	ScaleFactor
Text	Text	Text	Text	Unitless
SLU_G1	Linear Add	Linear Static	DEAD	1.35
SLU_G1		Linear Static	g1	1.35
SLU_G2	Linear Add	Linear Static	g2	1.5
SLU_G2		Linear Static	creep	1.2
SLU1_T1_Tu+	Linear Add	Linear Static	DEAD	1.35
SLU1_T1_Tu+		Linear Static	g1	1.35
SLU1_T1_Tu+		Linear Static	g2	1.5
SLU1_T1_Tu+		Moving Load	q1_Dist	1.35
SLU1_T1_Tu+		Moving Load	q1_Tan	1.35
SLU1_T1_Tu+		Linear Static	q5_ventoC	0.9
SLU1_T1_Tu+		Linear Static	Tu+	0.72
SLU1_T1_Tu+		Linear Static	Tg	0.72
SLU1_T1_Tu+		Linear Static	creep	1.2
SLU1_T1_Tu-	Linear Add	Linear Static	DEAD	1.35
SLU1_T1_Tu-		Linear Static	g1	1.35
SLU1_T1_Tu-		Linear Static	g2	1.5
SLU1_T1_Tu-		Moving Load	q1_Dist	1.35
SLU1_T1_Tu-		Moving Load	q1_Tan	1.35
SLU1_T1_Tu-		Linear Static	q5_ventoC	0.9
SLU1_T1_Tu-		Linear Static	Tu-	0.72
SLU1_T1_Tu-		Linear Static	Tg	0.72
SLU1_T1_Tu-		Linear Static	creep	1.2
SLU2_T2a_Tu+	Linear Add	Linear Static	DEAD	1.35
SLU2_T2a_Tu+		Linear Static	g1	1.35
SLU2_T2a_Tu+		Linear Static	g2	1.5
SLU2_T2a_Tu+		Moving Load	q1_Dist	0.4
SLU2_T2a_Tu+		Moving Load	q1_Tan	0.75
SLU2_T2a_Tu+		Linear Static	q3_frn/acc	1.35
SLU2_T2a_Tu+		Linear Static	q5_ventoC	0.9
SLU2_T2a_Tu+		Linear Static	Tu+	0.72
SLU2_T2a_Tu+		Linear Static	Tg	0.72

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

SLU2_T2a_Tu+		Linear Static	creep	1.2
SLU2_T2a_Tu-	Linear Add	Linear Static	DEAD	1.35
SLU2_T2a_Tu-		Linear Static	g1	1.35
SLU2_T2a_Tu-		Linear Static	g2	1.5
SLU2_T2a_Tu-		Moving Load	q1_Dist	0.4
SLU2_T2a_Tu-		Moving Load	q1_Tan	0.75
SLU2_T2a_Tu-		Linear Static	q3_frn/acc	1.35
SLU2_T2a_Tu-		Linear Static	q5_ventoC	0.9
SLU2_T2a_Tu-		Linear Static	Tu-	0.72
SLU2_T2a_Tu-		Linear Static	Tg	0.72
SLU2_T2a_Tu-		Linear Static	creep	1.2
SLU3_N_Tu+	Linear Add	Linear Static	DEAD	1.35
SLU3_N_Tu+		Linear Static	g1	1.35
SLU3_N_Tu+		Linear Static	g2	1.5
SLU3_N_Tu+		Linear Static	q5_neve	1.5
SLU3_N_Tu+		Linear Static	q5_ventoS	0.9
SLU3_N_Tu+		Linear Static	Tu+	0.72
SLU3_N_Tu+		Linear Static	Tg	0.72
SLU3_N_Tu+		Linear Static	creep	1.2
SLU3_N_Tu-	Linear Add	Linear Static	DEAD	1.35
SLU3_N_Tu-		Linear Static	g1	1.35
SLU3_N_Tu-		Linear Static	g2	1.5
SLU3_N_Tu-		Linear Static	q5_neve	1.5
SLU3_N_Tu-		Linear Static	q5_ventoS	0.9
SLU3_N_Tu-		Linear Static	Tu-	0.72
SLU3_N_Tu-		Linear Static	Tg	0.72
SLU3_N_Tu-		Linear Static	creep	1.2
SLU4_V_Tu+	Linear Add	Linear Static	DEAD	1.35
SLU4_V_Tu+		Linear Static	g1	1.35
SLU4_V_Tu+		Linear Static	g2	1.5
SLU4_V_Tu+		Moving Load	q1_Dist	0.54
SLU4_V_Tu+		Moving Load	q1_Tan	1.0125
SLU4_V_Tu+		Linear Static	q5_ventoC	1.5
SLU4_V_Tu+		Linear Static	Tu+	0.72
SLU4_V_Tu+		Linear Static	Tg	0.72
SLU4_V_Tu+		Linear Static	creep	1.2
SLU4_V_Tu-	Linear Add	Linear Static	DEAD	1.35
SLU4_V_Tu-		Linear Static	g1	1.35
SLU4_V_Tu-		Linear Static	g2	1.5
SLU4_V_Tu-		Moving Load	q1_Dist	0.54
SLU4_V_Tu-		Moving Load	q1_Tan	1.0125
SLU4_V_Tu-		Linear Static	q5_ventoC	1.5

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

SLU4_V_Tu-		Linear Static	Tu-	0.72
SLU4_V_Tu-		Linear Static	Tg	0.72
SLU4_V_Tu-		Linear Static	creep	1.2
SLU	Envelope	Response Combo	SLU1_T1_Tu+	1
SLU		Response Combo	SLU1_T1_Tu-	1
SLU		Response Combo	SLU2_T2a_Tu+	1
SLU		Response Combo	SLU2_T2a_Tu-	1
SLU		Response Combo	SLU3_N_Tu+	1
SLU		Response Combo	SLU3_N_Tu-	1
SLU		Response Combo	SLU4_V_Tu+	1
SLU		Response Combo	SLU4_V_Tu-	1
SLER1_T1_Tu+	Linear Add	Linear Static	DEAD	1
SLER1 T1 Tu+		Linear Static	g1	1
SLER1 T1 Tu+		Linear Static	g2	1
SLER1_T1_Tu+		Moving Load	q1_Dist	1
SLER1 T1 Tu+		Moving Load	q1_Tan	1
SLER1 T1 Tu+		Linear Static	q5_ventoC	0.6
SLER1 T1 Tu+		Linear Static	Tu+	0.6
SLER1 T1 Tu+		Linear Static	Tg	0.6
SLER1_T1_Tu+		Linear Static	creep	1.2
SLER1_T1_Tu-	Linear Add	Linear Static	DEAD	1
SLER1_T1_Tu-		Linear Static	g1	1
SLER1_T1_Tu-		Linear Static	g2	1
SLER1_T1_Tu-		Moving Load	q1_Dist	1
SLER1_T1_Tu-		Moving Load	q1_Tan	1
SLER1_T1_Tu-		Linear Static	q5_ventoC	0.6
SLER1_T1_Tu-		Linear Static	Tu-	0.6
SLER1_T1_Tu-		Linear Static	Tg	0.6
SLER1_T1_Tu-		Linear Static	creep	1.2
SLER2_T2a_Tu+	Linear Add	Linear Static	DEAD	1
SLER2_T2a_Tu+		Linear Static	g1	1
SLER2_T2a_Tu+		Linear Static	g2	1
SLER2_T2a_Tu+		Moving Load	q1_Dist	0.4
SLER2_T2a_Tu+		Moving Load	q1_Tan	0.75
SLER2_T2a_Tu+		Linear Static	q3_frn/acc	1
SLER2_T2a_Tu+		Linear Static	q5_ventoC	0.6
SLER2_T2a_Tu+		Linear Static	Tu+	0.6
SLER2_T2a_Tu+		Linear Static	Tg	0.6
SLER2_T2a_Tu+		Linear Static	creep	1.2
SLER2_T2a_Tu-	Linear Add	Linear Static	DEAD	1
SLER2_T2a_Tu-		Linear Static	g1	1
SLER2_T2a_Tu-		Linear Static	g2	1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

CLEDO TOO TO		Marinaland	ad Diat	0.4
SLER2_T2a_Tu-		Moving Load	q1_Dist	0.4
SLER2_T2a_Tu-		Moving Load	q1_Tan	0.75
SLER2_T2a_Tu-		Linear Static	q3_frn/acc	1
SLER2_T2a_Tu-		Linear Static	q5_ventoC	0.6
SLER2_T2a_Tu-		Linear Static	Tu-	0.6
SLER2_T2a_Tu-		Linear Static	Tg	0.6
SLER2_T2a_Tu-		Linear Static	creep	1.2
SLER3_N_Tu+	Linear Add	Linear Static	DEAD	1
SLER3_N_Tu+		Linear Static	g1	1
SLER3_N_Tu+		Linear Static	g2	1
SLER3_N_Tu+		Linear Static	q5_neve	1
SLER3_N_Tu+		Linear Static	q5_ventoS	0.6
SLER3_N_Tu+		Linear Static	Tu+	0.6
SLER3_N_Tu+		Linear Static	Tg	0.6
SLER3_N_Tu+		Linear Static	creep	1.2
SLER3_N_Tu-	Linear Add	Linear Static	DEAD	1
SLER3_N_Tu-		Linear Static	g1	1
SLER3_N_Tu-		Linear Static	g2	1
SLER3_N_Tu-		Linear Static	q5_neve	1
SLER3_N_Tu-		Linear Static	q5_ventoS	0.6
SLER3_N_Tu-		Linear Static	Tu-	0.6
SLER3_N_Tu-		Linear Static	Tg	0.6
SLER3_N_Tu-		Linear Static	creep	1.2
SLER4_V_Tu+	Linear Add	Linear Static	DEAD	1
SLER4_V_Tu+		Linear Static	g1	1
SLER4_V_Tu+		Linear Static	g2	1
SLER4_V_Tu+		Moving Load	q1_Dist	0.4
SLER4_V_Tu+		Moving Load	q1_Tan	0.75
SLER4_V_Tu+		Linear Static	q5_ventoC	1
SLER4_V_Tu+		Linear Static	Tu+	0.6
SLER4_V_Tu+		Linear Static	Tg	0.6
SLER4_V_Tu+		Linear Static	creep	1.2
SLER4_V_Tu-	Linear Add	Linear Static	DEAD	1
SLER4_V_Tu-		Linear Static	g1	1
SLER4_V_Tu-		Linear Static	g2	1
			q1_Dist	0.4
SLER4_V_Tu-		Moving Load		0.75
		Linear Static	q5_ventoC	1
				0.6
	•			
	•			
	Envelope			
SLER4_V_Tu+ SLER4_V_Tu+ SLER4_V_Tu- SLER4_V_Tu- SLER4_V_Tu- SLER4_V_Tu-	Linear Add Envelope	Linear Static Linear Static Linear Static Linear Static Linear Static Moving Load Moving Load	Tg creep DEAD g1 g2 q1_Dist q1_Tan	0.6 1.2 1 1 1 0.4 0.75

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

SLER Response Combo SLER2_T2a_Tu+ 1 SLER Response Combo SLER2_T2a_Tu- 1 SLER Response Combo SLER3_N_Tu+ 1 SLER Response Combo SLER3_N_Tu- 1 SLER Response Combo SLER4_V_Tu+ 1 SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Linear Static Tu-					
SLER Response Combo SLER2_T2a_Tu- 1 SLER Response Combo SLER3_N_Tu+ 1 SLER Response Combo SLER3_N_Tu- 1 SLER Response Combo SLER4_V_Tu+ 1 SLER Response Combo SLER4_V_Tu- 1 SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tu-	SLER		Response Combo		
SLER Response Combo SLER3_N_Tu+ 1 SLER Response Combo SLER3_N_Tu- 1 SLER Response Combo SLER4_V_Tu+ 1 SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_TU+ Linear Static DEAD 1 SLEF1_T1_TU+ Linear Static g1 1 SLEF1_T1_TU+ Linear Static g2 1 SLEF1_T1_TU+ Moving Load q1_Dist 0.4 SLEF1_T1_TU+ Moving Load q1_Tan 0.75 SLEF1_T1_TU+ Linear Static Tu+ 0.5 SLEF1_T1_TU+ Linear Static Tg 0.5 SLEF1_T1_TU+ Linear Static DEAD 1 SLEF1_T1_TU- Linear Static DEAD 1 SLEF1_T1_TU- Linear Static g1 1 SLEF1_T1_TU- Moving Load q1_Dist 0.4 SLEF1_T1_TU- Linear Static Tu- 0.5 SLEF1_T1_TU- Linear Static Tg 0					1
SLER Response Combo SLER3 N_Tu- 1 SLER Response Combo SLER4_V_Tu+ 1 SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_TU+ Linear Static DEAD 1 SLEF1_T1_TU+ Linear Static g1 1 SLEF1_T1_TU+ Linear Static g2 1 SLEF1_T1_TU+ Moving Load q1_Dist 0.4 SLEF1_T1_TU+ Moving Load q1_Tan 0.75 SLEF1_T1_TU+ Linear Static Tu+ 0.5 SLEF1_T1_TU+ Linear Static Tg 0.5 SLEF1_T1_TU- Linear Static DEAD 1 SLEF1_T1_TU- Linear Static g1 1 SLEF1_T1_TU- Linear Static g2 1 SLEF1_T1_TU- Moving Load q1_Dist 0.4 SLEF1_T1_TU- Moving Load q1_Dist 0.4 SLEF1_T1_TU- Linear Static Tu- 0.5 SLEF1_T1_TU- Linear Static Tg	SLER		Response Combo		1
SLER Response Combo SLER4_V_Tu+ 1 SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_Tu+ Linear Add Linear Static DEAD 1 SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static	SLER		Response Combo	SLER3_N_Tu+	1
SLER Response Combo SLER4_V_Tu- 1 SLEF1_T1_Tu+ Linear Add Linear Static DEAD 1 SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static	SLER		Response Combo	SLER3_N_Tu-	1
SLEF1_T1_Tu+ Linear Add Linear Static DEAD 1 SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static	SLER		Response Combo	SLER4_V_Tu+	1
SLEF1_T1_Tu+ Linear Static g1 1 SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 <td< td=""><td>SLER</td><td></td><td>Response Combo</td><td>SLER4_V_Tu-</td><td>1</td></td<>	SLER		Response Combo	SLER4_V_Tu-	1
SLEF1_T1_Tu+ Linear Static g2 1 SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+	SLEF1_T1_Tu+	Linear Add	Linear Static	DEAD	1
SLEF1_T1_Tu+ Moving Load q1_Dist 0.4 SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg	SLEF1_T1_Tu+		Linear Static	g1	1
SLEF1_T1_Tu+ Moving Load q1_Tan 0.75 SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep	SLEF1_T1_Tu+		Linear Static	g2	1
SLEF1_T1_Tu+ Linear Static Tu+ 0.5 SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static creep <	SLEF1_T1_Tu+		Moving Load	q1_Dist	0.4
SLEF1_T1_Tu+ Linear Static Tg 0.5 SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Add Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu+ Linear Add Linear Static DEAD 1	SLEF1_T1_Tu+		Moving Load	q1_Tan	0.75
SLEF1_T1_Tu+ Linear Static creep 1.2 SLEF1_T1_Tu- Linear Add Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu+		Linear Static	Tu+	0.5
SLEF1_T1_Tu- Linear Add Linear Static DEAD 1 SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1	SLEF1_T1_Tu+		Linear Static	Tg	0.5
SLEF1_T1_Tu- Linear Static g1 1 SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu+		Linear Static	creep	1.2
SLEF1_T1_Tu- Linear Static g2 1 SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-	Linear Add	Linear Static	DEAD	1
SLEF1_T1_Tu- Moving Load q1_Dist 0.4 SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1	SLEF1_T1_Tu-		Linear Static	g1	1
SLEF1_T1_Tu- Moving Load q1_Tan 0.75 SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Linear Static	g2	1
SLEF1_T1_Tu- Linear Static Tu- 0.5 SLEF1_T1_Tu- Linear Static Tg 0.5 SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Moving Load	q1_Dist	0.4
SLEF1_T1_Tu- SLEF1_T1_Tu- Linear Static Creep 1.2 SLEF2_V_Tu+ Linear Add Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Moving Load	q1_Tan	0.75
SLEF1_T1_Tu- Linear Static creep 1.2 SLEF2_V_Tu+ Linear Add Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Linear Static	Tu-	0.5
SLEF2_V_Tu+ Linear Add Linear Static DEAD 1 SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Linear Static	Tg	0.5
SLEF2_V_Tu+ Linear Static g1 1 SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF1_T1_Tu-		Linear Static	creep	1.2
SLEF2_V_Tu+ Linear Static g2 1 SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF2_V_Tu+	Linear Add	Linear Static	DEAD	1
SLEF2_V_Tu+ Linear Static q5_ventoS 0.2 SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF2_V_Tu+		Linear Static	g1	1
SLEF2_V_Tu+ Linear Static Tu+ 0.5 SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF2_V_Tu+		Linear Static	g2	1
SLEF2_V_Tu+ Linear Static Tg 0.5 SLEF2_V_Tu+ Linear Static creep 1.2 SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF2_V_Tu+		Linear Static	q5_ventoS	0.2
SLEF2_V_Tu+Linear Staticcreep1.2SLEF2_V_Tu-Linear AddLinear StaticDEAD1	SLEF2_V_Tu+		Linear Static	Tu+	0.5
SLEF2_V_Tu- Linear Add Linear Static DEAD 1	SLEF2_V_Tu+		Linear Static	Tg	0.5
	SLEF2_V_Tu+		Linear Static	creep	1.2
OLETO V. T.,	SLEF2_V_Tu-	Linear Add	Linear Static	DEAD	1
SLEFZ_V_IU- Linear Static g1 1	SLEF2_V_Tu-		Linear Static	g1	1
SLEF2_V_Tu- Linear Static g2 1	SLEF2_V_Tu-		Linear Static		1
SLEF2_V_Tu- Linear Static q5_ventoS 0.2	SLEF2_V_Tu-		Linear Static		0.2
SLEF2_V_Tu- Linear Static Tu- 0.5					
SLEF2_V_Tu- Linear Static Tg 0.5			Linear Static	Tg	
SLEF2_V_Tu- Linear Static creep 1.2	SLEF2_V_Tu-		Linear Static		
SLEF Envelope Response Combo SLEF1_T1_Tu+ 1		Envelope	Response Combo	1	1
SLEF Response Combo SLEF1_T1_Tu- 1					1
SLEF Response Combo SLEF2_V_Tu+ 1					1
SLEF Response Combo SLEF2_V_Tu- 1			i		
SLEQP_Tu+ Linear Add Linear Static DEAD 1		Linear Add			1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

SLEQP_Tu+		Linear Static	g1	1
SLEQP_Tu+		Linear Static	g2	1
SLEQP_Tu+		Linear Static	Tu+	0.5
SLEQP_Tu+		Linear Static	Tg	0.5
SLEQP_Tu+		Linear Static	creep	1.2
SLEQP_Tu-	Linear Add	Linear Static	DEAD	1
SLEQP_Tu-		Linear Static	g1	1
SLEQP_Tu-		Linear Static	g2	1
SLEQP_Tu-		Linear Static	Tu-	0.5
SLEQP_Tu-				0.5
SLEQP_Tu-		Marian		1.2
SLEQP	Envelope	Response Combo	SLEQP_Tu+	1
SLEQP		Response Combo	SLEQP_Tu-	1
SLV 1X+0.3Y+0.3Z	Linear Add	Response Spectrum	SLV X	1
SLV 1X+0.3Y+0.3Z		Response Spectrum	SLV Y	0.3
SLV 1X+0.3Y+0.3Z		Response Spectrum	SLV Z	0.3
SLO 1X+0.3Y+0.3Z	Linear Add	Response Spectrum	SLO X	1
SLO 1X+0.3Y+0.3Z		Response Spectrum	SLO Y	0.3
SLO 1X+0.3Y+0.3Z		Response Spectrum	SLO Z	0.3
SLO 0.3X+1Y+0.3Z	Linear Add	Response Spectrum	SLO X	0.3
SLO 0.3X+1Y+0.3Z		Response Spectrum	SLO Y	1
SLO 0.3X+1Y+0.3Z		Response Spectrum	SLO Z	0.3
SLO	Envelope	Response Combo	SLO 1X+0.3Y+0.3Z	1
SLO		Response Combo	SLO 0.3X+1Y+0.3Z	1
SLD 1X+0.3Y+0.3Z	Linear Add	Response Spectrum	SLD X	1
SLD 1X+0.3Y+0.3Z		Response Spectrum	SLD Y	0.3
SLD 1X+0.3Y+0.3Z		Response Spectrum	SLD Z	0.3
SLD 0.3X+1Y+0.3Z	Linear Add	Response Spectrum	SLD X	0.3
SLD 0.3X+1Y+0.3Z		Response Spectrum	SLD Y	1
SLD 0.3X+1Y+0.3Z		Response Spectrum	SLD Z	0.3
SLD	Envelope	Response Combo	SLD 1X+0.3Y+0.3Z	1
SLD	Liivelope	Response Combo	SLD 0.3X+1Y+0.3Z	1
SLV 0.3X+1Y+0.3Z	Linear Add	Response Spectrum	SLV X	0.3
SLV 0.3X+1Y+0.3Z	Lineal Add	Response Spectrum	SLV Y	1
SLV 0.3X+1Y+0.3Z		Response Spectrum	SLV Z	0.3
SLV 0.3X+11+0.3Z	Envelope	Response Combo	SLV 2 SLV 1X+0.3Y+0.3Z	1
SLV	Livelope	Response Combo	SLV 1X+0.31+0.3Z SLV 0.3X+1Y+0.3Z	1
	Linoar Add	1	SLV 0.3X+11+0.3Z	1
SLC 1X+0.3Y+0.3Z	Linear Add	Response Spectrum		
SLC 1X+0.3Y+0.3Z		Response Spectrum	SLC Y	0.3
SLC 1X+0.3Y+0.3Z	1:	Response Spectrum	SLC Z	0.3
SLC 0.3X+1Y+0.3Z	Linear Add	Response Spectrum	SLC X	0.3
SLC 0.3X+1Y+0.3Z		Response Spectrum	SLC Y	1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

SLC 0.3X+1Y+0.3Z		Response Spectrum	SLC Z	0.3
SLC	Envelope	Response Combo	SLC 1X+0.3Y+0.3Z	1
SLC		Response Combo	SLC 0.3X+1Y+0.3Z	1
SLU_Q1_Tg	Linear Add	Moving Load	q1_Dist	1.35
SLU_Q1_Tg		Moving Load	q1_Tan	1.35
SLU_Q1_Tg		Linear Static	Tg	0.9

9.1. METODOLOGIA DI ANALISI

9.1.1. ANALISI IN CONDIZIONI NON SISMICHE

Le analisi svolte in condizioni non simiche sono tutte di tipo statico lineare. L'analisi per carichi mobili è stata svolta in automatico dal software impiegando la teoria delle linee di influenza e ricavando l'inviluppo delle sollecitazioni sugli elementi strutturali.

I risultati delle analisi in termini di distribuzioni delle sollecitazioni sono riportati nei paragrafi di verifica dei singoli elementi strutturali.

9.1.2. ANALISI SISMICA

Trattandosi di un'opera non isolata sismicamente, l'analisi dinamica lineare con spettro di risposta è la metodologia di analisi adottata per valutare il comportamento dell'opera e le richieste sismiche (in termini di deformazioni e sollecitazioni) sugli elementi strutturali. Nella fattispecie essa consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

10. MODELLAZIONE DELL'IMPALCATO

L'analisi della struttura composta è stata condotta sovrapponendo i risultati di singole analisi statiche lineari, ciascuna condotta con riferimento ad appropriate proprietà geometrico-statiche (o di materiale), proprie di ciascuna "fase" analizzata.

10.1. FASI COSTRUTTIVE E DI CALCOLO

Nella realizzazione dell'impalcato si dovrà procedere secondo le fasi costruttive indicate nella tabella successiva.

Fase	Operazione	Verifiche
1	Posa in opera delle travi e getto soletta	Verifica della carpenteria
2	Applicazione sovraccarichi permanenti	Verifica della sezione mista, effetti reologici
3	Esercizio viadotto	Verifiche slu, sle, fatica

Allo scopo, sono stati elaborati più modelli agli elementi finiti per tener conto delle reali fasi costruttive. In particolare i modelli elaborati sono descritti nel seguito.

• FASE 1 - Realizzazione delle sottostrutture in acciaio e getto soletta in c.a.

Il modello di calcolo è formato dall'intera parte metallica.

Le azioni applicate sono il peso proprio di tutte le membrature metalliche, il peso proprio della soletta, non reagente. Ai fini della modellazione si considera che il getto del calcestruzzo avviene in un'unica fase.

• FASE 2 - Maturazione della soletta, applicazione dei sovraccarichi permanenti e Valutazione degli effetti del ritiro

Si considera la struttura completa formata dall'acciaio e dal calcestruzzo.

Il modello di calcolo della soletta è formato da elementi shell con rigidezza del cls valutata a tempo "infinito".

Le azioni applicate sono i carichi permanenti ed il ritiro.

• FASE 3 - Applicazione dei carichi istantanei (mobili ed accidentali in genere)

Si considera la struttura completa formata dall'acciaio e dal calcestruzzo.

Il modello di calcolo della soletta è formato da elementi frame trasversali all'impalcato.

Le azioni applicate sono i carichi da traffico, le variazioni termiche, il vento, ed il frenamento.

Si riporta una rappresentazione grafica della modellazione

10.2. GEOMETRIA DEL MODELLO DI CALCOLO

Il modello di calcolo è stato realizzato impiegando esclusivamente elementi frame per la modellazione delle varie parti strutturali (travi, traversi e soletta).

Spalle e fondazioni in guesta fase non vengono modellate, sostituite da incastri perfetti.

Solo in una seconda fase si è condotta un'analisi più approfondita anche le fondazioni e le spalle tramite elementi shell.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

La struttura dell'impalcato in particolare è stata modellata a graticcio tenendo conto della presenza delle fasce di soletta e dei traversi che contribuiscono alla ripartizione trasversale dei carichi tra le travi di impalcato.

La struttura è stata modellata discretizzando le travate in 5 conci a sezione composta, i traversi sono stati disposti con elementi frame ogni 5 m e anche la soletta è stata modellata come elementi frame trasversali ogni 3m.

Le connessioni tra gli elementi sono state modellate ove necessario mediante link rigidi; sono inoltre stati utilizzati link elastici che vanno a modellare in particolare il comportamento meccanico degli apparecchi di appoggio.

Qui di seguito si riportano le generalità del modello impiegato per la verifica dell'impalcato.

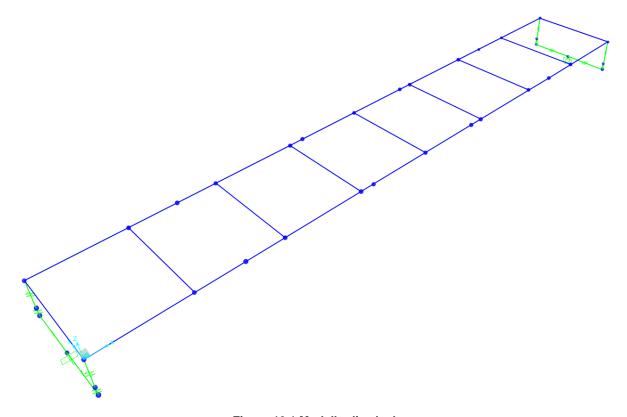


Figura 10.1 Modello di calcolo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

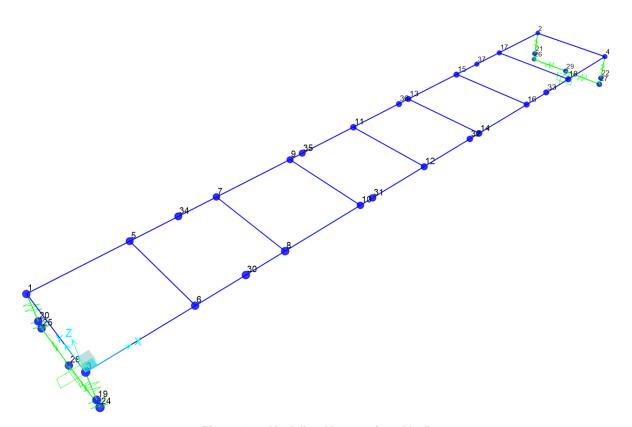


Figura 10.2 Modello - Numerazione Nodi

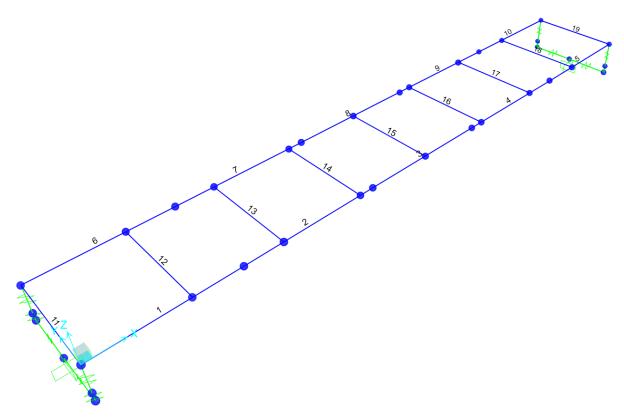


Figura 10.3 Modello - Numerazione Elementi

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

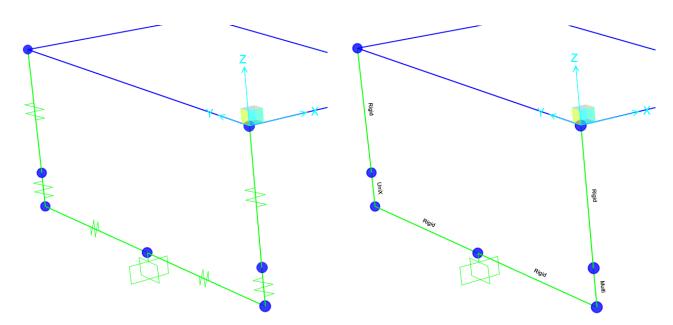


Figura 10.4 Modellazione connessioni tra travi e appoggi su spalla "SP1" lato Rotonda 1

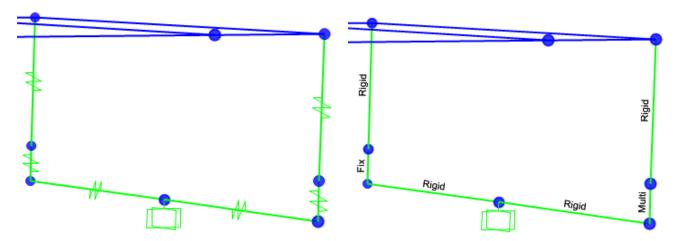


Figura 10.5 Modellazione connessioni tra travi e appoggi su spalla "SP2" lato Rotonda 2

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

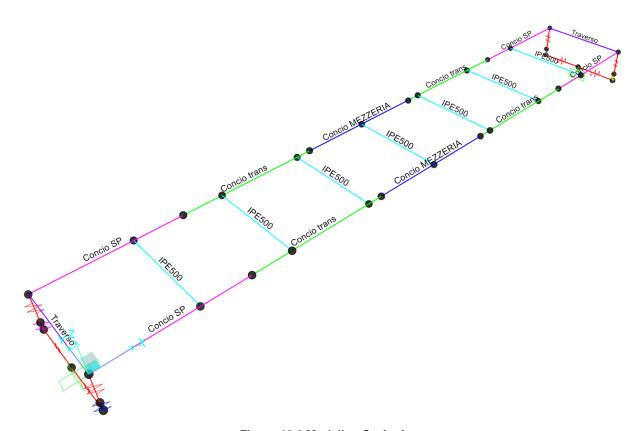


Figura 10.6 Modello - Sezioni

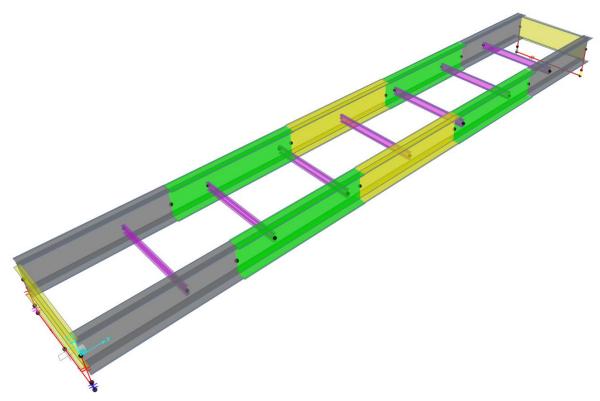


Figura 10.7 Modello - Fase 1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

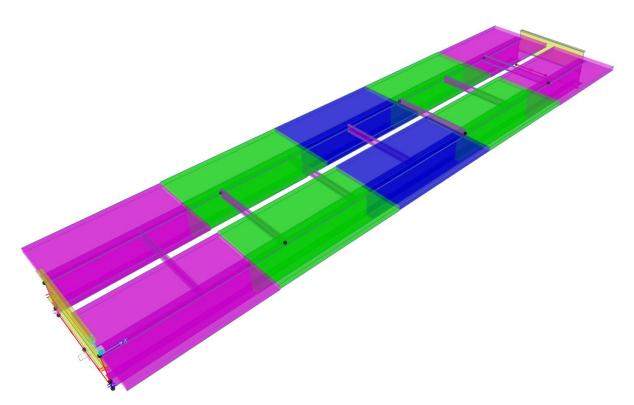


Figura 10.8 Modello - Fase 2

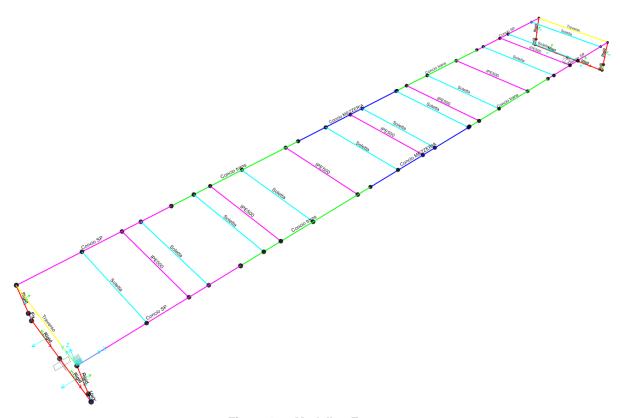


Figura 10.9 Modello - Fase 3

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

10.3. VINCOLI

10.3.1. VINCOLI ESTERNI

Sulla base della tipologia di fondazione presente (platee su micropali), la struttura è vincolata esternamente mediante l'inserimento di incastri.

Le spalle non sono state incluse nel modello globale ma sono stati quindi modellati i soli appoggi mediante link lineari descritti in seguito.

Solo in una seconda fase si è condotta un'analisi più approfondita modellando correttamente le fondazioni.

10.3.2. VINCOLI INTERNI

Ciascun apparecchio d'appoggio sotto ogni trave è stato modellato tramite link elastici lineari, non essendo previsti isolatori.

Al singolo dispositivo sono stati assegnati i seguenti valori di rigidezza verticale ed orizzontale determinati sulla base delle esigenze numeriche per meglio simulare gli apparecchi reali. Le caratteristiche, in termini di rigidezza, assegnate al modello sono:

- Fissi: Rigidezza laterale U2-U3 = 10^9 kN/mm, Rigidezza verticale U1= 10^9 kN/mm;
- Unidirezionale ut: Rigidezza laterale U2 = 10^9 kN/mm, Rigidezza verticale U1= 10^9/mm;
- Unidirezionale ui: Rigidezza laterale U3 = 10^9 kN/mm, Rigidezza verticale U1= 10^9/mm;
- Multidirezionale: Rigidezza laterale, Rigidezza verticale U1= 10^9/mm;

Si riportano in merito le schermate del modello di calcolo. Per ovviare a possibili problemi numerici ma contemporaneamente poter leggere le sollecitazioni negli elementi link si assegna al grado di libertà libero un valore opportunamente piccolo di rigidezza diverso da zero.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

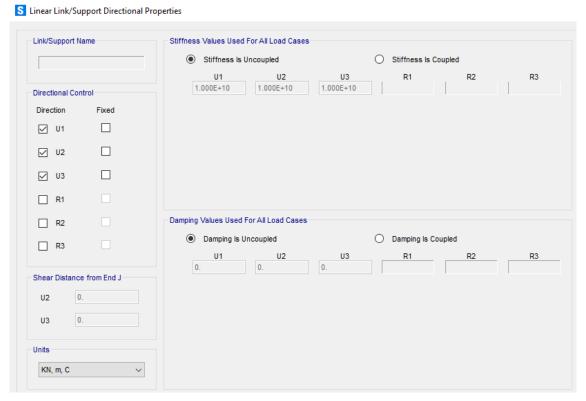


Figura 10.10 Definizione dell'appoggio fisso

S Linear Link/Support Directional Properties Link/Support Name Stiffness Values Used For All Load Cases ● Stiffness Is Uncoupled
U1 U2 U3 R1 R2 R3

1.000E+10 | | | | | | | | | | Directional Control Direction Fixed ✓ U1 U2 U3 U3 □ R1 □ Damping Values Used For All Load Cases R2
 Damping Is Uncoupled
 Damping Is Coupled

 U1
 U2
 U3
 R1
 R2
 R3
 Damping Is Uncoupled ___ R3 Shear Distance from End J Units KN, m, C

Figura 10.11 Definizione dell'appoggio multidirezionale

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

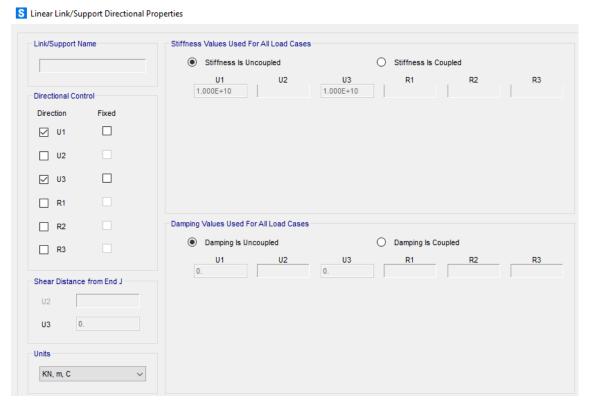


Figura 10.12 Definizione dell'appoggio unidirezionale in X

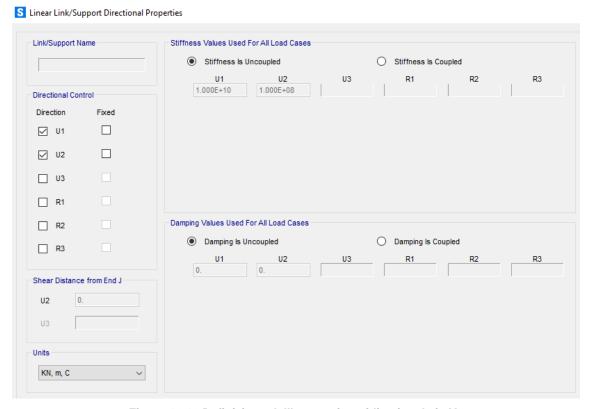


Figura 10.13 Definizione dell'appoggio unidirezionale in Y

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

10.4. DEFINIZIONE DELLE SEZIONI

Ciascun concio modellato tramite elementi frame viene dotato nelle rispettive fasi della corretta sezione di competenza, che si tratti della sola carpenteria metallica o della sezione mista. La larghezza della soletta viene assegnata in questa fase forfettariamente e pari a 5.25m, essendo questa utile solo ai fini delle rigidezze e venendo invece i pesi assegnati a parte (paragrafi seguenti).

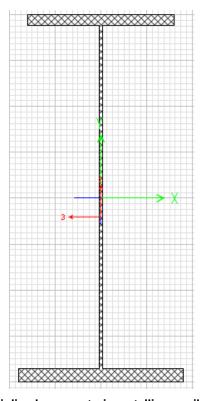


Figura 10.14 Sezioni di sola carpenteria metallica per il concio di mezzeria

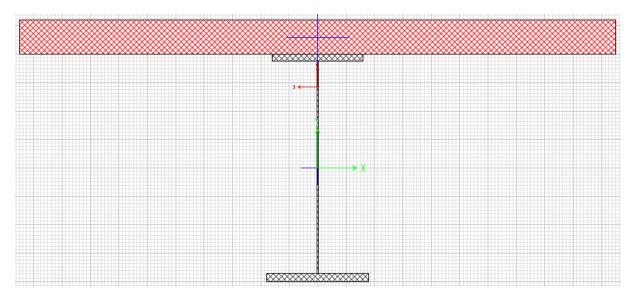


Figura 10.15 Sezioni composta per il concio di mezzeria

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

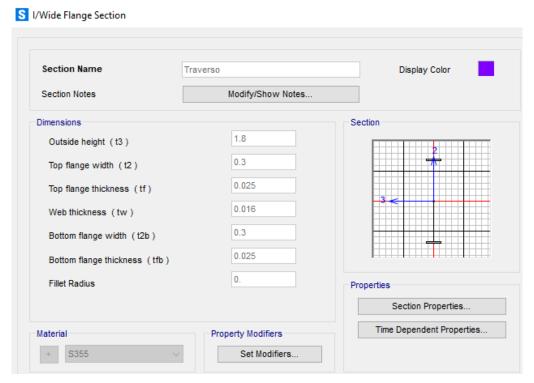


Figura 10.16 Sezione del traverso di testata

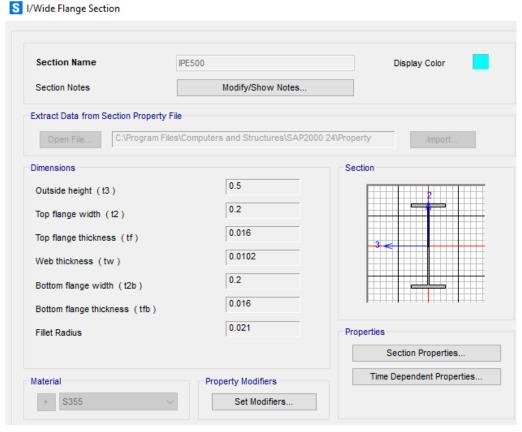


Figura 10.17 Sezione IPE500 del diaframma intermedio

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

10.5. CARICHI E MASSE

10.5.1. APPLICAZIONE DEI CARICHI STRUTTURALI

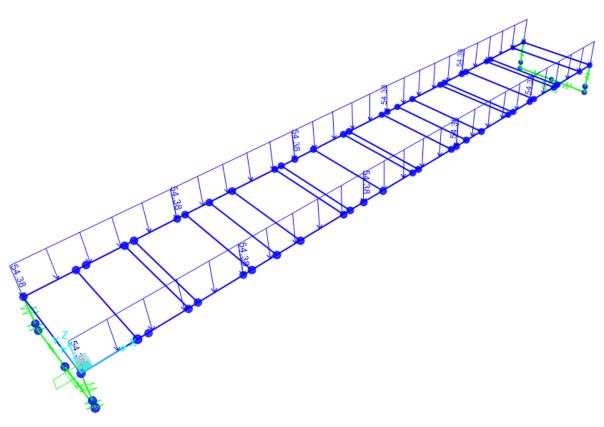


Figura 10.18 Applicazione dei G1

10.5.2. APPLICAZIONE DEI CARICHI FISSI NON STRUTTURALI

I carichi fissi non strutturali (manto, barriere, drenaggi, ecc.) sono stati assegnati come un carico uniforme agli elementi frame mediante i quali sono state modellate le strutture di impalcato. Il valore del carico distribuito è quello definito nell'analisi dei carichi al paragrafo 8.2

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

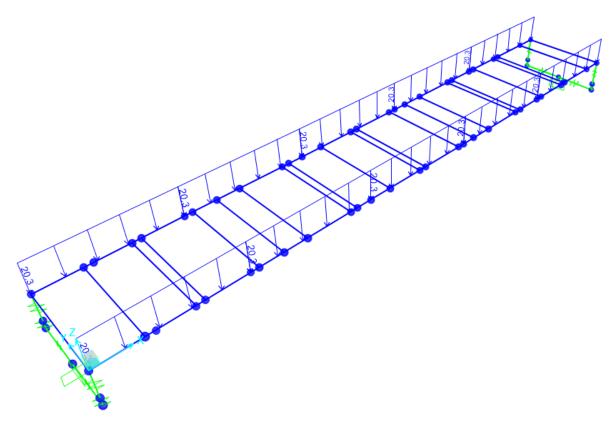


Figura 10.19 Applicazione dei G2

10.5.3. APPLICAZIONE DEI CARICHI VARIABILI

Si riportano di seguito le immagini relative all'applicazione di principali carichi I carichi avariabili. Il valore del carico distribuito è quello definito nell'analisi dei carichi al paragrafo 8.5

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

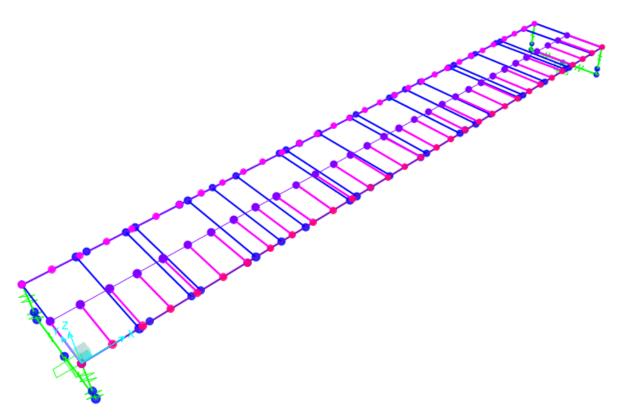


Figura 10.20 Definizione delle corsie di carico del q1 da traffico

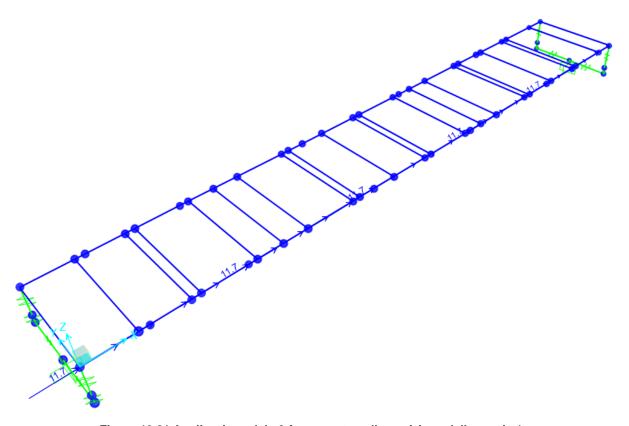


Figura 10.21 Applicazione del q3 frenamento nella posizione della corsia 1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

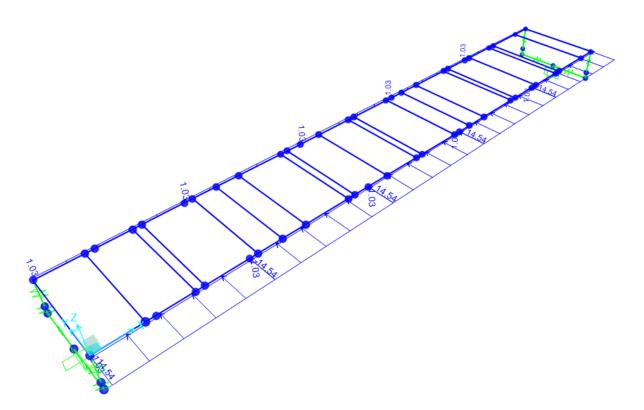


Figura 10.22 Applicazione del q5 vento trasversale nel caso di ponte carico

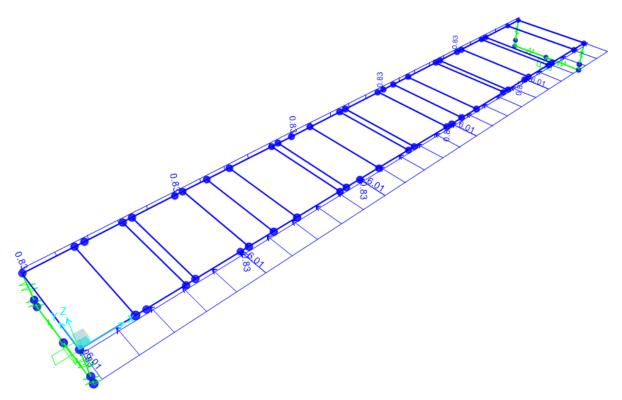


Figura 10.23 Applicazione del q5 vento trasversale nel caso di ponte scarico

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

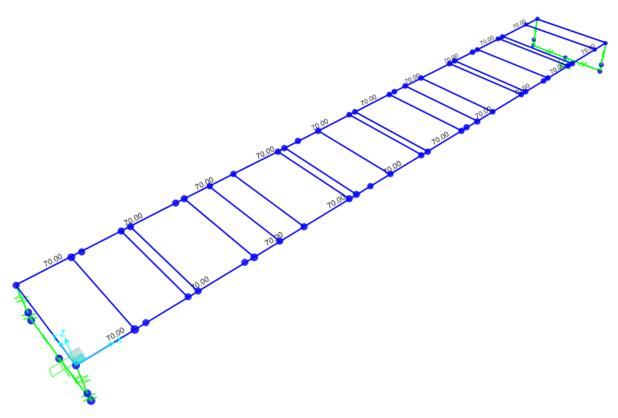


Figura 10.24 Applicazione del q7 gradiente termico uniforme

10.5.4. MASSE SISMICHE

Ai fini della determinazione dei modi di vibrare e delle azioni sismiche sono state considerate le sole masse associate ai soli carichi fissi G1 e G2, quella degli elementi strutturali e quella relativa agli elementi fissi non strutturali applicati al modello.

10.5.5. SPETTRI DI PROGETTO

Gli spettri di progetto sono definiti sulla base di quanto riportato al precedente paragrafo 8.10 Si riportano di seguito gli output di definizione delle funzioni estratti dal programma di calcolo.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

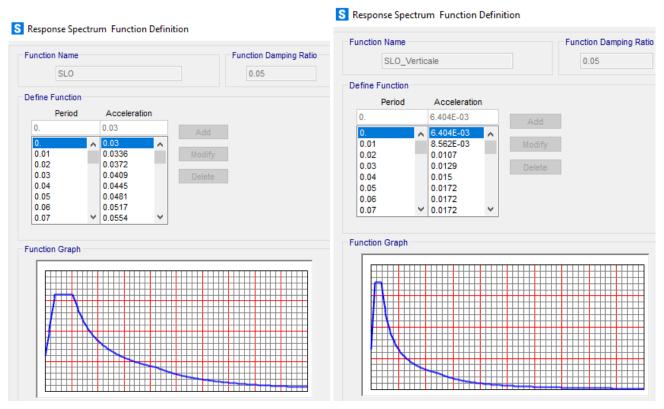


Figura 10.25 Spettri SLO orizzontale e verticale [m/s² - s]

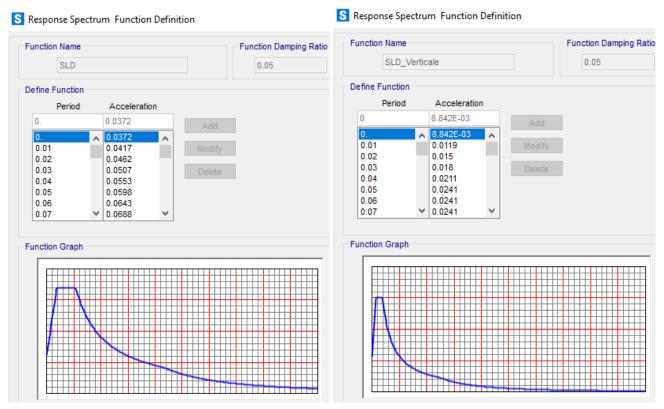


Figura 10.26 Spettri SLD orizzontale e verticale [m/s² - s]

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

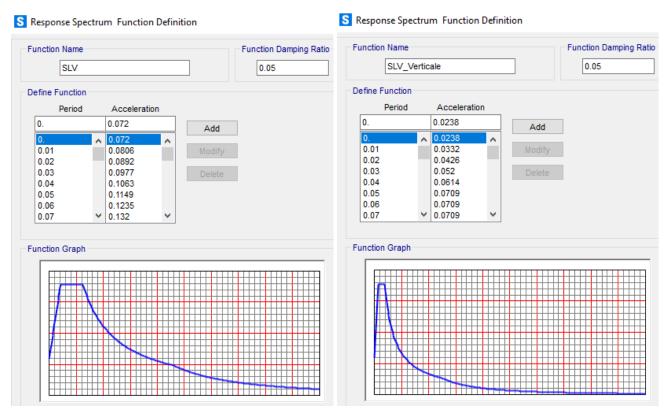


Figura 10.27 Spettri SLV orizzontale e verticale [m/s² – s]

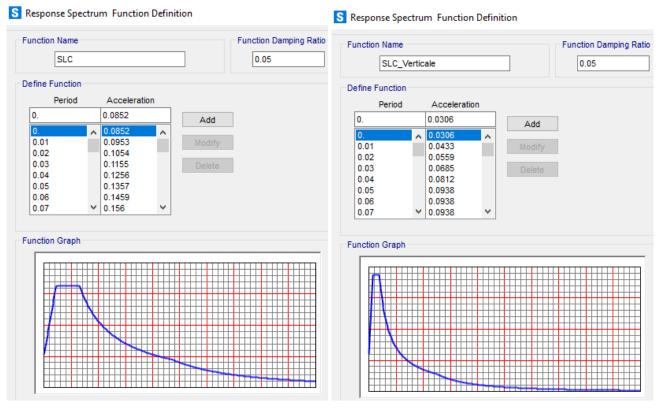


Figura 10.28 Spettri SLC orizzontale e verticale [m/s² - s]

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

11. RISULTATI DELLE ANALISI

Nei paragrafi successivi sono riportati i principali risultati dell'analisi strutturale dell'opera espressi in termini di: modi di vibrare, deformate modali, distribuzioni delle sollecitazioni e deformate.

11.1. ANALISI DINAMICA MODALE

Si riportano nelle figure le forme associate ai principali modi di vibrare ed i relativi periodi naturali di oscillazione. In tabella si riportano, per ciascuno dei modi individuati attraverso l'analisi modale, il periodo, la frequenza e le relative masse partecipanti.

Dalla tabella si osserva come i 50 modi individuati sollecitino cumulativamente una massa superiore all'85% del totale sia in direzione x che in direzione y e quindi risultino in numero adeguato a determinare la risposta sismica dell'opera in campo elastico. Si riportano quindi le deformate dei modi con la massa partecipante più significativa nelle due direzioni:

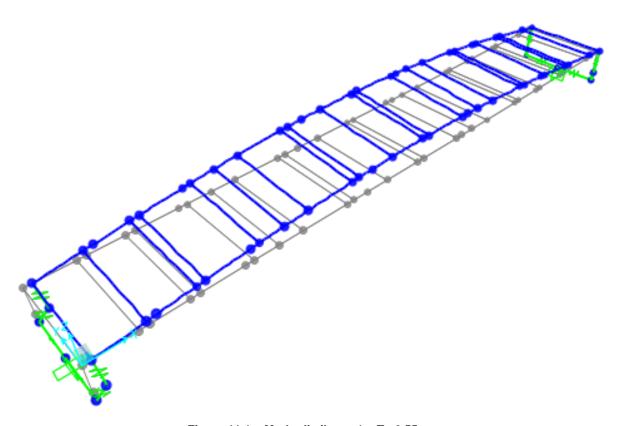


Figura 11.1 – Modo di vibrare 1 – T= 0.55s

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

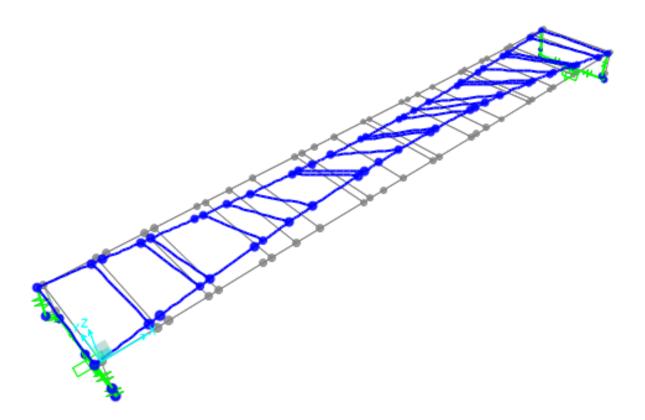


Figura 11.2 - Modo di vibrare 2 - T= 0.46s

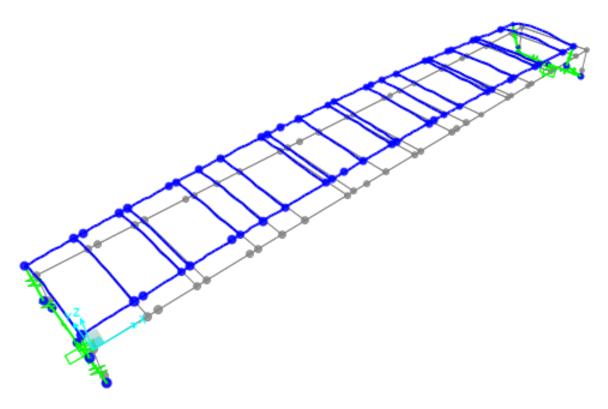


Figura 11.3 - Modo di vibrare 3 - T= 0.29s

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

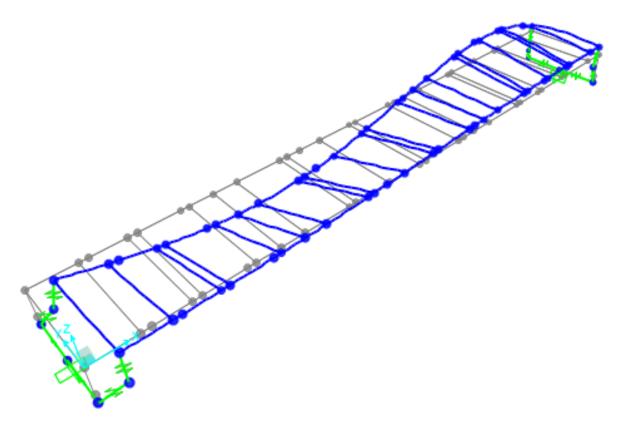


Figura 11.4 – Modo di vibrare 4 – T= 0.20s

TABLE: Modal Participating Mass Ratios									
OutputCase	e StepTyp	e StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.55	0.09	0.00	0.72	0.09	0.00	0.72
MODAL	Mode	2	0.46	0.05	0.00	0.04	0.14	0.00	0.76
MODAL	Mode	3	0.29	0.00	0.97	0.00	0.14	0.97	0.76
MODAL	Mode	4	0.20	0.60	0.01	0.03	0.74	0.97	0.79
MODAL	Mode	5	0.15	0.00	0.00	0.00	0.74	0.97	0.79
MODAL	Mode	6	0.15	0.01	0.00	0.00	0.75	0.97	0.79
MODAL	Mode	7	0.12	0.21	0.00	0.00	0.95	0.98	0.79
MODAL	Mode	8	0.08	0.00	0.00	0.06	0.96	0.98	0.85
MODAL	Mode	9	0.07	0.01	0.01	0.03	0.97	0.98	0.88
MODAL	Mode	10	0.07	0.01	0.02	0.01	0.98	1.00	0.89
MODAL	Mode	11	0.05	0.00	0.00	0.00	0.98	1.00	0.89
MODAL	Mode	12	0.05	0.00	0.00	0.00	0.99	1.00	0.89

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

11.2. PRINCIPALI DIAGRAMMI DELLE SOLLECITAZIONI

Nelle figure seguenti si riportano i diagrammi delle sollecitazioni per le principali azioni caratteristiche e combinazioni di carico.

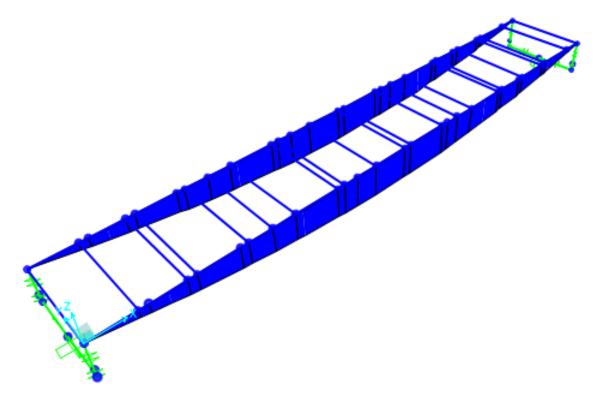


Figura 11.5 Diagramma Momento Flettente -G1 - Peso proprio

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

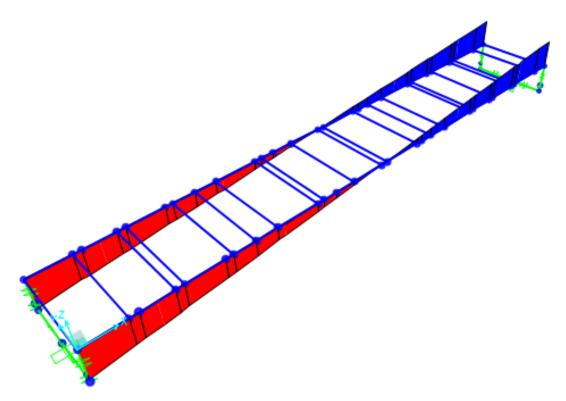


Figura 11.6 Diagramma Taglio G1 - Peso proprio

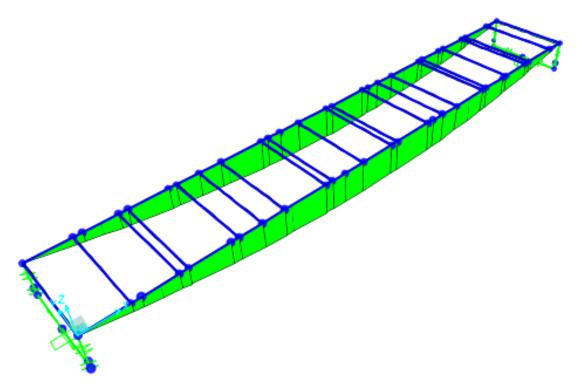


Figura 11.7 Diagramma Momento Flettente Q1 – Carichi mobili distribuiti

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

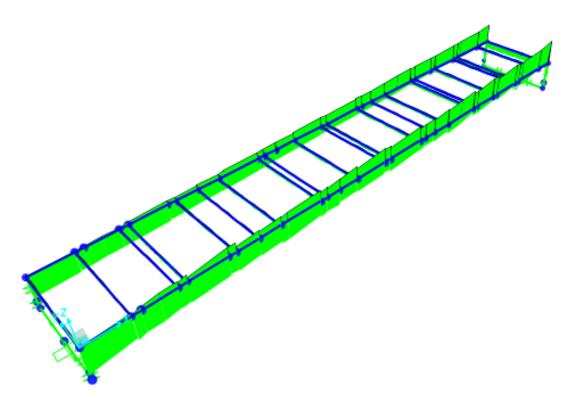


Figura 11.8 Diagramma Taglio Q1 – Carichi mobili tandem

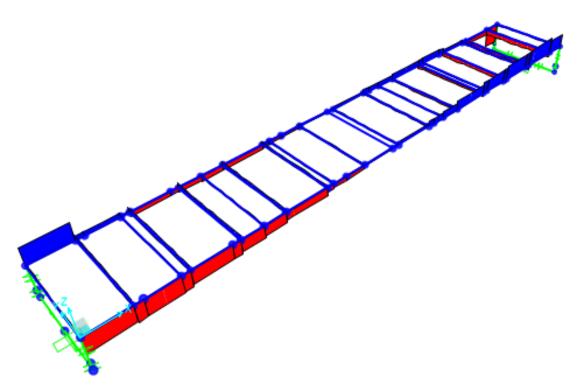


Figura 11.9 Diagramma Momento Torcente Q5 – Vento a ponte scarico

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

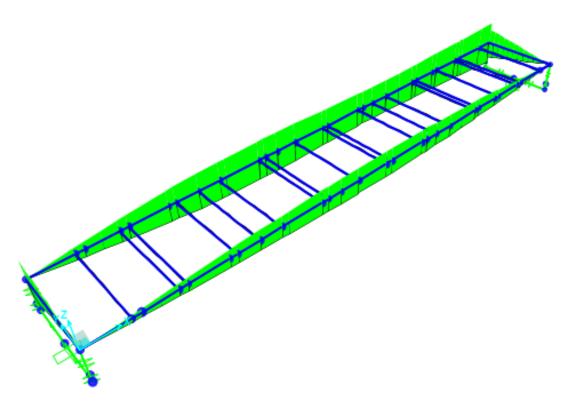


Figura 11.10 Diagramma Momento Flettente SLV

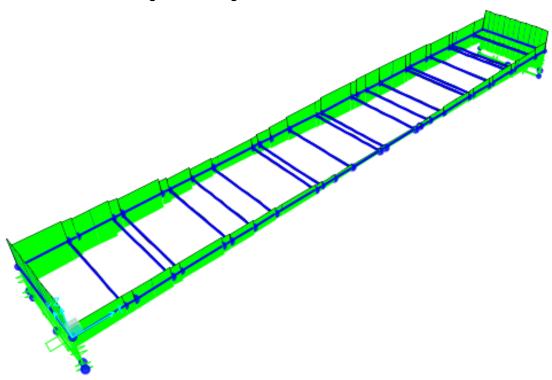


Figura 11.11 Diagramma Taglio SLV

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

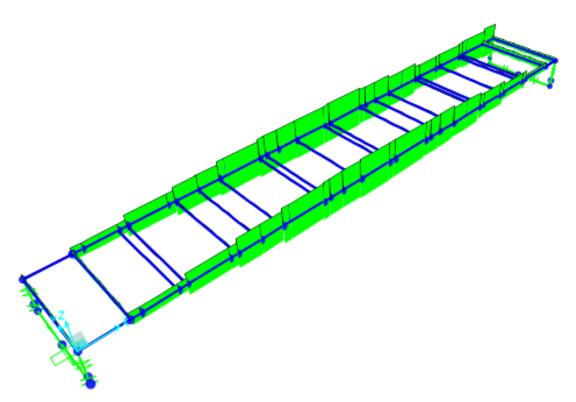


Figura 11.12 Diagramma Sforzo Normale SLV

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

11.3. DEFORMATE

Nelle figure seguenti si riportano le deformate dovute ai carichi gravitazionali ed alle azioni orizzontali (sisma, vento, ecc.).

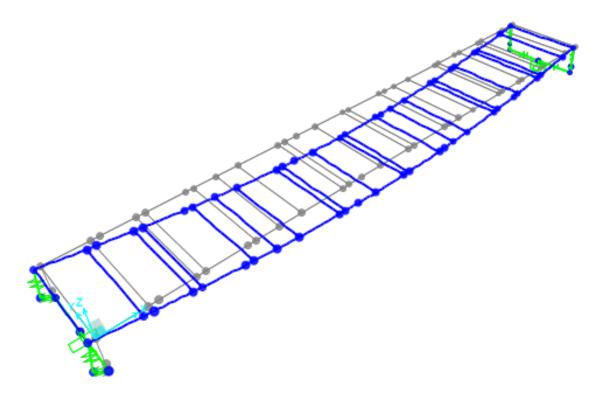


Figura 11.13 Deformata per G1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

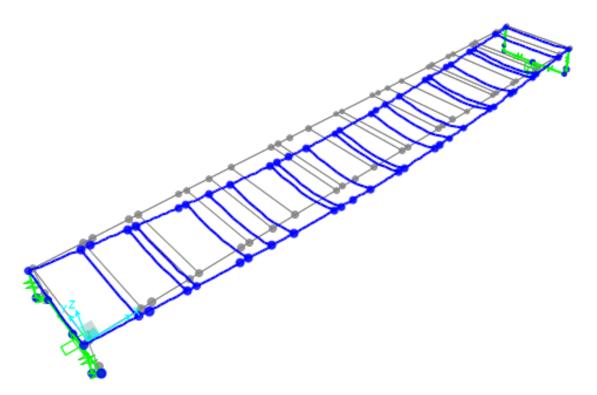


Figura 11.14 Deformata carichi mobili

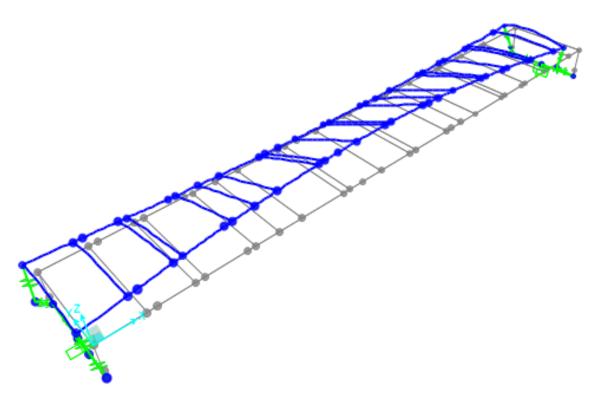


Figura 11.15 Deformata per vento trasversale

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

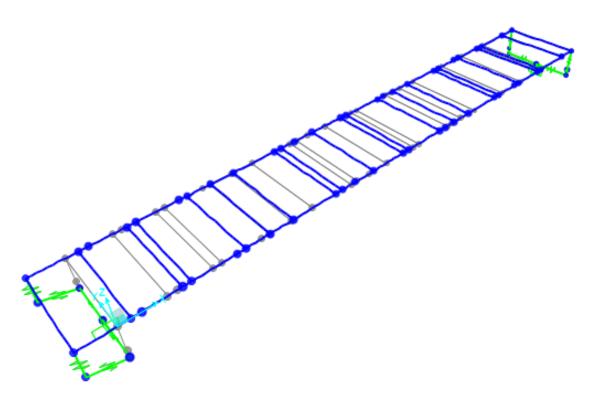


Figura 11.16 Deformata per azione termica (Tu+)

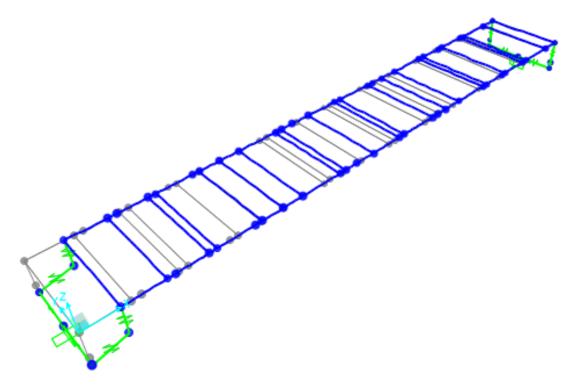


Figura 11.17 Deformata per azione termica (Tu-)

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

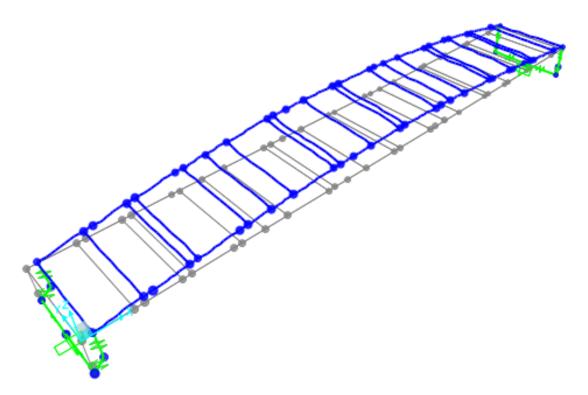


Figura 11.18 Deformata per sisma longitudinale SLC (X)

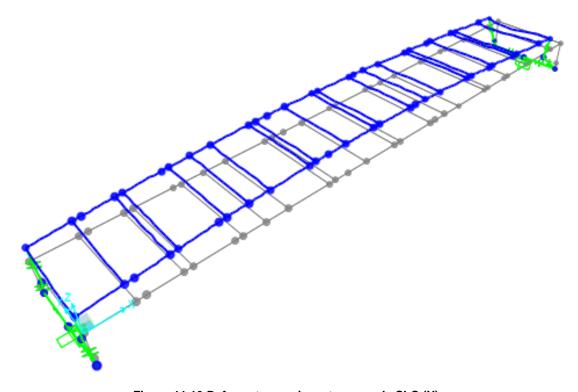


Figura 11.19 Deformata per sisma trasversale SLC (Y)

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

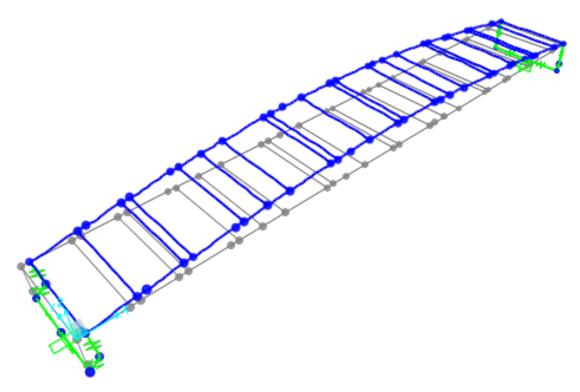


Figura 11.20 Deformata per sisma trasversale SLC (Z)

PROGETTAZIONE ATI:

GESTIONE PROGETTI INGEGNERIA Srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

12. GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

Per poter validare la correttezza dei risultati ottenuti mediante l'analisi svolta mediante il software di calcolo agli elementi finiti SAP2000 v24.1.0 sono stati effettuati alcuni calcoli speditivi.

Il primo check effettuato riguarda il valore della reazione in corrispondenza della spalla SP1 del viadotto; il valore calcolato (di seguito) "manualmente" è stato confrontato con quanto ottenuto dall'analisi FEM.

Il calcolo è eseguito per una trave semplicemente appoggiate. Si considera quindi per i carichi ripartiti una lunghezza di influenza pari a metà della luce:

$$L_{inf} = L/2 = 20m$$

Considerando i carichi tandem, il massimo carico sulla spalla si ottiene quando si ha la presenza simultanea dei carichi tandem sulle corsie convenzionali, da cui N_{tand}=1200kN.

Il carico distribuito sulle corsie convenzionali è pari a q_{dist}=42kN/m, da cui il carico si ottiene un carico sulla spalla pari a N_{dist}=q_{dist}*L_{inf}=840kN.

Si prende come riferimento dal programma di calcolo la prima combinazione di carico allo SLU, riportata in figura

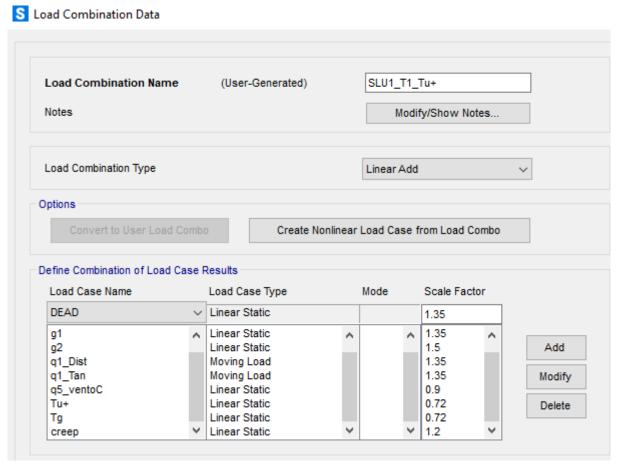


Figura 12.1 Combinazione SLU1

Si confrontano quindi i risultati applicando tali coefficienti (il vento e la temperatura sono ininfluenti ai fini di questa verifica)

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

	Nk	γ	Nd
G ₁ + G ₂	2987	1.35	4032
N _{dist}	840	1.35	1134
N_{tandN}	1200	1.35	1620
Totale			6786

Figura 12.2 Reazione verticale per SLU1

La differenza tra le due reazioni è pari allo 0.10%, margine assolutamente tollerabile.

Nei paragrafi successivi sono riportati i principali risultati dell'analisi strutturale dell'opera espressi in termini di: modi di vibrare, deformate modali, distribuzioni delle sollecitazioni e deformate in condizioni non sismiche e sismiche.

PROGETTAZIONE ATI:

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

13. VERIFICHE TRAVI PRINCIPALI

Ai fini di una più semplice lettura dei tabulati di verifica (vd. Allegati alla relazione), nella tabella di seguito si riporta la corrispondenza tra conci strutturali e le sezioni utilizzate nel modello di calcolo.

- Hs: altezza sezione metallica

- bs: larghezza piattabanda superiore

- ts: spessore piattabanda superiore

bi: larghezza piattabanda inferiore

- ti: spessore piattabanda inferiore

- tw: spessore dell'anima

	Hs	bs	ts	bi	ti	tw
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	2000	700	40	800	50	22
2	2000	800	60	900	65	18
3	2000	800	60	900	70	14
4	2000	800	60	900	65	18
5	2000	700	40	800	50	22

13.1. VERIFICHE AGLI STATI LIMITE ULTIMI

13.1.1. VERIFICHE DI RESISTENZA

Le verifiche di resistenza di tutti i conci delle nervature principali sono state condotte in accordo alle prescrizioni delle NTC'18 e degli Eurocodici.

Le verifiche sono state effettuate sia per la sezione in acciaio (fase di getto) che per la sezione mista (condizioni ultime di esercizio).

Le verifiche di resistenza per tutti i conci della travata sono riportate dettagliatamente nell'Allegato 1 alla presente relazione di calcolo.

13.1.2. COLLEGAMENTI CONCI DELLA TRAVATA

I collegamenti tra i conci da cui è costituita la travata sono realizzati mediante saldature a piena penetrazione; non è dunque necessario effettuare le verifiche di resistenza.

13.1.3. VERIFICHE A FATICA

Le verifiche a fatica sono state condotte in accordo alle indicazioni delle Norme Tecniche 2018 ed in particolare è stata seguita la procedura contenuta nella circolare esplicativa del 2019.

Si è scelto di effettuare verifiche "a danneggiamento" mediante il metodo dei $coefficienti \lambda$ e considerando le curve S-N relative ai dettagli strutturali considerati.

Il metodo dei coefficienti λ riduce la verifica a fatica ad una verifica di resistenza nella quale si va ad accertare che la variazione di tensione ($\Delta\sigma$) nel dettaglio considerato (amplificata mediante un coefficiente λ) non superi la resistenza a fatica (anche detta "classe") del dettaglio ricavata dalle curve di fatica reperibili in normativa e nella letteratura scientifica e corrispondente alla $\Delta\sigma$ che provoca la rottura dopo 2*10^6 cicli carico-scarico.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Il coefficiente λ è funzione di una serie di parametri tra cui: vita utile, intensità di traffico pesante sul viadotto, composizione del traffico (breve/media/lunga percorrenza), schema statico, luce della campata, ecc.

Considerata la mole di traffico abbastanza modesta attesa sull'opera (trattandosi di una strada secondaria), risulta più che cautelativo, ai fini delle verifiche a fatica fare riferimento ad un traffico pesante "Medio" per il calcolo del coefficiente λ_2 . Il traffico, come composizione (% veicoli pesanti), è considerato di tipo locale.

È stata quindi considerata una **vita nominale dell'opera pari a 50 anni**; per la corsia lenta è stato considerato un **livello di traffico pesante "medio"** il che implica, per la corsia lenta, un flusso annuo di veicoli pesanti (superiori a 100kN) compreso tra 0.5x10⁶ e 2x10⁶.

Ai fini del calcolo delle variazioni di tensione nei dettagli strutturali considerati, è stato adottato il modello di carico 3 proposto sia dalle NTC'18 che dall'EN1991-2.

I dettagli strutturali considerati ai fini delle verifiche sono riportati qui di seguito con i relativi valori delle classi di fatica.

71	9	9) Saldatura longitudinale a piena penetrazione, a cordoni d'angolo e a tratti, con lunette di scarico di altezza non maggiore di 60 mm. Per lunette di altezza maggiore vedere dettaglio 1) della tabella C4.2.XX)	Δσ riferiti alle tensioni nella piattabanda
50	(16) ≤1/4	16) Saldature su piatto di sostegno permanente con rastremazioni in larghezza e spessore con pendenza non maggiore di 1:4. Vale anche per lamiere curve	Da adottarsi quando i cordoni d'angolo che fissano il piatto di sostegno terminano a meno di 10 mm dai bordi dell'elemento o quando non può essere garantito un buon accoppiamento
	(10)	Per spessori ⊳25 mm, si deve adottare una classe ridotta del coefficiente	
80 (a) 71 (b) 63 (c) 56 (d)		Attacchi saldati longitudinali 1) La classe del dettaglio dipende dalla lunghezza dell'attacco (a) L≤50 mm (b) 50 <l≤80 (c)="" (d)="" 80<l≤100="" l="" mm=""> mm</l≤80>	Spessore dell'attacco minore della sua altezza. In caso contrario vedi dettagli 5 e 6
80	>10 mm	8) Cordoni d'angolo continui soggetti a sforzi di sconnessione, quali quelli di composizione tra anima e piattabanda in travi composte saldate 9) Giunzioni a sovrapposizione a cordoni d'angolo soggette a tensioni tangenziali	8) Δτ deve essere calcolato in riferimento alla sezione di gola del cordone 9) Δτ deve essere calcolato in riferimento alla sezione di gola del cordone, considerando la lunghezza totale del cordone, che deve terminare a più di 10 mm dal bordo della piastra

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Il coefficiente di sicurezza riduttivo per la classe di fatica è stato assunto pari a 1.35 trattandosi di dettagli delicati (travi principali dell'impalcato) il cui danneggiamento influisce significativamente sulla fruibilità dell'opera.

L'analisi del viadotto è stata effettuata considerando il transito del modello di carico 3 in asse alla corsia lenta che è stata disposta (trasversalmente) in modo da ottenere le sollecitazioni più sfavorevoli sugli elementi strutturali considerati.

Calcolando le tensioni massime e minime a partire dall'inviluppo delle sollecitazioni risulta che le verifiche sono soddisfatte per tutti i dettagli.

Le verifiche a fatica per tutti i conci della travata sono riportate dettagliatamente nell'Allegato 2 alla presente relazione di calcolo.

13.2. VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Le verifiche agli stati limite di esercizio sono state condotte con l'obiettivo di accertare che, per effetto delle sollecitazioni derivanti dalla combinazione di cui al 9.2, le tensioni nei materiali rimangano inferiori ai limiti stabiliti dalle NTC'18.

In base alle verifiche effettuate in tutte le sezioni del viadotto tali limiti risultano rispettati.

13.3. VERIFICA DI DEFORMABILITÀ

La verifica di deformabilità è stata condotta confrontando le luci delle campate con gli abbassamenti massimi indotti dal transito dei carichi previsti dallo schema 1 (NTC'18) sul modello in fase 3 del viadotto. I coefficienti parziali considerati sono unitari, si fa quindi riferimento alla combinazione rara.

Gli abbassamenti calcolati sono stati confrontati con le luci e, dalla tabella seguente, si nota come in nessun caso essi superino il limite di L/500 solitamente considerato per le verifiche di deformabilità.

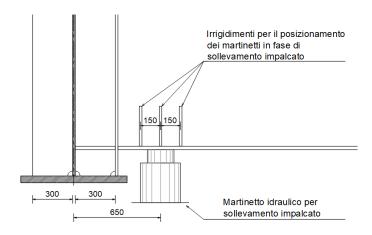
Campata	L	δ_{v}	L/δ _ν	
[-]	[m]	[mm]	[-]	
1	40.0	41	975	

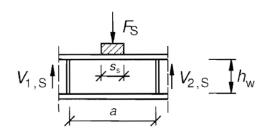
13.4. CALCOLO DELLA PRE-MONTA

La pre-monta da assegnare alle travi principali è stata calcolata in modo da annullare gli effetti dei carichi permanenti (strutturali e non) sommati al 20% dei carichi mobili (secondo schema di carico 1) considerati applicati a ciascuna campata.

Quindi, avendo calcolato per ciascuna campata la distribuzione degli spostamenti verticali dovuti ai carichi suddetti, sono stati definiti i valori della premonta da considerare per la fabbricazione della carpenteria metallica.

Lo schema ed i relativi valori della premonta sono riportati nel dettaglio nelle tavole di progetto della carpenteria metallica di impalcato.





CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

13.5. VERIFICA IN FASE DI SOLLEVAMENTO PER SOSTITUZIONE DEGLI APPOGGI

La verifica del viadotto in fase di sollevamento per la sostituzione degli appoggi è stata condotta considerando il sollevamento dell'appoggio mediante martinetti idraulici posizionti al di sotto dei traversi di spalla in prossimità dei baggioli (vd. Figura).

La combinazione di carichi considerata ai fini del calcolo delle sollecitazioni è la quasi-permanente:

$$(G1 + G2)*1.35$$

Trattandosi di una travata isostatica non risulta necessario eseguire ulteriori verifiche (oltre a quelle allo SLU) della travata e delle parti strutturali secondarie con riferimento alla condizione di sollevamento.

È invece opportuno eseguire le verifiche locali dell'anima delle travi principali per effetto dei carichi concentrati introdotti dai martinetti.

La verifica di resistenza locale ai carichi concentrati è stata condotta secondo la EN 1993-1-5 §.6 "Resistance to transverse forces"; a vantaggio di sicurezza è stata ignorata la presenza degli "stiffeners" predisposti per garantire un opportuno contrasto ai martinetti.

I risultati delle verifiche si riportano nelle tabelle seguenti: nella prima tabella sono riportati i parametri geometrico/meccanici e sollecitazioni, nella seconda è svolto il calcolo della resistenza:

Legenda

NEd = forza concentrata trasmessa dal martinetto; Ss = Estensione della zona di contatto tra martinetto e ala inferiore; a = interasse tra gli irrigidimenti verticali della travata; hw = altezza dell'anima; tw = spessore dell'anima; tf = spessore dell'ala a contatto col martinetto; bf = larghezza dell'ala a contatto col martinetto; fyw = resistenza allo snervamento dell'anima; fyf = resistenza allo snervamento dell'ala; NRd = resistenza di progetto dell'anima ai carichi concentrati

NEd	Ss	а	hw	tw	tf	bf	fyw	fyf
[kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[MPa]	[MPa]
2020	200	300	1500	18	25.0	500	355	355

kf	FCR	m1	m2	ly	λf	χf	Leff	NRd	VEDIEICA	n
[-]	[kN]	[-]	[-]	[mm]	[-]	[-]	[mm]	[kN]	VERIFICA	η ₂
56.0	40367	27.8	72.00	749	0.34	1.45	1088	6320	ОК	0.320

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

La presenza degli stiffeners saldati al traverso in corrispondenza dei punti di contatto dei martinetti è stata considerata adottando un passo degli stiffeners cautelativamente pari a 300mm (in realtà il passo è pari a 150mm). Dall'esito delle verifiche risulta che la fase di sollevamento non rappresenta in alcun modo una fase critica per la resistenza dell'impalcato.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14. VERIFICA DELLA SOLETTA

Si prevede l'impiego di soletta in c.a. di spessore costante di 30cm gettata su predalles prefabbricate il cui fondello in calcestruzzo ha spessore 5cm; sono previsti tralicci realizzati in acciaio B450C disposti con interasse 0.3m.

L'intera soletta è armata sia superiormente che inferiormente con 1φ20/10" Per la resistenza a taglio ci si affiderà ai tralicci delle predalle, di seguito descritti.

Il corrente inferiore del traliccio è costituito da 2 barre ϕ 12 mentre il corrente superiore è costituito da una barra ϕ 16; le aste di parete diagonali del traliccio sono costituite da barre ϕ 10. La larghezza di ogni singola predalla è di 2.4m. Per i dettagli costruttivi si faccia riferimento agli specifici elaborati.

14.1. GEOMETRIA DELLA SOLETTA

La soletta ha uno spessore di 30cm su una larghezza di impalcato di 10.50m con cordoli di 0,75m. L'altezza dei cordoli è di 15cm. L'interasse fra le travi è pari a 6m con sbalzi di 2.25m.

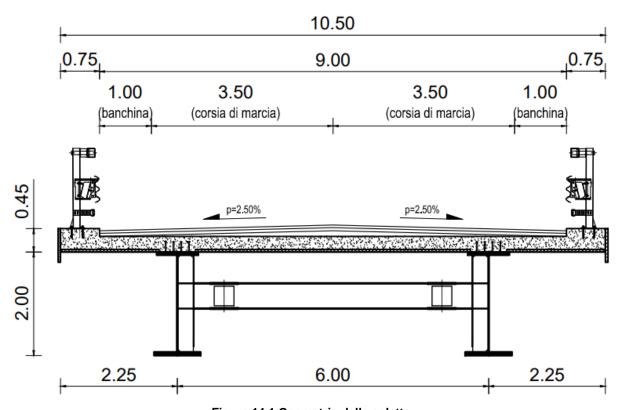


Figura 14.1 Geometria della soletta

14.2. MODELLAZIONE STRUTTURALE E ANALISI DEI CARICHI

La soletta è stata modellata "a piastra" impiegando il software SAP2000 e, in particolare, elementi di tipo *shell*; le sollecitazioni considerate ai fini delle verifiche di resistenza corrispondono ai valori massimi puntuali leggibili dall'output del software.

Si è fatto riferimento ad una porzione di campata lunga 15m, opportunamente vincolata.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

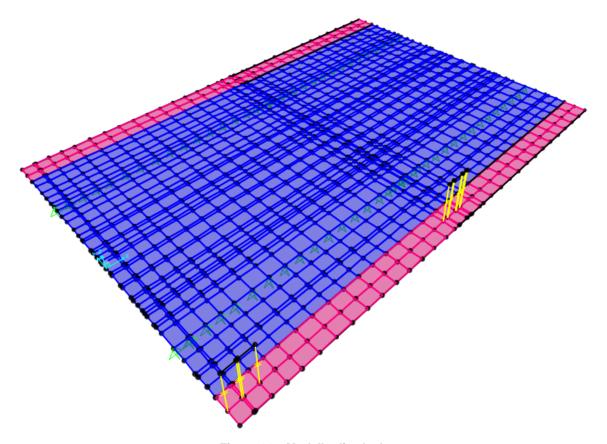


Figura 14.2 Modello di calcolo

Al fine di modellare correttamente l'urto si utilizzano link rigidi così da poter applicare tale azione alla quota opportuna. L'azione viene distribuita su più link in un intervallo prossimo ad 0.5m cosi da ripartire correttamente l'azione agli elementi shell della soletta.

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

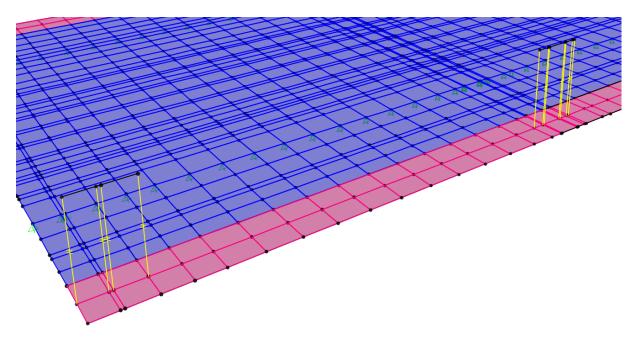


Figura 14.3 Modellazione dei link per l'urto

Per poter modellare correttamente le impronte di carico si utilizza una più opportuna discretizzazione e mesh interna alla soletta. In particolare, si utilizzano più configurazioni delle corsie di carico così da massimizzare le sollecitazioni sulla mezzeria dei campi intermedi e sugli appoggi:

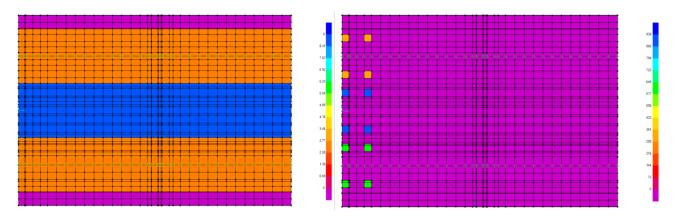


Figura 14.4 Posizione delle corsie e dei carichi tandem nella prima disposizione sul bordo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

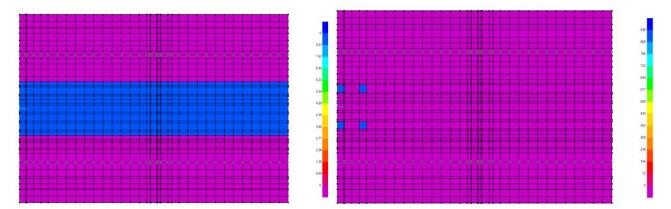


Figura 14.5 Posizione delle corsie e dei carichi tandem nella seconda disposizione sul bordo

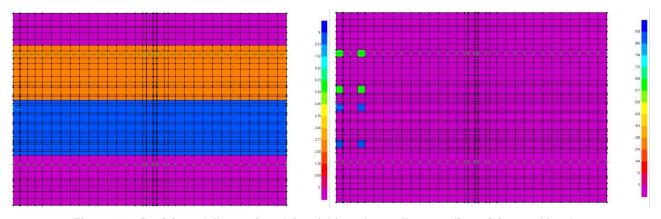


Figura 14.6 Posizione delle corsie e dei carichi tandem nella terza disposizione sul bordo

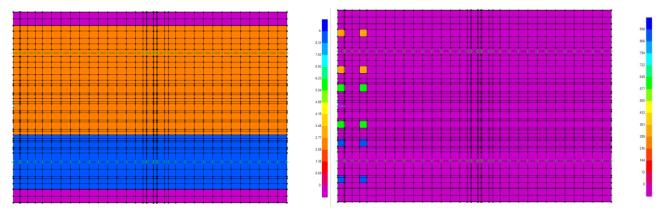


Figura 14.7 Posizione delle corsie e dei carichi tandem nella quarta disposizione sul bordo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

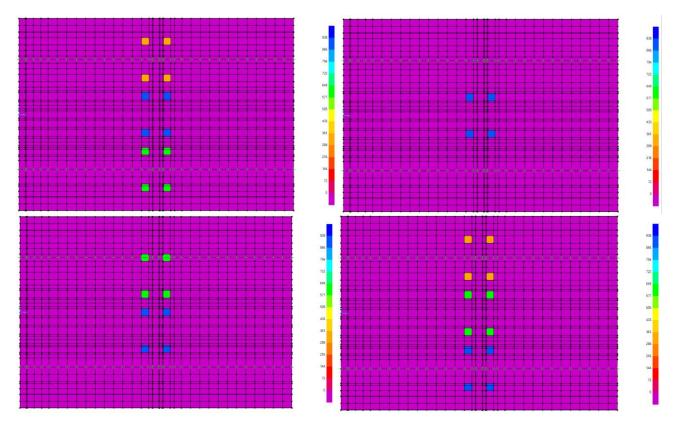


Figura 14.8 Posizione dei carichi tandem nelle quattro disposizioni centrali

Figura 14.9 Posizione dei carichi tandem per lo Schema 2 nelle quattro disposizioni sul bordo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

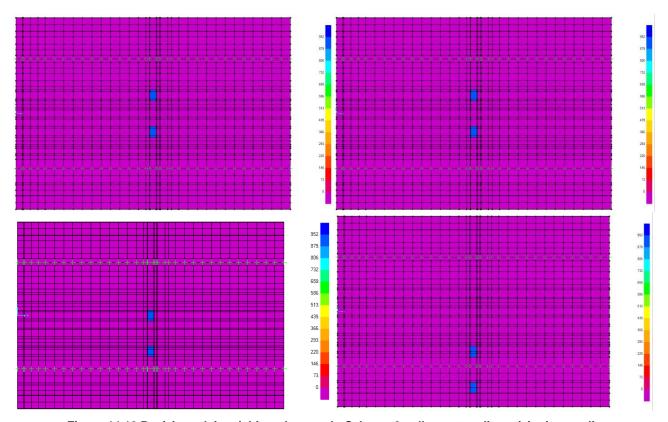


Figura 14.10 Posizione dei carichi tandem per lo Schema 2 nelle quattro disposizioni centrali

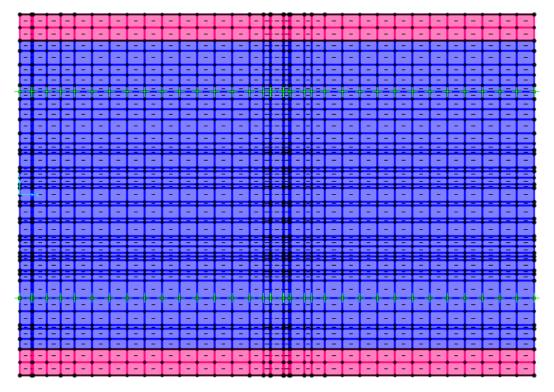


Figura 14.11 Carico pavimentazione

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

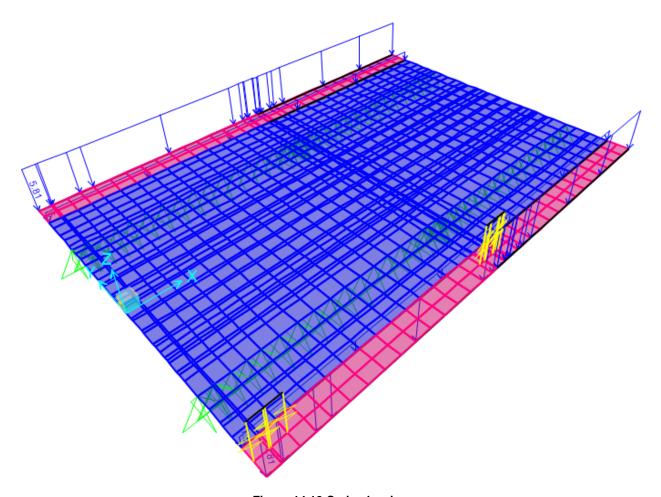


Figura 14.12 Carico barriere

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

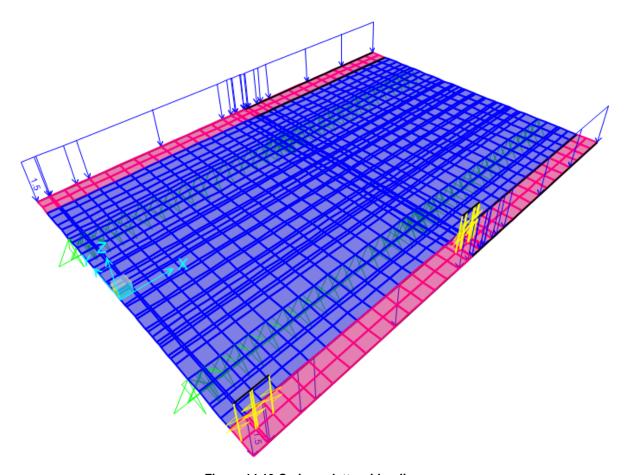


Figura 14.13 Carico velette e idraulica

Figura 14.14 Carico relativo all'urto

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14.2.1. COMBINAZIONE DELLE AZIONI AGLI SLU

Per la determinazione dei massimi momenti flettenti in campata e sugli sbalzi si considerano gli effetti di tutti i carichi definiti, opportunamente disposti, ad esclusione degli urti.

Per la determinazione delle massime sollecitazioni di progetto le corsie di carico sono state disposte trasversalmente sia in modo da massimizzare i momenti negativi sugli sbalzi, sia in modo sa massimizzare le sollecitazioni flettenti in campata. Si è proceduto analogamente per la massimizzazione delle sollecitazioni taglianti.

Oltre alle condizioni di carico ordinarie, è stata considerata anche la condizione di carico eccezionale che consiste nell'urto sulla barriera sicurvia.

TABLE: Combination Definitions			
ComboName	ComboType	CaseName	ScaleFactor
Text	Text	Text	Unitless
env_s2	Envelope	Sch2 - 1	1
		Sch2 - 2	1
		Sch2 - 3	1
		Sch2 - 4	1
SLU_s2	Linear Add	DEAD	1.35
		G2 Pav	1.5
		G2 sic	1.5
		G2 vel+idr	1.5
		env_s2	1.35
SLU_s1	Linear Add	DEAD	1.35
		G2 Pav	1.5
		G2 sic	1.5
		G2 vel+idr	1.5
		Dist1	1.35
		Dist2	1.35
		Dist3	1.35
		Dist4	1.35
		Tan 1	1.35
		Tan 2	1.35
		Tan 3	1.35
		Tan 4	1.35
		Dist_rim	1.35
SLU_s1_centrale	Linear Add	DEAD	1.35
		G2 Pav	1.5
		G2 sic	1.5
		G2 vel+idr	1.5
		Dist1	1.35
		Dist2	1.35
		Dist3	1.35
		Dist4	1.35

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

		Tan 1_centrale	1.35
		Tan 2_centrale	1.35
		Tan 3_centrale	1.35
		Dist_rim	1.35
ECC_urto	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		Urto	1

14.2.2. COMBINAZIONE DELLE AZIONI AGLI SLE

Analogamente agli stati limiti ultimi si riportano per gli stati limite di esercizio le combinazioni individuate. Le disposizioni dei carichi saranno le medesime già viste.

SLE - R_s1	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		Dist1	1
		Dist2	1
		Dist3	1
		Dist4	1
		Tan 1	1
		Tan 2	1
		Tan 3	1
		Tan 4	1
		Dist_rim	1
SLE - R_s1_centrale	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		Tan 1_centrale	1
		Tan 2_centrale	1
		Tan 3_centrale	1
		Dist_rim	1
SLE - R_s2	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		env_s2	1
env_s2_centrale	Envelope	Sch2 - 1_centrale	1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

		Sch2 - 2_centrale	1
		Sch2 - 3_centrale	1
		Sch2 - 4_centrale	1
SLE - R_s2_centrale	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		env_s2_centrale	1
SLE rara inviluppo	Envelope	SLE - R_s1	1
• •	•	SLE - R_s1_centrale	1
		SLE - R_s2	1
		SLE - R_s2_centrale	1
SLE - F_s1	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		Dist1	0.4
		Dist2	0.4
		Dist3	0.4
		Dist4	0.4
		Tan 1	0.75
		Tan 2	0.75
		Tan 3	0.75
		Tan 4	0.75
		Dist_rim	1
SLE - F_s1_centrale	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1
		Tan 1_centrale	0.75
		Tan 2_centrale	0.75
		Tan 3_centrale	0.75
SLE frequente inviluppo	Envelope	SLE - F_s1	1
		SLE - F_s1_centrale	1
SLU_s2_centrale	Linear Add	DEAD	1.35
		G2 Pav	1.5
		G2 sic	1.5
		G2 vel+idr	1.5
		env_s2	1.35
SLU inviluppo	Envelope	SLU_s1	1
		SLU_s1_centrale	1
		SLU_s2	1

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

		SLU_s2_centrale	1
		ECC_urto	1
SLE - QP	Linear Add	DEAD	1
		G2 Pav	1
		G2 sic	1
		G2 vel+idr	1

14.3. VERIFICA DELLE LASTRE IN FASE DI GETTO

Per la verifica delle lastre durante la fase di getto, oltre al peso del getto di calcestruzzo fresco, si considera un carico accidentale di 2 kN/m² che simula la presenza di operai e/o accumulo locale di materiale.

VERIFICA PREDALLES CAMPATA						
DATI						
=			5.00			
LUCE DELLA CAMPATA	L	=	6.00	m		
SPESSORE SOLETTA CLS	Ss	=	0.30	m		
SPESSORE FONDELLO CLS	Sf	=	0.05	m		
INTERASSE TRASVERSALE TRALICCI	i	=	0.30	m		
Altezza efficace dei correnti (asse - asse)	h_{eff}	=	0.205	m		
Passo diagonali (dir. LN al traliccio)	1	=	20.00	cm		
Interasse trasversale dei correnti inferiori	it _{ci}	=	10.00	cm		
Larghezza predalle	Bpred	=	2.4	m		
n° tralicci per predalle	n°tral.	=	8			
Carichi accidentali di getto	q_{acc}	=	2.00	kN/mq		

SOLLECITAZIONI AGENTI				
COEFFICIENTE DI AMPLIFICAZIONE DEI CARICHI G	γ_{G}	=	1.35	
COEFFICIENTE DI AMPLIFICAZIONE DEI CARICHI q	$\gamma_{\rm q}$	=	1.50	
Carico uniformemente distribuito	q_{G+q}	=	4.44	kN
MOMENTO FLETTENTE	М	=	11.39	kNm
TAGLIO	V	=	13.33	kN
SFORZO NORMALE (di traz/compr nei correnti) M/h _{eff}	N	=-±	55.56	kN

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

CORRENTE INFERIORE		_	2.20	cm ²
AREA DEL CORRENTE INFERIORE	A_{inf}	=	2.26	
Tensione nella singola barra (trazione)	$\sigma_{\rm S}$	=	-245.6	N/mm ²
Resistenza di calcolo a trazione N _{t,Rd}	$N_{t,Rd}$	=	96.9	kN
N/N _{t,Rd} <1	N/N _{t,Rd}	=	0.57	
CORRENTE SUPERIORE				
AREA DEL CORRENTE SUPERIORE	A_{sup}	=	2.01	cm ²
Tensione nella barra (compressione)	$\sigma_{\rm S}$	=	276.3	N/mm²
Resistenza di calcolo a compressione N _{c,Rd}	N _{c,Rd}	=	86.17	kN
N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.645	
STABILITA' CORR. SUP.				
Coefficiente di vincolo βv	βv	=	1	
Lunghezza tra due tralicci successivi	1	=	20.00	cm
Lunghezza libera d'inflessione $I_0=I^*\beta$	Io	=	20.00	cm
N critico euleriano	N_{cr}	=	166.69	kN
Snellezza adimensionale	λ_{ad}	=	0.74	
Fattore di imperfezione	αi	=	0.49	
coefficiente φ	ф	=	0.90	
Coefficiente χ	χ	=	0.702	
Coefficiente gamma M1	γ_{M1}	=	1.10	
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b.Rd}	$N_{b,Rd}$	=	57.73	kN
N/N _{b,Rd} <1	N/N _{b,Rd}	=	0.962	
DIAGONALI				
AREA DEI DIAGONALI	A_{dia}	_	1.57	cm ²
ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE	~dia α	_	14.0	deg
ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE	β	_	27.9	deg
SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione)	N	=	7.78	kN
Tensione nella singola barra (compressione)	$\sigma_{\rm S}$	=	99.0	N/mm²
Positive of the last of the la	N		22.66	
Resistenza di calcolo a compressione N _{c,Rd}	N _{c,Rd}	=	33.66	kN
N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.231	
STABILITA'				
Coefficiente di vincolo βv	βv	=	1	
Lunghezza del diagonale	1	=	23.35	cm
Lunghezza libera d'inflessione I_0 = $I^*\beta$	Io	=	23.35	cm
N critico euleriano	N_{cr}	=	18.66	kN
Snellezza adimensionale	λ_{ad}	=	1.38	
Fattore di imperfezione	αί	=	0.49	
coefficiente φ	ф	=	1.74	_
Coefficiente χ	χ	=	0.358	
	γ_{M1}	=	1.10	
Coefficiente gamma M1		=	11.51	kN
	$N_{b,Rd}$			
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd}	N _{b,Rd}	=	0.676	
Coefficiente gamma M1 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd} N/N _{b,Rd} <1 Portata residua dei diagonali	$N/N_{b,Rd}$	=		kN
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd}		= =	0.676 3.7 6.4	kN kN

Figura 14.15 Verifica predalles in campata

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

VERIFICA PREDALLES SBALZO DATI LUCE DELLO SBALZO SPESSORE SOLETTA CLS Ss 0.30 m SPESSORE FONDELLO CLS Sf 0.05 m INTERASSE TRASVERSALE DEL SINGOLO TRALICCIO 0.30 m Altezza efficace dei correnti (asse - asse) 0.205 m 20.0 Lunghezza tra due tralicci successivi - 1 cm Interasse trasversale dei correnti inferiori 10.0 it_{ci} cm Larghezza predalle Bpred 2.4 m n° tralicci per predalle 8 n°tral. Peso veletta all'estremità della predalle pvel. 1.50 kN/m 1.00 Carichi accidentali in fase di getto qacc kN/mq

SOLLECITAZIONI AGENTI				
COEFFICIENTE DI AMPLIFICAZIONE DEI CARICHI G	$\gamma_{\rm G}$	=	1.35	
COEFFICIENTE DI AMPLIFICAZIONE DEI CARICHI ${f q}$	$\gamma_{\rm q}$	=	1.50	
Carico uniformemente distribuito	$q_{sol+acc}$	=	3.99	kN
Carico concentrato	q_{vel}	=	0.61	kN
MOMENTO FLETTENTE	М	=	11.48	kNm
TAGLIO	Т	=	9.59	kN
SFORZO NORMALE (di traz/compr nei correnti) M/h _{off}	N	=	55.98	kN

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

CORRENTE INFERIORE COMPRESSO				
AREA DEL CORRENTE INFERIORE	A_{inf}	=	4.02	cm ²
Coefficiente di vincolo βv	βv	=	0.9	
Lunghezza tra due tralicci successivi	1	=	20.00	cm
Lunghezza libera d'inflessione $I_0=I^*\beta$	Io	=	18	cm
RAGGIO D'INERZIA	i	=	0.40	cm
SNELLEZZA	λ	=	45.00	
Resistenza di calcolo a compressione N _{c,Rd}	$N_{c,Rd}$	=	172.34	kN
N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.325	
STABILITA'				
N critico euleriano	N_{cr}	=	411.58	kN
Snellezza adimensionale	λ_{ad}	=	0.66	
Fattore di imperfezione	αi	=	0.49	
coefficiente φ	ф	=	0.83	
Coefficiente χ	χ	=	0.747	
Coefficiente gamma M1	γ_{M1}	=	1.1	
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b.Rd}	$N_{b,Rd}$	=	122.95	kN
N/N _{b,Rd} <1	N/N _{b,Rd}	=	0.46	
CORRENTE SUPERIORE TESO				
AREA DEL CORRENTE SUPERIORE	A_{sup}	_	3.14	cm ²
Tensione nella barra (trazione)	σ	_	178.19	N/mn
Resistenza di calcolo a trazione N _{t.Rd}	$N_{t,Rd}$	_	134.64	kN
N/N _{tRd} <1	N/N _{t,Rd}	=	0.42	KI*
DIACONALI				
DIAGONALI AREA DEI DIAGONALI	۸	_	2.26	cm ²
ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE	A _{inf} α	_	14.0	deg
ANGOLO ASTA DEL DIAGONALE SULLA VISTA INASVERSALE ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE	β	_	27.9	deg
SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione)	N N	=	5.60	kN
Tensione nella singola barra (compressione)	$\sigma_{\rm S}$	=	49.5	N/mn
Resistenza di calcolo a compressione N _{c.Rd}	$N_{c,Rd}$	_	48.47	kN
* *	., .			KIN
N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.115	
STABILITA'				
Coefficiente di vincolo βv	βv	=	1	
Lunghezza del diagonale		=	23.35	cm
Lunghezza libera d'inflessione l ₀ =l*β	I _o	=	23.35	cm
N critico euleriano	N_{cr}	=	38.69	kN
Snellezza adimensionale	λ_{ad}	=	1.62	_
Fattore di imperfezione	αί	=	0.49	
coefficiente ф	ф	=	2.16	
Coefficiente x	χ	=	0.278	
Coefficiente gamma M1	γ _{M1}	=	1.10	
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd}	N _{b,Rd}	=	25.73	kN
	$N/N_{b,Rd}$	=	0.217	
N/N _{b,Rd} <1				
N/N_{b,Rd} <1 Portata residua dei diagonali	Nres	=	20.1	kN
		=	20.1 34.5	kN kN

Figura 14.16 Verifica predalles sullo sbalzo

Le verifiche risultano soddisfatte

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14.4. **VERIFICHE NELLE FASI SUCCESSIVE**

I carichi tandem, in senso longitudinale, sono stati considerati applicati in corrispondenza della mezzeria della campata e sul bordo. Le verifiche sono state effettuate sia agli SLU che agli SLE in corrispondenza delle sezioni di mezzeria e di appoggio.

VERIFICA ALLO SLU 14.5.

Le verifiche verranno effettuate in termini di sollecitazioni per le sezioni individuate, più una verifica aggiuntiva per i cordoli nel caso di urto.

14.5.1. SOLLECITAZIONI AGLI SLU

Si riportano di seguito i diagrammi delle sollecitazioni relative alle principali combinazioni considerate allo SLU.

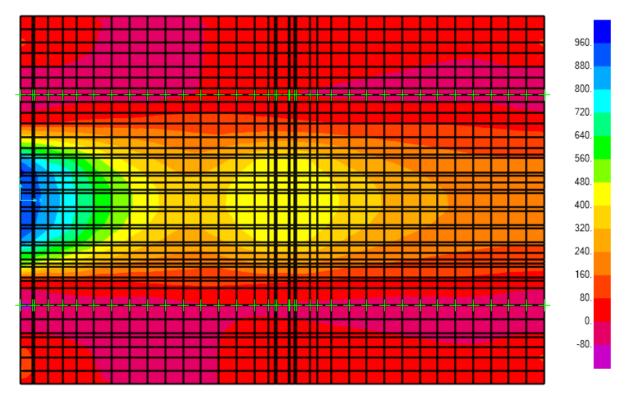


Figura 14.17 Inviluppo momento flettente M22 max - SLU

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

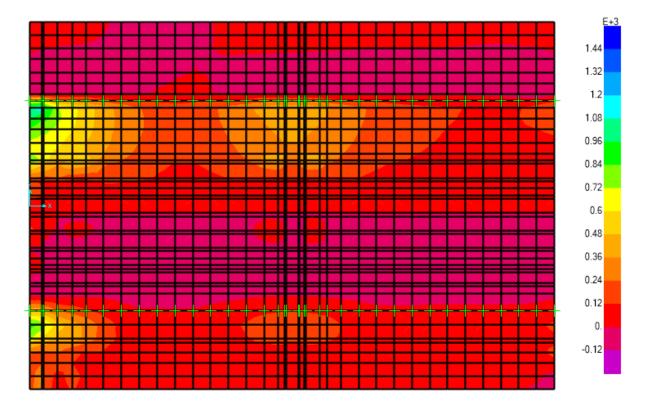


Figura 14.18 Inviluppo taglio V23 max - SLU



Figura 14.19 Inviluppo momento flettente M22 min - SLU

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

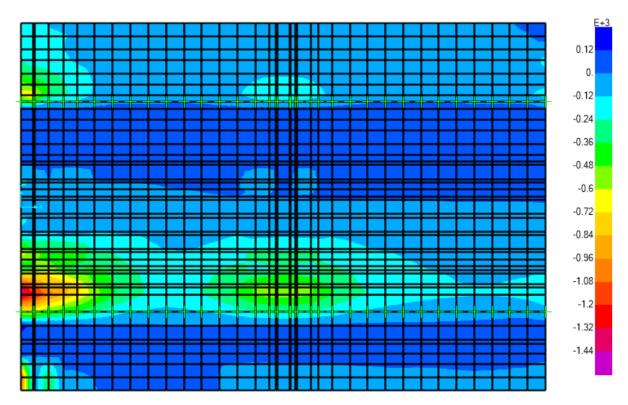


Figura 14.20 Inviluppo taglio V23 min - SLU

14.5.2. VERIFICA DELLE SOLLECITAZIONI NELLE SEZIONI NOTEVOLI

Di seguito le verifiche dimensionanti delle armature nelle sezioni di verifica.

14.5.3. VERIFICA A FLESSIONE PER LE SEZIONI DI VERIFICA

II massimo momento sollecitante positivo risulta $M_{Ed} = 240 \text{kNm}$.

L'armatura a momento positivo delle sezioni è costituita da: 1φ20/10"

Si riporta di seguito la verifica che viene eseguita con riferimento ad una fascia di larghezza 1m, per cui si ha:

 $M_{Rd} = 251.8 kNm > M_{Ed} = 240 KNm$

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

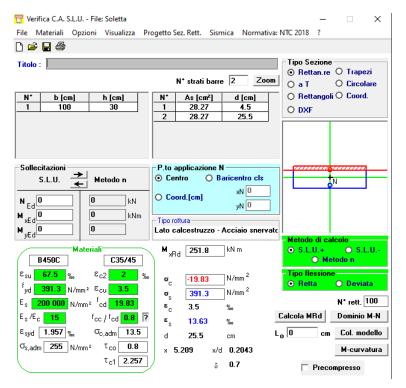


Figura 14.21 Momento Positivo – sezione di mezzeria

L'armatura a momento negativo della sezione è costituita da: $1\phi 20/10$ ". Si riporta di seguito la verifica che viene eseguita con riferimento ad una fascia di larghezza 1m $M_{Rd} = -251.8 kNm > M_{Ed} = -225 kNm$

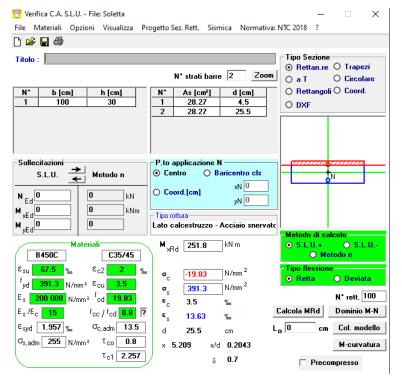


Figura 14.22 Momento Negativo – sezione di appoggio

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Mezzeria	$M_{Rd} =$	251.8	kN	>	240.0	$= M_{Ed}$
Appoggio	$M_{Rd} =$	251.8	kN	>	225.0	$= M_{Ed}$

Esito Verifica

Mezzeria	$M_{Rd} \ge M_{Ed}$	Verifica soddisfatta	$M_{Rd}/M_{Ed} =$	1.05
Appoggio	$M_{Rd} \ge M_{Ed}$	Verifica soddisfatta	$M_{Rd}/M_{Ed} =$	1.12

Verifica soddisfatta per tutte le sezioni.

14.5.1. VERIFICA A TAGLIO PER LE SEZIONI DI VERIFICA

II massimo taglio sollecitante (mediato su una larghezza di soletta 1m) risulta rispettivamente: $V_{Ed,\,mezzeria} = 120kN;\,V_{Ed,appoggio} = 350kN.$

La resistenza a taglio è affidata al traliccio della predalle composto da diagonali φ10 passo 20cm tenendo in conto della effettiva inclinazione delle stesse rispetto alla verticale.

Si riporta di seguito la verifica:

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

Geometria

<u>Sezione</u>	Larghezza minima sezione	$b_w =$	1000	mm
	Altezza sezione	H =	205	mm
	Copriferro netto	c =	20	mm
	Dist. asse armatura long.	c' =	30	mm
	Altezza utile sezione	d =	175	mm
	Area cls	$A_c =$	2050	cm ²
Arm.Long.	Armatura longitudinale tesa	$A_{sl} =$	28.27	cm ²
<u>Arm.Trasv.</u>	Area ferro staffe	$A_{fst} =$	0.785	cm ²
	n° bracci staffe	$n_b =$	6	
	Area arm. trasv.	$A_{sw} =$	5.08	cm ²
	Passo arm. trasv.	s =	20	cm
	Ang. incl. arm. trasv. Risp. asse trave $$	$\alpha =$	69	0
		$\cot g \alpha$ =	0.38	
		$\cot g \vartheta$ =	2.50	
		$\sin \alpha$ =	0.93	
Materiali				
<u>Cls</u>	Classe di Resistenza cls		C35/45	
	Res. caratt. cubica a compr. cls	$R_{ck} =$	45.00	MPa
	Res. caratt. cilindr. a compr. cls	$f_{ck} =$	37.35	MPa
	Coeff. parziale sicurezza cls	$\gamma_c =$	1.5	
	Res. di progetto cls	$f_{cd} =$	21.17	MPa
	Res. a compr. ridotta ($f' = 0.5 f'_{cd}$)	$f'_{cd} =$	10.58	MPa
<u>Acciaio</u>	Tens. caratt. snerv. acc.	$f_{yk} =$	450.0	MPa
	Coeff. parziale sicurezza acc.	$\gamma_s =$	1.15	
	Res. calcolo acc.	$f_{yd} =$	391.3	MPa

Resistenza di calcolo a "taglio trazione" V_{Rsd} = 0,90 * d * A_{sw} / s * f_{yd} * (ctg α + ctg ϑ) * sin α

 $V_{Rsd} = 421.5 \text{ kN}$

Resistenza di calcolo a "taglio compressione" $V_{Rcd} = 0.90 * d * b_w * \alpha_c f_{cd} * (ctg \alpha + ctg \vartheta) / (1 + ctg^2 \vartheta)$

 $V_{Rcd} = 663.0 \text{ kN}$

Resistenza a Taglio $V_{Rd} = 421.5 \text{ kN}$

GESTIONE PROGETTI INGEGNERIA srl

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

	Mezzeria	$V_{Rd} =$	421.5	kN	>	120.0	$=V_{Ed}$
	Appoggio	$V_{Rd} =$	421.5	kN	>	350.0	$=V_{Ed}$
Esito Verifica	1						
Mezzeria	$V_{Rd} \ge V_{Ed}$	Verifica so	ddisfatta		$V_{Rd}/V_{Ed} =$	3.51	
Appoggio	$V_{Rd} \ge V_{Ed}$	Verifica so	ddisfatta		$V_{Rd}/V_{Ed} =$	1.20	

Verifica soddisfatta per tutte le sezioni.

14.5.2. VERIFICA CORDOLO PER L'URTO DEL VEICOLO IN SVIO

Il cordolo ha una larghezza di 75cm e su di esso viene fissata la barriera guard rail. Il cordolo è armato con staffe \$\phi16/20cm\$ a 4 bracci.

L'urto è modellato come una forza di intensità F=100kN applicata alla barriera ad un'altezza (dall'estradosso soletta) h=1.00+0.15m = 1.15m.

Per effetto della forza F, in corrispondenza della sezione di interfaccia cordolo - soletta, si avranno le seguenti sollecitazioni taglianti e flettenti:

- F = 100kN
- $M = F^*h = 115kNm$

Il cordolo sarà sollecitato a strappo da una forza di taglio ed a momento flettente dato dall'eccentricità (braccio) della stessa. Si verifica quindi la sezione orizzontale d'interfaccia cordolosoletta data dalla ripresa del getto, considerando l'azione di taglio assorbita dai soli bracci interni, mentre a momento cautelativamente si considerano i soli due esterni come resistenti.

Cautelativamente si fa riferimento ad una porzione di cordolo di 80cm (diffusione a 45° nel piano verticale) in cui vi saranno 4 bracci di staffe. Considerando inoltre 5cm di copriferro per lato, si avrà un braccio massimo di 65cm:

$$T^*b = A_f^*\sigma_f^*b = 4^*39.13^*0.65 + 3^*39.13^*0.45 = 172kNm > F^*h = 115kNm$$
 OK!

Si effettua quindi la verifica a taglio (all'interfaccia getto soletta – getto cordolo) considerando i (restanti) bracci delle staffe che risultano non impegnati dalla flessione.

Sempre con riferimento ad una porzione di cordolo considerata si ha:

$$V_{Rsd} > (A_f f_{vd})/radq(3) = 2*4*201*391.3/1.73 = 363kN > F=100kN$$
 OK!

14.6. VERIFICA ALLO SLE

Si riportano di seguito le verifiche allo SLE per le sezioni sopra citate.

Le verifiche sono soddisfatte se sono rispettati i seguenti limiti di tensioni nel cls e nell'acciaio, e di apertura delle fessure.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 σ_c < 0.60 f_{ck} per combinazione caratteristica (rara) = 21 MPa

 $\sigma_c < 0.45 f_{ck}$ per combinazione quasi permanente = 15.75MPa

La massima tensione di trazione nell'acciaio σ_s , deve rispettare la limitazione seguente:

 σ_s < 0.8 f_{vk} per combinazione quasi permanente = 360 MPa

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Condizioni ambientali:

XC4+XS1 - con cls C35/45 per la soletta → condizioni aggressive

XC4+XS1 - con cls C35/45 per il cordolo → condizioni aggressive

Tipo Armatura: Poco sensibile

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Compai di	Condinioni	Combinaciono	Armatura					
Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Sensibile	Poco sensibile				
	ambientan	tii azioiii	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$		
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃		
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂		
	Agoroagizza	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂		
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq W ₁		
Malta acorossiva		frequente	formazione fessure	-	ap. fessure	\leq w ₁		
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁		

 w_1, w_2, w_3 sono definiti al \S 4.1.2.2.4.1, il valore di calcolo w_d , è definito al \S 4.1.2.2.4.6.

La soletta prevede quindi un limite di ampiezza delle fessure:

 QP: $W_1 = 0.2mm$ FREQ: $W_2 = 0.3 mm$

Si riportano quindi le sollecitazioni per le combinazioni di esercizio.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

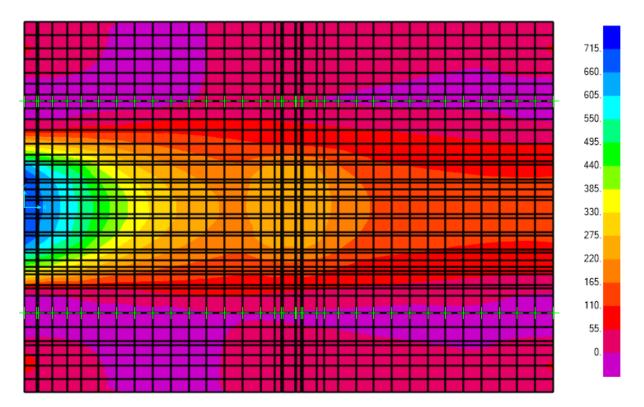


Figura 14.23 Momento flettente M22 max - combinazione Rara

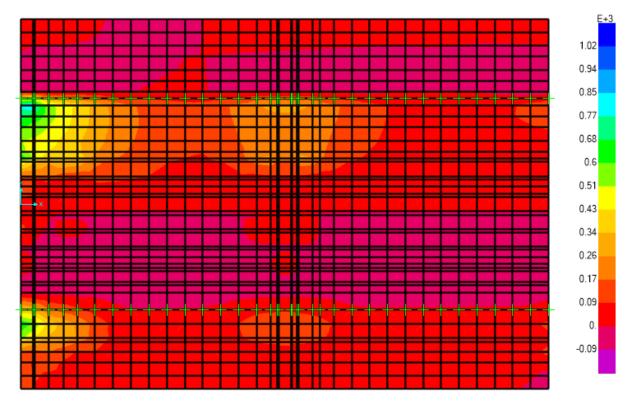


Figura 14.24 Taglio V23 - combinazione Rara

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO

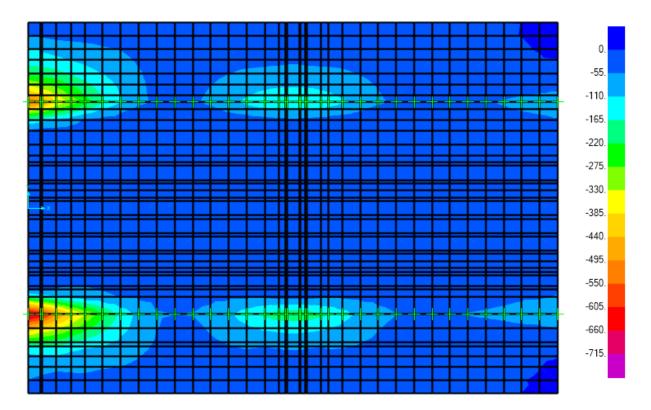


Figura 14.25 Momento flettente M22 min - combinazione Rara

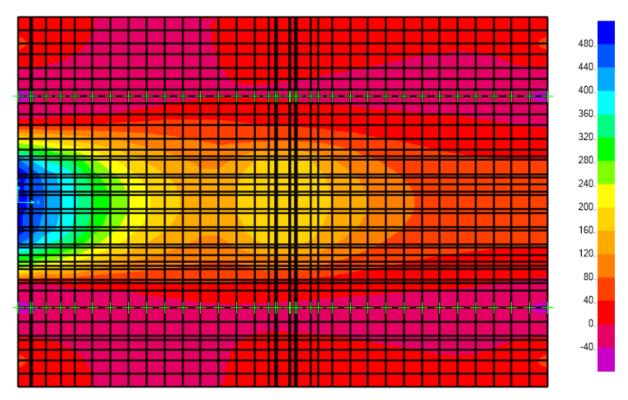


Figura 14.26 Momento flettente M22 max - combinazione Frequente

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

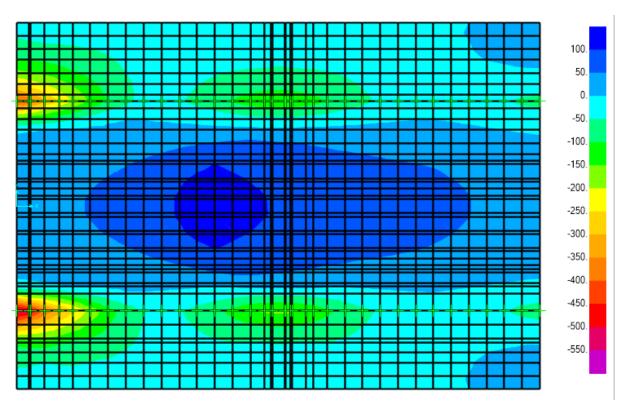


Figura 14.27 Momento flettente M22 min - combinazione Frequente

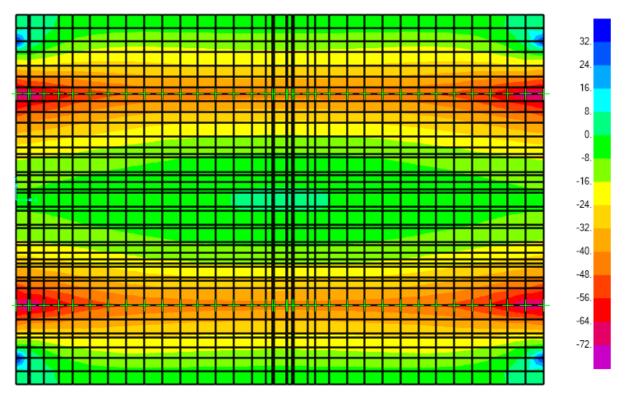


Figura 14.28 Momento flettente M22 - combinazione Quasi Permanente

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14.6.1. VERIFICHE TENSIONALI – COMBINAZIONE RARA

Sono state eseguite verifiche tensionali a momento flettente per tutte le combinazioni considerate nelle sezioni notevoli definite in precedenza. Tutte le sezioni mostrano tensioni nell'acciaio e nel calcestruzzo inferiori ai limiti per la condizione Rara.

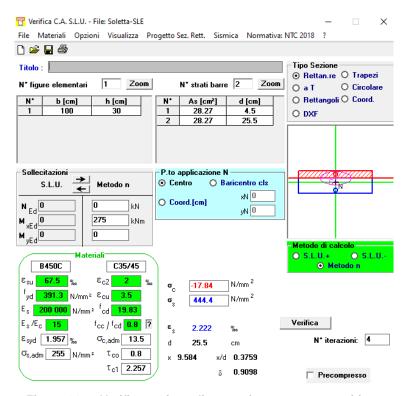


Figura 14.29 Verifica sezione di mezzeria - momento positivo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

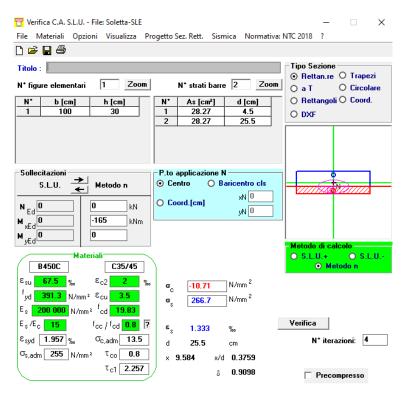


Figura 14.30 Verifica sezione di appoggio - momento negativo

14.6.2. VERIFICHE TENSIONALI – COMBINAZIONE QUASI PERMANENTE

Sono state eseguite verifiche tensionali a momento flettente per tutte le combinazioni considerate nelle sezioni notevoli definite in precedenza. Non sono previste prescrizioni tensionali per questa combinazione ma le caratteristiche della sezione sono necessarie per le verifiche di fessurazione.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

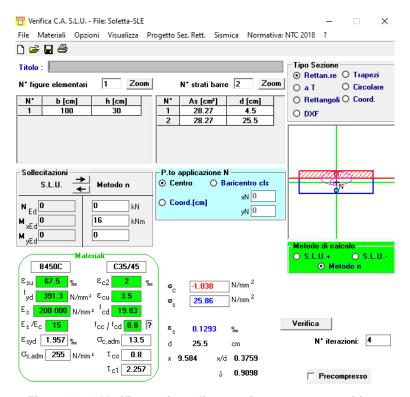


Figura 14.31 Verifica sezione di mezzeria – momento positivo

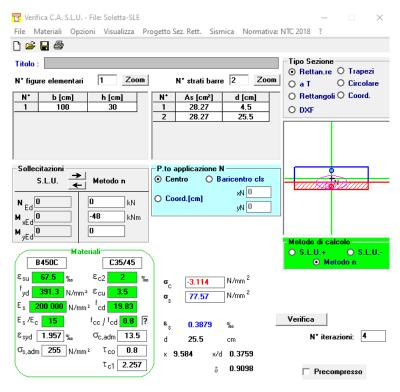
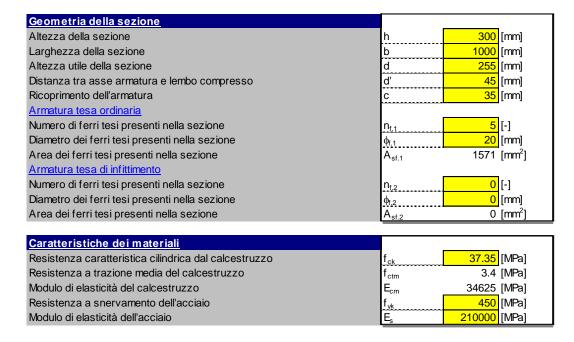


Figura 14.32 Verifica sezione di appoggio - momento negativo



CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14.6.3. VERIFICA FESSURAZIONE

Si verificano le sezioni di momento positivo (mezzeria) e momento negativo (appoggio), per le combinazioni frequente e quasi permanente.

Per i materiali e le condizioni ambientali in esame (XC4+XS1 con cls 35/45) si hanno condizioni aggressive che determinano un'apertura delle lesioni caratteristica di 0.3mm e 0.2mm rispettivamente per le combinazioni indicate. Le verifiche risultano soddisfatte.

14.6.4. FESSURAZIONE - CASO FREQUENTE

DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!s}$	161.6 [MPa]
Asse neutro della sezione	X	95.84 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	$lpha_{e}$	6.06 [-]
Area totale delle armature presenti nella zona tesa	A_s	1571 [mm²]
Area efficace tesa di calcestruzzo	$A_{c,eff.1}$	112500 [mm²]
	$A_{c,eff.2}$	68053 [mm²]
	$A_{c,eff.3}$	150000 [mm²]
	$A_{c,eff.min}$	68053 [mm²]

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso Resistenza efficace media del calcestruzzo Fattore di durata del carico Differenza tra la deformazione nell'acciaio e nel cls	$\begin{array}{c} \rho_{p, \text{eff}} \\ f_{\text{ct,eff}} \\ k_{t} \\ \left[\epsilon_{\text{sm}} - \epsilon_{\text{cm}}\right]_{\text{min}} \\ \left[\epsilon_{\text{sm}} - \epsilon_{\text{cm}}\right]_{\text{calc.}} \end{array}$	
	$[arepsilon_{sm} extsf{-}arepsilon_{cm}]$	0.000462 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	s	100 [mm]
Diametro equivalente delle barre	$\phi_{ m eq}$	20.00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	225 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k_1	0.800 [-]
	k_2	0.500 [-]
	k_3	3.400 [-]
	k ₄	0.425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	266 [mm]
	S _{r,max.2}	265 [mm]
	S _{r,max}	266 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0.20 [mm]
Ampiezza delle fessure (di calcolo)	$\mathbf{w}_{\mathbf{k}}$	0.12 [mm]

Figura 14.33 Verifica sezione di mezzeria – momento positivo

DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	$\sigma_{\!s}$	161.6 [MPa]
Asse neutro della sezione	X	95.84 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	α_{e}	6.06 [-]
Area totale delle armature presenti nella zona tesa	As	1571 [mm²]
Area efficace tesa di calcestruzzo	$A_{c,eff.1}$	112500 [mm²]
	$A_{c,eff.2}$	68053 [mm²]
	$A_{c,eff.3}$	150000 [mm²]
	$A_{c,eff.min}$	68053 [mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{p,eff}$	0.02308 [-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3.4 [MPa]
Fattore di durata del carico	k _t	0.4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm min}$	0.000462 [-]
	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm calc.}$	0.000454 [-]
	$[\epsilon_{\text{sm}}\text{-}\epsilon_{\text{cm}}]$	0.000462 [-]
Consistence to be home (as leaded to be have and it do you	_	100 []
Spaziatura tra le barre (calcolata tra i baricentri dei ferri) Diametro equivalente delle barre	S	100 [mm]
Spaziatura massima di riferimento	ф _{еq}	20.00 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	S _{max,rif} k ₁	0.800 [-]
Coefficienti k per il calcolo dell'ampiezza di ressurazione	k ₂	0.500 [-]
	k ₃	3.400 [-]
	k ₄	0.425 [-]
Distanza massima tra le fessure	S _{r,max.1}	266 [mm]
	S _{r,max.2}	265 [mm]
	S _{r,max}	266 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0.20 [mm]
Ampiezza delle fessure (di calcolo)	W _k	0.12 [mm]

Figura 14.34 Verifica sezione di appoggio – momento negativo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

14.6.1. FESSURAZIONE - CASO QUASI PERMANENTE

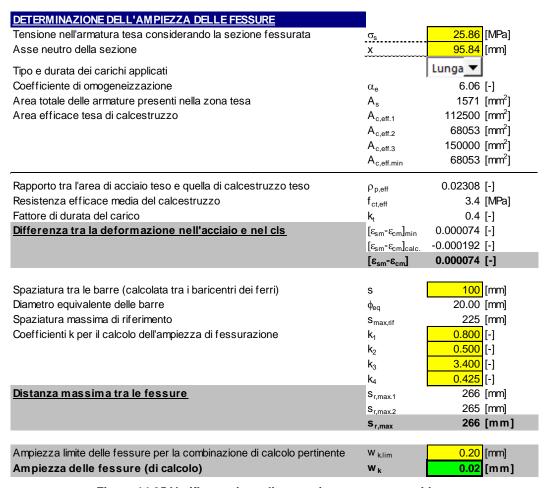


Figura 14.35 Verifica sezione di mezzeria – momento positivo

DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σ_{s}	77.57 [MPa]
Asse neutro della sezione	<u>X</u>	95.84 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	$lpha_{e}$	6.06 [-]
Area totale delle armature presenti nella zona tesa	A_s	1571 [mm²]
Area efficace tesa di calcestruzzo	$A_{c,eff.1}$	112500 [mm²]
	$A_{c,eff.2}$	68053 [mm²]
	$A_{c,eff.3}$	150000 [mm²]
	$A_{c,eff.min}$	$68053 \text{ [mm}^2\text{]}$

GESTIONE PROGETTI INGEGNERIA STI

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO

Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{\text{p,eff}}$	0.02308 [-]
Resistenza efficace media del calcestruzzo	$f_{ct,eff}$	3.4 [MPa]
Fattore di durata del carico	k_t	0.4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	$[\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}]_{\rm min}$	0.000222 [-]
	$[\varepsilon_{sm}$ - $\varepsilon_{cm}]_{calc.}$	0.000054 [-]
	$\left[\epsilon_{sm}\text{-}\epsilon_{cm}\right]$	0.000222 [-]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	100 [mm]
Diametro equivalente delle barre	$\phi_{ m eq}$	20.00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	225 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k_1	0.800 [-]
	k_2	0.500 [-]
	k_3	3.400 [-]
	k ₄	0.425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	266 [mm]
	S _{r,max.2}	265 [mm]
	S _{r,max}	266 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{klim}	0.20 [mm]
Ampiezza delle fessure (di calcolo)	$\mathbf{w}_{\mathbf{k}}$	0.06 [mm]

Figura 14.36 Verifica sezione di appoggio – momento negativo

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC – RELAZIONE DI CALCOLO IMPALCATO – ALLEGATO 1

ALLEGATO 1

VERIFICHE DI RESISTENZA DELLE TRAVI PRINCIPALI

Sanas

S.S.195 "SULCITANA" TRATTO CAGLIARI -PULA OPERA CONNESSA NORD

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 1

Per una più chiara comprensione dei tabulati di calcolo riportati nelle pagine successive si riporta qui di seguito una legenda che chiarisce il significato della simbologia utilizzata.

Si ritiene superfluo spiegare il significato dei simboli coi quali si indicano le dimensioni della sezione in quanto si ritiene sufficientemente esplicativo lo schema tipologico riportato per ciascun concio con quote indicanti tutte le differenti variabili geometriche in gioco.

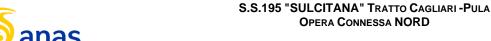
Un'osservazione va fatta in merito alla larghezza collaborante di soletta (B) che, è opportuno precisare, è stata calcolata in accordo a quanto prescritto dalle norme tecniche del 2008 al paragrafo 4.3.2.3 a dalla EN1994-1-1 paragrafo 5.4.1.2.

I pedici i, m e j indicano la sezione iniziale, la mezzeria e la sezione terminale del concio; tale accorgimento risulta necessario nel caso di travata a sezione variabile.

Materiali:

- E_s: modulo elastico normale dell'acciaio
- E_c: modulo elastico normale del calcestruzzo
- n: coefficiente di omogeneizzazione tra acciaio e calcestruzzo (n=Es/Ec) calcolato non tenendo conto degli effetti di lungo termine (ritiro, fluage) sul calcestruzzo
- ρ_s: percentuale di armatura longitudinale
- f_{cd}: resistenza di progetto a compressione del calcestruzzo
- f_{vd.AS}: resistenza di progetto allo snervamento dell'armatura della soletta
- f_{yd, Ala sup}: resistenza di progetto allo snervamento dell'acciaio della piattabanda superiore della travata
- f_{vd, web}: resistenza di progetto allo snervamento dell'acciaio dell'anima della travata
- f_{yd, Ala inf}: resistenza di progetto allo snervamento dell'acciaio della piattabanda inferiore della travata
- ε_{As} : coefficiente ε = (235/fyk)^0.5 per l'acciaio dell'ala superiore della travata
- ε_{Web} : coefficiente ε = (235/fyk)^0.5 per l'acciaio dell'anima della travata
- ε_{Ai}: coefficiente ε = (235/fyk)⁰.5 per l'acciaio dell'ala inferiore della travata
- n_{LT}: coefficiente di omogeneizzazione tra acciaio e calcestruzzo (n=Es/Ec) calcolato tenendo conto degli effetti di Lungo Termine (ritiro, fluage) sul calcestruzzo

Caratteristiche geometriche:


- Aa: Area della sezione metallica

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 1

- A_{hom}: Area della sezione metallica + Area armature longitudinali + Area calcestruzzo omogeneizzata all'acciaio (x1/n)
- A_{hom,LT}: Area della sezione metallica + Area armature longitudinali + Area calcestruzzo omogeneizzata all'acciaio (x1/n_{LT})
- A_{a+s}: Area della sezione metallica + Area armature longitudinali
- X_{Ga}: Posizione del baricentro della sezione metallica rispetto all'intradosso
- I_a: Inerzia della sezione metallica rispetto al baricentro
- X_{G. uncrack}: Posizione del baricentro della sezione mista non fessurata
- l_{unc}: Inerzia della sezione mista non fessurata rispetto al baricentro
- X_G, _{uncrack,LT}: Posizione del baricentro della sezione mista non fessurata; si considera il coefficiente di omogeneizzazione n_{LT}
- $I_{unc,LT}$: Inerzia della sezione mista non fessurata rispetto al baricentro; si considera il coefficiente di omogeneizzazione n_{LT}
- X_{G, crack}: Posizione del baricentro della sezione mista fessurata
- I_{crack}: Inerzia della sezione mista fessurata rispetto al baricentro

Sollecitazioni:

Si riportano i valori massimi e minimi ottenuti dall'inviluppo delle sollecitazioni ricavate dalle combinazioni di carico in condizioni ultime.

Classificazione sezione:

La classificazione della sezione viene condotta sia per la sezione in solo acciaio (per verifiche e calcolo tensioni in fase di getto) sia per la sezione mista (verifiche in condizioni di esercizio).

Nella tabella mostrata vengono riportate sinteticamente le classi per le sezioni i, m e j del concio. Come noto, per la classificazione della sezione è necessario che vengano classificate tutte le porzioni compresse del profilo metallico (ali ed anima); da tale valutazione discende anche la scelta della metodologia di verifica della sezione (calcolo plastico, calcolo plastico con il metodo "hole in web", calcolo elastico).

Verifica in fase di getto (solo acciaio):

Le verifiche vengono condotte per ciascuna sezione i, m e j. Si considerano per la verifica in fase di getto le sollecitazioni derivanti dall'applicazione al modello dei carichi da peso proprio amplificati con i coefficienti relativi allo SLU.

- M_{Rd, pl}: Momento resistente plastico della sezione in acciaio
- X_{Ga, hole web}: Posizione dell'asse neutro calcolata considerando un comportamento della sezione nella quale è considerata reagente solo una porzione della parte compressa

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 1

dell'anima (secondo EN 1993-1-1, paragrafo 6.2.2.4). Il metodo "hole in web" è applicabile solo nel caso in cui le piattabande ricadano in classe 1 o 2 e l'anima sia di classe 3.

- **M**_{Rd,pl,eff}: Momento resistente plastico della sezione efficace (privata di parte dell'anima compressa); metodo "hole in web"
- M_{Rd,el}: Momento resistente elastico della sezione in acciaio; la sezione è di classe 3 (lo è almeno una delle piattabande) e se ne considerano quindi le proprietà elastiche
- b_{s,eff}: Larghezza efficace della piattabanda superiore, nel caso sia compressa e ricada in classe 4
- **b**_{web,comp,eff}: Larghezza efficace della prozione di anima soggetta a compressione
- b_{i,eff}: Larghezza efficace della piattabanda superiore, nel caso sia compressa e ricada in classe 4
- I_{ga,eff}: Momento di inerzia della sezione metallica efficace
- M_{Rd,el,eff}: Momento resistente elastico della sezione efficace

n.b. il calcolo delle caratteristiche geometriche della sezione efficace è effettuato in via iterativa (vengono svolte 2 iterazioni visto che la convergenza è rapida)

- **D/C**: Rapporto Domanda/Capacità (se <1 la verifica è soddisfatta)

I termini specificati sono riportati sia per il caso in cui la sezione sia sollecitata a momento positivo sia che sia sollecitata a momento negativo (il segno della sollecitazione influisce sulla classificazione).

Si noti che i risultati numerici appaiono solo per le caselle relative alla metodologia di calcolo adeguata alla classe della sezione; tutte le altre caselle sono vuote("-").

E' opportuno notare che in fase di getto non si ritiene necessario effettuare la verifica a taglio della sezione in quanto, essendo le anime della sezione dimensionate per resistere alle sollecitazioni ultime in condizioni di esercizio (che sono ben maggiori), sarebbe certamente soddisfatta.

Verifica in fase di esercizio (sezione mista):

Le verifiche vengono condotte per ciascuna sezione i, m e j. Si considerano per la verifica in fase di esercizio le sollecitazioni derivanti dall'applicazione al modello dei carichi fissi (peso proprio, parti non strutturali, ritiro, ecc.) e variabili (carichi mobili, temperatura, ecc.) amplificati con i coefficienti relativi allo SLU.

- M_{Rd, pl}: Momento resistente plastico della sezione mista
- X_{Ga, hole web}: Posizione dell'asse neutro calcolata considerando un comportamento della sezione nella quale è considerata reagente solo una porzione della parte compressa dell'anima (secondo EN 1993-1-1, paragrafo 6.2.2.4). Il metodo "hole in web" è applicabile solo nel caso in cui le piattabande ricadano in classe 1 o 2 e l'anima sia di classe 3.

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 1

- M_{Rd,pl,eff}: Momento resistente plastico della sezione efficace (privata di parte dell'anima compressa); metodo "hole in web"
- **M**_{Rd,el}: Momento resistente elastico della sezione mista; la sezione è di classe 3 (lo è almeno una delle piattabande) e se ne considerano quindi le proprietà elastiche
- b_{s,eff}: Larghezza efficace della piattabanda superiore, nel caso sia compressa e ricada in classe 4. Nel caso di sezione mista si fa notare comunque che la piattabanda superiore non può mai ricadere in classe 2, 3 o 4 in quanto: nel caso sia compressa, essa è vincolata rigidamente alla soletta dai pioli ed è quindi impossibile che si verifichino fenomeni di buckling locali; nel caso sia tesa, ricade naturalmente in classe 1.
- **b**_{web,comp,eff}: Larghezza efficace della prozione di anima soggetta a compressione
- b_{i,eff}: Larghezza efficace della piattabanda superiore, nel caso sia compressa e ricada in classe 4
- Iga,eff: Momento di inerzia della sezione mista efficace
- M_{Rd.el.eff}: Momento resistente elastico della sezione efficace

n.b. il calcolo delle caratteristiche geometriche della sezione efficace è effettuato in via iterativa (vengono svolte 2 iterazioni visto che la convergenza è rapida)

- **D/C**: Rapporto Domanda/Capacità (se <1 la verifica è soddisfatta)

I termini specificati sono riportati sia per il caso in cui la sezione sia sollecitata a momento positivo sia che sia sollecitata a momento negativo (il segno della sollecitazione influisce sulla classificazione). Alcune sezioni, per effetto dei carichi mobili, sono soggette sia a momento negativo che positivo come si può immaginare; pertanto per tali sezioni è possibile leggere il valore D/C sia per M+ che per M-.

Si noti che i risultati numerici appaiono solo per le caselle relative alla metodologia di calcolo adeguata alla classe della sezione; tutte le altre caselle sono vuote("-").

Verifica a taglio:

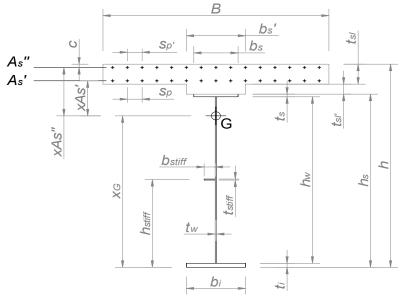
Le verifiche a taglio sono svolte in accordo con le prescrizioni della circolare 2 febbraio 2009 e della EN1993-1-5.

Si considera inoltre l'interazione taglio-momento flettente per determinare lo sfruttamento effettivo della sezione.

- Anima irrigidita: si segnala se sono presenti irrigidimenti trasversali, longitudinali o di entrambi i tipi
- **Verifica buckling**: in funzione del rapporto t/h dell'anima e della classe di acciaio si definisce o meno la necessità di considerare l'instabilità dell'anima nella verifica a taglio
- a: passo degli irrigidimenti trasversali
- a/h_w: rapporto dimensionale pannello d'anima

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 1

- I_{st}: inerzia dell'irrigidimento trasversale
- Rigid: si dichiara se l'irrigidimento è classificabile oppure no come rigido secondo EN1993-1-5
- n Irr. Long: numero di irrigidimenti longitudinali
- I_{si}: Inerzia dell'irrigidimento longitudinale
- k_{rst}, k_r e k_{ri}: coefficienti di instabilità a taglio
- λ_w: parametro di snellezza dell'anima
- η=1.2
- χw: coefficiente riduttivo della resistenza a taglio dell'anima
- V_{bw,Rd}: Resistenza a taglio della sezione (si considera il solo contributo dell'anima)
- D/C: Rapporto Domanda/Capacità a taglio (se <1 la verifica è soddisfatta)
- Interaz. V-M: tale coefficiente è calcolato secondo l'espressione 7.1 della EN1993-1-5; si rimanda alla norma per l'individuazione di tutti i parametri che concorrono al calcolo del coefficiente. Se il risultato dell'espressione è <1 la sezione soddisfa la verifica combinata M-V.



C O N C I O 1

				bi	ţ;						
			G E	OMETR	I A						
Bi	Bm	Bj	tsl	bs'	tsl'	Ф.	s' Sp	As" Φ			
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
4675	4805	4935	250	600	50	16	200	16			
As"											
Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi			
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
200	60	700	40	1910	1910	1910	22	800			
ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff	Inter. Stiff			
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
50	2000	2300	2000	2300	2000	2300	800	800			
	MATERIALI										
	Es	_	Ec	n		$ ho_{si}$	$ ho_{sm}$	$ ho_{sj}$			
Acciaio	[MPa]	Calcestr.	[MPa]	[-]	Armatura	[-]	[-]	[-]			
S355N(NL)	210000	35/45	34077	6.16	B450C	0.78%	0.76%	0.74%			
f _{cd}	f _{yd, As}	f _{yd, Ala sup}	f _{yd, web}	f _{yd, Ala inf}	ε _{As}	ε _{Web}	ε _{Ai}	n _{LT}			
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]	[-]	[-]			
19.8	391.3	338.1	338.1	319.0	0.814	0.814	0.838	15.4			
		ARATT			G E O M E						
A _{i,a}	A _{i,hom}	A _{i,hom,LT}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,hom,LT}	A _{m,a+s}	A _{j,a}			
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]			
110020	313943	197229	119420	110020	319479	199600	119681	110020			
A _{j,hom}	A _{j,hom,LT}	A _{j,a+s}	X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	X _{j,Ga}	l _{j,a}			
[mm ²]	[mm ²]	[mm ²]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]			
325014	201971	119942	897	7.653E+10	897	7.653E+10	897	7.653E+10			
X _{i,G,uncrack}	l _{i,unc}	X _{i,G,unc,LT}	I _{i,unc,LT}	X _{i,G,crack}	l _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,unc,LT}			
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]			
1722	1.937E+11	1457	1.560E+11	991	9.051E+10	1731	1.949E+11	1466.484			
I _{m,unc,LT}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	X _{j,G,unc,LT}	l _{j,unc,LT}	$X_{j,G,crack}$	l _{j,crack}			
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]			
1.573E+11	996	9.107E+10	1737	1.959E+11	1472	1.583E+11	994	9.107E+10			

SOLLECITAZIONI									
1 i			1i 1m				1j		٦
N	V	M	N	V	M	N	V	M	
[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	
-2818	-4191	1691	-2818	-3369	9220	-2818	-2674	15113	ſ
-2818	-2082	1691	-2818	-1395	9251	-2818	-787	26901	r

	CLAS	SSIFICA	ZIONE	SEZ	IONE					
		M+								
		Acciaio		Mista						
Sezione:	i	m	j	i	m	j				
Classe:	4	4	4	1	1	1				
	M-									
		Acciaio		Mista						
Sezione:	i	m	j	i	m	j				
Classe:	2	2	2	3	3	3				

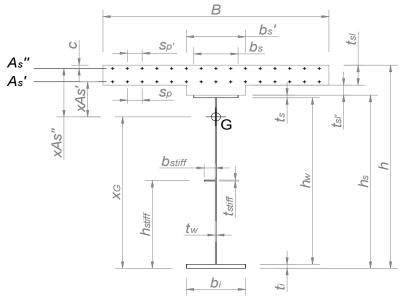
		SEZ: "i	": VERIFICA	: FASE DI G	ETTO (solo ac	ciaio)					
	M+										
$M_{Rd,pl}$	X _{ga,hole web}	M _{Rd,pl,eff}	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	I _{ga,eff}	$M_{Rd,el,eff}$			
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]			
-	-	-	-	700.0	1055.6	800	7.08E+10	21847			
				M-			<u>'</u>				
$M_{Rd,pl}$	X _{ga,hole web}	M _{Rd,pl,eff}	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$b_{i,eff}$	I _{ga,eff}	$M_{Rd,el,eff}$			
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]			
28155	-	-	-	-	-	-	-	-			

D/C 0.00

D/C 0.24

D/C 0.43

D/C 0.04


		SEZ "m	": VERIFICA	A: FASE DI G	ETTO (solo ad	cciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	-	-	-	700.0	1055.6	800	7.08E+10	21847
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	M _{Rd,el,eff}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
28155	-	-	-	-	-	-	-	-

		SEZ "j	: VERIFICA	: FASE DI G M+	ETTO (solo aco	ciaio)		
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	$M_{\text{Rd,el}}$	b _{s,eff}	b _{web,comp,eff}	b _{i,eff}	$I_{ga,eff}$	M _{Rd,el,eff}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	-	-	-	700.0	1055.6	800	7.08E+10	21847
				M-				
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	M _{Rd,el,ef}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
28155	-	-	-	-	-	-	-	-

		SEZ: "i":	VERIFICA: F	ASE DI ESER	CIZIO (Sezio	ne mista)		
			M+ (tensi	oni in valore	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	σ_{si}	σ_{c}^{*}	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
44941	-	-	-	-	-	-	-	-
			M- (tensi	oni in valore	assoluto)			I
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ _{Afs} *	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
-	1624	32199	-	-	-	-	-	-

		SEZ: "m":	VERIFICA: F	ASE DI ESEI	RCIZIO (Sezio	ne mista)		
			M+ (tension	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	σ_{ss}	$\sigma_{\rm si}$	σ_c^*	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
45048	-	-	-	-	-	-	-	-
			M- (tension	oni in valor				
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ _{Afs} *	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1638	32276	-	-	-	-	-	-
		SEZ: "j":	VERIFICA: FA	ASE DI ESER	CIZIO (Sezior	ne mista)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	$\sigma_{\sf ss}$	σ_{si}	σ_c^*	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
45166	-	-	-	-	-	-	-	-
			,	M-		-t-	- L	-L
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ _{Afs}	$\sigma_{\rm ss}$	$\sigma_{\rm si}$	σ _{Afs} *	σ _{ss} *	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1652	32372	-	-	-	-	-	-
		\	/ E R I F I		TAGLIC)		
				SEZ.: "i"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi	λw,max	η	χw	Vbw,Rd		Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	М
0.00	7.7	-	1.03	1.2	0.806	6310	0.664	ОК
				SEZ.: "m"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi	λw			Vbw,Rd		
				η	χw	-	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	0.534	M
0.00	7.7	-	1.03	1.2	0.806	6310	0.534	OK
			,	SEZ.: "j"				ı
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi	λw	η	χw	Vbw,Rd	D / C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	M
0.00	7.7	-	1.03	1.2	0.806	6310	0.424	

C O N C I O 2

				bi	ţ.			
			G E	OMETR	l A		_	
Bi	Bm	Вј	tsl	bs'	tsl'	Ф	s' Sp	As" Φ
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
4935	5000	5000	250	700	50	16	200	16
As" Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
200	60	800	60	1875	1875	1875	18	900
ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff	Inter. Stiff
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
65	2000	2300	2000	2300	2000	2300	800	1202
			M <i>A</i>	ATERIA	LI			
Assisis	Es	Calcastu	Ec	n	Aumotius	$ ho_{si}$	$ ho_{sm}$	$ ho_{sj}$
Acciaio	[MPa]	Calcestr.	[MPa]	[-]	Armatura	[-]	[-]	[-]
S355N(NL)	210000	35/45	34077	6.16	B450C	0.78%	0.77%	0.77%
f _{cd}	f _{yd, As}	f _{yd, Ala sup}	f _{yd, web}	f yd, Ala inf	ε _{As}	ϵ_{Web}	ε _{Ai}	n _{LT}
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]	[-]	[-]
19.8	391.3	319.0	338.1	309.5	0.838	0.814	0.850	15.4
	С	ARATT	ERIST	CHE	G E O M E	TRICH	E	
A _{i,a}	A _{i,hom}	$A_{i,hom,LT}$	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,hom,LT}	A _{m,a+s}	A _{j,a}
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]
140250	356055	232526	150172	140250	358823	233711	150303	140250
$A_{j,hom}$	$\mathbf{A}_{j,hom,LT}$	A _{j,a+s}	X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	$\mathbf{X}_{j,Ga}$	l _{j,a}
[mm ²]	[mm ²]	[mm ²]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
358823	233711	150303	929	1.091E+11	929	1.091E+11	929	1.091E+11
$\mathbf{X}_{i,G,uncrack}$	I _{i,unc}	$\mathbf{X}_{i,G,unc,LT}$	I _{i,unc,LT}	X _{i,G,crack}	I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,unc,LT}
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
1679	2.414E+11	1417	1.954E+11	1004	1.232E+11	1684	2.422E+11	1423.681
I _{m,unc,LT}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,unc,LT}$	l _{j,unc,LT}	X _{j,G,crack}	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
1.962E+11	1009	1.237E+11	1684	2.422E+11	1424	1.962E+11	1009	1.237E+11

	2i			2m			2i	
N	V	M	N	V	М	N	V	М
[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
-2818	-2576	15113	-2818	-2119	19362	-2818	-1467	21921
-2818	-782	26902	-2818	-354	31147	-2818	242	39040

	CLAS	SSIFICA	ZION	E SEZ	IONE					
	M+									
		Acciaio			Mista					
Sezione:	i	m	j	i	m	j				
Classe:	3	3	3	1	1	1				
	M-									
		Acciaio			Mista					
Sezione:	i	m	j	i	m	j				
Classe:	3	3	3	3	3	3				

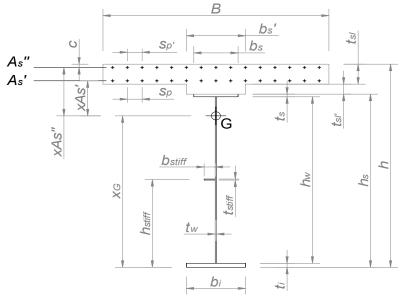
		SEZ: "i	": VERIFICA	: FASE DI G	ETTO (solo ac	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	191.9	33282	-	-	-	-	-	-
	'			M-				
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	895.3	36882	-	-	-	-	-	-

D/C 0.28

D/C 0.37

D/C 0.42

D/C 0.51


		SEZ "m	": VERIFICA	: FASE DI C	ETTO (solo a	cciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	191.9	33282	-	-	-	-	-	-
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	895.3	36882	-	-	-	-	-	-

		SEZ "j	': VERIFICA		ETTO (solo ac	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	191.9	33282	-	-	-	-	-	-
				M-				-
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	l _{ga,eff}	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	895.3	36882	-	-	-	-	-	-

	_	•	M+ (tensi	oni in valore	e assoluto)	•	•	
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ_{c}	σ_{ss}	$\sigma_{\rm si}$	σ_c^*	σ _{ss} *	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
52982	-	-	-	-	-	-	-	-
			M- (tension	oni in valore	assoluto)			
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ_{Afs}^*	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
	1931	41860	_	_	_	-	-	-

		SEZ: "m":	VERIFICA: F	ASE DI ESEF	RCIZIO (Sezio	ne mista)		
			M+ (tensi	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	σ_{ss}	$\sigma_{\rm si}$	σ_{c}^{*}	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
53035	-	-	-	-	-	-	-	-
				oni in valore	e assoluto)			_
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ_{Afs}	σ_{ss}	$\sigma_{\rm si}$	σ_{Afs}^*	σ _{ss} *	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1940	41887	-	-	-	-	-	-
		SEZ: "j":	VERIFICA: F	ASE DI ESER	CIZIO (Sezior	ne mista)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	$\sigma_{\rm si}$	σ _c *	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
53035	-	-	-	-	-	-	-	-
	V			M-		Ψ	.	υ υ
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ _{Afs}	σ _{ss}	σ _{si}	σ _{Afs} *	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1940	41887	-	-	-	-	-	-
			/ ERIFI		TAGLIC)		
				SEZ.: "i"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1875	2500	1.33	9.631E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw,max	η	χw	Vbw,Rd	- 10	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	M
0.00	7.6	-	1.24	1.2	0.705	4435	0.581	ОК
				SEZ.: "m"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1875	2500	1.33	9.631E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw	η		Vbw,Rd		Interaz. V
					χw		D/C	M
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	0.470	IVI
0.00	7.6		1.24	1.2	0.705	4435	0.478	-
				SEZ.: "j"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
Biaita		4075	2500	1.33	9.631E+07	SI	0	0.000E+00
SI	Necess.	1875	2300					
	Necess. kτ	18/5 kτi	λw	η	χw	Vbw,Rd	D / C	Interaz. V
SI					χw [-]	Vbw,Rd [kN]	D/C	Interaz. V M

C O N C I O 3

				bi	ţ;			
			G E	OMETR	I A			
Bi	Bm	Bj	tsl	bs'	tsl'	Ф.	s' Sp	As'' Ф
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
5000	5000	5000	250	700	50	16	200	16
As"			_				_	
Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
200	60	800	60	1870	1870	1870	14	900
ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff	Inter. Stiff
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
70	2000	2300	2000	2300	2000	2300	800	1203
			M <i>A</i>	ATERIA	LI			
	Es		Ec	n		$ ho_{si}$	$ ho_{sm}$	$ ho_{sj}$
Acciaio	[MPa]	Calcestr.	[MPa]	[-]	Armatura	[-]	[-]	[-]
S355N(NL)	210000	35/45	34077	6.16	B450C	0.78%	0.78%	0.78%
f _{cd}	f _{yd, As}	f _{yd, Ala sup}	f _{yd, web}	f _{yd, Ala inf}	ε _{As}	ε _{Web}	ε _{Ai}	n _{LT}
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]	[-]	[-]
19.8	391.3	319.0	338.1	309.5	0.838	0.814	0.850	15.4
	С	ARATT	ERIST	I C H E	GEOME	TRICH	E	
A _{i,a}	A _{i,hom}	$\mathbf{A}_{i,hom,LT}$	A _{i,a+s}	A _{m,a}	A _{m,hom}	$A_{m,hom,LT}$	A _{m,a+s}	$A_{j,a}$
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]
137180	355753	230641	147233	137180	355753	230641	147233	137180
A _{j,hom}	$A_{i,hom,LT}$	A _{i,a+s}	X _{i.Ga}	l _{i.a}	X _{m.Ga}	I _{m.a}	X _{i,Ga}	l _{j,a}
[mm ²]	[mm ²]	[mm ²]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
355753	230641	147233	897	1.101E+11	897	1.101E+11	897	1.101E+11
X _{i,G,uncrack}	I _{i,unc}	X _{i,G,unc,LT}	I _{i,unc,LT}	X _{i,G,crack}	I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,unc,LT}
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
1678	2.481E+11	1411	2.008E+11	981	1.254E+11	1678	2.481E+11	1411.328
I _{m,unc,LT}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,unc,LT}$	l _{j,unc,LT}	$X_{j,G,crack}$	I _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
2.008E+11	981	1.254E+11	1678	2.481E+11	1411	2.008E+11	981	1.254E+11

3i 3m 3j								
N	V	M	N	V	М	N	V	M
[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
-2818	-1358	21921	-2818	-802	22800	-2818	-181	21983
-2818	248	39040	-2818	918	39914	-2818	1438	39077

	CLAS	SIFIC	AZION	E SEZ	IONE						
	M+										
		Acciaio		Mista							
Sezione:	i	m	j	i	m	j					
Classe:	3	3	3	1	1	1					
	M-										
		Acciaio			Mista						
Sezione:	i	m	j	i	m	j					
Classe:	3	3	3	3	3	3					

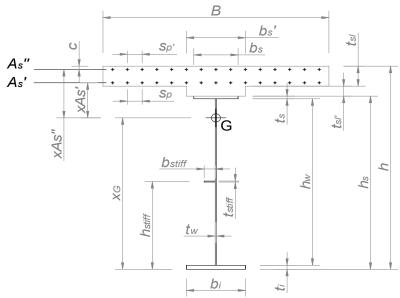
		SEZ: "i	": VERIFICA	: FASE DI G	ETTO (solo ad	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	66.4	31785	-	-	-	-	-	-
				M-				1
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	b _{i,eff}	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	600.1	36819	-	-	-	-	-	-

D/C 0.44

D/C 0.46

D/C 0.44

D/C 0.73


		SEZ "m	": VERIFICA	: FASE DI C	EETTO (solo ad	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	66.4	31785	-	-	-	-	-	-
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	600.1	36819	-	-	-	-	-	-

	SEZ "j": VERIFICA: FASE DI GETTO (solo acciaio)												
	M+												
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$					
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]					
-	66.4	31785	-	-	-	-	-	-					
				M-									
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$					
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]					
-	600.1	36819	-	-	-	-	-	-					

		SEZ: "i":	VERIFICA: F	ASE DI ESER	CIZIO (Sezio	ne mista)		·
			M+ (tensi	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	$\sigma_{\rm si}$	σ_{c}^{*}	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
53236	-	-	-	-	-	-	-	-
			M- (tensi	oni in valore	assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ _{Afs} *	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
-	1941	43253	_	_	_	_	_	-

		SEZ: "m":	VERIFICA: F	ASE DI ESE	RCIZIO (Sezio	ne mista)		
			M+ (tension	oni in valor	e assoluto)	·		
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ _c	σ_{ss}	$\sigma_{\rm si}$	σ_c^*	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
53236	-	-	-	-	-	-	-	-
			M- (tension	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ_{Afs}^{*}	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1941	43253	-	-	-	-	-	-
		SEZ: "i":	VERIFICA: FA	ASE DI ESER	CIZIO (Sezior	ne mista)		
		•		M+				
M _{Rd,pl}	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	σ_{ss}	$\sigma_{\rm si}$	σ_{c}^{*}	σ _{ss} *	σ_{si}^*
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
53236	-	-	-	-	-	-	-	-
				M-			1	1
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	$\sigma_{\rm si}$	σ_{Afs}^*	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1941	43253	-	-	-	-	-	-
		1	/ E R I F I	C A A	TAGLIC)		
				SEZ.: "i"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1870	2500	1.34	8.766E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw,max			Vbw,Rd		
				η	χw		D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	0.466	M
0.00	7.6	-	1.59	1.2	0.597	2913	0.466	-
				SEZ.: "m"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1870	2500	1.34	8.766E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw	η	χw	Vbw,Rd		Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	М
0.00	7.6	-	1.59	1.2	0.597	2913	0.315	-
				SEZ.: "j"				I
Anima	Verifica	h	_		let	Di~i4	n Irr I one	Isl
Anima		hw	a [mm]	a/hw	lst [mm4]	Rigid	n Irr. Long.	
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1870	2500	1.34	8.766E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw	η	χw	Vbw,Rd	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	5,0	M
0.00	7.6	-	1.59	1.2	0.597	2913	0.494	

C O N C I O 4

				bi	t;							
			G E	OMETR	l A		_					
Bi	Bm	Вј	tsl	bs'	tsl'	Ф	.s' Sp	As" Φ				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
5000	5000	4935	250	700	50	16	200	16				
As" Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
200	60	800	60	1875	1875	1875	18	900				
ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff	Inter. Stiff				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
65	2000	2300	2000	2300	2000	2300	800	1204				
MATERIALI												
A ! - ! -	Es	C-1t	Ec	n	A	ρ_{si}	$ ho_{sm}$	$ ho_{sj}$				
Acciaio	[MPa]	Calcestr.	[MPa]	[-]	Armatura	[-]	[-]	[-]				
S355N(NL)	210000	35/45	34077	6.16	B450C	0.78%	0.78%	0.79%				
f _{cd}	f _{yd, As}	f _{yd, Ala sup}	f _{yd, web}	f yd, Ala inf	ε _{As}	ε _{Web}	ε _{Ai}	n _{LT}				
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]	[-]	[-]				
19.8	391.3	319.0	338.1	309.5	0.838	0.814	0.850	15.4				
	С	ARATT	ERIST	CHE	GEOME	TRICH	E					
A _{i,a}	A _{i,hom}	A _{i,hom,LT}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,hom,LT}	A _{m,a+s}	$A_{j,a}$				
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]				
140250	358823	233711	150303	140250	358823	233711	150303	140250				
A _{j,hom}	$A_{j,hom,LT}$	A _{j,a+s}	X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	X _{j,Ga}	l _{j,a}				
[mm ²]	[mm ²]	[mm ²]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]				
356055	232526	150172	929	1.091E+11	929	1.091E+11	929	1.091E+11				
X _{i,G,uncrack}	l _{i,unc}	X _{i,G,unc,LT}	I _{i,unc,LT}	X _{i,G,crack}	I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,unc,LT}				
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]				
1684	2.422E+11	1424	1.962E+11	1009	1.237E+11	1684	2.422E+11	1423.681				
I _{m,unc,LT}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,unc,LT}$	l _{j,unc,LT}	$X_{j,G,crack}$	l _{j,crack}				
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]				
1.962E+11	1009	1.237E+11	1679	2.414E+11	1417	1.954E+11	1004	1.232E+11				

	SOLLECITAZIONI											
	4i		4m			4j						
N	V	M	N	V	M	N	V	M				
[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]				
-2818	-181	21983	-2818	306	19465	-2818	896	15249	N			
-2818	1438	39077	-2818	2071	36565	-2818	2746	26984	N			

	CLAS	SIFIC	AZION	E SEZ	IONE						
	M+										
		Acciaio		Mista							
Sezione:	i	m	j	i	m	j					
Classe:	3	3	3	1	1	1					
	M-										
		Acciaio			Mista						
Sezione:	i	m	j	i	m	j					
Classe:	3	3	3	3	3	3					

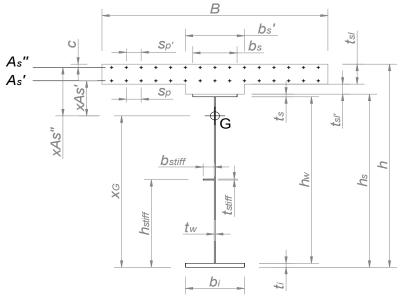
		SEZ: "i	": VERIFICA	: FASE DI G	ETTO (solo ad	ciaio)					
	M+										
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$			
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]			
-	191.9	33282	-	-	-	-	-	-			
	'			M-				-			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	b _{i,eff}	$I_{ga,eff}$	$M_{Rd,el,eff}$			
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]			
-	895.3	36882	-	-	-	-	-	-			

D/C 0.42

D/C 0.37

D/C 0.28

D/C 0.74


		SEZ "m	": VERIFICA	: FASE DI C	GETTO (solo ad	cciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	b _{i,eff}	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	191.9	33282	-	-	-	-	-	-
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	M _{Rd,el,eff}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	895.3	36882	-	-	-	-	-	-

		SEZ "j'	': VERIFICA		ETTO (solo ac	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$\mathbf{M}_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	M _{Rd,el,eff}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	191.9	33282	-	-	-	-	-	-
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	M _{Rd,el,ef}
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	895.3	36882	-	-	-	-	-	-

		SEZ: "i":	VERIFICA: F	ASE DI ESER	CIZIO (Sezio	ne mista)		
			M+ (tensi	oni in valore	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	σ_{ss}	σ_{si}	σ_c^*	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
53035	-	-	-	-	-	-	-	-
			M- (tensi	oni in valore	assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	σ_{si}	σ _{Afs} *	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
-	1940	41887	-	-	-	-	-	-

		SEZ: "m":	VERIFICA: F	ASE DI ESEI	RCIZIO (Sezio	ne mista)		
			M+ (tensi	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$\sigma_{\rm c}$	σ_{ss}	σ_{si}	σ_c^*	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
53035	-	-	-	-	-	-	-	-
				oni in valore		4.	- de	- 4
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ _{Afs}	σ _{ss}	σ _{si}	σ _{Afs} *	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1940	41887	-	-	-	-	-	-
		SEZ: "j":	VERIFICA: F	ASE DI ESER	CIZIO (Sezioi	ne mista)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	M _{Rd,pl,eff}	σ_{c}	σ_{ss}	σ_{si}	σ_{c}^{*}	σ _{ss} *	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
52982	-	-	-	-	-	-	-	-
				M-			- Ju	
M _{Rd,pl}	X _{ga,hole web}	M _{Rd,pl,eff}	σ_{Afs}	σ _{ss}	$\sigma_{\rm si}$	σ _{Afs} *	σ _{ss} *	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1931	41860	-	-	-	-	-	-
		1	/ ERIFI	C A A	TAGLIC)		
				SEZ.: "i"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1875	2500	1.33	9.631E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw,max	η	χw	Vbw,Rd		Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	M
0.00	7.6		1.24	1.2	0.705	4435	0.324	
0.00	7.0		1.27		0.703	4433	0.524	
				SEZ.: "m"				
Anima	Verifica	hw	a	a/hw	Ist	Rigid	n Irr. Long.	
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1875	2500	1.33	9.631E+07	SI	0	0.000E+00
kτst	kτ	kτi	λw	η	χw	Vbw,Rd	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	M
0.00	7.6	-	1.24	1.2	0.705	4435	0.467	-
				SEZ.: "j"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1875	2500	1.33	9.631E+07	SI	0	0.000E+00
kτst	kτ						U	
		kτi	λw	η	χw	Vbw,Rd	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]		M
0.00	7.6	-	1.24	1.2	0.705	4435	0.619	ОК

C O N C I O 5

				bi -	t;			
			G E	OMETR	I A			
Bi	Bm	Bj	tsl	bs'	tsl'	Ф	s' Sp	As" Φ
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
4935	4805	4675	250	600	50	16	200	16
As"	С	bs	ts	hwi	hwm	hwj	tw	bi
Sp'							-	
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
200	60	700	40	1910	1910	1910	22	800
ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff	Inter. Stiff
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
50	2000	2300	2000	2300	2000	2300	800	1205
			M A	ATERIA	LI			
	Es		Ec	n		$ ho_{si}$	$ ho_{sm}$	$ ho_{sj}$
Acciaio	[MPa]	Calcestr.	[MPa]	[-]	Armatura	[-]	[-]	[-]
S355N(NL)	210000	35/45	34077	6.16	B450C	0.79%	0.81%	0.83%
f _{cd}	f _{yd, As}	f _{yd, Ala sup}	f _{yd, web}	f _{yd, Ala inf}	ε _{As}	ε _{Web}	ε _{Ai}	n _{LT}
[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[-]	[-]	[-]
19.8	391.3	338.1	338.1	319.0	0.814	0.814	0.838	15.4
		ARATT			G E O M E			
A _{i,a}	A _{i,hom}	A _{i,hom,LT}	A _{i,a+s}	A _{m.a}	A _{m.hom}	A _{m,hom,LT}	A _{m,a+s}	A _{j,a}
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]
110020	325014	201971	119942	110020	319479	199600	119681	110020
A _{j,hom}	$A_{j,hom,LT}$	A _{j,a+s}	X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	X _{j,Ga}	l _{j,a}
[mm ²]	[mm ²]	[mm ²]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
313943	197229	119420	897	7.653E+10	897	7.653E+10	897	7.653E+10
X _{i,G,uncrack}	I _{i,unc}	X _{i,G,unc,LT}	I _{i,unc,LT}	X _{i,G,crack}	I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,unc,LT}
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
1737	1.959E+11	1472	1.583E+11	994	9.107E+10	1731	1.949E+11	1466.484
I _{m,unc,LT}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,unc,LT}$	l _{j,unc,LT}	$\mathbf{X}_{j,G,crack}$	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
1.573E+11	996	9.107E+10	1722	1.937E+11	1457	1.560E+11	991	9.051E+10

			SOLL	ECITA	ZIONI			
5i 5m 5j								
N	V	M	N	V	M	N	V	M
[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
-2818	992	15249	-2818	1353	9297	-2818	2091	1691
-2818	2765	26982	-2818	3353	21028	-2818	4191	1691

	CLAS	SIFIC	AZION	E SEZ	IONE					
	M+									
		Acciaio		Mista i m 1 1						
Sezione:	i	m	j	i	m	j				
Classe:	3	3	3	1	1	1				
	M-									
		Acciaio			Mista					
Sezione:	i	m	j	i	m	j				
Classe:	3 3 3 3									

		SEZ: "	": VERIFICA	: FASE DI G	ETTO (solo ad	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	-	-	23455.66	-	-	-	-	-
	'			M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	b _{i,eff}	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	801.0	28060	-	-	-	-	-	-

D/C 0.40

D/C 0.23

D/C 0.00

D/C 0.60

		SEZ "m	n": VERIFICA	: FASE DI C	GETTO (solo ad	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	b _{web,comp,eff}	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	-	-	23455.66	-	-	-	-	-
				M-				1
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$b_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	801.0	28060	-	-	-	-	-	-

		SEZ "j	": VERIFICA:	FASE DI G	ETTO (solo ac	ciaio)		
				M+				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	$\mathbf{b}_{i,eff}$	$I_{ga,eff}$	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	-	-	23455.66	-	-	-	-	-
				M-				
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	$M_{Rd,el}$	$\mathbf{b}_{s,eff}$	$\mathbf{b}_{web,comp,eff}$	b _{i,eff}	I _{ga,eff}	$M_{Rd,el,eff}$
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	801.0	28060	-	-	-	-	-	-

		SEZ: "i":	VERIFICA: F	ASE DI ESER	CIZIO (Sezio	ne mista)		
			M+ (tensi	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	$\sigma_{\rm si}$	σ_{c}^{*}	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
45166	-	-	-	-	-	-	-	-
			M- (tensi	oni in valore	assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	M _{Rd,pl,eff}	σ_{Afs}	σ_{ss}	$\sigma_{\rm si}$	σ_{Afs}^*	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
-	1652	32372	-	-	-	-	-	-

		SEZ: "m":	VERIFICA: F	ASE DI ESE	RCIZIO (Sezio	ne mista)		
			M+ (tension	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	$\sigma_{\rm si}$	σ_c^*	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
45048	-	-	-	-	-	-	-	-
			M- (tensio	oni in valor	e assoluto)			
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	$\sigma_{\sf ss}$	σ_{si}	σ_{Afs}^{*}	σ_{ss}^*	σ_{si}^*
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
-	1638	32276	-	-	-	-	-	-
		SEZ: "i":	VERIFICA: FA	ASE DI ESER	CIZIO (Sezior	ne mista)		
		, , , , , , , , , , , , , , , , , , ,		M+	(00000	,		
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{c}	σ_{ss}	σ_{si}	σ _c *	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
44941	-	-	-	-	-	-	-	-
	1		1	M-	1		1	1
$M_{Rd,pl}$	X _{ga,hole web}	$M_{Rd,pl,eff}$	σ_{Afs}	σ_{ss}	$\sigma_{\rm si}$	σ_{Afs}^*	σ_{ss}^*	σ _{si} *
[kNm]	[mm]	[kNm]	[kNm]	[mm]	[mm]	[mm]	[mm4]	[kNm]
31926	-	-	-	-	-	-	-	-
		1	/ E R I F I	C A A	TAGLIC)		
				SEZ.: "i"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi						
			λw,max	η	χw	Vbw,Rd	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]		M
0.00	7.7	-	1.03	1.2	0.806	6310	0.438	-
				SEZ.: "m"				
Anima	Verifica	hw	а	a/hw	Ist	Rigid	n Irr. Long.	Isl
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi	λw	ŋ	χw	Vbw,Rd	_	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	
0.00	7.7	-	1.03	1.2	0.806	6310	0.531	ОК
	7		2.00		0.000		0.002	
	,, .c.			SEZ.: "j"				
Anima	Verifica	hw	a	a/hw	Ist	Rigid	n Irr. Long.	
irrigidita	buckling	[mm]	[mm]	[-]	[mm4]	[-]	[-]	[mm4]
SI	Necess.	1910	2500	1.31	1.048E+08	SI	0	0.000E+00
kτst	kτ	kτi	λw	η	χw	Vbw,Rd	D/C	Interaz. V
[-]	[-]	[-]	[-]	[-]	[-]	[kN]	D/C	M

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 2

ALLEGATO 2

VERIFICHE A FATICA DELLE TRAVI PRINCIPALI

Sanas

S.S.195 "SULCITANA" TRATTO CAGLIARI -PULA OPERA CONNESSA NORD

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 2

Per una più chiara comprensione dei tabulati di calcolo riportati nelle pagine successive si riporta qui di seguito una legenda che chiarisce il significato della simbologia utilizzata.

Si ritiene superfluo spiegare il significato dei simboli coi quali si indicano le dimensioni della sezione in quanto si ritiene sufficientemente esplicativo lo schema tipologico riportato per ciascun concio con quote indicanti tutte le differenti variabili geometriche in gioco.

Un'osservazione va fatta in merito alla larghezza collaborante di soletta (B) che, è opportuno precisare, è stata calcolata in accordo a quanto prescritto dalle norme tecniche del 2008 al paragrafo 4.3.2.3 a dalla EN1994-1-1 paragrafo 5.4.1.2.

I pedici i, m e j indicano la sezione iniziale, la mezzeria e la sezione terminale del concio; tale accorgimento risulta necessario nel caso di travata a sezione variabile.

Materiali:

- E_s: modulo elastico normale dell'acciaio
- E_c: modulo elastico normale del calcestruzzo
- n: coefficiente di omogeneizzazione tra acciaio e calcestruzzo (n=Es/Ec); per le verifiche a fatica si considera n calcolato non tenendo conto degli effetti di lungo termine (ritiro, fluage) sul calcestruzzo
- ρ_s: percentuale di armatura longitudinale

Caratteristiche geometriche:

- A_a: Area della sezione metallica
- A_{hom}: Area della sezione metallica + Area armature longitudinali + Area calcestruzzo omogeneizzata all'acciaio (x1/n)
- A_{a+s}: Area della sezione metallica + Area armature longitudinali
- X_{Ga}: Posizione del baricentro della sezione metallica rispetto all'intradosso
- l_a: Inerzia della sezione metallica rispetto al baricentro
- X_{G, uncrack}: Posizione del baricentro della sezione mista non fessurata
- I_{unc}: Inerzia della sezione mista non fessurata rispetto al baricentro
- X_{G, crack}: Posizione del baricentro della sezione mista fessurata
- I_{crack}: Inerzia della sezione mista fessurata rispetto al baricentro

Sollecitazioni:

G₁: Peso proprio strutturale

S.S.195 "SULCITANA" TRATTO CAGLIARI -PULA **OPERA CONNESSA NORD**

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 2

- **G**₂: Carichi fissi non strutturali + Effetti del ritiro
- G: Somma delle sollecitazioni derivanti dai carichi permanenti
- G ± FLM3: Sollecitazioni di lunga durata ± (Inviluppo sollecitazioni derivanti dal passaggio del Modello di carico 3 per verifiche a fatica + azioni termiche)

Tensioni:

Le tensioni massime (σ_{max}) e minime (σ_{min}) e di conseguenza la massima oscillazione sono calcolate per le sezioni i, m e j per diversi punti della sezione.

In accordo con quanto riportato nella bibliografia specialistica sugli impalcati a sezione mista e negli Eurocodici, si tengono in considerazione gli effetti (benefici) del tension stiffening che permettono di evitare di ignorare completamente il contributo del calcestruzzo in zona tesa (sezioni sollecitate a momento negativo) portando ad una leggera riduzione delle tensioni calcolate nelle parti in acciaio della sezione.

Scorrimento:

Onde valutare gli effetti della fatica sulle sezioni di collegamento tra anima e ali della sezione si vanno a calcolare le forze di scorrimento (S_{min}, S_{max}) in funzione di quelle che sono le sollecitazioni taglianti ottenute dall'analisi strutturale. La sezione viene considerata elastica (trattandosi di azioni allo SLE) e dunque si adotta la ben nota trattazione di Jourawsky.

Coefficienti \(\lambda\):

- Tipo sez.: Indica se la sezione è in appoggio oppure in campata; questo parametro incide sulle espressioni per il calcolo dei coefficienti λ
- λ₁: coefficiente che tiene conto dei danni derivanti dal passaggio del traffico
- λ₂: coefficiente dipendente dal volume di traffico
- λ₃: coefficiente dipendente dalla vita utile dell'opera
- λ₄: coefficiente dipendente dal traffico sulle altre corsie (oltre a quella lenta)
- Π λ_i: prodotto tra i quattro coefficienti λ
- λmax: valore massimo del coefficiente λ; è calcolato in funzione della luce della campata e della posizione della sezione considerata (campata, appoggio)
- λ : min($\Pi \lambda_i$; λ_{max})

Verifiche a fatica:

- $\Delta\sigma_c$: Classe di resistenza a fatica del dettaglio considerato
- **v**_{Mf}: Coefficiente parziale per verifiche a fatica
- $\Delta \sigma_{\rm E,2}$: Range di oscillazione della tensione calcolato per il dettaglio strutturale

PROGETTAZIONE ATI:

S.S.195 "SULCITANA" TRATTO CAGLIARI -PULA OPERA CONNESSA NORD

CAVALCAVIA ASSE PRINCIPALE SVINCOLO CAPOTERRA-CASIC - RELAZIONE DI CALCOLO IMPALCATO - ALLEGATO 2

- Y_{Ff}: Coefficiente parziale relativo alle azioni di fatica
- D/C: Rapporto Domanda/Capacità (se <1 la verifica è soddisfatta)

Coefficienti λν:

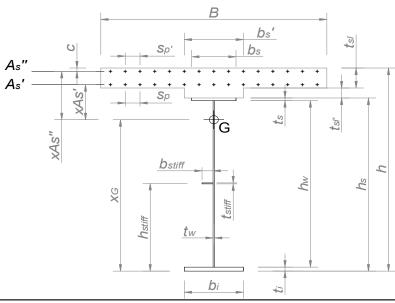
Vale esattamente quanto detto per i coefficienti λ con la differenza che si tratta di coefficienti appositi per la valutazione del danneggiamento a fatica dei connettori a piolo.

Scorrimento interfaccia acciaio-cls:

Onde valutare gli effetti della fatica sui connettori si vanno a calcolare le forze di scorrimento (S_{min} , S_{max}) all'interfaccia acciaio-cls in funzione delle sollecitazioni taglianti ottenute dall'analisi strutturale. La sezione viene considerata elastica (trattandosi di azioni allo SLE) e dunque si adotta la ben nota trattazione di Jourawsky.

Verifiche a fatica pioli:

- Δτ_c: Classe di resistenza a fatica per effetto delle azioni taglianti su piolo
- γ_{Mf}: Coefficiente parziale per verifiche a fatica
- Δτ_{E,2}: Range di oscillazione della tensione tangenziale nel piolo
- Y_{Ff}: Coefficiente parziale relativo alle azioni di fatica
- **D/C**: Rapporto Domanda/Capacità (se <1 la verifica è soddisfatta)


PROGETTAZIONE ATI:

C O N C I O 1

	GEOMETRIA											
D:	Bi Bm	Вј	tsl	bs'	tsl'	As'	As'	As''				
DI			LSI			Ф	Sp	Φ				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
4675	4805	4935	250	600	50	16	200	16				

As''	C	bs	ts	hwi	hwm	hwi	tw	bi
Sp'		L D3	ts	11001	1144111	1100)		
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
200	60	700	40	1910	1910	1910	22	800

ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff
[mm]							
50	2000	2300	2000	2300	2000	2300	1000

	MATERIALI											
Acciaio	Es	Calcestr.	Ec n		$ ho_{si}$	$ ho_{sm}$ $ ho_{sj}$						
Accidio	[MPa]	Caicesti.	[MPa]	[-]	[-]	[-]	[-]					
S355N(NL)	210000	35/45	34077	6.16	0.78%	0.76%	0.74%					

	CARATTERISTICHE GEOMETRICHE										
$\mathbf{A}_{i,a}$	A _{i,hom}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,a+s}	$A_{j,a}$	$\mathbf{A}_{j,hom}$	A _{j,a+s}			
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]			
110020	313943	119420	110020	319479	119681	110020	325014	119942			
X _{i.Ga}	l _{i.a}	X _{m.Ga}	I _{m.a}	X _{i.Ga}	l _{i.a}	X _{i.G.uncrack}	I _{i.unc}	X _{i.G.crack}			

^ i,Ga	¹i,a	^ m,Ga	¹m,a	^ j,Ga	¹j,a	^i,G,uncrack	i,unc	^i,G,crack
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
897	7.653E+10	897	7.653E+10	897	7.653E+10	1722	1.94E+11	991
I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$X_{j,G,crack}$	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
9.051E+10	1731	1.95E+11	996	9.11E+10	1737	1.96E+11	994	9.11E+10

	1	i
	V	M
	[kN]	[kNm]
G1	-1087.60	0.00
G2	-406.00	0.00
G=G1+G2	-1493.60	0.00
G+FLM3 _{min}	-1910.02	-0.05
G+FLM3 _{max}	-1493.60	0.00

1m							
٧	M						
[kN]	[kNm]						
-870.08	3915.36						
-324.80	1461.60						
-1194.88	5376.96						
-1554.93	5376.96						
-1168.91	6783.09						

1	.j
٧	M
[kN]	[kNm]
-652.56	6960.64
-243.60	2598.40
-896.16	9559.04
-1206.50	9559.04
-840.62	11948.82

	T E N S I O N I (Compressioni negative)										
1 i	No tension stiffening				Considerando il tension stiffening						
Posiz>	Ala	Ala	Armatura	Anima-	Ala	Ala	Armatura	Anima-			
POSIZ>	inferiore	superiore	estr. sol.	Stiff.long.	inferiore	superiore	estr. sol.	Stiff.long.			
σ_{min} [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
σ _{max} [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Δσ [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

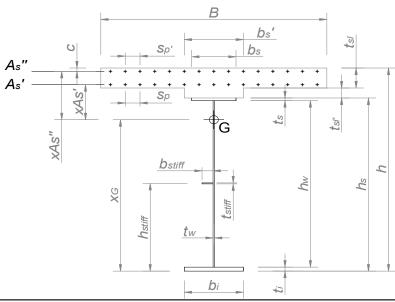
1m		No tension	n stiffening	1	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	58.9	-58.5	-3.8	0.2	58.9	-58.5	-3.8	0.2	
σ _{max} [MPa]	71.4	-60.4	-7.5	5.5	71.4	-60.4	-7.5	5.5	
Δσ [MPa]	12.5	-1.9	-3.7	5.3	12.5	-1.9	-3.7	5.3	

1j		No tension	n stiffening	I	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	104.6	-103.8	-6.7	0.4	104.6	-103.8	-6.7	0.4	
σ _{max} [MPa]	125.8	-107.0	-12.8	9.4	125.8	-107.0	-12.8	9.4	
Δσ [MPa]	21.2	-3.2	-6.1	9.0	21.2	-3.2	-6.1	9.0	

			Δσ Μ	ASSIM	I [MPa]					
No tension stiffening Considerando il tension stiffening										
Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		
21.2	3.2	6.1	9.0		21.2	3.2	6.1	9.0		

			SCORR	IMENT	O [kN/m]			
	1	Li		1m			1 j	
	Ala inf.	Ala sup.		Ala inf.	Ala sup.		Ala inf.	Ala sup.
S _{min}	-783.78	-850.48		-636.25	-693.55		-490.92	-542.13
S_{max}	-637.85	-638.08		-501.10	-496.97		-363.07	-354.86
ΔS	145.92	212.40		135.15	196.57		127.85	187.27
Δτ	6.63	9.65		6.14	8.94		5.81	8.51

			COEF	FICIEN	τι λ			
Pos. 1i	Tipo Sez.	λ_1	λ_2	λ_3	λ_4	Πλ _i	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
0.0	Appoggio	1.85	0.848	1.000	1	1.569	1.8	1.569
Pos. 1m	Tipo Sez.	λ1	λ_2	λ_3	λ ₄	Пλі	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
4.0	Appoggio	1.85	0.848	1.000	1	1.569	1.8	1.569
Pos. 1j	Tipo Sez.	λ ₁	λ2	λ_3	λ_4	Пλі	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
8	Campata	2.25	0.848	1.000	1	1.908	2	1.908


VERIFICH	IE A F	ATICA	CARF	ENTER	IA MI	TALLI	СА
	$\Delta\sigma_{\rm c}/\gamma_{\rm Mf}$	1	i	11	m	1	j
Dettaglio	△C/ YMf	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Ala supAnima: Saldatura long. Con lunetta di scarico	56.20	0.00	0.00	-	0.00	6.12	0.11
Ala infAnima: Saldatura long. Con lunetta di scarico	53.75	0.00	0.00	-	0.00	40.41	0.75
Saldatura Ala sup Anima sollecitata a scorrimento (τ)	69.57	15.14	0.22	14.02	0.20	16.24	0.23
Saldatura Ala inf Anima sollecitata a scorrimento (τ)	69.57	10.40	0.15	9.64	0.14	11.09	0.16

			COEF	FICIEN	TΙ λ _ν			
Pos. 1i	Tipo Sez.	λ _{v1}	λ _{ν2}	λ _{v3}	λ_{v4}	Πλ _{vi}	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
0.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 1m	Tipo Sez.	λ _{v1}	λ _{ν2}	λ _{v3}	λ _{ν4}	Пλνі	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
4.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 1j	Tipo Sez.	λ _{v1}	λ _{ν2}	λ _{v3}	λ _{ν4}	Пλνі	λ_{vMAX}	λ _v
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
8.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389

S	CORRI	MENTO	INTE	RFACCIA	ACCIAIO-CLS
	1i	1m	1j		
min	-388.8	-324.2	-264.3		
S _{max}	-192.0	-141.5	-89.7		
ΔS	196.9	182.8	174.6		
Δτ	17.4	16.1	15.4		

	VERIFICHE A FATICA PIOLI											
1i 1m 1j												
Dettaglio	$\Delta \tau_c / \gamma_{Mf}$	$\Delta \tau_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2}^* \gamma_{Ff}$	D/C					
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]					
Connettore a piolo	90	24.1	0.27	22.4	0.25	21.4	0.24					

C O N C I O 2

	GEOMETRIA											
Bi	Bm	D:	tsl	bs'	tsl'	As'		As''				
DI	DIII	Bj	LSI	DS	LSI	Ф	Sp	Ф				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
4935	5000	5000	250	700	50	16	200	16				

Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]								
200	60	800	60	1875	1875	1875	18	900

ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff
[mm]							
65	2000	2300	2000	2300	2000	2300	1000

	MATERIALI										
Acciaio	Es	Calcestr.	Ec	n	$ ho_{si}$	$ ho_{\sf sm}$	$ ho_{sj}$				
Acciaio	[MPa]	Calcesti.	[MPa]	[-]	[-]	[-]	[-]				
S355N(NL) 210000 35/45 34077 6.16 0.78% 0.77% 0.77%											

	С	ARATT	ERIST	CHE	GEOME	TRICH	E	
$\mathbf{A}_{i,a}$	A _{i,hom}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,a+s}	$A_{j,a}$	$\mathbf{A}_{\mathrm{j,hom}}$	$A_{j,a+s}$
[mm ²]	[mm ²]	[mm ²]						
140250	356055	150172	140250	358823	150303	140250	358823	150303
X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	X _{i,Ga}	l _{i,a}	X _{i,G,uncrack}	I _{i,unc}	X _{i,G,crack}

7 1,Ga	-ı,a	² ·m,Ga	-m,a	r 1j,Ga	-j,a	, I,G,uncrack	-i,unc	, I,G,crack
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
929	1.091E+11	929	1.091E+11	929	1.091E+11	1679	2.41E+11	1004
I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,crack}$	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
1.232E+11	1684	2.42E+11	1009	1.24E+11	1684	2.42E+11	1009	1.24E+11

	2	2i
	V	M
	[kN]	[kNm]
G1	-652.56	6960.64
G2	-243.60	2598.40
G=G1+G2	-896.16	9559.04
G+FLM3 _{min}	-1189.16	9559.04
G+FLM3 _{max}	-840.62	11949.00

2m								
V	M							
[kN]	[kNm]							
-435.04	9135.84							
-162.40	3410.40							
-597.44	12546.24							
-867.31	12546.24							
-497.53	15571.04							

2 j									
V	M								
[kN]	[kNm]								
-217.52	10440.96								
-81.20	3897.60								
-298.72	14338.56								
-525.85	14338.56								
-154.11	17710.04								

	T E N S I O N I (Compressioni negative)										
2i	No tension stiffening				Considerando il tension stiffening						
D :	Ala	Ala	Armatura	Anima-	Ala	Ala	Armatura	Anima-			
Posiz>	inferiore	superiore	estr. sol.	Stiff.long.	inferiore	superiore	estr. sol.	Stiff.long.			
σ _{min} [MPa]	77.3	-71.8	-6.0	2.8	77.3	-71.8	-6.0	2.8			
σ _{max} [MPa]	93.9	-74.9	-11.6	9.5	93.9	-74.9	-11.6	9.5			
Δσ [MPa]	16.6	-3.2	-5.6	6.7	16.6	-3.2	-5.6	6.7			

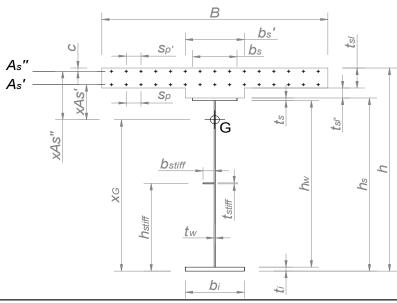
2m		No tension	n stiffening	ı	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	101.5	-94.1	-7.8	3.7	101.5	-94.1	-7.8	3.7	
σ _{max} [MPa]	122.5	-98.0	-14.8	12.2	122.5	-98.0	-14.8	12.2	
Δσ [MPa]	21.0	-3.9	-6.9	8.5	21.0	-3.9	-6.9	8.5	

2j		No tension	n stiffening	I	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	116.0	-107.5	-8.9	4.2	116.0	-107.5	-8.9	4.2	
σ _{max} [MPa]	139.4	-111.9	-16.7	13.7	139.4	-111.9	-16.7	13.7	
Δσ [MPa]	23.4	-4.4	-7.7	9.5	23.4	-4.4	-7.7	9.5	

	Δσ MASSIMI [MPa]										
	No tension	stiffening			Cons	iderando il t	tension stiff	ening			
Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.			
23.4	4.4	7.7	9.5		23.4	4.4	7.7	9.5			

	SCORRIMENTO [kN/m]										
	7	2i		2m		2 j					
	Ala inf.	Ala sup.	Ala inf.	Ala sup.	Ala inf.	Ala sup.					
S _{min}	-527.66	-565.95	-381.54	-413.62	-227.55	-252.54					
S _{max}	-388.61	-392.40	-233.99	-230.18	-79.23	-68.13					
ΔS	139.04	173.55	147.54	183.44	148.33	184.42					
Δτ	7.72	9.64	8.20	10.19	8.24	10.25					

	COEFFICIENTΙ λ										
Pos. 2i	Tipo Sez.	λ_1	λ_2	λ_3	λ_4	Πλ _i	λ_{MAX}	λ			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
8.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908			
Pos. 2m	Tipo Sez.	λ1	λ_2	λ_3	λ_4	Пλі	λ_{MAX}	λ			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
12.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908			
Pos. 2j	Tipo Sez.	λ ₁	λ_2	λ ₃	λ_4	Пλ	λ_{MAX}	λ			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
16	Campata	2.25	0.848	1.000	1	1.908	2	1.908			


	$\Delta\sigma_{\rm c}/\gamma_{\rm Mf}$	2i		2m		2j	
Dettaglio	ΔO _c / Y _{Mf}	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Ala supAnima: Saldatura long. Con Iunetta di scarico	51.82	6.07	0.12	-	0.00	8.39	0.16
Ala infAnima: Saldatura long. Con lunetta di scarico	51.00	31.71	0.62	-	0.00	42.50	0.83
Saldatura Ala sup Anima sollecitata a scorrimento (τ)	69.57	18.39	0.26	19.44	0.28	19.55	0.28
Saldatura Ala inf Anima sollecitata a scorrimento (τ)	69.57	14.74	0.21	15.64	0.22	15.72	0.23

	C O E F F I C I E N T I λ _v										
Pos. 2i	Tipo Sez.	λ_{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Πλ _{vi}	λ_{vMAX}	λ_{v}			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
8.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389			
Pos. 2m	Tipo Sez.	λ _{v1}	λ _{ν2}	λ _{v3}	λ_{v4}	Пλνί	λ_{vMAX}	λ_{v}			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
12.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389			
Pos. 2j	Tipo Sez.	λ _{v1}	λ _{ν2}	λ _{v3}	λ_{v4}	Пλνί	λ_{vMAX}	λ_{v}			
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]			
16.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389			

S	CORRII	MENTO	INTE	RFACCIA	ACCIAIO-CLS [kN/m
	2i	2m	2j		
S_{min}	-236.1	-190.0	-135.5		
S _{max}	-82.8	-27.5	27.9		
ΔS	153.4	162.5	163.4		
Δτ	20.3	21.5	21.6		

VERIFICHE A FATICA PIOLI										
	$\Delta \tau_c/\gamma_{Mf}$	2i		2m		2j				
Dettaglio		$\Delta \tau_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2} {}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2}{}^*\gamma_{Ff}$	D/C			
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]			
Connettore a piolo	90	28.2	0.31	29.8	0.33	30.0	0.33			

C O N C I O 3

GEOMETRIA										
Bi	D.m.	Bm Bj tsl bs' tsl'	+al!	As'		As''				
DI	DIII		tsi	DS	ιSI	Ф	Sp	Φ		
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
5000	5000	5000	250	700	50	16	200	16		

Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]								
200	60	800	60	1870	1870	1870	14	900

ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff
[mm]							
70	2000	2300	2000	2300	2000	2300	1000

MATERIALI										
Acciaio	Es	Calcestr.	Ec	n	$ ho_{si}$	$ ho_{\sf sm}$	$ ho_{sj}$			
Acciaio	[MPa]	Calcesti.	[MPa]	[-]	[-]	[-]	[-]			
S355N(NL)	210000	35/45	34077	6.16	0.78%	0.78%	0.78%			

	CARATTERISTICHE GEOMETRICHE									
$\mathbf{A}_{i,a}$	$A_{i,hom}$	A _{i,a+s}	A _{m,a}	A _{m,hom}	$\mathbf{A}_{m,a+s}$	$\mathbf{A}_{j,a}$	$A_{j,hom}$	$A_{j,a+s}$		
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]		
137180	355753	147233	137180	355753	147233	137180	355753	147233		

X _{i,Ga}	l _{i,a}	$\mathbf{X}_{m,Ga}$	I _{m,a}	$\mathbf{X}_{j,Ga}$	l _{j,a}	$\mathbf{X}_{i,G,uncrack}$	I _{i,unc}	$\mathbf{X}_{i,G,crack}$
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
897	1.101E+11	897	1.101E+11	897	1.101E+11	1678	2.48E+11	981
I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$X_{j,G,crack}$	l _{j,crack}
l _{i,crack} [mm ⁴]	X _{m,G,uncrack} [mm]	I _{m,unc} [mm ⁴]	X _{m,G,crack} [mm]	l _{m,crack} [mm ⁴]		l _{j,unc} [mm ⁴]	X _{j,G,crack} [mm]	l _{j,crack} [mm ⁴]

	3 i				
	V	M			
	[kN]	[kNm]			
G1	-217.52	10440.96			
G2	-81.20	3897.60			
G=G1+G2	-298.72	14338.56			
G+FLM3 _{min}	-508.89	14338.56			
G+FLM3 _{max}	-154.11	17710.04			

3m						
V	M					
[kN]	[kNm]					
-0.00	10876.00					
-0.00	4060.00					
-0.00	14936.00					
-182.65	14936.00					
190.03	18341.53					

3 j						
V	M					
[kN]	[kNm]					
217.52	10440.96					
81.20	3897.60					
298.72	14338.56					
169.91	14338.56					
524.52	17710.82					

	T E N S I O N I (Compressioni negative)									
3i		No tension	n stiffening		Cons	iderando il t	ension stiff	ening		
Posiz>	Ala	Ala	Armatura	Anima-	Ala	Ala	Armatura	Anima-		
. 05.2.	inferiore	superiore	estr. sol.	Stiff.long.	inferiore	superiore	estr. sol.	Stiff.long.		
σ _{min} [MPa]	111.5	-109.7	-8.8	0.9	111.5	-109.7	-8.8	0.9		
σ _{max} [MPa]	134.3	-114.1	-16.5	10.1	134.3	-114.1	-16.5	10.1		
Δσ [MPa]	22.8	-4.4	-7.6	9.2	22.8	-4.4	-7.6	9.2		

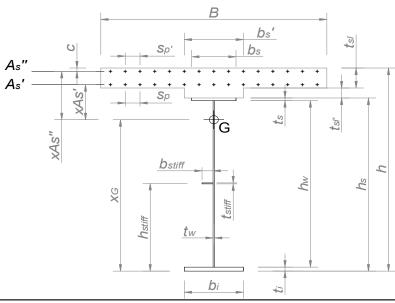
3m		No tension	stiffening	ı	Considerando il tension stiffening				
Posiz>	Ala Ala inferiore superiore		Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	116.1	-114.3	-9.2	0.9	116.1	-114.3	-9.2	0.9	
σ _{max} [MPa]	139.2	-118.7	-16.9	10.3	139.2	-118.7	-16.9	10.3	
Δσ [MPa]	23.0	-4.4	-7.7	9.3	23.0	-4.4	-7.7	9.3	

3j		No tension	n stiffening		Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	111.5	-109.7	-8.8	0.9	111.5	-109.7	-8.8	0.9	
σ _{max} [MPa]	134.3	-114.1	-16.5	10.1	134.3	-114.1	-16.5	10.1	
Δσ [MPa]	22.8	-4.4	-7.6	9.2	22.8	-4.4	-7.6	9.2	

			Δσ Μ	ASSIM	I [MPa]			
	No tension	stiffening			Cons	iderando il	tension stiff	ening
Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.
23.0	4.4	7.7	9.3		23.0	4.4	7.7	9.3

		S	CORRI	MENT	O [kN/m]			
		3i		3m			3 j	
	Ala inf.	Ala sup.		Ala inf.	Ala sup.		Ala inf.	Ala sup.
S _{min}	-228.98	-244.70		-76.24	-89.59		87.49	78.43
S _{max}	-80.89	-70.68		79.32	93.21		235.50	252.37
ΔS	148.09	174.02		155.56	182.80		148.02	173.94
Δτ	10.58	12.43		11.11	13.06		10.57	12.42

			COEF	FICIEN	ΤΙ λ			
Pos. 3i	Tipo Sez.	λ_1	λ_2	λ ₃	λ_4	Πλ _i	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
16.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908
Pos. 3m	Tipo Sez.	λ	λ2	λ_3	λ ₄	Пλі	λ _{ΜΑΧ}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
20.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908
Pos. 3j	Tipo Sez.	λ ₁	λ2	λ ₃	λ ₄	Пλі	λ _{ΜΑΧ}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
24	Campata	2.25	0.848	1.000	1	1.908	2	1.908


	$\Delta\sigma_{\rm c}/\gamma_{\rm Mf}$	3	i	3n	n	3	j
Dettaglio	ΔO _c / γ _{Mf}	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Ala supAnima: Saldatura long. Con Iunetta di scarico	51.82	8.34	0.16	-	0.00	8.34	0.16
Ala infAnima: Saldatura long. Con Iunetta di scarico	50.25	43.52	0.87	-	0.00	43.53	0.87
Saldatura Ala sup Anima sollecitata a scorrimento (τ)	69.57	23.71	0.34	24.91	0.36	23.70	0.34
Saldatura Ala inf Anima sollecitata a scorrimento (τ)	69.57	20.18	0.29	21.20	0.30	20.17	0.29

			COEF	FICIEN	ΤΙ λ,			
Pos. 3i	Tipo Sez.	λ_{v1}	λ_{v2}	λ_{v3}	λ_{v4}	Πλ _{vi}	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
16.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 3m	Tipo Sez.	λ _{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ _v
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
20.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 3j	Tipo Sez.	λ _{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ _v
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
24.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389

S	CORRI	J E N T O	INTE	RFACCIA	ACCIAIO-CLS
	3i	3m	3j		
\mathbf{S}_{\min}	-126.5	-79.3	-20.7		
S _{max}	27.5	82.5	133.3		
ΔS	154.0	161.8	153.9		
Δτ	20.4	21.4	20.4		

	VERIFICHE A FATICA PIOLI											
3i 3m 3j												
Dettaglio	$\Delta \tau_c / \gamma_{Mf}$	$\Delta \tau_{E,2}{}^*\gamma_{Ff}$	D/C	$\Delta \tau_{E,2} {}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2} ^* \gamma_{Ff}$	D/C					
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]					
Connettore a piolo	90	28.3	0.31	29.7	0.33	28.3	0.31					

CONCIO 4

GEOMETRIA												
D:	Bi Bm Bi tsl bs' tsl' As'											
DI	DIII	Bj	tsl	DS	נט		Sp	Φ				
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
5000	5000	4935	250	700	50	16	200	16				

Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]								
200	60	800	60	1875	1875	1875	18	900

ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff
[mm]							
65	2000	2300	2000	2300	2000	2300	1000

	MATERIALI											
Acciaio	Es	Calcestr.	lcestr Ec n		$ ho_{si}$	ρ_{sm}	$oldsymbol{ ho}_{sj}$					
Accidio	[MPa]	Calcesti.	[MPa]	[-]	[-]	[-]	[-]					
S355N(NL)	210000	35/45	34077	6.16	0.78%	0.78%	0.79%					

	CARATTERISTICHE GEOMETRICHE												
$\mathbf{A}_{i,a}$	A _{i,hom}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,a+s}	$\mathbf{A}_{j,a}$	$\mathbf{A}_{\mathrm{j,hom}}$	$A_{j,a+s}$					
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]					
140250	358823	150303	140250	358823	150303	140250	356055	150172					
X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	$\mathbf{X}_{j,Ga}$	l _{j,a}	X _{i,G,uncrack}	l _{i,unc}	X _{i,G,crack}					
[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]					

[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
929	1.091E+11	929	1.091E+11	929	1.091E+11	1684	2.42E+11	1009
I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	X _{j,G,crack}	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
1.237E+11	1684	2.42E+11	1009	1.24E+11	1679	2.41E+11	1004	1.23E+11

	4i					
	V	M				
	[kN]	[kNm]				
G1	217.52	10440.96				
G2	81.20	3897.60				
G=G1+G2	298.72	14338.56				
G+FLM3 _{min}	169.91	14338.56				
G+FLM3 _{max}	524.52	17710.82				

4	lm
V	M
[kN]	[kNm]
435.04	9135.84
162.40	3410.40
597.44	12546.24
496.29	12546.24
865.76	15573.32

4	4j
V	M
[kN]	[kNm]
652.56	6960.64
243.60	2598.40
896.16	9559.04
842.76	9559.04
1209.81	11923.48

	T E N S I O N I (Compressioni negative)											
4i		No tension	stiffening		Considerando il tension stiffening							
Posiz>	Ala Ala Armatura inferiore superiore estr. sol.			Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.				
σ _{min} [MPa]	116.0	-107.5	-8.9	4.2	116.0	-107.5	-8.9	4.2				
σ _{max} [MPa]	139.4	-111.9	-16.7	13.8	139.4	-111.9	-16.7	13.8				
Δσ [MPa]	23.5	-4.4	-7.7	9.5	23.5	-4.4	-7.7	9.5				

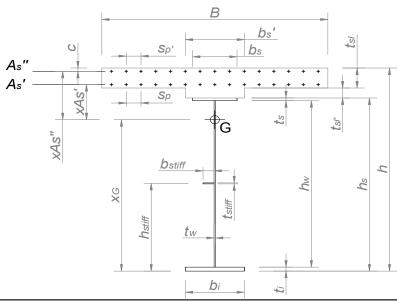
4m		No tension	n stiffening	ı	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	101.5	-94.1	-7.8	3.7	101.5	-94.1	-7.8	3.7	
σ _{max} [MPa]	122.5	-98.0	-14.8	12.2	122.5	-98.0	-14.8	12.2	
Δσ [MPa]	21.1	-3.9	-6.9	8.6	21.1	-3.9	-6.9	8.6	

4j		No tension	n stiffening		Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	77.3	-71.8	-6.0	2.8	77.3	-71.8	-6.0	2.8	
σ _{max} [MPa]	93.8	-74.9	-11.5	9.4	93.8	-74.9	-11.5	9.4	
Δσ [MPa]	16.4	-3.1	-5.5	6.6	16.4	-3.1	-5.5	6.6	

			Δσ Μ	ASSIM	I [MPa]				
	No tension stiffening Considerando il tension stiffening								
Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
23.5	4.4	7.7	9.5		23.5	4.4	7.7	9.5	

			SCORR	IMENT	O [kN/m]			
		4i		4	4m			lj
	Ala inf.	Ala sup.		Ala inf.	Ala sup.		Ala inf.	Ala sup.
S _{min}	85.53	75.97		233.50	229.56		389.47	393.47
S _{max}	227.02	251.89		380.92	412.85		535.89	576.23
ΔS	141.49	175.92		147.42	183.29		146.43	182.76
Δτ	7.86	9.77		8.19	10.18		8.13	10.15

			COEF	FICIEN	ΤΙ λ			
Pos. 4i	Tipo Sez.	λ_1	λ_2	λ ₃	λ_4	Πλ _i	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
24.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908
Pos. 4m	Tipo Sez.	λ ₁	λ_2	λ ₃	λ ₄	Пλі	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
28.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908
Pos. 4j	Tipo Sez.	λ ₁	λ_2	λ ₃	λ ₄	Пλі	λ_{MAX}	λ
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
32	Campata	2.25	0.848	1.000	1	1.908	2	1.908


	A = 1	4i		4m		4 j	
Dettaglio	$\Delta\sigma_{\rm c}/\gamma_{\rm Mf}$	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta\sigma_{E,2}^*\gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Ala supAnima: Saldatura long. Con Iunetta di scarico	51.82	8.39	0.16	-	0.00	6.00	0.12
Ala infAnima: Saldatura long. Con lunetta di scarico	51.00	44.74	0.88	-	0.00	31.37	0.62
Saldatura Ala sup Anima sollecitata a scorrimento (τ)	69.57	18.64	0.27	19.43	0.28	19.37	0.28
Saldatura Ala inf Anima sollecitata a scorrimento (τ)	69.57	15.00	0.22	15.62	0.22	15.52	0.22

			COEF	FICIEN	ΤΙ λ,			
Pos. 4i	Tipo Sez.	λ _{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Πλ _{vi}	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
24.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 4m	Tipo Sez.	λ _{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
28.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389
Pos. 4j	Tipo Sez.	λ _{v1}	λ _{v2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ_{v}
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
32.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389

S (CORRIN	MENTO	INTE	RFACCIA	ACCIAIO-CLS
	4i	4m	4j		
\mathbf{S}_{min}	-20.9	26.9	83.7		
S _{max}	134.9	189.3	245.2		
ΔS	155.8	162.4	161.5		
Δτ	20.6	21.5	21.4		

	VERI	FICHE	A FA	TICA P	IOLI		
	A= /	4	4i		4m		j
Dettaglio	$\Delta \tau_c / \gamma_{Mf}$	$\Delta \tau_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2}{}^*\gamma_{Ff}$	D/C	$\Delta \tau_{E,2} ^* \gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Connettore a piolo	90	28.6	0.32	29.8	0.33	29.7	0.33

CONCIO 5

	GEOMETRIA									
D:	Dm	Don Di And Hall	sl bs' t	tsl'	As'		As''			
Bi Bm I	Bj	tsl	DS	LSI	Ф		Φ			
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
4935	4805	4675	250	600	50	16	200	16		

Sp'	С	bs	ts	hwi	hwm	hwj	tw	bi
[mm]								
200	60	700	40	1910	1910	1910	22	800

ti	Hsi	Hi	Hsm	Hm	Hsj	Hj	hstiff
[mm]							
50	2000	2300	2000	2300	2000	2300	1000

MATERIALI									
Acciaio	Es	Calcestr.	Ec	n	$ ho_{si}$	$ ho_{sm}$	$ ho_{sj}$		
Accidio	[MPa]	Caicesti.	[MPa]	[-]	[-]	[-]	[-]		
S355N(NL)	210000	35/45	34077	6.16	0.79%	0.81%	0.83%		

CARATTERISTICHE GEOMETRICHE								
$\mathbf{A}_{i,a}$	A _{i,hom}	A _{i,a+s}	A _{m,a}	A _{m,hom}	A _{m,a+s}	$\mathbf{A}_{j,a}$	$A_{j,hom}$	$A_{j,a+s}$
[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]	[mm ²]
110020	325014	119942	110020	319479	119681	110020	313943	119420
X _{i,Ga}	l _{i,a}	X _{m,Ga}	I _{m,a}	X _{j,Ga}	l _{j,a}	X _{i,G,uncrack}	I _{i,unc}	X _{i,G,crack}
1,04	r, 4 ₂	,0a	- 4 ₂	,,Ga	,,a - 4,	i,G,dilciack	- 4 ₂	',

[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]
897	7.653E+10	897	7.653E+10	897	7.653E+10	1737	1.96E+11	994
I _{i,crack}	X _{m,G,uncrack}	I _{m,unc}	X _{m,G,crack}	I _{m,crack}	X _{j,G,uncrack}	l _{j,unc}	$\mathbf{X}_{j,G,crack}$	l _{j,crack}
[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]	[mm]	[mm ⁴]
9.107E+10	1731	1.95E+11	996	9.11E+10	1722	1.94E+11	991	9.05E+10

	5i					
	V	M				
	[kN]	[kNm]				
G1	652.56	6960.64				
G2	243.60	2598.40				
G=G1+G2	896.16	9559.04				
G+FLM3 _{min}	854.78	9559.04				
G+FLM3 _{max}	1209.81	11923.17				

5	m
٧	M
[kN]	[kNm]
870.08	3915.36
324.80	1461.60
1194.88	5376.96
1168.52	5376.96
1554.69	6784.36

	ij
V	M
[kN]	[kNm]
1087.60	0.00
406.00	0.00
1493.60	0.00
1493.60	-0.05
1910.38	0.00

	T E N S I O N I (Compressioni negative)											
5i		No tension	n stiffening		Considerando il tension stiffening							
Doci-	Ala	Ala	Armatura	Anima-	Ala	Ala	Armatura	Anima-				
Posiz>	inferiore	superiore	estr. sol.	Stiff.long.	inferiore	superiore	estr. sol.	Stiff.long.				
σ _{min} [MPa]	104.6	-103.8	-6.7	0.4	104.6	-103.8	-6.7	0.4				
σ _{max} [MPa]	125.6	-107.0	-12.7	9.3	125.6	-107.0	-12.7	9.3				
Δσ [MPa]	21.0	-3.2	-6.1	8.9	21.0	-3.2	-6.1	8.9				

5m		No tension	n stiffening	1	Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	58.9	-58.5	-3.8	0.2	58.9	-58.5	-3.8	0.2	
σ _{max} [MPa]	71.4	-60.4	-7.5	5.5	71.4	-60.4	-7.5	5.5	
Δσ [MPa]	12.5	-1.9	-3.7	5.3	12.5	-1.9	-3.7	5.3	

5j		No tension	n stiffening		Considerando il tension stiffening				
Posiz>	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.	
σ _{min} [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
σ _{max} [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Δσ [MPa]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

			Δσ Μ	ASSIM	I [MPa]													
	No tension	n stiffening	ı	Considerando il tension stiffening														
Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.		Ala inferiore	Ala superiore	Armatura estr. sol.	Anima- Stiff.long.										
21.0	3.2	6.1	8.9		21.0	3.2	6.1	8.9										

	SCORRIMENTO [kN/m]											
	5i			5m			5j					
	Ala inf.	Ala sup.	Ala	inf.	Ala sup.		Ala inf.	Ala sup.				
S _{min}	368.01	362.10	500	0.96	496.77		637.85	638.08				
S _{max}	492.08	543.83	636	6.17	693.42		783.90	850.67				
ΔS	124.07	181.73	135	5.21	196.65		146.05	212.58				
Δτ	5.64	8.26	6.	.15	8.94		6.64	9.66				

	C O E F F I C I E N T I											
Pos. 5i	Tipo Sez.	λ_1	λ_2	λ_3	λ_4	Πλ _i	λ_{MAX}	λ				
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]				
32.0	Campata	2.25	0.848	1.000	1	1.908	2	1.908				
Pos. 5m	Tipo Sez.	λ	λ_2	λ_3	λ ₄	Пλі	λ _{MAX}	λ				
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]				
36.0	Appoggio	1.85	0.848	1.000	1	1.569	1.8	1.569				
Pos. 5j	Tipo Sez.	λ	λ ₂	λ ₃	λ ₄	Пλί	λ_{MAX}	λ				
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]				
40	Appoggio	1.85	0.848	1.000	1	1.569	1.8	1.569				

VERIFICE	IE A F	ATICA	CARF	ENTER	IA MI	ETALLI	СА
	$\Delta\sigma_{\rm c}/\gamma_{\rm Mf}$	5	i	51	m	5	j
Dettaglio	ΔO _c / YMf	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C	$\Delta \sigma_{E,2}^* \gamma_{Ff}$	D/C
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]
Ala supAnima: Saldatura long. Con lunetta di scarico	56.20	6.06	0.11	-	0.00	0.00	0.00
Ala infAnima: Saldatura long. Con lunetta di scarico	53.75	39.98	0.74	-	0.00	0.00	0.00
Saldatura Ala sup Anima sollecitata a scorrimento (τ)	69.57	15.76	0.23	14.02	0.20	15.16	0.22
Saldatura Ala inf Anima sollecitata a scorrimento (τ)	69.57	10.76	0.15	9.64	0.14	10.41	0.15

	C O E F F I C I E N T I λ _ν												
Pos. 5i	Tipo Sez.	λ_{v1}	λ_{v2}	λ _{v3}	λ_{v4}	Πλ _{vi}	λ_{vMAX}	λ_{v}					
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]					
32.000	Campata	1.55	0.896	1.000	1	1.389	2	1.389					
Pos. 5m	Tipo Sez.	λ _{ν1}	λ _{ν2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ_{v}					
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]					
36.000	Appoggio	1.55	0.896	1.000	1	1.389	1.8	1.389					
Pos. 5j	Tipo Sez.	λ _{ν1}	λ _{v2}	λ _{v3}	λ_{v4}	Пλνі	λ_{vMAX}	λ_{v}					
[m]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]					
40.000	Appoggio	1.55	0.896	1.000	1	1.389	1.8	1.389					

S	CORRII	MENTO	INTE	RFACCIA	ACCIAIO-CLS	[kN/m]
	5i	5m	5j			
S_{\min}	96.5	141.3	192.0			
S _{max}	265.9	324.1	389.0			
ΔS	169.4	182.8	197.1			
Δτ	14.9	16.1	17.4			

VERIFICHE A FATICA PIOLI											
	$\Delta au_c/\gamma_{Mf}$	5	5i		5m						
Dettaglio		$\Delta \tau_{E,2}{}^*\gamma_{Ff}$	D/C	$\Delta \tau_{E,2} {}^* \gamma_{Ff}$	D/C	$\Delta \tau_{E,2}{}^*\gamma_{Ff}$	D/C				
	[MPa]	[MPa]	[-]	[MPa]	[-]	[MPa]	[-]				
Connettore a piolo	90	20.7	0.23	22.4	0.25	24.1	0.27				