

Regione Puglia Provincia di Foggia Provincia di Barletta-Andria-Trani

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Titolo:

DIV4NO6_RelazioneTecnica

RELAZIONE TECNICA

Numero documento: Commessa 2 3 4 3 0 5 D R 0 1 3 0 0 0

Proponente:

FRI-ELOFANTO

FRI-EL OFANTO S.r.l.

Piazza del Grano 3, I-39100 Bolzano (BZ)

fri-el.ofanto@legalmail.it

Cod. Fisc./Part. Iva 03076540214

PROGETTO DEFINITIVO

	Sul presente documento sussiste il DIRITTO di PROPRIETA'. Qualsiasi utilizzo non preventivamente autorizzato sarà perseguito ai sensi della normativa vigente						
_	N.	Data	Descrizione revisione	Redatto	Controllato	Approvato	
NOIS	00	13.07.2023	EMISSIONE PER AUTORIZZAZIONE	C. ELIA	D. LO RUSSO	M. LO RUSSO	
EVIS							
ш							

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

INDICE

1. PR	EMESSA	4
2. SC	OPO	4
3. PR	OPONENTE	4
4. DE	SCRIZIONE DELLE CARATTERISTICHE DELLA FONTE UTILIZZATA	5
4.1.	CARATTERISTICHE ANEMOMETRICHE DEL SITO	5
	STIMA DELLA PRODUCIBILITÁ ATTESA	
5. DE	SCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MODALITÀ DI ESECUZIONE	DEI
COMP	PLESSIVI LAVORI PREVISTI, DEL PIANO DI DISMISSIONE DEGLI IMPIANTI E DI RIPRISTINO DEI	LLO
STATO	O DEI LUOGHI	8
	DESCRIZIONE DELL'INTERVENTO E MODALITA' DI ESECUZIONE	
	DATI GENERALI D'IMPIANTO	
	UBICAZIONE DEL PROGETTO	
	MOTIVAZIONE SCELTA PROGETTUALE	
	OBIETTIVI DEL PROGETTO	
	LAYOUT DI PROGETTO	
	NORME TECNICHE DI RIFERIMENTO	
	CRITERI GENERALI DI PROGETTAZIONE	
	CARATTERISTICHE TECNICHE DEL PROGETTO	
5.6.1.1		
5.6.1.2		
5.6.1.3		
5.6.1.4		
5.6.1.5		
5.6.1.5		
5.6.1.5		
5.6.1.5		
5.6.1.5	·	
5.6.1.5	·	
5.6.1.5		
5.6.1.5		
5.6.1.6		
5.6.1.7		
	PRODUZIONE DI RIFIUTI	
	DESCRIZIONE FASI	
	FASE DI CANTIERE	
5.7.1.1		
5.7.1.2		
5.7.1.3		
	FASE DI GESTIONE E DI ESERCIZIO	
	TEMPI DI ESECUZIONE DEI LAVORI	
5.9.	STIMA DEI COSTI DELL'INTERVENTO	35

FRI-ELOFANTO

PROGETTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.10.	CALCOLO DEI PROVENTI ANNUI DERIVANTI DALLA VALORIZZAZIONE DELL'ENERGIA PRODOTTA	36
5.11.	DISMISSIONE DEL PROGETTO	3€
5.11.1	.MEZZI D'OPERA RICHIESTI DALLE OPERAZIONI	37
5.11.2	.GESTIONE DEI RIFIUTI	37
5.12.	RIPRISTINO DELLO STATO DEI LUOGHI	38
6. ST	IMA DEI COSTI DI DISMISSIONE DELL'IMPIANTO E DI RIPRISTINO DELLO STATO DEI LUOGHI	39
6.1.	STIMA DEI COSTI DI DISMISSIONE E DI RIPRISTINO	39
6.2.	CRONOPROGRAMMA DELLE FASI ATTUATIVE DI DISMISSIONE	39
6.3.	IMPEGNO ALLA DISMISSIONE DELL'IMPIANTO	40
7. AN	IALISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE	40
7.1.	SVILUPPO SOCIO-ECONOMICO	40
	GENERAZIONE DI POSTI DI LAVORO	
7.3.	PROMOZIONE TURISTICA	40
8. EL	ENCO DELLE AUTORIZZAZIONI, INTESE, CONCESSIONI, LICENZE, PARERI, NULLA OSTA E ASSE	NSI
СОМ	UNQUE DENOMINATI, GIÀ ACQUISITI O DA ACQUISIRE AI FINI DELLA REALIZZAZIONE	ΞΕ
DELL	'ESERCIZIO DELL'OPERA O INTERVENTO	41

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

PREMESSA

Scopo del presente documento è la redazione della redazione tecnica finalizzato all'ottenimento dei permessi necessari alla costruzione e all'esercizio dell'impianto di produzione di energia rinnovabile da fonte eolica denominato "Ofanto", costituito da n° 7 aerogeneratori, per una potenza massima complessiva di 49 MW, nei comuni di Cerignola (FG) e Trinitapoli (BT) con relative opere connesse ed infrastrutture indispensabili nei comuni di Cerignola (FG) e Trinitapoli (BT), collegato alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV in antenna su una futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra – esce alla linea RTN a 380 kV "Foggia – Palo del Colle", ubicata nel comune Cerignola (FG), nel seguito definito il "Progetto". In particolare, con il termine "Progetto" si fa riferimento all'insieme di: Impianto Eolico, costituito da n° 7 aerogeneratori, Cavidotto 30 kV, Stazione Elettrica d'Utenza, Impianto di Utenza per la Connessione e Impianto di Rete per la connessione.

Il progetto necessita di provvedimento Autorizzatorio Unico per la realizzazione ed esercizio dell'impianto, così come disciplinato dall'Art. 12 del D.lgs. 387/03 e dal D.M. 30 settembre 2010.

Il Progetto è compreso tra le tipologie di intervento riportate nell'Allegato II alla Parte Seconda, comma 2 del **D.Igs. n. 152 del 3/4/2006 e s.m.i.**– "impianti eolici per la produzione di energia elettrica sulla terraferma con potenza complessiva superiore a 30 MW", pertanto rientra tra le categorie di opere da sottoporre alla procedura di **Valutazione d'Impatto Ambientale di competenza** nazionale (autorità competente Ministero dell'Ambiente e della Sicurezza Energetica).

2. SCOPO

Scopo del presente documento è la <u>redazione</u>, ai sensi del <u>punto 2.2.b della D.G.R. 3029/2010 e del punto 4.2.7 della D.D. 1/2011 "Istruzioni Tecniche", della <u>relazione tecnica</u> finalizzata all'ottenimento dei permessi necessari alla realizzazione dell'impianto di produzione di energia rinnovabile da fonte eolica denominato "Ofanto", costituito da n° 7 aerogeneratori, per una potenza massima complessiva di 49 MW, nel comune di Cerignola (FG), che descrive:</u>

- i dati generali del proponente comprendenti, nel caso di impresa, copia di certificato camerale;
- la descrizione delle caratteristiche della fonte utilizzata, con l'analisi della producibilità attesa, ovvero delle modalità di approvvigionamenti; nello specifico, per gli impianti eolici andranno descritte le caratteristiche anemometriche del sito, le modalità e la durata dei rilievi (non inferiore ad un anno) e le risultanze sulle ore equivalenti annue di funzionamento;
- la descrizione dell'intervento, delle fasi, dei tempi e delle modalità di esecuzione dei complessivi lavori previsti, del piano di dismissione degli impianti e di ripristino dello stato dei luoghi;
- una stima dei costi di dismissione dell'impianto e di ripristino dello stato dei luoghi e delle misure di reinserimento e recupero ambientale proposte;
- un'analisi delle possibili ricadute sociali, occupazionali ed economiche dell'intervento a livello locale per gli impianti di potenza superiore ad 1 megawatt;
- un elenco delle autorizzazioni, intese, concessioni, licenze, pareri, nulla osta e assensi comunque denominati, già acquisiti o da acquisire ai fini della realizzazione e dell'esercizio dell'opera o intervento.

3. PROPONENTE

La società proponente è la Fri-El Ofanto S.r.I., con sede legale Piazza del Grano 3, 39100 Bolzano (BZ). Il Legale Rappresentante della Società è il Sig. Ernst Gostner, nato a Bolzano il 05 gennaio 1962.

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

La società FRI-EL, attiva nel settore sin dal 2002, si colloca tra i principali produttori italiani di energia da fonte eolica grazie anche alla collaborazione con partner internazionali. Il gruppo dispone attualmente di 28 parchi eolici di cui n.26 nel territorio italiano, n. 1 parco eolico in Bulgaria e n.1 in Spagna, per una capacità complessiva installata di 941 MW.

Inoltre, il gruppo gestisce 21 impianti idroelettrici, un impianto a biomassa solida e una delle centrali termoelettriche a biomassa liquida più grandi d'Europa. Le attività e le principali competenze del gruppo comprendono tutte le fasi di progettazione, costruzione, produzione e vendita di energia elettrica da fonti rinnovabili, includendo l'analisi e la valutazione del paesaggio e il processo di approvazione.

Si allega copia del certificato camerale.

4. DESCRIZIONE DELLE CARATTERISTICHE DELLA FONTE UTILIZZATA

4.1. CARATTERISTICHE ANEMOMETRICHE DEL SITO

Il parametro fondamentale, relativamente all'impianto di produzione di energia elettrica da fonte rinnovabile eolica è costituito dal regime anemometrico dell'area in cui esso si inserisce.

È infatti su di quest'ultimo che si basano i criteri stessi di individuazione del sito e la progettazione del parco eolico nella sua interezza. La caratteristica di un sito di essere capace di ospitare un impianto eolico è intrinsecamente legata a due fattori distinti:

- Ventosità del sito di installazione:
- Corretta ubicazione degli aerogeneratori e delle turbine più performanti per il tipo di zona.

In particolare, di seguito, si riporta il grafico che riassume i principali parametri anemologici.

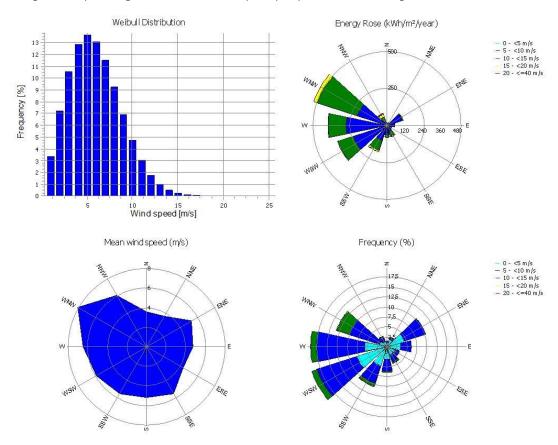


Figura 1 - Rosa dei venti espressa sia in termini di frequenza che in termini di energia

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

4.2. STIMA DELLA PRODUCIBILITÁ ATTESA

Nella tabella seguente viene mostrata la produzione netta per ogni aerogeneratore del parco. Le ore equivalenti sono il rapporto tra la produzione annua netta e la potenza nominale dell'aerogeneratore.

Aerogeneratore	Produzione netta [MWh]	Potenza nominale [MW]	Ore equivalenti [h]
WTG 1	15.292	6,6	2317
WTG 2	14.909	6,6	2259
WTG 3	15.422	6,6	2337
WTG 4	13.919	6,6	2109
WTG 5	13.883	6,6	2103
WTG 6	13.032	6,6	1975
WTG 7	13.393	6,6	2029

Tabella 1 - Produzione netta e ore equivalenti

Nella tabella seguente viene riportata la stima della produzione energetica annuale del parco. La produzione seguente rappresenta la stima centrale annuale che si otterrebbe dopo 10 anni operativi.

N° turbine	7
Potenza nominale	49 MW
Produzione lorda	110,20 GWh/anno
Perdite	9,1%
Produzione netta	99,8 GWh
Ore equivalenti	2161 h

Tabella 2 - Stima della produzione energetica annuale del parco eolico

La produzione netta rappresenta l'effettiva produzione energetica a valle dell'impianto che viene contabilizzata dal gestore della rete. Nella tabella seguente vengono elencate le potenziali perdite che agiscono sull'impianto.

Wake effect	-1,4%
Availability WTGs	-2,0%
Avalability Grid, Substation and BoP	-0,5%
Electrical losses	-2,0%
Power Curve Adjustment	-1,0%
High Temperature Shut Down	-0,2%
Enviromental (Icing)	-0,3%
High Wind Hysteresis	-0,2%
Grid curtailment	-1,5%
Total	-9,1%

Tabella 3 - Sorgenti di perdita

Wake Effect: sono gli effetti scia ovvero le perdite aerodinamiche causate dagli aerogeneratori stessi che implicano una diminuzione della velocità del vento dietro le turbine. Il modello di calcolo dell'effetto scia utilizzato è il N.O. Jensen.

Availability WTGs: rappresenta le perdite causate dallo spegnimento degli aerogeneratori dovute alla manutenzione ordinaria.

Availability Grid, Substation and BoP: rappresenta le perdite causate dalla manutenzione ordinaria sulla rete elettrica del parco.

Electrical Loss: sono le perdite elettriche dovute per effetto Joule causate dai cavidotti e dall'impianto della Stazione elettrica di Utenza 150/30 kV.

Power Curve Adjustment: la curva di potenza fornita dal costruttore viene generalmente misurata su terreni e condizioni climatologiche diverse dal sito dove viene installata. Tipicamente si riscontrano nell'aerogeneratore prestazioni inferiori che possono essere contabilizzate in una perdita di circa l'1%.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

High Temperature Shut Down: sono le perdite dovute dallo spegnimento automatico degli aerogeneratori causato dal raggiungimento di temperature elevate in navicella.

Enviromental: perdite dovute a eventi climatici quali ghiaccio, neve, sabbia, ecc...

High Wind Hysteresis: perdita dovuta al tempo di isteresi che un aerogeneratore impiega per riattivarsi dopo essere entrato in stallo a causa di venti che superano la velocità massima di operatività dell'aerogeneratore.

Grid Curtailment: perdite dovute alle riduzioni di potenza richieste dal gestore della rete.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5. DESCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MODALITÀ DI ESECUZIONE DEI COMPLESSIVI LAVORI PREVISTI, DEL PIANO DI DISMISSIONE DEGLI IMPIANTI E DI RIPRISTINO DELLO STATO DEI LUOGHI

5.1. DESCRIZIONE DELL'INTERVENTO E MODALITA' DI ESECUZIONE

5.1.1. DATI GENERALI D'IMPIANTO

Il progetto prevede:

- n. 7 aerogeneratori, ciascuno con potenza massima di 7,00 MW, rotore tripala a passo variabile, diametro massimo pari a 170 m e altezza complessiva massima fuori terra pari a 200 m;
- viabilità di accesso, con carreggiata di larghezza pari a 5,00 m;
- n. 7 piazzole di costruzione, necessarie per accogliere temporaneamente sia i componenti delle macchine che i mezzi necessari al sollevamento dei vari elementi, di dimensioni di circa 3.500 mq;
- rete di elettrodotto interrato a 30 kV di collegamento interno fra gli aerogeneratori;
- rete di elettrodotto interrato costituito da dorsali a 30 kV di collegamento tra gli aerogeneratori e la Stazione elettrica di Utenza 150/30 kV;
- una Stazione Elettrica di Utenza di Trasformazione 150/30 kV completa di relative apparecchiature ausiliarie (quadri, sistemi di controllo e protezione, trasformatore ausiliario), ubicata all'interno del comune di Cerignola (FG);
- L'Impianto di utenza per la connessione, nel dettaglio costituito dallo stallo di trasformazione allocato all'interno della stazione elettrica di utenza, sbarra di condivisione, stallo destinato alla connessione verso la RTN ed un elettrodotto interrato a 150 kV di collegamento tra lo stallo destinato alla connessione verso la RTN e lo stallo arrivo cavo AT ubicato all'interno della futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra esce alla linea RTN a 380 kV "Foggia Palo del Colle" ubicata nel comune di Cerignola (FG).
- L'impianto di rete per la connessione condiviso con altri produttori, ubicato all'interno della futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra esce alla linea RTN a 380 kV "Foggia Palo del Colle";
- area cantiere temporanea.

5.1.2. UBICAZIONE DEL PROGETTO

Il progetto prevede la realizzazione di un impianto di produzione di energia rinnovabile da fonte eolica denominato "Ofanto", costituito da n° 7 aerogeneratori, per una potenza totale pari a 49,00 MW realizzato nei comuni di Cerignola (FG) e Trinitapoli (BT) con relative opere connesse ed infrastrutture indispensabili nei comuni di Cerignola (FG) e Trinitapoli (BT), collegato alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV in antenna su una futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra – esce alla linea RTN a 380 kV "Foggia – Palo del Colle", ubicata nel comune Cerignola (FG).

Si riporta, di seguito, uno stralcio della corografia dell'area di impianto e si rimanda all'elaborato cartografico "DIV4NO6_ElaboratoGrafico_0_01 Corografia di inquadramento" dove viene riportato l'intero progetto.

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

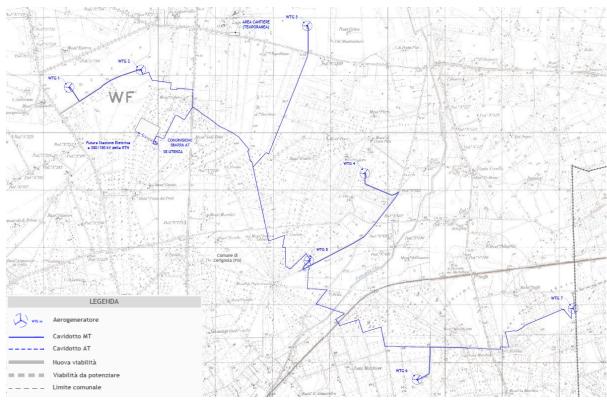


Figura 2 - Corografia d'inquadramento, fuori scala

Il tipo di aerogeneratore previsto per l'impianto in oggetto (aerogeneratore di progetto) è ad asse orizzontale con rotore tripala e una potenza massima di 7 MW, avente le caratteristiche principali di seguito riportate:

- rotore tripala a passo variabile, di diametro massimo pari a 170 m, posto sopravvento alla torre di sostengo, costituito da 3 pale generalmente in resina epossidica rinforzata con fibra di vetro e da mozzo rigido in acciaio;
- navicella in carpenteria metallica con carenatura in vetroresina e lamiera, in cui sono collocati il generatore elettrico, il moltiplicatore di giri, il convertitore elettronico di potenza, il trasformatore BT/MT e le apparecchiature idrauliche ed elettriche di comando e controllo:
- torre di sostegno tubolare troncoconica in acciaio;
- altezza complessiva massima fuori terra dell'aerogeneratore pari a 200,00 m;
- diametro massimo alla base del sostegno tubolare: 4,70 m;
- area spazzata massima: 22.697 m².

Nello specifico, il modello di aerogeneratore considerato è il seguente:

- Siemens Gamesa SG170 - HH 115m - 7 MW

L'Impianto (aerogeneratori, piazzole e viabilità d'accesso), il cavidotto MT, la Stazione elettrica di Utenza 150/30 kV, l'Impianto di Utenza per la Connessione e l'Impianto di Rete per la Connessione ricadono all'interno dei comuni di Cerignola (FG) e Trinitapoli (BT), sulle seguenti particelle catastali:

Cerignola: FOGLIO 77 Particelle 8; 12; 14; 36 FOGLIO 76 Particelle 412; 33; 411; 377; 378; 343; 342; 341; 364; 30; 511; 513; 218; 117;116; 556; 555; 553; 534; 651; 643 FOGLIO 91 Particelle 177; 190; 189; 203; FOGLIO 75 Particelle 564; 565; 3; 7; 196; 197; 198; 209; 199; 535; 542; 258; 162; 161; 159; 351;352; 395; 353; 160; 354; 158; 426; 157; 226; 550; 155; 156; 404; 405; 406; 407; 408; 409; 412; 411; 401; 291; 153; 410; 413; 290; 152; 289; 151; 150; 16; 149; 148; 147; 146; 145; 144; 143; 142; 269; 141; 140; 139; 288; 138; 661; 137; 210; 136; 135; 134; 702; 133; 132; 131; 266; 361; 356; 680; 360; 355; 50; 48; FOGLIO 74 Particelle 68; 71; 55; 21; 13; 46; 47; 41; 32; 33; 34; 43; 19; 39; 25; FOGLIO 73 Particelle 19;

aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7

Codifica Elaborato: 234305_D_R_0102 Rev. 00

160 FOGLIO 72 Particelle 73; 71; 69; 77; 72; 70; 76; 174; 80; 81; 144; 83; 137; 123; 136; 122; 84; 85; 86; 87; 116; 88; 112; 89; 90; 91; 92; 93; 29; 35; 176; 175; 36; 179; 175; 36; 179; 37; 30; 131; 127; 168; 31; 32; 33; 34; 13; 165; 3; 164; 166; 6; 145; 7; 139; 118, 8; 10; 163; 49; 128; 50; 51; 11; 142; 115; 12; 13; 14; 52; 53; 143; 54; 15; 16; 119; 135; 17; 19; 55; 56; 20; 21; 117; 130; 132; 22; 25; 133; 57; FOGLIO 32 Particelle 107; 90; 91; 108; FOGLIO 118 Particelle 332; 331; 330; 99; 26; 315; 299; 102; 101; 261; 262; 103; 264; 104; 327; 276; 105; 367; FOGLIO 120 Particelle 337; 338; 114; 49; 127; 223; 80; 163; 254; 79; 78; 225; 255; 256; 77; 154; 76; 257; 262; 258; 265; 259; 75; 74; 230; 202; 73; 261; 260; 273; 41; 263; 312; 316; 266; 264; 291; 314; 318; 84; 272; 271; 230; 18; 131; 299; 302; 206; 303; 128; 275; 276; 274; 91; 90; 245; 247, 248; 246; 289; 288; 229; 292; 281; 280; 89; 296; 309; 297; 205; 300; 310; 132, 85; 298; 129; 86; 133, 134; 87; 333, 334; 330; 328; 237; FOGLIO 122 Particelle 61; 60; FOLGIO 65 Particelle 32; 95; 78; 79; FOGLIO 67 Particelle 13; 84; 102; 101; 8; 74; 85; 51; FOGLIO 66 Particelle 31; 15; 41; 29; 26; 19; FOGLIO 69 Particelle 277; 274; 279; 84; 82, 87; 81; FOGLIO 119 Particelle 132; 113; 31; 104, 105; 103; 30; 52; 65; 28; 82; 80; 79; 42; 27; 26; 50; 25; 37; 36; 49; 23; 22; 21; 35; 20; 76; 88; 67; 68; 70; 102; FOGLIO 132 A: 1; 294; 12; 13; 330; 85; 84; 14; 15; 86; 16; 73; 189; 17; 18; 19; 122; 20; 74; 125; 298; 3; 191; 827; 441; 193; 443; 328; 769; 237; 429; 434; 235; 388; 438; 437; 387; 436, 435; 833; 835; 837; 839, 841; 843; 845; 847; 343; 344; 245; 244; 848; 247; FOGLIO: 133: Particelle 42; 41; 60; 40; 81; 56; 58; 123; 59; 58; 123; 59; 122; FOGLIO 132 Particelle 4; 771; 22; 88; 378; 379; 340; FOGLIO 127 Particelle 121; 122, 18; 232; 233; 231; 230; 207; 229; 228; 208; 227; 301; 226; 300; 224; 38; 236; 225; 223; 222; 8; 14; 217; 218; 10; 219; 220; 221; 25; FOGLIO 131 A Particelle 610; 609; 1; 177; 570; 205; 780; 69; 72; 747, 749; 752; 70; 571; 210; 2; 3; 486; 540; 541; 179; 183; 189; 192; 193; 185; 284; 285; 194; 195; 424; 422; 691; 429; 557; 426; 418; 431; 722; 423; 430; 414; 403; 416; 413; 428; 412; 419; 419; 512; 402; 411; 425; 511; 832; 536; 573; 488; 4; 178; 149; 249; 662; 661; 294; FOGLIO 131 C Particelle 15; 16; 119; 50; FOGLIO 128 Particelle 6; 81; 82; 10; 83; 84; 42; 121; 86; 85; 45; 14; 43; 47; 114; 115; 117; 96; 97; 100; 101; 106; 169; 170; 138; 171; 148; 156; 161; 162; 159; 165; 164; 163; 166; FOGLIO 129 Particelle 19; 98; FOGLIO 125 Particella 129; FOGLIO 150: Particelle 75; 146; 147; 87; 89; FOGLIO 204: Particelle 54; 229; FOGLIO 153: Particelle 142; 139; 141; 97; 51; FOGLIO 162: Particella 1; FOGLIO 62: Particella 1; FOGLIO 63: Particella 138; FOGLIO 19: Particelle 24; 28; 37; 80; FOGLIO 12: 122; Particelle 454; 120; 331; 46; FOGLIO 11: Particelle 1038; 1039

Trinitapoli: FOGLIO 3: Particelle 196; 38; 1003; 667; 668; 28; 1150; 199; 476; 669; 475; 999; 1000; 664; 665; 666; 29; 207; 884; 208; 882; 209; 210; 076; 30; 1069; 1064; 1065; 928; 929; 25; 542; 201; 490; 806; 640; 32; 1140; 1126; 631; 323; 792; 321; 320; 839; 766; 655; 826; 821; FOGLIO 97: Particelle 259; 194; 195; FOGLIO 96: Particella 101;

Si riportano di seguito le coordinate in formato UTM (WGS84), con i fogli e le particelle in cui ricade la fondazione degli aerogeneratori:

AEROGENERATORE	COORDINATE AEROGENERATORE UTM (WGS84) - FUSO 33		Identificativo catastale		
	Long. E [m]	Lat. N [m]	Comune	Foglio	Particella
WTG 01	573.377	4.580.616	Cerignola (FG)	77	12
WTG 02	574.629	4.580.919	Cerignola (FG)	77	12
WTG 03	577.530	4.581.686	Cerignola (FG)	32	90
WTG 04	578.533	4.579.117	Cerignola (FG)	66	19
WTG 05	577.558	4.577.593	Cerignola (FG)	120	271-316- 318
WTG 06	579.448	4.575.524	Cerignola (FG)	131	414-426
WTG 07	582.170	4.576.762	Cerignola (FG)	128	163

Tabella 5 - Coordinate in formato UTM (WGS84) e identificativo catastale delle fondazioni degli aerogeneratori

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.2. MOTIVAZIONE SCELTA PROGETTUALE

Il progetto proposto è relativo alla realizzazione di un impianto per la produzione di energia elettrica da fonte rinnovabile, nella fattispecie eolico.

Gli impianti eolici, alla luce del continuo sviluppo di nuove tecnologie per la produzione di energia da fonti rinnovabili, rappresentano oggi una realtà concreta in termini di disponibilità di energia elettrica soprattutto in aree geografiche come quella interessata dal progetto in trattazione che, grazie alla loro particolare vocazione, sono in grado di garantire una sensibile diminuzione del regime di produzione delle centrali termoelettriche tradizionali, il cui funzionamento prevede l'utilizzo di combustibile di tipo tradizionale (gasolio o combustibili fossili).

Pertanto, il servizio offerto dall'impianto proposto nel progetto in esame consiste nell'aumento della quota di energia elettrica prodotta da fonte rinnovabile e nella conseguente diminuzione delle emissioni in atmosfera di anidride carbonica dovute ai processi delle centrali termoelettriche tradizionali.

Per valutare quantitativamente la natura del servizio offerto, possono essere considerati i valori specifici delle principali emissioni associate alla generazione elettrica tradizionale (fonte IEA):

CO2 (anidride carbonica)	496 g/kWh
S02 (anidride solforosa)	0,93 g/kWh
NO2 (ossidi di azoto)	0,58 g/kWh
Polveri	0.029 g/kWh

Tabella 4 - Valori specifici delle emissioni associate alla generazione elettrica tradizionale - Fonte IEA

Sulla scorta di tali valori ed alla luce della producibilità prevista per l'impianto proposto, è possibile riassumere come di seguito le prestazioni associabili al parco eolico in progetto:

- Produzione totale annua 99.800.000 kWh/anno;
- Riduzione emissioni CO2 49.501 t/anno circa;
- Riduzione emissioni SO2 92,81 t/anno circa;
- Riduzione emissioni NO2 57,88 t/anno circa;
- Riduzioni Polveri 2,89 t/anno circa.

Data la previsione di immettere in rete l'energia generata dall'impianto in progetto, risulta significativo quantificare la copertura offerta della domanda energetica in termini di utenze familiari servibili, considerando per quest'ultime un consumo medio annuo di 1.800 kWh.

Quindi, essendo la producibilità stimata per l'impianto in progetto, pari a 99.800.000 kWh/anno, è possibile prevedere il soddisfacimento del fabbisogno energetico di circa 55.445 famiglie circa. Tale grado di copertura della domanda acquista ulteriore valenza alla luce degli sforzi che al nostro Paese sono stati chiesti dal collegio dei commissari della Commissione Europea al pacchetto di proposte legislative per la lotta al cambiamento climatico.

Alla base di alcune scelte caratterizzanti l'iniziativa proposta è possibile riconoscere considerazioni estese all'intero ambito territoriale interessato, tanto a breve quanto a lungo termine.

Innanzitutto, sia breve che a lungo termine, appare innegabilmente importante e positivo il riflesso sull'occupazione che la realizzazione del progetto avrebbe a scala locale. Infatti, nella fase di costruzione, per un efficiente gestione dei costi, sarebbe opportuno reclutare in loco buona parte della manodopera e mezzi necessari alla realizzazione delle opere civili previste. Analogamente, anche in fase di esercizio, risulterebbe efficiente organizzare e formare sul territorio professionalità e maestranze idonee al corretto espletamento delle necessarie operazioni di manutenzione.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Per quanto riguarda le infrastrutture di servizio considerate in progetto, quella eventualmente oggetto degli interventi migliorativi più significativi, e quindi fin da ora inserita in un'ottica di pubblico interesse, è rappresentata dall'infrastruttura viaria. Infatti, si prende atto del fatto che gli eventuali miglioramenti della viabilità di accesso al sito (ad esempio il rifacimento dello strato intermedio e di usura di viabilità esistenti bitumate) risultano percepibili come utili forme di adeguamento permanente della viabilità pubblica, a tutto vantaggio della sicurezza della circolazione stradale e dell'accessibilità di luoghi adiacenti al sito di impianto più efficacemente valorizzabili nell'ambito delle attività agricole attualmente in essere.

5.3. OBIETTIVI DEL PROGETTO

Una volta realizzato, l'impianto consentirà di conseguire i seguenti risultati:

- immissione nella rete dell'energia prodotta tramite fonti rinnovabili quali l'energia del vento;
- impatto ambientale relativo all'emissioni atmosferiche locale nullo, in relazione alla totale assenza di emissioni inquinanti, contribuendo così alla riduzione delle emissioni di gas climalteranti in accordo con quanto ratificato a livello nazionale all'interno del Protocollo di Kyoto;
- sensibilità della committenza sia ai problemi ambientali che all'utilizzo di nuove tecnologie ecocompatibili.
- miglioramento della qualità ambientale e paesaggistica del contesto territoriale su cui ricade il progetto.

5.4. LAYOUT DI PROGETTO

L'ottimizzazione del layout di progetto, circa gli aspetti attinenti all'impatto ambientale, paesaggistico, la trasformazione antropica del suolo, la producibilità e l'affidabilità è stato ottenuto partendo dall'analisi dei seguenti fattori:

- percezione della presenza dell'impianto rispetto al paesaggio circostante;
- orografia dell'area;
- condizioni geologiche dell'area;
- presenza di vincoli ambientali;
- ottimizzazione della configurazione d'impianto (conformazione delle piazzole, morfologia dei percorsi stradali e dei cavidotti);
- presenza di strade, linee elettriche ed altre infrastrutture;
- producibilità;
- micrositing, verifiche turbolenze indotte sugli aerogeneratori.

In generale, si può dunque affermare che la disposizione del Progetto sul terreno dipende oltre che da considerazioni basate su criteri di massimo rendimento dei singoli aerogeneratori, anche da fattori legati alla presenza di vincoli ostativi, alla natura del sito, all'orografia, all'esistenza o meno delle strade, piste, sentieri, alla presenza di fabbricati e, non meno importante, da considerazioni relative all'impatto paesaggistico dell'impianto nel suo insieme.

Con riferimento ai fattori suddetti si richiamano alcuni criteri di base utilizzati nella scelta delle diverse soluzioni individuate, al fine di migliorare l'inserimento del Progetto nel territorio:

- analisi dalla pianificazione territoriale ed urbanistica, avendo avuto cura di evitare di localizzare gli aerogeneratori all'interno e in prossimità delle aree soggette a tutela ambientale e paesaggistica;
- limitazione delle opere di scavo/riporto;
- massimo utilizzo della viabilità esistente; realizzazione della nuova viabilità rispettando l'orografia del terreno e secondo la tipologia esistente in zona o attraverso modalità di realizzazione che tengono conto delle caratteristiche percettive generali del sito;
- impiego di materiali che favoriscano l'integrazione con il paesaggio dell'area per tutti gli interventi che riguardino manufatti (strade, cabine, muri di contenimento, ecc.);

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- attenzione alle condizioni determinate dai cantieri e ripristino della situazione "ante operam" delle aree occupate. Particolare riguardo alla reversibilità e rinaturalizzazione o rimboschimento sia delle aree occupate dalle opere da dismettere che dalle aree occupate temporaneamente da camion e autogru nella fase di montaggio degli aerogeneratori.

A tal proposito, si richiama l'Allegato 4 "elementi per il corretto inserimento nel paesaggio e sul territorio" del D.M.10/09/10 "Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili". Il pieno rispetto delle misure di mitigazione individuate dal proponente in conformità al suddetto allegato, costituisce un elemento di valutazione favorevole del Progetto. Come si mostrerà meglio nello Studio di Impatto Ambientale, sono state considerate le varie misure di mitigazione riportate nel suddetto allegato, al fine di un miglior inserimento del Progetto nel territorio. Tra queste misure di mitigazione, ve ne sono alcune da tener in considerazione nella configurazione del layout dell'impianto da realizzare.

In particolare, le distanze di cui si si è cercato di tener conto, compatibilmente con i vincoli ambientali, le strade esistenti, l'orografia, ..., sono riportate nell'elenco sintetizzato di seguito:

- Distanza minima tra macchine di 5-7 diametri sulla direzione prevalente del vento e di 3-5 diametri sulla direzione perpendicolare a quella prevalente del vento (punto 3.2. lett. n).
- Minima distanza di ciascun aerogeneratore da unità abitative munite di abitabilità, regolarmente censite e stabilmente abitate, non inferiore a 200 m (punto 5.3 lett. a).
- Minima distanza di ciascun aerogeneratore dai centri abitati individuati dagli strumenti urbanistici vigenti non inferiore a 6 volte l'altezza massima dell'aerogeneratore (punto 5.3 lett. b).
- Distanza di ogni turbina eolica da una strada provinciale o nazionale superiore all'altezza massima dell'elica comprensiva del rotore e comunque non inferiore a 150 m dalla base della torre (punto 7.2 lett.a).

Si evidenzia che sono rispettati i punti 3.2. lett. n, 5.3 lett. a , 5.3 lett. b , 7.2 lett. a delle Linee Guida sopra elencati.

Sono infatti rispettate le distanze minime vincolanti tra le macchine, gli aerogeneratori si trovano a distanze maggiori di 200 m da unità abitative regolarmente censite, sono rispettate le distanze dai centri abitati e dalle strade provinciali o nazionali.

5.5. NORME TECNICHE DI RIFERIMENTO

La realizzazione dell'opera è subordinata alla propria autorizzazione e pertanto la documentazione di progetto è stata redatta, innanzitutto, in funzione della procedura autorizzativa prevista per il tipo di impianto in trattazione, regolamentata dalla seguente normativa:

- Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" e ss.mm.ii.;
- Decreto Legislativo 29 dicembre 2003, n. 387 Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità.
- D.M del 10 settembre 2010 "Linee guida nazionali per l'autorizzazione degli impianti alimentati da fonti rinnovabili".

Le soluzioni tecniche previste nell'ambito del progetto definitivo proposto sono state valutate sulla base della seguente normativa tecnica:

- T.U. 17 gennaio 2018 "Norme tecniche per le costruzioni";
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";
- DPCM 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti";

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- Decreto 29 maggio 2008, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti";
- Decreto Interministeriale 21 marzo 1988, n. 449, "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne";
- Decreto Interministeriale 16 gennaio 1991, n. 1260, "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- Decreto Interministeriale del 05/08/1998, "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche aeree esterne";

Vengono, infine, elencati, i principali riferimenti normativi relativi ad apparecchiature e componenti d'impianto:

- IEC 61400-1 "Design requirements"
- IEC 61400-2 "Design requirements for small wind turbines"
- IEC 61400-3 "Design requirements for offshore wind turbines"
- IEC 61400-4 "Gears"
- IEC 61400-5 "Wind turbine rotor blades"
- IEC 61400-11 "Acoustic noise measurement techniques"
- IEC 61400-12 "Wind turbine power performance testing"
- IEC 61400-13 "Measurement of mechanical loads"
- IEC 61400-14 "Declaration of apparent sound power level and tonality values"
- IEC 61400-21 "Measurement and assessment of power quality characteristics of grid connected wind turbines"
- IEC 61400-22 "Conformity testing and certification"
- IEC 61400-23 "Full-scale structural testing of rotor blades"
- IEC 61400-24 "Lightning protection"
- IEC 61400-25 "Communication protocol"
- IEC 61400-27 "Electrical simulation models for wind power generation (Committee Draft)"
- CNR 10011/86 "Costruzioni in acciaio" Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;
- Eurocodice 1 Parte 1 "Basi di calcolo ed azioni sulle strutture Basi di calcolo";
- Eurocodice 8 Parte 5 "Indicazioni progettuali per la resistenza sismica delle strutture".
- Eurocodice 3 UNI EN 1993-1-1:2005- "Progettazione delle strutture in acciaio" Parte 1-1.
- Eurocodice 3 UNI EN 1993-1-5:2007- "Progettazione delle strutture in acciaio" Parte 1-5.
- Eurocodice 3 UNI EN 1993-1-6:2002- "Progettazione delle strutture in acciaio" Parte 1-6.
- Eurocodice 3 UNI EN 1993-1-9:2002- "Progettazione delle strutture in acciaio" Parte 1-9.
- CEI 0-2 "Guida per la definizione della documentazione di progetto degli impianti elettrici"
- CEI 11-4, "Esecuzione delle linee elettriche esterne", quinta edizione, 1998-09;
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", seconda edizione, · 2002- 06;
- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", seconda edizione, 2008-09:
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01;
- CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto", terza edizione, 1997:12;
- CEI 106-11, "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo", prima edizione, 2006:02;

connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- CEI EN 61936-1, "Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni", prima edizione, 2011-07;
- CEI EN 50522, "Messa a terra degli impianti elettrici con tensione superiore a 1 kV in c.a.", prima edizione, 2011-07;
- CEI 33-2, "Condensatori di accoppiamento e divisori capacitivi", terza edizione, 1997;
- CEI 36-12, "Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V", prima edizione, 1998;
- CEI 57-2, "Bobine di sbarramento per sistemi a corrente alternata", seconda edizione, 1997;
- CEI 57-3, "Dispositivi di accoppiamento per impianti ad onde convogliate", prima edizione, 1998;
- CEI 64-2, "Impianti elettrici in luoghi con pericolo di esplosione" quarta edizione", 2001;
- CEI 64-8/1, "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua", sesta edizione, 2007;
- CEI EN 50110-1-2, "Esercizio degli impianti elettrici", prima edizione, 1998-01;
- CEI EN 60076-1, "Trasformatori di potenza", Parte 1: Generalità, terza edizione, 1998;
- CEI EN 60076-2, "Trasformatori di potenza Riscaldamento", Parte 2: Riscaldamento, terza edizione, 1998;
- CEI EN 60137, "Isolatori passanti per tensioni alternate superiori a 1000 V", quinta edizione, 2004;
- CEI EN 60721-3-4, "Classificazioni delle condizioni ambientali", Parte 3: Classificazione dei gruppi di parametri ambientali e loro severità, Sezione 4: Uso in posizione fissa in luoghi non protetti dalle intemperie, seconda edizione, 1996:
- CEI EN 60721-3-3, "Classificazioni delle condizioni ambientali e loro severità", Parte 3: Classificazione dei gruppi di parametri ambientali e loro severità, Sezione 3: Uso in posizione fissa in luoghi protetti dalle intemperie, terza edizione, 1996:
- CEI EN 60068-3-3, "Prove climatiche e meccaniche fondamentali", Parte 3: Guida Metodi di prova sismica per apparecchiature, prima edizione, 1998;
- CEI EN 60099-4, "Scaricatori ad ossido di zinco senza spinterometri per reti a corrente alternata", Parte 4: Scaricatori ad ossido metallico senza spinterometri per reti elettriche a corrente alternata, seconda edizione, 2005;
- CEI EN 60129, "Sezionatori e sezionatori di terra a corrente alternata a tensione superiore a 1000 V", 1998;
- CEI EN 60529, "Gradi di protezione degli involucri", seconda edizione, 1997;
- CEI EN 62271-100, "Apparecchiatura ad alta tensione", Parte 100: Interruttori a corrente alternata ad alta tensione, sesta edizione, 2005;
- CEI EN 62271-102, "Apparecchiatura ad alta tensione", Parte 102 : Sezionatori e sezionatori di terra a corrente alternata per alta tensione, prima edizione, 2003;
- CEI EN 60044-1, "Trasformatori di misura", Parte 1: Trasformatori di corrente, edizione quarta, 2000;
- CEI EN 60044-2, "Trasformatori di misura", Parte 2: Trasformatori di tensione induttivi, edizione quarta, 2001;
- CEI EN 60044-5, "Trasformatori di misura", Parte 5: Trasformatori di tensione capacitivi, edizione prima, 2001;
- CEI EN 60694, "Prescrizioni comuni per l'apparecchiatura di manovra e di comando ad alta tensione", seconda edizione 1997:
- CEI EN 61000-6-2, "Compatibilità elettromagnetica (EMC)", Parte 6-2: Norme generiche Immunità per gli ambienti industriali, terza edizione, 2006;
- CEI EN 61000-6-4, "Compatibilità elettromagnetica (EMC)", Parte 6-4: Norme generiche Emissione per gli ambienti industriali, seconda edizione, 2007;
- UNI EN 54, "Sistemi di rivelazione e di segnalazione d'incendio", 1998;
- UNI 9795, "Sistemi automatici di rilevazione e di segnalazione manuale d'incendio", 2005.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305 D R 0102 Rev. 00

5.6. CRITERI GENERALI DI PROGETTAZIONE

È prassi consolidata far riferimento alla normativa internazionale IEC 61400-1 "Design requirements". Questa norma fornisce prescrizioni per la progettazione degli aerogeneratori col fine di assicurarne l'integrità tecnica e, quindi, un adeguato livello di protezione di persone, animali e cose contro tutti i pericoli di danneggiamento che possono accorrere nel corso del ciclo di vita degli stessi. Si deve sottolineare che tutte le prescrizioni della serie di norme IEC 61400 non sono obbligatorie; è chiaro, d'altro canto, che i modelli di aerogeneratori che vengono prodotti secondo gli standard in essa contenuti possono ben definirsi come quelli più sicuri sul mercato.

Si precisa che la progettazione e le verifiche di una struttura in Italia sono effettuate, ai sensi del D.M. 17 gennaio 2018 del Ministero delle Infrastrutture e dei Trasporti (G.U. 20 febbraio 2018 n. 8 - Suppl. Ord.) "Norme tecniche per le Costruzioni" (di seguito NTC2018) e della Circolare 21 gennaio 2019 n. 7 del Ministero delle Infrastrutture e dei Trasporti (G.U. 11 febbraio 2019 n.5–Suppl.Ord.) "Istruzioni per l'applicazione dell' Aggiornamento delle Norme Tecniche delle Costruzioni" di cui al D.M. 17 gennaio 2018".

Per quanto non diversamente specificato nella suddetta norma, per quanto riportato al capitolo 12 delle NTC 2018, si intendono coerenti con i principi alla base della stessa, le indicazioni riportate nei seguenti documenti:

- Eurocodici strutturali pubblicati dal CEN, con le precisazioni riportate nelle Appendici Nazionali;
- Norme UNI EN armonizzate i cui riferimenti siano pubblicati su Gazzetta Ufficiale dell'Unione Europea;
- Norme per prove su materiali e prodotti pubblicate da UNI.

Inoltre, a integrazione delle presenti norme e per quanto con esse non in contrasto, possono essere utilizzati i documenti di seguito indicati che costituiscono riferimenti di comprovata validità:

- Istruzioni del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale e successive modificazioni del Ministero per i Beni e le Attività Culturali, previo parere del Consiglio Superiore dei Lavori Pubblici sul documento stesso;
- Istruzioni e documenti tecnici del Consiglio Nazionale delle Ricerche (C.N.R.).

Per quanto non trattato nella presente norma o nei documenti di comprovata validità sopra elencati, possono essere utilizzati anche altri codici internazionali; è responsabilità del progettista garantire espressamente livelli di sicurezza coerenti con quelli delle presenti Norme tecniche.

5.6.1. CARATTERISTICHE TECNICHE DEL PROGETTO

5.6.1.1. AEROGENERATORI

Un aerogeneratore o una turbina eolica trasforma l'energia cinetica posseduta dal vento in energia elettrica senza l'utilizzo di alcun combustibile e passando attraverso lo stadio di conversione in energia meccanica di rotazione effettuato dalle pale. Come illustrato meglio di seguito, al fine di sfruttare l'energia cinetica contenuta nel vento, convertendola in energia elettrica una turbina eolica utilizza diversi componenti sia meccanici che elettrici. In particolare, il rotore (pale e mozzo) estrae l'energia dal vento convertendola in energia meccanica di rotazione e costituisce il "motore primo" dell'aerogeneratore, mentre la conversione dell'energia meccanica in elettrica è effettuata grazie alla presenza di un generatore elettrico.

Un aerogeneratore richiede una velocità minima del vento (cut-in) di 2-4 m/s ed eroga la potenza di progetto ad una velocità del vento di 10-14 m/s. A velocità elevate, generalmente di 20-25 m/s (cut-off) la turbina viene arrestata dal sistema frenante per ragioni di sicurezza. Il blocco può avvenire con veri e propri freni meccanici che arrestano il rotore o, per le pale ad inclinazione variabile "nascondendo" le stesse al vento mettendole nella cosiddetta posizione a "bandiera".

Le turbine eoliche possono essere suddivise in base alla tecnologia costruttiva in due macro-famiglie:

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- turbine ad asse verticale VAWT (Vertical Axis Wind Turbine),
- turbine ad asse orizzontale HAWT (Horizontal Axis Wind Turbine).

Le turbine VAWT costituiscono l'1% delle turbine attualmente in uso, mentre il restante 99% è costituito dalle HAWT. Delle turbine ad asse orizzontale, circa il 99% di guelle installate è a tre pale mentre l'1% a due pale.

L'aerogeneratore eolico ad asse orizzontale è costituito da una torre tubolare in acciaio che porta alla sua sommità la navicella, all'interno della quale sono alloggiati l'albero di trasmissione lento, il moltiplicatore di giri, l'albero veloce, il generatore elettrico ed i dispositivi ausiliari. All'estremità dell'albero lento, corrispondente all'estremo anteriore della navicella, è fissato il rotore costituito da un mozzo sul quale sono montate le pale. La navicella può ruotare rispetto al sostegno in modo tale da tenere l'asse della macchina sempre parallela alla direzione del vento (movimento di imbardata); inoltre è dotata di un sistema di controllo del passo che, in corrispondenza di alta velocità del vento, mantiene la produzione di energia al suo valore nominale indipendentemente dalla temperatura e dalla densità dell'aria; in corrispondenza invece di bassa velocità del vento, il sistema a passo variabile e quello di controllo ottimizzano la produzione di energia scegliendo la combinazione ottimale tra velocità del rotore e angolo di orientamento delle pale in modo da avere massimo rendimento.

Torre di sostegno

La torre è caratterizzata da quattro moduli tronco conici in acciaio ad innesto. I tronconi saranno realizzati in officina quindi trasportati e montati in cantiere. Alla base della torre ci sarà una porta che permetterà l'accesso ad una scala montata all'interno, dotata ovviamente di opportuni sistemi di protezione (parapetti). La torre sarà protetta contro la corrosione da un sistema di verniciatura multistrato. Allo scopo di ridurre al minimo la necessità di raggiungere la navicella tramite le scale, il sistema di controllo del convertitore e di comando dell'aerogeneratore saranno sistemati in quadri montati su una piattaforma separata alla base della torre. L'energia elettrica prodotta verrà trasmessa alla base della torre tramite cavi installati su una passerella verticale ed opportunamente schermati. Per la trasmissione dei segnali di controllo alla navicella saranno installati cavi a fibre ottiche. Torri, navicelle e pali saranno realizzati con colori che si inseriscono armonicamente nell'ambiente circostante, fatte salve altre tonalità derivanti da disposizioni di sicurezza.

Pale

Le pale sono in fibra di vetro rinforzata con resina epossidica e fibra di carbonio. Esse sono realizzate con due gusci ancorati ad una trave portante e sono collegate al mozzo per mezzo di cuscinetti che consentono la rotazione della pala attorno al proprio asse (pitch system). I cuscinetti sono sferici a 4 punte e vengono collegati al mozzo tramite bulloni.

Navicella

La navicella ospita al proprio interno la catena cinematica che trasmette il moto dalle pale al generatore elettrico. Una copertura in fibra di vetro protegge i componenti della macchina dagli agenti atmosferici e riduce il rumore prodotto a livelli accettabili. Sul retro della navicella è posta una porta attraverso la quale, mediante l'utilizzo di un palanco, possono essere rimossi attrezzature e componenti della navicella. L'accesso al tetto avviene attraverso un lucernario. La navicella, inoltre, è provvista di illuminazione.

Sistema frenante

Il sistema frenante, attraverso la "messa in bandiera" delle pale e l'azionamento del freno di stazionamento dotato di sistema idraulico, permette di arrestare all'occorrenza la rotazione dell'aerogeneratore. È presente anche un sistema di frenata d'emergenza a ganasce che, tramite attuatori idraulici veloci, ferma le pale in brevissimo tempo. Tale frenata, essendo causa di importante fatica meccanica per tutta la struttura della torre, avviene solo in caso di avaria grave, di black-out della rete o di intervento del personale attraverso l'azionamento degli appositi pulsanti di emergenza.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Rotore

Il rotore avrà una velocità di rotazione variabile. Combinato con un sistema di regolazione del passo delle pale, fornisce la migliore resa possibile adattandosi nel contempo alle specifiche della rete elettrica (accoppiamento con generatore) e minimizzando le emissioni acustiche. Le pale, a profilo alare, sono ottimizzate per operare a velocità variabile e saranno protette dalle scariche atmosferiche da un sistema parafulmine integrato. L'interfaccia tra il rotore ed il sistema di trasmissione del moto è il mozzo. I cuscinetti delle pale sono imbullonati direttamente sul mozzo, che sostiene anche le flange per gli attuatori di passo e le corrispondenti unità di controllo. Il gruppo mozzo è schermato secondo il principio della gabbia di Faraday, in modo da fornire la protezione ottimale ai componenti elettronici installati al suo interno. Il mozzo sarà realizzato in ghisa fusa a forma combinata di stella e sfera, in modo tale da ottenere un flusso di carico ottimale con un peso dei componenti ridotto e con dimensioni esterne contenute.

Durante il funzionamento sistemi di controllo della velocità e del passo interagiscono per ottenere il rapporto ottimale tra massima resa e minimo carico. Con bassa velocità del vento e a carico parziale il generatore eolico opera a passo delle pale costante e velocità del rotore variabile, sfruttando costantemente la miglior aerodinamica possibile al fine di ottenere un'efficienza ottimale. La bassa velocità del rotore è piacevole e mantiene bassi i livelli di emissione acustica. A potenza nominale e ad alte velocità del vento il sistema di controllo del rotore agisce sull'attuatore del passo delle pale per mantenere una generazione di potenza costante; le raffiche di vento fanno accelerare il rotore che viene gradualmente rallentato dal controllo del passo. Questo sistema di controllo permette una riduzione significativa del carico sul generatore eolico fornendo contemporaneamente alla rete energia ad alto livello di compatibilità. Le pale sono collegate al mozzo mediante cuscinetti a doppia corona di rulli a quattro contatti ed il passo è regolato autonomamente per ogni pala. Gli attuatori del passo, che ruotano con le pale, sono motori a corrente continua ed agiscono sulla dentatura interna dei cuscinetti a quattro contatti tramite un ingranaggio epicicloidale a bassa velocità. Per sincronizzare le regolazioni delle singole pale viene utilizzato un controller sincrono molto rapido e preciso. Per mantenere operativi gli attuatori del passo in caso di guasti alla rete o all'aerogeneratore ogni pala del rotore ha un proprio set di batterie che ruotano con la pala. Gli attuatori del passo, il carica batteria ed il sistema di controllo sono posizionati nel mozzo del rotore in modo da essere completamente schermati e quindi protetti in modo ottimale contro gli agenti atmosferici o i fulmini. Oltre a controllare la potenza in uscita il controllo del passo serve da sistema di sicurezza primario.

Durante la normale azione di frenaggio i bordi d'attacco delle pale vengono ruotati in direzione del vento. Il meccanismo di controllo del passo agisce in modo indipendente su ogni pala. Pertanto, nel caso in cui l'attuatore del passo dovesse venire a mancare su due pale, la terza può ancora riportare il rotore sotto controllo ad una velocità di rotazione sicura nel giro di pochi secondi. In tal modo si ha un sistema di sicurezza a tripla ridondanza. Quando l'aerogeneratore è in posizione di parcheggio, le pale del rotore vengono messe a bandiera. Ciò riduce nettamente il carico sull'aerogeneratore, e quindi sulla torre. Tale posizione, viene pertanto attuata in condizioni climatiche di bufera.

Sistema di controllo

Tutto il funzionamento dell'aerogeneratore è controllato da un sistema a microprocessori che attua un'architettura multiprocessore in tempo reale. Tale sistema è collegato a un gran numero di sensori medianti cavi a fibre ottiche. In tal modo si garantisce la più alta rapidità di trasferimento del segnale e la maggior sicurezza contro le correnti vaganti o i colpi di fulmine. Il computer installato nell'impianto definisce i valori di velocità del rotore e del passo delle pale e funge quindi anche da sistema di supervisione dell'unità di controllo distribuite dell'impianto elettrico e del meccanismo di controllo del passo alloggiato nel mozzo.

La tensione di rete, la fase, la frequenza, la velocità del rotore e del generatore, varie temperature, livelli di vibrazione, la pressione dell'olio, l'usura delle pastiglie dei freni, l'avvolgimento dei cavi, nonché le condizioni meteorologiche vengono monitorate continuamente. Le funzioni più critiche e sensibili ai guasti vengono monitorate con ridondanza. In caso di emergenza si può far

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere

connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

scattare un rapido arresto mediante un circuito cablato in emergenza, persino in assenza del computer e dell'alimentazione esterna. Tutti i dati possono essere monitorati a distanza in modo da consentirne il telecontrollo e la tele gestione di ogni singolo aerogeneratore.

Impianto elettrico del generatore eolico

L'impianto elettrico è un componente fondamentale per un rendimento ottimale ed una fornitura alla rete di energia di prima qualità. Il generatore asincrono a doppio avvolgimento consente il funzionamento a velocità variabile con limitazione della potenza da inviare al circuito del convertitore, ed in tal modo garantisce le condizioni di maggior efficienza dell'aerogeneratore. Con vento debole la bassa velocità di inserimento va a tutto vantaggio dell'efficienza, riduce le emissioni acustiche, migliora le caratteristiche di fornitura alla rete. Il generatore a velocità variabile livella le fluttuazioni di potenza in condizioni di carico parziale ed offre un livellamento quasi totale in condizioni di potenza nominale. Ciò porta a condizioni di funzionamento più regolari dell'aerogeneratore e riduce nettamente i carichi dinamici strutturali. Le raffiche di vento sono "immagazzinate" dall'accelerazione del rotore e sono convogliate gradatamente alla rete. La tensione e la frequenza fornite alla rete restano assolutamente costanti. Inoltre, il sistema di controllo del convertitore può venire adattato ad una grande varietà di condizioni di rete e può persino servire reti deboli. Il convertitore è controllato attraverso circuiti di elettronica di potenza da un microprocessore a modulazione di ampiezza d'impulso. La fornitura di corrente è quasi completamente priva di flicker, la gestione regolabile della potenza reattiva, la bassa distorsione, ed il minimo contenuto di armoniche definiscono una fornitura di energia eolica di alta qualità.

La bassa potenza di cortocircuito permette una migliore utilizzazione della capacità di rete disponibile e può evitare costosi interventi di potenziamento della rete. Grazie alla particolare tecnologia delle turbine previste, non sarà necessaria la realizzazione di una cabina di trasformazione BT/ 36 kV, alla base di ogni palo in quanto questa è già alloggiata all'interno della torre d'acciaio; il trasformatore BT/ 36 kV, con la relativa quadristica fa parte dell'aerogeneratore ed è interamente installato all'interno dell'aerogeneratore stesso, a base torre. Per la Rete è stato individuato un trasformatore; il gruppo sarà collegato alla rete attraverso pozzetti di linea per mezzo di cavi posati direttamente in cavidotti interrati convenientemente segnalati.

Fondazioni

Trattasi di un plinto in cls armato di grandi dimensioni, di forma in pianta circolare di diametro massimo pari a 22,00 m, con un nocciolo centrale diametro massimo pari a 6,00 m, con altezza complessiva pari a 3,38 m. Tale fondazione è di tipo indiretto su 14 pali di diametro 1,20 m, posizionati su una corona di raggio 12,50 m e lunghezza variabile da 20 a 30 m. La sezione è rastremata a partire dal perimetro esterno, spessore 1,10 m, fino al contatto con il nocciolo centrale citato dove lo spessore della sezione è di 30 cm. Le dimensioni potranno subire modifiche nel corso dei successivi livelli di progettazione.

XC4

 $f_{cfk} = 2,53 \text{ N/mm}^2$

Per le opere oggetto della presente relazione si prevede l'utilizzo dei seguenti materiali:

Calcestruzzo per opere di fondazione

Resist, caratteristica a trazione per flessione

Classe di esposizione C32/40 Classe di resistenza $f_{ck} = 32 \text{ N/mm}^2$ Resist, caratteristica a compressione cilindrica $R_{ck} = 40 \text{ N/mm}^2$ Resist, caratteristica a compressione cubica Modulo elastico $E_c = 33350 \text{ N/mm}^2$ Resist, di calcolo a compressione $f_{cd} = 18,13 \text{ N/mm}^2$ Resist, caratteristica a trazione $f_{ctk} = 2,11 \text{ N/mm}^2$ Resist, di calcolo a trazione $f_{ctd} = 1,41 \text{ N/mm}^2$

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

S4

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Resist, di calcolo a trazione per flessione $f_{cfd} = 1,68 \text{ N/mm}^2$

Rapporto acqua/cemento max 0,50

Contenuto cemento min340 kg/m³Diametro inerte max25 mm

Acciaio per armature c.a.

Classe di consistenza

Acciaio per armatura tipo B450C

Tensione caratteristica di snervamento $f_{yk} = 450 \text{ N/mm}^2$ Tensione caratteristica di rottura $f_{tk} = 540 \text{ N/mm}^2$ Modulo elastico $E_s = 210000 \text{ N/mm}^2$

Dati caratteristici

Posizione rotore: sopravento

Regolazione di potenza: a passo variabile

Diametro rotore: max 170 m

Area spazzata: max 22.697 m²

Direzione di rotazione: senso orario

Temperatura di esercizio: -20°C / +40°C

Velocità del vento all'avviamento: min 3 m/s

Arresto per eccesso di velocità del vento: 25 m/s

Freni aerodinamici: messa in bandiera totale

Numero di pale: 3

5.6.1.2. VIABILITÀ E PIAZZOLE

Piazzole di costruzione

Il montaggio dell'aerogeneratore richiede la predisposizione di aree di dimensioni e caratteristiche opportune, necessarie per accogliere temporaneamente sia i componenti delle macchine (elementi della torre, pale, navicella, mozzo, etc.) che i mezzi necessari al sollevamento dei vari elementi. In corrispondenza della zona di collocazione della turbina si realizza una piazzola provvisoria delle dimensioni, come di seguito riportate, diverse in base all'orografia del suolo e alle modalità di deposito e montaggio della componentistica delle turbine, disposta in piano e con superficie in misto granulare, quale base di appoggio per le sezioni della torre, la navicella, il mozzo e l'ogiva. Le dimensioni planimetriche massime delle singole piazzole sono di circa 3.500 mq.

Lungo un lato della piazzola, su un'area idonea, si prevede area per lo stoccaggio blade, in seguito calettate sul mozzo mediante una idonea gru, con cui si prevede anche al montaggio dell'ogiva, Il montaggio dell'aerogeneratore (cioè, in successione, degli elementi della torre, della navicella e del rotore) avviene per mezzo di una gru tralicciata, posizionata a circa 25-30 m dal centro della torre e precedentemente assemblata sul posto; si ritiene pertanto necessario realizzare uno spazio idoneo per il deposito degli elementi del braccio della gru tralicciata.

Parallelamente a questo spazio si prevede una pista per il transito dei mezzi ausiliari al deposito e montaggio della gru, che si prevede coincidente per quanto possibile con la parte terminale della strada di accesso alla piazzola al fine di limitare al massimo le aree occupate durante i lavori.

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Figura 3 – Piazzola per il montaggio dell'aerogeneratore

Viabilità di costruzione

La viabilità interna sarà costituita da una serie di strade e di piste di accesso che consentiranno di raggiungere agevolmente tutte le postazioni in cui verranno collocati gli aerogeneratori.

Tale viabilità interna sarà costituita sia da strade già esistenti che da nuove strade appositamente realizzate.

Le strade esistenti verranno adeguate in alcuni tratti per rispettare i raggi di curvatura e l'ingombro trasversale dei mezzi di trasporto dei componenti dell'aerogeneratore. Tali adeguamenti consisteranno quindi essenzialmente in raccordi agli incroci di strade e ampliamenti della sede stradale nei tratti di minore larghezza, per la cui esecuzione sarà richiesta l'asportazione, lateralmente alle strade, dello strato superficiale di terreno vegetale e la sua sostituzione con uno strato di misto granulare stabilizzato. Le piste di nuova costruzione avranno una larghezza di 5 m e su di esse, dopo l'esecuzione della necessaria compattazione, verrà steso uno strato di geotessile, quindi verrà realizzata una fondazione in misto granulare dello spessore di 50 cm e infine uno strato superficiale di massicciata dello spessore di 10 cm. Verranno eseguite opere di scavo, compattazione e stabilizzazione nonché riempimento con inerti costipati e rullati così da avere un sottofondo atto a sostenere i carichi dei mezzi eccezionali nelle fasi di accesso e manovra. La costruzione delle strade di accesso in fase di cantiere e di quelle definitive dovrà rispettare adeguate pendenze sia trasversali che longitudinali allo scopo di consentire il drenaggio delle acque impedendo gli accumuli in prossimità delle piazzole di lavoro degli aerogeneratori. A tal fine le strade dovranno essere realizzate con sezione a pendenza con inclinazione di circa il 2%.

Piazzole e viabilità in fase di ripristino

A valle del montaggio dell'aerogeneratore, tutte le aree adoperate per le operazioni verranno ripristinate, tornando così all'uso originario, e la piazzola verrà ridotta per la fase di esercizio dell'impianto ad una superficie di circa 1.500 mq oltre l'area occupata dalla fondazione, atte a consentire lo stazionamento di una eventuale autogru da utilizzarsi per lavori di manutenzione. Le aree esterne alla piazzola definitiva, occupate temporaneamente per la fase di cantiere, verranno ripristinate alle condizioni iniziali.

5.6.1.3. CAVIDOTTI 30 kV

Al di sotto della viabilità interna al parco o al di sotto delle proprietà private, correranno i cavi di media tensione che trasmetteranno l'energia elettrica prodotta dagli aerogeneratori alla sottostazione MT/AT e quindi alla rete elettrica nazionale.

Caratteristiche Elettriche del Sistema MT

Tensione nominale di esercizio (U)	30 kV	
Tensione massima (Um)	36 kV	

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Frequenza nominale del sistema	50 Hz	
stato del neutro	isolato	
Massima corrente di corto circuito trifase		(1)
Massima corrente di guasto a terra monofase e durata		(1)

Note:

(1) da determinare durante la progettazione esecutiva dei sistemi elettrici.

Cavo 30 kV: Caratteristiche Tecniche e Requisiti

Tensione di esercizio (Ue) 30 kV

Tipo di cavo Cavo MT unipolare schermato con isolamento estruso, riunito ad elica visibile

Note:

Sigla di identificazione	ARE4H5E
Conduttori	Alluminio
Isolamento	Mescola di polietilene reticolato (qualità DIX 8)
Schermo	filo di rame
Guaina esterna	Da definire durante la progettazione esecutiva dei sistemi elettrici
Potenza da trasmettere	Da definire durante la progettazione esecutiva dei sistemi elettrici
Sezione conduttore	Da definire durante la progettazione esecutiva dei sistemi elettrici
Messa a terra della guaina	Da definire durante la progettazione esecutiva dei sistemi elettrici
Tipo di posa	Direttamente interrato

Buche e Giunti

Nelle buche giunti si prescrive di realizzare una scorta sufficiente a poter effettuare un eventuale nuovo giunto (le dimensioni della buca giunti devono essere determinate dal fornitore in funzione del tipo di cavo MT utilizzato ed in funzione delle sue scelte operative).

Nella seguente figura si propone un tipico in cui si evidenza il richiesto sfasamento dei giunti di ogni singola fase.

Sono prescritte le seguenti ulteriori indicazioni:

- Il fondo della buca giunti deve garantire che non vi sia ristagno di acqua piovana o di corrivazione; se necessario, le buche giunti si devono posizionare in luoghi appositamente studiati per evitare i ristagni d'acqua. Gli strati di ricoprimento sino alla quota di posa della protezione saranno eseguiti come nella sezione di scavo;
- La protezione, che nella trincea corrente può essere in PVC, nelle buche giunti deve essere sostituita da lastre in cls armato delle dimensioni 50 X 50 cm e spessore minimo pari a cm 4, dotate di golfari o maniglie per la movimentazione, Tutta la superficie della buca giunti deve essere "ricoperta" con dette lastre, gli strati superiori di ricoprimento saranno gli stessi descritti per la sezione corrente in trincea;

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Segnalamento della buca giunti con le "ball marker".

Posa dei cavi

La posa dei cavi di potenza sarà preceduta dal livellamento del fondo dello scavo e la posa di un cavidotto in tritubo DN50, per la posa dei cavi di comunicazione in fibra ottica. Tale tubo protettivo dovrà essere posato nella trincea in modo da consentire l'accesso ai cavi di potenza (apertura di scavo) per eventuali interventi di riparazione ed esecuzione giunti senza danneggiare il cavo di comunicazione.

La posa dei tubi dovrà avvenire in maniera tale da evitare ristagni di acqua (pendenza) e avendo cura nell'esecuzione delle giunzioni. Durante la posa delle tubazioni sarà inserito in queste un filo guida in acciaio.

La posa dovrà essere eseguita secondo le prescrizioni della Norma CEI 11-17, in particolare per quanto riguarda le temperature minime consentite per la posa e i raggi di curvatura minimi.

La bobina deve essere posizionata con l'asse di rotazione perpendicolare al tracciato di posa ed in modo che lo svolgimento del cavo avvenga dall'alto evitando di invertire la naturale curvatura del cavo nella bobina.

Scavi e Rinterri

Lo scavo sarà a sezione ristretta, con una larghezza variabile da cm 50 a 120 al fondo dello scavo; la sezione di scavo sarà parallelepipeda con le dimensioni come da particolare costruttivo relativo al tratto specifico.

Dove previsto, sul fondo dello scavo, verrà realizzato un letto di sabbia lavata e vagliata, priva di elementi organici, a bassa resistività e del diametro massimo pari 2 mm su cui saranno posizionati i cavi direttamente interrati, a loro volta ricoperti da un ulteriore strato di sabbia dello spessore minimo, misurato rispetto all'estradosso dei cavi di cm 10, sul quale posare il tritubo. Anche il tritubo deve essere rinfiancato, per tutta la larghezza dello scavo, con sabbia fine sino alla quota minima di cm 20 rispetto all'estradosso dello stesso tritubo.

Sopra la lastra di protezione in PVC l'appaltatrice dovrà riempire la sezione di scavo con misto granulometrico stabilizzato della granulometria massima degli inerti di cm 6, provvedendo ad una adeguata costipazione per strati non superiori a cm 20 e bagnando quando necessario.

Alla quota di meno 35 cm rispetto alla strada, si dovrà infine posizionare il nastro monitore bianco e rosso con la dicitura "cavi in tensione 30 kV" così come previsto dalle norme di sicurezza.

Le sezioni di scavo devono essere ripristinate in accordo alle sezioni tipiche sopracitate.

Nei tratti dove il cavidotto viene posato in terreni coltivati il riempimento della sezione di scavo sopra la lastra di protezione sarà riempito con lo stesso materiale precedentemente scavato, previa caratterizzazione ambientale che ne evidenzi la non contaminazione; l'appaltatore deve provvedere, durante la fase di scavo ad accantonare lungo lo scavo il terreno vegetale in modo che, a chiusura dello scavo, il vegetale stesso potrà essere riposizionato sulla parte superiore dello scavo.

Lo scavo sarà a sezione obbligata sarà eseguito dall'Appaltatore con le caratteristiche riportate nella sezione tipica di progetto. In funzione del tipo di strada su cui si deve posare, in particolare in terreni a coltivo o similari, si prescrive una quota di scavo non inferiore a 1,30 metri.

Nei tratti in attraversamento o con presenza di manufatti interrati che non consentano il rispetto delle modalità di posa indicate, sarà necessario provvedere alla posa ad una profondità maggiore rispetto a quella tipica; sia nel caso che il sotto servizio debba essere evitato posando il cavidotto al di sotto o al di sopra dello stesso, l'appaltatore dovrà predisporre idonee soluzioni progettuali che permettano di garantire la sicurezza del cavidotto, il tutto in accordo con le normative. In particolare, si prescrive l'utilizzo di calcestruzzo o lamiere metalliche a protezione del cavidotto, previo intubamento dello stesso, oppure l'intubamento all'interno di tubazioni in acciaio. Deve essere garantita l'integrità del cavidotto nel caso di scavo accidentale da parte di terzi. In tali casi dovranno essere resi contestualmente disponibili i calcoli di portata del cavo nelle nuove condizioni di installazione puntuali proposte.

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Negli attraversamenti gli scavi dovranno essere eseguiti sotto la sorveglianza del personale dell'ente gestore del servizio attraversato. Nei tratti particolarmente pendenti, o in condizioni di posa non ottimali per diversi motivi, l'appaltatore deve predisporre delle soluzioni da presentare al Committente con l'individuazione della soluzione proposta per poter eseguire la posa del cavidotto in quei punti singolari.

Dove previsto il rinterro con terreno proveniente dagli scavi, tale terreno dovrà essere opportunamente vagliato al fine di evitare ogni rischio di azione meccanica di rocce e sassi sui cavi.

Segnalazione del Cavidotto

Tutto il percorso del cavidotto, una volta posato, dovrà essere segnalato con apposite paline di segnalazione installate almeno ogni 250 m. La palina dovrà contenere un cartello come quello sotto riportato e con le seguenti informazioni:

- Cavi interrati 30 kV con simbolo di folgorazione;
- Il nome della proprietà del cavidotto;
- La profondità e la distanza del cavidotto dalla palina,

La posizione delle paline sarà individuata dopo l'ultimazione dei lavori ma si può ipotizzare l'installazione di una palina ogni 250 metri. Il palo su cui istallare il cartello sarà un palo di diametro Φ50 mm, zincato a caldo dell'altezza fuori terra di minimo 1,50 m, installato con una fondazione in cls delle dimensioni 50x50x50 cm.

Di seguito si riporta una targa tipica di segnalazione utilizzata (ovviamente da personalizzare al progetto).

5.6.1.4. CAVIDOTTO 150kV

Il nuovo elettrodotto a 150 kV sarà realizzato con una terna di cavi unipolari realizzati con conduttore in alluminio, isolamento in polietilene reticolato (XLPE), schermatura in alluminio e guaina esterna in polietilene.

Caratteristiche Elettriche

Frequenza nominale	50 Hz
Tensione nominale	150 kV

Caratteristiche Tecniche e Requisiti

Nel seguito si riportano le caratteristiche tecniche principali dei cavi e le sezioni tipiche. Tali dati potranno subire adattamenti comunque non essenziali, dovuti alla successiva fase di progettazione esecutiva e di cantierizzazione, anche in funzione delle soluzioni tecnologiche adottate dai fornitori:

Di seguito si riporta a titolo illustrativo la sezione del cavo che verrà utilizzato:

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

L'elettrodotto sarà costituito da una terna di cavi unipolari, con isolamento in XLPE, costituiti da un conduttore in alluminio; esso sarà un conduttore a corda, compatta e tamponata di rame ricotto non stagnato o di alluminio, ricoperta da uno strato semiconduttivo interno estruso, dall'isolamento XLPE, dallo strato semiconduttivo esterno, da nastri semiconduttivi igroespandenti. Lo schermo metallico è costituito da fili di alluminio ed una guaina metallica con foglio laminato di alluminio di tipo liscio di sezione complessiva adeguata ad assicurare la protezione meccanica del cavo, la tenuta ermetica radiale ed a sopportare la corrente di guasto a terra. Sopra lo schermo viene applicata la guaina protettiva di polietilene nera e grafitata avente funzione di protezione anticorrosiva, ed infine la protezione esterna meccanica.

Posa dei cavi

I cavi saranno interrati ed installati in una trincea alla profondità di circa 1,7 m all'interno di tubazioni in PEAD. La posa dei cavi di potenza sarà preceduta dal livellamento del fondo dello scavo e la posa delle tubazioni.

La posa dei tubi dovrà avvenire in maniera tale da evitare ristagni di acqua (pendenza) e avendo cura nell'esecuzione delle giunzioni. Durante la posa delle tubazioni sarà inserito in queste un filo guida in acciaio.

La posa dovrà essere eseguita secondo le prescrizioni della Norma CEI 11-17, in particolare per quanto riguarda le temperature minime consentite per la posa e i raggi di curvatura minimi.

La bobina deve essere posizionata con l'asse di rotazione perpendicolare al tracciato di posa ed in modo che lo svolgimento del cavo avvenga dall'alto evitando di invertire la naturale curvatura del cavo nella bobina.

Scavi e Rinterri

Lo scavo sarà a sezione ristretta, con una larghezza di circa 70 cm al fondo dello scavo.

Sul fondo dello scavo, verrà realizzato un letto di sabbia lavata e vagliata, priva di elementi organici, a bassa resistività e del diametro massimo pari 2 mm su cui saranno posizionati le tubazioni per l'alloggio dei cavi, a loro volta ricoperti da un ulteriore strato di sabbia dello spessore minimo, misurato rispetto all'estradosso dei cavi di cm 10, sul quale posare il tritubo. Anche il tritubo deve essere rinfiancato, per tutta la larghezza dello scavo, con sabbia fine sino alla quota minima di cm 20 rispetto all'estradosso dello stesso tritubo.

Sopra la lastra di protezione in cls l'appaltatrice dovrà riempire la sezione di scavo con misto granulometrico stabilizzato della granulometria massima degli inerti di cm 6, provvedendo ad una adeguata costipazione per strati non superiori a cm 20 e bagnando quando necessario.

Alla quota di meno 35 cm rispetto alla strada, si dovrà infine posizionare il nastro monitore bianco e rosso con la dicitura "cavi in tensione 150kV" così come previsto dalle norme di sicurezza.

Le sezioni di scavo devono essere ripristinate in accordo alle sezioni tipiche sopracitate.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

Nei tratti dove il cavidotto viene posato in terreni coltivati il riempimento della sezione di scavo sopra la lastra di protezione sarà riempito con lo stesso materiale precedentemente scavato, previa caratterizzazione ambientale che ne evidenzi la non contaminazione; l'appaltatore deve provvedere, durante la fase di scavo ad accantonare lungo lo scavo il terreno vegetale in modo che, a chiusura dello scavo, il vegetale stesso potrà essere riposizionato sulla parte superiore dello scavo.

Lo scavo sarà a sezione obbligata sarà eseguito dall'Appaltatore con le caratteristiche riportate nella sezione tipica di progetto. In funzione del tipo di strada su cui si deve posare, in particolare in terreni a coltivo o similari, si prescrive una quota di scavo non inferiore a 1,80 metri.

Nei tratti in attraversamento o con presenza di manufatti interrati che non consentano il rispetto delle modalità di posa indicate, sarà necessario provvedere alla posa ad una profondità maggiore rispetto a quella tipica; sia nel caso che il sotto servizio debba essere evitato posando il cavidotto al di sotto o al di sopra dello stesso, l'appaltatore dovrà predisporre idonee soluzioni progettuali che permettano di garantire la sicurezza del cavidotto, il tutto in accordo con le normative. In particolare, si prescrive l'utilizzo di calcestruzzo o lamiere metalliche a protezione del cavidotto, previo intubamento dello stesso, oppure l'intubamento all'interno di tubazioni in acciaio. Deve essere garantita l'integrità del cavidotto nel caso di scavo accidentale da parte di terzi. In tali casi dovranno essere resi contestualmente disponibili i calcoli di portata del cavo nelle nuove condizioni di installazione puntuali proposte.

Negli attraversamenti gli scavi dovranno essere eseguiti sotto la sorveglianza del personale dell'ente gestore del servizio attraversato. Nei tratti particolarmente pendenti, o in condizioni di posa non ottimali per diversi motivi, l'appaltatore deve predisporre delle soluzioni da presentare al Committente con l'individuazione della soluzione proposta per poter eseguire la posa del cavidotto in quei punti singolari.

Dove previsto il rinterro con terreno proveniente dagli scavi, tale terreno dovrà essere opportunamente vagliato al fine di evitare ogni rischio di azione meccanica di rocce e sassi sui cavi.

Segnalazione del Cavidotto

Tutto il percorso del cavidotto, una volta posato, dovrà essere segnalato con apposite paline di segnalazione installate almeno ogni 250 m. La palina dovrà contenere un cartello come quello sotto riportato e con le seguenti informazioni:

- Cavi interrati 150 kV con simbolo di folgorazione;
- Il nome della proprietà del cavidotto;
- La profondità e la distanza del cavidotto dalla palina,

La posizione delle paline sarà individuata dopo l'ultimazione dei lavori ma si può ipotizzare l'installazione di una palina ogni 250 metri. Il palo su cui istallare il cartello sarà un palo di diametro Φ50 mm, zincato a caldo dell'altezza fuori terra di minimo 1,50 m, installato con una fondazione in cls delle dimensioni 50X50X50 cm.

Di seguito si riporta una targa tipica di segnalazione utilizzata (ovviamente da personalizzare al progetto).

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.6.1.5. STAZIONE ELETTRICA DI UTENZA 150/30 kV

La stazione elettrica di utenza è composta da una sbarra di condivisione con altri produttori e un montante trafo 150/30 kV, così equipaggiati:

- Montante Arrivo Cavo AT:
 - ✓ Nr. 3 terna di terminali cavo per AT
 - ✓ Nr. 3 scaricatori AT del tipo monofase ad ossido di zinco
 - ✓ Nr. 1 sezionatore AT con lame di terra
- Sistema sbarre condiviso con altri produttori:
 - ✓ Nr. 10 isolatori AT
- Montante trafo 150/30kV:
 - ✓ Nr. 1 sezionatore AT
 - ✓ Nr. 1 interruttore AT isolamento in gas SF6
 - ✓ Nr. 3 TV induttivi unipolari per misura e protezioni
 - ✓ Nr. 3 TA unipolari per misure e protezioni
 - ✓ Nr. 3 scaricatori del tipo monofase ad ossido di zinco
 - ✓ Nr. 1 trasformatore ONAN/ONAF 150/30KV 55 MVA con isolamento in olio minerale

La stazione elettrica di utenza è inoltre dotata di:

- Sistema di Protezione Comando e Controllo SPCC
- Servizi Ausiliari di Stazione
- Servizi Generali
- Sezione 30kV, sino alle celle 30kV di partenza verso il campo eolico.

Si riportano di seguito lo schema elettrico unifilare, la planimetria elettromeccanica con relative sezioni della soluzione tecnica innanzi generalizzata:

FRI-ELOFANTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

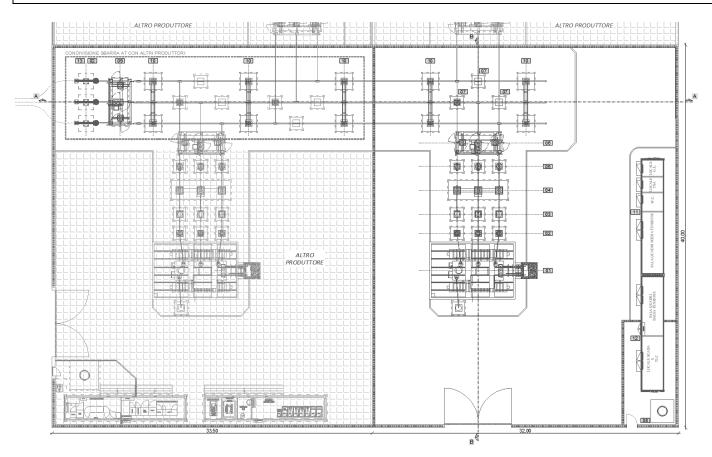
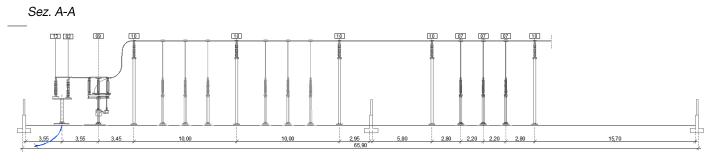



Figura 2 - Planimetria Elettromeccanica

Sez. B-B

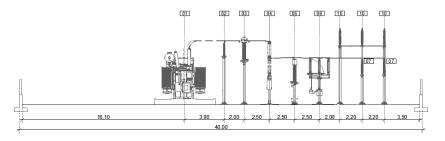


Figura 3 - Sezioni Elettromeccaniche

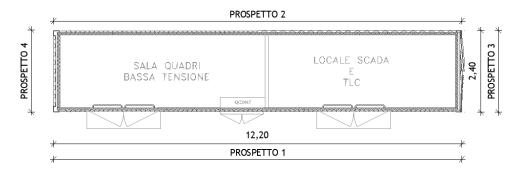
DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

	LEGENDA OPERE IN PROGETTO
RIF.	DESCRIZIONE
01	Trasformatore 150/30 kV
02	Scaricatore di sovratensione
03	Trasformatore di corrente
04	Interruttore tripolare
05	TV Protezione
06	Sezionatore tripolare orizzontale con lame di terra
07	Isolatore
08	Antenna TLC
09	Sezionatore AT di linea
10	Portale sbarre
11	Edificio quadri
12	Edificio BT + SCADA e TLC
13	Terminale cavo AT

5.6.1.5.1. Caratteristiche tecniche civili


Gli interventi e le principali opere civili, realizzati preliminarmente all'installazione delle apparecchiature in premessa descritte, sono i seguenti:

- Sistemazione dell'area interessata dai lavori mediante sbancamento per l'ottenimento della quota di imposta della Stazione elettrica di Utenza 150/30 kV;
- Realizzazione di recinzione di delimitazione area della Stazione elettrica di Utenza 150/30 kV e relativi cancelli di accesso;
- Edificio BT+ SCADA e TLC;
- Edificio quadri;
- Formazione della rete interrata di distribuzione dei cavi elettrici sia a bassa tensione BT che a 30 kV, costituita da tubazioni e pozzetti, varie dimensioni e formazioni;
- Realizzazione di strade e piazzali.

5.6.1.5.2. Edificio BT + SCADA e TLC

La cabina sarà preassemblata e composta da una struttura in acciaio, con pannelli in lamiera sandwich, ancorata a plinti di fondazioni in cls tramite struttura in acciaio.

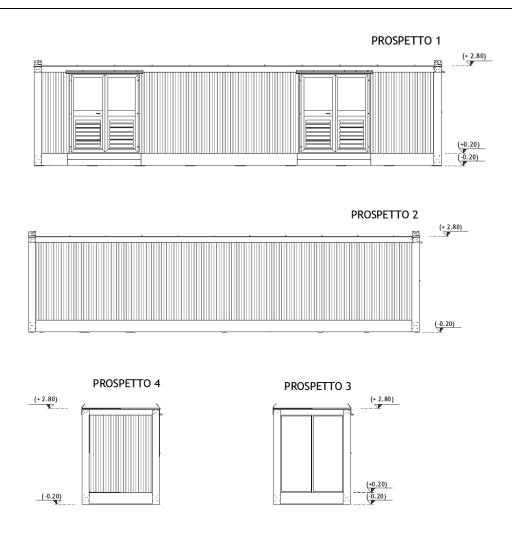
Si riportano, di seguito, pianta e prospetti:

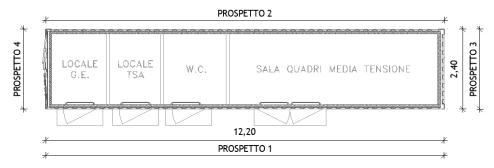
DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00




Figura 4 – Pianta e prospetti dell'Edificio BT + SCADA e TLC

Si rimanda per ulteriori approfondimenti al documento "DIV4NO6_ImpiantiDiUtenza_03 Stazione elettrica di utenza - disegni architettonici edifici".

5.6.1.5.3. Edificio Quadri

La cabina sarà preassemblata e composta da una struttura in acciaio, con pannelli in lamiera sandwich, ancorata a plinti di fondazioni in cls tramite struttura in acciaio.

Si riportano, di seguito, pianta e prospetti:

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

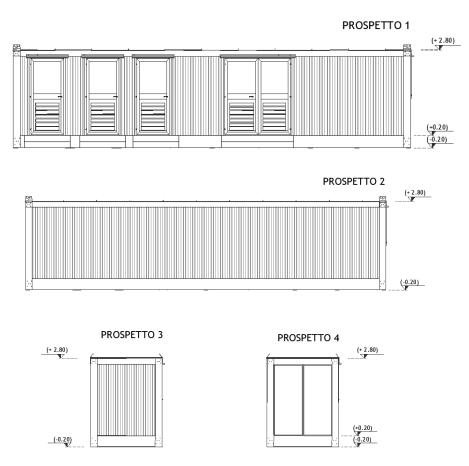


Figura 5 - Pianta e prospetti dell'Edificio BT + SCADA e TLC

Si rimanda per ulteriori approfondimenti al documento "DIV4NO6_ImpiantiDiUtenza_03 Stazione elettrica di utenza - disegni architettonici edifici".

5.6.1.5.4. Acque reflue

La vasca di contenimento dei rifiuti liquidi provenienti dai servizi igienici della Stazione elettrica di Utenza 150/30 kV ha i requisiti del "deposito temporaneo", così come definito dall'art. 183, comma 1, lett. bb) del Decreto legislativo 3 aprile 2006, n. 152, in quanto:

- gli stessi saranno raccolti ed avviati alle operazioni di smaltimento con cadenza trimestrale;
- la vasca di contenimento dei reflui è a completa tenuta stagna, ha una capacità di 5 m3 e conterrà rifiuti liquidi provenienti da servizi igienici;
- lo smaltimento del rifiuto liquido avverrà presso impianti di depurazione con caratteristiche e capacità depurative adeguate, specificando il codice CER 20.03.04 fanghi delle fosse settiche.

5.6.1.5.5. Strade e piazzali

La viabilità interna è stata realizzata in modo da consentire agevolmente l'esercizio e manutenzione dell'impianto, così come prescritto dalla Norma CEI 11-18.

Le strade, le aree di manovra e quelle di parcheggio sono state finite in conglomerato bituminoso, mentre i piazzali destinati alle apparecchiature elettromeccaniche sono stati finiti in pietrisco e delimitati da cordolo in muratura.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.6.1.5.6. Fondazioni

Le fondazioni per le apparecchiature sono state realizzate in calcestruzzo armato gettato in opera.

5.6.1.5.7. Impianti tecnologici

Negli edifici sono stati realizzati i seguenti impianti tecnologici:

- illuminazione e prese FM.
- riscaldamento, condizionamento e ventilazione.
- rilevazione incendi.
- telefonico.
- Sistema di emergenza alla mancanza rete a mezzo GE ad avviamento automatico.

I locali dell'edificio sono, inoltre, dotati di lampade di emergenza autonome.

5.6.1.6. IMPIANTO DI UTENZA PER LA CONNESSIONE

L'Impianto di utenza per la connessione, nel dettaglio costituito dallo stallo di trasformazione allocato all'interno della stazione elettrica di utenza, sbarra di condivisione ed un elettrodotto interrato a 150 kV di collegamento tra la sbarra di condivisione e lo stallo arrivo cavo AT ubicato all'interno della futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra – esce alla linea RTN a 380 kV "Foggia – Palo del Colle" ubicata nel comune di Cerignola (FG).

La portata di corrente di progetto per conduttori disciplinati dalla norma CEI 11-60 è conforme a quanto prescritto da suddetta normativa e coincide con la Portata in corrente in relazione alle condizioni di progetto (PCCP).

5.6.1.7. IMPIANTO DI RETE PER LA CONNESSIONE

L'Impianto di Rete per la Connessione, costituito da opere elettromeccaniche, sarà ubicato all'interno della futura Stazione Elettrica a 380/150 kV della RTN da collegare in entra – esce alla linea RTN a 380 kV "Foggia – Palo del Colle" ubicata nel comune di Cerignola (FG).

5.6.2. PRODUZIONE DI RIFIUTI

Il processo di generazione di energia elettrica mediante impianti eolici non comporta la produzione di rifiuti. In fase di cantiere, trattandosi di materiali pre-assemblati, si avrà una quantità minima di scarti (metalli di scarto, piccole quantità di inerti, materiale di imballaggio quali carta e cartone, plastica) che saranno conferiti a discariche autorizzate secondo la normativa vigente. L'impianto eolico, in fase di esercizio, non determina alcuna produzione di rifiuti (salvo quelli di entità trascurabile legati alle attività di manutenzione). Una volta concluso il ciclo di vita dell'impianto, gli aerogeneratori saranno smaltiti secondo le procedure stabilite dalle normative vigenti al momento. In fase di dismissione si prevede di produrre una quota limitata di rifiuti, legata allo smantellamento degli aerogeneratori e dei manufatti (recinzione, strutture di sostegno), che in gran parte potranno essere riciclati e per la quota rimanente saranno conferiti in idonei impianti.

La descrizione dettagliata circa lo smaltimento dei componenti è stata trattata nel seguente documento, a cui si rimanda per dettagli:

 DIV4NO6_DocumentazioneSpecialistica_01-Piano di dismissione con relativo computo metrico estimativo ed elenco prezzo

Per quanto riguarda la produzione di terre e rocce da scavo derivante dalle piazzole, dalle strade e dal cavidotto, si precisa che, durante la fase esecutiva, previa caratterizzazione ambientale che ne evidenzi la non contaminazione, si cercherà di riutilizzare la maggior parte di tale materiale in sito.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.7. DESCRIZIONE FASI

5.7.1. FASE DI CANTIERE

Nel corso di tale fase, si effettua: l'allestimento cantiere, l'adeguamento delle strade esistenti e la realizzazione di nuove strade, la realizzazione delle piazzole di montaggio degli aerogeneratori, la realizzazione delle fondazioni, il trasporto degli aerogeneratori ed il successivo montaggio, la realizzazione dei cavidotti interrati per la posa dei cavi elettrici, la realizzazione della stazione elettrica d'utenza e l'installazione di diversi manufatti (recinzione e cancello, pali di illuminazione e videosorveglianza).

La sistemazione dell'area è finalizzata a rendere praticabili le diverse zone di installazione degli aerogeneratori ovvero ad effettuare una pulizia propedeutica del terreno dalle piante selvatiche infestanti e dai cumuli erbosi.

Oltre ai veicoli per il normale trasporto giornaliero del personale di cantiere, saranno presenti in cantiere autogru per la posa dei componenti degli aerogeneratori, macchinari battipalo e/o macchine perforatrici per i pali di fondazione aerogeneratori, mezzi pesanti per il trasporto dei materiali da costruzione e dei rifiuti, muletti per lo scarico e il trasporto interno del materiale, escavatori a benna per la realizzazione dei cavidotti, Al termine dell'installazione e, più in generale, della fase di cantiere, saranno raccolti tutti gli imballaggi dei materiali utilizzati, applicando criteri di separazione tipologica delle merci, con riferimento al D. Lgs 152 del 3/04/2006, in modo da garantire il corretto recupero o smaltimento in idonei impianti.

5.7.1.1. AREA DI CANTIERE

L'area di cantiere sarà ubicata nei pressi dell'aerogeneratore WTG 3, in un'area attualmente adibiti a seminativi, a cui si ha accesso tramite la viabilità esistente.

L'area sarà delimitata mediante recinzione e suddivisa nelle seguenti sub-aree:

- Area baracche, presso la quale verranno installati diversi moduli prefabbricati ad uso esclusivo degli operatori (uffici Committente/Direzione Lavori, spogliatoi, refettorio e locale ricovero, servizi igienico assistenziali);
- Area di deposito/stoccaggio materiali (la quantità del materiale di cantiere che verrà stoccata sarà strettamente necessaria alle lavorazioni giornaliere previste);
- Area di deposito temporaneo rifiuti;
- Area parcheggio mezzi.

L'intera area di cantiere, in particolare in corrispondenza degli accessi e delle aree sensibili, sarà equipaggiata con apposita segnaletica di sicurezza (e.g. punti di raccolta, limiti di velocità, etc.).

5.7.1.2. ATTIVITÀ DI SCAVO E MOVIMENTO TERRE

In riferimento alla tipologia di opere, le attività per le quali si prevedono movimenti terra, così come dettagliatamente analizzato nell'ambito della "Relazione preliminare sulla gestione delle terre e rocce da scavo" (cfr. 224314_D_R_0286), sono le seguenti:

- Realizzazione fondazioni torri eoliche e piazzole (Opere infrastrutturali);
- Realizzazione cavidotti 30 kV e 150 kV (Opere infrastrutturali lineari);
- Realizzazione viabilità e adeguamenti stradali (Opere infrastrutturali lineari);
- Realizzazione Stazione Elettrica di Utenza (Opere infrastrutturali).

Il terreno movimentato per gli scavi sarà, ove possibile, riutilizzato in sito per reinterri o per operazioni di livellamento e regolarizzazione delle superfici. La quota parte di terreno non riutilizzato in sito verrà gestito in accordo alla normativa vigente (D.P.R. 120/17 e D.Lgs. 152/06) e alle prescrizioni fornite in sede di VIA.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.7.1.3. GESTIONE DEI RIFIUTI

Durante la fase di cantiere si prevede la produzione dei seguenti rifiuti:

- imballaggi quali carta e cartone, plastica, legno e materiali misti, che saranno temporaneamente stoccati in cassoni metallici in un'area dedicata, coperti con teli impermeabili, e quindi conferiti ad uno smaltitore autorizzato come da normativa vigente;
- materiale vegetale proveniente da decespugliamento e disboscamento, che sarà temporaneamente stoccato in un'area dedicata e gestito come da normativa vigente.

5.7.2. FASE DI GESTIONE E DI ESERCIZIO

L'impianto eolico non richiederà, di per sé, il presidio da parte di personale preposto.

L'impianto, infatti, verrà esercito, a regime, mediante il sistema di supervisione che consentirà di rilevare le condizioni di funzionamento e di effettuare comandi sulle macchine ed apparecchiature da remoto o, in caso di necessità, di rilevare eventi che richiedano l'intervento di squadre specialistiche.

Nel periodo di esercizio dell'impianto, la cui durata è indicativamente di almeno 30 anni, non sono previsti ulteriori interventi, fatta eccezione per quelli di controllo e manutenzione, riconducibili alla verifica periodica del corretto funzionamento, con visite preventive od interventi di sostituzione delle eventuali parti danneggiate e con verifica dei dati registrati.

Le visite di manutenzione preventiva sono finalizzate a verificare le impostazioni e prestazioni standard dei dispositivi e si provvederà, nel caso di eventuali guasti, a riparare gli stessi nel corso della visita od in un momento successivo quando è necessario reperire le componenti da sostituire.

Durante la fase di esercizio dell'impianto la produzione di rifiuti sarà limitata ai rifiuti derivanti dalle attività di manutenzione. In particolare:

- oli per motori, ingranaggi e lubrificazione;
- filtri dell'olio;
- stracci;
- imballaggi in materiali misti;
- apparecchiature elettriche fuori uso;
- materiale elettrico.

Tutti i materiali di risulta delle operazioni di manutenzione saranno portati presso i centri di raccolta e smaltimento autorizzati. Gli imballaggi saranno destinati preferibilmente al recupero ed al riciclaggio, prevedendo lo smaltimento in discarica in assenza dei necessari requisiti (imballaggi contaminati o imbrattati da altre sostanze). In presenza di una eventuale produzione di oli usati (lubrificazione, mezzi di cantiere, ecc), ai sensi dell'art. 236 del D. Lgs. 152/2006, sarà assicurato l'adeguato trattamento e smaltimento degli stessi. In caso di sversamento accidentale di liquidi (oli minerali, oli disarmanti, carburanti, grassi, ecc.), sarà effettuata, in via prioritaria, lo stoccaggio dei liquidi potenzialmente dannosi all'interno di vasche di contenimento così da evitare il rilascio nell'ambiente di sostanze inquinanti.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

5.8. TEMPI DI ESECUZIONE DEI LAVORI

DIAGRAMMA DI GANTT (FASI ATTUATIVE IMPIANTO EOLICO)																																						
ATTIVITA FASI LAVORATIVE		mese 1		n	mese 2		2 1	mese 3		3	mese 4		4	mese 5		mese 6		mese 7		mese 8		3 r	mese 9		9	mese 10		mese 11		mese 12								
	1	2	3 4	1	2	3 4	1 1	1 2	3	4	1 2	3	4	1 2	2 3	4	1 2	2 3	4	1	2 3	3 4	1	2	3 4	1 1	2	3	4	1	2 3	4	1	2	3 4	1	2	3 4
Redazione progetto esecutivo																																						
Deposito opere civili																																					Ш	
Picchettamento delle aree																																						
Realizzazione area di cantiere e recinzione provissionale																																						
Realizzazione della viabilità																																						
Realizzazione fondazioni c.a. aereogeneratori																																						
Posa in opera di cavidotti MT																																						
Trasporto e montaggio aereogeneratori																																						
Costruzione SSE – Opere elettriche e di connessione alla RTN																																						
Regolazione e Collaudo finale																																						
Pulizia e sistemazione finale del sito																																						

5.9. STIMA DEI COSTI DELL'INTERVENTO

Si riporta di seguito tabella riepilogativa dei costi totali di realizzazione del progetto:

INTERVENTO/DESCRIZIONE	Posizione	PREZZO TOTALE
1 - FORNITURA, TRASPORTO, MONTAGGIO E MESSA IN SERVIZIO AEROGENERATORI	1	€ 36.750.000,00
2 - REALIZZAZIONE AREA DI CANTIERE	2	€ 244.386,30
3 - FORNITURA E POSA IN OPERA RECINZIONE PROVVISIONALE DI CANTIERE	3	€ 27.808,52
4 - REALIZZAZIONE VIABILITÀ E PIAZZOLE IN FASE DI COSTRUZIONE	4	€ 1.569.027,85
5 - REALIZZAZIONE VIABILITÀ E PIAZZOLE IN FASE DI RIPRISTINO	5	€ 337.217,74
6 - REALIZZAZIONE PLINTI DI FONDAZIONI SU PALI	6	€ 3.788.927,10
7 - FORNITURA, INSTALLAZIONE DELLA LINEE MT E FIBRA OTTICA PER L'INTERCONNESSIONE DELLA SOTTOSTAZIONE UTENTE CON LE TURBINE	7	€ 2.678.527,33
	8.1	€ 17.765,41
9 FORNITHIDA TRASPORTO IN SITO MONTACCIO DELLA STAZIONE ELETTRICA DI LITENZA ATAM	8.2	€ 83.237,89
8 - FORNITURA, TRASPORTO IN SITO, MONTAGGIO DELLA STAZIONE ELETTRICA DI UTENZA AT/MT	8.3	€ 84.216,22
	8.4	€ 14.950,50

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

INTERVENTO/DESCRIZIONE	Posizione	PREZZO TOTALE
	8.5	€ 20.763,13
	8.6	€ 37.829,96
	8.7	€ 2.700.000,00
	8	€ 2.958.763,12
9 - INSTALLAZIONE DELLA LINEA INTERRATA AT PER L'INTERCONNESSIONE DELLA STAZIONE DI UTENZA ALLA STAZIONE ELETTRICA DI UTENZA RTN 150 kV, COMPRESO TERMINALE AT PER LA CONNESSIONE	9	€ 241.942,58
10 - MITIGAZIONI	10	€ 74.090,65

TOTALE	€ 48.670.691,20
TOTALL	C 40.070.071,20

È' stata prodotta una stima dei costi di costruzione dal progetto dell'impianto. Detti costi, ammonteranno a circa 993.279,41 € per ciascun MW installato, per un totale di circa € 48.670.691,20.

5.10. CALCOLO DEI PROVENTI ANNUI DERIVANTI DALLA VALORIZZAZIONE DELL'ENERGIA PRODOTTA

La producibilità stimata per l'impianto in progetto è pari a 99.800.000 kWh/anno, così come analizzato al paragrafo 6.3.

Il prezzo medio di acquisto dell'energia in Italia, considerando una media del valor medio dei mesi dell'anno 2022, è di 281,24 euro/MWh, ovvero 0,28124 €/kWh (Fonte GME).

Pertanto i proventi annuali derivanti dalla produzione di energia elettrica si stimano essere intorno a 28.067.752 €.

5.11. DISMISSIONE DEL PROGETTO

Il nuovo impianto si stima che avrà una vita utile di circa 25-30 anni a seguito della quale potrà essere sottoposto ad un futuro intervento di potenziamento o ricostruzione, data la peculiarità anemologica e morfologica del sito.

Nell'ipotesi di non procedere con una nuova integrale ricostruzione o ammodernamento dell'impianto, si procederà ad una totale dismissione dell'impianto, provvedendo a ripristinare completamente lo stato "ante operam" dei terreni interessati dalle opere.

In entrambi gli scenari, lo smantellamento del parco avverrà secondo le tecniche, i criteri e le modalità illustrate con riferimento alla dismissione dell'impianto eolico esistente, nel documento DIV4NO6_DocumentazioneSpecialistica_01-Progetto di dismissione dell'impianto eolico esistente.

In particolare, una volta esaurita la vita utile del parco eolico, è possibile programmare lo smantellamento dell'intero impianto e la riqualificazione del sito di progetto, seguendo le operazioni di seguito elencate:

- Smontaggio degli aerogeneratori e delle apparecchiature tecnologiche elettromeccaniche in tutte le loro componenti conferendo il materiale di risulta agli impianti all'uopo deputati dalla normativa di settore;
- Dismissione delle fondazioni degli aerogeneratori;
- Dismissione delle piazzole degli aerogeneratori;
- Dismissione della viabilità di servizio;
- Dismissione dei cavidotti MT

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- Dismissione della stazione elettrica di utenza; in alternativa si potrebbero convertire gli edifici dei punti di raccolta delle reti elettriche e della sottostazione ad altra destinazione d'uso, compatibile con le norme urbanistiche vigenti per l'area e conservando gli elementi architettonici tipici del territorio di riferimento;
- Riciclo e smaltimento dei materiali;
- Ripristino dello stato dei luoghi mediante la rimozione delle opere, il rimodellamento del terreno allo stato originario ed il ripristino della vegetazione, avendo cura di:
 - a) ripristinare la coltre vegetale assicurando il ricarico con almeno un metro di terreno vegetale;
 - b) rimuovere i tratti stradali della viabilità di servizio rimuovendo la fondazione stradale e tutte le relative opere d'arte;
 - c) utilizzare per i ripristini della vegetazione essenze erbacee, arbustive ed arboree autoctone di ecotipi locali di provenienza regionale;
 - d) utilizzare tecniche di ingegneria naturalistica per i ripristini geomorfologici;
 - e) Comunicare agli Uffici regionali competenti la conclusione delle operazioni di dismissione dell'impianto.

Relativamente alle esigenze di bonifica dell'area, si sottolinea che l'impianto, in tutte le sue strutture che lo compongono, non prevede l'uso di prodotti inquinanti o di scorie, che possano danneggiare suolo e sottosuolo.

L'organizzazione funzionale dell'impianto, quindi, fa sì che l'impianto in oggetto non presenti necessità di bonifica o di altri particolari trattamenti di risanamento. Inoltre, tutti i materiali ottenuti sono riutilizzabili e riciclabili in larga misura. Si calcola che oltre il 90% dei materiali dismessi possa essere riutilizzato in altre comuni applicazioni industriali. Durante la fase di dismissione, così come durante la fase di costruzione, si dovrà porre particolare attenzione alla produzione di polveri derivanti dalla movimentazione delle terre, dalla circolazione dei mezzi e dalla manipolazione di materiali polverulenti o friabili. Durante le varie fasi lavorative a tal fine, si dovranno prendere in considerazione tutte le misure di prevenzione, sia nei confronti degli operatori sia dell'ambiente circostante; tali misure consisteranno principalmente nell'utilizzo di utensili a bassa velocità, nella bagnatura dei materiali, e nell'adozione di dispositivi di protezione individuale. Si precisa che, alla fine del ciclo produttivo dell'impianto, il parco eolico potrà essere dismesso secondo il progetto approvato o, in alternativa, potrebbe prevedersi l'adeguamento produttivo dello stesso.

In generale si stima di realizzare la dismissione dell'impianto e di ripristinare lo stato dei luoghi anche con la messa a dimora di nuove essenze vegetali ed arboree autoctone in circa 7 mesi.

5.11.1. MEZZI D'OPERA RICHIESTI DALLE OPERAZIONI

Le lavorazioni sopra indicate, nelle aree precedentemente localizzate, richiederanno l'impiego di mezzi d'opera differenti:

- 1. automezzo dotato di gru;
- 2. pale escavatrici, per l'esecuzione di scavi a sezione obbligata;
- 3. pale meccaniche, per movimenti terra ed operazioni di carico/scarico di materiali dismessi;
- 4. autocarri, per l'allontanamento dei materiali di risulta.

5.11.2. GESTIONE DEI RIFIUTI

Durante la fase di dismissione, le operazioni di rimozione e demolizione delle strutture, nonché il recupero e smaltimento dei materiali di risulta, verranno eseguite in osservanza delle norme vigenti in materia di smaltimento rifiuti. Gli apparati elettronici saranno opportunamente disinstallati e avviati a smaltimento come rifiuti elettrici ('RAEE').

I principali rifiuti prodotti, con i relativi codici CER, sono i seguenti:

- ✓ 20 01 36 Apparecchiature elettriche ed elettroniche fuori uso;
- √ 17 01 01 Cemento;
- √ 17 02 03 Plastica;
- √ 17 04 05 Ferro, Acciaio;

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

PROGETTO ENERGIA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

- √ 17 04 11 Cavi;
- √ 17 05 08 Pietrisco.

5.12. RIPRISTINO DELLO STATO DEI LUOGHI

Concluse le operazioni relative alla dismissione dei componenti dell'impianto eolico si dovrà procedere alla restituzione dei suoli alle condizioni ante-operam. Le operazioni per il completo ripristino morfologico e vegetazionale dell'area saranno di fondamentale importanza perché ciò farà in modo che l'area sulla quale sorgeva l'impianto possa essere restituita agli originari usi agricoli.

La sistemazione delle aree per l'uso agricolo costituisce un importante elemento di completamento della dismissione dell'impianto e consente nuovamente il raccordo con il paesaggio circostante. La scelta delle essenze arboree ed arbustive autoctone, nel rispetto delle formazioni presenti sul territorio, è dettata da una serie di fattori quali la consistenza vegetativa ed il loro consolidato uso in interventi di valorizzazione paesaggistica. Successivamente alla rimozione delle parti costitutive l'impianto eolico è previsto il reinterro delle superfici oramai prive delle opere che le occupavano. In particolare, laddove erano presenti gli aerogeneratori verrà riempito il volume precedentemente occupato dalla platea di fondazione mediante l'immissione di materiale compatibile con la stratigrafia del sito. Tale materiale costituirà la struttura portante del terreno vegetale che sarà distribuito sull'area con lo stesso spessore che aveva originariamente e che sarà individuato dai sondaggi geognostici che verranno effettuati in maniera puntuale sotto ogni aerogeneratore prima di procedere alla fase esecutiva. È indispensabile garantire un idoneo strato di terreno vegetale per assicurare l'attecchimento delle specie vegetali. In tal modo, anche lasciando i pali di fondazione negli strati più profondi sarà possibile il recupero delle condizioni naturali originali. Per quanto riguarda il ripristino delle aree che sono state interessate dalle piazzole, dalla viabilità dell'impianto e dalle cabine, i riempimenti da effettuare saranno di minore entità rispetto a quelli relativi alle aree occupate dagli aerogeneratori. Le aree dalle quali verranno rimosse le cabine e la viabilità verranno ricoperte di terreno vegetale ripristinando la morfologia originaria del terreno. La sistemazione finale del sito verrà ottenuta mediante piantumazione di vegetazione in analogia a quanto presente ai margini dell'area. Per garantire una maggiore attenzione progettuale al ripristino dello stato dei luoghi originario si potranno utilizzare anche tecniche di ingegneria naturalistica per la rinaturalizzazione degli ambienti modificati dalla presenza dell'impianto eolico. Tale rinaturalizzazione verrà effettuata con l'ausilio di idonee specie vegetali autoctone.

Le tecniche di Ingegneria Naturalistica, infatti, possono qualificarsi come uno strumento idoneo per interventi destinati alla creazione (neoecosistemi) o all'ampliamento di habitat preesistenti all'intervento dell'uomo, o in ogni caso alla salvaguardia di habitat di notevole interesse floristico e/o faunistico. La realizzazione di neo-ecosistemi ha oggi un ruolo fondamentale legato non solo ad aspetti di conservazione naturalistica (habitat di specie rare o minacciate, unità di flusso per materia ed energia, corridoi ecologici, ecc.) ma anche al loro potenziale valore economico-sociale.

I principali interventi di recupero ambientale con tecniche di Ingegneria Naturalistica che verranno effettuati sul sito che ha ospitato l'impianto eolico sono costituiti prevalentemente da:

- ✓ semine (a spaglio, idrosemina o con coltre protettiva);
- ✓ semina di leguminose;
- ✓ scelta delle colture in successione;
- ✓ sovesci adeguati;
- incorporazione al terreno di materiale organico, preferibilmente compostato, anche in superficie;
- ✓ piantumazione di specie arboree/arbustive autoctone;
- ✓ concimazione organica finalizzata all'incremento di humus ed all'attività biologica.

Gli interventi di riqualificazione di aree che hanno subito delle trasformazioni, mediante l'utilizzo delle tecniche di Ingegneria Naturalistica, possono quindi raggiungere l'obiettivo di ricostituire habitat e di creare o ampliare i corridoi ecologici, unendo quindi l'Ingegneria Naturalistica all'Ecologia del Paesaggio.

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

6. STIMA DEI COSTI DI DISMISSIONE DELL'IMPIANTO E DI RIPRISTINO DELLO STATO DEI LUOGHI

6.1. STIMA DEI COSTI DI DISMISSIONE E DI RIPRISTINO

Si riporta di seguito tabella riepilogativa dei costi di dismissione:

INTERVENTO/DESCRIZIONE	Posizione	PREZZO TOTALE		
1 - SMONTAGGIO AEROGENERATORI	1	€ 322.700,00		
2 - SMALTIMENTO MATERIALE ARIDO PIAZZOLE	2	€ 248.488,05		
3 - SMALTIMENTO MATERIALE ARIDO VIABILITÀ	3	€ 175.564,42		
4 - DEMOLIZIONE E SMALTIMENTO FONDAZIONE AEROGENERATORE	4	€ 292.321,81		
5 - RIPRISTINO STATO DEI LUOGHI AEROGENERATORI PIAZZOLE E STRADE	5	€ 241.802,00		
6 - DISMISSIONE CAVIDOTTO MT SOTTO STRADE E PIAZZOLE DISMESSE	6	€ 878.602,13		
7 - DISMISSIONE OPERE STAZIONE ELETTRICA	7	€ 76.216,00		

TOTALE € 2.235.694,41

È' stata prodotta una stima dei costi di dismissione e di ripristino dell'area interessata dal progetto dell'impianto. Detti costi, valutati in base al computo metrico mostrato, ammonteranno a circa € 45.626,42 per ciascun MW installato, per un totale di circa € 2.235.694,41.

6.2. CRONOPROGRAMMA DELLE FASI ATTUATIVE DI DISMISSIONE

Si riporta di seguito il cronoprogramma delle fasi attuative di dismissione:

ATTIVITA' LAVORATIVE	1mese 2mese 3mes		ese	4mese		5mese		6mese		7m	ese		
Smontaggio aerogeneratori													
Demolizione fondazioni aerogeneratori													
Smaltimento materiale arido piazzole													
Smaltimento materiale arido viabilità													
Dismissione cavidotto MT													
Dismissione edifici stazione elettrica di utenza													
Demolizione e smaltimento opere in cls stazione elettrica di utenza													

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

ATTIVITA' LAVORATIVE	1mese 2m		nese 3m		ese 4m		ese 5m		ese	6mese		7mese		
Smaltimento strade e piazzali stazione elettrica di utenza														
Ripristino stato dei luoghi														

6.3. IMPEGNO ALLA DISMISSIONE DELL'IMPIANTO

Il Proponente si impegna alla dismissione dell'impianto, allo smaltimento del materiale di risulta dell'impianto ed al ripristino dello stato dei luoghi nel rispetto della vocazione propria del territorio, attraverso il versamento di una cauzione, a garanzia degli interventi di dismissione dell'impianto e delle opere di connessione.

L'importo di tale cauzione è parametrato ai costi di dismissione dell'impianto e delle opere di rispristino dei luoghi, quest'ultimi riportati nei paragrafi innanzi.

7. ANALISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE

L'immediato vantaggio offerto dall'esercizio dell'impianto di produzione di energia proposto è quello di non produrre inquinamento locale, dando un contributo al rispetto degli impegni nazionali per la riduzione delle emissioni di gas climalteranti.

In particolare, l'installazione di pochi ma più moderni aerogeneratori in sostituzione di diverse turbine di vecchia concezione, comporta un aumento della potenza installata da fonte eolica, e, con la medesima proporzione, un abbattimento di produzione di CO₂ equivalente.

La produzione di energia elettrica da fonte rinnovabile avrà anche effetti economici più direttamente percepibili dal territorio e dalla comunità locale, come l'aumento dell'occupazione nelle attività connesse all'installazione e manutenzione degli impianti.

Per quanto riguarda i risvolti occupazionali dell'iniziativa, la realizzazione dell'impianto e la sua gestione, coinvolgeranno operatori di svariati settori: costruzioni, movimenti terra, impiantistica industriale, elettronica, trasporti. L'impianto a regime garantirà occupazione ad operai non specializzati per la sorveglianza e la manutenzione ordinaria dell'impianto, ed a personale qualificato per quanto riguarda le operazioni di manutenzione straordinaria sulla rete interna all'area di impianto ed alle apparecchiature legate alla conversione e trasformazione dell'energia elettrica.

7.1. SVILUPPO SOCIO-ECONOMICO

Gli impatti in questo ambito sono principalmente positivi, cosa che comunque non impedisce di adottare una serie di misure che li incrementino, come ad esempio lo sfruttamento di subappalti nelle zone interessate dal progetto, tanto nella fase di costruzione quanto in quella di gestione.

7.2. GENERAZIONE DI POSTI DI LAVORO

Nell'ambito delle attività lavorative indotte dall'inserimento dell'impianto eolico si sottolinea il prevalente coinvolgimento di personale e ditte del posto nelle fasi costruttive dell'impianto.

7.3. PROMOZIONE TURISTICA

La presenza dell'impianto potrà diventare un'attrattiva turistica se potenziata con accorgimenti opportuni, come l'organizzazione di visite guidate per scolaresche o gruppi, ai quali si mostrerà l'importanza delle energie rinnovabili ai fini di uno sviluppo sostenibile. Ad esempio, in Danimarca, la piccola patria dell'energia del vento, hotel, camping e comuni danesi utilizzano le pale eoliche come immagine di promozione turistica "verde", per dare l'idea di un ambiente bucolico sano, silenzioso e pulito

DIV4NO6_RelazioneTecnica RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica composto da n.7 aerogeneratori con potenza totale installata pari a 49 MW e relative opere connesse denominato "Ofanto" sito nei Comuni di Cerignola (FG) e Trinitapoli (BT)

Codifica Elaborato: 234305_D_R_0102 Rev. 00

8. ELENCO DELLE AUTORIZZAZIONI, INTESE, CONCESSIONI, LICENZE, PARERI, NULLA OSTA E ASSENSI COMUNQUE DENOMINATI, GIÀ ACQUISITI O DA ACQUISIRE AI FINI DELLA REALIZZAZIONE E DELL'ESERCIZIO DELL'OPERA O INTERVENTO

Si riporta di seguito l'elenco dei soggetti competenti al rilascio degli assensi occorrenti per la realizzazione dell'opera e l'ottenimento delle autorizzazioni, cui è soggetta l'area di ubicazione dell'impianto e delle opere connesse:

Aeronautica Militare - III Regione Aerea - Reparto Territorio e Patrimonio

AQP SpA

Area Politiche per la riqualificazione, la tutela e la sicurezza ambientale e per l'attuazione delle opere pubbliche - Servizio Difesa del suolo e rischio sismico

Arpa Puglia - Dipartimento Prov.le BAT

Arpa Puglia - Dipartimento Prov.le di Foggia

ASL di BAT

ASL di Foggia

Autorità di Bacino della Basilicata

Autorità di Bacino Distrettuale dell'Appennino Meridionale -Sede Puglia

Comando Marittimo Sud

Comando Militare Esercito "Puglia"

Comando Prov.le Vigili del Fuoco di BAT

Comando Prov.le Vigili del Fuoco di Foggia

Comune di Cerignola (FG)

Comune di Trinitapoli (BAT)

Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale -Sezione Coordinamento dei Servizi Territoriali

Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale -Sezione Gestione Sostenibile e Tutela delle Risorse Forestali e Naturali

Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale -Sezione Risorse Idriche

Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - Sezione Autorizzazioni Ambientali Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - Sezione Lavori Pubblici

Regione Puglia - Dipartimento Sviluppo Economico

- Sezione transizione energetica

Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - Sezione Tutela e Valorizzazione del Paesaggio

Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - Sezione Urbanistica

Dipartimento Mobilità, Qualità Urbana, Opere Pubbliche, Ecologia e Paesaggio - Sezione Vigilanza Ambientale

Direzione generale per le valutazioni e le autorizzazioni ambientali (DVA)

Direzione Generale Territoriale del Sud - Sezione U.S.T.I.F Divisione VIII - Ispettorato Territoriale Puglia, Basilicata e Molise

ENAC - Direzioni e Uffici Operazioni Sud - Napoli

ENAV - AOT

ENEL Distribuzione SpA

Ministero della Cultura

Provincia BAT - Settore 11° - Ambiente, Energia, Aree Protette

Provincia di Bat - Assetto Territorio/Urbanistica

Provincia di Foggia

Provincia di Foggia - ASSETTO TERRITORIO

Provincia di Foggia - Settore Ambiente

Sezione Gestione Sostenibile e Tutela delle Risorse Forestali e Naturali - Servizio Gestione Demanio Forestale

Sezione Urbanistica - Servizio Osservatorio abusivismo e contenzioso - Usi Civici

Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province dil BAT E FG

TERNA SpA

Camera di Commercio Industria Artigianato e Agricoltura di BOLZANO

Registro Imprese - Archivio ufficiale della CCIAA

In questa pagina e nei riquadri riassuntivi posti all'inizio di ciascun paragrafo, viene esposto un estratto delle informazioni presenti in visura che non può essere considerato esaustivo, ma che ha puramente uno scopo di sintesi

VISURA STORICA SOCIETA' DI CAPITALE

FRI-EL OFANTO - S.R.L.

OBRRKV

Il QR Code consente di verificare la corrispondenza tra questo documento e quello archiviato al momento dell'estrazione. Per la verifica utilizzare l'App RI QR Code o visitare il sito ufficiale del Pogistra l'Imprese.

DATI ANAGRAFICI

Indirizzo Sede legale BOLZANO (BZ) PIAZZA DEL GRANO 3 CAP 39100

Domicilio digitale/PEC fri-el.ofanto@legalmail.it

Numero REA BZ - 230119 Codice fiscale e n.iscr. al 03076540214

Registro Imprese

Partita IVA 03076540214

Forma giuridica societa' a responsabilita' limitata

Data atto di costituzione 27/03/2020 Data iscrizione 01/04/2020 Data ultimo protocollo 03/04/2023

Amministratore Unico GOSTNER ERNST
Rappresentante dell'Impresa

ATTIVITA'

Stato attività inattiva

Attività import export
Contratto di rete
Albi ruoli e licenze
Albi e registri ambientali -

L'IMPRESA IN CIFRE

10.000.00 Capitale sociale Soci e titolari di diritti su azioni e quote Amministratori Titolari di cariche 1 Sindaci, organi di 0 controllo Unità locali 0 Pratiche inviate negli ultimi 12 mesi Trasferimenti di quote 0 Trasferimenti di sede 0 Partecipazioni (1)

CERTIFICAZIONE D'IMPRESA

Attestazioni SOA - Certificazioni di - QUALITA'

DOCUMENTI CONSULTABILI

 Bilanci
 2022 - 2021 - 2020

 Fascicolo
 sì

 Statuto
 sì

 Altri atti
 4

(1) Indica se l'impresa detiene partecipazioni in altre società, desunte da elenchi soci o trasferimenti di quote

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

Indice

1	Sede	2
2	Informazioni da statuto/atto costitutivo	2
3	Capitale e strumenti finanziari	4
4	Soci e titolari di diritti su azioni e quote	4
5	Amministratori	5
6	Titolari di altre cariche o qualifiche	6
7	Attività, albi ruoli e licenze	6
8	Storia delle modifiche	6
9	Aggiornamento impresa	9

1 Sede

Indirizzo Sede legale BOLZANO (BZ)

PIAZZA DEL GRANO 3 CAP 39100

Domicilio digitale/PEC fri-el.ofanto@legalmail.it

Partita IVA 03076540214 Numero repertorio economico BZ - 230119

amministrativo (REA)

2 Informazioni da statuto/atto costitutivo

Registro Imprese Codice fiscale e numero di iscrizione: 03076540214

Data di iscrizione: 01/04/2020

Sezioni: Iscritta nella sezione ORDINARIA

Estremi di costituzioneData atto di costituzione: 27/03/2020

Sistema di amministrazione

amministratore unico (in carica)

Oggetto sociale LA SOCIETA' HA PER OGGETTO: A) LO SVILUPPO, LA REALIZZAZIONE E LA

GESTIONE DI

CENTRALI PER LA PRODUZIONE, E DI IMPIANTI PER IL TRASPORTO E LA

DISTRIBUZIONE

DELL'ENERGIA ELETTRICA DESTINATA AD ESSERE UTILIZZATA NEI LIMITI CONCESSI

DALLE

Poteri da statuto L'ORGANO AMMINISTRATIVO, IN QUALUNQUE FORMA NOMINATO, HA TUTTI I POTERI

DI

ORDINARIA E STRAORDINARIA AMMINISTRAZIONE, ESCLUSI QUELLI CHE LA LEGGE O

 ${\tt IL}$

PRESENTE STATUTO RISERVANO ESPRESSAMENTE AI SOCI. NEL CASO DI NOMINA DEL

. . .

Altri riferimenti statutari Gruppi societari

Estremi di costituzione

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

iscrizione Registro Imprese Codice fiscale e numero d'iscrizione: 03076540214

del Registro delle Imprese di BOLZANO

Data iscrizione: 01/04/2020

sezioni Iscritta nella sezione ORDINARIA il 01/04/2020

informazioni costitutive Denominazione: FRI-EL OFANTO - S.R.L.

Data atto di costituzione: 27/03/2020

Sistema di amministrazione e controllo

durata della società Data termine: 31/12/2100

scadenza esercizi Scadenza primo esercizio: 31/12/2020

Giorni di proroga dei termini di approvazione del bilancio: 60

sistema di amministrazione e controllo contabile

Sistema di amministrazione adottato: amministratore unico

amministratore unico (in carica)

organi amministrativi

Oggetto sociale

LA SOCIETA' HA PER OGGETTO: A) LO SVILUPPO, LA REALIZZAZIONE E LA GESTIONE DI CENTRALI PER LA PRODUZIONE, E DI IMPIANTI PER IL TRASPORTO E LA DISTRIBUZIONE DELL'ENERGIA ELETTRICA DESTINATA AD ESSERE UTILIZZATA NEI LIMITI CONCESSI DALLE

DISPOSIZIONI DI LEGGE CHE DISCIPLINANO L'ESERCIZIO DELL'ATTIVITA' ELETTRICA; B) LA PRODUZIONE, L'ACQUISTO, L'UTILIZZO E LA DISTRIBUZIONE DI ENERGIA ELETTRICA , SIA PER SCOPI PUBBLICI CHE PRIVATI; C) LA MESSA IN OPERA E LA MANUTENZIONE DI RETI DI DISTRIBUZIONE E DI CAVI PER IL TRASPORTO DELL'ENERGIA ELETTRICA, DI IMPIANTI E MACCHINARI CONNESSI; D) L'ACQUISTO, LA COSTRUZIONE E L'AFFITTO DI COSTRUZIONI E ATTREZZATURE DI OUALSIASI GENERE, SE UTILI PER IL RAGGIUNGIMENTO DELL'ATTIVITA' CHE COSTITUISCE L'OGGETTO SOCIALE; E) LA REALIZZAZIONE DI STUDI DI FATTIBILITA' NONCHE' LO SVILUPPO E L'IMPLEMENTAZIONE DI PROGETTI IMPRENDITORIALI IN GENERE NEL SETTORE DELL'ENERGIA, NONCHE' LA PRESTAZIONE DI SERVIZI DI CONSULENZA CON ESCLUSIONE DI QUELLI RISERVATI A DETERMINATE CATEGORIE PROFESSIONALI. LA SOCIETA' PUO' INOLTRE COMPIERE TUTTE LE OPERAZIONI FINANZIARIE, MOBILIARI ED IMMOBILIARI NECESSARIE OD UTILI PER IL CONSEGUIMENTO DELL'OGGETTO SOCIALE OPPURE AD ESSO DIRETTAMENTE O INDIRETTAMENTE CONNESSE. ESSA PUO' ASSUMERE PARTECIPAZIONI O INTERESSENZE IN ALTRE IMPRESE O SOCIETA' AVENTI OGGETTO ANALOGO O CONNESSO AL PROPRIO, O ANCHE DIVERSO DAL PROPRIO, MA NEI LIMITI DI CUI ALL'ART. 2361 C.C. INOLTRE PUO' CONCEDERE ED ACCETTARE AVALLI, FIDEIUSSIONI E GARANZIE IN GENERE A E DA TERZI. LA SOCIETA' PUO' INOLTRE ACOUISTARE E CEDERE BREVETTI INDUSTRIALI E MARCHI ED ESERCITARE DIRITTI

DI PROPRIETA' INDUSTRIALE E COMMERCIALE.

Poteri

poteri da statuto

L'ORGANO AMMINISTRATIVO, IN QUALUNQUE FORMA NOMINATO, HA TUTTI I POTERI DI ORDINARIA E STRAORDINARIA AMMINISTRAZIONE, ESCLUSI QUELLI CHE LA LEGGE O IL PRESENTE STATUTO RISERVANO ESPRESSAMENTE AI SOCI. NEL CASO DI NOMINA DEL CONSIGLIO DI AMMINISTRAZIONE QUESTO PUO' DELEGARE TUTTI O PARTE DEI SUOI POTERI A NORMA E CON I LIMITI DI CUI ALL'ART. 2381 CODICE CIVILE AD UN COMITATO ESECUTIVO COMPOSTO DA ALCUNI DEI SUOI COMPONENTI OVVERO AD UNO O PIU' DEI PROPRI COMPONENTI, ANCHE DISGIUNTAMENTE. IL COMITATO ESECUTIVO OVVERO L'AMMINISTRATORE O GLI AMMINISTRATORI DELEGATI, POTRANNO COMPIERE TUTTI GLI ATTI DI ORDINARIA E STRAORDINARIA AMMINISTRAZIONE, CHE RISULTERANNO DALLA DELEGA CONFERITA DAL CONSIGLIO DI AMMINISTRAZIONE. L'ORGANO AMMINISTRATIVO PUO' NOMINARE DIRETTORI, INSTITORI O PROCURATORI PER IL COMPIMENTO DI DETERMINATI ATTI O CATEGORIE DI ATTI, DETERMINANDONE I POTERI. NEL CASO DI NOMINA DEL CONSIGLIO DI AMMINISTRAZIONE, QUESTO PUO' ADOTTARE IN LUOGO DELL'ASSEMBLEA DEI

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

SOCI, LE DECISIONI RELATIVE A: - L'AUMENTO DEL CAPITALE SOCIALE SECONDO LE DISPOSIZIONI DI LEGGE; - LE DECISIONI DI FUSIONE NEI CASI ED ALLE CONDIZIONI DI CUI AGLI ARTT. 2505 E 2505 BIS DEL CODICE CIVILE; - L'EMISSIONE DI TITOLI DI DEBITO. NEL CASO DI NOMINA DI AMMINISTRATORE UNICO SPETTANO ALLA ASSEMBLEA DEI SOCI LE DELIBERAZIONI CONCERNENTI I PUNTI DEL SOPRACCITATO ART. 25.4.
ALL'AMMINISTRATORE UNICO, AL PRESIDENTE ED AL VICEPRESIDENTE DEL CONSIGLIO DI AMMINISTRAZIONE, NONCHE' AGLI AMMINISTRATORI DELEGATI NEI LIMITI DELLA DELEGA CONFERITA, E' ATTRIBUITA LA RAPPRESENTANZA DELLA SOCIETA'. NEL CASO DI NOMINA DI PIU' AMMINISTRATORI, NON COSTITUENTI UN CONSIGLIO DI AMMINISTRAZIONE, LA RAPPRESENTANZA SPETTA AGLI STESSI IN VIA CONGIUNTA E/O DISGIUNTA NEI LIMITI DEI POTERI DI AMMINISTRAZIONE ATTRIBUITI IN SEDE DI NOMINA. LA RAPPRESENTANZA SOCIALE SPETTA ANCHE AI DIRETTORI, AGLI INSTITORI ED AI PROCURATORI DI CUI AL PRECEDENTE ARTICOLO 25 NEI LIMITI DEI POTERI DETERMINATI DALL'ORGANO AMMINISTRATIVO NELL'ATTO DI NOMINA.

ripartizione degli utili e delle perdite tra i soci

ART. 30

Altri riferimenti statutari

clausole di recesso Informazione presente nello statuto/atto costitutivo

clausole di esclusione Informazione presente nello statuto/atto costitutivo

clausole di prelazione Informazione presente nello statuto/atto costitutivo

gruppi societari comunicazione di "soggetto ad altrui attivita' di direzione e coordinamento"

3 Capitale e strumenti finanziari

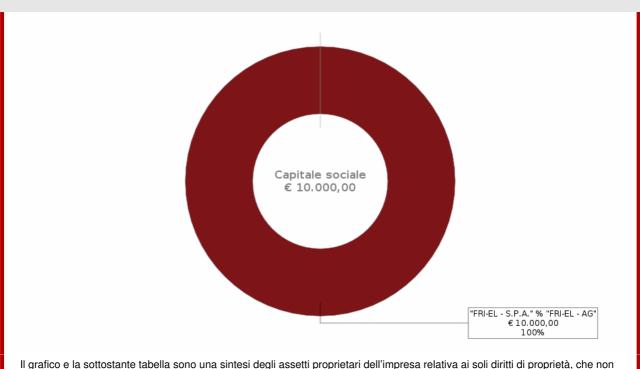
Capitale sociale in Euro Deliberato: 10.000,00

Sottoscritto: 10.000,00 Versato: 10.000,00 Conferimenti in denaro

Conferimenti e benefici INFORMAZIONE PRESENTE NELLO STATUTO/ATTO COSTITUTIVO

strumenti finanziari previsti dallo

statuto


Titoli di debito:

ART. 11

4 Soci e titolari di diritti su azioni e quote

Sintesi della composizione societaria e degli altri titolari di diritti su azioni o quote sociali al 30/03/2020

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

sostituisce l'effettiva pubblicità legale fornita dall'elenco soci a seguire, dove sono riportati anche eventuali vincoli sulle quote.

Socio	Valore	%	l ipo diritto		
"FRI-EL - S.P.A." 07321020153	10.000,00	100 %	proprieta'		

Elenco dei soci e degli altri titolari di diritti su azioni o quote sociali al 30/03/2020

pratica con atto del 27/03/2020

Data deposito: 30/03/2020 Data protocollo: 30/03/2020

Numero protocollo: BZ-2020-17213

capitale sociale

Capitale sociale dichiarato sul modello con cui è stato depositato l'elenco dei soci:

10.000,00 Euro

Proprieta'

Quota di nominali: 10.000,00 Euro

"FRI-EL - S.P.A." % "FRI-EL - AG"

Di cui versati: 10.000,00 Codice fiscale: 07321020153

Denominazione del soggetto alla data della denuncia: FRI-EL - S.P.A.

Tipo di diritto: proprieta'

Domicilio del titolare o rappresentante comune

ROMA (RM) PIAZZA DELLA ROTONDA 2 CAP 00186

5 Amministratori

Amministratore Unico GOSTNER ERNST Rappresentante dell'impresa

Organi amministrativi in carica

amministratore unico

Numero componenti: 1

Elenco amministratori

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

Amministratore Unico

GOSTNER ERNST

Rappresentante dell'impresa

Nato a BOLZANO (BZ) il 05/01/1962 Codice fiscale: GSTRST62A05A952B

BOLZANO (BZ)

VIA EISENKELLER 22/1 CAP 39100

carica

domicilio

amministratore unico

Data atto di nomina: 27/03/2020 Data iscrizione: 01/04/2020

Durata in carica: a tempo indeterminato

6 Titolari di altre cariche o qualifiche

Socio Unico

"FRI-EL - S.P.A." % "FRI-EL -

AG"

Socio Unico

"FRI-EL - S.P.A." % "FRI-EL - AG"

Codice fiscale: 07321020153

Denominazione del soggetto alla data della denuncia: FRI-EL - S.P.A.

ROMA (RM)

PIAZZA DELLA ROTONDA 2 CAP 00186

carica

sede

socio unico

dal 27/03/2020

Data iscrizione: 01/04/2020

Attività, albi ruoli e licenze

Stato attività

Impresa INATTIVA

Attività

stato attività

Impresa INATTIVA

Classificazione dichiarata ai fini IVA dell'attività prevalente

Codice: 35.11.00 - produzione di energia elettrica

Data riferimento: 27/03/2020

8 Storia delle modifiche

Protocolli evasi

Anno 2023 1

1

Anno 2022

Anno 2021 1 Anno 2020 2

Atti iscritti e/o depositati nel Registro Imprese di BOLZANO

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

Protocollo n. 24400/2023 del 03/04/2023

moduli

atti

Protocollo n. 24374/2022 del 06/04/2022

moduli

atti

Protocollo n. 16187/2021 del 18/03/2021

moduli

atti

Protocollo n. 18403/2020 del 08/04/2020

moduli

atti

Iscrizioni

Protocollo n. 17213/2020 del 30/03/2020 moduli B - deposito bilancio

• bilancio microimprese Data atto: 31/12/2022

Data deposito: 03/04/2023

B - deposito bilancio

bilancio microimprese
 Data atto: 31/12/2021
 Data deposito: 06/04/2022

B - deposito bilancio

bilancio microimprese
 Data atto: 31/12/2020
 Data deposito: 18/03/2021

C1 - comunicazione unica presentata ai fini r.i.

S - elenco soci e titolari di diritti su azioni o quote sociali S2 - modifica societa', consorzio g.e.i.e, ente pubblico econ.

• modifiche atto costitutivo (soc di capitali e cooperative) comunic direz e coord.

Data atto: 30/03/2020 Data iscrizione: 15/04/2020

comunicazione

Data iscrizione: 15/04/2020

ALTRE MODIFICHE STATUTARIE - ATTI E FATTI SOGGETTI A DEPOSITO.

PRECEDENTE:

004 - GRUPPI SOCIETARI (ASSENTE)

INIZIO-DEL-TESTO-TEDESCO

VORHERGEHEND:

004 - GESELLSCHAFTSGRUPPIERUNGEN (FEHLEND)

S1 - iscrizione di societa, consorzio, g.e.i.e., ente pubb. econ.

S - elenco soci e titolari di diritti su azioni o quote sociali

P - iscrizione nel ri e rea di atti e fatti relativi a persone

Numero modelli: 2

C4 - com. unica presentata ai fini r.i. e agenzia delle entrate

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

atti

· atto costitutivo

Data atto: 27/03/2020 Data iscrizione: 01/04/2020

atto pubblico

Notaio: LONGI CARLO Repertorio n: 5951/4029 Località: BOLZANO (BZ)

nomina/conferma amministratori

Data atto: 27/03/2020 Data iscrizione: 01/04/2020

atto pubblico

Notaio: LONGI CARLO Repertorio n: 5951/4029 Località: BOLZANO (BZ)

• comunicazione socio unico di s.r.l./ricostituzione pluralita' dei soci

Data atto: 27/03/2020 Data iscrizione: 01/04/2020

comunicazione

Notaio: LONGI CARLO Repertorio n: 5951/4029 Località: BOLZANO (BZ)

Iscrizioni

Data iscrizione: 01/04/2020

ISCRIZIONE NELLA SEZIONE ORDINARIA DEL REGISTRO DELLE IMPRESE

Data iscrizione: 01/04/2020
• GOSTNER ERNST

Codice fiscale: GSTRST62A05A952B

E' STATA NOMINATA ALLA CARICA DI AMMINISTRATORE UNICO CON ATTO DEL 27/03/2020

DURATA: A TEMPO INDETERMINATO
INIZIO-DEL-TESTO-TEDESCO

ALS ALLEINIGER VERWALTER ERNANNT MIT DATUM SEIT 27/03/2020; DAUER: AUF

UNBEGRENZTE ZEIT

Data iscrizione: 01/04/2020

• FRI-EL - S.P.A.

Codice fiscale: 07321020153
NOMINA CARICA E/O QUALIFICA/E DI:

ISCRIZIONE COME SOCIO UNICO CON ATTO DEL 27/03/2020

INIZIO-DEL-TESTO-TEDESCO

EINTRAGUNG ALS ALLEINIGER GESCHAEFTSFUEHRER EINER G.M.B.H. ALLEINIGER

GESELLSCHAFTER ERNANNT MIT DATUM SEIT 27/03/2020

Estremi atto di costituzione

Tipo dell'atto: **atto costitutivo** Notaio: LONGI CARLO Numero repertorio: 5951/4029

Località: BOLZANO (BZ)

FRI-EL OFANTO - S.R.L. Codice Fiscale 03076540214

9 Aggiornamento impresa

Data ultimo protocollo 03/04/2023