

Direzione Tecnica

S.S. N. 685 "DELLE TRE VALLI UMBRE"

TRATTO SPOLETO-ACQUASPARTA 2º stralcio: Firenzuola - Acquasparta

PROGETTO DEFINITIVO

COD. PG373

3engeko

Dott. Ing. C.Muller

ATI SINTAGMA - GP INGEGNERIA - ENGEKO - GDG - ICARIA **PROGETTAZIONE:**

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: Dott. Ing. Giorgio Guiducci Ordine degli Ingegneri della Prov. di Roma n° 14035

IL PROGETTISTA:

Dott. Ing. Federico Durastanti

Ordine degli Ingegneri della Prov. di Terni n°A844

IL GEOLOGO:

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n°108

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Prov. di Perugia n° A1373

II RESPONSABILE DI PROGETTO

Dott. Ing. Rita Gandolfo

II R.U.P.

Dott. Ing. Alessandro Micheli

PROTOCOLLO

DATA

IL GRUPPO DI PROGETTAZIONE:

MANDATARIA:

/bintagma

Dott.Ing. Dott.Ing. Dott.Ing. Dott.Arch. Dott.Ing. Dott.Ing. Dott.Geol. Dott.Ing. Dott.Ing. Dott.Arch. Dott. Agr.

Geom.

Geom.

N.Granieri V.Truffini L.Spaccini A.Bracchini E.Bartolocci L.Casavecchia G.Cerquiglini F.Pambianco M.Abram C.Presciutti F.Berti Nulli S.Scopetta

M.Zucconi

GPINGEGNERIA

MANDANTI:

Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. G.Guiducci E.Moscatelli A.Signorelli A.Belà G.Lucibello G.Guastella M.Leonardi Dott. Ing. Dott. Arch. Dott. Geol. Dott. Ing.

GEOTECHNICAL DESIGN GROUP

Dott. Ing. D.Carlaccini Dott. Ing. C.Consorti E.Loffredo Dott. Ing. S.Sacconi

ICARIA

Dott. Ing. V.Rotisciani Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ina.

F.Macchioni G.Verini V.Piunno G Pulli

età di ingegneria

OPERE D'ARTE MAGGIORI Viadotti e Ponti Viadotto Firenzuola alla progr. 5+503 Relazione tecnica e illustrativa

CODICE PROGETTO PROGETTO LIV. PROG. ANNO		NOME FILE TOOVIO3STRRE01A			REVISIONE	SCALA:	
DPPG373 D 22		CODICE TOOVIO3STRRE01		·	1:1		
D							
С							
В							
Α	Emissione per CDS			GENNAIO 2023	C.Muller	F.Durastanti	G.Guiducci
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola-Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

1	DESC	RIZIONE	2
2	METC	DOLOGIA DI COSTRUZIONE	9
3	MODE	ELLO STRUTTURALE	11
4	CARA	TTERISTICHE DEI MATERIALI E COEFFICIENTI DI SICUREZZA	12
	4.1 CA	RPENTERIA METALLICA	12
	4.2 BU	LLONI E SALDATURE	15
	4.3 CL	ASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO	16
	4.3.1	Classe di conseguenze	
	4.3.2	Categoria di servizio e di produzione	
	4.3.3	Determinazione della classe di esecuzione	
	4.4 CC	NNETTORI A PIOLO	19
	4.5 CA	LCESTRUZZO	21
	4.5.1	Calcestruzzo per soletta d'impalcato, cordoli, baggioli ed elevazioni	21
	4.5.2	Calcestruzzo per fondazioni	26
	16 AC	CΙΔΙΟ DΔ ΔΡΜΔΤΙΙΡΔ	30

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

1 DESCRIZIONE

L'opera consta di un viadotto a 3 campate, ordite tra due spalle in c.a. e due pile, denominate progressivamente "S01", "P01", "P02" e "S02". La luce delle campate è pari a circa 41.00 - 68.00 - 41.00 m; la larghezza complessiva della soletta è pari a 11.25 m.

La tipologia strutturale prescelta è quella del grigliato composto acciaio calcestruzzo, formato da:

- n. 2 allineamenti di travi longitudinali a doppio T, in composizione strutturale con la soletta, disposte ad interasse trasversali pari a 6.05 m;
- n. 2 traversi di spalla ad anima piena, disposti a collegare i 2 allineamenti di trave su S01 e S02;
- n. 2 traversi di pila reticolari, disposto a collegare i 2 allineamenti di trave su P01 e P02;
- n. 18 traversi intermedi reticolari formati da profili angolari disposti a collegare gli allineamenti delle travi principali;

La luce netta delle travi longitudinali, che risultano ordite parallelamente, è pari a 150.00 m; la luce complessiva, considerando il retrotrave da 60 cm, è pari a 151.20 m.

L'altezza complessiva dell'opera è pari a 3.00 m (trave metallica di altezza 2.70 m + soletta da 0.30 m), cui consegue un rapporto luce altezza è pari a circa 1/23.

Tutte le giunzioni tra conci delle travi longitudinali sono previste saldate a completa penetrazione. L'assemblaggio del grigliato avviene mediante giunzioni bullonate travi/traversi.

La stabilizzazione della piattabanda superiore della sezione metallica durante le fasi antecedenti alla realizzazione e solidarizzazione della soletta in c.a. è assicurata da un sistema di controventi superiori, realizzati mediante profili angolari accoppiati di sezione 2L80x8 e 2L90x9.

La soletta in calcestruzzo di spessore complessivo di 30 cm (6+24 cm) verrà realizzata, dopo il varo delle travi, mediante getto in opera su predalla in cls, di spessore pari a 6 cm, armata con idonei tralicci.

La soletta, di larghezza pari a 11.25 m, ospita un piano viabile di larghezza 9.75 m, due cordoli esterni di larghezza pari a 0.75 m, che ospitano le barriere di sicurezza.

MANDATARIA

MANDANTE

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

La connessione soletta-travi è realizzata mediante pioli Nelson.

Le figure seguenti riportano schematicamente la configurazione dell'opera.

Figura 1.1 Planimetria generale di intervento

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

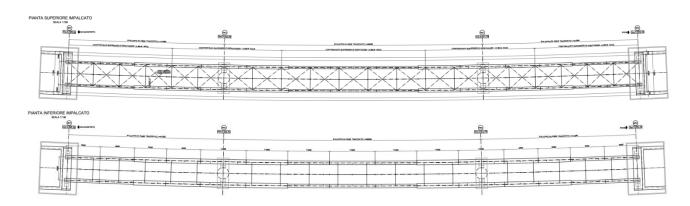


Figura 1.2 Pianta Impalcato

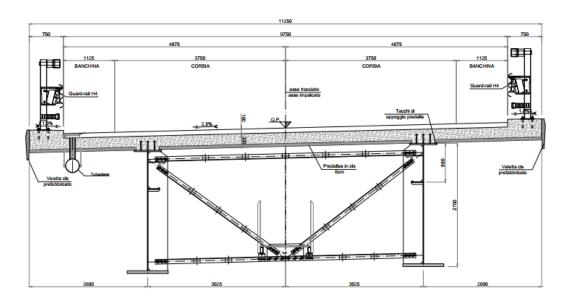


Figura 1.3 Sezione trasversale tipologica (graficamente rappresentata)

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

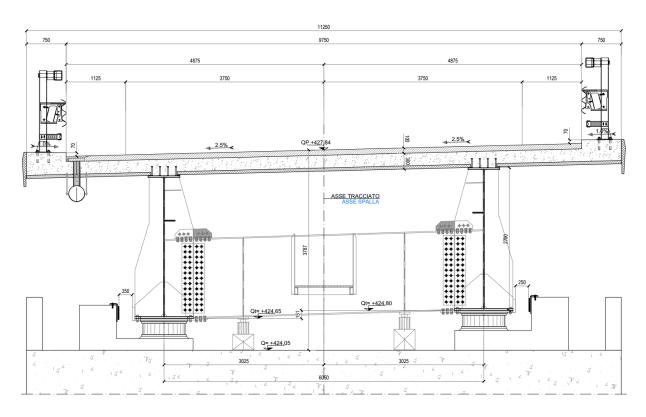


Figura 1.4. Sezione trasversale su spalla S01 (graficamente rappresentata)

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

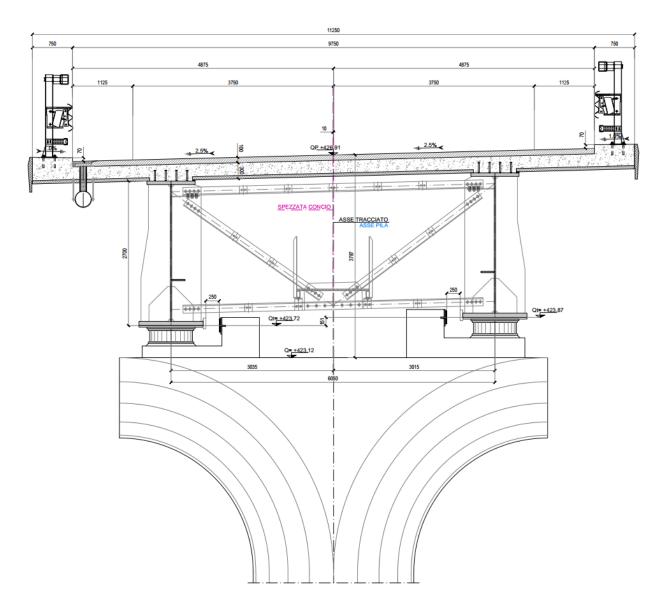


Figura 1.5. Sezione trasversale su pila P01 (graficamente rappresentata)

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

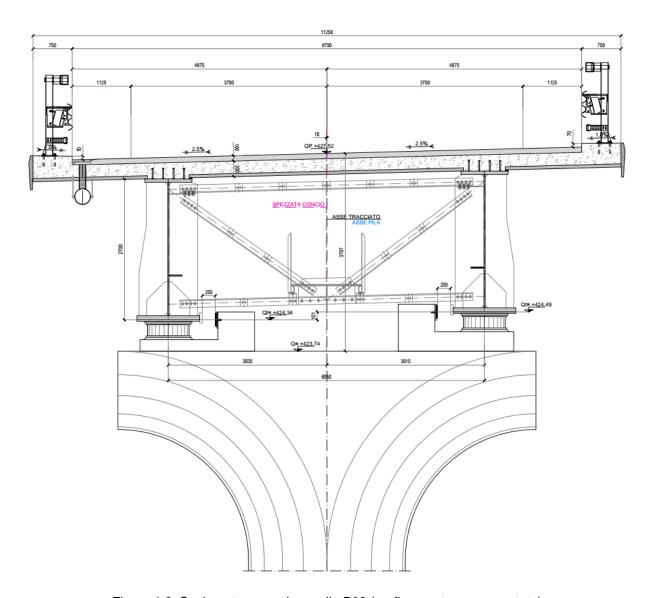


Figura 1.6. Sezione trasversale su pila P02 (graficamente rappresentata)

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

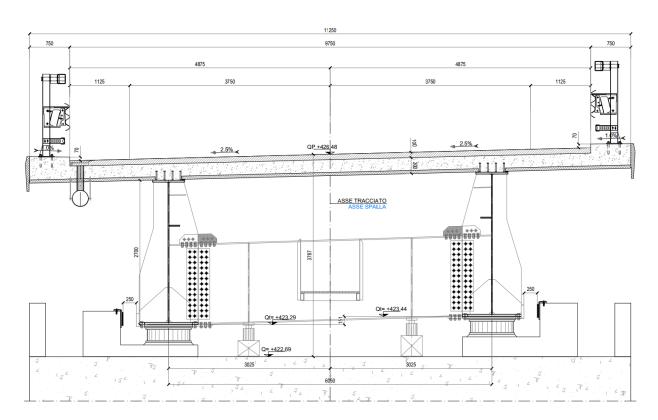


Figura 1.7. Sezione trasversale su spalla S02 (graficamente rappresentata)

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

2 METODOLOGIA DI COSTRUZIONE

Preventivamente alla realizzazione dell'impalcato saranno eseguiti gli scavi di sbancamento, le opere provvisionali di presidio, i pali di fondazione, le spalle e la pila di appoggio in c.a. ed i rilevati stradali di approccio. Per la realizzazione delle opere di fondazione si prevede la realizzazione di pali di fondazione che interferiranno con la falda, pertanto i pali stessi saranno realizzati mediante uso di fanghi polimerici biodegradabili e\o di lamierino provvisorio, in maniera tale da tutelare la falda stessa.

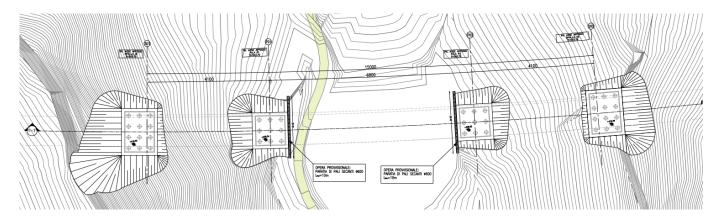


Figura 2.1 Pianta degli scavi

Il varo del viadotto sarà eseguito a spinta a partire da spalla S02 verso spalla S01, a seguito della realizzazione del piazzale di varo e del posizionamento delle attrezzature di varo (rulliere, argani, rinvii).

Il varo prevede quattro macrofasi principali:

- montaggio dell'avambecco e dei primi cinque conci di trave di cui i primi tre prici di predalle;
- 2. spinta dell'impalcato partendo da spalla S02 verso spalla S01 procedendo per step e ad ogni step assemblaggio dei relativi conci;
- 3. arrivo dell'impalcato su spalla S02 e inizio smontaggio dell'avambecco;
- 4. calaggio su appoggi definitivi, rimozione rulliere, disposizione armatura soletta e getto di completamento e infine completamento spalle e disposizione arredi.

MANDATARIA

MANDANTE

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

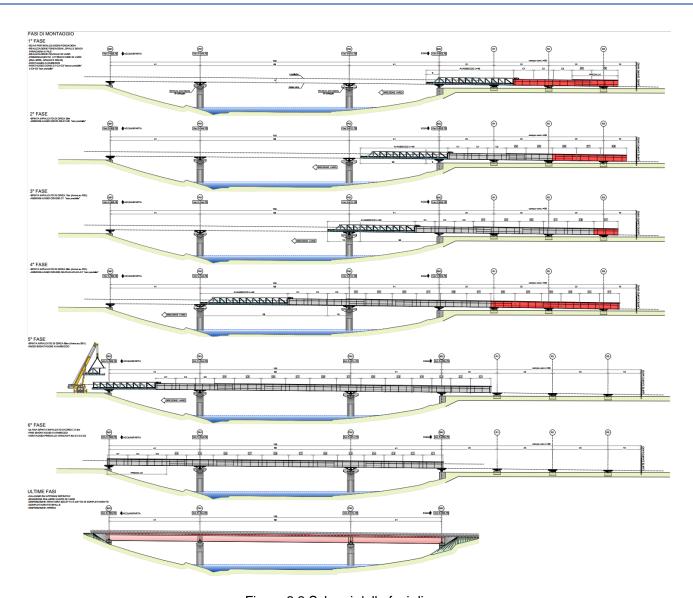


Figura 2.2 Schemi delle fasi di varo

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

3 MODELLO STRUTTURALE

Il ponte è schematizzato come un graticcio di travi modellate mediante elementi frame a cui vengono assegnate le proprietà geometriche in funzione della sezione di acciaio, di calcestruzzo, o sezione collaborante nelle diverse fasi di calcolo. Per la modellazione dell'impalcato sono stati schematizzati gli elementi principali (travi longitudinali, diaframmi traversali ed elementi soletta) tramite elementi beam e su di essi sono stati applicati i carichi di progetto. Dalla risoluzione del sistema, si determinano le caratteristiche di sollecitazione per i vari elementi e la deformazione degli stessi.

Il viadotto in oggetto presenta un impalcato a struttura mista a via superiore. L'impalcato ha un comportamento alla Courbon in quanto la sezione è aperta e non sono presenti controventi inferiori.

Lo schema statico globale è quello di trave continua su tre appoggi con luci di circa 35 m, 70 m.

È stata svolta un'analisi globale di tipo elastica sviluppando il calcolo secondo quanto previsto dalle norme NTC2018, EC4, CNR-UNI 10011 e CNR 10030.

La larghezza di soletta collaborante, necessaria per la determinazione delle caratteristiche geometriche delle sezioni in fase 2 e fase 3 è stata determinata in accordo con il D.M. 17.01.2018.

L'origine del modello numerico è stata assunta in corrispondenza della Spalla S01.

I nodi di schema corrispondono a punti caratteristici della struttura quali irrigidenti, giunti, e diaframmi.

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4 CARATTERISTICHE DEI MATERIALI E COEFFICIENTI DI SICUREZZA

4.1 CARPENTERIA METALLICA

Per la determinazione delle caratteristiche dei materiali da utilizzare per la struttura metallica si fa riferimento ai paragrafi 11.3.4 del D.M. 2018, alle norme armonizzate della serie UNI EN 10025-5 (per i laminati con resistenza migliorata alla corrosione atmosferica) ed alla sezione 3 dell'Eurocodice 3 EN 1993-1-1:2005.

Utili informazioni sulla determinazione dei massimi valori ammissibili dello spessore degli elementi e sulla scelta del grado di resilienza sono state ricavate dalla UNI EN 1993-1-10:2005 e dalla UNI EN 10164:2005.

L'acciaio impiegato per l'impalcato è di tipo S 355 W (ex Fe 510 Corten), suddiviso nei gradi J0, J2 e K2 a seconda dello spessore della lamiera.

Le varie tipologie presentano caratteristiche meccaniche differenziate a seconda che lo spessore sia inferiore o superiore ai 40 [mm], come indicato dal D.M. 17 gennaio 2018 al paragrafo 4.2.1.1 e riportato nella seguente tabella.

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

Tabella 4.1. proprietà caratteristiche dell'acciaio secondo D. M. 2018 (paragrafo 11.3.4.1) per profili a sezione aperta laminati a caldo (UNI EN 10025-5), al variare dello spessore.

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	S 355 J0W	, S 355 J2W, S 355 K2V	V
Carico unitario di rottura a trazione	$f_{\iota_{k}}$	510 [N/mm2] per t ≤ 40 [mm] 470 [N/mm2] per t > 40 [mm]	[Tab. 11.3.IX]
Carico unitario di snervamento	f_{yk}	355 [N/mm2] per t ≤ 40 [mm] 335 [N/mm2] per t > 40 [mm]	[Tab. 11.3.IX]
Modulo di elasticità	E	210000 [N/mm2]	[11.3.4.1]
Coefficiente di Poisson	V	0.3	[11.3.4.1]
Coefficiente di dilatazione termica	$lpha_c$	0.000012 °C-1	[11.3.4.1]
Massa volumica	$ ho_{c}$	7850 [kg/m3]	[11.3.4.1]

Al fine di scongiurare il fenomeno dello strappo lamellare all'atto della saldatura, il costruttore dovrà verificare, in funzione delle tecniche e degli accorgimenti di saldatura utilizzati, se sia necessario l'impiego di lamiere qualificate secondo la UNI EN 10164:2005. Le caratteristiche meccaniche dell'acciaio non dipendono tuttavia dalla classe qualitativa, pertanto rimangono valide le caratteristiche riportate nella precedente tabella.

La resistenza di calcolo R_{σ} si pone nella forma (D. M. 17 gennaio 2018 punto 4.2.4.1.1):

$$R_d = \frac{R_k}{\gamma_M}$$

in cui:

MANDATARIA

MANDANTE

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

- è il valore caratteristico della resistenza (a trazione, compressione, flessione, taglio e torsione) della membratura, determinata dai valori caratteristici dei materiali e dalle caratteristiche geometriche degli elementi strutturali, dipendenti della classe della sezione;
- γ_M è il fattore parziale globale relativo al modello di resistenza adottato:
 - $\gamma_{M0} = 1.05$ per la resistenza delle sezioni di Classe 1-2-3-4;
 - $\gamma_{M1} = 1.10$ per la resistenza all'instabilità delle membrature per impalcati da ponte;
 - $\gamma_{M2}=1.25$ per la resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori).

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.2 BULLONI E SALDATURE

Per i bulloni utilizzati nelle giunzioni a taglio (conformi alle UNI EN ISO 4016:2011, UNI 4034:2013 e UNI EN ISO 898-1:2001) e ad attrito (conformi alle UNI EN 14399-3:2005 e 14399-4:2005) vengono sempre impiegati bulloni ad alta resistenza, con le seguenti resistenze di progetto:

Tabella 4.2. Resistenze di progetto dei bulloni utilizzati (tabella 11.3.XII.b del D. M. 2018)

Classe	<i>f_{ւь}</i> [N/mm2]	f _{yb} [N/mm2]
10.9	1000	900

Le rosette per le giunzioni ad attrito devono essere conformi alle caratteristiche dimensionali previste dalle norme UNI EN 14399-5:2005 e UNI EN 14399-6:2005 e realizzate in acciaio C 50 secondo le UNI EN 10083-2:2006 temperato e rinvenuto HRC 32-40.

I bulloni disposti con asse verticale devono avere, se possibile, la testa della vite verso l'alto ed il dado verso il basso. Devono essere previste una rosetta sotto la vite ed una sotto il dado (UNI EN 14399-5,6:2005).

Per la verifica dei bulloni e delle saldature a parziale penetrazione ed a cordone d'angolo, si utilizzano i coefficienti di sicurezza indicati nella tabella 4.2.XIV del D.M. 2018, ovvero $\gamma_{M2} = 1.25$. Per la verifica delle saldature a piena penetrazione, in conformità con quanto indicato nel paragrafo 4.2.8.2.1 del D.M. 2018 ed in considerazione del fatto che generalmente vengono realizzati con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati, si assume che la resistenza di calcolo dei collegamenti sia pari alla resistenza di progetto del più debole degli elementi connessi.

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.3 CLASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO

Per le strutture in acciaio e miste acciaio-calcestruzzo, le UNI EN 1090-2 introducono, al punto 4.1.2, la classe di esecuzione. Vengono fornite quattro classi di esecuzione da 1 a 4, identificate da EXC1 a EXC4, per le quali il requisito restrittivo cresce da EXC1 a EXC4.

L'Appendice B della UNI EN 1090-2 fornisce una guida per la scelta della corretta classe di esecuzione.

4.3.1 Classe di conseguenze

Il primo passo per la scelta della classe di esecuzione è la determinazione della classe di conseguenze, il cui riferimento è l'Appendice B (informativa) della UNI EN 1990, che individua 3 livelli ai fini della differenziazione dell'affidabilità.

Tabella 4.3. classe di conseguenza per diversi tipi di opere (prospetto B.1 dell'UNI EN 1990).

Classe d'uso	Descrizione	Esempi di edifici ed opere civili
CC3 (ALTA)	Elevate conseguenze per perdita di vite umane, o conseguenze molto gravi in termini economici, sociali o ambientali	Gradinate in impianti sportivi, edifici pubblici nei quali le conseguenze del collasso sono alte (es.: sala da concerti)
CC2 (STANDAR D)	Conseguenze medie per perdita di vite umane, conseguenze considerevoli in termini economici, sociali o ambientali	Edifici residenziali e per uffici, edifici pubblici nei quali le conseguenze del collasso sono medie (es.: edificio per uffici)
CC1 (BASSA)	Conseguenze basse per perdita di vite umane, conseguenze modeste o trascurabili in termini economici, sociali o ambientali	Costruzioni agricole, nelle quali generalmente nessuno entra (es.: magazzini), serre

Per il caso in esame si individua la classe di conseguenze standard CC2.

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.3.2 Categoria di servizio e di produzione

Durante le fasi di esecuzione e di esercizio della struttura, possono insorgere rischi dovuti alla complessità dell'esecuzione dei lavori ed all'incertezza delle azioni gravanti sulla struttura, che possono evidenziare difetti nella struttura durante il suo utilizzo.

Per tenere in conto di queste tipologie di rischio, sono state introdotte le categorie di servizio e le categorie di produzione.

Tabella 4.4. criteri suggeriti per la determinazione della categoria di servizio (prospetto B.1 dell'UNI EN 1090-2).

Categoria di servizio	Criterio
	 Strutture e componenti progettate solo per azioni quasi statiche (esempio: Edifici);
SC1	 Strutture e componenti con connessioni progettate per bassa duttilità in zone a bassa sismicità;
	 Strutture e componenti progettate per la fatica degli apparecchi di sollevamento (classe S0).
SC2	 Strutture e componenti progettate per le azioni fatica secondo la EN 1993 (esempi: Ponti stradali e ferroviari, gru (classe da S1 a S9), strutture suscettibili alle vibrazioni indotte dal vento, dalla folla o dalla rotazione di macchine);
	 Strutture e componenti con connessioni progettate per media (CD"B") o alta (CD"A") duttilità in zona a media o alta sismicità.

Tabella 4.5. criteri suggeriti per la determinazione della categoria di servizio (prospetto B.1 dell'UNI EN 1090-2

Categoria di produzione	Criterio			
PC1	- Componenti non saldati realizzati con qualsiasi tipo di acciaio;			
PCI	- Componenti saldati realizzati con acciai di qualità inferiore a S355;			
	- Componenti saldati realizzati con acciai di qualità uguale o superiore a			
PC2	S355;			
PG2	- Componenti essenziali per l'integrità strutturale che vengono assemblati			
	mediante saldatura in cantiere;			

MANDATARIA

MANDANTE

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

- Componenti formati a caldo o che ricevono un trattamento termico durante la fabbricazione;
 - Strutture tralicciate realizzate con profili tubolari circolari.

Si osserva che l'impalcato in esame appartiene alla categoria di servizio **SC2** ed alla categoria di produzione **PC2**.

4.3.3 Determinazione della classe di esecuzione

La classe di esecuzione delle strutture viene determinata combinando la classe di conseguenze e le categorie di servizio e produzione secondo il seguente schema fornito al punto B.3 delle UNI EN 1090-2.

Tabella 4.6. matrice raccomandata per la determinazione delle classi di esecuzione (prospetto B.3 dell'UNI EN 1090-2).

Classe di Conseguenze		i CC1		CC2		ССЗ	
Categoria d	li servizio	SC1	SC2	SC1	SC2	SC1	SC2
Categoria	PC1	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
di produzione	PC2	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

Come si può rilevare, la classe di esecuzione raccomandata per l'impalcato in esame è la **EXC3**.

L'elenco dei requisiti relativi alle classi di esecuzione è fornito nel punto A.3 della. Si UNI EN 1090-2, al quale si rimanda per i dettagli.

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.4 CONNETTORI A PIOLO

Per i connettori a piolo, il paragrafo 11.3.4.7 del D.M. 2018 prevede che l'acciaio utilizzato per essi sia idoneo al processo di formazione dello stesso piolo e compatibile per saldatura con il materiale costituente l'elemento strutturale interessato dai pioli stessi.

Nel caso in esame, si utilizzano pioli di tipo Nelson, per i quali la ditta produttrice prevede l'utilizzo di acciaio S235J2G3+C450, secondo la UNI EN ISO 13918:2009.

Le caratteristiche meccaniche dell'acciaio non dipendono dalla classe qualitativa; pertanto, in conformità con il paragrafo 11.3.4.1 del D.M. 17 gennaio 2018, si hanno le seguenti caratteristiche meccaniche:

Tabella 4.7. proprietà caratteristiche dell'acciaio secondo D. M. 2018 (paragrafo 11.3.4.1) per i pioli di tipo Nelson, secondo quanto richiesto dal produttore (riferimento UNI EN 10025).

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	S 2	35 J2G3 + C450	
Carico unitario di rottura a trazione	f _{tk}	450 [N/mm2]	-
Carico unitario di snervamento	f _{yk}	350 [N/mm2]	-
Modulo di elasticità	E	210000 [daN/cm2]	[11.3.4.1]
Coefficiente di Poisson	ν	0.3	[11.3.4.1]
Coefficiente di dilatazione termica	$lpha_c$	0.000012 °C-1	[11.3.4.1]
Massa volumica	$ ho_{ m c}$	7850 [kg/m3]	[11.3.4.1]

Il paragrafo 11.3.4.7 del D.M. 2018 prevede il rispetto di alcuni requisiti addizionali, riportati nella seguente tabella.

MANDATARIA

MANDANTE

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

Tabella 4.8. requisiti addizionali per l'acciaio utilizzato per i connettori a piolo secondo D. M. 2018 (paragrafo 11.3.4.7).

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	S 2		
Rapporto tra rottura e snervamento caratteristici	$\left(f_t/f_y\right)_k$	≥ 1.20	[11.3.4.7]
Allungamento a rottura	L _o	≥ 12%	[11.3.4.7]

Nelle verifiche relative alle connessioni, il paragrafo 4.3.3 del D.M. 2018 prevede che venga utilizzato un coefficiente parziale di sicurezza pari a $\gamma_{\rm V}=1.25$

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.5 CALCESTRUZZO

4.5.1 Calcestruzzo per soletta d'impalcato, cordoli, baggioli ed elevazioni

Nella seguente tabella sono riassunte le proprietà di confezionamento del calcestruzzo previsto, con indicata la norma che prevede, per il tipo impiegato, il valore più restrittivo delle varie proprietà.

Tabella 4.9. Proprietà di confezionamento del calcestruzzo C 32/40 utilizzato per la soletta dell'impalcato

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C32/40	UNI 11104:2016	[Prospetto 8]
Vita nominale VN	≥50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 3	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max.	≤ 0.55	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S4	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	340 [kg/m³] (di classe 42.5R per getti eseguiti con T<10°C)	UNI 11104:2016	[Prospetto 5]
Massima dimensione dell'aggregato	20 [mm]	-	-
Copriferro nominale	45 [mm] **	Circolare 7/2018	[Tab. C4.1.IV]

^{**} Controllo di qualità con verifica del copriferro

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.10. Proprietà di confezionamento del calcestruzzo C 35/45 utilizzato per i cordoli, baggioli e ritegni dell'impalcato

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C35/45	UNI 11104:2016	[Prospetto 8]
Vita nominale VN	≥50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 4 – XD 3	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max.	≤ 0.45	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S5	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	360 [kg/m³] (di classe 42.5R per getti eseguiti con T<10°C)	UNI 11104:2016	[Prospetto 5]
Massima dimensione dell'aggregato	16 [mm]	-	-
Copriferro nominale	45 [mm]**	Circolare 7/2018	[Tab. C4.1.IV]

^{**} Controllo di qualità con verifica del copriferro

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.11. Proprietà di confezionamento del calcestruzzo C 32/40 utilizzato per pulvini, pile e spalle

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C32/40	UNI 11104:2016	[Prospetto 8]
Vita nominale VN	≥50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 4	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max.	≤ 0.50	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S4	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	300 [kg/m³] (di classe 42.5R per getti eseguiti con T<10°C)	UNI 11104:2016	[Prospetto 5]
Massima dimensione dell'aggregato	16 [mm]	-	-
Copriferro nominale	60 [mm]	Circolare 7/2018	[Tab. C4.1.IV]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.12: Proprietà meccaniche di progetto di progetto del calcestruzzo C32/40

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 17/01/2018
Classe di resistenza		C 32/40	
Peso specifico	$ ho_c$	25 [kN/m³]	[Tab. 3.1.I]
Resistenza caratteristica a compressione cubica	R _{ck}	40 [N/mm²]	[-]
Modulo elastico	E_{cm} =22000 $\left[\frac{f_{cm}}{10}\right]^{0.3}$	33643 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	V	0 ÷ 0.2	[-]
Coefficiente di dilatazione termica	$lpha_c$	0.00001 °C ⁻¹	[-]
Resistenza caratteristica compressione cilindrica	$f_{ck} = 0.83 R_{ck}$	33.20 [N/mm²]	[11.2.10.1]
Valor medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	41.20 [N/mm ²]	[11.2.10.1]
Resistenza media a trazione	$f_{ctm} = 0.3 f_{ck}^{2/3}$	3.10 [N/mm²]	[11.2.10.2]
Valor medio della resistenza a trazione per flessione	f_{cfm} =1.2 f_{ctm}	3.72 [N/mm²]	[11.2.10.2]
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 f_{ctm}$	2.17 [N/mm ²]	[11.2.10.2]
Resistenza caratteristica a trazione per flessione	$f_{cfk} = 0.7 f_{cfm}$	2.60 [N/mm²]	[11.2.10.2]
Coefficiente parziale di sicurezza	γο	1.5 [-]	[4.3.3]
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	18.81 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione	$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$	1.45 [N/mm²]	[4.1.2.1.1.2]
Coefficiente parziale di sicurezza per verifiche della struttura mista in combinazione eccezionale	γм	1.00 [-]	[4.3.3]
Resistenza di calcolo a compressione per verifiche della struttura mista in combinazione eccezionale	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_M} = 0.85 \cdot \frac{f_{ck}}{\gamma_M}$	18.81 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione per verifiche della struttura mista in combinazione eccezionale	$f_{cta} = rac{f_{ctk}}{\gamma_{M}}$	1.45 [N/mm²]	[4.1.2.1.1.2]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.13: Proprietà meccaniche di progetto di progetto del calcestruzzo C35/45

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 17/01/2018
Classe di resistenza		C 35/45	
Peso specifico	$ ho_c$	25 [kN/m³]	[Tab. 3.1.I]
Resistenza caratteristica a compressione cubica	R _{ck}	45 [N/mm²]	[-]
Modulo elastico	$E_{cm} = 22000 \left[\frac{f_{cm}}{10} \right]^{0.3}$	34625 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	ν	0 ÷ 0.2	[-]
Coefficiente di dilatazione termica	$lpha_c$	0.00001 °C ⁻¹	[-]
Resistenza caratteristica compressione cilindrica	$f_{ck} = 0.83 R_{ck}$	37.35 [N/mm²]	[11.2.10.1]
Valor medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	45.35 [N/mm ²]	[11.2.10.1]
Resistenza media a trazione	$f_{ctm} = 0.3 f_{ck}^{2/3}$	3.35 [N/mm ²]	[11.2.10.2]
Valor medio della resistenza a trazione per flessione	f_{cfm} =1.2 f_{ctm}	4.02 [N/mm ²]	[11.2.10.2]
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 f_{ctm}$	2.34 [N/mm ²]	[11.2.10.2]
Resistenza caratteristica a trazione per flessione	$f_{cfk} = 0.7 f_{cfm}$	2.81 [N/mm²]	[11.2.10.2]
Coefficiente parziale di sicurezza	γο	1.5 [-]	[4.3.3]
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	21.16 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione	$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$	1.56 [N/mm²]	[4.1.2.1.1.2]
Coefficiente parziale di sicurezza per verifiche della struttura mista in combinazione eccezionale	γм	1.00 [-]	[4.3.3]
Resistenza di calcolo a compressione per verifiche della struttura mista in combinazione eccezionale	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_M} = 0.85 \cdot \frac{f_{ck}}{\gamma_M}$	31.75 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione per verifiche della struttura mista in combinazione eccezionale	$f_{ctd} = \frac{f_{ctk}}{\gamma_M}$	2.34 [N/mm²]	[4.1.2.1.1.2]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.5.2 Calcestruzzo per fondazioni

Nella seguente tabella sono riassunte le proprietà di confezionamento del calcestruzzo previsto, con indicata la norma che prevede, per il tipo impiegato, il valore più restrittivo delle varie proprietà.

Tabella 4.14. Proprietà di confezionamento del calcestruzzo C 28/35 utilizzato per le fondazioni

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C28/35	UNI 11104:2016	[Prospetto 8]
Vita nominale VN	≥50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 2	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max.	≤ 0.60	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S4	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	280 [kg/m³] (di classe 42.5R per getti eseguiti con T<10°C)	UNI 11104:2016	[Prospetto 5]
Massima dimensione dell'aggregato	16 [mm]	UNI 11104:2016	[Prospetto 4]
Copriferro nominale	45 [mm]	Circolare 7/2018	[Tab. C4.1.IV]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.15. Proprietà di confezionamento del calcestruzzo C 25/30 utilizzato per i pali

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C25/30	UNI 11104:2016	[Prospetto 8]
Vita nominale VN	≥50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 2	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max.	≤ 0.60	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S5	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	300 [kg/m³] (di classe 42.5R per getti eseguiti con T<10°C)	UNI 11104:2016	[Prospetto 5]
Massima dimensione dell'aggregato	25 [mm]	UNI 11104:2016	[Prospetto 4]
Copriferro nominale	75 [mm]	Circolare 7/2018	[Tab. C4.1.IV]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.16: Proprietà meccaniche di progetto di progetto del calcestruzzo C25/30

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 17/01/2018
Classe di resistenza		C 25/30	
Peso specifico	$ ho_c$	25 [kN/m³]	[Tab. 3.1.I]
Resistenza caratteristica a compressione cubica	R_{ck}	30 [N/mm²]	[-]
Modulo elastico	E_{cm} =22000 $\left[\frac{f_{cm}}{10}\right]^{0.3}$	31477 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	ν	0 ÷ 0.2	[-]
Coefficiente di dilatazione termica	α_{c}	0.00001 °C ⁻¹	[-]
Resistenza caratteristica compressione cilindrica	$f_{ck} = 0.83 R_{ck}$	24.90 [N/mm ²]	[11.2.10.1]
Valor medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	32.90 [N/mm ²]	[11.2.10.1]
Resistenza media a trazione	$f_{ctm} = 0.3 f_{ck}^{2/3}$	2.56 [N/mm ²]	[11.2.10.2]
Valor medio della resistenza a trazione per flessione	f_{cfm} =1.2 f_{ctm}	3.07 [N/mm²]	[11.2.10.2]
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 f_{ctm}$	1.79 [N/mm²]	[11.2.10.2]
Resistenza caratteristica a trazione per flessione	$f_{cfk} = 0.7 f_{cfm}$	2.15 [N/mm²]	[11.2.10.2]
Coefficiente parziale di sicurezza	γς	1.5 [-]	[4.3.3]
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	14.11 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione	$f_{ctd} = rac{f_{ctk}}{\gamma_c}$	1.19 [N/mm²]	[4.1.2.1.1.2]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Tabella 4.17: Proprietà meccaniche di progetto di progetto del calcestruzzo C28/35

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 17/01/2018
Classe di resistenza		C 28/35	
Peso specifico	$ ho_{ m c}$	25 [kN/m³]	[Tab. 3.1.I]
Resistenza caratteristica a compressione cubica	R_{ck}	35 [N/mm²]	[-]
Modulo elastico	$E_{cm} = 22000 \left[\frac{f_{cm}}{10} \right]^{0.3}$	32588 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	ν	0 ÷ 0.2	[-]
Coefficiente di dilatazione termica	$lpha_c$	0.00001 °C ⁻¹	[-]
Resistenza caratteristica compressione cilindrica	$f_{ck} = 0.83 R_{ck}$	29.05 [N/mm ²]	[11.2.10.1]
Valor medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	37.05 [N/mm ²]	[11.2.10.1]
Resistenza media a trazione	$f_{ctm} = 0.3 f_{ck}^{2/3}$	2.83 [N/mm²]	[11.2.10.2]
Valor medio della resistenza a trazione per flessione	f_{cfm} =1.2 f_{ctm}	3.40 [N/mm²]	[11.2.10.2]
Resistenza caratteristica a trazione	$f_{ctk} = 0.7 f_{ctm}$	1.98 [N/mm²]	[11.2.10.2]
Resistenza caratteristica a trazione per flessione	$f_{cfk} = 0.7 f_{cfm}$	2.38 [N/mm²]	[11.2.10.2]
Coefficiente parziale di sicurezza	γς	1.5 [-]	[4.3.3]
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	16.46 [N/mm²]	[C4.3.4.2]
Resistenza di calcolo a trazione	$f_{ctd} = rac{f_{ctk}}{\gamma_c}$	1.32 [N/mm²]	[4.1.2.1.1.2]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

VIADOTTO FIRENZUOLA – RELAZIONE TECNICA E ILLUSTRATIVA

4.6 ACCIAIO DA ARMATURA

L'acciaio utilizzato per le armature è del tipo B 450C, per il quale il D. M. 17 gennaio 2018, al paragrafo 11.3.2.1, prevede le proprietà riportate nella seguente tabella.

Tabella 4.18. proprietà caratteristiche dell'acciaio per armature secondo D. M. 2018 (paragrafo 11.3.2.1).

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	B 450C		
Tensione caratteristica di snervamento	f _{yk}	450 [N/mm2]	[Tab. 11.3.lb]
Tensione caratteristica di rottura a trazione	f_{tk}	540 [N/mm2]	[Tab. 11.3.lb]
Rapporto tra rottura e snervamento caratteristici	$\left(f_t/f_y\right)_k$	≥ 1.15 < 1.35	[Tab. 11.3.lb]
Rapporto tra snervamento reale e nominale	$\left(f_{y}/f_{y,nom}\right)_{k}$	≤ 1.25	[Tab. 11.3.lb]
Allungamento a rottura	$\left(A_{\!gt} ight)_{\!k}$	≥ 7.5%	[Tab. 11.3.lb]
Modulo di elasticità medio	E _s	210000 [N/mm2]	
Coefficiente di dilatazione termica	$lpha_{s}$	0.00001 °C-1	
Massa volumica	$ ho_{ extsf{s}}$	7850 [kg/m3]	[11.3.2.4]
Coefficiente parziale di sicurezza	γ s	1.15	[4.1.2.1.1.3] [4.3.3]
Tensione di snervamento di progetto	$f_{sd} = f_{sk} / \gamma_s$	391 [N/mm2]	[4.1.2.1.1.3] [4.3.3]

Tratto Eggi-Acquasparta – II° Stralcio Firenzuola - Acquasparta

PROGETTO DEFINITIVO

Direzione Progettazione e Realizzazione Lavori

Coefficiente parziale di sicurezza per verifiche della struttura mista in combinazione eccezionale	Y M	450 [N/mm2]	[4.3.3]
Resistenza di progetto per verifiche della struttura mista in combinazione eccezionale	fsd = fsk / γM	450 [N/mm2]	[4.1.2.1.1.3] [4.3.3]

