



COMMISSARIO STRAORDINARIO PER LA REALIZZAZIONE DEL PRIMO, SECONDO E TERZO STRALCIO DEL TERMINAL CONTAINER DI MONTESYNDIAL

#### **DIREZIONE TECNICA**









ACCORDO DI PROGRAMMA PER LA RICONVERSIONE E RIQUALIFICAZIONE INDUSTRIALE DELL'AREA DI CRISI INDUSTRIALE COMPLESSA DI PORTO MARGHERA TRA MINISTERO DELLO SVILUPPO ECONOMICO, REGIONE DEL VENETO, COMUNE DI VENEZIA, AUTORITA' PORTUALE DI VENEZIA



# PIATTAFORMA D'ALTURA AL PORTO DI VENEZIA TERMINAL CONTAINER "MONTESYNDIAL"

- Progetto di Fattibilità Tecnica ed Economica -

# RELAZIONI Relazione geotecnica e sismica

PROGETTAZIONE:

OPERE MARITTIME / STRUTTURE / IMPIANTI:

ingegneria

F&M INGEGNERIA SpA ing. Tommaso Tassi ing. Luca Masiero

GEOLOGIA E AMBIENTE:



G&T Srl dott. Claudio Galli dott. Mara Campagnolo

SICUREZZA / PIANIFICAZIONE E PREVENTIVAZIONE:



ing. Michele Granziero

DIRETTORE TECNICO E RUP

ing. GIOVANNI TERRANOVA

PROGETTISTA RESPONSABILE INTEGRAZIONI SPECIALISTICHE

ing. GIANLUCA ARTUSO

CODICE PROGETTO

90403-000

CODICE ELABORATO

A007

SCALA

| rev | data       | descrizione     | redatto | controllato | approvato |
|-----|------------|-----------------|---------|-------------|-----------|
| 0   | 25/07/2023 | PRIMA EMISSIONE | L.M.    | L.M.        | T.T.      |
| 1   |            |                 |         |             |           |
| 2   |            |                 |         |             |           |

90403-000

# **INDICE**

| 1 | PRE   | VIESSA                                         |    |
|---|-------|------------------------------------------------|----|
| 2 | QUA   | DRO NORMATIVO                                  |    |
| 3 | INDA  | AGINI ESEGUITE                                 |    |
| 4 | INQU  | JADRAMENTO SISMICO                             |    |
| 5 | CRIT  | ERI GENERALI ELABORAZIONI PROVE IN SITO        | 13 |
|   | 5.1   | STRATIGRAFIA DEL SOTTOSUOLO                    | 13 |
|   | 5.2   | FORMAZIONI GRANULARI                           | 14 |
|   | 5.2.1 | Proprietà fisiche                              | 14 |
|   | 5.2.2 | Proprietà meccaniche                           | 15 |
|   | 5.2.3 | Proprietà deformative                          | 18 |
|   | 5.3   | FORMAZIONI COESIVE                             | 21 |
|   | 5.3.1 | Proprietà meccaniche                           | 21 |
|   | 5.3.2 | Proprietà deformative                          | 21 |
|   | 5.4   | DEFINIZIONE DEL COEFFICIENTE DI PERMEABILITA'  | 22 |
|   | 5.4.1 | Prove Lefranc a carico variabile               | 22 |
|   | 5.4.2 | Prove di dissipazione                          | 23 |
|   | 5.4.3 | Prove edometriche                              | 24 |
| 6 | CRIT  | ERI GENERALI ELABORAZIONI PROVE DI LABORATORIO | 25 |
|   | 6.1   | PROPRIETÀ FISICHE                              | 25 |
|   | 6.2   | PROPRIETÀ MECCANICHE                           | 25 |
|   | 6.3   | PROPRIETÀ DEFORMATIVE                          | 25 |
| 7 | QUA   | Y AREA (INDAGINI 2015)                         | 28 |
|   | 7.1   | PROFILO STRATIGRAFICO                          | 28 |
|   | 7.2   | CARATTERISTICHE TERRENI GRANULARI              | 30 |
|   | 7.2.1 | Proprietà fisiche                              | 30 |
|   | 7.2.2 | Proprietà meccaniche                           | 32 |
|   | 7.2.3 | Proprietà deformative                          | 33 |
|   | 7.3   | CARATTERISTICHE TERRENI COESIVI                | 32 |
|   | 7.3.1 | Proprietà fisiche                              | 32 |
|   | 7.3.2 | Proprietà meccaniche                           | 36 |
|   | 7.3.3 | Proprietà deformative                          | 37 |
|   | 7.4   | PROVE DISSIPATIVE                              | 41 |
| 8 | STAC  | CKING AREA (INDAGINI 2015)                     | 4  |
|   | 8.1   | PROFILO STRATIGRAFICO                          | 44 |
|   | 8.2   | CARATTERISTICHE TERRENI GRANULARI              | 46 |
|   | 8.2.1 | Proprietà fisiche                              | 46 |
|   | 8.2.2 | Proprietà meccaniche                           | 4  |

|  |  | n |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |

|    | 8.2.3  | Proprietà deformative                 | 47  |
|----|--------|---------------------------------------|-----|
|    | 8.3    | CARATTERISTICHE TERRENI COESIVI       | 48  |
|    | 8.3.1  | Proprietà fisiche                     | 48  |
|    | 8.3.2  | Proprietà meccaniche                  | 50  |
|    | 8.3.3  | Proprietà deformative                 | 52  |
|    | 8.4    | PROVE DI DISSIPAZIONE                 | 56  |
| 9  | QUA?   | Y AREA (INDAGINI 2017)                | 61  |
|    | 9.1    | PROFILO STRATIGRAFICO                 | 61  |
|    | 9.2    | CARATTERISTICHE DEI TERRENI GRANULARI | 63  |
|    | 9.2.1  | Proprietà fisiche                     | 63  |
|    | 9.2.2  | Proprietà meccaniche                  | 64  |
|    | 9.2.3  | Proprietà deformative                 | 65  |
|    | 9.3    | CARATTERISTICHE DEI TERRENI COESIVI   | 66  |
|    | 9.3.1  | Proprietà fisiche                     | 66  |
|    | 9.3.2  | Proprietà meccaniche                  | 68  |
|    | 9.3.3  | Proprietà deformative                 | 69  |
|    | 9.4    | PERMEABILITÀ ORIZZONTALE              | 72  |
|    | 9.4.1  | Da prove Lefranc                      | 72  |
|    | 9.4.2  | Da prove di dissipazione              | 73  |
|    | 9.4.3  | Riepilogo                             | 74  |
| 1( | 0 STA  | ACKING AREA (INDAGINI 2017)           | 76  |
|    | 10.1   | PROFILO STRATIGRAFICO                 | 77  |
|    | 10.2   | CARATTERISTICHE DEI TERRENI GRANULARI | 79  |
|    | 10.2.1 | Proprietà fisiche                     | 79  |
|    | 10.2.2 | Proprietà meccaniche                  | 81  |
|    | 10.2.3 | Proprietà deformative                 | 82  |
|    | 10.3   | CARATTERISTICHE DEI TERRENI COESIVI   | 83  |
|    | 10.3.1 | Proprietà fisiche                     | 83  |
|    | 10.3.2 | Proprietà meccaniche                  | 86  |
|    | 10.3.3 | Proprietà deformative                 | 88  |
|    | 10.4   | PERMEABILITÀ ORIZZONTALE              | 92  |
|    | 10.4.1 | Da prove Lefranc                      | 92  |
|    | 10.4.2 | Da prove di dissipazione              | 93  |
|    | 10.4.3 | Riepilogo                             | 97  |
|    | 1 N.C  | DELLO GEOTECNICO                      | 0.0 |

90403-000

## 1 PREMESSA

La presente relazione riguarda la caratterizzazione geotecnica dei terreni nell'ambito del progetto relativo alle strutture di banchina della Piattaforma d'altura al Porto di Venezia – Terminal container "Montesyndial".

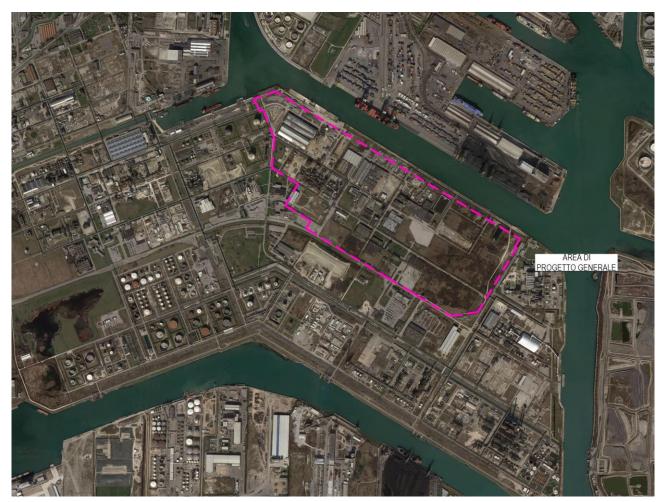



Figura 1 - Inquadramento area di intervento

Nei capitoli seguenti sono riportati la normativa di riferimento, le indagini geognostiche eseguite nell'area, l'inquadramento sismico e la rielaborazione delle prove geotecniche in sito e di laboratorio per la definizione del modello geotecnico utilizzato nelle verifiche.

90403-000

# 2 QUADRO NORMATIVO

La presente relazione geotecnica è stata redatta in conformità alla seguente normativa:

- Decreto del Ministero delle Infrastrutture 17 Gennaio 2018, Nuove Norme Tecniche per le Costruzioni (NTC '18).
- Circolare n. 7 del 21 Gennaio 2019 "Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale del 17 gennaio 2018".
- UNI EN 1997-1:2013 Parte 1: Regole generali
- UNI EN 1997-2:2007 Parte 2: Indagini e prove nel sottosuolo
- UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici

Le caratterizzazioni geotecnica e sismica dei terreni sono state realizzate in conformità a dette Norme, come anche tutte le verifiche geotecniche presenti in progetto.

## Raccomandazioni e specifiche

• A.G.I. - Associazione Geotecnica Italiana – "Linee guida - aspetti geotecnici della progettazione in zona sismica" (2005).

## 3 INDAGINI ESEGUITE

Al fine di determinare la stratigrafia e i parametri geotecnici dei vari orizzonti per la redazione del progetto definitivo, sono stati considerati i risultati delle campagne indagini eseguite tra il 2015 e il 2017.

#### **↓** INDAGINI MARZO 2015 (QUAY AREA)

E' stata eseguita una campagna di indagini geognostiche (situate nella *Quay Area*) con le seguenti prove.

#### Prove in sito:

- n° 3 sondaggi geotecnici a carotaggio continuo, spinti fino alla profondità di 24 m da p.c., all'interno dei quali sono stati prelevati n. 6 campioni rimaneggiati e n. 5 campioni indisturbati;
- n° 6 prove di penetrazione dinamica del tipo Standard Penetration Test (SPT), eseguite nei predetti fori di sondaggio;
- n° 3 prove con piezocono CPTU fino ad una profondità massima di 30 m dal p.c.;
- n. 8 prove di dissipazione lungo le varie prove CPTU;
- n° 15 sondaggi ambientali a carotaggio continuo, spinti fino alla profondità massima di 14 m da p.c., all'interno dei quali sono stati prelevati n. 230 campioni rimaneggiati.

#### Prove di laboratorio:

- n° 11 analisi granulometriche;
- n° 5 determinazioni dei limiti di Atterberg;
- n. 5 prove di compressione ad espansione laterale libera (ELL);
- n° 5 prove edometriche;

90403-000

- n. 5 prove di taglio diretto con scatola di Casagrande;
- n° 5 prove triassiali consolidate non drenate (CU);
- n. 230 analisi chimiche sui campioni prelevati dai sondaggi ambientali.

A settembre 2015 sono state eseguite no. 2 prove granulometriche in campioni prelevati nello strato di riporto grossolano (da quota +2 a +1 m slmm).

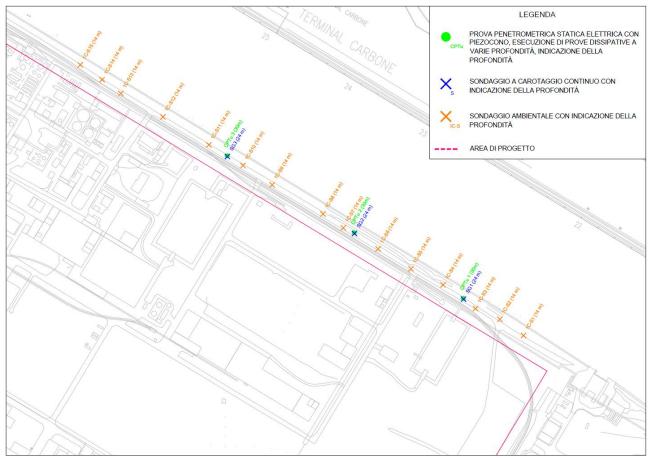



Figura 2 - Campagna indagini Marzo 2015

# **↓** INDAGINI GIUGNO 2015 (STACKING AREA)

E' stata eseguita una campagna di indagini geognostiche (situate nella *Stacking Area*) con le seguenti prove.

#### Prove in sito:

- n° 3 sondaggi a carotaggio continuo, spinti a profondità comprese tra 20 e 35 m da p.c., all'interno dei quali sono stati prelevati n. 5 campioni rimaneggiati e n. 6 campioni indisturbati;
- n° 3 prove con piezocono CPTU fino ad una profondità massima di 50 m dal p.c., di cui n.1 attrezzata con sismocono;
- n. 9 prove di dissipazione lungo le varie prove CPTU;
- n° 6 pozzetti esplorativi fino ad una profondità di 0.5 m con prelievo di n. 6 campioni da sottoporre ad analisi chimiche;

90403-000

• n° 6 prove di carico su piastra.

# Prove di laboratorio:

- n° 11 analisi granulometriche;
- n. 6 determinazioni delle proprietà fisiche (peso di volume, peso specifico dei grani e umidità naturale);
- n° 6 determinazioni dei limiti di Atterberg;
- n° 6 prove edometriche;
- n° 6 prove triassiali non consolidate non drenate (UU);
- n° 6 prove triassiali consolidate non drenate (CU).

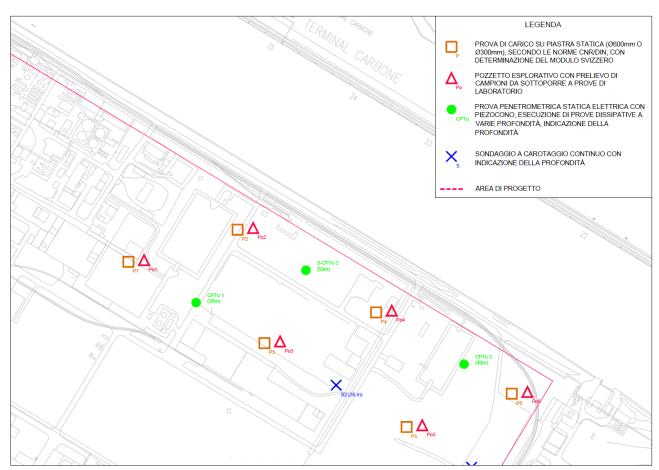



Figura 3 - Campagna indagini Giugno 2015

# **↓** INDAGINI NOVEMBRE 2016 (QUAY AREA E STACKING AREA)

E' stata eseguita una campagna indagini dalla ditta S.G.M. Geologia e Ambiente S.r.l. di Ferrara, riguardanti:

#### Prove in sito:

- n° 6 sondaggi a carotaggio continuo, spinti a profondità comprese tra 30 e 50 m da p.c., all'interno dei quali sono stati prelevati n. 18 campioni rimaneggiati e n. 18 campioni indisturbati;
- n° 72 prove SPT eseguite all'interno dei fori di sondaggio;

90403-000

- n° 6 piezometri a tubo aperto all'interno dei fori di sondaggio fino a profondità comprese tra 4 e 7 m da p.c.;
- n° 10 prove con piezocono CPTU fino ad una profondità compresa tra i 40 e i 50 m dal p.c., di cui n.4 attrezzata con sismocono;
- n. 29 prove di dissipazione lungo le varie prove (S)CPTU;
- n° 6 prove Lefranc a carico variabile;
- n° 15 prove di carico su piastra.

#### Prove di laboratorio:

- n° 24 analisi granulometriche;
- n. 12 determinazioni delle proprietà fisiche (peso di volume, peso specifico dei grani e umidità naturale);
- n° 12 determinazioni dei limiti di Atterberg;
- n° 7 determinazioni del contenuto di sostanza organica;
- n° 5 prove edometriche;
- n° 7 prove ad espansione laterale libera (ELL);
- n° 4 prove triassiali non consolidate non drenate (UU);
- n° 4 prove triassiali consolidate non drenate (CU).

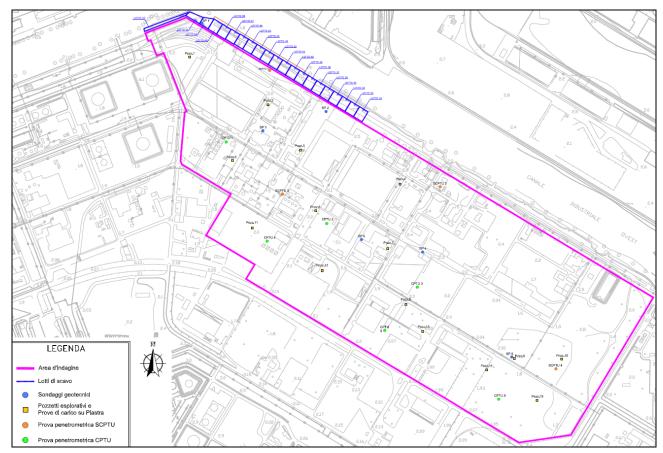



Figura 4 - Campagna indagini Novembre 2016

Per le risultanze delle campagne indagini si rimanda alla relazione 90403\_A005

90403-000

# 4 INQUADRAMENTO SISMICO

A seguito dell'entrata in vigore della nuova normativa antisismica occorre caratterizzare e classificare i terreni locali, specialmente in relazione a particolari ed importanti opere d'arte, qualora esse ricadano in zone a rischio sismico.

Nel D.M. 17/01/2018 si fa espresso riferimento ad indagini sismiche allo scopo di classificare il suolo di fondazione sulla base del valore di  $V_{s,eq}$ , cioè del valore velocità equivalente della propagazione delle onde di taglio fino alla profondità significativa.

Si riportano di seguito le categorie del suolo di fondazione estratte dalle norme tecniche.

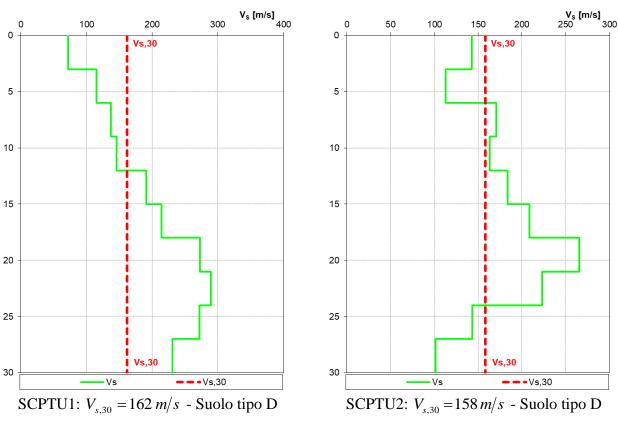
Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

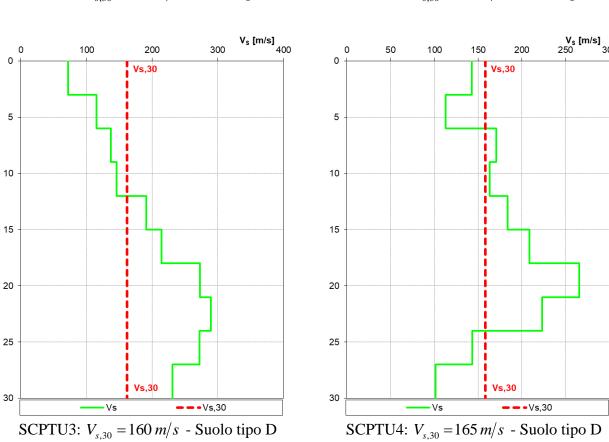
| Categoria | Caratteristiche della superficie topografica                                                                                                                                                                                                                                                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A         | Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.                                                        |
| В         | Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.                                                     |
| С         | Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-<br>stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-<br>le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra<br>180 m/s e 360 m/s. |
| D         | Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.            |
| Е         | Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.                                                                                                                                               |

Tabella 1: Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio,  $V_{S,eq}$  (in m/s), definita dall'espressione:

$$V_{s,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{s,i}}}$$


#### Dove:


- $h_i$  spessore dell'i-esimo strato;
- $V_{S,i}$  velocità delle onde di taglio nell'i-esimo strato;
- N numero di strati;
- H profondità del substrato, definito come quella formazione costituita da roccia o terreno
- molto rigido, caratterizzata da V<sub>S</sub> non inferiore a 800 m/s.

L'altezza di riferimento della testa del palo (diaframma nel caso in esame) è a -30 m slmm quindi si pone H=30 m, definendo  $V_{eq}=V_{30}$ 

90403-000

Di seguito si riporta il grafico delle velocità  $V_s$  ricavate mediante le prove SCPTU.





90403-000

Il D.M. 17/01/2018 riporta, al capitolo 2.4, i principi di vita nominale ( $V_N$ ) e classe d'uso dell'opera.

La vita nominale di progetto di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere utilizzata per lo scopo al quale è destinata.

Le opere in esame hanno  $V_N = 100 \ anni$ .

La classe d'uso dell'opera individua il grado di prestazione atteso dalla struttura in presenza di azione sismica, in riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso. Nella fase di progetto questo concetto si traduce nell'applicazione di azioni tanto più gravose, quanto più la struttura risulta importante in termini di sicurezza collettiva e pubblico interesse.

Con riferimento al capitolo 2.4.2 delle NTC18, le costruzioni vengono suddivise nelle quattro categorie di seguito riportate:

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad i-tinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Pertanto, sia per le opere definitive che per le opere provvisionali, per il caso in esame si assume la classe d'uso IV.

**Tab. 2.4.II** – Valori del coefficiente d'uso  $C_U$ 

| CLASSE D'USO                | I   | II  | III | IV  |
|-----------------------------|-----|-----|-----|-----|
| COEFFICIENTE C <sub>U</sub> | 0,7 | 1,0 | 1,5 | 2,0 |

Tabella 2 - Valori del coefficiente d'uso Cu

Le opere in esame rientrano nella classe d'uso II, quindi  $C_U = 2$ .

Il periodo di riferimento dell'azione sismica risulta essere  $V_R = V_N \cdot C_U = 200 \ anni$ .

Il valore di accelerazione massima attesa al sito ( $a_{max}$ ) viene determinato nel modo seguente:

90403-000

$$a_{\text{max}} = a_g \cdot S_S \cdot S_T$$

dove:

- $a_g$ : accelerazione di picco orizzontale del suolo;
- $S_s$ : coefficiente di amplificazione stratigrafica;
- $S_T$ : coefficiente di amplificazione topografica;
- g : accelerazione di gravità.

I coefficienti  $S_{\mathcal{S}}$  sono definiti in funzione della categoria del sottosuolo:

| Categoria<br>sottosuolo | $\mathbf{s}_{\mathrm{s}}$                                           | C <sub>C</sub>                     |
|-------------------------|---------------------------------------------------------------------|------------------------------------|
| A                       | 1,00                                                                | 1,00                               |
| В                       | $1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$         | $1,10\cdot (T_{C}^{*})^{-0,20}$    |
| С                       | $1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$       | $1,05 \cdot (T_C^*)^{-0,33}$       |
| D                       | $0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$ | $1,25 \cdot (T_C^*)^{-0,50}$       |
| E                       | $1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$       | $1.15 \cdot (T_{\rm C}^*)^{-0.40}$ |

Tabella 3 – Coefficienti di amplificazione stratigrafica

I coefficienti  $S_T$  sono definiti invece in funzione alle caratteristiche della superficie topografica, come proposto di seguito:

|   | Categoria | Caratteristiche della superficie topografica                                                                      |  |  |
|---|-----------|-------------------------------------------------------------------------------------------------------------------|--|--|
| П | T1        | Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°                                  |  |  |
|   | T2        | Pendii con inclinazione media i > 15°                                                                             |  |  |
|   | Т3        | Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$ |  |  |
|   | T4        | Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°                           |  |  |

Tabella 4 – Caratteristiche della amplificazione topografica

| Categoria topografica | Ubicazione dell'opera o dell'intervento                                                  | S <sub>T</sub> |
|-----------------------|------------------------------------------------------------------------------------------|----------------|
| T1                    | -                                                                                        | 1,0            |
| T2                    | In corrispondenza della sommità del pendio                                               | 1,2            |
| Т3                    | In corrispondenza della cresta di un rilievo con<br>pendenza media minore o uguale a 30° | 1,2            |
| T4                    | In corrispondenza della cresta di un rilievo con<br>pendenza media maggiore di 30°       | 1,4            |

Tabella 5 – Coefficienti di amplificazione topografica

 $\label{localization} \textit{Progettazione: } \textit{F\&M Ingegneria Spa-G\&T Srl-ing. Michele Granziero}$ 

90403-000

Si riportano, nella tabella seguente, i valori di accelerazione di picco e gli altri parametri significativi degli spettri di progetto, per i diversi stati limiti da analizzare.

| STATO  | TR     | ag    | Fo    | Tc*   |
|--------|--------|-------|-------|-------|
| LIMITE | [anni] | [g]   | [-]   | [s]   |
| SLO    | 60     | 0.047 | 2.496 | 0.310 |
| SLD    | 101    | 0.056 | 2.579 | 0.330 |
| SLV    | 949    | 0.122 | 2.645 | 0.408 |
| SLC    | 1950   | 0.133 | 2.640 | 0.420 |

I parametri di calcolo per lo Stato Limite di Vita (SLV) e per lo Stato Limite di Danno (SLD) sono indicati nelle tabelle seguenti.

| STATO LIMITE     | SLV     |
|------------------|---------|
| ag               | 0,122 g |
| F <sub>o</sub>   | 2,645   |
| T <sub>C</sub> * | 0,408 s |
| Ss               | 1,800   |
| Cc               | 1,956   |
| S <sub>T</sub>   | 1,000   |
| q                | 1,000   |

| STATO LIMITE     | SLD     |
|------------------|---------|
| a <sub>o</sub>   | 0,056 g |
| F.               | 2,579   |
| T <sub>C</sub> * | 0,330 s |
| Ss               | 1,800   |
| Cc               | 2,176   |
| St               | 1,000   |
| q                | 1,000   |

90403-000

#### CRITERI GENERALI ELABORAZIONI PROVE IN SITO 5

#### 5.1 STRATIGRAFIA DEL SOTTOSUOLO

Il profilo stratigrafico viene definito sulla base dei risultati dei sondaggi a carotaggio continuo e dall'analisi delle prove penetrometriche statiche CPTU.

Dalle prove CPTU, la caratterizzazione litostratigrafica dei terreni viene condotta mediante il diagramma logaritmico di Robertson (1990), avente in ascissa il rapporto d'attrito normalizzato adimensionale F e in ordinata la resistenza di punta normalizzata adimensionale Q determinati in funzione di  $q_c$  (resistenza di punta del penetrometro) e  $f_S$  (resistenza d'attrito laterale).

$$F = \frac{f_s}{q_c - \sigma_{v0}} \qquad ; \qquad Q = \frac{q_c - \sigma_{v0}}{\sigma_{v0}'}$$

Il diagramma è diviso in 9 zone cui corrispondono altrettante classi di terreno:

| ZONA | INDICE DEL TIPO DI TERRENO                              | DESCRIZIONE                                                                 |  |  |  |  |  |
|------|---------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| 1    | $\sqrt{(\log F + 1)^2 + (\log Q + 0.28)^2} = 1.28$      | Terreni sensitivi                                                           |  |  |  |  |  |
| 2    | <i>Ic</i> > 3.60                                        | Terreni organici-torbe                                                      |  |  |  |  |  |
| 3    | 2.95 < <i>Ic</i> < 3.60                                 | Argille-argille limose                                                      |  |  |  |  |  |
| 4    | 2.60 < Ic < 2.95                                        | Limi argillosi-argille limose                                               |  |  |  |  |  |
| 5    | 2.05 < Ic < 2.60                                        | Sabbie limose-limi sabbiosi                                                 |  |  |  |  |  |
| 6    | 1.31 < <i>Ic</i> < 2.05                                 | Sabbie-sabbie limose                                                        |  |  |  |  |  |
| 7    | <i>Ic</i> < 1.31                                        | Sabbie - sabbie con ghiaia                                                  |  |  |  |  |  |
| 8    | $\log Q = 2 \cdot (\log F)^2 - 4 \cdot (\log F) + 3.72$ | Sabbie cementate—sabbie argillose (fortemente sovraconsolidate o cementate) |  |  |  |  |  |
| 9    | $\log Q = 2 \cdot (\log F)^2 - 4 \cdot (\log F) + 3.72$ | Terreni a grana fine (fortemente sovraconsolidati o cementati)              |  |  |  |  |  |

Per identificare le categorie di terreni è sufficiente esprimere l'indice Ic secondo la formula valida per le classi 2 ÷7:

$$Ic = \sqrt{(\log F + 1.22)^2 + (\log Q - 3.47)^2}$$

90403-000

#### 5.2 FORMAZIONI GRANULARI

#### 5.2.1 Proprietà fisiche

La densità relativa delle formazioni granulari si determina mediante le correlazioni riportate di seguito a partire dai risultati delle prove penetrometriche SPT.

#### Skempton (1986)

Il metodo di Skempton consente di determinare lo stato di addensamento dei terreni incoerenti mediante l'espressione:

$$Dr(\%) = \sqrt{\frac{(N1)_{60}}{A}} \cdot 100$$
 dove:

- $(N1)_{60} = C_N N_{SPT} \frac{ER}{60}$ : valore di N riferito ad un valore unitario della pressione;
- $C_N = \sqrt{\frac{p_a}{\sigma_{vo}}}$ : coefficiente di correzione secondo la relazione di Liao e Withman -1986);
- *ER*: rendimento energetico del sistema di battitura che secondo Skempton (1986) può, per l'Italia, essere assunto uguale a 60;
- $N_{CDT}$ : numero di colpi misurati con la prova standard SPT;
- p<sub>a</sub>: pressione atmosferica;
- $\sigma_{ij}$ : tensione efficace alla profondità di riferimento;
- A : costante che dipende dalla storia tensionale, dalla granulometria e dall'età del deposito e vale 55 per sabbie fini, 60 per sabbie medie e 65 per sabbie grosse.

#### Gibbs & Holtz (1957)

Il metodo di Gibbs & Holtz è valido per sabbie da fini a grossolane, per qualsiasi valore della pressione efficace, in depositi normalconsolidati. La densità relativa vale:

$$Dr(\%) = 21 \cdot \sqrt{\frac{N_{SPT}}{\sigma_{vo}^{'} + 0.7}}$$

dove:

•  $\sigma'_{v0}$ : tensione efficace alla profondità di riferimento espressa in kg/cm<sup>2</sup>.

# Schultze & Mezembach (1961)

Il metodo di Schultze & Mezembach è valido per sabbie da fini a ghiaiose, per qualunque valore della pressione efficace, in depositi normalconsolidati. La densità relativa vale:

$$\ln[Dr(\%)] = 0.478 \cdot \ln(N_{SPT}) - 0.262 \cdot \ln(\sigma'_{v0}) + 2.84$$

dove:

•  $\sigma'_{v0}$ : tensione efficace alla profondità di riferimento espressa in kg/cm<sup>2</sup>.

Per confronto, la densità relativa può essere valutata a partire dalle prove CPTU mediante le seguenti correlazioni.

90403-000

#### Harman

Il metodo è valido per le sabbie da fini a grossolane pulite, per qualunque valore di pressione efficace, in depositi normalmente consolidati. La densità relativa vale:

$$Dr(\%) = 34.36 \cdot \ln \left[ \frac{q_c}{12.3 \cdot \sigma_{v0}^{\prime 0.7}} \right]$$

dove:

- $q_c$ : resistenza di punta del penetrometro statico.
- $\sigma'_{v0}$ : tensione efficace alla profondità di riferimento espressa in kg/cm<sup>2</sup>.

#### Schmertmann

Il metodo si basa sulla seguente relazione:

$$Dr(\%) = -97.8 + 36.6 \cdot \ln(q_c) - 26.9 \cdot \ln(\sigma'_{v0})$$

dove:

- $q_c$ : resistenza di punta del penetrometro statico espressa in kg/cm<sup>2</sup>;
- $\sigma'_{v_0}$ : tensione efficace alla profondità di riferimento espressa in kg/cm<sup>2</sup>.

#### 5.2.2 Proprietà meccaniche

L'angolo d'attrito delle formazioni granulari si determina mediante le correlazioni riportate di seguito a partire dai risultati delle prove penetrometriche SPT.

## Shoi e Fukuni (Road Bridge Specification)

Il metodo è valido per sabbie fini o limose e trova le sue condizioni ottimali di applicazione per profondità di prova superiori a 8-10 m per terreni sopra falda e superiori a 15 m per terreni in falda. Si basa sulla seguente relazione:

$$\varphi = \sqrt{15 \cdot N_{SPT}} + 15$$

#### Japanese National Railway

Il metodo è valido per sabbie medie-grosse fino a sabbie ghiaiose e trova le sue condizioni ottimali di applicazione per profondità di prova superiori a 8-10 m per terreni sopra falda e superiori a 15 m per terreni in falda. Si basa sulla seguente relazione:

$$\varphi = 0.3 \cdot N_{SPT} + 27$$

#### De Mello

Il metodo di De Mello è valido per le sabbie in genere e per qualunque profondità (tranne che per i primi 2 m sotto il p.c.). È da considerarsi inattendibile per i valori di  $\varphi$  superiori a 38°.

Il metodo si basa sulla seguente relazione:

$$\varphi = 19 - 0.38 \cdot \sigma'_{v0} + 8.73 \cdot \log(N_{SPT})$$

90403-000

dove:

•  $\sigma'_{v_0}$ : tensione efficace alla profondità di riferimento espressa in kg/cm<sup>2</sup>.

#### Owasaki & Iwasaki

Il metodo è valido per sabbie da medie a grossolane fino a debolmente ghiaiose e trova le sue condizioni ottimali di applicazione per profondità di prova superiori a 8-10 m per terreni sopra falda e superiori a 15 m per terreni in falda. Si basa sulla seguente relazione:

$$\varphi = \sqrt{20 \cdot N_{SPT}} + 15$$

#### Sowers (1961)

Il metodo di Sowers è valido per le sabbie in genere e trova le sue condizioni ottimali di applicazione per profondità di prova inferiori a circa 4 m per terreni sopra falda e inferiori a circa 7 m per terreni in falda. Si basa sulla seguente relazione:

$$\varphi = 28 + 0.28 \cdot N_{SPT}$$

#### Malcev (1964)

Il metodo di Malcev è valido per le sabbie in genere e per qualunque profondità (tranne che per i primi 2 m sotto il p.c.). È da considerarsi inattendibile per i valori di  $\varphi$  superiori a 38°.

$$\varphi = 20 - 5 \cdot \log(\sigma'_{v_0}) + 3.73 \cdot \log(N_{SPT})$$

# Peck-Hanson & Thornburn

Il metodo è valido per le sabbie in genere e trova le sue condizioni ottimali di applicazione per profondità di prova inferiori a circa 5 m per terreni sopra falda e inferiori a circa 8 m per terreni in falda. Si basa sulla seguente relazione:

$$\varphi = 27.2 + 0.28 \cdot N_{SPT}$$

#### **Meyerof**

Il metodo di Meyerof è valido per le sabbie in genere e trova le sue condizioni ottimali di applicazione per profondità di prova inferiori a 5 m (relazione 1) e 3 m (relazione 2) nel caso di terreni sopra falda e inferiori a 8 m (relazione 1) e 5 m 8relazione 2) per terreni in falda.

relazione 1: 
$$\varphi = 29.47 + 0.46 \cdot N_{SPT} - 0.004 \cdot N_{SPT}^2$$
 (<5% di limo)  
relazione 2:  $\varphi = 23.7 + 0.57 \cdot N_{SPT} - 0.006 \cdot N_{SPT}^2$  (>5% di limo)

#### Hatanaka & Uchida

L'angolo d'attrito viene fornito dalla seguente relazione:

$$\varphi = \sqrt{20 \cdot N1} + 20$$

dove:

90403-000

•  $N1 = N_{SPT} \cdot \left(\frac{1}{\sigma'_{v0}}\right)^{0.5}$ : resistenza penetrometrica normalizzata rispetto alla pressione efficace di 1kg/cm<sup>2</sup>.

#### Schmertmann

Il metodo è valido per sabbie e ghiaie in genere, ma i valori dell'angolo di attrito vengono quasi sempre sovrastimati.

$$\varphi = 28 + 0.14 \cdot Dr$$
 (sabbia fine)  
 $\varphi = 31.5 + 0.115 \cdot Dr$  (sabbia media)  
 $\varphi = 34.5 + 0.1 \cdot Dr$  (sabbia grossa)  
 $\varphi = 38 + 0.08 \cdot Dr$  (ghiaia)

Per confronto, l'angolo d'attrito delle formazioni granulari può essere determinato mediante le correlazioni riportate di seguito a partire dai risultati delle prove penetrometriche CPTU.

#### <u>Durgunouglu – Mitchell</u>

Il metodo è valido per sabbie normalconsolidate, non cementate e si basa sulla seguente relazione:

$$\varphi = 14.4 + 4.8 \cdot \ln(q_c) - 4.5 \cdot \ln(\sigma'_{v0})$$

Per sabbie cementate il valore di  $\varphi$  trovato va aumentato di 1-2°.

#### Meyerof

Il metodo si basa sulla seguente relazione:

$$\varphi = 17 + 4.49 \cdot q_a$$

Non è applicabile per  $\varphi < 32^{\circ}$  e  $\varphi > 46^{\circ}$ .

Nel caso di sabbie sovraconsolidate occorre aumentare il valore di  $\varphi$  trovato di 1-2°.

In sabbie cementate va tenuto presente che ad un aumento di  $q_c$  può non corrispondere un aumento di  $\omega$ .

La relazione non valuta l'influenza della pressione efficace, quindi i valori dell'angolo di resistenza al taglio ottenuti con questo metodo risulteranno sottostimati per profondità inferiori a 5-6 m e sovrastimati per profondità superiori a 14-15 m.

#### Caquot

Il metodo di Caquot trova le sue condizioni ottimali di applicabilità in sabbie normalconsolidate e non cementate per profondità superiori a 2 m in terreni saturi o superiori a 1 m in terreni non saturi. Il metodo si basa sulla seguente relazione:

90403-000

$$\varphi = 9.8 + 4.96 \cdot \ln \left( \frac{q_c}{\sigma'_{v0}} \right)$$

Nel caso di sabbie sovraconsolidate occorre aumentare il valore di  $\varphi$  trovato di 1-2°.

In sabbie cementate va tenuto presente che ad un aumento di  $q_c$  può non corrispondere un aumento di  $\varphi$ .

#### Koppejan

Il metodo di Koppejan trova le sue condizioni ottimali di applicabilità in sabbie normalconsolidate e non cementate per profondità superiori a 2 m in terreni saturi o superiori a 1 m in terreni non saturi. Il metodo si basa sulla seguente relazione:

$$\varphi = 9.8 + 4.96 \cdot \ln \left( \frac{q_c}{\sigma'_{v0}} \right)$$

Nel caso di sabbie sovraconsolidate occorre aumentare il valore di  $\varphi$  trovato di 1-2°.

In sabbie cementate va tenuto presente che ad un aumento di  $q_c$  può non corrispondere un aumento di  $\varphi$ .

#### De Beer

Il metodo di Koppejan trova le sue condizioni ottimali di applicabilità in sabbie normalconsolidate e non cementate per profondità superiori a 2 m in terreni saturi o superiori a 1 m in terreni non saturi. Il metodo si basa sulla seguente relazione:

$$\varphi = 5.9 + 4.76 \cdot \ln \left( \frac{q_c}{\sigma'_{v0}} \right)$$

Nel caso di sabbie sovraconsolidate occorre aumentare il valore di  $\varphi$  trovato di 1-2°.

In sabbie cementate va tenuto presente che ad un aumento di  $q_c$  può non corrispondere un aumento di  $\varphi$ .

#### 5.2.3 Proprietà deformative

Il modulo di elasticità delle formazioni granulari si determina mediante le correlazioni riportate di seguito a partire dai risultati delle prove penetrometriche SPT.

#### Torrnaghi et al.

Il metodo è valido per sabbia + ghiaia e sabbia pulita. La correlazione non considera l'influenza della pressione efficace, che porta una diminuzione di E con la profondità a parità di  $N_{SPT}$ . Il metodo si basa sulla seguente relazione:

$$E(MPa) = 7 \cdot \sqrt{N_{SPT}}$$

La correlazione va considerata inattendibile per  $N_{SPT}$  molto bassi o molto alti, infatti, nel primo caso E viene eccessivamente sovrastimato, nel secondo caso eccessivamente sottostimato.

90403-000

#### Schmertmann

Il metodo è valido per le sabbie in genere. La correlazione non considera l'influenza della pressione efficace, che porta una diminuzione di E con la profondità a parità di  $N_{SPT}$ . Il metodo si basa sulla seguente relazione:

$$E(kg/cm^2) = 2 \cdot B \cdot N_{SPT}$$

dove:

• 
$$B = \begin{cases} 4 & \text{(sabbia fine)} \\ 6 & \text{(sabbia media)} \\ 10 & \text{(sabbia grosoolana)} \end{cases}$$

#### **Stroud**

Il metodo si basa sulla seguente relazione:

$$E(kg/cm^2) = \alpha \cdot N_{SPT}$$

dove:

• 
$$\alpha = -0.00107 \cdot N_{SPT}^2 + 0.136 \cdot N_{SPT} + 1.503$$
.

#### D'Apollonia et alii

Il metodo è valido per sabbia + ghiaia e sabbia sovraconsolidata. La correlazione non considera l'influenza della pressione efficace, che porta una diminuzione di E con la profondità a parità di  $N_{\mathit{SPT}}$ .

$$E(kg/cm^2) = 7.71 \cdot N_{SPT} + 191$$
 (ghiaia + sabbia)  
 $E(kg/cm^2) = 10.63 \cdot N_{SPT} + 375$  (sabbia sovraconsolidata)

#### Schultze & Menzebach

Il metodo è valido per sabbie sotto falda. La correlazione non considera l'influenza della pressione efficace, che porta una diminuzione di E con la profondità a parità di  $N_{SPT}$ .

$$E(kg/cm^2) = 5.27 \cdot N_{SPT} + 76$$

#### Webb

Il metodo è valido per sabbie sotto falda o sabbie con fine plastico La correlazione non considera l'influenza della pressione efficace, che porta una diminuzione di E con la profondità a parità di  $N_{\it SPT}$ .

$$E(kg/cm^2) = 4.87 \cdot N_{SPT} + 73$$
 (sabbia satura)  
 $E(kg/cm^2) = 3.22 \cdot N_{SPT} + 16$  (sabbia con fine plastico)

#### <u>Bowles</u>

Il metodo è valido per sabbie in genere e fornisce il valore del modulo elastico in kPa.

90403-000

Sabbia normalconsolidata: 
$$\begin{cases} E = 500 \cdot (N_{SPT} + 15) \\ E = (15000 \div 22000) \cdot \ln(N_{SPT}) \\ E = (35000 \div 50000) \cdot \ln(N_{SPT}) \end{cases}$$

Sabbia satura:  $E = 250 \cdot (N_{SPT} + 15)$ 

Sabbia sovraconsolidata: 
$$\begin{cases} E = 18000 + 750 \cdot N_{SPT} \\ E_{OCR} = E_{NC} \cdot OCR^{0.5} \end{cases}$$

Sabbia ghiaiosa o ghiaia: 
$$\begin{cases} E = 1200 \cdot (N_{SPT} + 6) \\ E = 600 \cdot (N_{SPT} + 6) \text{ per } N_{SPT} \le 15 \\ E = 600 \cdot (N_{SPT} + 6) + 2000 \text{ per } N_{SPT} > 15 \end{cases}$$

 $E = 320 \cdot (N_{SPT} + 15)$ Sabbia argillosa:

Sabbia limosa:  $E = 300 \cdot (N_{SPT} + 6)$ 

Per confronto, il modulo elastico delle formazioni granulari può essere determinato mediante le correlazioni riportate di seguito a partire dai risultati delle prove penetrometriche CPTU.

#### **Schmertmann**

Il metodo è valido per sabbie in genere normalmente consolidate.

$$E = 2.5 \cdot q_c$$

#### **Bowles**

Il metodo è valido per sabbie in genere e fornisce il valore del modulo elastico in kPa.

Sabbia normalconsolidata: 
$$\begin{cases} E = 2 \div 4 \cdot q_c \\ E = (1 + Dr^2) \cdot q_c \end{cases}$$

Sabbia normalconsolidata: 
$$\begin{cases} E = 2 \div 4 \cdot q_c \\ E = \left(1 + Dr^2\right) \cdot q_c \end{cases}$$
 Sabbia sovraconsolidata: 
$$\begin{cases} E = 6 \div 30 \cdot q_c \\ E_{OCR} = E_{NC}OCR^{0.5} \end{cases}$$

Sabbia argillosa:  $E = 3 \div 6 \cdot q$ 

Sabbia limosa:  $E = 1 \div 2 \cdot q_c$ 

90403-000

#### 5.3 FORMAZIONI COESIVE

#### Proprietà meccaniche

Il valore della coesione non drenata  $c_u$  viene determinato dall'interpretazione delle seguenti prove in sito:

- Pocket Penetrometer;
- Torvane;
- CPTU.

Dalle prove CPTU, la coesione non drenata, espressa in kPa, viene calcolata tramite la seguente relazione:

$$c_u = \frac{q_c - \sigma_{v0}}{20}$$

#### 5.3.2 Proprietà deformative

Dalle prove CPTU si determinano:

- il modulo edometrico  $E_{ed}$ ;
- il grado di sovraconsolidazione OCR;
- l'indice di compressione vergine  $c_c$ .

Il modulo edometrico viene calcolato mediante la correlazione di Mitchell & Gardner, che vale per argille in genere:

$$E_{ed} = \alpha \cdot q_c$$

dove:

$$\bullet \quad \alpha = \begin{cases} 8 & \text{se } q_c < 700 \, kPa \\ 5 & \text{se } 700 \, kPa < q_c < 2000 \, kPa \\ 2.5 & \text{se } q_c > 2000 \, kPa \end{cases}$$

Il grado di sovraconsolidazione viene calcolato con la formula di Ladd & Foot:

$$OCR = \left[ \frac{c_u}{(7 - Kp) \cdot \sigma_v'} \right]^{1.25}$$

dove:

• 
$$Kp = \begin{cases} 0.2 \cdot \frac{P}{p} & \text{se } P \le 1 \\ \frac{0.2}{p} + \frac{0.35 \cdot (P - 1)}{p} & \text{se } 1 < P < 4 \\ \frac{0.2}{p} + 0.35 \cdot \frac{3}{p} + \frac{0.5 \cdot (P - 4)}{p} & \text{se } 1 < P < 4 \end{cases}$$

90403-000

(se Kp < 0.25 si assume Kp = 0.25)

- *P* : profondità media dello strato;
- p : passo di lettura della prova espresso in metri.

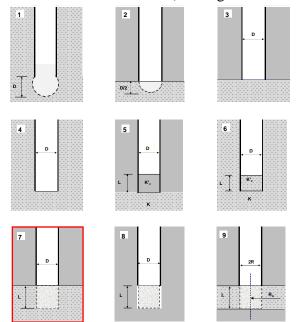
L'indice di compressione vergine viene calcolato mediante la formula di Schmertmann:

$$c_c = 0.09 \cdot 0.055 \cdot \log \left( \frac{2 \cdot c_u}{\sigma'_{v0}} \right)$$

#### 5.4 DEFINIZIONE DEL COEFFICIENTE DI PERMEABILITA'

Il coefficiente di permeabilità è stato ricavato dalle seguenti prove:

- prove Lefranc a carico variabile eseguite all'interno dei 6 fori di sondaggio;
- prove di dissipazione eseguite durante le prove CPTU e SCPTU;
- Prove edometriche.


#### 5.4.1 Prove Lefranc a carico variabile

Dalle prove Lefranc a carico variabile il coefficiente di permeabilità K viene calcolato mediante la seguente relazione:

$$K = A / (F T)$$

dove:

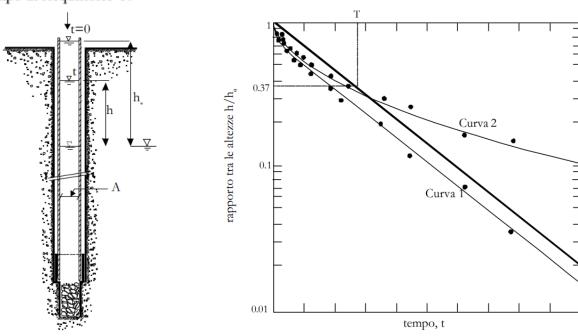
- A: area della sezione del tubo di rivestimento
- F: fattore di forma (vedi figura e tabella seguente)



| filtro sferico in terreno uniforme                                                 | 2π D                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| filtro emisferico al letto di uno strato<br>impermeabile                           | p D                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| fondo filtrante piano al letto di uno strato impermeabile                          | 2 D                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| fondo filtrante piano in terreno uniforme                                          | 2.75 D                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tubo di rivestimento parzialmente<br>riempito al tetto di uno strato<br>permeabile | 2D / [ 1+ ( 8 L K <sub>ν</sub> /π D K' <sub>ν</sub> )]                                                                                                                                                                                                                                                                                                                                                                                  |
| tubo di rivestimento parzialmente riempito in terreno uniforme                     | 2.75 D / [ 1+ ( 11 L K <sub>v</sub> / π D K' <sub>v</sub> )]                                                                                                                                                                                                                                                                                                                                                                            |
| filtro cilindrico al letto di uno strato impermeabile                              | 3 π L / ln [ (1.5L/D) + ( 1 + (1.5L/D) <sup>2</sup> ) <sup>0.5</sup> ]                                                                                                                                                                                                                                                                                                                                                                  |
| filtro cilindrico in terreno uniforme                                              | 4 π L / In [ (3L/D) + ( 1 + (3L/D) <sup>2</sup> ) <sup>0.5</sup> ]                                                                                                                                                                                                                                                                                                                                                                      |
| filtro cilindrico in uno strato confinato                                          | 2 π L / In (R <sub>o</sub> /R)                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                    | filtro emisferico al letto di uno strato impermeabile fondo filtrante piano al letto di uno strato impermeabile fondo filtrante piano in terreno uniforme tubo di rivestimento parzialmente riempito al tetto di uno strato permeabile tubo di rivestimento parzialmente riempito in terreno uniforme filtro cilindrico al letto di uno strato impermeabile filtro cilindrico in terreno uniforme filtro cilindrico in terreno uniforme |

• T = tempo di riequilibrio definito come il valore del tempo t letto in corrispondenza del rapporto  $h/h_0 = 0.37$ .

90403-000


Per la determinazione di T si devono diagrammare i valori del rapporto h/h0, in scala logaritmica, con i corrispondenti valori di tempo t in scala decimale (t = 0 all'inizio della prova quando h/h0 = 1, essendo h l'altezza misurata e h0 l'altezza iniziale).

Si traccia poi la retta che meglio collega i punti sperimentali diagrammati.

In qualche caso, i punti sperimentali per valori di h/h0 vicini ad 1 possono seguire una curva; ciò deve essere trascurato e la linea retta va tracciata attraverso i restanti punti.

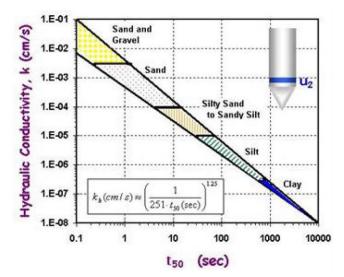
Si disegna quindi una retta parallela a quella precedente, ma che passa per l'origine degli assi (h/h0 = 1; t = 0).

Il valore del tempo t letto in corrispondenza del rapporto h/h0 = 0.37 è il valore richiesto del tempo di riequilibrio T.



#### 5.4.2 Prove di dissipazione

Dalle prove di dissipazione si ricavano le sovrappressioni interstiziali durante l'infissione del piezocono che, tramite il grafico di Parez & Fauriel 1988, permettono di calcolare il parametro t<sub>50</sub>, da cui dipende la permeabilità orizzontale.


Il t<sub>50</sub> corrisponde al tempo di dissipazione per il quale:

$$(U_t - U_0) / (U_i - U_0) = 0.5$$

dove:

- Ut: pressione interstiziale registrata ad ogni passo temporale;
- U<sub>0</sub>: pressione idrostatica (valore di equilibrio);
- U<sub>i</sub>: valore iniziale della pressione interstiziale.

90403-000



Attraverso il t<sub>50</sub> è possibile determinare la permeabilità orizzontale tramite la formula:

$$k_h(cm/s) \approx \left(\frac{1}{251 \cdot t_{50}(\sec)}\right)^{1.25}$$

#### 5.4.3 Prove edometriche

Dalle prove edometriche è possibile ricavare il coefficiente di permeabilità verticale mediante la seguente relazione:

$$k_{v} = \frac{c_{v} \cdot \gamma_{w}}{E_{ed}}$$

dove:

- $c_y$ : coefficiente di consolidazione verticale;
- $\gamma_w$ : peso di volume dell'acqua;
- $E_{ed}$ : modulo edometrico;

90403-000

# 6 CRITERI GENERALI ELABORAZIONI PROVE DI LABORATORIO

Per la caratterizzazione degli orizzonti coesivi sono state eseguite delle prove di laboratorio su campioni indisturbati.

## 6.1 PROPRIETÀ FISICHE

Dalle analisi di laboratorio si ricavano le seguenti proprietà fisiche:

• 
$$\gamma_n = (1-n) \cdot G_s \cdot \gamma_w + n \cdot \gamma_w = \frac{G_s + e}{1+e} \cdot \gamma_w$$
: peso di volume naturale

• 
$$\gamma_s = (1-n) \cdot G_s \cdot \gamma_w + n \cdot \gamma_w = \frac{G_s + e}{1+e} \cdot \gamma_w$$
: peso di volume saturo

• 
$$\gamma_d = \frac{\gamma_s}{1+w} = \frac{G_s \cdot \gamma_w}{1+e} = (1-n) \cdot G_s \cdot \gamma_w$$
: peso di volume secco

• 
$$G_s$$
: peso specifico

• 
$$S = \frac{w \cdot \gamma_s}{n \cdot (1 + w) \cdot \gamma_w} = \frac{G_s \cdot w}{e}$$
: grado di saturazione

• 
$$e = \frac{G_s \cdot \gamma_w \cdot \gamma_d}{\gamma_d} = \frac{n}{1-n}$$
: indice dei vuoti

• 
$$n = 1 - \frac{\gamma_d}{G_s \cdot \gamma_w} = 1 - \frac{\gamma_s}{G_s \cdot \gamma_w \cdot (1+w)} = \frac{e}{1+e}$$
: porosità

- $w_L$ : limite di liquidità
- $W_P$ : limite di plasticità
- $I_P = w_L w_P$ : indice di plasticità
- $I_C = \frac{w_L w}{I_R}$ : indice di consistenza

#### 6.2 PROPRIETÀ MECCANICHE

I parametri di resistenza meccanica degli orizzonti coesivi possono essere determinati dall'interpretazione delle seguenti prove di laboratorio:

- prove triassiali non consolidate non drenate UU  $(c_u)$ ;
- prove triassiali consolidate non drenate CU ( $\varphi'$  e c');
- prove di taglio diretto ( $\varphi'$  e c').

#### 6.3 PROPRIETÀ DEFORMATIVE

Le proprietà deformative delle formazioni coesive possono essere determinate sulla base delle interpretazioni dei risultati delle prove edometriche.

Si calcolano i seguenti coefficienti:

90403-000

- $c_c$ : indice di compressione vergine nel piano  $e \log(\sigma_v')$ ;
- $c_r$ : indice di ricarico nel piano  $e \log(\sigma_v)$ ;
- $c_v$ : coefficiente di consolidazione;
- *k* : permeabilità;
- $E_{ed}$ : modulo edometrico.

La pressione di consolidazione  $\sigma'_c$  viene determinata nella curva  $e - \log(\sigma'_v)$  secondo il metodo grafico proposto da Casagrande (1936).

Metodo di Casagrande: Nel diagramma  $e - \log(\sigma'_v)$  si individua il punto di massima curvatura A e si traccia la linea AB bisettrice dell'angolo tra l'orizzontale e la tangente per A. Il punto di intersezione D di questa bisettrice con il prolungamento verso l'alto della parte di retta della curva  $e - \log(\sigma'_v)$  indica la pressione di consolidazione  $\sigma'_c$ .

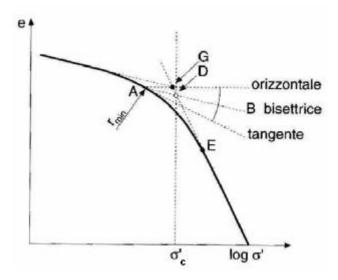
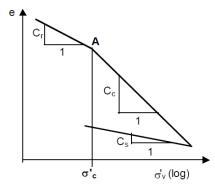




Figura 5: Metodo di Casagrande per la determinazione della pressione di consolidazione

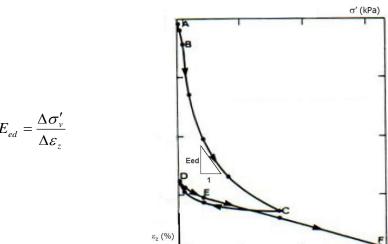
Il coefficienti  $c_c$  e  $c_r$  sono le pendenze dei diversi tratti della curva edometrica e sono dati dal rapporto adimensionale:

$$c_r, c_c, c_s = \frac{\Delta e}{\Delta \log_{10} \sigma_v'}$$



Il valore medio dell'indice di compressibilità  $c_c$  può essere confrontato con quello calcolato mediante l'espressione di Terzaghi e Peck (1967), in funzione dell'indice di liquidità medio ( $w_I$ ):

$$c_c = 0.009(w_L - 10)$$


Il coefficiente di consolidazione  $c_y$  è stimato in relazione al tempo al 50% della consolidazione:

$$c_{v} = \frac{T_{50} \cdot H^2}{t_{50}}$$

dove:

- $T_{50} = 0.197$ : fattore di tempo;
- H: altezza di drenaggio, pari al massimo percorso che una particella d'acqua deve compiere per uscire dallo strato (nel caso delle prove edometriche è pari alla metà dell'altezza del provino essendo questo doppiamente drenato);
- $t_{50}$ : tempo corrispondente al 50% del cedimento.

Il modulo edometrico è la pendenza della curva tensione-deformazione ed è dato dal rapporto:



 $E_{ed} = \frac{\Delta \sigma_{v}'}{\Delta \varepsilon_{z}}$ 

Il coefficiente di permeabilità è dato dalla formula:

$$k = \frac{c_{v} \cdot \gamma_{w}}{E_{ad}}$$

Dall'esame degli andamenti delle curve edometriche è stato possibile anche valutare la pressione di preconsolidazione e quindi il grado di sovraconosolidazione (OCR) dato dal rapporto tra la tensione di preconsolidazione  $\sigma'_{cons}$  e la tensione verticale efficace corrispondente  $\sigma'_{v}$  alla quota di prelievo del campione:

$$OCR = \frac{\sigma_{cons}^{'}}{\sigma_{v}^{'}}$$

90403-000

# 7 QUAY AREA (INDAGINI 2015)

# Sondaggi:

- SG1;
- SG2;
- SG3.

# Prove penetrometriche statiche:

- CPTU1;
- CPTU2;
- CPTU3.

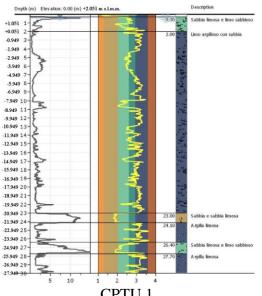
## Prove di laboratorio:

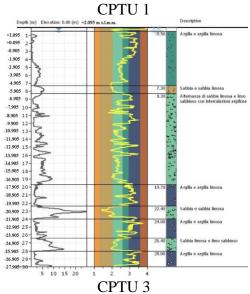
| Condonnia | Compiens   | Profond | dità (m) | Analisi        | Peso      | Peso di | Umidità  | Limiti di | ELL | Prova      | Taglio  | Triassiale |
|-----------|------------|---------|----------|----------------|-----------|---------|----------|-----------|-----|------------|---------|------------|
| Sondaggio | Campione - | tetto   | letto    | granulometrica | specifico | volume  | naturale | Atterberg | ELL | edometrica | diretto | CU         |
|           | C1         | 14.00   | 14.50    | Х              | х         | х       | х        |           |     |            |         |            |
|           | C2         | 16.20   | 16.70    | X              | x         | x       | х        |           |     |            |         |            |
| SG1       | C3         | 20.00   | 20.50    | X              | x         | X       | X        |           |     |            |         |            |
|           | SH1        | 7.20    | 7.90     | X              | x         | x       | х        | X         | Х   | X          | Х       | x          |
|           | SH2        | 23.00   | 23.70    | Х              | X         | X       | х        | х         | Х   | Х          | Х       | X          |
| SG2       | SH1        | 5.70    | 6.40     | Х              | х         | х       | х        | Х         | Х   | х          | Х       | х          |
| 302       | SH2        | 22.30   | 23.00    | Х              | X         | X       | х        | х         | Х   | Х          | Х       | X          |
|           | C1         | 13.00   | 13.50    | Х              | х         | х       | х        |           |     |            |         |            |
| SG3       | C2         | 18.50   | 19.00    | X              | x         | x       | x        |           |     |            |         |            |
| 303       | C3         | 22.00   | 23.00    | X              | x         | x       | x        |           |     |            |         |            |
|           | SH1        | 5.25    | 5.75     | Х              | X         | X       | х        | х         | Х   | Х          | Х       | x          |

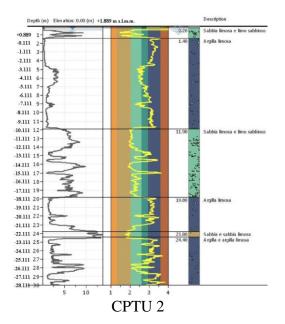
## 7.1 PROFILO STRATIGRAFICO

# Sondaggi

|            | SG1 (p.c. = +1.818 m s.l.m.m.) |            |              |                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|------------|--------------------------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Profondità | (m da p.c.)                    | Profondità | (m s.l.m.m.) | Descrizione                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| da         | a                              | da         | a            | Descrizione                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 0          | 0.8                            | 1.818      | 1.018        | Terreno di riporto costituito da ghiaia e ciottoli in matrice sabbioso-<br>limosa di colore grigio-marrone                                     |  |  |  |  |  |  |  |  |  |
| 0.8        | 4.5                            | 1.018      | -2.682       | Fanghi bauxitici di colore marrone-rosso                                                                                                       |  |  |  |  |  |  |  |  |  |
| 4.5        | 8.1                            | -2.682     | -6.282       | Argilla limosa di colore grigio-nera da -4,50 a -5,50 m da p.c. e<br>grigio nocciola da -5,50 m da p.c. con<br>presenza di ossidazioni ocracee |  |  |  |  |  |  |  |  |  |
| 8.1        | 9.8                            | -6.282     | -7.982       | Argilla debolmente limosa di colore grigio                                                                                                     |  |  |  |  |  |  |  |  |  |
| 9.8        | 16                             | -7.982     | -14.182      | Sabbia limosa di colore grigio                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 16         | 19.8                           | -14.182    | -17.982      | Argilla limosa di colore grigio con livelli centimetrici di torba nera                                                                         |  |  |  |  |  |  |  |  |  |
| 19.8       | 20.8                           | -17.982    | -18.982      | Sabbia limosa di colore grigio                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 20.8       | 24                             | -18.982    | -22.182      | Argilla debolmente limosa di colore grigio. Presenza di torba nera tra -21.80 e -22.00 m da p.c.                                               |  |  |  |  |  |  |  |  |  |


|            | SG2 (p.c. = +1.797 m s.l.m.m.) |            |              |                                                                                                     |  |  |  |  |  |  |  |  |  |
|------------|--------------------------------|------------|--------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Profondità | (m da p.c.)                    | Profondità | (m s.l.m.m.) | Descrizione                                                                                         |  |  |  |  |  |  |  |  |  |
| da         | a                              | da         | a            | Descrizione                                                                                         |  |  |  |  |  |  |  |  |  |
| 0          | 1                              | 1.797      | 0.797        | Terreno di riporto costituito da ghiaia e ciottoli in matrice sabbioso-<br>limosa di colore marrone |  |  |  |  |  |  |  |  |  |
| 1          | 1.3                            | 0.797      | 0.497        | Limo debolmente argilloso di colore grigio                                                          |  |  |  |  |  |  |  |  |  |
| 1.3        | 5.2                            | 0.497      | -3.403       | Argilla debolmente limosa di colore grigio-nero                                                     |  |  |  |  |  |  |  |  |  |
| 5.2        | 8.8                            | -3.403     | -7.003       | Argilla debolmente limosa di colore grigio con ossidazioni ocracee                                  |  |  |  |  |  |  |  |  |  |
| 8.8        | 12                             | -7.003     | -10.203      | Argilla debolmente limosa di colore grigio                                                          |  |  |  |  |  |  |  |  |  |
| 12         | 21                             | -10.203    | -19.203      | Sabbia da limosa a debolmente limosa di colore grigio                                               |  |  |  |  |  |  |  |  |  |
| 21         | 23                             | -19.203    | -21.203      | Argilla da debolmente limosa a limosa di colore grigio con livelli decimetrici di torba nera        |  |  |  |  |  |  |  |  |  |
| 23         | 24                             | -21.203    | -22.203      | Sabbia limosa di colore grigio                                                                      |  |  |  |  |  |  |  |  |  |


Progettazione: F&M Ingegneria Spa - G&T Srl - ing. Michele Granziero

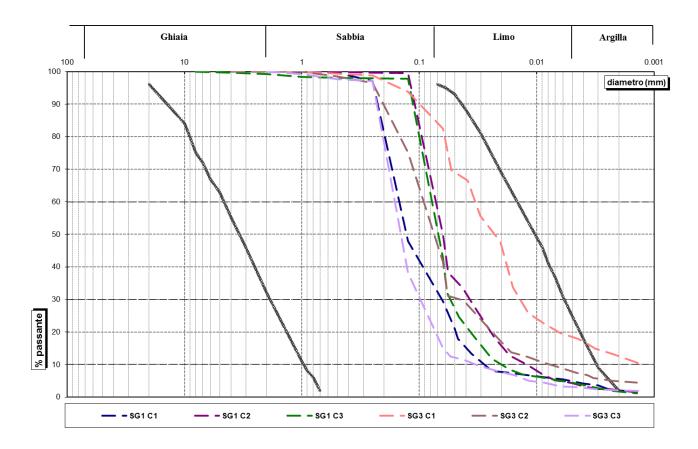

90403-000

|            | SG3 (p.c. = +1.721  m s.l.m.m.) |            |              |                                                                                                                                                           |  |  |  |  |  |  |  |  |
|------------|---------------------------------|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Profondità | (m da p.c.)                     | Profondità | (m s.l.m.m.) | Descrizione                                                                                                                                               |  |  |  |  |  |  |  |  |
| da         | a                               | da         | a            | Descrizione                                                                                                                                               |  |  |  |  |  |  |  |  |
| 0          | 1                               | 1.721      | 0.721        | Terreno di riporto costituito da ghiaia e ciottoli in matrice sabbioso-<br>limosa di colore marrone                                                       |  |  |  |  |  |  |  |  |
| 1          | 3                               | 0.721      | -1.279       | Argilla limosa di colore grigio-nera con livelli centimetrici di fanghi bauxitici di colore marrone-rosso                                                 |  |  |  |  |  |  |  |  |
| 3          | 3.6                             | -1.279     | -1.879       | Torba di colore nero                                                                                                                                      |  |  |  |  |  |  |  |  |
| 3.6        | 4                               | -1.879     | -2.279       | Argilla limosa di colore grigio scuro                                                                                                                     |  |  |  |  |  |  |  |  |
| 4          | 6.6                             | -2.279     | -4.879       | Argilla debolmente limosa di colore grigio con ossidazioni ocracee                                                                                        |  |  |  |  |  |  |  |  |
| 6.6        | 7                               | -4.879     | -5.279       | Limo sabbioso di colore grigio                                                                                                                            |  |  |  |  |  |  |  |  |
| 7          | 9                               | -5.279     | -7.279       | Sabbia limosa di colore grigio                                                                                                                            |  |  |  |  |  |  |  |  |
| 9          | 11.5                            | -7.279     | -9.779       | Sabbia limosa-limo sabbioso di colore grigio                                                                                                              |  |  |  |  |  |  |  |  |
| 11.5       | 12.4                            | -9.779     | -10.679      | Argilla debolmente limosa di colore grigio con livelli di torba nera                                                                                      |  |  |  |  |  |  |  |  |
| 12.4       | 19.1                            | -10.679    | -17.379      | Sabbia limosa intercalata a limo sabbioso di colore grigio                                                                                                |  |  |  |  |  |  |  |  |
| 19.1       | 24                              | -17.379    | -22.279      | Argilla limosa di colore grigio, livelli centimetrici di sabbia limosa-<br>debolmente limosa e presenza di<br>torba ad una profondità di -23.80 m sa p.c. |  |  |  |  |  |  |  |  |

#### **Prove CPTU**

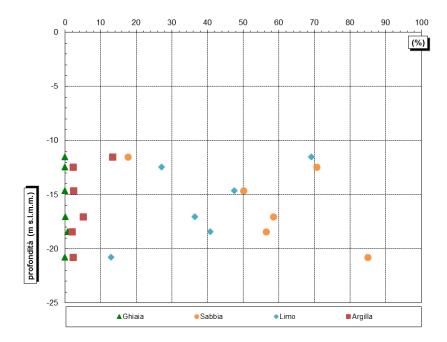






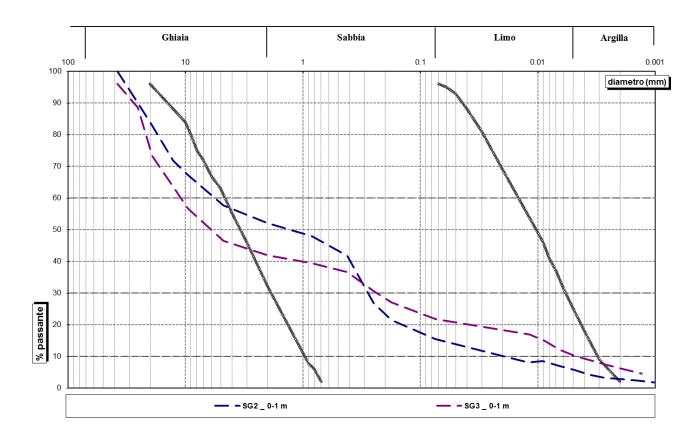

90403-000

## 7.2 CARATTERISTICHE TERRENI GRANULARI


## 7.2.1 Proprietà fisiche

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni rimaneggiati.



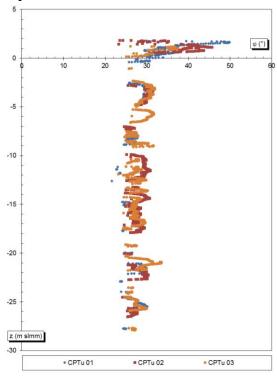

| Sondaggio  | Campione - | profondità (m) |       |       | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   | profondità   |
|------------|------------|----------------|-------|-------|--------|--------|-------|---------|-------|-------|--------------|
| Suridayyiu | Campione — | tetto          | letto | media | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   | (m s.l.m.m.) |
| SG1        | C1         | 14.00          | 14.50 | 14.25 | 0.00   | 70.60  | 27.10 | 2.30    | 70.60 | 29.40 | -12.43       |
|            | C2         | 16.20          | 16.70 | 16.45 | 0.00   | 50.10  | 47.50 | 2.40    | 50.10 | 49.90 | -14.63       |
|            | C3         | 20.00          | 20.50 | 20.25 | 0.80   | 56.40  | 40.80 | 2.00    | 57.20 | 42.80 | -18.43       |
| SG3        | C1         | 13.00          | 13.50 | 13.25 | 0.00   | 17.60  | 69.10 | 13.30   | 17.60 | 82.40 | -11.53       |
|            | C2         | 18.50          | 19.00 | 18.75 | 0.10   | 58.40  | 36.40 | 5.10    | 58.50 | 41.50 | -17.03       |
|            | C3         | 22.00          | 23.00 | 22.50 | 0.00   | 84.90  | 12.90 | 2.20    | 84.90 | 15.10 | -20.78       |

90403-000



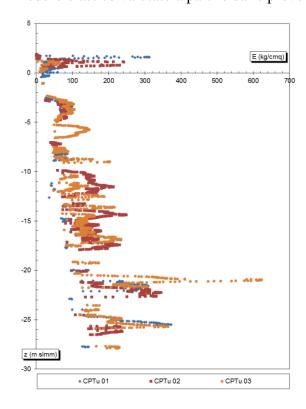
90403-000

Il seguente grafico riporta le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni rimaneggiati lungo lo strato grossolano di riporto. Le analisi evidenziano l'appartenenza del materiale alla categoria A-3 secondo classificazione AASHTO (CNR UNI 10006).




| (AASHTO M 145-82)                                                                                              |                                              |        | Mater<br>assante<br>mm) ug | Passo   | Materiali limosi e argillosi<br>Passante al setaccio n. 200<br>superiore al 35% |                  |        |                   |              |     |                 |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|----------------------------|---------|---------------------------------------------------------------------------------|------------------|--------|-------------------|--------------|-----|-----------------|--|
| Gruppi di classificazione                                                                                      | A                                            | -1     | A-3                        |         | A                                                                               | 1-2              |        | A-4               | A-5          | A-6 | A-7             |  |
| or oppi of classification.                                                                                     | A-1-a                                        | A-1-b  |                            | A-2-4   | A-2-5                                                                           | A-2-6            | A-2-7  |                   |              |     | A-7-5<br>A-7-6  |  |
| Analisi granulometrica<br>% passante al setaccio<br>n. 10 (2 mm)<br>n. 40 (0,42 mm)<br>n. 200 (0,075 mm)       |                                              | 50 max | 51 min<br>10 max           |         |                                                                                 |                  |        |                   | 36 min       |     |                 |  |
| Caratteristiche delle<br>frazioni passanti al n. 40<br>Limite di liquidità $W_L$<br>Indice di plasticità $I_P$ | 6 n                                          | nax    | _<br>N. P.                 |         |                                                                                 | 40 max<br>11 min |        |                   |              |     |                 |  |
| Tipi usuali dei materiali<br>principali                                                                        | Frammenti<br>di roccia<br>ghiaia<br>e sabbia |        | Sabbia<br>fine             | Ghia    | Ghiaia limosa o arg<br>e sabbia                                                 |                  | illosa | Terre             | Terre limose |     | Terre argillose |  |
| Giudizio per impiego<br>come sottofondo                                                                        |                                              | Da ecc | ellente i                  | a buono |                                                                                 |                  | D      | Da buono a povero |              |     |                 |  |

#### 7.2.2 Proprietà meccaniche


90403-000

Il grafico seguente riporta l'angolo d'attrito valutato a partire dalle prove penetrometriche statiche mediante la correlazione di Caquot.

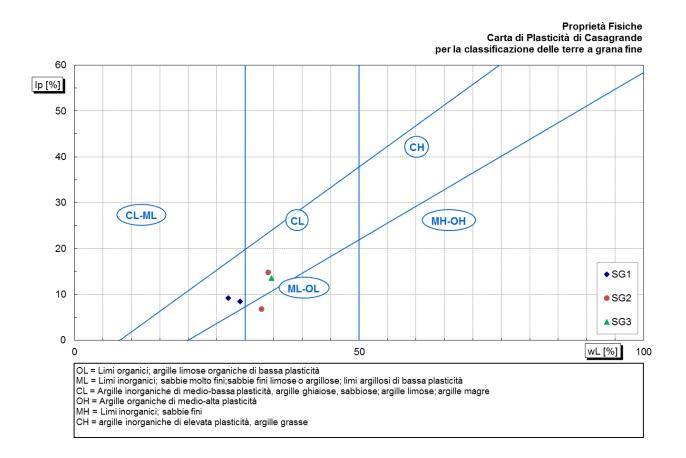


# 7.2.3 Proprietà deformative

Il grafico seguente riporta il modulo elastico valutato a partire dalle prove penetrometriche statiche

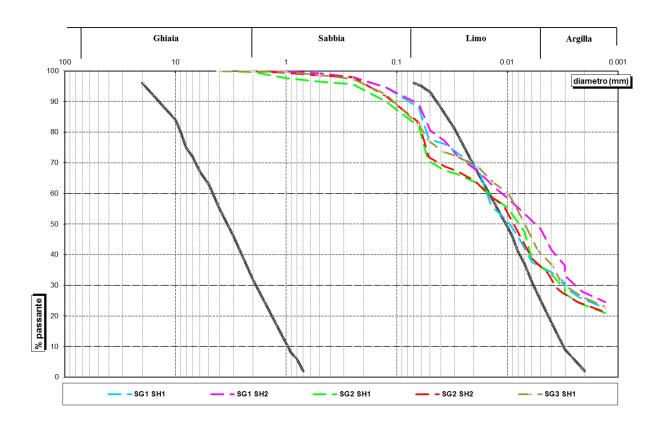


mediante la correlazione di Schmertmann.

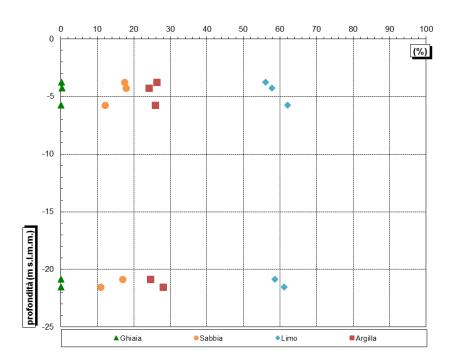

90403-000

#### 7.3 CARATTERISTICHE TERRENI COESIVI

#### 7.3.1 Proprietà fisiche


Dalle analisi di laboratorio eseguite su campioni indisturbati si ricavano le seguenti proprietà fisiche:

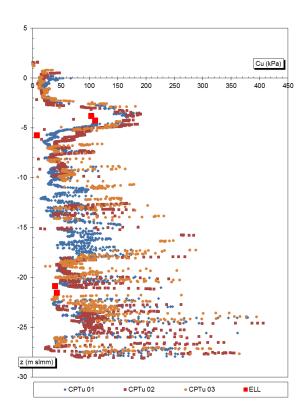
| sondaggio | campione - |       | profondità (m) |       | Gs    | Ϋ́n     | <b>Y</b> d | Ϋ́sat   | n    | е    | w     | wl    | wp    | l <sub>P</sub> | Ic    |
|-----------|------------|-------|----------------|-------|-------|---------|------------|---------|------|------|-------|-------|-------|----------------|-------|
| Sondaygio | campione   | tetto | letto          | media | (/)   | (kN/m³) | (kN/m³)    | (kN/m³) |      |      | (%)   | (%)   | (%)   | (%)            |       |
|           |            |       |                |       |       |         |            |         |      |      |       |       |       |                |       |
|           | C1         | 14.00 | 14.50          | 14.25 | 2.698 | 18.90   | 14.73      | 19.63   | 0.44 | 0.80 | 28.30 |       |       |                |       |
|           | C2         | 16.20 | 16.70          | 16.45 | 2.704 | 18.90   | 15.28      | 2.04    | 0.42 | 0.74 | 23.70 |       |       |                |       |
| SG1       | C3         | 20.00 | 20.50          | 20.25 | 2.701 | 18.94   | 14.57      | 19.40   | 0.45 | 0.82 | 30.00 |       |       |                |       |
|           | SH1        | 7.20  | 7.90           | 7.55  | 2.696 | 20.89   | 16.85      | 20.30   | 0.36 | 0.57 | 24.00 | 27.00 | 18.10 | 9.20           | 0.33  |
|           | SH2        | 23.00 | 23.70          | 23.35 | 2.703 | 19.34   | 14.82      | 19.62   | 0.44 | 0.79 | 30.50 | 29.10 | 20.60 | 8.50           | -0.16 |
| SG2       | SH1        | 5.70  | 6.40           | 6.05  | 2.702 | 20.65   | 17.41      | 21.33   | 0.34 | 0.52 | 18.60 | 34.00 | 19.20 | 14.80          | 1.04  |
| 302       | SH2        | 22.30 | 23.00          | 22.65 | 2.695 | 19.58   | 14.89      | 19.17   | 0.44 | 0.78 | 31.50 | 32.90 | 26.10 | 6.80           | 0.21  |
|           | C1         | 13.00 | 13.50          | 13.25 | 2.681 | 18.92   | 14.96      | 19.83   | 0.43 | 0.76 | 26.50 |       |       |                |       |
| SG3       | C2         | 18.50 | 19.00          | 18.75 | 2.689 | 19.07   | 14.83      | 19.55   | 0.44 | 0.78 | 28.60 |       |       |                |       |
| SG3       | C3         | 22.00 | 23.00          | 22.50 | 2.699 | 19.10   | 15.37      | 20.26   | 0.42 | 0.72 | 24.30 |       |       |                |       |
|           | SH1        | 5.25  | 5.75           | 5.50  | 2.695 | 21.05   | 17.25      | 20.64   | 0.35 | 0.53 | 22.00 | 34.60 | 21.10 | 13.50          | 0.93  |



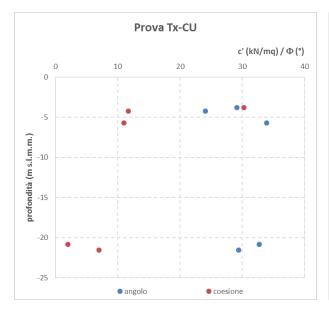

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni indisturbati.

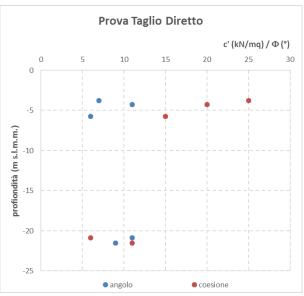
90403-000




| Sondaggio  | Campione - |       | profondità (m | )     | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   | profondità   |
|------------|------------|-------|---------------|-------|--------|--------|-------|---------|-------|-------|--------------|
| Soridaggio | Campione — | tetto | letto         | media | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   | (m s.l.m.m.) |
| SG1        | SH1        | 7.20  | 7.90          | 7.55  | 0.00   | 12.00  | 62.10 | 25.90   | 12.00 | 88.00 | -5.73        |
|            | SH2        | 23.00 | 23.70         | 23.35 | 0.00   | 10.80  | 61.20 | 28.00   | 10.80 | 89.20 | -21.53       |
| SG2        | SH1        | 5.70  | 6.40          | 6.05  | 0.30   | 17.80  | 57.80 | 24.10   | 18.10 | 81.90 | -4.25        |
|            | SH2        | 22.30 | 23.00         | 22.65 | 0.00   | 16.90  | 58.60 | 24.50   | 16.90 | 83.10 | -20.85       |
| SG3        | SH1        | 5.25  | 5.75          | 5.50  | 0.20   | 17.40  | 56.10 | 26.30   | 17.60 | 82.40 | -3.78        |




90403-000

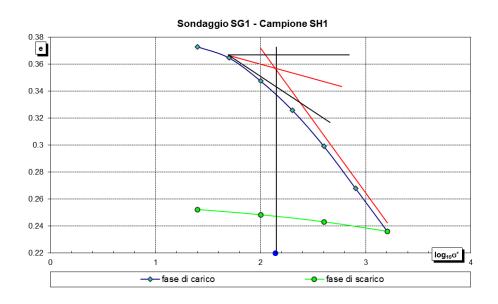

#### 7.3.2 Proprietà meccaniche

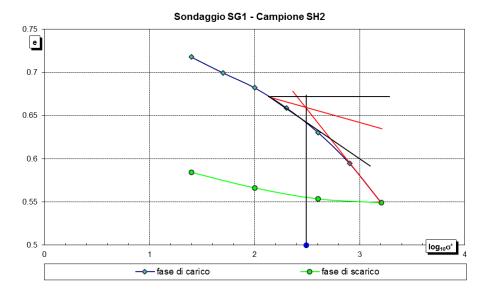
Il grafico seguente riporta i valori di coesione non drenata ricavati dalle prove CPTU e confrontati con i risultati delle prove di compressione ad espansione laterale libera:



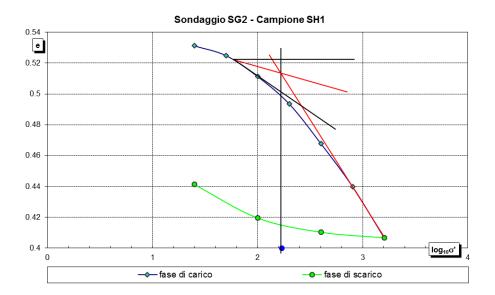
I parametri drenati c' e  $\varphi'$  per gli strati coesivi sono stati ricavati dalle prove triassiali CU e dalle prove di taglio diretto.

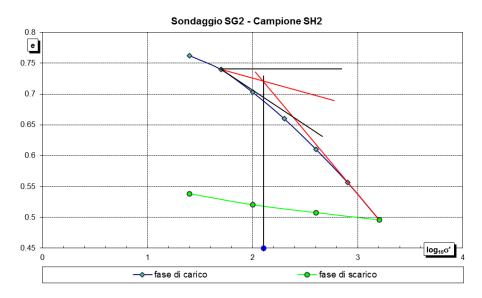


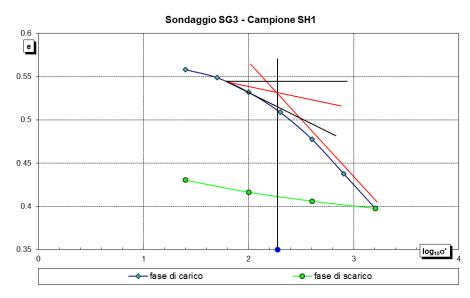




90403-000

|           |          |         |                        | C      | Ü        | Т      | D        | profondità   |
|-----------|----------|---------|------------------------|--------|----------|--------|----------|--------------|
| sondaggio | campione | sigla   | terreno                | angolo | coesione | angolo | coesione | media        |
|           |          |         |                        | (°)    | (kN/mq)  | (°)    | (kN/mq)  | (m s.l.m.m.) |
|           |          |         |                        |        |          |        |          |              |
| SG1       | SH1      | SG1-SH1 | argilla limosa         | 33.9   | 11       | 6      | 15       | -5.732       |
| SG1       | SH2      | SG1-SH2 | argilla limosa torbosa | 29.4   | 7        | 9      | 11       | -21.532      |
| SG2       | SH1      | SG2-SH1 | argilla limosa         | 24.1   | 11.7     | 11     | 20       | -4.253       |
| SG2       | SH2      | SG2-SH2 | argilla limosa         | 32.7   | 2        | 11     | 6        | -20.853      |
| SG3       | SH1      | SG3-SH1 | argilla limosa         | 29.1   | 30.29    | 7      | 25       | -3.779       |


# 7.3.3 Proprietà deformative

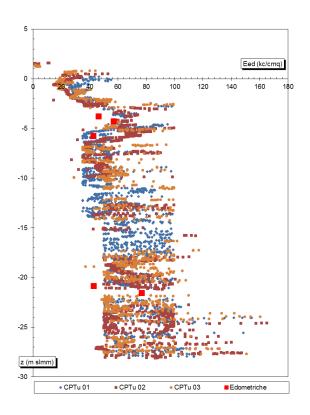

Di seguito si riportano i risultati delle prove edometriche effettuate sui campioni indisturbati.



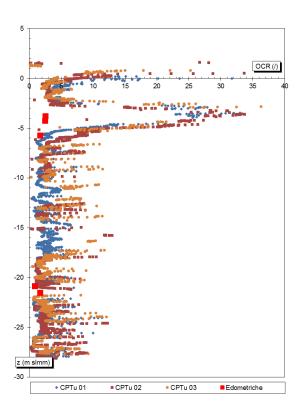


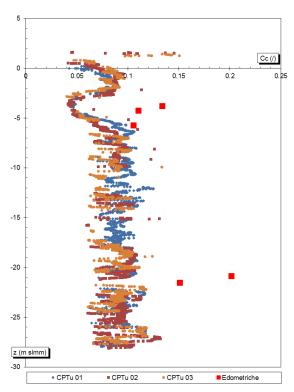

90403-000







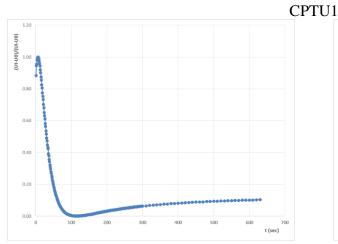


90403-000


| Sondaggio        | Campione         | :                            | Profondità media                  | Indice di ricompressione                      | Indice di compressione                 | Indice di rigonfiamento                               | Tensione di<br>preconsolidazione                      | Tensione in sito                                    | Grado di<br>sovraconsolidazione                      |
|------------------|------------------|------------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
|                  |                  |                              |                                   | Cr                                            | Сс                                     | Cs                                                    | σ'c                                                   | σ'ν                                                 | OCR                                                  |
| n°               | n°               | [m]                          | [m s.l.m.m.]                      | [/]                                           | [/]                                    | [/]                                                   | [kPa]                                                 | [kPa]                                               | [/]                                                  |
|                  |                  |                              |                                   |                                               |                                        |                                                       |                                                       |                                                     |                                                      |
| SG1              | SH1              | 7.55                         | -5.732                            | 0.028                                         | 0.105                                  | 0.006                                                 | 138.038                                               | 82.220                                              | 1.679                                                |
| SG1              | SH2              | 23.35                        | -21.532                           | 0.061                                         | 0.151                                  | 0.030                                                 | 309.030                                               | 225.094                                             | 1.373                                                |
| SG2              | SH1              | 6.05                         | -4.253                            | 0.021                                         | 0.110                                  | 0.036                                                 | 169.824                                               | 66.308                                              | 2.561                                                |
| SG2              | SH2              | 22.65                        | -20.853                           | 0.076                                         | 0.201                                  | 0.030                                                 | 127.350                                               | 209.060                                             | 0.609                                                |
| SG3              | SH1              | 5.5                          | -3.779                            | 0.031                                         | 0.134                                  | 0.023                                                 | 188.365                                               | 61.930                                              | 3.042                                                |
|                  |                  | Profondità media             |                                   |                                               |                                        |                                                       |                                                       |                                                     |                                                      |
| Sondaggio        | Campione         | Profondità media             |                                   | Modulo adometrico                             |                                        | Coefficiente di                                       | verticale                                             |                                                     | Permeabilita verticale                               |
|                  |                  |                              |                                   | Εe                                            | ed                                     | С                                                     | V                                                     |                                                     | k                                                    |
| s Sondaggio      | ت Campione       | [B]<br>Profondità media      | [m s.l.m.m.]                      | Ee<br>(kF                                     | ed<br>Pa)                              | c<br>(cm                                              | v<br>2/s)                                             | (cr                                                 | k<br>n/s)                                            |
| n°               | n°               | [m]                          | [m s.l.m.m.]                      | Ee<br>(kF<br>50 - 100                         | ed<br>Pa)<br>100 - 200                 | c<br>(cm<br>50 - 100                                  | v<br>2/s)<br>100 - 200                                | (cr<br>50 - 100                                     | k<br>m/s)<br>100 - 200                               |
| n°<br>SG1        | n°<br>SH1        | [m]<br>7.55                  | [m s.l.m.m.]<br>-5.732            | Ee<br>(kF<br>50 - 100<br>4255                 | ed<br>Pa)<br>100 - 200<br>6757         | c (cm<br>50 - 100<br>4.84E-03                         | 2/s)<br>100 - 200<br>5.76E-03                         | (cr<br>50 - 100<br>1.14E-07                         | h/s)<br>100 - 200<br>8.53E-08                        |
| n°<br>SG1<br>SG1 | n°<br>SH1<br>SH2 | [m]<br>7.55<br>23.35         | [m s.l.m.m.]<br>-5.732<br>-21.532 | E 6<br>(kF<br>50 - 100<br>4255<br>5128        | ed<br>Pa)<br>100 - 200<br>6757<br>7663 | c (cm<br>50 - 100<br>4.84E-03<br>7.68E-03             | 2/s)<br>100 - 200<br>5.76E-03<br>6.90E-03             | (cr<br>50 - 100<br>1.14E-07<br>1.50E-07             | k<br>n/s)<br>100 - 200<br>8.53E-08<br>9.01E-08       |
| n° SG1 SG1 SG2   | n° SH1 SH2 SH1   | [m]<br>7.55<br>23.35<br>6.05 | -5.732<br>-21.532<br>-4.253       | E6<br>(kF<br>50 - 100<br>4255<br>5128<br>5682 | ed Pa) 100 - 200 6757 7663 8696        | c (cm<br>50 - 100<br>4.84E-03<br>7.68E-03<br>5.70E-03 | 2/s)<br>100 - 200<br>5.76E-03<br>6.90E-03<br>5.45E-03 | (cr<br>50 - 100<br>1.14E-07<br>1.50E-07<br>1.00E-07 | k m/s) 100 - 200<br>8.53E-08<br>9.01E-08<br>6.27E-08 |
| n°<br>SG1<br>SG1 | n°<br>SH1<br>SH2 | [m]<br>7.55<br>23.35         | [m s.l.m.m.]<br>-5.732<br>-21.532 | E 6<br>(kF<br>50 - 100<br>4255<br>5128        | ed<br>Pa)<br>100 - 200<br>6757<br>7663 | c (cm<br>50 - 100<br>4.84E-03<br>7.68E-03             | 2/s)<br>100 - 200<br>5.76E-03<br>6.90E-03             | (cr<br>50 - 100<br>1.14E-07<br>1.50E-07             | k<br>n/s)<br>100 - 200<br>8.53E-08<br>9.01E-08       |

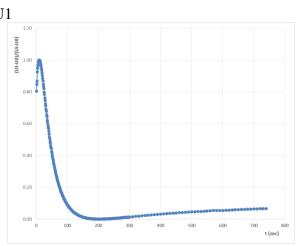
Per confronto si riportano i valori del modulo edometrico del grado di sovraconsolidazione e dell'indice di compressione calcolati a partire dalle prove CPTU:



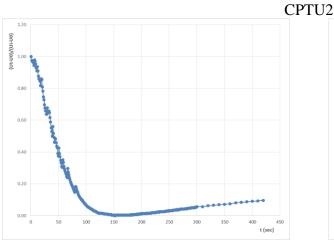
90403-000



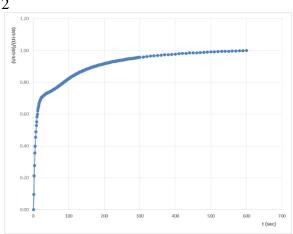




90403-000

#### 7.4 PROVE DISSIPATIVE

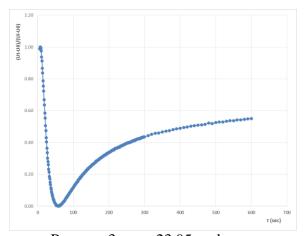

Di seguito si riportano i risultati delle prove di dissipazione e il coefficiente di permeabilità orizzontale calcolato.



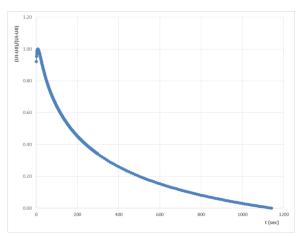

Prova n. 1 - z = 23.64 m da p.c.  $t_{50} = 31 \sec \Rightarrow k_h = 1.37 \cdot 10^{-7} \ m/s$ 



Prova n. 2 - z = 26.88 m da p.c.  $t_{50} = 44 \sec \implies k_h = 8.83 \cdot 10^{-8} \ m/s$ 

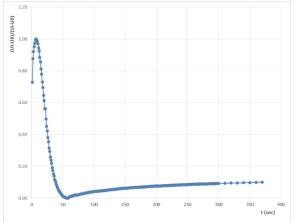



Prova n. 1 – z = 12.42 m da p.c.  $t_{50} = 39 \text{ sec } \rightarrow k_h = 1.03 \cdot 10^{-7} \text{ m/s}$ 

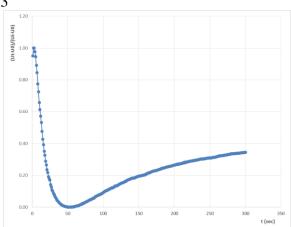



Prova n. 2 - z = 16.31 m da p.c. Non è stato possibile calcolare  $k_h$  in quanto non vi è stata dissipazione delle pressioni neutre.

90403-000




Prova n. 3 – z = 23.95 m da p.c.  $t_{50} = 22 \sec \Rightarrow k_h = 2.10 \cdot 10^{-7} \text{ m/s}$ 



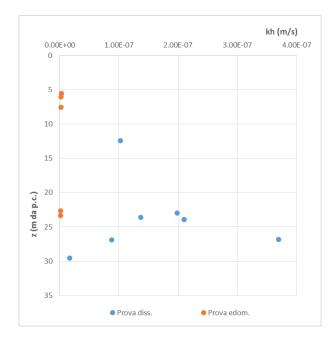

Prova n. 1 – z = 29.56 m da p.c.  $t_{50} = 166 \sec \Rightarrow k_h = 1.68 \cdot 10^{-8} \ m/s$ 





Prova n. 1 - z = 22.97 m da p.c.  $t_{50} = 23 \text{ sec } \rightarrow k_h = 1.99 \cdot 10^{-7} \text{ m/s}$ 




Prova n. 2 - z = 26.81 m da p.c.  $t_{50} = 14 \sec \Rightarrow k_h = 3.70 \cdot 10^{-7} \text{ m/s}$ 

Di seguito si riportano le tabelle e il grafico di confronto tra i valori del coefficiente di permeabilità orizzontale calcolato mediante le prove di dissipazione e quelli calcolate a partire dalle prove edometriche.

| Prova CPTU | Prova diss. | z (m) | kh (m/s) |
|------------|-------------|-------|----------|
| CPTU1      | 1           | 23.64 | 1.37E-07 |
| CFIUI      | 2           | 26.88 | 8.83E-08 |
|            | 1           | 12.42 | 1.03E-07 |
| CPTU2      | 2           | 16.31 |          |
| CF102      | 3           | 23.95 | 2.10E-07 |
|            | 4           | 29.56 | 1.68E-08 |
| CPTU3      | 1           | 22.97 | 1.99E-07 |
| CF 103     | 2           | 26.81 | 3.70E-07 |

| Sondaggio | Prova edom. | z (m) | kh(m/s)  |
|-----------|-------------|-------|----------|
| SG1       | SH1         | 7.55  | 2.43E-09 |
| 361       | SH2         | 23.35 | 1.29E-09 |
| SG2       | SH1         | 6.05  | 2.01E-09 |
| 302       | SH2         | 22.65 | 1.25E-09 |
| SG3       | SH1         | 5.5   | 2.66E-09 |

90403-000



90403-000

# 8 STACKING AREA (INDAGINI 2015)

# Sondaggi:

- S1;
- S2;
- S3.

# Prove penetrometriche statiche:

- CPTU1;
- CPTU2;
- CPTU3.

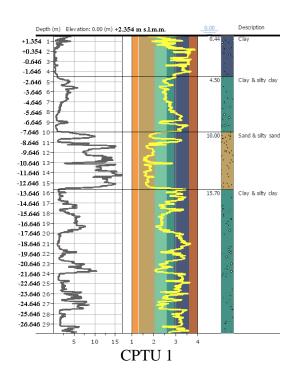
# Prove di laboratorio:

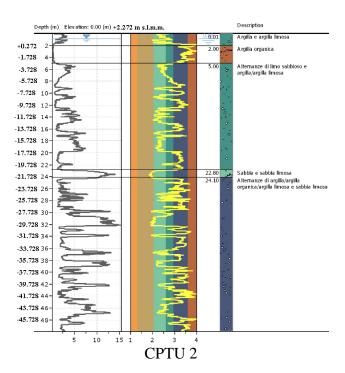
| Condoggio  | Campione - | Profon | dità (m) | Analisi        | Peso      | Peso di | Umidità  | Limiti di | Prova      | Triassiale | Triassiale |
|------------|------------|--------|----------|----------------|-----------|---------|----------|-----------|------------|------------|------------|
| Sondaggio  | Campione - | tetto  | letto    | granulometrica | specifico | volume  | naturale | Atterberg | edometrica | CU         | UU         |
|            | G1         | 1.00   | 1.20     | Х              |           |         |          |           |            |            |            |
| <b>S</b> 1 | SH1        | 6.00   | 6.70     | X              | X         | X       | x        | x         | X          | X          | x          |
|            | SH2        | 12.30  | 13.00    | X              | Х         | X       | X        | X         | х          | х          | х          |
|            | G1         | 6.00   | 7.00     | Х              |           |         |          |           |            |            |            |
| S2         | G2         | 32.00  | 33.00    | X              |           |         |          |           |            |            |            |
| 32         | SH1        | 3.00   | 3.70     | X              | x         | x       | х        | х         | X          | x          | X          |
|            | SH2        | 8.30   | 9.00     | X              | x         | X       | Х        | Х         | х          | X          | X          |
|            | G1         | 12.00  | 13.00    | Х              |           |         |          |           |            |            |            |
| <b>S</b> 3 | G2         | 18.00  | 19.00    | X              |           |         |          |           |            |            |            |
| 33         | SH1        | 4.50   | 5.20     | X              | x         | x       | х        | х         | X          | x          | X          |
|            | SH2        | 9.00   | 9.70     | X              | X         | X       | Х        | х         | х          | х          | X          |

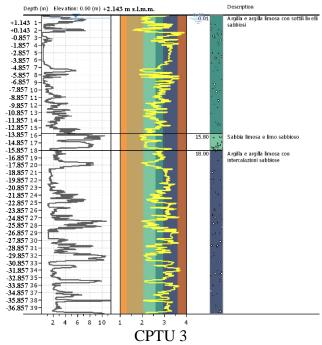
# 8.1 PROFILO STRATIGRAFICO

# Sondaggi

|            |             |            | S1 (p.c      | c. = +2.441  m s.l.m.m.                                                                                                 |
|------------|-------------|------------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.) | Descrizione                                                                                                             |
| da         | a           | a da a     |              | Descrizione                                                                                                             |
| 0          | 1.2         | 2.441      | 1.241        | Terreno di riporto costituito da sabbia ghiaia e ciottoli di colore da ocra a grigio scuro                              |
| 1.2        | 4.7         | 1.241      | -2.259       | Argilla limosa con rare intercalazioni sabbiose di colore grigio chiaro e presenza di fanghi bauxitici da 1,80 a 3,70 m |
| 4.7        | 9           | -2.259     | -6.559       | Argilla da debolmente limosa a limosa di colore grigio e ocra                                                           |
| 9          | 14.6        | -6.559     | -12.159      | Limo sabbioso debolmente argilloso di colore grigio                                                                     |
| 14.6       |             |            | -17.559      | Alternanza di sabbia limosa e limo sabbioso a tratti argilloso di colore grigio                                         |


|            |             |            | S2 (p.       | c. = +1.598  m s.l.m.m.                                                                                                      |
|------------|-------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.) | Descrizione                                                                                                                  |
| da         | a           | da         | a            | Descrizione                                                                                                                  |
| 0          | 1           | 1.598      | 0.598        | Terreno di riporto costituito da ghiaia e ciottoli arrotondati in matrice sabbioso-limosa di colore grigio                   |
| 1          | 5           | 0.598      | -3.402       | Argilla limosa con intercalazioni sabbiose di colore grigio marrone,<br>con livelli di torba nerastri e fanghi bauxitici     |
| 5          | 8.3         | -3.402     | -6.702       | Limo sabbioso con intercalazioni argillose di colore da grigio ad ocra                                                       |
| 8.3        | 11          | -6.702     | -9.402       | Argilla limosa di colore grigio chiaro                                                                                       |
| 11         | 20.4        | -9.402     | -18.802      | Sabbia limosa con intercalazioni di argilla limosa di colore grigio chiaro                                                   |
| 20.4       | 23          | -18.802    | -21.402      | Argilla limosa di colore grigio chiaro con livelli di torba marrone tra 21,95 - 22,00 m; 22,40 - 22,50 m                     |
| 23         | 35          | -21.402    | -33.402      | Sabbia limosa di colore grigio con intercalazioni di torba nerastra tra<br>26,00 - 26,50 m; 29,00 - 29,60 m; 34,60 - 35,00 m |


Progettazione: F&M Ingegneria Spa - G&T Srl - ing. Michele Granziero

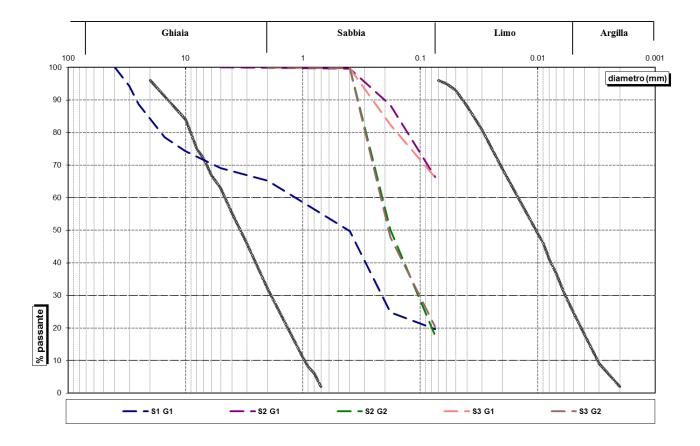

90403-000

|            |             |            | S3 (p.       | c. = +1.666  m s.l.m.m.                                                      |  |  |  |  |
|------------|-------------|------------|--------------|------------------------------------------------------------------------------|--|--|--|--|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.) | Descrizione                                                                  |  |  |  |  |
| da         | a           | da a       |              | Descrizione                                                                  |  |  |  |  |
| 0          | 2.7         | 1.666      | -1.034       | Terreno di riporto costituito da sabbia a ghiaia di colore<br>grigio/marrone |  |  |  |  |
| 2.7        | 4           | -1.034     | -2.334       | Fanghi bauxitici di colore rossastro                                         |  |  |  |  |
| 4          | 9.7         | -2.334     | -8.034       | Argilla da debolmente limosa a limosa di colore da grigio chiaro ad ocra     |  |  |  |  |
| 9.7        | 11.5        | -8.034     | -9.834       | Argilla limosa di colore grigio                                              |  |  |  |  |
| 11.5       | 20          | -9.834     | -18.334      | Sabbia limosa di colore grigio                                               |  |  |  |  |

# Prove CPTU

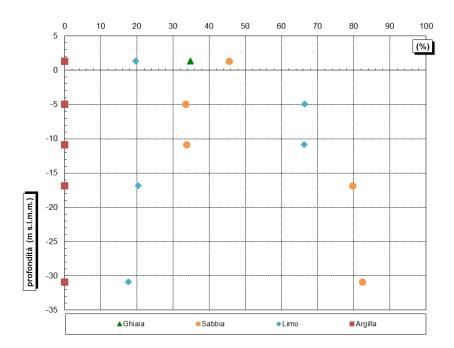






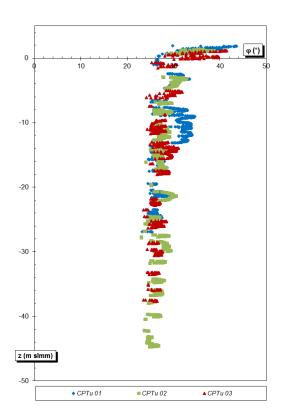

90403-000

# 8.2 CARATTERISTICHE TERRENI GRANULARI


# 8.2.1 Proprietà fisiche

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni rimaneggiati.

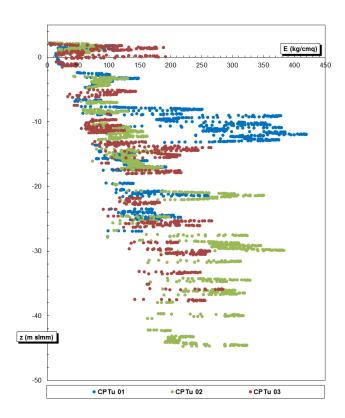



| Sondaggio  | Campione - |       | profondità (m) | )     | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   | profondità   |
|------------|------------|-------|----------------|-------|--------|--------|-------|---------|-------|-------|--------------|
| Soridaygio | Campione — | tetto | letto          | media | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   | (m s.l.m.m.) |
| S1         | G1         | 1.00  | 1.20           | 1.10  | 34.80  | 45.50  | 19.70 | 0.00    | 80.30 | 19.70 | 1.34         |
| S2         | G1         | 6.00  | 7.00           | 6.50  | 0.10   | 33.50  | 66.40 | 0.00    | 33.60 | 66.40 | -4.90        |
|            | G2         | 32.00 | 33.00          | 32.50 | 0.00   | 82.30  | 17.70 | 0.00    | 82.30 | 17.70 | -30.90       |
| S3         | G1         | 12.00 | 13.00          | 12.50 | 0.00   | 33.70  | 66.30 | 0.00    | 33.70 | 66.30 | -10.83       |
|            | G2         | 18.00 | 19.00          | 18.50 | 0.00   | 79.70  | 20.30 | 0.00    | 79.70 | 20.30 | -16.83       |

90403-000



#### 8.2.2 Proprietà meccaniche


Il grafico seguente riporta l'angolo d'attrito valutato a partire dalle prove penetrometriche statiche mediante la correlazione di Caquot.

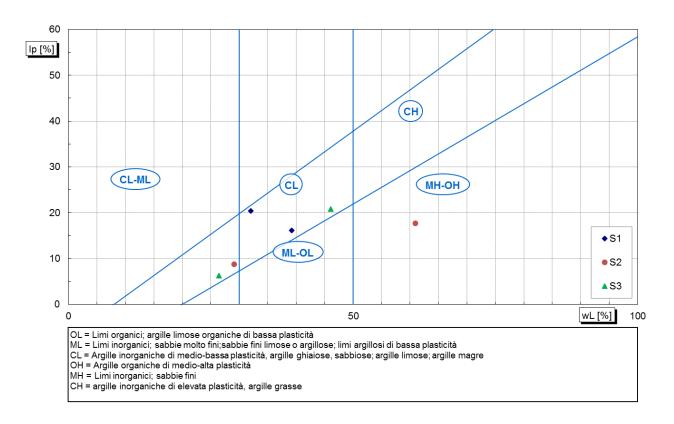


#### 8.2.3 Proprietà deformative

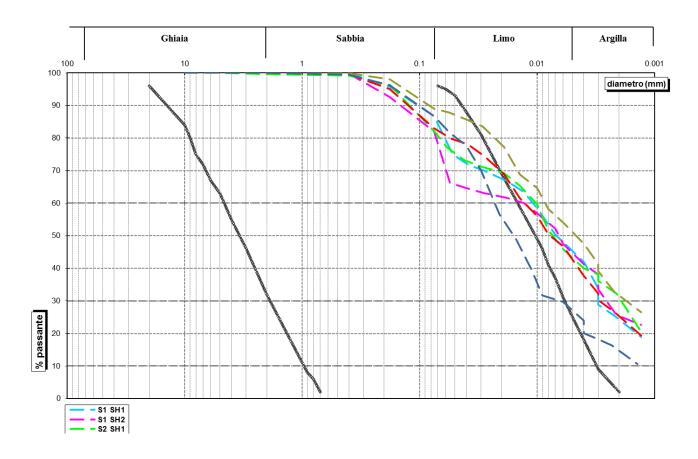
Il grafico seguente riporta il modulo elastico valutato a partire dalle prove penetrometriche statiche mediante la correlazione di Schmertmann.

90403-000



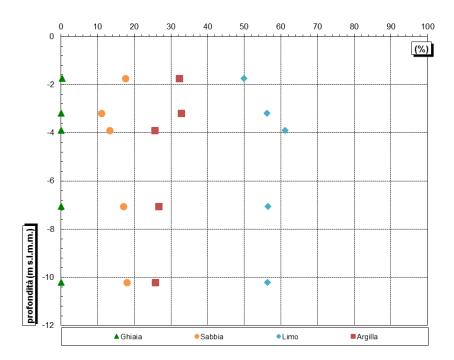

#### 8.3 CARATTERISTICHE TERRENI COESIVI

# 8.3.1 Proprietà fisiche


Dalle analisi di laboratorio eseguite su campioni indisturbati si ricavano le seguenti proprietà fisiche:

|           |            |       | profondità (m) |       | Gs    | γn      | γ <sub>d</sub> | γsat    | n    | е    | w     | wl    | wp    | l <sub>P</sub> | Ic   |
|-----------|------------|-------|----------------|-------|-------|---------|----------------|---------|------|------|-------|-------|-------|----------------|------|
| sondaggio | campione - | tetto | letto          | media | (/)   | (kN/m³) | (kN/m³)        | (kN/m³) |      |      | (%)   | (%)   | (%)   | (%)            |      |
|           |            |       |                |       |       |         |                |         |      |      |       |       |       |                |      |
|           | G1         | 1.00  | 1.20           | 1.10  |       |         |                |         |      |      |       |       |       |                |      |
| S1        | SH1        | 6.00  | 6.70           | 6.35  | 2.68  | 20.57   | 17.04          | 20.81   | 0.35 | 0.54 | 20.70 | 32.00 | 21.50 | 20.40          | 0.55 |
|           | SH2        | 12.30 | 13.00          | 12.65 | 2.683 | 18.57   | 14.55          | 19.67   | 0.45 | 0.81 | 27.60 | 39.20 | 23.10 | 16.10          | 0.72 |
|           | G1         | 6.00  | 7.00           | 6.50  |       |         |                |         |      |      |       |       |       |                |      |
| \$2       | G2         | 32.00 | 33.00          | 32.50 |       |         |                |         |      |      |       |       |       |                |      |
| 52        | SH1        | 3.00  | 3.70           | 3.35  | 2.642 | 14.94   | 10.66          | 17.96   | 0.59 | 1.43 | 40.20 | 60.90 | 43.20 | 17.70          | 1.17 |
|           | SH2        | 8.30  | 9.00           | 8.65  | 2.675 | 19.18   | 15.79          | 20.63   | 0.40 | 0.66 | 21.50 | 29.10 | 20.30 | 8.80           | 0.86 |
|           | G1         | 12.00 | 13.00          | 12.50 |       |         |                |         |      |      |       |       |       |                |      |
|           | G2         | 18.00 | 19.00          | 18.50 |       |         |                |         |      |      |       |       |       |                |      |
| S3        | SH1        | 4.50  | 5.20           | 4.85  | 2.65  | 15.57   | 10.88          | 17.70   | 0.58 | 1.39 | 43.10 | 46.10 | 25.30 | 20.80          | 0.14 |
|           | SH2        | 9.00  | 9.70           | 9.35  | 2.686 | 19.59   | 15.56          | 19.94   | 0.41 | 0.69 | 25.90 | 26.40 | 20.10 | 6.30           | 0.08 |

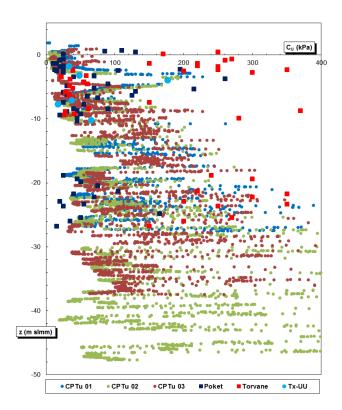
90403-000



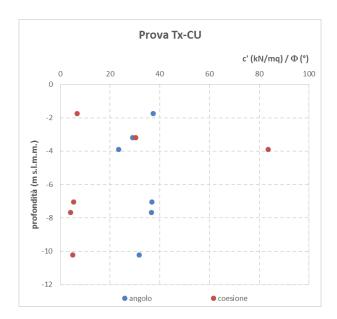

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni indisturbati.



90403-000


| Sondaggio  | Campione - |       | profondità (m |       | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   | profondità   |
|------------|------------|-------|---------------|-------|--------|--------|-------|---------|-------|-------|--------------|
| Soridaggio | Campione — | tetto | letto         | media | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   | (m s.l.m.m.) |
| S1         | SH1        | 6.00  | 6.70          | 6.35  | 0.00   | 13.30  | 61.20 | 25.50   | 13.30 | 86.70 | -3.91        |
|            | SH2        | 12.30 | 13.00         | 12.65 | 0.00   | 18.00  | 56.30 | 25.70   | 18.00 | 82.00 | -10.21       |
| S2         | SH1        | 3.00  | 3.70          | 3.35  | 0.30   | 17.60  | 49.90 | 32.20   | 17.90 | 82.10 | -1.75        |
|            | SH2        | 8.30  | 9.00          | 8.65  | 0.00   | 17.00  | 56.40 | 26.60   | 17.00 | 83.00 | -7.05        |
| S2         | SH1        | 4.50  | 5.20          | 4.85  | 0.00   | 11.00  | 56.20 | 32.80   | 11.00 | 89.00 | -3.18        |
|            | SH2        | 9.00  | 9.70          | 9.35  | 0.00   | 13.30  | 70.40 | 16.30   | 13.30 | 86.70 | -7.68        |



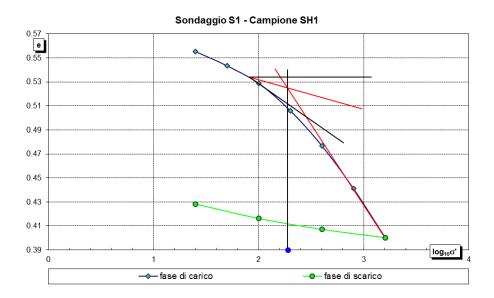

# 8.3.2 Proprietà meccaniche

Il grafico seguente riporta i valori di coesione non drenata ricavati dalle prove CPTU e confrontati con i risultati delle prove triassiali UU e di Pocket Penetrometer e Torvane:

90403-000

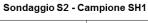


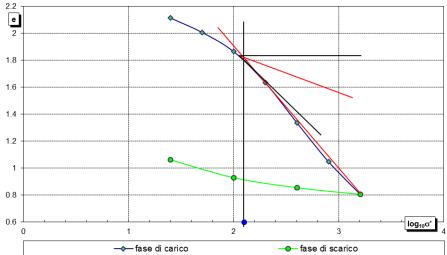
I parametri drenati c' e  $\varphi'$  per gli strati coesivi sono stati ricavati dalle prove triassiali CU.



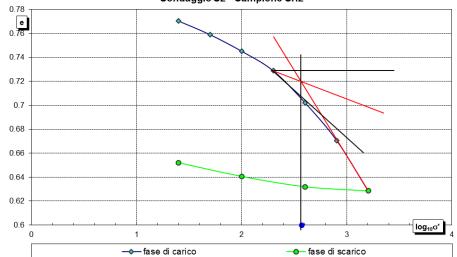

|           |          |        |                                 |       | profondità |       | C      | U        | profondità   |
|-----------|----------|--------|---------------------------------|-------|------------|-------|--------|----------|--------------|
| sondaggio | campione | sigla  | terreno                         | tetto | letto      | media | angolo | coesione | media        |
|           |          |        |                                 | (m)   | (m)        | (m)   | (°)    | (kN/mq)  | (m s.l.m.m.) |
|           |          |        |                                 |       |            |       |        |          |              |
| S1        | SH1      | S1-SH1 | argilla limosa                  | 6     | 6.7        | 6.35  | 23.5   | 83.6     | -3.909       |
| S1        | SH2      | S1-SH2 | argilla limosa (sabbiosa)       | 12.3  | 13         | 12.65 | 31.8   | 5        | -10.209      |
| S2        | SH1      | S2-SH1 | torba, argilla torbosa          | 3     | 3.7        | 3.35  | 37.3   | 6.8      | -1.752       |
| S2        | SH2      | S2-SH2 | argilla limosa                  | 8.3   | 9          | 8.65  | 36.8   | 5.4      | -7.052       |
| S3        | SH1      | S3-SH1 | argilla limosa torbosa          | 4.5   | 5.2        | 4.85  | 29.1   | 30.29    | -3.184       |
| S3        | SH2      | S3-SH2 | argilla limosa - limo argilloso | 9     | 9.7        | 9.35  | 36.7   | 4.2      | -7.684       |

90403-000

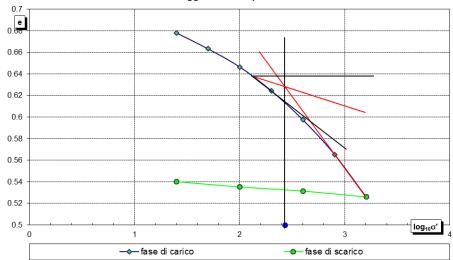

# 8.3.3 Proprietà deformative


Di seguito si riportano i risultati delle prove edometriche effettuate sui campioni indisturbati.

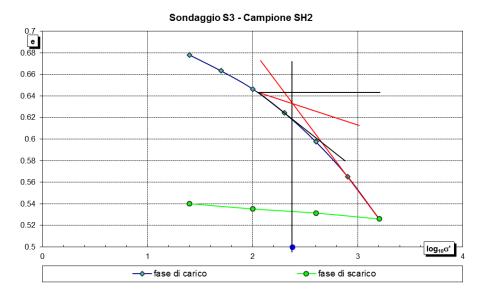





90403-000







#### Sondaggio S2 - Campione SH2



#### Sondaggio S3 - Campione SH1



90403-000



| Sondaggio  | Campione |             | Profondità media | ু Indice di ricompressione | Indice di compressione       | ndice di rigonfiamento | Tensione di<br>preconsolidazione | Tensione in sito | Grado di<br>sovraconsolidazione |
|------------|----------|-------------|------------------|----------------------------|------------------------------|------------------------|----------------------------------|------------------|---------------------------------|
|            |          |             |                  |                            | Сс                           |                        | σ'c                              | σ'ν              | OCR                             |
| n°         | n°       | [m]         | [m s.l.m.m.]     | [/]                        | [/]                          | [/]                    | [kPa]                            | [kPa]            | [/]                             |
|            |          |             |                  |                            |                              |                        |                                  |                  |                                 |
| S1         | SH1      | 6.35        | -3.909           | 0.040                      | 0.135                        | 0.020                  | 190.546                          | 67.120           | 2.839                           |
| S1         | SH2      | 12.65       | -10.209          | 0.103                      | 0.254                        | 0.076                  | 105.925                          | 108.411          | 0.977                           |
| S2         | SH1      | 3.35        | -1.752           | 0.355                      | 0.803                        | 0.221                  | 125.893                          | 16.549           | 7.607                           |
| S2         | SH2      | 8.65        | -7.052           | 0.038                      | 0.140                        | 0.019                  | 371.535                          | 79.407           | 4.679                           |
| S3         | SH1      | 9.35        | -7.684           | 0.049                      | 0.131                        | 0.008                  | 272.270                          | 89.667           | 3.036                           |
| S3         | SH2      | 9.35        | -7.684           | 0.049                      | 0.131                        | 0.008                  | 239.883                          | 89.667           | 2.675                           |
| Sondaggio  | Campione | 7,17 - 7,77 | riolondia media  |                            | Modulo edometrico            |                        | verticale                        |                  | remeabilità verticale           |
| 0          | 0        | [1          | [ ] 1            | E                          |                              | C                      |                                  |                  | k<br>- /- \                     |
| n°         | n°       | [m]         | [m s.l.m.m.]     | (kF<br>50 - 100            | <sup>2</sup> a)<br>100 - 200 | (cm<br>50 - 100        | 2/s)<br>100 - 200                | 50 - 100         | n/s)<br>100 - 200               |
| S1         | SH1      | 6.35        | -3.909           | 5435                       | 6993                         | 4.85E-03               | 4.98E-03                         | 8.93E-08         | 7.12E-08                        |
| S1         | SH2      | 12.65       | -10.209          | 2247                       | 3289                         | 1.19E-03               | 1.53E-03                         | 5.29E-08         | 4.65E-08                        |
| \$1<br>\$2 | SH1      | 3.35        | -10.209          | 1114                       | 1379                         | 1.45E-03               | 8.40E-04                         | 1.30E-07         | 6.09E-08                        |
| S2<br>S2   | SH2      | 8.65        | -1.752<br>-7.052 | 6494                       | 11050                        | 2.26E-01               | 5.34E-02                         | 3.48E-06         | 4.84E-07                        |

Per confronto si riportano i valori del modulo edometrico del grado di sovraconsolidazione e dell'indice di compressione calcolati a partire dalle prove CPTU:

8097

5.94E-03

5.94E-03

6.49E-03

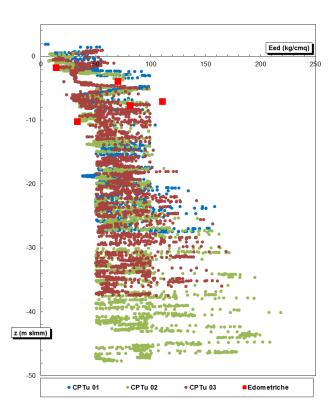
6.49E-03

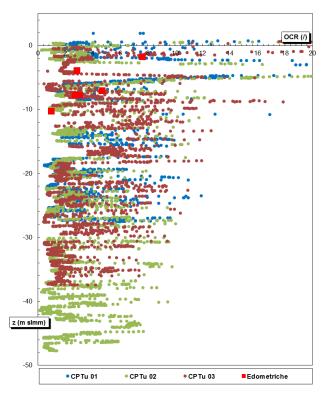
1.11E-07

8.01E-08

8.01E-08

5348


S3

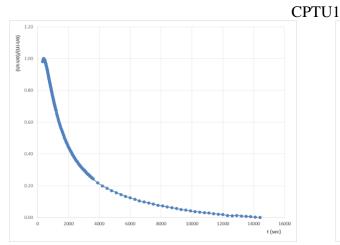

SH1

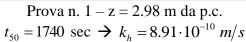
9.35

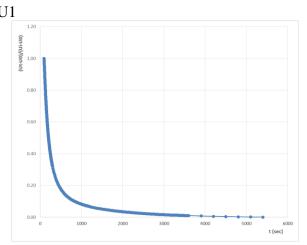
-7.684

90403-000



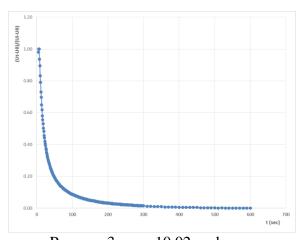




90403-000

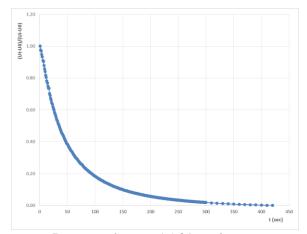



#### 8.4 PROVE DI DISSIPAZIONE

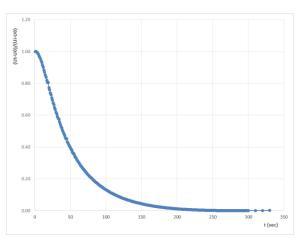
Di seguito si riportano i risultati delle prove di dissipazione e il coefficiente di permeabilità orizzontale calcolato.





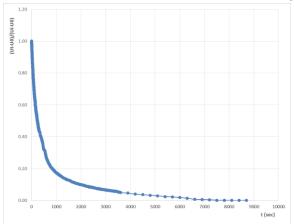




Prova n. 2 - z = 7.50 m da p.c.  $t_{50} = 202 \sec \Rightarrow k_h = 1.31 \cdot 10^{-6} \text{ m/s}$ 

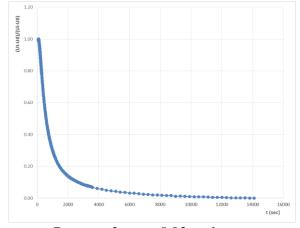

90403-000



Prova n. 3 - z = 10.02 m da p.c.  $t_{50} = 19 \sec \Rightarrow k_h = 2.52 \cdot 10^{-7} \text{ m/s}$ 

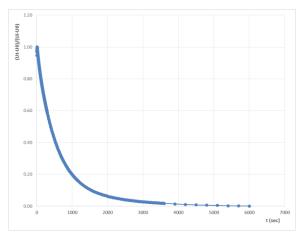



Prova n. 4 - z = 15.29 m da p.c.  $t_{50} = 35 \text{ sec } \rightarrow k_h = 1.18 \cdot 10^{-7} \text{ m/s}$ 



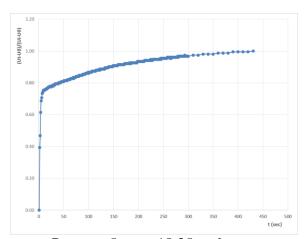

Prova n. 5 - z = 27.62 m da p.c.  $t_{50} = 40 \sec \Rightarrow k_h = 9.95 \cdot 10^{-8} \ m/s$ 

# CPTU2



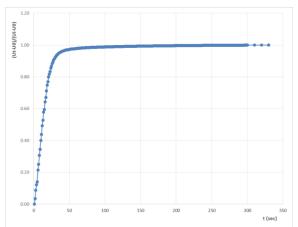

Prova n. 1 – z = 3.04 m da p.c.  $t_{50} = 230 \text{ sec } \rightarrow k_h = 1.12 \cdot 10^{-8} \text{ m/s}$ 




Prova n. 2 - z = 5.03 m da p.c.  $t_{50} = 580 \sec \Rightarrow k_h = 3.52 \cdot 10^{-9} \text{ m/s}$ 

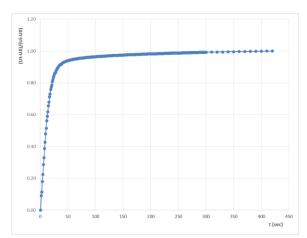
90403-000




Prova n. 3 - z = 8.50 m da p.c.

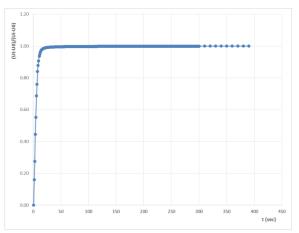
$$t_{50} = 400 \text{ sec } \rightarrow k_h = 5.60 \cdot 10^{-9} \text{ m/s}$$




Prova n. 5 - z = 18.35 m da p.c. Non è stato possibile calcolare  $k_h$  in quanto non

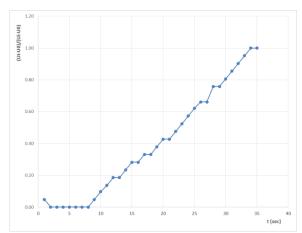
vi è stata dissipazione delle pressioni neutre.




Prova n. 7 - z = 29.79 m da p.c.

Non è stato possibile calcolare  $k_h$  in quanto non vi è stata dissipazione delle pressioni neutre.



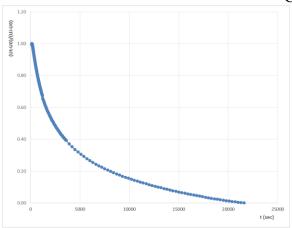

Prova n. 4 - z = 14.34 m da p.c.

Non è stato possibile calcolare  $k_h$  in quanto non vi è stata dissipazione delle pressioni neutre.

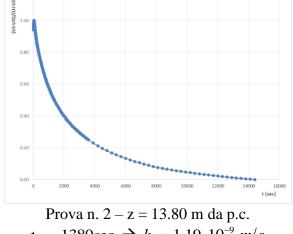


Prova n. 6 - z = 22.98 m da p.c.

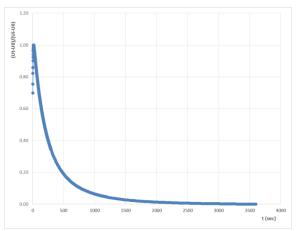
Non è stato possibile calcolare  $k_h$  in quanto non vi è stata dissipazione delle pressioni neutre.



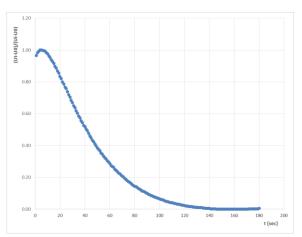

Prova n. 8 - z = 32.04 m da p.c.


Non è stato possibile calcolare  $k_h$  in quanto non vi è stata dissipazione delle pressioni neutre.

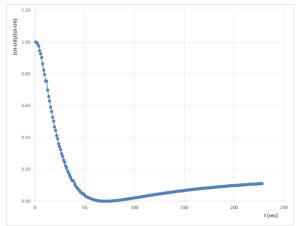
90403-000







Prova n. 1 - z = 4.50 m da p.c.  $t_{50} = 2310 \sec \rightarrow k_h = 6.25 \cdot 10^{-10} \text{ m/s}$ 



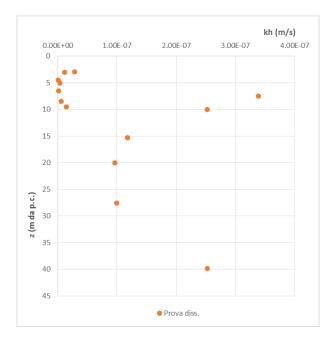

 $t_{50} = 1380 \text{sec} \implies k_h = 1.19 \cdot 10^{-9} \text{ m/s}$ 



Prova n. 3 - z = 9.50 m da p.c.  $t_{50} = 186 \sec \rightarrow k_h = 1.46 \cdot 10^{-8} \text{ m/s}$ 



Prova n. 4 - z = 19.99 m da p.c.  $t_{50} = 41 \text{ sec } \rightarrow k_h = 9.65 \cdot 10^{-8} \text{ m/s}$ 




Prova n. 5 - z = 39.84 m da p.c.  $t_{50} = 19 \sec \rightarrow k_h = 2.52 \cdot 10^{-7} \text{ m/s}$ 

90403-000

Di seguito si riportano la tabelle e il grafico riassuntivi dei valori del coefficiente di permeabilità orizzontale calcolati mediante le prove di dissipazione.

| Prova CPTU | Prova diss. | z (m) | kh (m/s) |
|------------|-------------|-------|----------|
|            | 1           | 2.98  | 2.84E-08 |
|            | 2           | 7.5   | 3.39E-07 |
| CPTU1      | 3           | 10.02 | 2.52E-07 |
|            | 4           | 15.29 | 1.18E-07 |
|            | 5           | 27.62 | 9.95E-08 |
|            | 1           | 3.04  | 1.12E-08 |
|            | 2           | 5.03  | 3.52E-09 |
|            | 3           | 8.5   | 5.60E-09 |
| CPTU2      | 4           | 14.34 |          |
| CF102      | 5           | 18.35 |          |
|            | 6           | 22.98 |          |
|            | 7           | 29.79 |          |
|            | 8           | 32.04 |          |
|            | 1           | 4.5   | 6.25E-10 |
|            | 2           | 6.5   | 1.19E-09 |
| CPTU3      | 3           | 9.5   | 1.46E-08 |
|            | 4           | 19.99 | 9.65E-08 |
|            | 5           | 39.84 | 2.52E-07 |



90403-000

# 9 QUAY AREA (INDAGINI 2017)

# Sondaggi:

- SP1;
- SP2.

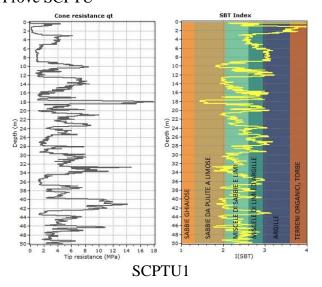
# Prove penetrometriche statiche:

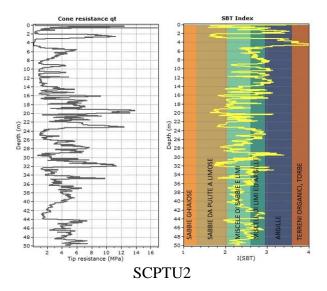
- SCPTU1;
- SCPTU2.

# Prove di laboratorio:

| Sondaggio  | Campione | Р     | rofondità (r | n)    | Analisi        | Peso      | Peso di | Umidità  | Limiti di | Contenuto |            | Prova ELL | Triassiale |    |
|------------|----------|-------|--------------|-------|----------------|-----------|---------|----------|-----------|-----------|------------|-----------|------------|----|
| Solidaggio | Campione | tetto | letto        | media | granulometrica | specifico | volume  | naturale | Atterberg | S.O.      | Edometrica | FIOVA ELL | CU         | UU |
|            | S1       | 3.00  | 3.50         | 3.25  | x              | х         | х       | х        | Х         | х         | х          | x         | х          | x  |
|            | S2       | 7.30  | 7.80         | 7.55  | x              | х         | х       | х        | х         |           | x          |           | х          | x  |
| SP1        | S3       | 20.00 | 20.70        | 20.35 | x              | x         | x       | x        | x         |           |            |           | x          | x  |
| 371        | C1       | 0.50  | 1.40         | 0.95  | x              |           |         |          |           |           |            |           |            |    |
|            | C2       | 12.00 | 13.00        | 12.50 | x              |           |         |          |           |           |            |           |            |    |
|            | C3       | 23.50 | 24.50        | 24.00 | x              |           |         |          |           |           |            |           |            |    |
|            | S1       | 4.50  | 5.10         | 4.80  | х              | Х         | Х       | Х        | Х         | x         | x          | x         | Х          | х  |
|            | S2       | 9.00  | 9.60         | 9.30  | x              | х         | х       | х        | х         |           | x          |           | х          | x  |
| SP2        | S3       | 29.00 | 29.60        | 29.30 | x              | х         | х       | х        | х         |           |            |           |            |    |
| SP2        | C1       | 1.00  | 2.00         | 1.50  | x              |           |         |          |           |           |            |           |            |    |
|            | C2       | 16.00 | 17.00        | 16.50 | x              |           |         |          |           |           |            |           |            |    |
|            | C3       | 25.00 | 26.00        | 25.50 | x              |           |         |          |           |           |            |           |            |    |

# 9.1 PROFILO STRATIGRAFICO


# Sondaggi

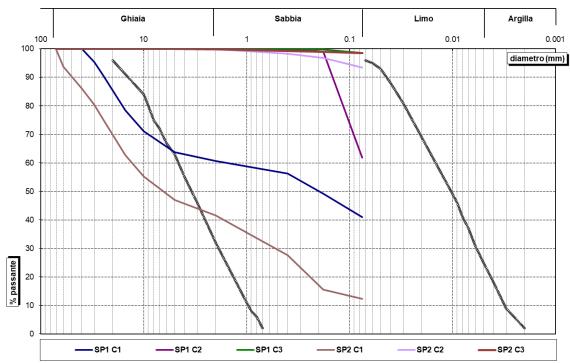

|            |             |            | SP1 (p.c. = + | 2.280 m sl.m.m.)                                                |  |
|------------|-------------|------------|---------------|-----------------------------------------------------------------|--|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.)  | Descrizione                                                     |  |
| da         | а           | da         | а             | Descrizione                                                     |  |
| 0          | 0.2         | 2.280      | 2.080         | Soletta di cemento                                              |  |
| 0.2        | 1           | 2.080      | 1.280         | Ghiaia in matice sabbiosa di colore marrone - materiale di ripo |  |
| 1          | 1.4         | 1.280      | 0.880         | Sabbia limosa con presenza di clasti - materiale di riporto     |  |
| 1.4        | 7.9         | 0.880      | -5.621        | Limo argilloso grigio                                           |  |
| 7.9        | 11.7        | -5.621     | -9.421        | Argilla debolmente limosa di colore grigio                      |  |
| 11.7       | 40          | -9.421     | -37.721       | Limo argilloso debolmente sabbioso alternato a limo sabbioso.   |  |
| 40         | 45          | -37.721    | -42.721       | Sabbia di colore grigio                                         |  |
| 45         | 47.3        | -42.721    | -45.021       | Sabbia debolmente limosa di colore grigio                       |  |
| 47.3       | 50          | -45.021    | -47.721       | Sabbia di colore grigio                                         |  |

90403-000

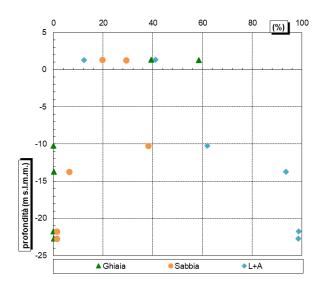
|            |             |            | SP2 (p.c. = + | 2.782 m sl.m.m.)                                                           |
|------------|-------------|------------|---------------|----------------------------------------------------------------------------|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.)  | Descrizione                                                                |
| da         | а           | da         | а             | Descrizione                                                                |
| 0          | 0.2         | 2.782      | 2.582         | Soletta di cemento                                                         |
| 0.2        | 2           | 2.582      | 0.782         | Ghiaia e ciottoli in matrice sabbiosa di colore marrone, diametro          |
| 0.2        | 2           | 2.562      | 0.762         | massimo riscontrato 50 mm - materiale di riporto                           |
| 2          | 4           | 0.782      | -1.219        | Sabbia di colore grigio con presenza di sporadici clasti, diametro         |
| 2          | 4           | 0.762      | -1.219        | massimo riscontrato 20 mm                                                  |
| 4          | 6.1         | -1.219     | -3.319        | Argilla debolmente limosa di colore grigio chiaro-nerastro,                |
| 4          | 6.1         | -1.219     | -5.519        | presenza tra -6,00 e -6,10 m di un'intervallo torboso                      |
| 6.1        | 10          | -3.319     | -7.219        | Argilla limosa debolmente sabbiosa di color ocra-grigio                    |
| 10         | 12.8        | -7.219     | -10.019       | Sabbia limosa e sabbia debolmente limosa di colore grigio con              |
| 10         | 12.0        | -7.219     | -10.019       | venature color ocra                                                        |
| 12.8       | 13.5        | -10.019    | -10.719       | Argilla grigia                                                             |
|            |             |            |               | Sabbia limosa e sabbia debolmente limosa di colore grigio con              |
| 13.5       | 28.7        | -10.719    | -25.919       | venature color ocra, presenza di intervalli torbosi tra -25,30 e -         |
|            |             |            |               | 25,50 e tra -27,80 e -28,20 m da p.c.                                      |
| 28.7       | 30.5        | -25.919    | -27.719       | Limo argilloso con torba                                                   |
|            |             |            |               | Sabbia limosa debolmente argillosa di colore grigio, presenza di           |
| 30.5       | 40          | -27.719    | -37.219       | intervalli torbosi tra -31,50 e -32,10, tra -33,90 e -34,20, tra -39,4 e - |
|            |             |            |               | 39,7, tra -41,5 e -42,0 da p.c.                                            |

# Prove SCPTU



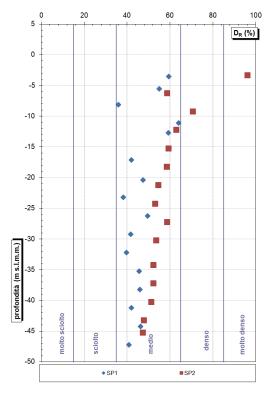



90403-000


# 9.2 CARATTERISTICHE DEI TERRENI GRANULARI

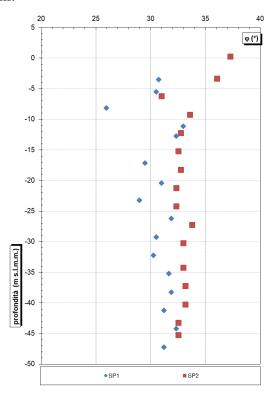
# 9.2.1 Proprietà fisiche

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni rimaneggiati.




| Candanaia | 0        | profondità media | Ghiaia | Sabbia | L+A   |
|-----------|----------|------------------|--------|--------|-------|
| Sondaggio | Campione | (m s.l.m.m.)     | (%)    | (%)    | (%)   |
| SP1       | C1       | 1.33             | 39.40  | 19.60  | 41.00 |
| SP1       | C2       | -10.22           | 0.00   | 38.10  | 61.90 |
| SP1       | C3       | -21.72           | 0.00   | 1.40   | 98.60 |
| SP2       | C1       | 1.28             | 58.40  | 29.30  | 12.30 |
| SP2       | C2       | -13.72           | 0.10   | 6.40   | 93.50 |
| SP2       | C3       | -22.72           | 0.10   | 1.40   | 98.50 |

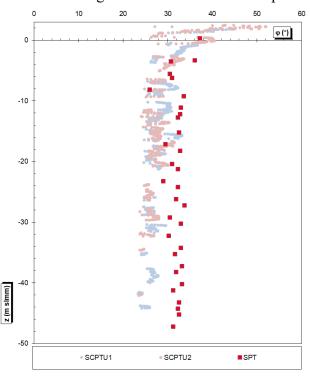



90403-000

Il grafico seguente riporta la densità relativa valutata a partire dalle prove SPT mediante la correlazione di Skempton.

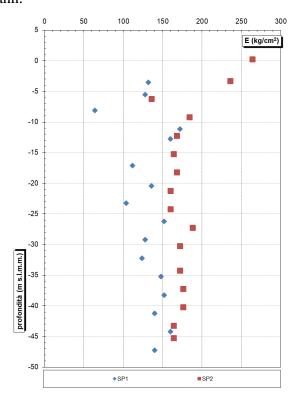


# 9.2.2 Proprietà meccaniche


Il grafico seguente riporta l'angolo d'attrito valutato a partire dalle prove SPT mediante la correlazione di Shioi e Fukuni.

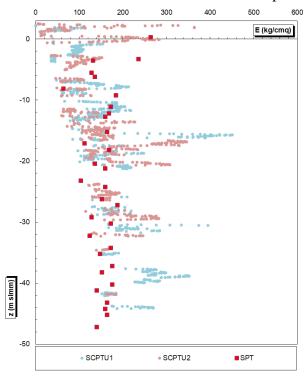


Progettazione: F&M Ingegneria Spa - G&T Srl - ing. Michele Granziero


90403-000

Per confronto si riportano i valori dell'angolo d'attrito ricavati dalle prove CPTU:




# 9.2.3 Proprietà deformative

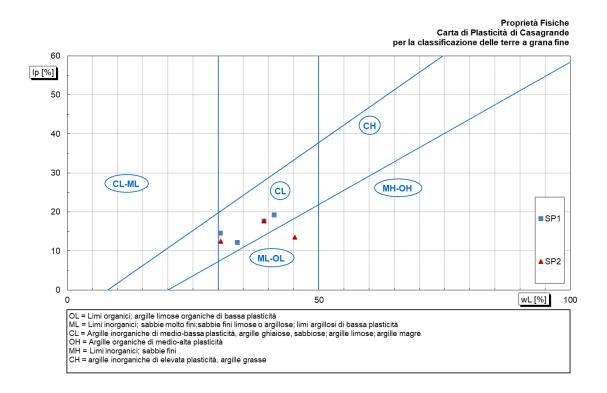
Il grafico seguente riporta il modulo elastico valutato a partire dalle prove SPT mediante la correlazione di Schmertmann.



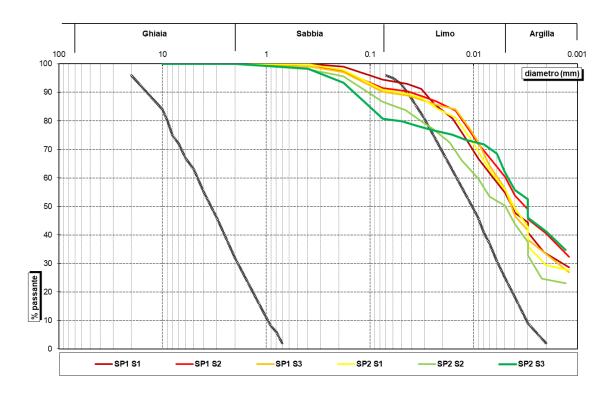
90403-000

Per confronto si riportano i valori del modulo elastico ricavati dalle prove CPTU:



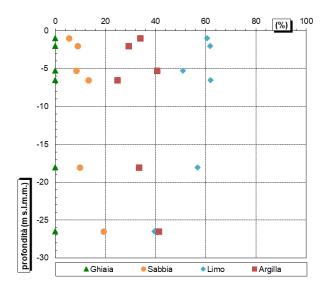

# 9.3 CARATTERISTICHE DEI TERRENI COESIVI

# 9.3.1 Proprietà fisiche


Dalle analisi di laboratorio eseguite su campioni indisturbati si ricavano le seguenti proprietà fisiche:

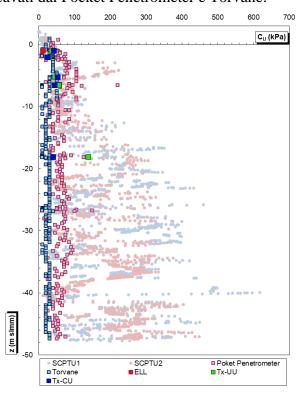
|           |            |             | Profondità  |             |                     | Peso specifico | D.         | eso di volun | ••           | Porocità / Inc | dice dei vuoti | Umidità naturale |                | Limiti di | Attorbora      |                |
|-----------|------------|-------------|-------------|-------------|---------------------|----------------|------------|--------------|--------------|----------------|----------------|------------------|----------------|-----------|----------------|----------------|
| 0         | 0          |             |             |             | Profondità<br>media |                |            |              |              |                |                |                  |                |           |                |                |
| Sondaggio |            | tetto       | letto       | media       |                     | Gs             | <b>Y</b> n | <b>Y</b> d 3 | <b>Y</b> sat | n              | е              | w                | W <sub>L</sub> | Wp        | l <sub>P</sub> | I <sub>C</sub> |
|           |            | (m da p.c.) | (m da p.c.) | (m da p.c.) | (m s.l.m.m.)        | (/)            | (kN/m³)    | (kN/m³)      | (kN/m³)      | (/)            | (/)            | (%)              | (%)            | (%)       | (%)            | (/)            |
|           | S1         | 3.00        | 3.50        | 3.25        | -0.97               | 2.642          | 20.14      | 15.96        | 25.92        | 0.38           | 0.62           | 26.20            | 33.80          | 21.60     | 12.20          | 0.62           |
|           | S2         | 7.30        | 7.80        | 7.55        | -5.27               | 2.665          | 20.07      | 16.15        | 26.14        | 0.38           | 0.62           | 24.30            | 30.40          | 15.80     | 14.60          | 0.42           |
| SP1       | <b>S</b> 3 | 20.00       | 20.70       | 20.35       | -18.07              | 2.693          | 18.49      | 14.11        | 26.42        | 0.47           | 0.87           | 31.00            | 41.10          | 21.90     | 19.20          | 0.53           |
| 351       | C1         | 0.50        | 1.40        | 0.95        | 1.33                | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |
|           | C2         | 12.00       | 13.00       | 12.50       | -10.22              | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |
|           | C3         | 23.50       | 24.50       | 24.00       | -21.72              | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |
|           | S1         | 4.50        | 5.10        | 4.80        | -2.02               | 2.679          | 19.10      | 14.34        | 26.28        | 0.45           | 0.83           | 33.20            | 39.10          | 21.50     | 17.70          | 0.33           |
|           | S2         | 9.00        | 9.60        | 9.30        | -6.52               | 26.810         | 20.27      | 16.53        | 263.01       | 0.94           | 14.91          | 22.60            | 30.50          | 18.00     | 12.50          | 0.63           |
| SP2       | <b>S</b> 3 | 29.00       | 29.60       | 29.30       | -26.52              | 2.702          | 16.01      | 12.06        | 26.51        | 0.55           | 1.20           | 32.80            | 45.20          | 31.70     | 13.50          | 0.92           |
| 3F2       | C1         | 1.00        | 2.00        | 1.50        | 1.28                | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |
|           | C2         | 16.00       | 17.00       | 16.50       | -13.72              | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |
|           | C3         | 25.00       | 26.00       | 25.50       | -22.72              | -              | -          | -            | -            | -              | -              | -                | -              | -         | -              | -              |

90403-000



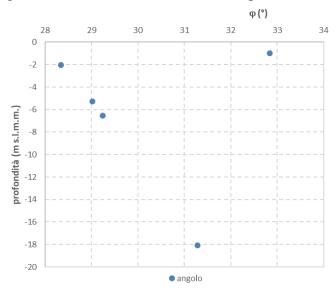

I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia, limo e argilla ricavate per i campioni indisturbati.




90403-000

| Sondaggio  | Campione | profondità media | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   |
|------------|----------|------------------|--------|--------|-------|---------|-------|-------|
| Soridaggio | Campione | (m s.l.m.m.)     | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   |
| SP1        | S1       | -0.97            | 0.00   | 5.50   | 60.60 | 33.90   | 5.50  | 94.50 |
| SP1        | S2       | -5.27            | 0.00   | 8.40   | 51.00 | 40.60   | 8.40  | 91.60 |
| SP1        | S3       | -18.07           | 0.00   | 9.80   | 56.80 | 33.40   | 9.80  | 90.20 |
| SP2        | S1       | -2.02            | 0.00   | 9.00   | 61.70 | 29.30   | 9.00  | 91.00 |
| SP2        | S2       | -6.52            | 0.00   | 13.30  | 62.00 | 24.70   | 13.30 | 86.70 |
| SP2        | S3       | -26.52           | 0.00   | 19.20  | 39.60 | 41.20   | 19.20 | 80.80 |

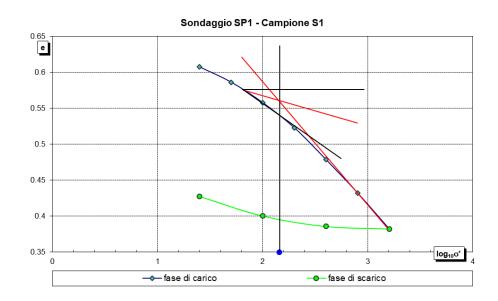



# 9.3.2 Proprietà meccaniche

Il grafico seguente riporta i valori di coesione non drenata ricavati dalle prove CPTU e confrontati con i risultati delle prove di compressione ad espansione laterale libera (ELL) e delle prove triassiali CU e UU e con i valori ricavati dai Pocket Penetrometer e Torvane:

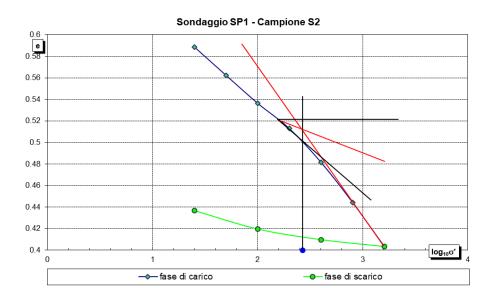


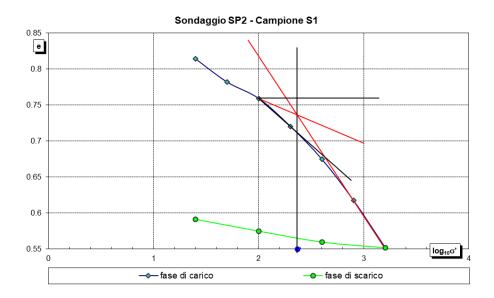
90403-000

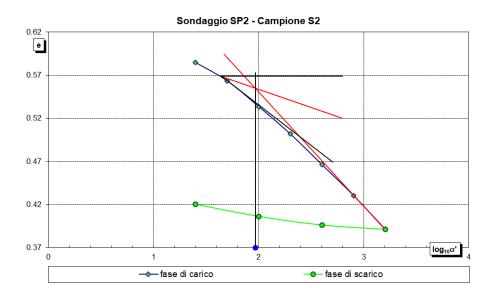

L'angolo d'attrito  $\varphi'$  per gli strati coesivi è stato ricavato dalle prove triassiali CU.



|           |            |             | Profondità  |             |                                  |                                     |                                                                                                                                      | Prova tria | ssiale CU | Prova triassiale UU | Prova ELL |
|-----------|------------|-------------|-------------|-------------|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------------|-----------|
| Sondaggio | Campione   | tetto       | letto       | media       | Profondità media<br>(m s.l.m.m.) | <b>Descrizione</b> misura dal basso |                                                                                                                                      | φ          | Cu        | Cu                  | Cu        |
|           |            | (m da p.c.) | (m da p.c.) | (m da p.c.) |                                  |                                     |                                                                                                                                      | (°)        | (kPa)     | (kPa)               | (kPa)     |
|           | <b>S</b> 1 | 3.00        | 3.50        | 3.25        | -0.97                            | Indisturbato                        | (0 - 9 cm) Torba<br>(9 - 57 cm) Argilla limosa                                                                                       | 32.84      | 41.53     | 35.50               | 11.45     |
| SP1       | S2         | 7.30        | 7.80        | 7.55        | -5.27                            | Indisturbato                        | (0 - 39 cm) Argilla limosa                                                                                                           | 29.02      | 52.17     | 45.50               | -         |
|           | <b>S</b> 3 | 20.00       | 20.70       | 20.35       | -18.07                           | Indisturbato                        | (0 - 20 cm) Limo argilloso<br>(20 - 61 cm) Limo sabbioso debolmente argilloso                                                        | 31.28      | 39.98     | 138.40              | -         |
|           | <b>S</b> 1 | 4.50        | 5.10        | 4.80        | -2.02                            | Indisturbato                        | (0 - 18 cm) Argilla limosa con elementi frantumati<br>(18 - 48 cm) Argilla limosa<br>(48 - 57 cm) Sabbia imosa con matrice argillosa | 28.34      | 25.11     | 27.73               | 28.65     |
| SP2       | S2         | 9.00        | 9.60        | 9.30        | -6.52                            | Indisturbato                        | (0 - 40 cm) Limo sabbbioso<br>(40 - 54 cm) Argilla limosa                                                                            | 29.24      | 44.56     | 55.65               | -         |
|           | <b>S</b> 3 | 29.00       | 29.60       | 29.30       | -26.52                           | Indisturbato                        | (0 - 20 cm) Limo argilloso debolmente sabbioso<br>(20 - 32 cm) Torba<br>(32 - 52 cm) Argilla limosa                                  | -          | -         | -                   | -         |


# 9.3.3 Proprietà deformative

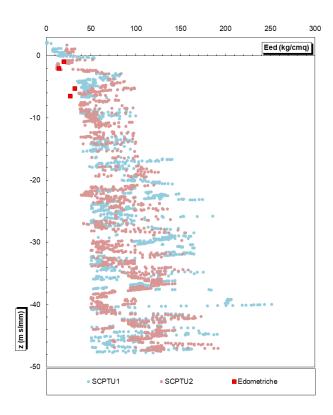

Di seguito si riportano i risultati delle prove edometriche effettuate sui campioni indisturbati.



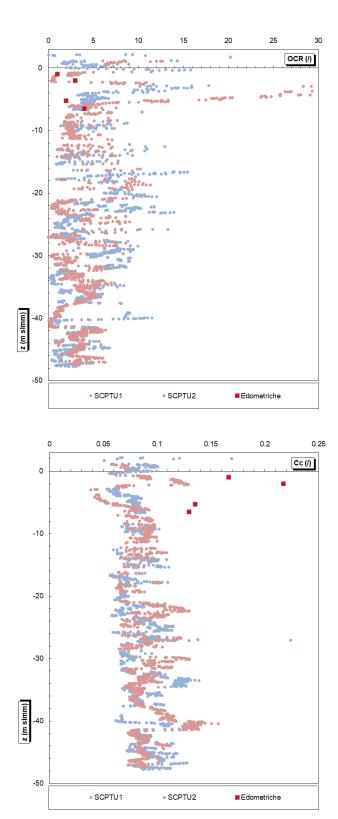

Progettazione: F&M Ingegneria Spa - G&T Srl - ing. Michele Granziero

90403-000









90403-000

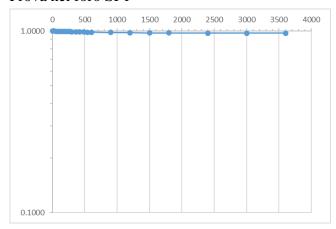
| Sondaggio | Campione   | Profondità media |                       | Indice di ricompressione  | Indice di compressione         | Indice di rigonfiamento       | Tensione di<br>preconsolidazione | Tensione in sito            | Grado di<br>sovraconsolidazione |
|-----------|------------|------------------|-----------------------|---------------------------|--------------------------------|-------------------------------|----------------------------------|-----------------------------|---------------------------------|
| n°        | n°         | [m]              | [m s.l.m.m.]          | Cr<br>[/]                 | Cc<br>[/]                      | Cs<br>[/]                     | σ'c<br>[kPa]                     | σ'v<br>[kPa]                | OCR<br>[/]                      |
|           | 1          |                  |                       |                           |                                |                               |                                  |                             |                                 |
| SP1       | S1         | 3.25             | -0.97                 | 0.070                     | 0.166                          | 0.045                         | 144.544                          | 32.955                      | 4.386                           |
| 521       | S2         | 7.55             | -5.27                 | 0.088                     | 0.136                          | 0.029                         | 269.153                          | 76.029                      | 3.540                           |
| SP2       | S1         | 4.80 -2.02       |                       | 0.107                     | 0.217                          | 0.027                         | 234.423                          | 43.680                      | 5.367                           |
| 31 2      | S2         | 9.30             | -6.52                 | 0.070                     | 0.130                          | 0.023                         | 93.325                           | 95.511                      | 0.977                           |
|           |            |                  |                       | Modulo edometrico         |                                |                               | <u>v</u>                         |                             |                                 |
| Sondaggio | Campione   | Profondità media |                       |                           |                                | Coefficiente di               | consolidazione primar            |                             | Permeabilità verticale          |
| Sondaggio | campione د | [a]              | [m s.l.m.m.]          | Ee (KE                    | ed                             |                               | :V                               |                             | S y Permeabilità verticale (S)  |
|           |            |                  |                       | E                         | ed                             | C                             | :V                               |                             | k                               |
| n°        |            |                  |                       | Ee<br>(kF                 | ed<br>Pa)                      | c<br>(cm                      | v<br>2/s)                        | (cı                         | k<br>m/s)                       |
|           | n°         | [m]              | [m s.l.m.m.]          | Ee<br>(kF<br>50 - 100     | ed<br>Pa)<br>100 - 200         | c<br>(cm<br>50 - 100          | 2/s)<br>100 - 200                | (c)<br>50 - 100             | k<br>m/s)<br>100 - 200          |
| n°        | n°<br>S1   | [m]<br>3.25      | [m s.l.m.m.]<br>-0.97 | E (kF<br>50 - 100<br>2924 | ed<br>Pa)<br>100 - 200<br>4773 | 0 (cm<br>50 - 100<br>5.94E-04 | 2/s)<br>100 - 200<br>1.71E-03    | (cr<br>50 - 100<br>2.03E-08 | m/s)<br>100 - 200<br>3.58E-08   |

Per confronto si riportano i valori del modulo edometrico del grado di sovraconsolidazione e dell'indice di compressione calcolati a partire dalle prove CPTU:



90403-000

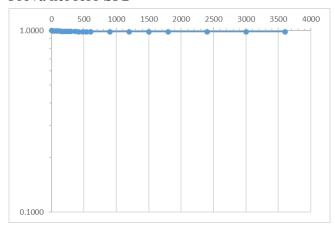



# 9.4 PERMEABILITÀ ORIZZONTALE

## 9.4.1 Da prove Lefranc

Di seguito si riportano i risultati delle prove Lefranc e il coefficiente di permeabilità orizzontale calcolato.

90403-000

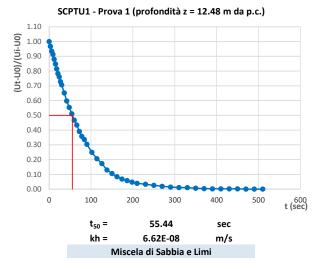

#### Prova nel foro SP1

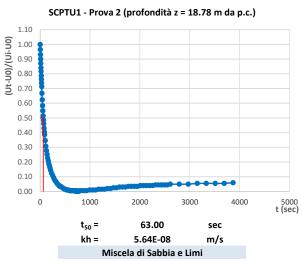


| zt | = | 8.2     | m     | Profondità del rivestimento  |
|----|---|---------|-------|------------------------------|
| zb | = | 8.8     | m     | Profondità del foro          |
| D  | = | 0.101   | m     | Diametro del tratto di prova |
| L  | = | 0.6     | m     | Spessore del tratto di prova |
| Ab | = | 0.00801 | $m^2$ | Area di base                 |
| С  | = | 1.961   | -     | Coefficiente di forma        |
| T  | = | 638459  | sec   | Tempo di riequilibrio        |
|    |   |         |       |                              |

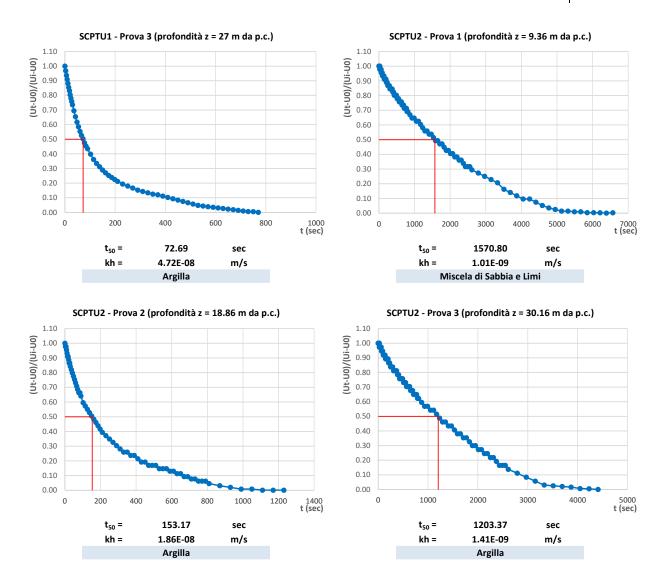
 $k_h = 6.40E-09 \text{ m/s}$ 

#### Prova nel foro SP2





| zt | = | 4.1     | m     | Profondità del rivestimento  |
|----|---|---------|-------|------------------------------|
| zb | = | 4.63    | m     | Profondità del foro          |
| D  | = | 0.101   | m     | Diametro del tratto di prova |
| L  | = | 0.53    | m     | Spessore del tratto di prova |
| Ab | = | 0.00801 | $m^2$ | Area di base                 |
| С  | = | 1.810   | -     | Coefficiente di forma        |
| Т  | = | 5438759 | sec   | Tempo di riequilibrio        |
|    |   |         |       |                              |

 $k_h = 8.14E-10 \text{ m/s}$ 


#### 9.4.2 Da prove di dissipazione

Di seguito si riportano i risultati delle prove di dissipazione e il coefficiente di permeabilità orizzontale calcolato.





90403-000

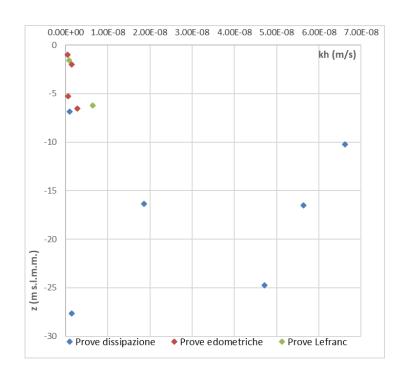


#### 9.4.3 Riepilogo

Di seguito si riportano la tabella e il grafico di confronto tra i valori del coefficiente di permeabilità orizzontale calcolato mediante le prove Lefranc a carico variabile, di dissipazione ed edometriche.

Prove Lefranc a carico variabile

| Condoggio | Profond     | lità prova   | k <sub>T</sub> |
|-----------|-------------|--------------|----------------|
| Sondaggio | (m da p.c.) | (m s.l.m.m.) | (m/s)          |
| SP1       | 8.5         | -6.2205      | 6.40E-09       |
| SP2       | 4.365       | -1.5835      | 8.14E-10       |


90403-000

## Prove di dissipazione

| Prova    | Prof                     | ondità | Terreno                  | k <sub>h</sub> |
|----------|--------------------------|--------|--------------------------|----------------|
| FIOVA    | (m da p.c.) (m s.l.m.m.) |        | Terreno                  | (m/s)          |
| SCPTU1-1 | 12.48                    | -10.23 | Miscela di Sabbia e Limi | 6.62E-08       |
| SCPTU1-2 | 18.78                    | -16.53 | Miscela di Sabbia e Limi | 5.64E-08       |
| SCPTU1-3 | 27                       | -24.75 | Argilla                  | 4.72E-08       |
| SCPTU2-1 | 9.36                     | -6.84  | Miscela di Sabbia e Limi | 1.01E-09       |
| SCPTU2-2 | 18.86                    | -16.34 | Argilla                  | 1.86E-08       |
| SCPTU2-3 | 3 30.16 -27.64           |        | Argilla                  | 1.41E-09       |

## Prove edometriche

| Sondaggio | Campione | Profon           | dità media | Intervallo di carico | kh       |
|-----------|----------|------------------|------------|----------------------|----------|
| n°        | n°       | [m] [m s.l.m.m.] |            | (kPa)                | (m/s)    |
| SP1       | S1       | 3.25             | -0.97      | 25 - 50              | 4.57E-10 |
|           | S2       | 7.55             | -5.27      | 50 - 100             | 5.8E-10  |
| SP2       | S1       | 4.8              | -2.02      | 25 - 50              | 1.48E-09 |
|           | S2       | 9.3              | -6.52      | 50 - 100             | 2.74E-09 |



90403-000

# 10 STACKING AREA (INDAGINI 2017)

## Sondaggi:

- SP3;
- SP4;
- SP5;
- SP6.

## Prove penetrometriche statiche:

- CPTU1;
- CPTU2;
- CPTU3;
- CPTU4;
- CPTU5;
- CPTU6;
- SCPTU3;
- SCPTU4.

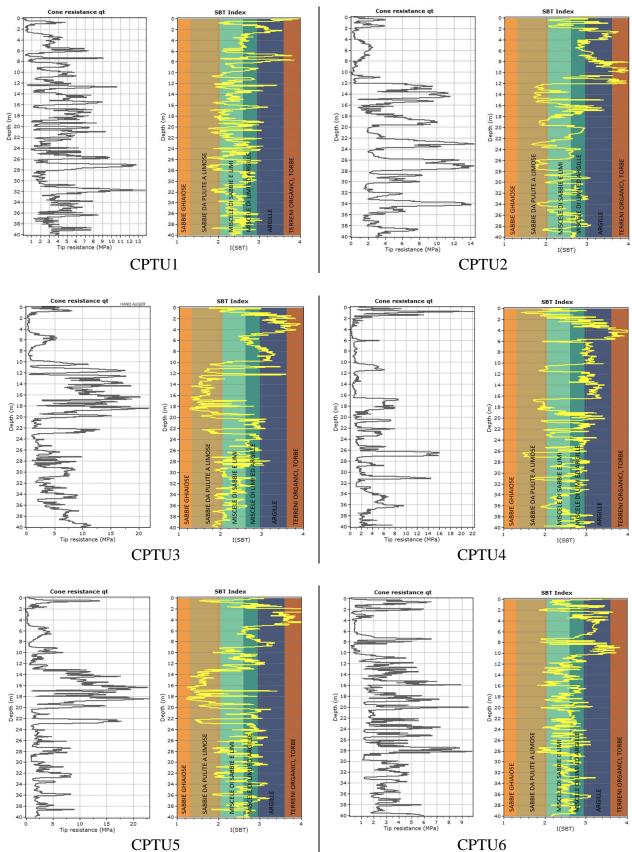
#### Prove di laboratorio:

| 0         | 0        | P     | rofondità (r | n)    | Analisi        | Peso      | Peso di | Umidità  | Limiti di | Contenuto | Prova      | Prova ELL | Triassiale | Triassiale |
|-----------|----------|-------|--------------|-------|----------------|-----------|---------|----------|-----------|-----------|------------|-----------|------------|------------|
| Sondaggio | Campione | tetto | letto        | media | granulometrica | specifico | volume  | naturale | Atterberg | S.O.      | Edometrica | Prova ELL | CU         | UU         |
|           | S1       | 2.50  | 3.10         | 2.80  | х              | Х         | Х       | Х        | х         | Х         |            | х         |            |            |
|           | S2       | 6.50  | 7.10         | 6.80  | х              | х         | х       | х        | х         | x         | x          | x         | x          | x          |
| SP3       | S3       | 19.50 | 20.10        | 19.80 | х              | х         | х       | х        | х         |           |            |           |            | ı          |
| 353       | C1       | 3.50  | 4.50         | 4.00  | х              |           |         |          |           |           |            |           |            | ı          |
|           | C2       | 14.00 | 15.00        | 14.50 | х              |           |         |          |           |           |            |           |            |            |
|           | C3       | 23.90 | 24.50        | 24.20 | х              |           |         |          |           |           |            |           |            |            |
|           | S1       | 3.00  | 3.50         | 3.25  | х              | х         | х       | Х        | х         | х         | х          | х         |            |            |
|           | S2       | 7.50  | 8.00         | 7.75  | х              | х         | х       | х        | х         | x         | x          | x         | x          | x          |
| SP4       | S3       | 20.50 | 21.00        | 20.75 | х              | х         | х       | х        | х         |           |            |           |            | ı          |
| 31.4      | C1       | 3.50  | 4.50         | 4.00  | х              |           |         |          |           |           |            |           |            | ı          |
|           | C2       | 15.00 | 16.00        | 15.50 | x              |           |         |          |           |           |            |           |            | ı          |
|           | C3       | 24.50 | 25.50        | 25.00 | x              |           |         |          |           |           |            |           |            |            |
|           | S1       | 3.50  | 4.00         | 3.75  | х              | х         | Х       | х        | х         | х         | x          | x         |            |            |
|           | S2       | 8.50  | 9.00         | 8.75  | х              | х         | Х       | х        | х         | x         |            | x         | x          | х          |
| SP5       | S3       | 21.50 | 22.00        | 21.75 | х              | х         | Х       | х        | х         |           |            |           |            |            |
| 0.0       | C1       | 3.50  | 4.50         | 4.00  | х              |           |         |          |           |           |            |           |            |            |
|           | C2       | 16.00 | 17.00        | 16.50 | x              |           |         |          |           |           |            |           |            |            |
|           | C3       | 23.50 | 24.50        | 24.00 | х              |           |         |          |           |           |            |           |            |            |
|           | S1       | 4.00  | 4.50         | 4.25  | x              | х         | х       | х        | х         | ×         | x          | x         |            | ı          |
|           | S2       | 9.50  | 10.00        | 9.75  | x              | х         | х       | х        | х         |           |            |           | x          | х          |
| SP6       | S3       | 22.50 | 23.10        | 22.80 | x              | х         | х       | х        | х         |           |            |           |            | ı          |
| 0,0       | C1       | 3.50  | 4.50         | 4.00  | x              |           |         |          |           |           |            |           |            | ı          |
|           | C2       | 17.00 | 18.00        | 17.50 | x              |           |         |          |           |           |            |           |            | ı          |
|           | C3       | 26.50 | 27.50        | 27.00 | x              |           |         |          |           |           |            |           |            | I          |

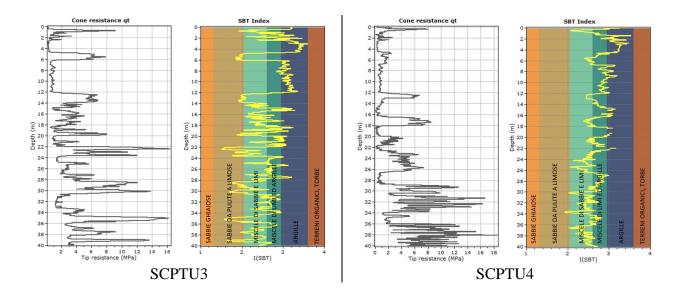
90403-000

# 10.1 PROFILO STRATIGRAFICO

Sondaggi


|            | SP3 (p.c. = + 2.354 m sl.m.m.)                 |                 |         |                                                       |  |  |  |  |
|------------|------------------------------------------------|-----------------|---------|-------------------------------------------------------|--|--|--|--|
| Profondità | Profondità (m da p.c.) Profondità (m s.l.m.m.) |                 |         | Descrizione                                           |  |  |  |  |
| da         | а                                              | da              | а       | Descrizione                                           |  |  |  |  |
| 0          | 1.1                                            | 2.354           | 1.254   | Ghiaia in matrice sabbiosa - materiale di riporto     |  |  |  |  |
| 1.1        | 6                                              | 1.254           | -3.647  | Limo argilloso debolmente sabbioso                    |  |  |  |  |
| 6          | 12                                             | 2 -3.647 -9.647 |         | Argilla debolmente limosa                             |  |  |  |  |
| 12         | 12 30 -9.647 -27.647                           |                 | -27.647 | Sabbia fine limosa con presenza di intervalli torbosi |  |  |  |  |

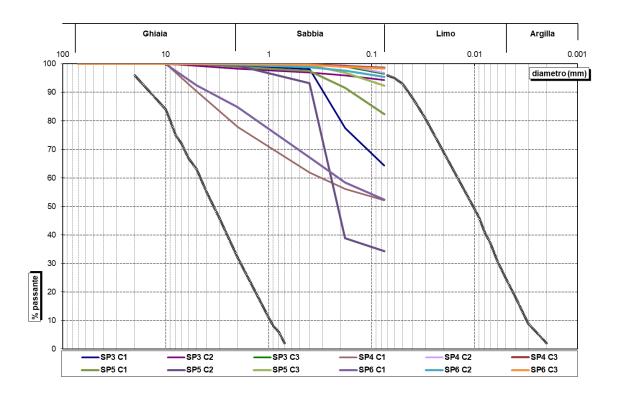
|            |             |            | SP4 (p.c. = + | 2.209 m sl.m.m.)                                                   |
|------------|-------------|------------|---------------|--------------------------------------------------------------------|
| Profondità | (m da p.c.) | Profondità | (m s.l.m.m.)  | Descrizione                                                        |
| da         | а           | da         | а             | Descrizione                                                        |
| 0          | 1.4         | 2.209      | 0.809         | Ghiaia in matrice sabbiosa - materiale di riporto                  |
| 1.4        | 7           | 0.809      | -4.792        | Limo sabbioso, presenza di intervallo torboso tra 3.50 e 3.80 m da |
| 1.4        | /           | 0.809      | -4.792        | p.c.                                                               |
| 7          | 10          | -4.792     | -7.792        | Argilla limosa ed argilla debolmente limosa con frustoli vegetali  |
| 10         | 11.45       | -7.792     | -9.242        | Sabbia limosa e sabbia limosa debolmente argillosa                 |
| 11.45      | 15          | -9.242     | -12.792       | Argilla debolmente limosa con frustoli vegetali                    |
| 15         | 17.8        | -12.792    | -15.592       | Sabbia limosa                                                      |
| 17.8       | 22.7        | -15.592    | -20.492       | Argilla limosa debolmente sabbiosa con frustoli vegetali           |
| 22.7       | 27          | -20.492    | -24.792       | Sabbia limosa                                                      |
| 27         | 30          | -24.792    | -27.792       | Argilla sabbiosa                                                   |


|            | SP5 (p.c. = + 2.201 m sl.m.m.) |        |              |                                                                                  |  |  |  |  |
|------------|--------------------------------|--------|--------------|----------------------------------------------------------------------------------|--|--|--|--|
| Profondità | Profondità (m da p.c.)         |        | (m s.l.m.m.) | Descrizione                                                                      |  |  |  |  |
| da         | а                              | da     | а            | Descrizione                                                                      |  |  |  |  |
| 0          | 0.2                            | 2.201  | 2.001        | Soletta cemento                                                                  |  |  |  |  |
| 0.2        | 0.5                            | 2.001  | 1.701        | Ghiaia in matrice sabbiosa - materiale di riporto                                |  |  |  |  |
| 0.5        | 3                              | 1.701  | -0.800       | Sabbia limosa debolmente argillosa con presenza di sporadici clasti              |  |  |  |  |
| 3          | 7.5                            | -0.800 | -5.300       | Limo argillosa debolmente sabbioso                                               |  |  |  |  |
| 7.5        | 10                             | -5.300 | -7.800       | Argilla limosa debolmente sabbiosa                                               |  |  |  |  |
| 10         | 30                             | -7.800 | -27.800      | Sabbia limosa e limo sabbioso con presenza di intervalli torbosi<br>millimetrici |  |  |  |  |

|            |             |                         | SP6 (p.c. = + | 2.066 m sl.m.m.)                                            |
|------------|-------------|-------------------------|---------------|-------------------------------------------------------------|
| Profondità | (m da p.c.) | Profondità (m s.l.m.m.) |               | Descrizione                                                 |
| da         | а           | da                      | а             | Descrizione                                                 |
| 0          | 1.5         | 2.066                   | 0.566         | Ghiaia in matrice sabbiosa - materiale di riporto           |
| 1.5        | 7.3         | 0.566                   | -5.235        | Limo argilloso con presenza di intervalli torbosi           |
| 7.3        | 10          | -5.235                  | -7.935        | Argilla debolmente limosa con presenza di frustoli vegetali |
| 10         | 11.5        | -7.935                  | -9.435        | Sabbia limosa                                               |
| 11.5       | 16          | -9.435                  | -13.935       | Argilla ed argilla limosa con presenza di frustoli vegetali |
| 16         | 18          | -13.935                 | -15.935       | Sabbia debolmente limosa                                    |
| 18         | 22          | -15.935                 | -19.935       | Argilla                                                     |
| 22         | 24          | -19.935                 | -21.935       | Argilla limosa                                              |
| 24         | 27          | -21.935                 | -24.935       | Argilla con presenza di intervalli torbosi millimetrici     |
| 27         | 30          | -24.935                 | -27.935       | Sabbia limosa e limo sabbioso                               |

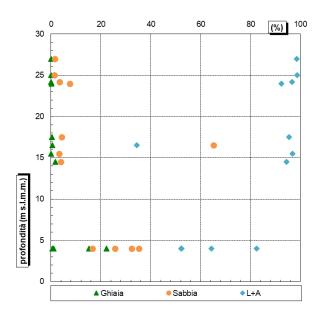





90403-000

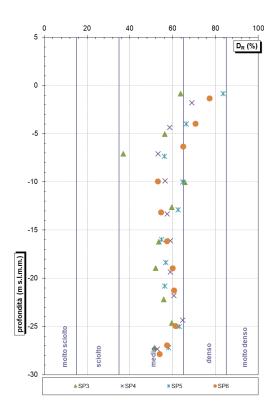


## 10.2 CARATTERISTICHE DEI TERRENI GRANULARI


## 10.2.1 Proprietà fisiche

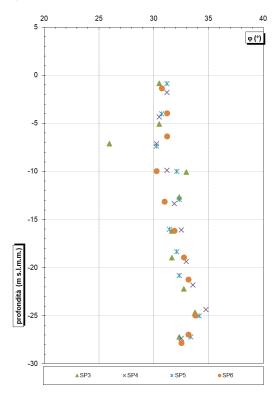
I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia e limo+argilla ricavate per i campioni rimaneggiati.




90403-000

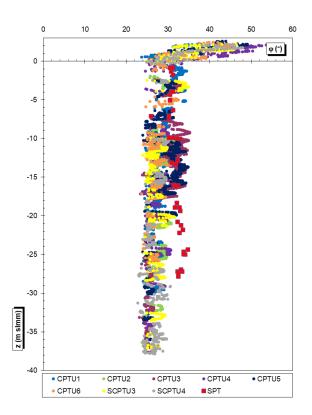
| Sondaggio  | Campione | profondità media | Ghiaia | Sabbia | L+A   |
|------------|----------|------------------|--------|--------|-------|
| Soridaggio | Campione | (m s.l.m.m.)     | (%)    | (%)    | (%)   |
| SP3        | C1       | 4.00             | 0.50   | 35.20  | 64.30 |
| SP3        | C2       | 14.50            | 1.70   | 3.90   | 94.40 |
| SP3        | C3       | 24.20            | 0.00   | 3.40   | 96.60 |
| SP4        | C1       | 4.00             | 22.20  | 25.70  | 52.10 |
| SP4        | C2       | 15.50            | 0.00   | 3.20   | 96.80 |
| SP4        | C3       | 25.00            | 0.00   | 1.30   | 98.70 |
| SP5        | C1       | 4.00             | 1.00   | 16.60  | 82.40 |
| SP5        | C2       | 16.50            | 0.60   | 65.10  | 34.30 |
| SP5        | C3       | 24.00            | 0.10   | 7.50   | 92.40 |
| SP6        | C1       | 4.00             | 15.20  | 32.40  | 52.40 |
| SP6        | C2       | 17.50            | 0.30   | 4.30   | 95.40 |
| SP6        | C3       | 27.00            | 0.00   | 1.60   | 98.40 |




Il grafico seguente riporta la densità relativa valutata a partire dalle prove SPT mediante la correlazione di Skempton.

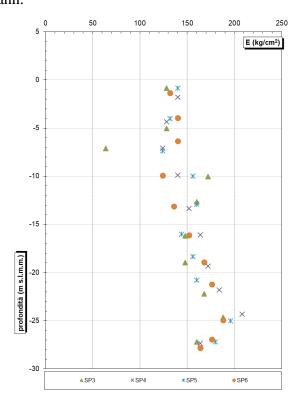
90403-000




#### 10.2.2 Proprietà meccaniche

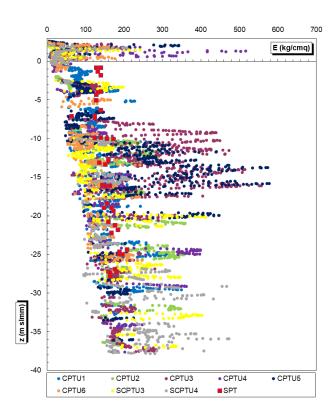
Il grafico seguente riporta l'angolo d'attrito valutato a partire dalle prove SPT mediante la correlazione di Shioi e Fukuni.




Per confronto si riportano i valori dell'angolo d'attrito ricavati dalle prove CPTU:

90403-000




#### 10.2.3 Proprietà deformative

Il grafico seguente riporta il modulo elastico valutato a partire dalle prove SPT mediante la correlazione di Schmertmann.

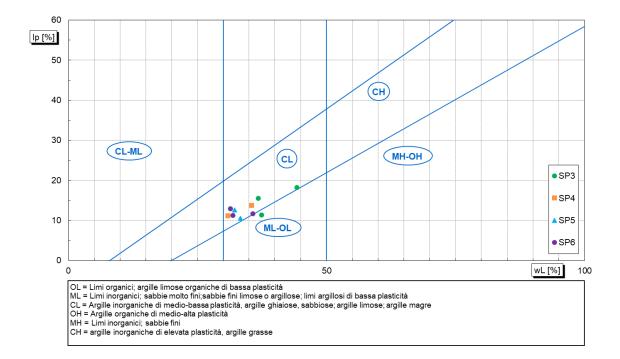


Per confronto si riportano i valori del modulo elastico ricavati dalle prove CPTU:

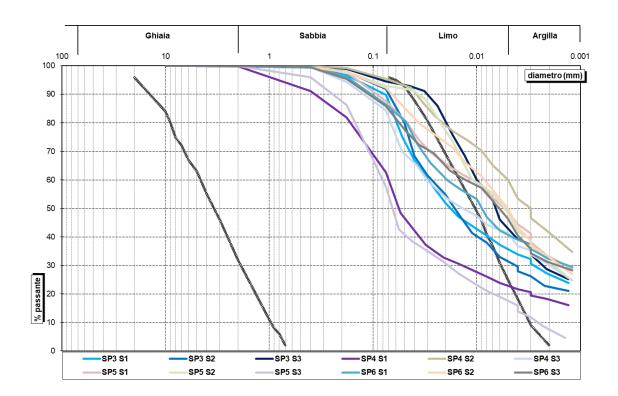
90403-000



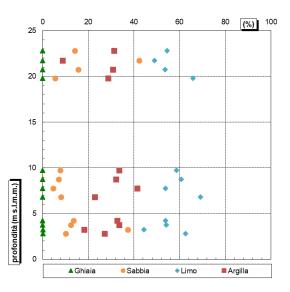
## 10.3 CARATTERISTICHE DEI TERRENI COESIVI


#### 10.3.1 Proprietà fisiche

Dalle analisi di laboratorio eseguite su campioni indisturbati si ricavano le seguenti proprietà fisiche:


|           |            |             | Profondità  |             | Profondità   | Peso specifico | P       | eso di volun | ne      | Porosità / Inc | dice dei vuoti | Umidità naturale |                | Limiti di      | Atterberg      |      |
|-----------|------------|-------------|-------------|-------------|--------------|----------------|---------|--------------|---------|----------------|----------------|------------------|----------------|----------------|----------------|------|
| Sondaggio | Campione   | tetto       | letto       | media       | media        | Gs             | Ϋ́n     | γď           | Ysat    | n              | е              | w                | W <sub>L</sub> | W <sub>P</sub> | I <sub>P</sub> | Ic   |
|           |            | (m da p.c.) | (m da p.c.) | (m da p.c.) | (m s.l.m.m.) | (/)            | (kN/m³) | (kN/m³)      | (kN/m³) | (/)            | (/)            | (%)              | (%)            | (%)            | (%)            | (/)  |
|           | S1         | 2.50        | 3.10        | 2.80        | -0.45        | 2.669          | 16.85   | 13.80        | 26.18   | 0.47           | 0.90           | 22.10            | 37.40          | 26.00          | 11.40          | 1.34 |
|           | S2         | 6.50        | 7.10        | 6.80        | -4.45        | 2.647          | 16.89   | 12.30        | 25.97   | 0.53           | 1.11           | 37.30            | 44.30          | 26.10          | 18.20          | 0.38 |
|           | <b>S</b> 3 | 19.50       | 20.10       | 19.80       | -17.45       | 2.640          | 18.29   | 13.56        | 25.90   | 0.48           | 0.91           | 34.90            | 36.80          | 21.30          | 15.50          | 0.12 |
| SP3       | C1         | 3.50        | 4.50        | 4.00        | -1.65        | -              | -       | -            | -       | -              | -              | -                | -              | -              | -              | -    |
|           | C2         | 14.00       | 15.00       | 14.50       | -12.15       | -              | -       | -            | -       | -              | -              | =                | -              | -              | -              | -    |
|           | С3         | 23.90       | 24.50       | 24.20       | -21.85       | -              | -       | -            | ,       | -              | -              | -                | ,              | -              | -              | -    |
|           | <b>S</b> 1 | 3.00        | 3.50        | 3.25        | -1.04        | 2.714          | 17.60   | 13.59        | 26.62   | 0.49           | 0.96           | 29.50            | 0.00           | 0.00           | 0.00           | 0.00 |
|           | S2         | 7.50        | 8.00        | 7.75        | -5.54        | 2.666          | 19.94   | 15.43        | 26.15   | 0.41           | 0.69           | 29.20            | 35.50          | 21.70          | 13.80          | 0.46 |
| SP4       | <b>S</b> 3 | 20.50       | 21.00       | 20.75       | -18.54       | 2.686          | 18.53   | 14.47        | 26.35   | 0.45           | 0.82           | 28.10            | 30.90          | 19.70          | 11.20          | 0.25 |
| 5P4       | C1         | 3.50        | 4.50        | 4.00        | -1.79        | -              | -       | -            | -       | -              | -              | -                | -              | -              | -              | -    |
|           | C2         | 15.00       | 16.00       | 15.50       | -13.29       | -              | -       | -            | -       | -              | -              | -                | -              | -              | -              | -    |
|           | СЗ         | 24.50       | 25.50       | 25.00       | -22.79       | -              | -       | -            | -       | -              | -              | -                | -              | -              | -              | -    |

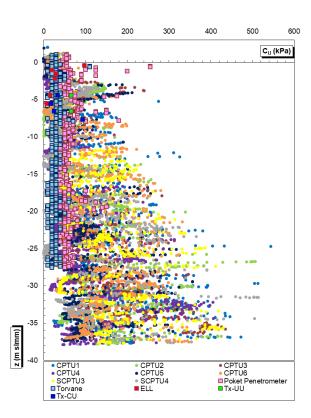
90403-000


|           |            |             | Profondità  |             | Profondità   | Peso specifico | P       | eso di volun | ne      | Porosità / Inc | dice dei vuoti | Umidità naturale |       | Limiti di      | Atterberg      |      |
|-----------|------------|-------------|-------------|-------------|--------------|----------------|---------|--------------|---------|----------------|----------------|------------------|-------|----------------|----------------|------|
| Sondaggio | Campione   | tetto       | letto       | media       | media        | Gs             | Ϋ́n     | γď           | Ysat    | n              | е              | w                | WL    | W <sub>P</sub> | l <sub>P</sub> | Ic   |
|           |            | (m da p.c.) | (m da p.c.) | (m da p.c.) | (m s.l.m.m.) | (/)            | (kN/m³) | (kN/m³)      | (kN/m³) | (/)            | (/)            | (%)              | (%)   | (%)            | (%)            | (/)  |
|           | S1         | 3.50        | 4.00        | 3.75        | -1.55        | 2.708          | 19.54   | 14.95        | 26.57   | 0.44           | 0.78           | 30.70            | 33.30 | 22.80          | 10.50          | 0.25 |
|           | S2         | 8.50        | 9.00        | 8.75        | -6.55        | 2.676          | 20.07   | 16.21        | 26.25   | 0.38           | 0.62           | 23.80            | 32.20 | 19.60          | 12.60          | 0.67 |
|           | <b>S</b> 3 | 21.50       | 22.00       | 21.75       | -19.55       | 2.695          | 19.02   | 14.78        | 26.44   | 0.44           | 0.79           | 28.70            | 0.00  | 0.00           | 0.00           | 0.00 |
| SP5       | C1         | 3.50        | 4.50        | 4.00        | -1.80        | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |
|           | C2         | 16.00       | 17.00       | 16.50       | -14.30       | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |
|           | СЗ         | 23.50       | 24.50       | 24.00       | -21.80       | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |
|           | S1         | 4.00        | 4.50        | 4.25        | -2.18        | 2.695          | 19.83   | 15.80        | 26.44   | 0.40           | 0.67           | 25.50            | 35.70 | 24.00          | 11.70          | 0.87 |
|           | <b>S</b> 2 | 9.50        | 10.00       | 9.75        | -7.68        | 2.699          | 18.97   | 15.02        | 26.48   | 0.43           | 0.76           | 26.30            | 31.40 | 18.50          | 12.90          | 0.40 |
| SP6       | <b>S</b> 3 | 22.50       | 23.10       | 22.80       | -20.73       | 2.684          | 18.80   | 15.19        | 26.33   | 0.42           | 0.73           | 23.80            | 31.90 | 20.60          | 11.30          | 0.72 |
| 376       | C1         | 3.50        | 4.50        | 4.00        | -1.93        | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |
|           | C2         | 17.00       | 18.00       | 17.50       | -15.43       | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |
|           | СЗ         | 26.50       | 27.50       | 27.00       | -24.93       | -              | -       | -            | -       | -              | -              | -                | -     | -              | -              | -    |

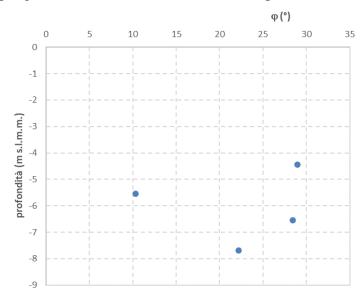


I grafici seguenti riportano le curve granulometriche e le percentuali di ghiaia, sabbia, limo e argilla ricavate per i campioni indisturbati.




| Condoggio | Compions   | profondità media | Ghiaia | Sabbia | Limo  | Argilla | G+S   | L+A   |
|-----------|------------|------------------|--------|--------|-------|---------|-------|-------|
| Sondaggio | Campione   | (m s.l.m.m.)     | (%)    | (%)    | (%)   | (%)     | (%)   | (%)   |
| SP3       | S1         | 2.80             | 0.10   | 10.10  | 62.60 | 27.20   | 10.20 | 89.80 |
| SP3       | S2         | 6.80             | 0.00   | 8.10   | 69.10 | 22.80   | 8.10  | 91.90 |
| SP3       | <b>S</b> 3 | 19.80            | 0.00   | 5.50   | 65.80 | 28.70   | 5.50  | 94.50 |
| SP4       | S1         | 3.25             | 0.10   | 37.30  | 44.30 | 18.30   | 37.40 | 62.60 |
| SP4       | S2         | 7.75             | 0.00   | 4.60   | 53.90 | 41.50   | 4.60  | 95.40 |
| SP4       | <b>S</b> 3 | 20.75            | 0.00   | 15.60  | 53.60 | 30.80   | 15.60 | 84.40 |
| SP5       | S1         | 3.75             | 0.00   | 12.30  | 54.20 | 33.50   | 12.30 | 87.70 |
| SP5       | S2         | 8.75             | 0.00   | 7.10   | 60.70 | 32.20   | 7.10  | 92.90 |
| SP5       | <b>S</b> 3 | 21.75            | 0.00   | 42.30  | 49.00 | 8.70    | 42.30 | 57.70 |
| SP6       | S1         | 4.25             | 0.00   | 13.50  | 53.90 | 32.60   | 13.50 | 86.50 |
| SP6       | S2         | 9.75             | 0.00   | 7.70   | 58.70 | 33.60   | 7.70  | 92.30 |
| SP6       | <b>S</b> 3 | 22.80            | 0.00   | 14.10  | 54.60 | 31.30   | 14.10 | 85.90 |



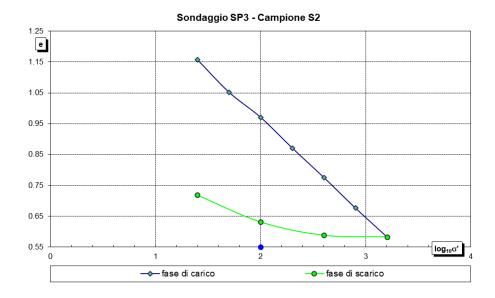

90403-000

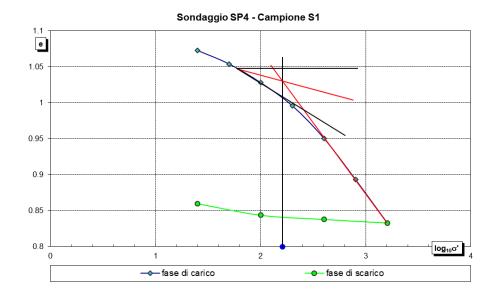
## 10.3.2 Proprietà meccaniche

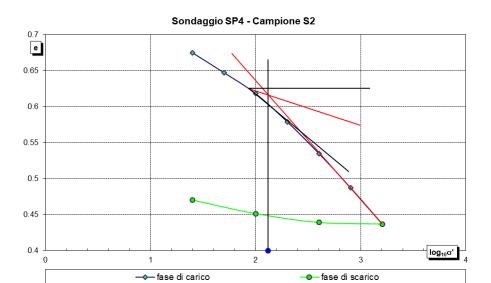
Il grafico seguente riporta i valori di coesione non drenata ricavati dalle prove CPTU e confrontati con i risultati delle prove di compressione ad espansione laterale libera (ELL) e delle prove triassiali CU e UU e con i valori ricavati dai Pocket Penetrometer e Torvane:

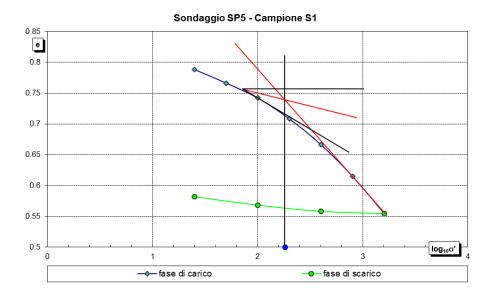


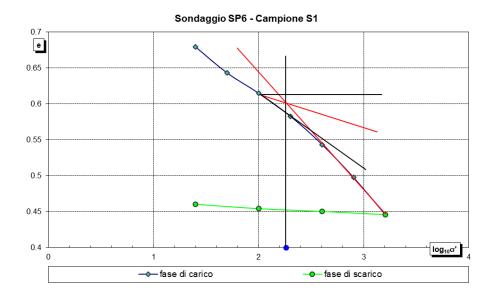
L'angolo d'attrito  $\varphi'$  per gli strati coesivi è stato ricavato dalle prove triassiali CU:





|           |            |             | Profondità  |             | Profondità   |              |                                                                                                            | Prova tria | ssiale CU      | Prova triassiale UU | Prova ELL      |
|-----------|------------|-------------|-------------|-------------|--------------|--------------|------------------------------------------------------------------------------------------------------------|------------|----------------|---------------------|----------------|
| Sondaggio | Campione   | tetto       | letto       | media       | media        |              | Descrizione                                                                                                | φ          | C <sub>u</sub> | C <sub>u</sub>      | C <sub>u</sub> |
|           |            | (m da p.c.) | (m da p.c.) | (m da p.c.) | (m s.l.m.m.) |              | misura dal basso                                                                                           | (°)        | (kPa)          | (kPa)               | (kPa)          |
|           | S1         | 2.50        | 3.10        | 2.80        | -0.45        | Indisturbato | (0 - 33 cm) Limo argilloso debolmente sabbioso (33 - 57 cm) Argilla torbosa                                | -          | -              | -                   | 97.70          |
|           | S2         | 6.50        | 7.10        | 6.80        | -4.45        | Indisturbato | (0 - 25 cm) Sabbia limosa<br>(25 - 60 cm) Argilla limosa con livelli ben definiti di sabbia limosa         | 28.97      | 33.17          | 66.10               | 15.00          |
| SP3       | <b>S</b> 3 | 19.50       | 20.10       | 19.80       | -17.45       | Indisturbato | (0 - 31 cm) Argillal limosa<br>(31 - 54 cm) Argilla torbosa                                                | -          | -              | -                   | -              |
| 0.0       | C1         | 3.50        | 4.50        | 4.00        | -1.65        | Rimaneggiato | Argilla limosa con rari elementi granulari                                                                 | -          | -              | -                   | -              |
|           | C2         | 14.00       | 15.00       | 14.50       | -12.15       | Rimaneggiato | Argilla limosa con rari elementi granulari                                                                 | -          | -              | -                   | -              |
|           | С3         | 23.90       | 24.50       | 24.20       | -21.85       | Rimaneggiato | Argilla limosa                                                                                             | -          | -              | -                   | -              |
|           | S1         | 3.00        | 3.50        | 3.25        | -1.04        | Indisturbato | (0 - 37 cm) Limo sabbioso                                                                                  | -          | -              | -                   | 19.60          |
|           | S2         | 7.50        | 8.00        | 7.75        | -5.54        | Indisturbato | (0 - 50 cm) Limo argilloso                                                                                 | 10.30      | 17.34          | 17.32               | 8.00           |
| SP4       | <b>S</b> 3 | 20.50       | 21.00       | 20.75       | -18.54       | Indisturbato | (0 - 46 cm) Limo argilloso                                                                                 | -          | -              | -                   | -              |
| 0.4       | C1         | 3.50        | 4.50        | 4.00        | -1.79        | Rimaneggiato | Argilla torbosa                                                                                            | -          | -              | -                   | -              |
|           | C2         | 15.00       | 16.00       | 15.50       | -13.29       | Rimaneggiato | Limo argilloso                                                                                             | -          | -              | -                   | -              |
|           | СЗ         | 24.50       | 25.50       | 25.00       | -22.79       | Rimaneggiato | Limo argilloso                                                                                             | -          | -              | -                   | -              |
|           | S1         | 3.50        | 4.00        | 3.75        | -1.55        | Indisturbato | (0 - 37 cm) Limo argilloso con rari elementi frantumati<br>(37 - 62 cm) Limo argillosa debolmente sabbioso | -          | -              | -                   | 28.80          |
|           | S2         | 8.50        | 9.00        | 8.75        | -6.55        | Indisturbato | (0 - 50 cm) Argilla limosa                                                                                 | 28.41      | 25.42          | 66.05               | 71.35          |
| SP5       | <b>S</b> 3 | 21.50       | 22.00       | 21.75       | -19.55       | Indisturbato | (0 - 45 cm) Limo sabbioso debolmente argilloso                                                             | -          | -              | -                   | -              |
|           | C1         | 3.50        | 4.50        | 4.00        | -1.80        | Rimaneggiato | Argilla limosa con rari elementi granulari                                                                 | -          | -              | -                   | -              |
|           | C2         | 16.00       | 17.00       | 16.50       | -14.30       | Rimaneggiato | Argilla limosa con rari elementi granulari                                                                 | -          | -              | -                   | -              |
|           | C3         | 23.50       | 24.50       | 24.00       | -21.80       | Rimaneggiato | Argilla limosa                                                                                             | -          | -              | -                   | -              |
|           | S1         | 4.00        | 4.50        | 4.25        | -2.18        | Indisturbato | (0 - 45 cm) Limo argilloso                                                                                 | -          | -              | -                   | 26.55          |
|           | S2         | 9.50        | 10.00       | 9.75        | -7.68        | Indisturbato | (0 - 48 cm) Limo argilloso                                                                                 | 22.18      | 93.00          | 94.07               | -              |
| SP6       | S3         | 22.50       | 23.10       | 22.80       | -20.73       | Indisturbato | (0 - 60 cm) Argilla limosa                                                                                 | -          | -              | -                   | -              |
|           | C1         | 3.50        | 4.50        | 4.00        | -1.93        | Rimaneggiato | Argilla limosa torbosa                                                                                     | -          | -              | -                   | -              |
|           | C2         | 17.00       | 18.00       | 17.50       | -15.43       | Rimaneggiato | Limo argilloso                                                                                             | -          | -              | -                   | -              |
|           | С3         | 26.50       | 27.50       | 27.00       | -24.93       | Rimaneggiato | Limo argilloso                                                                                             | -          | -              | -                   | -              |


90403-000

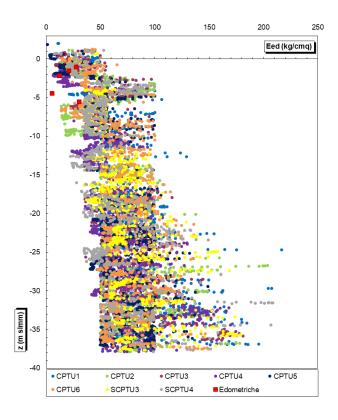

# 10.3.3 Proprietà deformative

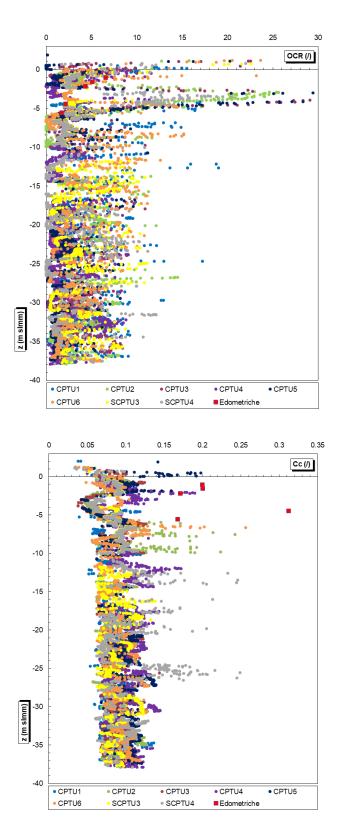

Di seguito si riportano i risultati delle prove edometriche effettuate sui campioni indisturbati.









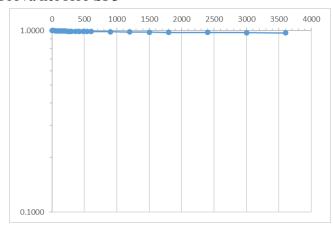

90403-000

|           |          |                  | ď                | Indice di ricompressione | ssione                 | mento                                                   | e                                |                        | ione                            |
|-----------|----------|------------------|------------------|--------------------------|------------------------|---------------------------------------------------------|----------------------------------|------------------------|---------------------------------|
| Sondaggio | Campione |                  | Profondità Media |                          | Indice di compressione | Indice di rigonfiamento                                 | Tensione di<br>preconsolidazione | Tensione in sito       | Grado di<br>sovraconsolidazione |
| n°        | n°       | [m da p.c.]      | [m s.l.m.m.]     | Cr                       | <br>Cc<br>[/]          | <br>Cs<br>[/]                                           | σ'c<br>[kPa]                     | σ'v<br>[kPa]           | OCR<br>[/]                      |
|           |          |                  |                  |                          |                        |                                                         |                                  |                        |                                 |
| SP3       | S2       | 6.80             | -4.45            | 0.351                    | 0.312                  | 0.145                                                   | 100.000                          | 46.852                 | 2.134                           |
| SP4       | S1       | 3.25             | -1.04            | 0.063                    | 0.200                  | 0.027                                                   | 162.181                          | 24.700                 | 6.566                           |
| 354       | S2       | 7.75             | -5.54            | 0.092                    | 0.168                  | 0.031                                                   | 131.826                          | 77.035                 | 1.711                           |
| SP5       | S1       | 3.75             | -1.55            | 0.073                    | 0.201                  | 0.022                                                   | 181.970                          | 35.775                 | 5.087                           |
| SP6       | S1       | 4.25             | -2.18            | 0.120                    | 0.171                  | 0.010                                                   | 181.970                          | 41.778                 | 4.356                           |
| Sondaggio | Campione | Profondità Media |                  | Modulo edometrico        |                        | Coefficiente di<br>consolidazione primaria<br>verticale |                                  | Permeabilità verticale |                                 |
| n°        | n°       | [m da p.c.]      | [m s.l.m.m.]     |                          | ed<br>Pa)              | c<br>(cm                                                |                                  |                        | k<br>n/s)                       |
|           |          |                  |                  | 50 - 100                 | 100 - 200              | 50 - 100                                                | 100 - 200                        | 50 - 100               | 100 - 200                       |
| SP3       | S2       | 6.80             | -4.45            | 1443                     | 2356                   | 7.94E-03                                                | 2.20E-03                         | 5.50E-07               | 9.32E-08                        |
| SP4       | S1       | 3.25             | -1.04            | 4016                     | 6494                   | 6.45E-03                                                | 6.25E-03                         | 1.61E-07               | 9.62E-08                        |
| 3P4       | S2       | 7.75             | -5.54            | 3067                     | 4545                   | 4.07E-03                                                | 5.22E-03                         | 1.33E-07               | 1.15E-07                        |
| SP5       | S1       | 3.75             | -1.55            | 3802                     | 5435                   | 5.04E-03                                                | 4.89E-03                         | 1.32E-07               | 9.00E-08                        |
| 0.0       |          |                  |                  |                          |                        |                                                         |                                  |                        |                                 |

Per confronto si riportano i valori del modulo edometrico del grado di sovraconsolidazione e dell'indice di compressione calcolati a partire dalle prove CPTU:



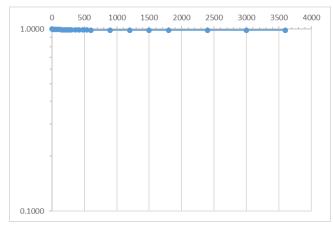


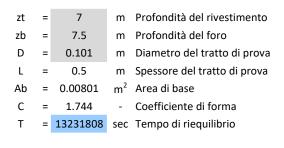

90403-000

## 10.4 PERMEABILITÀ ORIZZONTALE

## 10.4.1 Da prove Lefranc

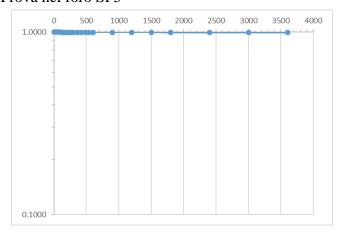
Di seguito si riportano i risultati delle prove Lefranc e il coefficiente di permeabilità orizzontale calcolato.

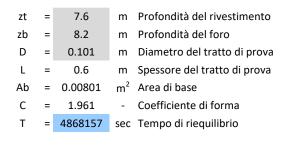

#### Prova nel foro SP3




| zt | = | 6.3     | m     | Profondità del rivestimento  |
|----|---|---------|-------|------------------------------|
| zb | = | 6.9     | m     | Profondità del foro          |
| D  | = | 0.101   | m     | Diametro del tratto di prova |
| L  | = | 0.6     | m     | Spessore del tratto di prova |
| Ab | = | 0.00801 | $m^2$ | Area di base                 |
| С  | = | 1.961   | -     | Coefficiente di forma        |
| Т  | = | 285663  | sec   | Tempo di riequilibrio        |
|    |   |         |       |                              |

 $k_h = 1.43E-08 \text{ m/s}$ 

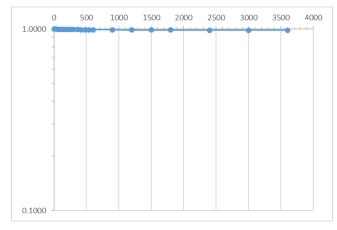

#### Prova nel foro SP4






 $k_h = 3.47E-10 \text{ m/s}$ 

#### Prova nel foro SP5

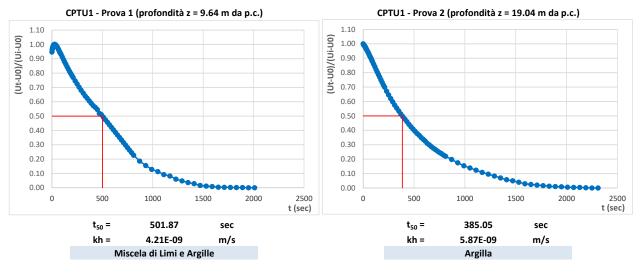


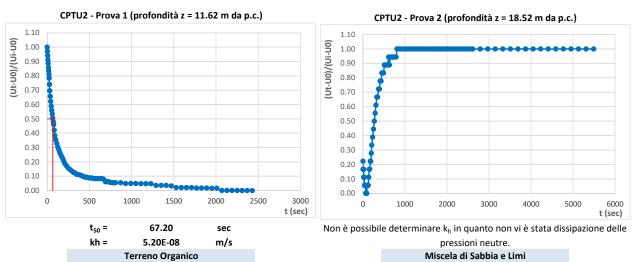


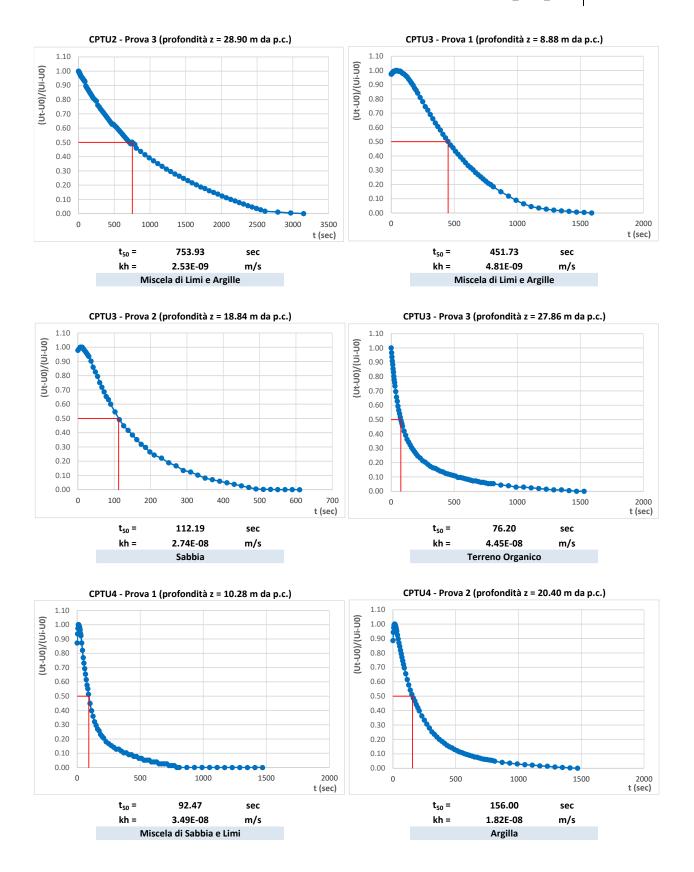

 $k_h = 8.39E-10 \text{ m/s}$ 

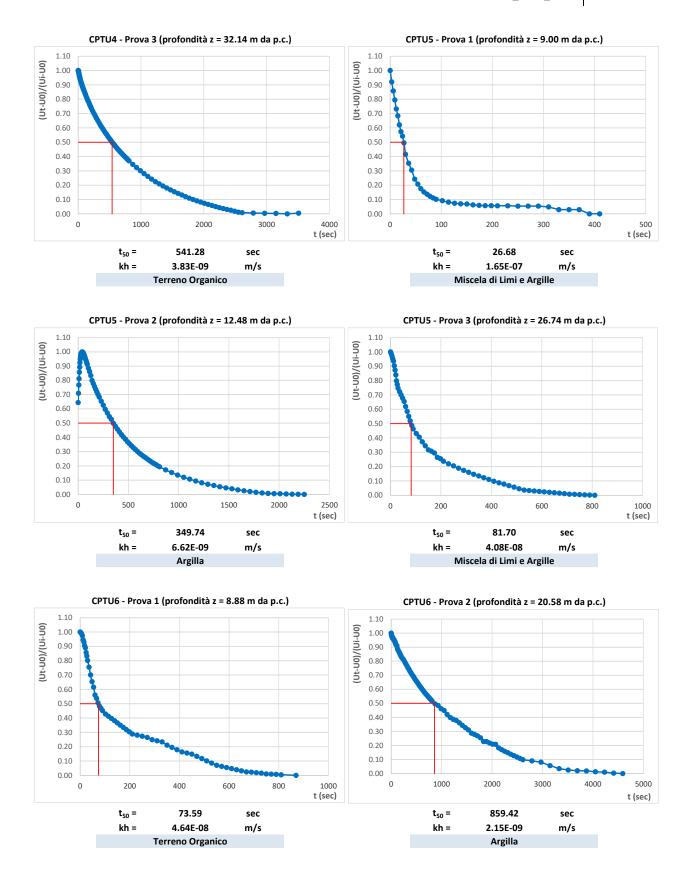
90403-000

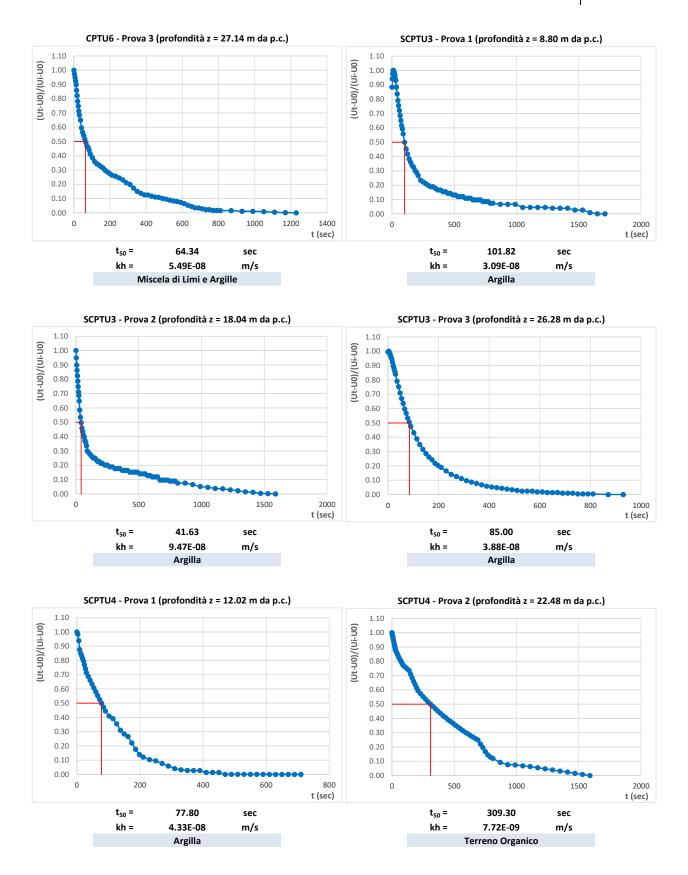
#### Prova nel foro SP6



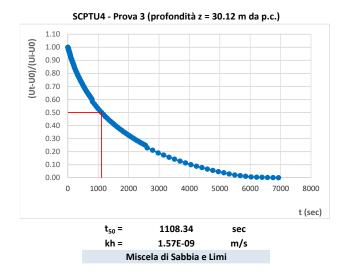


8.6 m Profondità del rivestimento zt = zb 9.2 Profondità del foro = m D 0.101 Diametro del tratto di prova m L 0.6 Spessore del tratto di prova 0.00801 Area di base Ab С 1.961 Coefficiente di forma 771810 sec Tempo di riequilibrio


 $k_h = 5.29E-09 \text{ m/s}$ 


# 10.4.2 Da prove di dissipazione


Di seguito si riportano i risultati delle prove di dissipazione e il coefficiente di permeabilità orizzontale calcolato.












90403-000



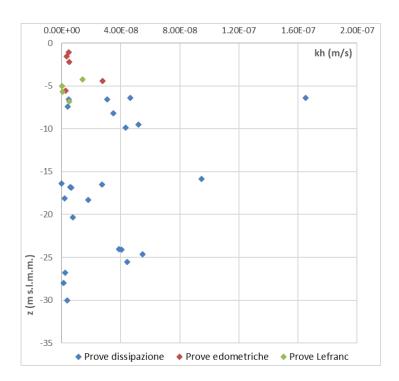
## 10.4.3 Riepilogo

Di seguito si riportano la tabella e il grafico di confronto tra i valori del coefficiente di permeabilità orizzontale calcolato mediante le prove Lefranc a carico variabile, di dissipazione ed edometriche.

Prove Lefranc a carico variabile

| Condocaio | Profond     | k <sub>T</sub> |          |
|-----------|-------------|----------------|----------|
| Sondaggio | (m da p.c.) | (m s.l.m.m.)   | (m/s)    |
| SP3       | 6.6         | -4.2465        | 1.43E-08 |
| SP4       | 7.25        | -5.0415        | 3.47E-10 |
| SP5       | 7.9         | -5.6995        | 8.39E-10 |
| SP6       | 8.9         | -6.8345        | 5.29E-09 |

Prove di dissipazione


| Prova    | Prof        | ondità       | Terreno                   | k <sub>h</sub> |
|----------|-------------|--------------|---------------------------|----------------|
| Piova    | (m da p.c.) | (m s.l.m.m.) | refreito                  | (m/s)          |
| CPTU1-1  | 9.64        | -7.39        | Miscela di Limi e Argille | 4.21E-09       |
| CPTU1-2  | 19.04       | -16.79       | Argilla                   | 5.87E-09       |
| CPTU2-1  | 11.62       | -9.49        | Terreno Organico          | 5.20E-08       |
| CPTU2-2  | 18.52       | -16.39       | Miscela di Sabbia e Limi  | -              |
| CPTU2-3  | 28.9        | -26.77       | Miscela di Limi e Argille | 2.53E-09       |
| CPTU3-1  | 8.88        | -6.55        | Miscela di Limi e Argille | 4.81E-09       |
| CPTU3-2  | 18.84       | -16.51       | Sabbia                    | 2.74E-08       |
| CPTU3-3  | 27.86       | -25.53       | Terreno Organico          | 4.45E-08       |
| CPTU4-1  | 10.28       | -8.19        | Miscela di Sabbia e Limi  | 3.49E-08       |
| CPTU4-2  | 20.4        | -18.31       | Argilla                   | 1.82E-08       |
| CPTU4-3  | 32.14       | -30.05       | Terreno Organico          | 3.83E-09       |
| CPTU5-1  | 9           | -6.39        | Miscela di Limi e Argille | 1.65E-07       |
| CPTU5-2  | 19.46       | -16.85       | Argilla                   | 6.62E-09       |
| CPTU5-3  | 26.74       | -24.13       | Miscela di Limi e Argille | 4.08E-08       |
| CPTU6-1  | 8.88        | -6.41        | Terreno Organico          | 4.64E-08       |
| CPTU6-2  | 20.58       | -18.11       | Argilla                   | 2.15E-09       |
| CPTU6-3  | 27.14       | -24.67       | Miscela di Limi e Argille | 5.49E-08       |
| SCPTU3-1 | 8.8         | -6.58        | Argilla                   | 3.09E-08       |
| SCPTU3-2 | 18.04       | -15.82       | Argilla                   | 9.47E-08       |
| SCPTU3-3 | 26.28       | -24.06       | Argilla                   | 3.88E-08       |
| SCPTU4-1 | 12.02       | -9.87        | Argilla                   | 4.33E-08       |
| SCPTU4-2 | 22.48       | -20.33       | Terreno Organico          | 7.72E-09       |
| SCPTU4-3 | 30.12       | -27.97       | Miscela di Sabbia e Limi  | 1.57E-09       |

 $\label{localization} \textit{Progettazione: } \textit{F\&M Ingegneria Spa-G\&T Srl-ing. Michele Granziero}$ 

90403-000

## Prove edometriche

| Sondaggio | Campione | Profond     | lità Media   | Intervallo di carico | kh       |
|-----------|----------|-------------|--------------|----------------------|----------|
| n°        | n°       | [m da p.c.] | [m s.l.m.m.] | [kPa]                | [m/s]    |
| SP3       | S2       | 6.8         | -4.4465      | 25 - 50              | 2.77E-08 |
| SP4       | S1       | 3.25        | -1.0415      | 25 - 50              | 4.91E-09 |
| SP4       | S2       | 7.75        | -5.5415      | 50 - 100             | 2.65E-09 |
| SP5       | S1       | 3.75        | -1.5495      | 25 - 50              | 3.64E-09 |
| SP6       | S1       | 4.25        | -2.1845      | 25 - 50              | 5.36E-09 |



90403-000

# 11 MODELLO GEOTECNICO

| Strato                       | Angolo d'attrito φ (°) | Coesione efficace<br>c' (kPa) | Coesione non drenata $c_u (kPa)$ | Modulo elastico<br>E (kPa) | $\begin{aligned} & Modulo\ edometrico \\ & E_{ed}\ (kPa) \end{aligned}$ |
|------------------------------|------------------------|-------------------------------|----------------------------------|----------------------------|-------------------------------------------------------------------------|
| Riporto                      | 31                     | 0                             | -                                | 15000                      | -                                                                       |
| Fanghi bauxitici /<br>Barena | 24                     | 5                             | 20                               | 5000                       | 3500                                                                    |
| Caranto                      | 24                     | 10                            | 50                               | 9000                       | 5000                                                                    |
| Sabbia limosa 1              | 28-29                  | 0-2                           | -                                | 12500                      | -                                                                       |
| Argilla limosa               | 24-29                  | 7-10                          | 50                               | 10000                      | 6000                                                                    |
| Sabbia limosa 2              | 28                     | 0                             | -                                | 15000                      | -                                                                       |
| Argilla                      | 29                     | 7                             | 50                               | 10000                      | 6000                                                                    |
| Alternanze                   | 27                     | 0                             | -                                | 15000                      | -                                                                       |

Tabella 6 - Modello geotecnico