COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA

UADRIO GAETANO COSTRUZIONI S.P.A. MANDANTE

PROGETTAZIONE:

MANDATARIA

MANDANTE

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFIN ITE DALLA LEGGE OBIETTIVO N. 443/01 e s.m.i.

CUP: J94F04000020001

PROGETTO ESECUTIVO

ASSE FERROVIARIO MONACO - VERONA

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1 FORTEZZA - PONTE GARDENA

D4.03 - GEOLOGIA, IDROGEOLOGIA - GEOLOGIA NA

Sondaggi geognostici (EO23 - EO24 - EO25 -

· · · · · · · · · · · · · · · · · · ·		
APPALTATORE	RESPONSABILE DELLE INTEGRAZIONI DELLE PRESTAZIONI SPECIALISTICHE	SCALA:
QUADRIO GAETANO COSTRUZIONI S.P.A.	27.03.2020	-
	The state of the s	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA

PROGR.

REV.

0|0

File: IBOA00EZZSGGE0005002B.DWG

0 0 2

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato
Α	Emissione esecutiva	R.Tommaselli	11.01.2020	L.Fieni	11.01.2020 I hobse	R. Pieroncini	11.01.2020	INGEGNERI R27.03.2020
В	Emissione a seguito VPE e ODI	R.Tommaselli GEOLOGO ROBERTO	(12)	L.Fieni	27.03.2020 I hobou	R. Pieroncini		16240 Z
		FOMMASELLI/	th'					
		COLLICAL						A STATE OF THE STA

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA IBL1

LOTTO

0A

CODIFICA D 69SG DOCUMENTO GE 00 05 002 REV.

FOGLIO 2 di 16

INDICE

PREMESSA	3
1 SONDAGGI GEOGNOSTICI	4
1.1 GENERALITÁ	4
2 PERFORAZIONE A CAROTAGGIO CONTINUO	6
2.1 ATTREZZATURA DI SONDAGGIO	6
2.2 Modalità esecutive	7
3 PROVE PENETROMETRICHE SPT	8
3.1 CARATTERISTICHE DELLE ATTREZZATURE E MODALI	TÀ ESECUTIVE8
4 PROVE DI PERMEABILITÁ	9
4.1 CARATTERISTICHE DELLE ATTREZZATURE	9
4.2 MODALITÀ ESECUTIVE	
5 PROVE DILATOMETRICHE	11
5.1 CARATTERISTICHE STRUMENTO	11
5.2 ESECUZIONE DELLA PROVA	11
5.3 CALCOLO DEI MODULI	
6 RILIEVO GEOMECCANICO	
7 INSTALLAZIONE DI STRUMENTAZIONE	
7.1 PIEZOMETRO TIPO NORTON	
8 UBICAZIONE PLANIMETRICA	15
9 MISURE PIEZOMETRICHE	
ALLEGATI	16

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 3 di 16

PREMESSA

Nell'ambito del Progetto Definitivo relativo al Quadruplicamento della tratta Fortezza – Ponte Gardena sulla linea ferroviaria Verona – Brennero, sono stati eseguiti nel periodo marzo-maggio 2017 quattro sondaggi geognostici denominati EO23, EO24, EO25, EO28 spinti fino alla profondità di rispettivamente 52,60 m (EO23), 40,00 m (EO24), 35,00 m (EO25) e 30,00 m (EO28) da p.c.. Sono state eseguite prove in foro (SPT, prove di permeabilità tipo Lefranc e Lugeon, prove dilatometriche) e successivamente i sondaggi sono stati strumentati con piezometri a tubo aperto tipo Norton. Dei sondaggi vengono restituite la descrizione stratigrafica e strutturale, la documentazione fotografica e gli elaborati riguardanti le prove in foro eseguite. Oltre alla ricerca di infrastrutture presso gli enti competenti sono state eseguite misure magnetometriche in superficie ed entro il foro di sondaggio.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA LOTTO CODIFICA

IBL1 0A D 69SG

DOCUMENTO GE 00 05 002 REV. FOGLIO
A 4 di 16

1 SONDAGGI GEOGNOSTICI

1.1 **GENERALITÁ**

SONDAGGI E023-E024-E025-E028

	Sondaggio EO23				
Perforazione	carotaggio continuo				
Profondità	52.6m, fondo foro				
Località	Ponte Gardena				
Coordinate (Gauss Boaga)	Nord: 5164809.719; Est: 1694230.657; H: 500.44 m.s.l.m				
Tipo di sonda	Same Elettari AS618				
Strumentazione	Piezometro Ø3" con installazione di un pozzetto carrabile e chiusino terminale				
	Prelievo di N°3 campioni rimaneggiati, N°0 campione indisturbati, N°5 spezzoni				
Campioni	di carota				
SPT	N° 3 prove SPT				
Prova LeFranc	N° 2 prove di permeabilità tipo LeFranc				
Prova Lugeon	N° 4 prove di permeabilità tipo Lugeon				
Prova Dilatometrica	N° 6 prove Dilatometriche				

	Sondaggio EO24				
Perforazione	carotaggio continuo				
Profondità	40.0m, fondo foro				
Località	Ponte Gardena				
Coordinate (Gauss Boaga)	Nord: 5164673.561; Est: 1694124.286; H: 477.69 m.s.l.m				
Tipo di sonda	Same Elettari AS618				
Strumentazione	Piezometro Ø3" con installazione di un pozzetto carrabile e chiusino terminale				
	Prelievo di N°11 campioni rimaneggiati, N°0 campione indisturbati, N°0 spezzoni				
Campioni	di carota				
SPT	N° 11 prove SPT				
Prova LeFranc	N° 3 prove di permeabilità tipo LeFranc				
Prova Lugeon	N° 0 prove di permeabilità tipo Lugeon				
Prova Dilatometrica	N° 0 prove Dilatometriche				

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 5 di 16

	Sondaggio EO25		
Perforazione	carotaggio continuo		
Profondità	35.0m, fondo foro		
Località	Ponte Gardena		
Coordinate (Gauss Boaga)	Nord: 5164556.556; Est:1694138.312; H: 473.36 m.s.l.m		
Tipo di sonda	Same Elettari AS618		
Strumentazione	Piezometro Ø3" con installazione di un pozzetto carrabile e chiusino terminale		
	Prelievo di N°11 campioni rimaneggiati, N°1 campione indisturbati, N°0 spezzoni di		
Campioni	carota		
SPT	N° 3 prove SPT		
SPT	N° 11 prove SPT		
Prova LeFranc	N° 3 prove di permeabilità tipo LeFranc		
Prova Lugeon	N° 0 prove di permeabilità tipo Lugeon		
Prova Dilatometrica	N° 0 prove Dilatometriche		

	Sondaggio EO28			
Perforazione	carotaggio continuo			
Profondità	30.0m, fondo foro			
Località	Ponte Gardena			
Coordinate (Gauss Boaga)	Nord: 5164112.192; Est: 1694078.56; H: 471.53 m.s.l.m			
Tipo di sonda	Same Elettari AS618			
Strumentazione	Piezometro Ø3" con installazione di un pozzetto carrabile e chiusino terminale			
	Prelievo di N°12 campioni rimaneggiati, N°0 campione indisturbati, N°0 spezzoni			
Campioni	di carota			
SPT	N° 10 prove SPT			
Prova LeFranc	N° 3 prove di permeabilità tipo LeFranc			
Prova Lugeon	N° 0 prove di permeabilità tipo Lugeon			
Prova Dilatometrica	N° 0 prove Dilatometriche			

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA LOTTO CODIFICA

IBL1 0A D 69SG

DOCUMENTO GE 00 05 002 REV. FOGLIO

A 6 di 16

2 PERFORAZIONE A CAROTAGGIO CONTINUO

2.1 Attrezzatura di sondaggio

Per l'esecuzione dei sondaggi è stata impiegata l'unità di perforazione: Same Ellettari AS618.

SAME LASER - ELLETTARI

	TECHNICAL S	PECIFICATIONS Tech. Special Service 2016/05/2		
0	ear of construction	1991		
Year	of last complete revision	2013		
SERVICE STATE	Type	SAME		
Engine	Power (kW)	96		
	Rotary Head max rpm	250		
	Stroke (mm)	3000		
Drilling	Operational height (mm)	5000		
Specs.	Pull up forcec(kg)	4500		
	Pull down force (kg)	4500		
	Clamp Diameter (mm)	152		
	Weight (kg)	9700		
Ap	prox. Dimensions (m)	6430 X 2450 X 4000		
	Mud Pump spec.	Duplex pumps Ellettari p 30 bar, Q 800 l/min Progressing cavity pump Bellin p 20 bar, Q 150 l/min		
Auxiliary equipment		Air compressor Atlas Copco Q: from 6000 to 14000 l/min; p: - 10 bar		
	Special Features			

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 7 di 16

2.2 Modalità esecutive

In seguito alla regolarizzazione del piano campagna si è provveduto all' installazione delle postazioni di sondaggio e delle specifiche attrezzature. Le operazioni di perforazione sono state precedute dall'orientamento della guida di scorrimento della testa di rotazione della sonda. Il controllo dell' inclinazione è stato effettuato mediante livella a bolla. Nei terreni granulari è stato impiegato un carotiere semplice mentre per i terreni litoidi è stato impiegato un carotiere doppio con corona diamantata.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IBL1	0A	D 69SG	GE 00 05 002	Α	8 di 16

3 PROVE PENETROMETRICHE SPT

3.1 Caratteristiche delle attrezzature e modalità esecutive

Per l'esecuzione delle prove penetrometriche SPT si è utilizzato un dispositivo di battitura provvisto di testa di battuta d'acciaio avvitata sulle aste, maglio d'acciaio e dispositivo di guida e sganciamento automatico del maglio. Le aste utilizzate per il collegamento tra dispositivo di battitura e campionatore rispettano la normativa AGI, in quanto hanno peso pari a 7 ± 0.5 kg e diametro esterno ≥ 50 mm. Previo controllo preliminare le aste sono risultate essere dritte. L'esecuzione delle prove è stata preceduta dalla pulizia del fondo foro e dal controllo della quota del foro raggiunta mediante scandaglio. Il campionatore è stato infisso per 3 tratti consecutivi di 15 cm ed il numero di colpi della massa battente necessario per la penetrazione di ciascun tratto di 15cm è stato annotato.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IBL1	0A	D 69SG	GE 00 05 002	Α	9 di 16

4 PROVE DI PERMEABILITÁ

4.1 Caratteristiche delle attrezzature

Le prove di permeabilità eseguite nelle porzioni di terreno granulare sono tipo Lefranc a carico variabile (CV) e carico costante (CC) mentre in terreni litoidi sono state eseguite prove di permeabilità tipo Lugeon. Attrezzatura adoperata per l'esecuzione delle prove :

- Lefranc: pompa con tubazione di aspirazione provvista di dispositivo pescante dotato di filtro, freatimetro a segnalazione acustica e visiva, contalitri da ½ pollice con precisione max di 0,11, cronometro, vasca di raccolta e decantazione dell'acqua, tubo di lavaggio;
- Lugeon: otturatore (packer) doppio, pompa centrifuga, contalitri da ½ pollice con precisione max di 0,11, manometro, tubi di adduzione di tipo idraulico;

4.2 **Modalità esecutive**

Nei sondaggi sono state eseguite n°7 prove di permeabilità tipo Lefranc a carico variabile e n°4 prove di permeabilità tipo Lefranc a carico costante.

Prove Lefranc

La prova Lefranc a carico variabile consiste nel misurare l'abbassamento della colonna d'acqua nella colonna di rivestimento, mentre la prova Lefranc a carico costante consiste nella valutazione quantitativa della portata necessaria per mantenere costante un livello dell'acqua nel foro.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 10 di 16

Sondaggio	Tipo prova	Profondità prova
EO23	CV	6,00 – 6,50 m
EO23	CV	13,50 – 14,00 m
EO24	CV	11,00 – 11,50 m
EO24	CC	19,00 – 19,50 m
EO24	CC	26,00 – 26,50 m
EO25	CC	7,50 – 8,00 m
EO25	CV	16,00 – 16,50 m
EO25	CC	23,30 – 23,80 m
EO28	CV	6,00 – 6,50 m
EO28	CV	17,00 – 17,50 m
EO28	CV	26,00 – 26,50 m

Prova Lugeon

La prova consiste nel misurare la portata di acqua iniettata in un tratto di prova predefinito in cinque gradini a pressione determinata, misurando la costanza della portata ogni 2 minuti e mantenendo costante ciascun gradino per 10 minuti.

Sondaggio	Profondità prova
EO23	22,00 – 27,00 m
EO23	29,00 – 34,00 m
EO23	40,00 – 45,00 m
EO23	48,00 – 52,00 m

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 11 di 16

5 PROVE DILATOMETRICHE

5.1 Caratteristiche strumento

Le prove sono state eseguite con dilatometro flessibile DILAROC TELEMAC, costituito da centralina di acquisizione N° 11D01 e sonda LM 99/16 MOD. DMP 02/95, di diametro 95 mm.

La sonda e la centralina di misura sono collegate da un cavo elettrico multipolare e da un cavo pneumatico ad alta resistenza. Nella sonda sono alloggiati due trasduttori di pressione e tre trasduttori di spostamento con fondo scala di 25 mm, rispettivamente con risoluzione 0.2 % f.s. e 1/1000 mm e precisione di 0.1 bar e 5/1000 mm.

La sonda ha un diametro di 95 mm, lunghezza del tratto di prova di 1000 mm, con rapporto lunghezza/diametro maggiore di 10.

Per regolare la pressione si utilizza un sistema composto da valvola e rubinetto, con capacità 0- 200 bar in grado di aumentare, diminuire o mantenere costante la pressione all'interno della sonda.

5.2 Esecuzione della prova

La prova dilatometrica, è concettualmente simile ad una pressiometria, si esegue sulle pareti dei fori di sondaggio privo di rivestimento procedendo dal basso verso l'alto a sondaggio completato, oppure in avanzamento, realizzando una tasca di prova sul fondo foro.

Essa consiste nel mettere in pressione un tratto di foro della lunghezza di 1m e misurarne le deformazioni diametrali. La pressione viene esercitata in maniera uniforme grazie alla guaina flessibile della sonda.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 12 di 16

La prova viene eseguita con tre cicli completi di carico e scarico, la pressione massima raggiunta ad ogni ciclo viene raddoppiata a quello successivo e dipende dalla profondità della prova stessa e dalle caratteristiche della roccia. In particolare i valori di massima pressione vengono ridotti quando il foro presenta un diametro iniziale troppo elevato o la sezione dello stesso presenta una eccentricità marcata soprattutto se in presenza di rocce ad alta deformabilità.

La "prova di creep" consiste nel mantenere la pressione costante e misurare le deformazioni diametrali ad intervalli prefissati, di solito si esegue in corrispondenza del gradino di pressione più alto di ogni ciclo.

5.3 Calcolo dei moduli

I moduli sono stati calcolati in base alle teorie sull'espansione delle cavità cilindriche, in particolare per rocce a comportamento lineare-elastico si utilizza l'equazione E=(1+v)*D $\Delta p/\Delta D$, con:

 Δp = variazione di pressione

 ΔD = variazione diametrale

 υ = coefficiente di Poisson (valore raccomandato in letteratura = 0.25) D= diametro iniziale del foro

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 13 di 16

6 RILIEVO GEOMECCANICO

Il rilievo geomeccanico è stato eseguito esclusivamente nel sondaggio EO23.

Il rilievo si basa sulla classificazione litologico-tecnica delle unità litostratigrafiche mediante il riconoscimento di fratturazioni (superfici di scistosità, faglie, fratture s.s.) e misurazione dei relativi angoli d'inclinazione all'interno della roccia.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IBL1	0A	D 69SG	GE 00 05 002	Α	14 di 16

7 INSTALLAZIONE DI STRUMENTAZIONE

7.1 **PIEZOMETRO TIPO NORTON**

Nei sondaggi è stato installato un piezometro Norton in PVC avente diametro 3". I filtri hanno una fessurazione di 0.5 mm. Lo spazio anulare tra tubazione microfessurata e il terreno adiacente è stato riempito con ghiaietto siliceo calibrato nel tratto filtrante e opportunamente impermeabilizzato nel tratto cieco fino a p.c.

A protezione della tubazione piezometrica è stato posto un chiusino metallico protetto da un pozzetto carrabile.

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IBL1
 0A
 D 69SG
 GE 00 05 002
 A
 15 di 16

8 UBICAZIONE PLANIMETRICA

Nella seguente tabella sono riportate le coordinate GPS dei sondaggi.

	Gauss		
	E	N	Quota
EO28	1,694,078.56	5,164,112.192	471.53
EO25	1,694,138.312	5,164,556.556	473.37
EO24	1,694,124.286	5,164,673.561	477.69
EO23	1,694,230.657	5,164,809.719	500.44

9 MISURE PIEZOMETRICHE

10 10 10 10 10 10 10 10 10 10 10 10 10 1										
Sondaggio	Località	Profondità (m)	Tratto fenestrato							
F022	Ponte	co	20 50	23/03/2017	12/04/2017	01/06/2017	24/07/2017			
E023	Gardena	60	20 - 50	-30.16	-29.99	-28.48	-30.16			
5004	Ponte	40	3 - 30	01/06/2017	24/07/2017					
E024	Gardena	40		-8.58	-9.98					
F02F	Ponte	25	2 20	01/06/2017	24/07/2017					
E025	Gardena	35	3 - 30	-5.18	-6.24	2				
E028	Ponte	30	3-30	01/06/2017	24/07/2017					
	Gardena			-6.42	-7.08					

ACCESSO SUD ALLA GALLERIA DI BASE DEL BRENNERO QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA

SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1

SONDAGGI GEOGNOSTICI (SONDAGGI EO23-EO24-EO25-EO28)

COMMESSA LOTTO CODIFICA

IBL1 0A D 69SG

DOCUMENTO GE 00 05 002 REV.

Α

FOGLIO 16 di 16

ALLEGATI

Nell'ordine per ogni sondaggio eseguito:

Allegato A - UBICAZIONE PLANIMETRICA DEI SONDAGGI

Allegato B – STRATIGRAFIA SONDAGGI

Allegato C - FOTODOCUMENTAZIONE

Allegato D - SCHEDE GEOMECCANICHE

Allegato C - DOCUMENTAZIONE DELLE PROVE DI PERMEABILITA'

Allegato D - DOCUMENTAZIONE DELLE PROVE DILATOMETRICHE

E023

Allegati:

- A Ubicazione planimetrica dei sondaggi
- **B** Report Stratigrafico
- **C** Fotodocumentazione
- **D** Analisi Geomeccanica
- **E** Prove di Permeabilità
- **F** Prove Dilatometriche

UBICAZIONE PLANIMETRICA DEL SONDAGGIO

AUFTRAGGEBER/COMMITTENTE: ITALFERR SPA

Sondaggi ordinari su

interconnessione Ponte Gardena

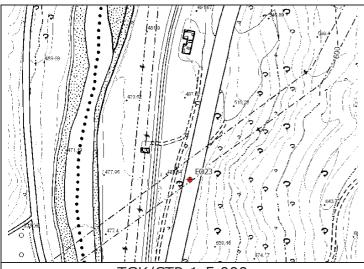
ÖRTLICHKEIT/LOCALITA': Ponte Gardena

Datum/Data: 31/05/2017

PROJEKT/PROGETTO:

Bohrung/Sondaggio:

EO23


MONOGRAFIE DES BOHRPUNKTES SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

KOORDINATEN/ COORDINATE

GAUSS BOAGA

Coord. N = $5\ 164\ 809.719\ m$ Coord. E = $1\ 694\ 230.657\ m$

H = 500.441 m.s.m

TGK/CTR 1:5.000

Ortofoto2011

Foto Positionierung/postazione

REPORT STRATIGRAFICO

 Committente: Italferr S.P.A
 Sondaggio: EO23

 Riferimento: Ponte Gardena
 Data: 06-15.03.2017

 Coordinate: X: 1694230.657 --- Y: 5164809.719
 Quota: 500.441

Perforazione STRATIGRAFIA - EO23 SCALA 1:100 Pagina 1/2 ø R metri DESCRIZIONE Campioni Asfalto Terreno di riporto costituito da: sabbia fine ghiaiosa in matrice organica (ghiaia: Ømax=4,50cm, da angolare ad arrotondata, clasti poligenici (fillade, quarzo, micascisto), marrone Terreno di riporto costituito da: sabbia fine ghiaiosa, clasti da angolari a subarrotondati (Ømax 4,80cm) di natura poligenica (fillade, quarzo, calcare) e singoli ciottoli subangolari (Ømax 9,00cm) di natura poligenica (fillade, quarzo, micascisto), grigio 11-32-68/12cm B) Rim < 4,00 Terreno di riporto costituito da: sabbia fine con ghiaia medio/grossolana, clasti subangolari (Ømax 4,50cm) di natura poligenica (fillade, quarzo, micascisto) e singoli ciottoli angolari (calcestruzzo, Ømax 7,00cm), grigio Terreno di riporto costituito da: sabbia fine ghiaiosa, clasti da angolari ad arrotondati (Ømax 5,00 cm) di natura poligenica (fillade, quarzo, micascisto) e singoli ciottoli subangolari (Ømax 8,00 cm) di natura poligenica (fillade, quarzo), marrone Terreno di riporto costituito da: ghiaia medio/grossolana sabbiosa, debolmente ciottolosa e limosa, Ghiaia: clasti angolari (Ømax 5,00cm) di natura poligenica (quarzo, micascisto); ciottoli: clasti angolari (Ømax 9,00cm) di natura poligenica (quarzo, micascisto), grigio scuro 17-41-59/9cm Terreno di riporto costituito da: sabbia fine ghiaiosa, clasti angolari (Ømax 5,50cm) di natura poligenica (fillade, quarzo, micascisto) e ciottoli angolari (Ømax 7,00cm) di natura poligenica (fillade, quarzo, micascisto), grigio Calcestruzzo (Cls), componenti granitici, fillade, micascisto, dolomia e calcare (Ømax=4,00cm), grigio Ghiaia medio/grossolana con sabbia medio/grossolana debolmente ciottolosa. Ghiaia: clasti da subangolari a subarrotondati (Ømax 5,00cm) di natura poligenica (fillade, quarzo); ciottoli: clasti da angolari ad arrotondati (Ømax 8,00 cm) di natura poligenica (micascisto, fillade), grigio 26-100/11cm C) Rim < 13,00 14 127 Fillade quarzifera, colore da grigio chiaro a plumbeo, grana sub-millimetrica. Presenza diffusa di lenti e vene di quarzo di dimensioni da millimetri a centimetriche, tipicamente allungate lungo i piani di scistosità. L'intervallo presenta forti differenze di fratturazione, da poco fratturato (da 14,00 – 16,42, da 17,00 – 18,93, da 21,00 – 22,32, da 27,54 – 29,50, da 31,00 – 32,86, da 37,22 – 38,00, da 43,06 – 44,32, da 47,45 – 48,00, da 48,48 – 50,10 e da 50,55 – 52,00) ad intensamente fratturato (da 16,42 – 17,00, da 18,93 – 21,00, da 21,32 – 27,54, da 29,50 – 31,00, da 32,86 – 37,22, da 38,00 – 43,06, da 44,32 – 47,45, da 48,00 – 48,48 e da 50,10 – 50,55), con fratture da molto ravvicinate a mediamente ravvicinate. 15_ 16_ l'advicinate à mediamente ravvicinate.
La tipologia di discontinuità prevalente è riferibile a superfici di scistosità con inclinazione compresa tra 2° – 17° e a superfici di discontinuità fratturazione con inclinazione compresa tra 16° – 90°. L'alterazione delle fratture si presenta da debole a moderata, localmente con patine di ossidazione ocracee e verdastre 17_ 18_ SC1) Rim 18,40 19_ 20 21_ 22_ 23_ 25_ 26_ 27 28_ 29_ 30_ 32_ 33_

Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Deufenseiene	

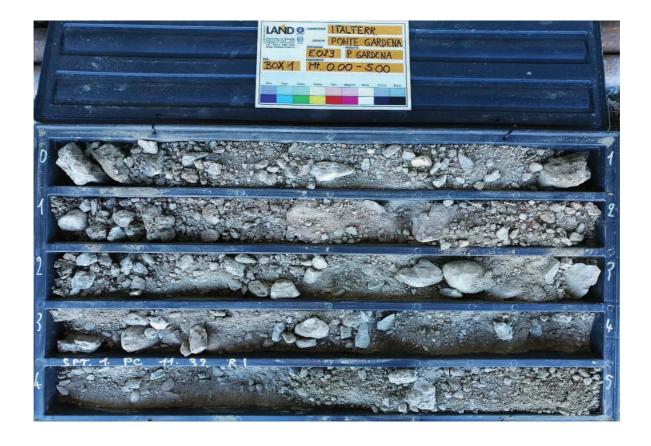
		SCALA 1:100	SCALA 1:100 STRATIGRAFIA - EO23			igina 2/2	
ø R n	metri LITOLOGIA Prel. % RQD % prof. 0 100 0 100 m		DESCRIZIONE			N prove in foro	A r s
>	36.	La tipologia di discontinuità prevalente è superfici di discontinuità fratturazione co	o a plumbeo, grana sub-millimetrica. Presenza diffusa di lenti e vene di timetriche, tipicamente allungate lungo i piani di scistosità. L'intervallo da poco fratturato (da 14,00 – 16,42, da 17,00 – 18,93, da 21,00 – 22,32, da 22 – 38,00, da 43,06 – 44,32, da 47,45 – 48,00, da 48,48 – 50,10 e da 50,55 + 16,42 – 17,00, da 18,93 – 21,00, da 21,32 – 27,54, da 29,50 – 31,00, da 32 – 47,45, da 48,00 – 48,48 e da 50,10 – 50,55), con fratture da molto er iferibile a superfici di scistosità con inclinazione compresa tra 2° – 17° e a on inclinazione compresa tra 16° – 90°. L'alterazione delle fratture si presenta patine di ossidazione ocracee e verdastre			Dilatometrica	
))	40.41.41.42.42.42.42.42.42.42.42.42.42.42.42.42.					Lugeon	
5	44.			SC4) Rim 44.20		Dilatometrica Lugeon	
101	50.		Continue Del Geologia Geologia Maria Geologia Maria Geologia Maria Maria Cara Maria Maria Cara Maria Cara Mari	SC5) Rim 52.25			

Falda:

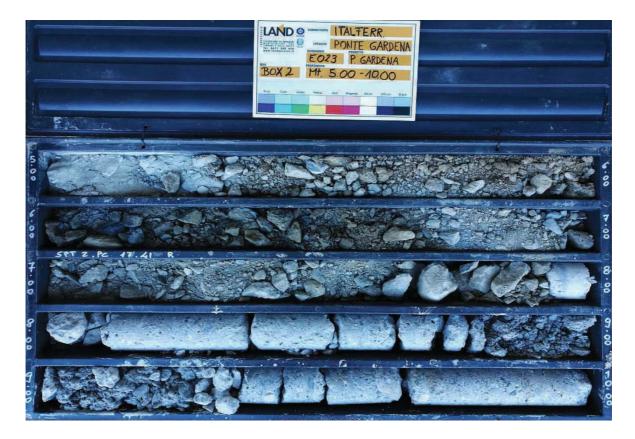
23.03.2017 ore 17.00: -30.16 da p.c. 12.04.2017 ore 12.30: -29.99 da p.c. 01.06.2017 ore 12.30: -28.48 da p.c. 27.07.2017: -30.16 da p.c.

Tipo di piezometro: Norton Denominazione: Piez 3" Diametro del tubo (mm): 76.2 Tubo cieco (m): 0-20 Tratto filtrante (m): 20-50

Il Direttore: Dr. geol. Marco Martintoni Lo Sperimentatore : Dr. Thomas Pinter Coordinate Gauss-Boaga: X: 1694230.657 Y: 5164809.719 Certificato: NL076/S/EO23/17 del 27.07.2017



FOTODOCUMENTAZIONE



Fotodocumentazione - EO23

Ponte Gardena: EO23 – Box 1 – m 0.00 ÷ m 5.00

Ponte Gardena: EO23 – Box 2 – m $5.00 \div m 10.00$

Fotodocumentazione - EO23

Ponte Gardena: EO23 – Box 3 – m 10.00 ÷ m 15.00

Ponte Gardena: EO23 − Box 4 − m 15.00 ÷ m 20.00

Fotodocumentazione - E023

Ponte Gardena: EO23 - Box 5 - m 20.00 ÷ m 25.00

Ponte Gardena: EO23 − Box 6 − m 25.00 ÷ m 30.00

Fotodocumentazione - E023

Ponte Gardena: EO23 - Box 7 - m 30.00 ÷ m 35.00

Ponte Gardena: EO23 − Box 8 − m 35.00 ÷ m 40.00

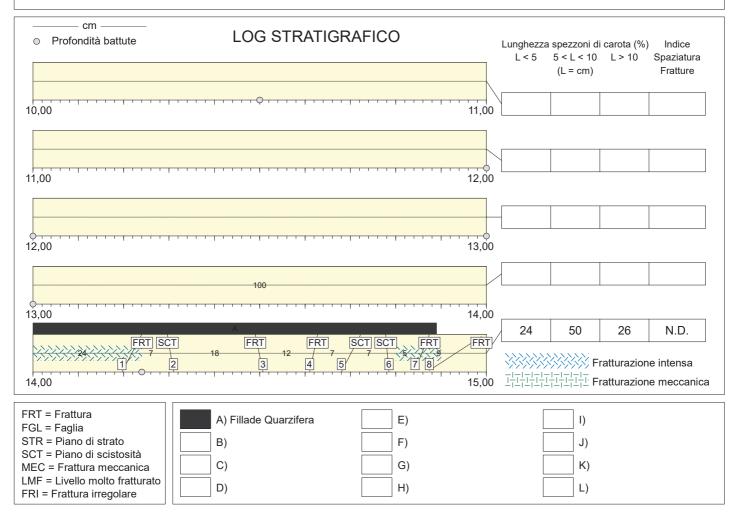
Fotodocumentazione - EO23

Ponte Gardena: EO23 - Box 9 - m 40.00 ÷ m 45.00

Ponte Gardena: EO23 − Box 10 − m 45.00 ÷ m 50.00

Fotodocumentazione - E023

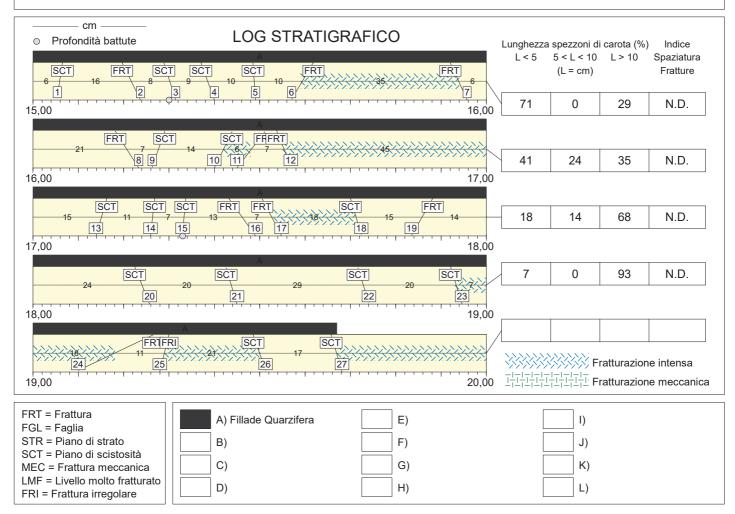
Ponte Gardena: EO23 − Box 11 − m 50.00 ÷ m 52.60


REPORT GEOMECCANICA

AND SERVICE	
SONDAGGI GEOTECNIC	
Committente: Italferr S.P.A	Sondaggio: EO23
	33
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Thermente. Fone Cardena	Data: 00 10:00:2011
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Coordinate. A. 1094230:037 1. 3104009:719	Quota. 300.44 I
Perforazione:	

10.00 - 15.00 m

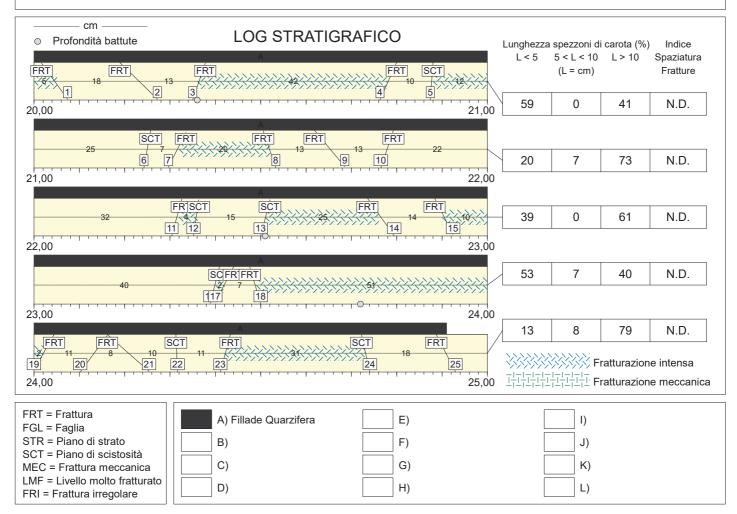
AND SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

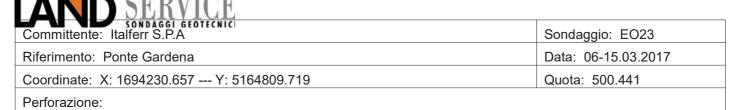

DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	14,24	FRT	25	Piana	8		Assente	Beante	Assente
2	14,31	SCT	8	Piana	8		Assente	Chiusa	Assente
3	14,49	FRT	11	Irregolare	10		Assente	Beante	Assente
4	14,61	FRT	11	Piana	7		Assente	Beante	Assente
5	14,68	SCT	25	Ondulata	8		Assente	Chiusa	Assente
6	14,75	SCT	5	Piana	7		Assente	Chiusa	Assente
7	14,80	FRT	20	Irregolare	11		Assente	Beante	Assente
8	14,89	FRT	54	Piana	7		Assente	Beante	Assente

Sondaggio: EO23
Data: 06-15.03.2017
Quota: 500.441
Quota: 000:111

15.00 - 20.00 m

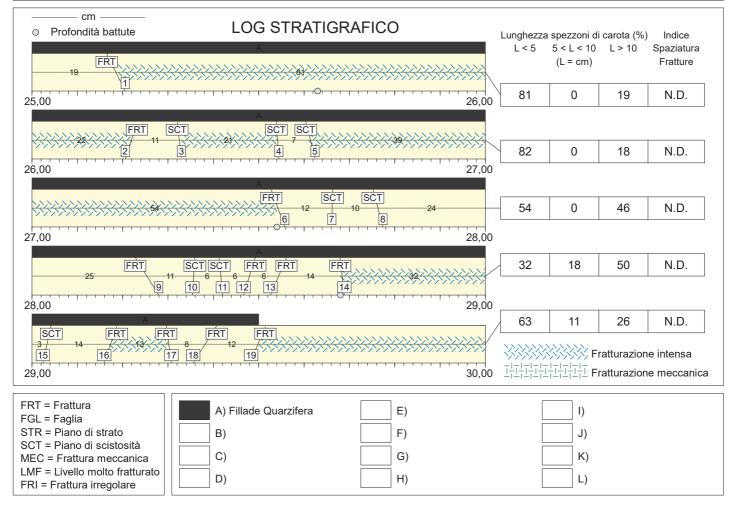

DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	15,06	SCT	7	Piana	6		Assente	Chiusa	Assente
2	15,22	FRT	25	Piana	7		Assente	Beante	Assente
3	15,30	SCT	16	Piana	6		Assente	Chiusa	Assente
4	15,39	SCT	18	Piana	6		Assente	Chiusa	Assente
5	15,49	SCT	7	Piana	6		Assente	Chiusa	Assente
6	15,59	FRT	28	Piana	7		Assente	Chiusa	Assente
7	15,94	FRT	22	Piana	7		Assente	Beante	Assente
8	16,21	FRT	30	Piana	7		Assente	Beante	Assente
9	16,28	SCT	17	Piana	6		Assente	Chiusa	Assente
10	16,42	SCT	24	Piana	6		Assente	Chiusa	Assente
11	16,48	FRT	20	Piana	7		Assente	Beante	Assente
12	16,55	FRT	20	Piana	7		Assente	Beante	Assente
13	17,15	SCT	15	Piana	6		Assente	Chiusa	Assente
14	17,26	SCT	6	Piana	6		Assente	Chiusa	Assente
15	17,33	SCT	5	Piana	6		Assente	Chiusa	Assente
16	17,46	FRT	33	Piana	7		Assente	Beante	Assente
17	17,53	FRT	25	Piana	7		Assente	Beante	Assente
18	17,71	SCT	15	Piana	7		Assente	Chiusa	Assente
19	17,86	FRT	27	Piana	7		Assente	Chiusa	Assente
20	18,24	SCT	20	Piana	6		Assente	Chiusa	Assente
21	18,44	SCT	15	Piana	6		Assente	Chiusa	Assente
22	18,73	SCT	15	Piana	7		Assente	Chiusa	Assente
23	18,93	SCT	15	Piana	7		Assente	Chiusa	Assente
24	19,18	FRT	62	Piana	6		Assente	Chiusa	Assente
25	19,29	FRI	12	Piana	6		Assente	Chiusa	Assente
26	19,50	SCT	17	Piana	6		Assente	Chiusa	Assente
27	19,67	SCT	15	Piana	6		Assente	Chiusa	Assente

SERVICE	
SONDAGGI GEOTECNIC	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

20.00 - 25.00 m

DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	20,05	FRT	33	Piana	7		Assente	Beante	Assente
2	20,23	FRT	43	Irregolare	9		Assente	Chiusa	Assente
3	20,36	FRT	17	Piana	7		Debole	Beante	Assente
4	20,78	FRT	22	Piana	7		Assente	Beante	Assente
5	20,88	SCT	4	Piana	6		Assente	Chiusa	Assente
6	21,25	SCT	9	Piana	6		Assente	Chiusa	Assente
7	21,32	FRT	25	Piana	7		Assente	Chiusa	Assente
8	21,52	FRT	17	Piana	7		Assente	Chiusa	Assente
9	21,65	FRT	37	Irregolare	10		Assente	Beante	Assente
10	21,78	FRT	17	Piana	6		Assente	Chiusa	Assente
11	22,32	FRT	14	Piana	7		Assente	Beante	Assente
12	22,36	SCT	7	Piana	6		Assente	Chiusa	Assente
13	22,51	SCT	13	Piana	6		Assente	Chiusa	Assente
14	22,76	FRT	33	Piana	7		Assente	Beante	Assente
15	22,90	FRT	25	Piana	7		Assente	Chiusa	Assente
16	23,40	SCT	13	Piana	6		Assente	Chiusa	Assente
17	23,42	FRT	24	Piana	7		Assente	Chiusa	Assente
18	23,49	FRT	15	Piana	7		Assente	Chiusa	Assente
19	24,02	FRT	27	Piana	7		Assente	Beante	Assente
20	24,13	FRT	34	Piana	7		Debole	Beante	Assente
21	24,21	FRT	46	Piana	7		Assente	Chiusa	Assente
22	24,31	SCT	2	Piana	6		Assente	Chiusa	Assente
23	24,42	FRT	13	Piana	7		Assente	Chiusa	Assente
24	24,73	SCT	12	Piana	6		Assente	Chiusa	Assente
25	24,91	FRT	25	Piana	7		Assente	Beante	Assente

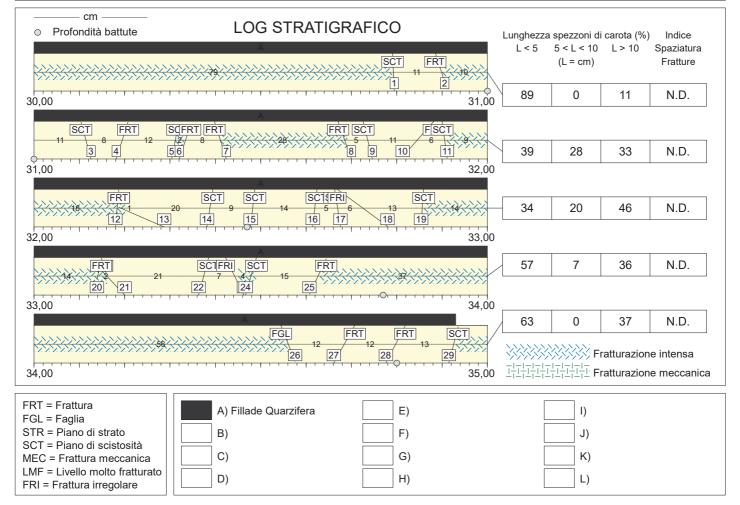
SERVICE	
SONDAGI ÉFOTECNICI	Candannia, EOO
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

25.00 - 30.00 m

28,122

AND SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

DESCRIZIONE DELLE DISCONTINUITA'

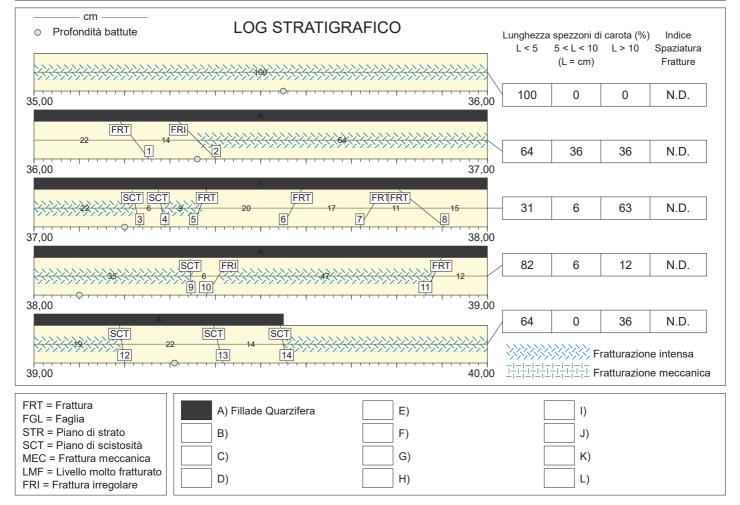

N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	25,19	FRT	24	Piana	7		Assente	Beante	Assente
2	26,22	FRT	17	Piana	7		Assente	Chiusa	Assente
3	26,33	SCT	6	Piana	8		Assente	Chiusa	Assente
4	26,54	SCT	3	Piana	6		Assente	Chiusa	Assente
5	26,61	SCT	13	Piana	7		Assente	Chiusa	Assente
6	27,54	FRT	18	Piana	7		Assente	Beante	Assente
7	27,66	SCT	1	Piana	6		Assente	Chiusa	Assente
8	27,76	SCT	13	Piana	7		Assente	Chiusa	Assente
9	28,25	FRT	29	Piana	7		Assente	Chiusa	Assente
10	28,36	SCT	3	Piana	6		Assente	Chiusa	Assente
11	28,42	SCT	5	Ondulata	8		Assente	Chiusa	Assente
12	28,48	FRT	16	Piana	7		Assente	Aperta	Assente
13	28,54	FRT	21	Piana	7		Assente	Beante	Assente
14	28,68	FRT	6	Piana	7		Assente	Chiusa	Assente
15	29,03	SCT	11	Piana	7		Debole	Chiusa	Assente
16	29,17	FRT	18	Piana	11		Assente	Beante	Assente
17	29,30	FRT	7	Piana	7		Assente	Beante	Assente
18	29,38	FRT	30	Piana	7		Debole	Chiusa	Assente
19	29,50	FRT	21	Piana	7		Assente	Chiusa	Assente


SERVICE	
SONDAGI ÉFOTECNICI	Candannia, EOO
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

30.00 - 35.00 m

3313233

DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	30,79	SCT	2	Piana	6		Assente	Chiusa	Assente
2	30,90	FRT	16	Piana	7		Assente	Beante	Assente
3	31,11	SCT	14	Piana	6		Assente	Chiusa	Assente
4	31,19	FRT	16	Ondulata	7		Debole	Beante	Assente
5	31,31	SCT	10	Piana	6		Assente	Aperta	Assente
6	31,33	FRT	17	Piana	6		Assente	Chiusa	Assente
7	31,41	FRT	16	Piana	7		Assente	Beante	Assente
8	31,69	FRT	18	Piana	7		Assente	Chiusa	Assente
9	31,74	SCT	12	Piana	6		Assente	Chiusa	Assente
10	31,85	FRT	38	Piana	7		Assente	Beante	Assente
11	31,91	SCT	7	Piana	7		Assente	Chiusa	Assente
12	32,18	SCT	5	Piana	6		Assente	Chiusa	Assente
13	32,19	FRT	64	Piana	7		Assente	Chiusa	Assente
14	32,39	SCT	8	Piana	6		Assente	Chiusa	Assente
15	32,48	SCT	6	Piana	6		Assente	Chiusa	Assente
16	32,62	SCT	6	Piana	6		Assente	Chiusa	Assente
17	32,67	SCT	8	Piana	6		Assente	Chiusa	Assente
18	32,73	FRI	51	Irregolare	10		Assente	Chiusa	Assente
19	32,86	SCT	4	Piana	6		Assente	Chiusa	Assente
20	33,14	STR	12	Piana	6		Assente	Chiusa	Assente
21	33,16	FRT	40	Piana	7		Debole	Beante	Assente
22	33,37	SCT	13	Piana	6		Assente	Chiusa	Assente
23	33,44	FRI	24	Irregolare	11		Assente	Beante	Assente
24	33,48	SCT	15	Piana	6		Assente	Chiusa	Assente
25	33,63	FRT	23	Piana	7		Debole	Beante	Assente
26	34,56	FGL	15	Piana	6		Assente	Chiusa	Assente
27	34,68	FRT	27	Piana	7		Assente	Chiusa	Assente
28	34,80	FRT	25	Piana	7		Debole	Beante	Assente
29	34,93	SCT	13	Piana	13		Assente	Chiusa	Assente

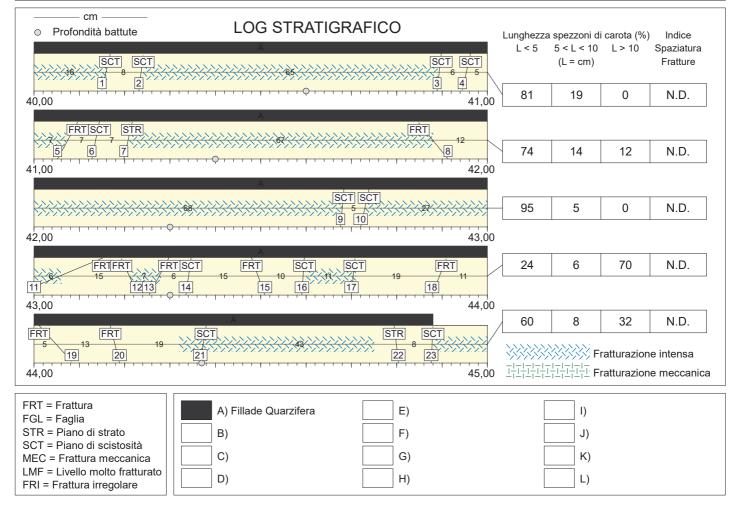
AND SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

35.00 - 40.00 m

39,33

AND SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	36,22	FRT	35	Irregolare	11		Assente	Chiusa	Assente
2	36,36	FRI	46	Piana	7		Assente	Beante	Assente
3	37,22	SCT	11	Piana	7		Debole	Beante	Assente
4	37,28	SCT	9	Piana	7		Assente	Chiusa	Assente
5	37,37	FRT	18	Irregolare	10		Assente	Chiusa	Assente
6	37,57	FRT	25	Piana	7		Debole	Beante	Assente
7	37,74	FRT	29	Piana	7		Debole	Chiusa	Assente
8	37,85	FRT	48	Piana	7		Assente	Chiusa	Assente
9	38,35	SCT	1	Piana	7		Assente	Chiusa	Assente
10	38,41	FRI	30	Piana	8		Assente	Chiusa	Assente
11	38,88	FRT	21	Piana	7		Debole	Beante	Assente
12	39,19	SCT	7	Piana	6		Assente	Chiusa	Assente
13	39,41	SCT	12	Piana	7		Assente	Chiusa	Assente
14	39,55	SCT	9	Piana	6		Assente	Chiusa	Assente

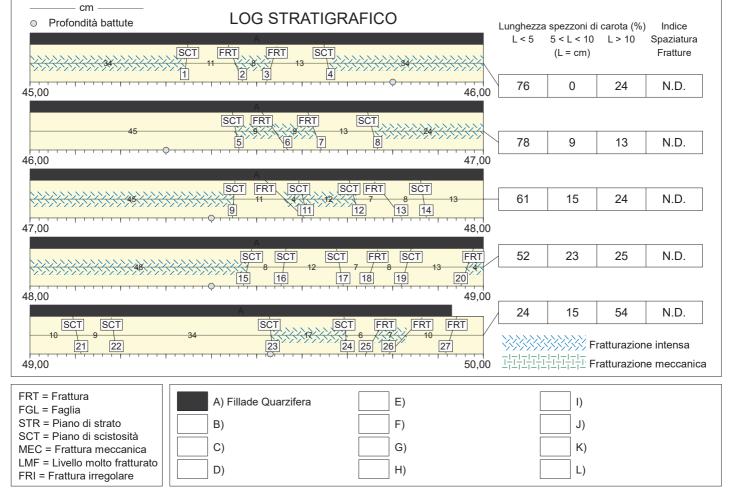
SERVICE	
SONDAGI ÉFOTECNICI	Candannia, EOO
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

40.00 - 45.00 m

41

SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

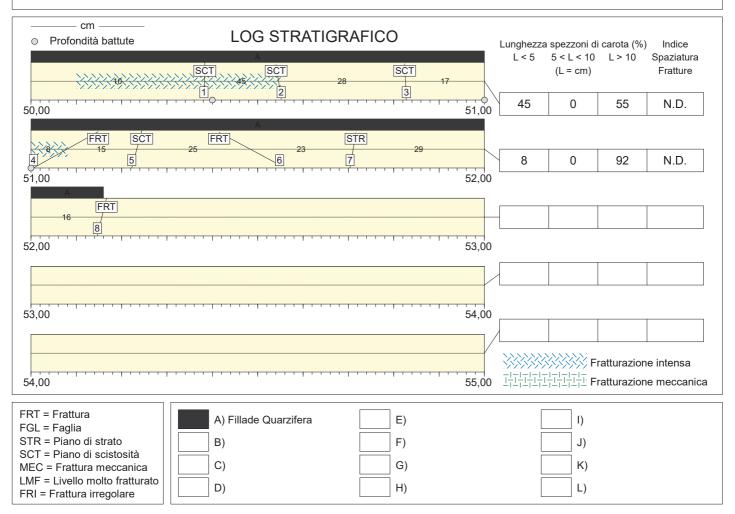
DESCRIZIONE DELLE DISCONTINUITA'


N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	40,16	SCT	12	Piana	7		Assente	Chiusa	Assente
2	40,24	SCT	6	Piana	7		Assente	Chiusa	Assente
3	40,89	SCT	6	Piana	7		Assente	Chiusa	Assente
4	40,95	SCT	12	Irregolare	10		Assente	Chiusa	Assente
5	41,07	FRT	26	Piana	7		Assente	Beante	Assente
6	41,14	SCT	10	Piana	7		Assente	Chiusa	Assente
7	41,21	STR	12	Piana	6		Assente	Chiusa	Assente
8	41,88	FRT	36	Piana	7		Assente	Chiusa	Assente
9	42,68	SCT	5	Piana	6		Assente	Chiusa	Assente
10	42,73	SCT	11	Piana	7		Assente	Chiusa	Assente
11	43,06	FRT	65	Piana	7		Assente	Beante	Assente
12	43,21	FRT	23	Irregolare	10		Assente	Beante	Assente
13	43,28	FRT	26	Piana	7		Assente	Chiusa	Assente
14	43,34	SCT	7	Piana	6		Assente	Chiusa	Assente
15	43,49	FRT	18	Irregolare	10		Assente	Chiusa	Assente
16	43,59	SCT	3	Piana	6		Assente	Chiusa	Assente
17	43,70	SCT	5	Piana	6		Assente	Chiusa	Assente
18	43,89	FRT	20	Piana	7		Assente	Chiusa	Assente
19	44,05	FRT	39	Piana	7		Assente	Beante	Assente
20	44,18	FRT	13	Irregolare	11		Assente	Beante	Assente
21	44,37	SCT	8	Piana	6		Assente	Chiusa	Assente
22	44,80	STR	6	Piana	7		Assente	Chiusa	Assente
23	44,88	SCT	2	Piana	6		Assente	Chiusa	Assente


AND SERVICE	
SONDAGGI GEOTECNIC	
Committente: Italferr S.P.A	Sondaggio: EO23
	33
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Thermente. Fone Cardena	Data: 00 10:00:2011
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Coordinate. A. 1094230:037 1. 3104009:719	Quota. 300.44 I
Perforazione:	

45.00 - 50.00 m

47,247,3


DESCRIZIONE DELLE DISCONTINUITA'

				_					
N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	45,34	SCT	5	Piana	6		Assente	Chiusa	Assente
2	45,45	FRT	20	Piana	7		Debole	Beante	Assente
3	45,53	FRT	15	Piana	7		Assente	Chiusa	Assente
4	45,66	SCT	10	Piana	7		Assente	Chiusa	Assente
5	46,45	SCT	9	Piana	7		Assente	Chiusa	Assente
6	46,54	FRT	32	Piana	7		Assente	Beante	Assente
7	46,63	FRT	18	Piana	7		Assente	Chiusa	Assente
8	46,76	SCT	14	Ondulata	8		Assente	Chiusa	Assente
9	47,45	SCT	4	Piana	6		Assente	Chiusa	Assente
10	47,56	FRT	43	Piana	7		Assente	Chiusa	Assente
11	47,60	SCT	13	Piana	6		Assente	Chiusa	Assente
12	47,72	SCT	14	Piana	6		Assente	Chiusa	Assente
13	47,79	FRT	35	Piana	7		Assente	Beante	Assente
14	47,87	SCT	8	Piana	6		Assente	Chiusa	Assente
15	48,48	SCT	12	Piana	6		Assente	Chiusa	Assente
16	48,56	SCT	7	Ondulata	8		Assente	Chiusa	Assente
17	48,68	SCT	9	Piana	6		Assente	Chiusa	Assente
18	48,75	FRT	16	Piana	7		Debole	Beante	Assente
19	48,83	SCT	13	Piana	7		Assente	Chiusa	Assente
20	48,96	FRT	17	Piana	7		Assente	Chiusa	Assente
21	49,10	SCT	11	Piana	6		Assente	Chiusa	Assente
22	49,19	SCT	8	Piana	6		Assente	Chiusa	Assente
23	49,53	SCT	5	Piana	6		Assente	Chiusa	Assente
24	49,70	SCT	5	Piana	6		Assente	Chiusa	Assente
25	49,76	FRT	26	Piana	7		Assente	Chiusa	Assente
26	49,83	FRT	40	Piana	7		Assente	Beante	Assente
27	49,93	FRT	15	Irregolare	10		Assente	Chiusa	Assente

AND SERVICE	
SONDAGGI GEOTECNIC	
Committente: Italferr S.P.A	Sondaggio: EO23
	33
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Thermente. Fone Cardena	Data: 00 10:00:2011
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Coordinate. A. 1094230:037 1. 3104009:719	Quota. 300.44 I
Perforazione:	

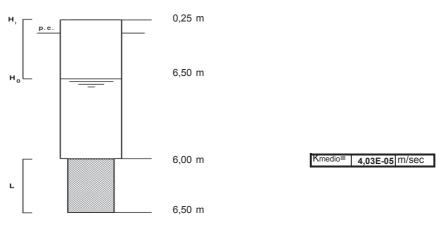
50.00 - 52.60 m

LAND SERVICE	
Committente: Italferr S.P.A	Sondaggio: EO23
Riferimento: Ponte Gardena	Data: 06-15.03.2017
Coordinate: X: 1694230.657 Y: 5164809.719	Quota: 500.441
Perforazione:	

DESCRIZIONE DELLE DISCONTINUITA'

N°	Profondità metri	Tipo	Inclinazione	Forma	Rugosità classe JRC	Resistenza Ind. Schmidt	Alterazione	Apertura	Riempimento
1	50,10	SCT	4	Piana	7		Assente	Chiusa	Assente
2	50,55	SCT	7	Piana	7		Assente	Chiusa	Assente
3	50,83	SCT	4	Piana	6		Assente	Chiusa	Assente
4	51,08	FRT	58	Piana	7		Assente	Chiusa	Assente
5	51,23	SCT	13	Piana	6		Assente	Chiusa	Assente
6	51,48	FRT	56	Piana	7		Assente	Beante	Assente
7	51,71	STR	8	Piana	7		Assente	Chiusa	Assente
8	52,16	FRT	12	Piana	7		Assente	Aperta	Assente

PROVE DI PERMEABILITA'


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

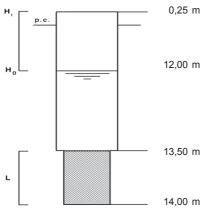
Norma di riferimento: Norm:

Raccomandazioni per le Indagini Geotecniche AGI (1977)

COMMITTENTE AUFTRAGGEBER		ITALFERR				
LOCALITA' LOKALITÄT		Ponte Gardena				
DATA ESECUZIONE PROVA DATUM		06/03/2017				
SONDAGGIO BOHRUNG		EO23				
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	6,00 ÷ 6,50					

t (s)	0	2	4	8	15	30	60	120	240	480	900	1800
h _i (m)	6,500	6,500	6,450	6,390	6,260	6,040	5,630	4,920	3,780	2,240	0,910	0,000
K	0,00E+00	0,00E+00	6,19E-05	3,74E-05	4,71E-05	3,82E-05	3,75E-05	3,60E-05	3,52E-05	3,49E-05	3,44E-05	0,00E+00
А		ea base foro che der Bohrlochbasis										0,008
d	Diametro Durchme			abschnitt					m			0,101
1	Altezza fi Versuchs	nestra sabschnit	t						m			0,50
cf	Coefficie Formkoe		ma			L>	>d					0,500
h ₀	Quota fal Wassers		•						m			6,50
S	Sporgenza rivestimento da p.c.							m			0,25	
hi ₍₀₎	Altezza o Wassers		-		0				m			6,50

Certificato Nr.	NL076/K2/EO23.	del	18/05/2017	Lo Sperimentatore	Daniel Ebner
Zertifikat Nr.	1/17	vom	16/03/2017	Bearbeiter	Damer Eoner
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	Di. Marco Martintoni


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

Raccomandazioni per le Indagini Geotecniche AGI (1977)

COMMITTENTE AUFTRAGGEBER		ITALFERR				
LOCALITA' LOKALITÄT		Ponte Gardena				
DATA ESECUZIONE PROVA DATUM		07/03/2017				
SONDAGGIO BOHRUNG		EO23				
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	13,50	13,50 ÷ 14,00				

Kmedio=	2.765.04	m/sec

t (s)	0	2	4	8	15	30	60	120	240	480	900	1800
h _i (m)	12,000	12,000	12,000	12,000	8,150	5,850	4,070	2,650	1,450	0,980	0,980	0,000
K	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,86E-04	3,54E-04	1,94E-04	1,15E-04	8,05E-05	2,62E-05	0,00E+00	0,00E+00
A	Area bas								m ²			0,008
	Fläche d											
n 1	Diametro								m			0,101
	Durchme		versucns	abschnitt								
1	Altezza f								m			0,50
•	Versuchs	sabschnit	t						•••			0,00
cf	Coefficie	nte di for	ma			1.	·>d					0,500
CI	Formkoe	fizient					~u					0,500
h	Quota fa	lda prima	della pro	ova da bo	cca foro							10.00
h ₀	Wassers	piegel zu	Beginn o	der Probe	ab ROK				m			12,00
S	Sporgen:	za rivesti	mento da	p.c.					m			0,25
la i	Altezza c	olonna d	i H₂0 nel	tempo t=	0							40.00
III(o)	Wassers		-						m			12,00

Certificato Nr.	NL076/K2/EO23.	del	18/05/2017	Lo Sperimentatore	Daniel Ebner
Zertifikat Nr.	2/17	vom	16/03/2017	Bearbeiter	Daniel Eblief
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	DI. Marco Martintoni

COMMITTENTE AUFTRAGGEBER		ITALFERR				
LOCALITA' LOKALITÄT		Ponte Gardena				
DATA ESECUZIONE PROVA DATUM		08/03/2017				
LITOLOGIA LITHOLOGIE		Fillade quarzifera				
SONDAGGIO BOHRUNG		EO23				
PROFONDITA' PROVA (m) VERSUCHSTIEFE (m)	22,00	22,00 ÷ 27,00				

Packer	Singolo
Packer	Singolo

Prova	verticale
Probe	senkrecht

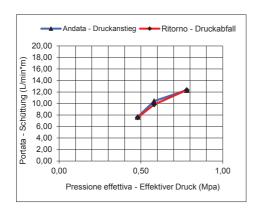
Quota falda (m da p.c.)	27,00
Grundwasserspiegel (m ab GOK)	27,00

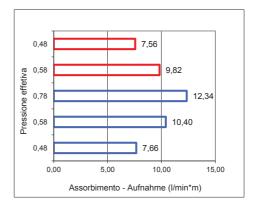
	Andata - Druckantstieg				
Pressione letta al manometro	Tempo	Letture conta litri	Portata		
Abgelesener Druck	Zeit	Literablesungen	Schüttung		
(MPa)	(min)	(1)	(l/min)		
	0'	0,0			
	2'	76,0			
0,2	4'	153,0	38,30		
0,∠	6'	229,0	30,30		
	8	306,0			
	10'	383,0			
	0'	0,0			
L	2'	104,0			
0,3	4'	209,0	52,00		
0,5	6'	312,0	32,00		
L	8'	416,0			
	10'	520,0			
L	0'	0,0			
ı L	2'	122,0	ļ		
0.5	4'	245,0	61.70		
0,5	6'	370,0	61,70		
ı	8'	494,0			
	10'	617,0			

Alt. strumenti (banco) da P.C. (m) Höhe der Messinstrumente ab GOK (m)	1,00
Diametro camera (m)	0,101
Durchmesser (m)	
Pressione paker (MPa)	13,00
Packerdruck (MPa)	10,00
Carico Idraulico (m)	1,00
Wasserauflast (m)	1,00

Ritorno - Druckabfall				
Pressione letta al manometro	Tempo	Letture conta litri	Portata	
Abgelesener Druck	Zeit	Literablesungen	Schüttung	
(MPa)	(min)	(1)	(l/min)	
	0'	0,0		
	2'	99,0		
0,3	4'	196,0	49,10	
0,5	6'	296,0	49,10	
	8'	394,0		
	10'	491,0		
	0'	0,0		
	2'	76,0		
0.2	4'	152,0	27.90	
0,2	6'	228,0	37,80	
	8'	303,0		
	10'	378,0		

Certificato Zertificat	NL076/K	3/EO23.1/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina Seite	1	di von	2		Il Direttore Direktor	Dr. M. Martintoni




Commitente	ITALFERR	
Auftraggeber	TTALTERK	
Località	Ponte Gardena	
Lokalität	Tonte Gardena	
Data esecuzione prova	08/03/2017	
Datum	08/03/2017	
Litologia	Fillade quarzifera	
Lithologie		
Sondaggio	EO23	
Bohrung	EO23	
Packer	Singolo	
Packer	Singolo	
Prova in	verticale	
Versuch durchgeführt	senkrecht	

	Profondità prova (m) Versuchstiefe (m)	22,00 - 27,00
L	Tasca (m) Versuchintervall (m)	5,00
d	Diametro camera di prova (m) Durchmesser (m)	0,101
h	Carico d'acqua (m) Wasserauflast (m)	1,00
UL	Unità Lugeon Lugeon-Wert valore rappresentativo (Houlsby, 1976)	16,48

Andata - Druckanstieg			
Pressione	Assorbimenti		
Druck	Aufnahme		
(Mpa)	l/min	l/min*m	
0	0,00	0,00	
0,48	38,30	7,66	
0,58	52,00	10,40	
0,78	61,70	12,34	

Ritorno - Druckabfall			
Pressione Assorbimenti			
Druck	Aufnahme		
(Mpa)	l/min	l/min*m	
0,78	61,70	12,34	
0,58	49,10	9,82	
0,48	37,80	7,56	
0	0,00	0,00	

	1 15,75	
ے	2 16,93	
Gradini - Stufen	3 15,82	
iradini	2 17,93	
. O		
	1 15,96	
-5,	5,00 15,00 25,00 Unità Lugeon *	

Certificato Zertificat	NL076/K	3/EO23.1/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina	2	di	2		Il Direttore	Dr. M. Martintoni
Seite	2	von	2		Direktor	51. 111. 1141.1111011

COMMITTENTE AUFTRAGGEBER	ITALFERR		
LOCALITA' LOKALITÄT	Ponte Gardena		
DATA ESECUZIONE PROVA DATUM	09/03/2017		
LITOLOGIA LITHOLOGIE	Fillade quarzifera		
SONDAGGIO BOHRUNG	EO23		
PROFONDITA' PROVA (m) VERSUCHSTIEFE (m)	29,00 ÷ 34,00		

racker	Singolo
Prova	verticale
Probe	senkrecht

Singolo

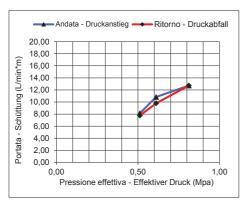
Quota falda (m da p.c.)	30,16
Grundwasserspiegel (m ab GOK)	50,10

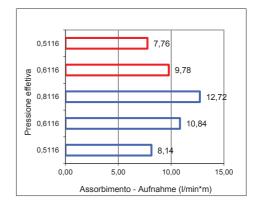
Andata - Druckantstieg				
Pressione letta al manometro	Тетро	Letture conta litri	Portata	
Abgelesener Druck	Zeit	Literablesungen	Schüttung	
(MPa)	(min)	(1)	(l/min)	
	0'	0,0		
	2'	81,0		
0,2	4'	163,0	40,70	
0,2	6'	244,0	40,70	
	8	325,0		
	10'	407,0		
	0'	0,0		
	2'	108,0		
0.2	4'	217,0	54.20	
0,3	6	325,0	54,20	
	8'	434,0		
	10'	542,0		
	0'	0,0		
	2'	126,0		
0.5	4'	254,0	62.60	
0,5	6'	381,0	63,60	
	8'	508,0		
	10'	636,0		

Alt. strumenti (banco) da P.C. (m) Höhe der Messinstrumente ab GOK (m)	1,00
Diametro camera (m) Durchmesser (m)	0,101
Pressione paker (MPa) Packerdruck (MPa)	13,00
Carico Idraulico (m) Wasserauflast (m)	1,00

Ritorno - Druckabfall				
Pressione letta al manometro	Тетро	Letture conta litri	Portata	
Abgelesener Druck	Zeit	Literablesungen	Schüttung	
(MPa)	(min)	(1)	(l/min)	
	0'	0,0		
	2'	99,0		
0,3	4'	197,0	48,90	
0,3	6'	295,0	40,90	
	8'	392,0		
	10'	489,0		
	0'	0,0		
	2'	77,0		
0.2	4'	153,0	20.00	
0,2	6'	231,0	38,80	
	8'	309,0		
	10'	388,0		

Certificato Zertificat	NL076/K	3/EO23.2/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina	1	di	2.		Il Direttore	Dr. M. Martintoni
Seite	-	von	_		Direktor	




Commitente Auftraggeber	ITALFERR	
Località Lokalität	Ponte Gardena	
Data esecuzione prova Datum	09/03/2017	
Litologia Lithologie	Fillade quarzifera	
Sondaggio Bohrung	EO23	
Packer	Singolo	
Packer	Singolo	
Prova in	verticale	
Versuch durchgeführt	senkrecht	

	Profondità prova (m) Versuchstiefe (m)	29,00 - 34,00
L	Tasca (m) Versuchintervall (m)	5,00
d	Diametro camera di prova (m) Durchmesser (m)	0,101
h	Carico d'acqua (m) Wasserauflast (m)	1,00
UL	Unità Lugeon Lugeon-Wert valore rappresentativo (Houlsby, 1976)	16,09

Andata - Druckanstieg					
Pressione	ssione Assorbimenti				
Druck	Aut	fnahme			
(Mpa)	l/min	l/min*m			
0	0,00	0,00			
0,5116	40,70	8,14			
0,6116	54,20	10,84			
0,8116	63,60	12,72			

Ritorno - Druckabfall				
Pressione	Assorbimenti			
Druck	Aufnahme			
(Mpa)	l/min	l/min*m		
0,8116	63,60	12,72		
0,6116	48,90	9,78		
0,5116	38,80	7,76		
0	0,00	0,00		

	1	15,17
ıfen	2	15,99
Gradini - Stufen	3	15,67
Grac	2	17,72
	1	15,91
-5	5,00	5,00 15,00 25,00
		Unità Lugeon *

Certificato Zertificat	NL076/K	NL076/K3/EO23.2/17		18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina	2	di	2		Il Direttore	Dr. M. Martintoni
Seite	2	von	2		Direktor	D1. W. Wai untoin

COMMITTENTE AUFTRAGGEBER		ITALFERR				
LOCALITA' LOKALITÄT		Ponte Gardena				
DATA ESECUZIONE PROVA DATUM		10/03/2017				
LITOLOGIA LITHOLOGIE		Fillade quarzifera				
SONDAGGIO BOHRUNG		EO23				
PROFONDITA' PROVA (m) VERSUCHSTIEFE (m)	40,00	40,00 ÷ 45,00				

Dealers	Singolo		Alt. strumenti (banco) da P.C. (m)	1.00
Packer	Singolo		Höhe der Messinstrumente ab GOK (m)	1,00
•			Diametro camera (m)	0,101
Prova verticale			Durchmesser (m)	0,101
Probe	senkrecht		Pressione paker (MPa)	13,00
·		-	Packerdruck (MPa)	13,00
Quota falda (m da j	p.c.)	30,16	Carico Idraulico (m)	1,00
Grundwassersnied	rel (mah COV)	30,10	Wassarauflast (m)	1,00

Wasserauflast (m)

Andata - Druckantstieg						
Pressione letta al manometro	Tempo	Letture conta litri	Portata			
Abgelesener Druck	Zeit	Literablesungen	Schüttung			
(MPa)	(min)	(1)	(l/min)			
	0'	0,0				
	2'	85,0				
0.2	4'	170,0	42,70			
0,2	6'	256,0				
	8	341,0]			
	10'	427,0				
	0'	0,0				
	2'	108,0				
0,3	4'	218,0	54,50			
0,3	6'	328,0	34,30			
	8'	437,0				
	10'	545,0				
	0'	0,0				
	2'	132,0				
0.5	4'	265,0	66.40			

398,0

531,0

664,0

Grundwasserspiegel (m ab GOK)

0,5

6'

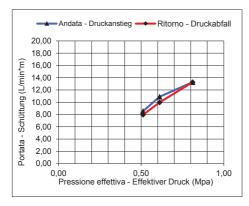
8'

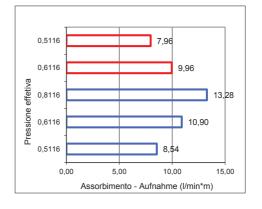
10'

	Ritorno - Druckabfall							
Pressione letta al manometro	Tempo	Letture conta litri	Portata					
Abgelesener Druck	Zeit	Literablesungen	Schüttung					
(MPa)	(min)	(1)	(l/min)					
	0'	0,0						
	2'	100,0						
0,3	4'	200,0	49,80					
0,3	6'	299,0	49,00					
	8'	398,0						
	10'	498,0						
	0'	0,0						
	2'	81,0	1					
0.2	4'	160,0	20.80					
0,2	6'	239,0	39,80					
	8'	318,0						
	10'	398,0						

Certificato Zertificat	NL076/K3/EO23.3/17		del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina Seite	1	di von	2		Il Direttore Direktor	Dr. M. Martintoni

66,40




Commitente Auftraggeber	ITALFERR
Località Lokalität	Ponte Gardena
Data esecuzione prova Datum	10/03/2017
Litologia Lithologie	Fillade quarzifera
Sondaggio Bohrung	EO23
Packer	Singolo
Packer	Singolo
Prova in	verticale
Versuch durchgeführt	senkrecht

	Profondità prova (m) Versuchstiefe (m)	40,00 - 45,00
L	Tasca (m) Versuchintervall (m)	5,00
d	Diametro camera di prova (m) Durchmesser (m)	0,101
h	Carico d'acqua (m) Wasserauflast (m)	1,00
UL	Unità Lugeon Lugeon-Wert valore rappresentativo (Houlsby, 1976)	16,54

Andata - Druckanstieg					
Pressione	Pressione Assorbimenti				
Druck	Druck Aufnahme				
(Mpa)	l/min	l/min*m			
0	0,00	0,00			
0,5116	42,70	8,54			
0,6116	54,50	10,90			
0,8116	66,40	13,28			

Ritorno - Druckabfall						
Pressione Assorbimenti						
Druck	Aufnah	me				
(Mpa)	l/min	l/min*m				
0,8116	66,40	13,28				
0,6116	49,80	9,96				
0,5116	39,80	7,96				
0	0.00	0.00				

		1				15,56		
ıfen		2				16,29		
Gradini - Stufen		3				16,36		
Grad		2				17,8	2	
		1				16,69		
	-5,	00	5,	00 Unità	15, Lugeon		25,0	00
				Oilla	Lugeon			

Certificato	NL076/K3/EO23.3/17		NL076/K3/EO23.3/17 del 18/05/20		Lo Sperimentatore	Daniel Ebner
Zertificat			vom	16/03/2017	Bearbeiter	Daniel Eblief
Pagina	2	di	2		Il Direttore	Dr. M. Martintoni
Seite		von			Direktor	Di. W. Waruntoni

COMMITTENTE AUFTRAGGEBER		ITALFERR			
LOCALITA' LOKALITÄT		Ponte Gardena			
DATA ESECUZIONE PROVA DATUM		14/03/2017			
LITOLOGIA LITHOLOGIE		Fillade quarzifera			
SONDAGGIO BOHRUNG		EO23			
PROFONDITA' PROVA (m) VERSUCHSTIEFE (m)	48,00	48,00 ÷ 52,00			

Packer	Singolo		Alt. strumenti (banco) da P.C. (m)	1.00
Singolo			Höhe der Messinstrumente ab GOK (m)	1,00
•			Diametro camera (m)	0,101
Prova	verticale		Durchmesser (m)	0,101
Probe senkrecht			Pressione paker (MPa)	15,00
			Packerdruck (MPa)	15,00
Quota falda (m d	la p.c.)	30.25	Carico Idraulico (m)	1.00

Wasserauflast (m)

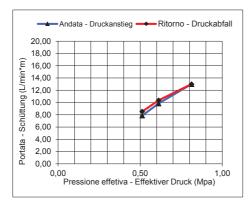
Quota falda (m da p.c.)	30,25
Grundwasserspiegel (m ab GOK)	30,23

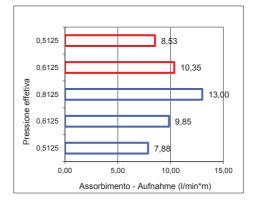
	Andata - I	Druckantstieg	
Pressione letta al manometro	Tempo	Letture conta litri	Portata
Abgelesener Druck	Zeit	Literablesungen	Schüttung
(MPa)	(min)	(1)	(l/min)
	0'	0,0	
	2'	62,0	
0,2	4'	127,0	31,50
0,2	6'	190,0	31,30
	8	252,0	
	10'	315,0	
	0'	0,0	
	2'	79,0	
0,3	4'	157,0	39,40
0,3	6'	236,0	39,40
	8'	315,0	
	10'	394,0	
	0'	0,0	
	2'	103,0	
0.5	4'	208,0	52.00
0,5	6'	312,0	52,00
	8'	416,0	
	10'	520,0	

	Ritorno - Druckabfall					
Pressione letta al manometro	Tempo	Letture conta litri	Portata			
Abgelesener Druck	Zeit	Literablesungen	Schüttung			
(MPa)	(min)	(1)	(l/min)			
	0'	0,0				
	2'	82,0				
0,3	4'	165,0	41,40			
0,3	6'	247,0	41,40			
	8'	330,0				
	10'	414,0				
	0'	0,0				
	2'	68,0				
0.2	4'	137,0	24.10			
0,2	6'	205,0	34,10			
	8'	273,0				
	10'	341,0				

Certificato Zertificat	NL076/K	3/EO23.4/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Daniel Ebner
Pagina Seite	1	di von	2		Il Direttore Direktor	Dr. M. Martintoni

1,00




Commitente	ITALFERR
Auftraggeber	
Località	Ponte Gardena
Lokalität	1 onte Gardena
Data esecuzione prova	14/03/2017
Datum	14/03/2017
Litologia	Fillade quarzifera
Lithologie	Fillade quarznera
Sondaggio	EO23
Bohrung	EO23
Packer	Singolo
Packer	Singolo
Prova in	verticale
Versuch durchgeführt	senkrecht

	Profondità prova (m) Versuchstiefe (m)	48,00 - 52,00
L	Tasca (m) Versuchintervall (m)	4,00
d	Diametro camera di prova (m) Durchmesser (m)	0,101
h	Carico d'acqua (m) Wasserauflast (m)	1,00
UL	Unità Lugeon Lugeon-Wert valore rappresentativo (Houlsby, 1976)	16,20

Andata - Druckanstieg					
Pressione	Pressione Assorbimenti				
Druck	fnahme				
(Mpa)	l/min	l/min*m			
0	0,00	0,00			
0,5125	31,50	7,88			
0,6125	39,40	9,85			
0,8125	52,00	13,00			

Ritorno - Druckabfall						
Pressione	Assorbin	nenti				
Druck	Aufnah	me				
(Mpa)	l/min	l/min*m				
0,8125	52,00	13,00				
0,6125	41,40	10,35				
0,5125	34,10	8,53				
0	0,00	0,00				

		1				16,63		
neur		2				16,90		
Gradini - Stufen		3				16,00		
Grad		2				16,08		
		1				15,37		
	-5,	00	5,	00 Unità	15, Lugeon		25,	00

Certificato	NL076/K3/EO23.4/17		3/EO23.4/17 del 18/05/201		Lo Sperimentatore	Daniel Ebner
Zertificat	INLO / O/ IN	NLU/6/K3/EO23.4/1/		10/03/2017	Bearbeiter	Daniel Lonei
Pagina	2 di		2		Il Direttore	Dr. M. Martintoni
Seite		von			Direktor	D1. W. Maruntoni

PROVE DILATOMETRICHE

Committente: ITALFERR S.p.A.

Località: PONTE GARDENA (BZ)

Progetto:

ESECUZIONE DILATOMETRIE CON DILATOMETRO FLESSIBILE DILAROC

BOLZANO, 06/04/2017

COMMITTENTE: ITALFERR S.p.A.

LOCALITA': PONTE GARDENA (BZ)

PROGETTO:

Prove eseguite

Di seguito si allegano i certificati relativi alle prove dilatometriche DILAROC eseguite in località Ponte Gardena (BZ), in data 15-16-23/03/2017 e 08/05/2017.

Prove dilatometriche DILAROC:

PROVA	DATA	PROF. PROVA(m)	Modulo di deformazione (MPa)	Modulo elastico (MPa)	RQD (%)
E023D1	15/03/2017	45,0	2182	4036	30-35
E023D2	15/03/2017	38,0	2610	5222	50-55
E023D3	15/03/2017	32,0	3526	5504	30-25
E023D4	15/03/2017	27,0	2540	3419	15-20
E023D5	15/03/2017	23,0	2311	2915	60-65
E023D6	15/03/2017	18,0	4736	6501	75-80

Nelle prove eseguite sono stati calcolati i seguenti moduli:

SESECUZIONE DI INDAGIN GEOTECNICHE SU TERRENI E SULLE ROCC

• MODULO DI DEFORMAZIONE, calcolato in fase di carico tra la minima pressione di

prova e la massima pressione raggiunta ad ogni ciclo.

• MODULO DI SCARICO (ELASTICO), calcolato in fase di scarico tra la massima

pressione raggiunta ad ogni ciclo e la minima pressione di prova.

• MODULO DI PRIMO CARICO, calcolato in fase di carico tra la massima pressione

raggiunta nel ciclo in esame e quella raggiunta nel ciclo precedente.

• MODULO DI RICARICO, calcolato tra la minima pressione del ciclo in esame ed il

massimo raggiunto nel ciclo precedente.

I moduli sono stati calcolati singolarmente per ogni trasduttore e sul valore medio delle

deformazioni.

DATA: 06/04/2017.

Lo Sperimentatore: Dott. Colotti Domenico

LANDSERVICE S.r.I.

PROVA DILATOMETRICA con DILAROC TELEMAC

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

PONTE GARDENA (BZ)

SONDAGGIO: EO23

PROVA N.: D1

LOCALITA':

DATA: 15/03/2017

PROF. PROVA (m): 45,0

DIAMETRO FORO (mm):

102.8

UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO

INCLINAZIONE (°): 90

ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

95

SONDA: Nº11D01

TIPO GUAINA:

PRESSIONE MAX. (Mpa): 20

DIAMETRO GUAINA(mm):

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 30-40 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

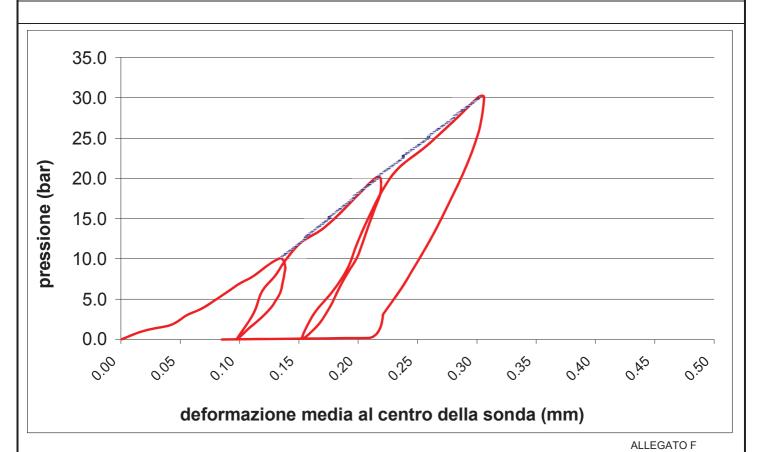
Ed

MODULO ELASTICO:

Ee

4036 Mpa

MODULO DI DEFORMAZIONE:

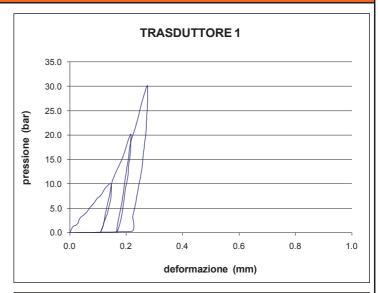

CALCOLATO SUL 2°CARICO

2182

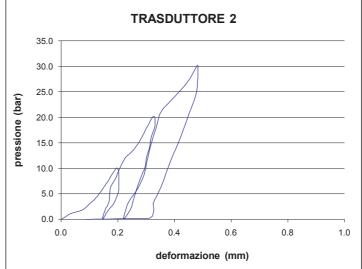
Mpa

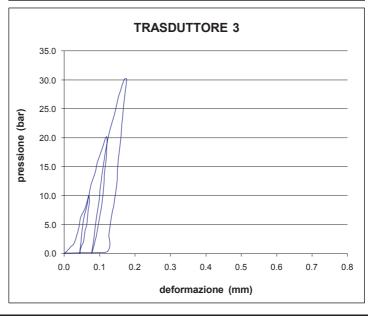
CALCOLATO SUL 2°SCARICO

GRAFICO PRESSIONE - DEFORMAZIONE (deformazione ricavata dalla media dei tre trasduttori)



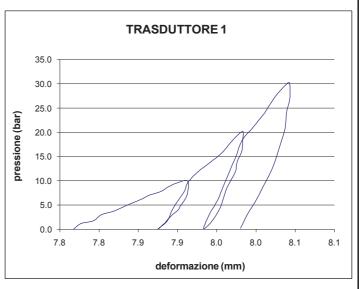
SONDAGGIO: EO23

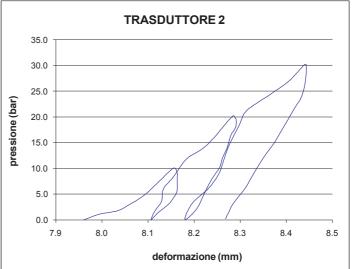


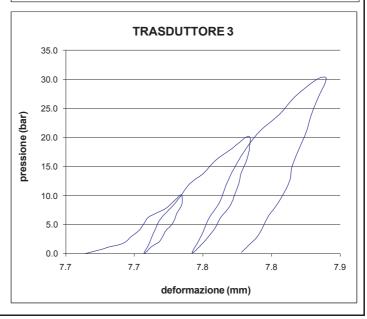

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
0.0	4.1	0.000	0.000	0.000	0.000
0.0	5.2	0.000	0.000	0.000	0.000
1.0	5.9	0.026	0.074	0.028	0.034
1.5	7.1	0.036	0.099	0.034	0.045
2.0	8.0	0.054	0.117	0.039	0.057
2.5 3.0	9.3 10.3	0.072 0.087	0.137 0.149	0.043 0.046	0.068 0.075
3.5	11.1	0.007	0.149	0.052	0.073
4.0	11.9	0.111	0.168	0.059	0.094
4.5	13.4	0.128	0.185	0.066	0.106
5.0	14.2	0.144	0.197	0.070	0.114
5.5 6.0	13.2 12.2	0.147 0.146	0.203 0.203	0.071 0.070	0.116 0.115
6.5	11.1	0.145	0.203	0.067	0.112
7.0	9.9	0.141	0.203	0.065	0.109
7.5	8.8	0.136	0.198	0.062	0.105
8.0 8.5	8.1 7.2	0.134 0.127	0.193 0.185	0.059 0.057	0.101 0.097
9.0	6.1	0.127	0.165	0.057	0.097
9.5	5.4	0.117	0.160	0.049	0.085
10.0	4.1	0.108	0.146	0.043	0.076
10.5	5.9	0.120	0.155	0.047	0.083
11.0 11.5	7.7 10.1	0.125 0.134	0.169 0.173	0.050 0.055	0.088 0.095
12.0	12.1	0.134	0.173	0.063	0.107
12.5	13.8	0.146	0.205	0.069	0.114
13.0	16.1	0.160	0.225	0.076	0.126
13.5	17.8	0.174	0.257	0.086	0.141
14.0 14.5	20.1 22.0	0.191 0.201	0.284 0.301	0.095 0.106	0.156 0.169
15.0	24.3	0.216	0.326	0.119	0.186
15.5	22.4	0.216	0.331	0.120	0.188
16.0	20.4	0.215	0.319	0.118	0.184
16.5 17.0	18.0 16.1	0.209 0.207	0.311 0.301	0.114 0.112	0.179 0.176
17.5	14.2	0.207	0.301	0.112	0.170
18.0	12.4	0.195	0.281	0.106	0.166
18.5	10.3	0.191	0.268	0.099	0.157
19.0	8.2	0.186	0.257	0.094	0.151
19.5 20.0	5.9 4.2	0.177 0.166	0.243 0.220	0.086 0.078	0.140 0.128
20.5	7.3	0.174	0.236	0.085	0.138
21.0	10.1	0.184	0.270	0.090	0.148
21.5	12.9	0.191	0.293	0.098	0.159
22.0 22.5	16.0 18.9	0.199 0.207	0.305 0.317	0.103 0.109	0.167 0.175
23.0	22.4	0.215	0.337	0.118	0.186
23.5	25.3	0.230	0.354	0.128	0.200
24.0	28.1	0.244	0.400	0.142	0.220
24.5 25.0	31.1 34.2	0.256 0.273	0.446 0.479	0.153 0.170	0.237 0.258
25.5	34.2	0.273	0.479	0.176	0.256
26.0	30.9	0.276	0.481	0.170	0.259
26.5	28.1	0.272	0.473	0.165	0.253
27.0	24.9	0.270	0.452	0.161	0.247
27.5 28.0	22.1 19.1	0.265 0.259	0.434 0.414	0.156 0.151	0.240 0.233
28.5	16.4	0.253	0.392	0.131	0.227
29.0	12.9	0.242	0.368	0.141	0.215
29.5	10.3	0.234	0.351	0.133	0.205
30.0	7.2	0.222	0.324	0.126	0.193
30.5 31.0	4.3	0.213	0.308	0.114	0.179
31.5					
32.0					
32.5					
33.0 33.5					
33.5					
34.5					
35.0					
35.5					
36.0 36.5					
00.0	I .	i	ı	l	1

PROF. PROVA (m): 45,0



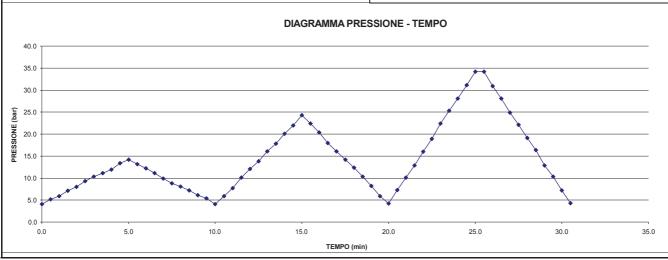

DATA: 15/03/2017


PROF. PROVA (m): 45,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

					(-
Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
	, ,				
0.0	4.1	7.767	7.960	7.664	7.795
0.5 1.0	5.2 5.9	7.776 7.793	7.994 8.034	7.681 7.692	7.815 7.837
1.5	7.1	7.793	8.059	7.692	7.850
2.0	8.0	7.821	8.077	7.703	7.864
2.5	9.3	7.839	8.097	7.707	7.878
3.0	10.3	7.854	8.109	7.710	7.888
3.5	11.1	7.863	8.119	7.716	7.896
4.0	11.9	7.878	8.128	7.723	7.906
4.5	13.4	7.895	8.145	7.730	7.920
5.0	14.2	7.911	8.157	7.734	7.930
5.5 6.0	13.2 12.2	7.914 7.913	8.163 8.163	7.735 7.734	7.933 7.933
6.5	11.1	7.913	8.163	7.734	7.933
7.0	9.9	7.908	8.163	7.729	7.929
7.5	8.8	7.903	8.158	7.726	7.925
8.0	8.1	7.901	8.153	7.723	7.922
8.5	7.2	7.894	8.145	7.721	7.916
9.0	6.1	7.887	8.130	7.718	7.908
9.5	5.4	7.884	8.120	7.713	7.902
10.0	4.1	7.875	8.106	7.707	7.893
10.5	5.9 7.7	7.887 7.892	8.115	7.711 7.714	7.901 7.908
11.0 11.5	10.1	7.892 7.901	8.129 8.133	7.714	7.908 7.914
12.0	12.1	7.901	8.152	7.719	7.914
12.5	13.8	7.913	8.165	7.733	7.933
13.0	16.1	7.927	8.185	7.740	7.946
13.5	17.8	7.941	8.217	7.750	7.965
14.0	20.1	7.958	8.244	7.759	7.982
14.5	22.0	7.968	8.261	7.770	7.995
15.0	24.3	7.983	8.286	7.783	8.012
15.5	22.4	7.983	8.291 8.279	7.784	8.014
16.0 16.5	20.4 18.0	7.982 7.976	8.279	7.782 7.778	8.009 8.003
17.0	16.1	7.974	8.261	7.776	7.999
17.5	14.2	7.968	8.255	7.773	7.994
18.0	12.4	7.962	8.241	7.770	7.986
18.5	10.3	7.958	8.228	7.763	7.978
19.0	8.2	7.953	8.217	7.758	7.972
19.5	5.9	7.944	8.203	7.750	7.961
20.0	4.2	7.933	8.180	7.742	7.948
20.5	7.3	7.941	8.196	7.749	7.958
21.0 21.5	10.1 12.9	7.951 7.958	8.230 8.253	7.754 7.762	7.974 7.986
22.0	16.0	7.966	8.265	7.767	7.994
22.5	18.9	7.974	8.277	7.773	8.003
23.0	22.4	7.982	8.297	7.782	8.015
23.5	25.3	7.997	8.314	7.792	8.029
24.0	28.1	8.011	8.360	7.806	8.053
24.5	31.1	8.023	8.406	7.817	8.075
25.0	34.2	8.040	8.439	7.834	8.097
25.5 26.0	34.2 30.9	8.043 8.043	8.443 8.441	7.840 7.834	8.101 8.098
26.5	28.1	8.039	8.433	7.829	8.093
27.0	24.9	8.037	8.412	7.825	8.084
27.5	22.1	8.032	8.394	7.820	8.075
28.0	19.1	8.026	8.374	7.815	8.065
28.5	16.4	8.020	8.352	7.813	8.056
29.0	12.9	8.009	8.328	7.805	8.042
29.5	10.3	8.001	8.311	7.797	8.031
30.0	7.2 4.3	7.989	8.284	7.790 7.778	8.016 8.004
30.5 31.0	4.3	7.980	8.268	1.118	8.004
31.5					
32.0					
32.5					
33.0					
33.5					
34.0					
34.5					
35.0					
35.5 36.0					
36.5					

MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI CARICO Ed (Mpa)						CICLO DI CARICO	/////					NE E	d				
	TRASDUT	TORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDU	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
•	9.7	20.2	9.7	20.2	9.7	20.2	9.7	20.2	1°	0.0	10.1	0.0	10.1	0.0	10.1	0.0	10.1
2°	19	28	1115		2699		1708		901		6	659		1854		962	
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	21.2	30.1	21.2	30.1	21.2	30.1	21.2	30.1		0.0	20.2	0.1	20.2	0.1	20.2	0.0	20.2
3°	26	60	91	15	27	23	16	82	2°	24	04	14	35	33	99	21	82
										P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
								•	0.1	30.1	0.1	30.1	0.1	30.1	0.1	30.1	
						3°	36	03	14	89	41	91	25	88			

CICLO DI RICARICO	/8.4						CICLO DI						е				
	TRASDUT	TTORE 1	TRASDU*	` '	TRASDU	TTORE 3	ME	DIA		TRASDU	TTORE 1	TRASDU	` '	TRASDU	TTORE 3	ME	DIA
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	0.0	9.7	0.1	9.7	0.1	9.7	0.0	9.7		10.1	0.0	10.1	0.1	10.1	0.1	10.1	0.0
2°	32	81	20	91	47	45	31	17	1°	36	06	2520		47	60	35	808
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	0.1	21.2	0.1	21.2	0.1	21.2	0.1	21.2		20.2	0.1	20.2	0.1	20.2	0.1	20.2	0.1
3°	42	37	20	24	54	24	33	48	2°	51	67	24	37	63	01	40	36
										P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
									30.1	0.2	30.1	0.2	30.1	0.2	30.1	0.2	
								3°	61	00	21	96	61	98	39	62	

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **1539 M**pa

SONDAGGIO: EO23

PROVA N.: D1

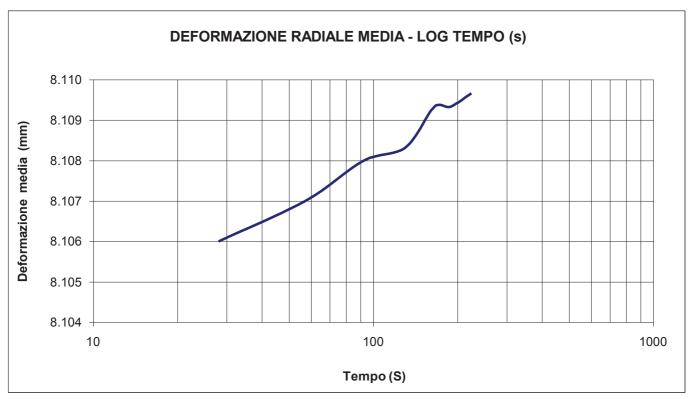
DATA: 15/03/2017

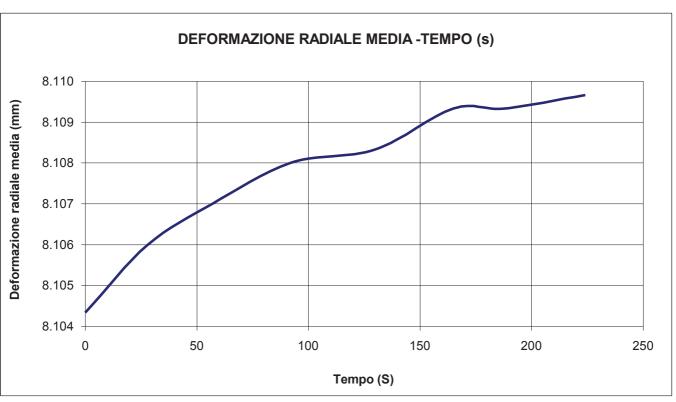
PROVA DI CREEP

PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI **34.2** bar

TEMPO MAX DELLA PROVA: 224 SEC 3.7 Min

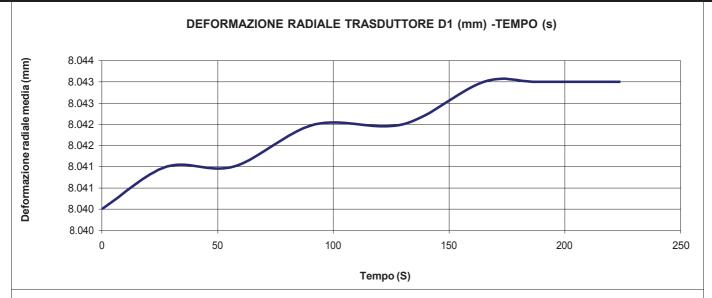
TABELLA DATI

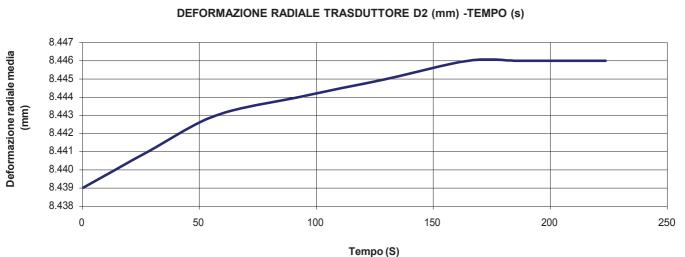

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
8.02.31	34.2	8.040	8.439	7.834	0	8.104	0.000
8.02.59	34.2	8.041	8.441	7.836	28	8.106	0.002
8.03.28	34.2	8.041	8.443	7.837	57	8.107	0.003
8.04.03	34.2	8.042	8.444	7.838	92	8.108	0.004
8.04.41	34.2	8.042	8.445	7.838	130	8.108	0.004
8.05.16	34.2	8.043	8.446	7.839	165	8.109	0.005
8.05.39	34.2	8.043	8.446	7.839	188	8.109	0.005
8.06.15	34.2	8.043	8.446	7.840	224	8.110	0.005
\vdash							
\longmapsto							
							
\longmapsto							
ļļ							
ļļ							
							
<u> </u>							

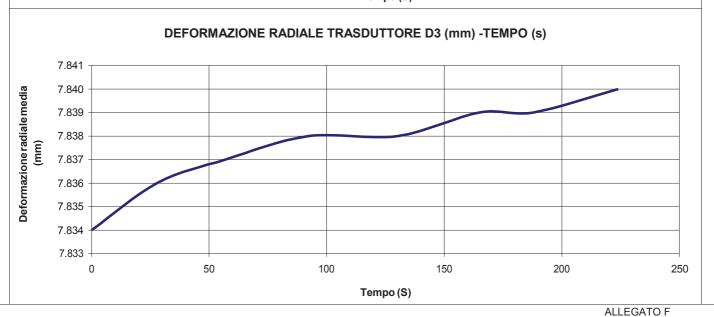

ALLEGATO F

SONDAGGIO: EO23 PROVA N.: D1 DATA: 15/03/2017

PROVA DI CREEP




SONDAGGIO: EO23


PROVA N.: D1

DATA: 15/03/2017

PROVA DI CREEP

PROVA DILATOMETRICA

con DILAROC TELEMAC

PROF. PROVA (m): 38,0

DIAMETRO FORO (mm):

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

LOCALITA': PONTE GARDENA (BZ)

SONDAGGIO: EO23 UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO

PROVA N.: **D2** INCLINAZIONE (%): **90**

DATA: 15/03/2017 ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

SONDA: Nº11D01

DIAMETRO GUAINA(mm): 95

TIPO GUAINA:

PRESSIONE MAX. (Mpa): 20

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 50-55 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

Ed

Ee

MODULO DI DEFORMAZIONE:

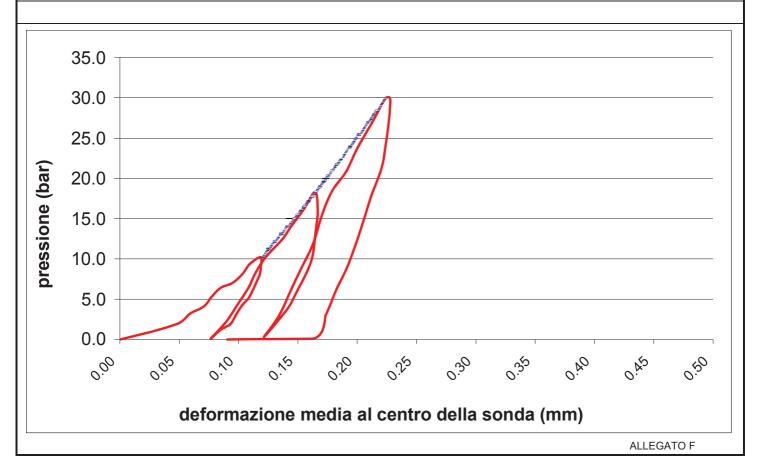
CALCOLATO SUL 2°CARICO

2610

MODULO ELASTICO:

CALCOLATO SUL 2°SCARICO

5222


Mpa

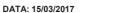
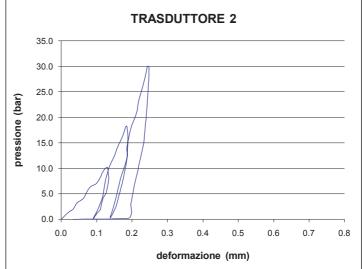

102.1

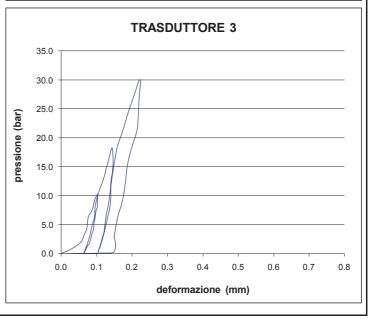
GRAFICO PRESSIONE - DEFORMAZIONE

Mpa

(deformazione ricavata dalla media dei tre trasduttori)

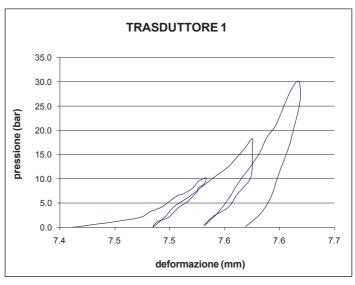
SONDAGGIO: EO23 PROF. PROVA (m): 38,0

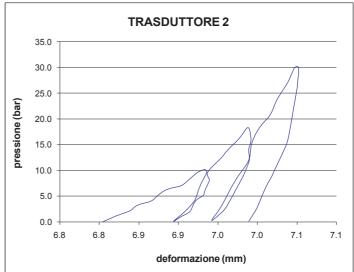


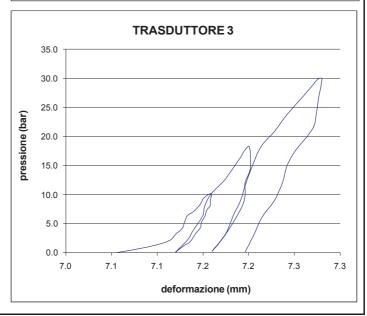

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

					1
Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
0.0	3.0	0.000	0.000	0.000	0.000
0.5	4.1	0.038	0.016	0.000	0.026
1.0	5.1	0.063	0.034	0.057	0.048
1.5	6.2	0.071	0.044	0.064	0.057
2.0 2.5	7.1 8.3	0.081 0.088	0.062 0.071	0.071 0.074	0.070 0.077
3.0	9.4	0.005	0.083	0.074	0.084
3.5	10.0	0.102	0.099	0.083	0.094
4.0	11.1	0.110	0.109	0.090	0.102
4.5 5.0	12.4	0.115 0.122	0.118	0.095 0.103	0.108 0.117
5.5	13.2 11.9	0.122	0.130 0.133	0.103	0.117
6.0	11.1	0.115	0.135	0.102	0.116
6.5	10.3	0.114	0.133	0.098	0.113
7.0	9.2	0.109	0.130	0.096	0.110
7.5 8.0	8.1 7.3	0.104 0.098	0.127 0.119	0.092 0.091	0.106 0.101
8.5	6.1	0.093	0.113	0.085	0.096
9.0	4.9	0.087	0.110	0.080	0.091
9.5	4.2	0.078	0.101	0.073	0.082
10.0	3.1	0.074	0.090	0.064 0.077	0.075
10.5 11.0	5.2 7.3	0.085 0.093	0.105 0.117	0.077	0.088 0.097
11.5	9.4	0.107	0.122	0.094	0.106
12.0	11.1	0.117	0.127	0.096	0.112
12.5	13.1	0.128	0.135	0.103	0.120
13.0 13.5	15.4 17.1	0.142 0.149	0.150 0.159	0.117 0.125	0.135 0.143
14.0	19.2	0.143	0.133	0.123	0.153
14.5	21.3	0.164	0.184	0.144	0.162
15.0	18.9	0.164	0.188	0.146	0.164
15.5 16.0	17.0 15.1	0.164 0.164	0.185 0.186	0.145 0.140	0.163 0.161
16.5	12.9	0.162	0.181	0.140	0.159
17.0	11.0	0.155	0.175	0.137	0.154
17.5	9.3	0.149	0.169	0.131	0.148
18.0	7.1	0.142	0.161	0.123	0.140
18.5 19.0	5.2 3.3	0.128 0.120	0.153 0.138	0.114 0.104	0.130 0.119
19.5	6.0	0.133	0.150	0.118	0.132
20.0	9.4	0.144	0.162	0.127	0.143
20.5	12.0	0.151	0.172	0.135	0.151
21.0 21.5	15.0 18.4	0.161 0.171	0.185 0.189	0.141 0.149	0.160 0.168
22.0	21.4	0.177	0.199	0.158	0.176
22.5	23.8	0.185	0.212	0.172	0.188
23.0	26.8	0.191	0.221	0.186	0.198
23.5 24.0	30.2 32.9	0.197 0.204	0.235 0.243	0.205 0.220	0.211 0.221
24.5	32.9	0.207	0.248	0.224	0.225
25.0	30.1	0.208	0.247	0.221	0.224
25.5	27.1	0.206	0.244	0.218	0.222
26.0	24.3	0.203	0.241 0.237	0.214	0.218
26.5 27.0	20.8 18.0	0.199 0.195	0.237	0.196 0.186	0.209 0.203
27.5	15.1	0.190	0.224	0.181	0.197
28.0	11.9	0.185	0.214	0.172	0.189
28.5	9.2	0.181	0.205	0.159	0.180
29.0 29.5	5.9 3.1	0.172 0.158	0.196 0.185	0.149 0.140	0.170 0.159
30.0	3.1	0.130	0.103	0.140	0.139
30.5					
31.0					
31.5					
32.0 32.5					
33.0					
33.5					
34.0					
34.5 35.0					
35.5					
36.0					
36.5		1	1		

36.5



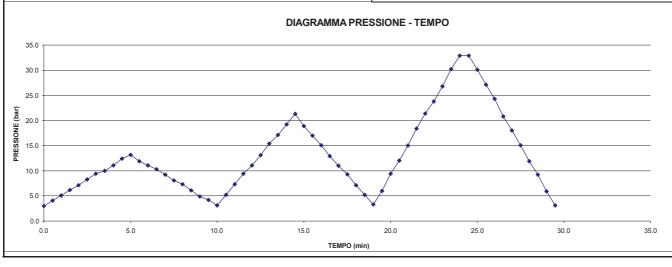

DATA: 15/03/2017


PROF. PROVA (m): 38,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
0.0 0.5	3.0 4.1	7.411 7.449	6.804 6.820	7.056 7.093	7.082 7.111
1.0	5.1	7.474	6.838	7.113	7.111
1.5	6.2	7.482	6.848	7.120	7.141
2.0 2.5	7.1 8.3	7.492 7.499	6.866 6.875	7.127 7.130	7.153 7.159
3.0	9.4	7.506	6.887	7.133	7.166
3.5	10.0	7.513	6.903	7.139	7.176
4.0 4.5	11.1 12.4	7.521 7.526	6.913 6.922	7.146 7.151	7.185 7.191
5.0	13.2	7.533	6.934	7.151	7.191
5.5	11.9	7.531	6.937	7.158	7.200
6.0 6.5	11.1 10.3	7.526 7.525	6.939 6.937	7.158 7.154	7.200 7.197
7.0	9.2	7.525	6.934	7.154	7.197
7.5	8.1	7.515	6.931	7.148	7.190
8.0 8.5	7.3 6.1	7.509 7.504	6.923	7.147	7.185
9.0	4.9	7.504	6.918 6.914	7.141 7.136	7.180 7.175
9.5	4.2	7.489	6.905	7.129	7.166
10.0	3.1	7.485	6.894	7.120	7.158
10.5 11.0	5.2 7.3	7.496 7.504	6.909 6.921	7.133 7.141	7.171 7.181
11.5	9.4	7.518	6.926	7.150	7.190
12.0	11.1	7.528	6.931	7.152	7.195
12.5 13.0	13.1 15.4	7.539 7.553	6.939 6.954	7.159 7.173	7.204 7.218
13.5	17.1	7.560	6.963	7.173	7.216
14.0	19.2	7.568	6.977	7.190	7.237
14.5 15.0	21.3 18.9	7.575 7.575	6.988 6.992	7.200 7.202	7.246 7.248
15.5	17.0	7.575	6.989	7.202	7.247
16.0	15.1	7.575	6.990	7.196	7.246
16.5 17.0	12.9 11.0	7.573 7.566	6.985 6.979	7.196 7.193	7.243 7.238
17.5	9.3	7.560	6.973	7.193	7.232
18.0	7.1	7.553	6.965	7.179	7.224
18.5 19.0	5.2 3.3	7.539 7.531	6.957 6.942	7.170 7.160	7.214 7.203
19.5	6.0	7.544	6.954	7.100	7.203
20.0	9.4	7.555	6.966	7.183	7.227
20.5	12.0	7.562	6.976	7.191 7.197	7.235
21.0 21.5	15.0 18.4	7.572 7.582	6.989 6.993	7.197	7.245 7.252
22.0	21.4	7.588	7.003	7.214	7.260
22.5	23.8	7.596	7.016	7.228	7.272
23.0 23.5	26.8 30.2	7.602 7.608	7.025 7.039	7.242 7.261	7.282 7.295
24.0	32.9	7.615	7.033	7.276	7.305
24.5	32.9	7.618	7.052	7.280	7.309
25.0	30.1	7.619	7.051	7.277	7.308
25.5 26.0	27.1 24.3	7.617 7.614	7.048 7.045	7.274 7.270	7.306 7.302
26.5	20.8	7.610	7.041	7.252	7.294
27.0	18.0	7.606	7.037	7.242	7.287
27.5 28.0	15.1 11.9	7.601 7.596	7.028 7.018	7.237 7.228	7.281 7.273
28.5	9.2	7.592	7.009	7.215	7.264
29.0	5.9	7.583	7.000	7.205	7.255
29.5 30.0	3.1	7.569	6.989	7.196	7.243
30.5					
31.0					
31.5					
32.0 32.5					
33.0					
33.5					
34.0 34.5					
34.5 35.0					
35.5					
36.0 36.5					
36.5			<u> </u>		

MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI CARICO	rico (Mpa)						CICLO DI CARICO	M	IODU	LO DI		ORM/ pa)	AZIOI	NE E	d		
	TRASDUT	TORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDUTTORE 1 TRASDUTTORE 2 TRASDUTTOR			TTORE 3	3 MEDIA			
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
•	10.1	18.3	10.1	18.3	10.1	18.3	10.1	18.3	1°	0.0	10.2	0.0	10.2	0.0	10.2	0.0	10.2
2°	2908		2136		2553		24	34		1067		1002		12	64	10	94
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	18.4	29.9	18.4	29.9	18.4	29.9	18.4	29.9		0.1	18.3	0.2	18.3	0.1	18.3	0.1	18.3
3°	54	37	33	36	23	68	32	62	2°	25	81	24	5 8	29	04	26	10
								P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
										0.3	29.9	0.3	29.9	0.3	29.9	0.3	29.9
								3°	44	98	35	99	32	57	36	68	

CICLO DI		MC	DUL	O DI F	RICAF	RICO	Ed		CICLO DI	MODULO ELASTICO Ee								
RICARICO				(M)	pa)				SCARICO				(Mı	pa)				
	TRASDU*	TTORE 1	TRASDU*	TTORE 2	TRASDU*	TTORE 3	ME	DIA		TRASDU	TTORE 1	TRASDU*	TTORE 2	TRASDU	TTORE 3	ME	MEDIA	
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	0.1	10.1	0.2	10.1	0.1	10.1	0.1	10.1		10.2	0.1	10.2	0.2	10.2	0.1	10.2	0.1	
2°	2364		2808		3273		27	75	1°	26	86	31	3191		3306		98	
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	0.3	18.4	0.3	18.4	0.3	18.4	0.3	18.4		18.3	0.3	18.3	0.3	18.3	0.3	18.3	0.3	
3°	40	53	37	88	42	79	39	84	2°	52	22	49	95	57	44	52	22	
										P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
										29.9	0.1	29.9	0.1	29.9	0.1	29.9	0.1	
									3°	77	63	60	38	45	29	57	64	

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **2400** Mpa

SONDAGGIO: EO23

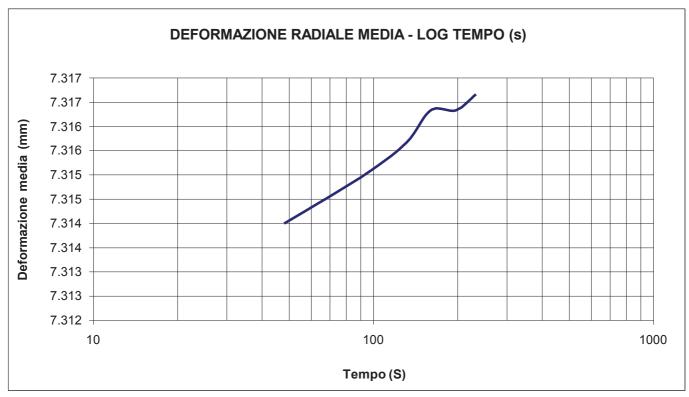
PROVA N.: D2

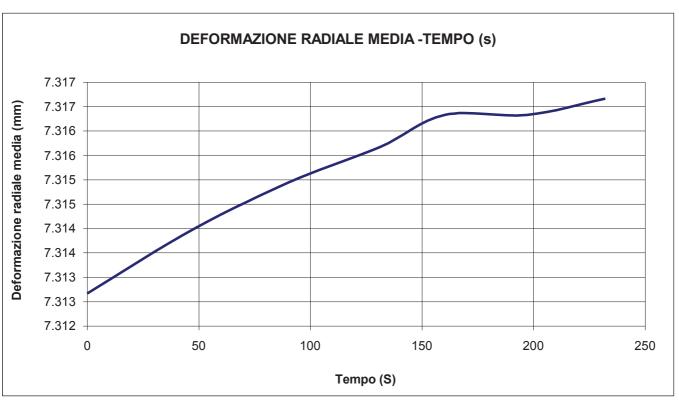
DATA: 15/03/2017

PROVA DI CREEP

PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI 32.9 bar

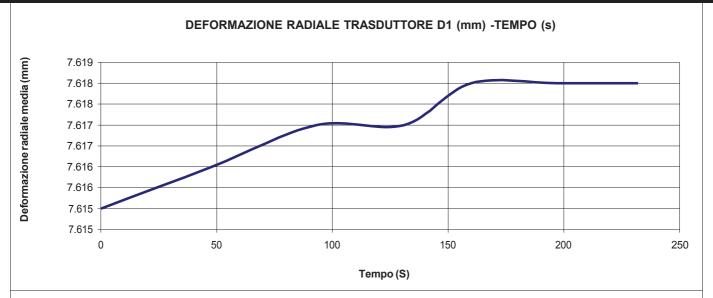
TEMPO MAX DELLA PROVA: 232 SEC 3.9 Min

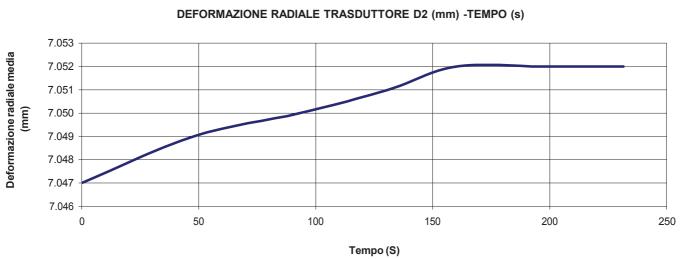

TABELLA DATI

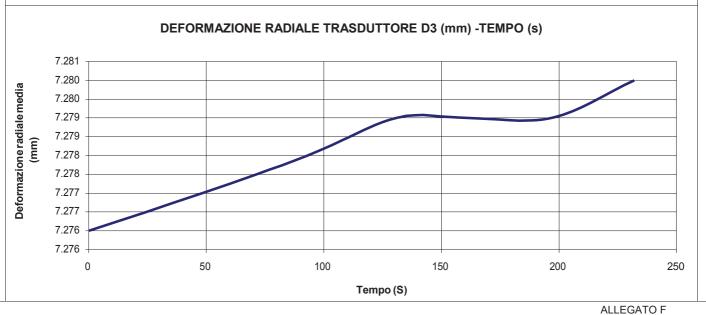

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
9.19.23	32.9	7.615	7.047	7.276	0	7.313	0.000
9.20.11	32.9	7.616	7.049	7.277	48	7.314	0.001
9.20.56	32.9	7.617	7.050	7.278	93	7.315	0.001
9.21.34	32.9	7.617	7.051	7.279	131	7.316	0.002
9.22.03	32.9	7.618	7.052	7.279	160	7.316	0.003
9.22.40	32.9	7.618	7.052	7.279	197	7.316	0.004
9.23.15	32.9	7.618	7.052	7.280	232	7.317	0.004
9.23.13	32.9	7.010	7.002	7.200	202	7.517	0.004
	<u> </u>						

ALLEGATO F

SONDAGGIO: EO23 PROVA N.: D2 DATA: 15/03/2017




R BUTTLE 200 DELECTION


SONDAGGIO: E023

PROVA N.: D2

DATA: 15/03/2017

PROVA DILATOMETRICA

con DILAROC TELEMAC

PROF. PROVA (m): 32,0

DIAMETRO FORO (mm):

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

LOCALITA': PONTE GARDENA (BZ)

SONDAGGIO: EO23 UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO

PROVA N.: D3 INCLINAZIONE (*): 90

DATA: 15/03/2017 ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

SONDA: Nº11D01

DIAMETRO GUAINA(mm): 95

TIPO GUAINA:

PRESSIONE MAX. (Mpa): 20

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 30-25 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

Ed

Ee

MODULO DI DEFORMAZIONE:

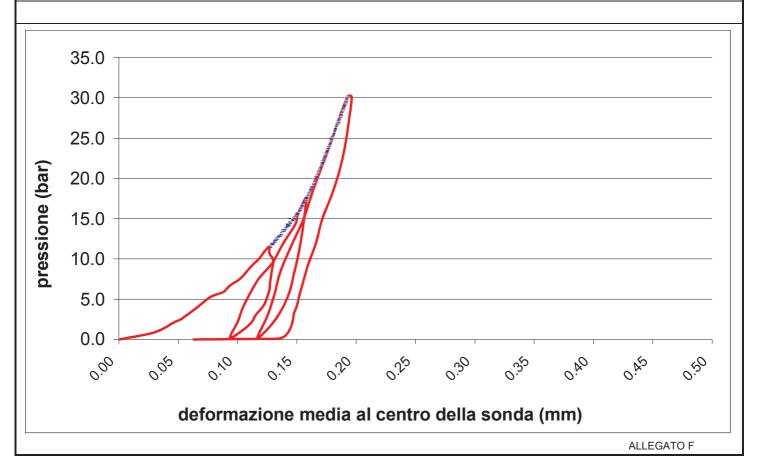
3526

MODULO ELASTICO:

5504

Мра

103.8


CALCOLATO SUL 2°CARICO

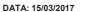
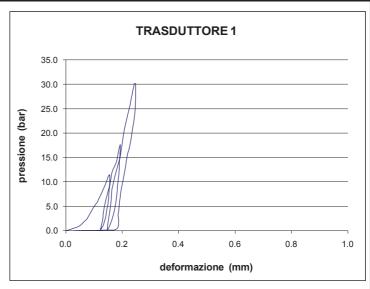
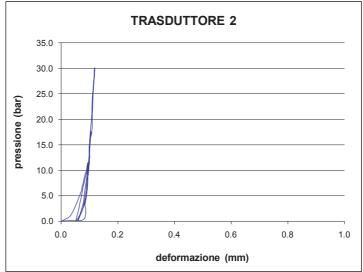
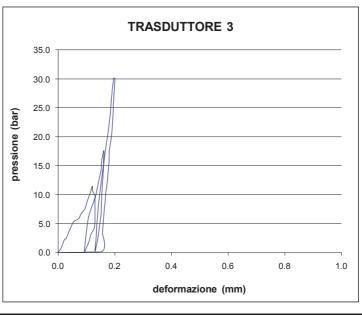

CALCOLATO SUL 2°SCARICO

GRAFICO PRESSIONE - DEFORMAZIONE

Mpa

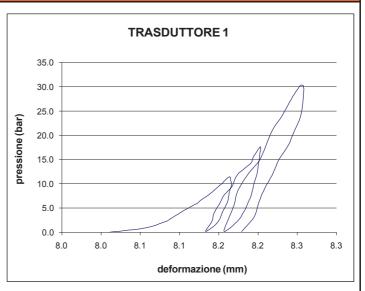

(deformazione ricavata dalla media dei tre trasduttori)

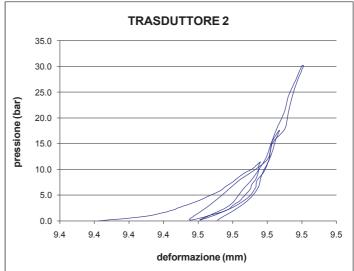


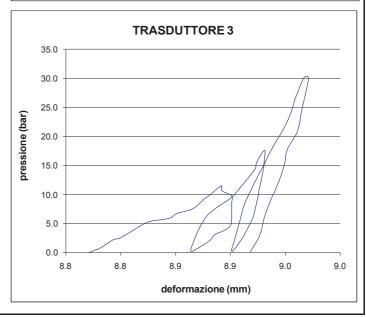

SONDAGGIO: EO23

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

PROF. PROVA (m): 32,0

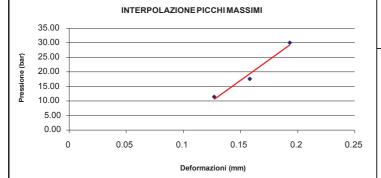



DATA: 15/03/2017

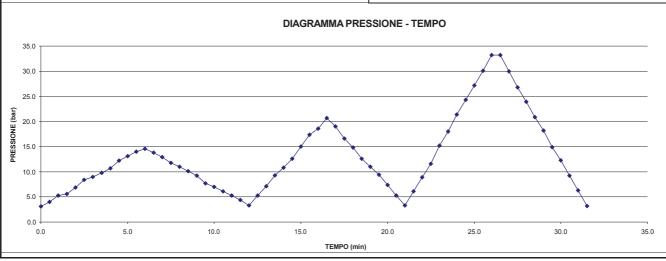

PROF. PROVA (m): 32,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

Tempo (min)	Pressione (bar)	trasd. 1 (mm)	trasd. 2 (mm)	trasd. 3 (mm)	media (mm)
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0	9.2 7.7 7.0 6.1 5.3 4.4 3.3 5.3 7.1 9.3 10.8 12.6 15.0 17.4 18.6 20.7 19.0 16.6	8.161 8.156 8.154 8.152 8.149 8.144 8.133 8.141 8.144 8.152 8.157 8.167 8.174 8.191 8.203 8.202 8.200	9.490 9.486 9.484 9.480 9.477 9.469 9.455 9.463 9.470 9.478 9.483 9.491 9.500 9.502 9.503 9.507 9.505 9.503	8.901 8.900 8.895 8.885 8.882 8.875 8.864 8.867 8.871 8.878 8.901 8.912 8.922 8.924 8.931 8.931 8.929	8.817 8.813 8.811 8.805 8.802 8.796 8.784 8.790 8.795 8.802 8.809 8.820 8.828 8.839 8.841 8.848 8.847
18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0	14.8 12.6 11.0 9.4 7.4 5.3 3.3 6.1 8.9 11.6 15.2 18.0 21.4 24.3 27.2 30.1 33.2 30.0	8.198 8.194 8.192 8.188 8.182 8.173 8.157 8.163 8.170 8.174 8.188 8.202 8.211 8.219 8.231 8.241 8.253 8.258 8.257	9.501 9.498 9.494 9.493 9.488 9.477 9.461 9.478 9.485 9.492 9.502 9.506 9.510 9.512 9.516 9.520 9.521 9.517	8.927 8.925 8.923 8.921 8.916 8.901 8.905 8.909 8.913 8.922 8.930 8.939 8.948 8.955 8.960 8.967 8.971 8.968	8.843 8.840 8.837 8.835 8.829 8.821 8.807 8.816 8.822 8.826 8.837 8.846 8.853 8.861 8.868 8.875 8.883 8.886 8.884
27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 34.5 35.0 35.5 36.0 36.5	26.8 23.9 20.9 18.2 14.9 12.3 9.2 6.3 3.2	8.254 8.246 8.238 8.227 8.218 8.209 8.201 8.195 8.179	9.514 9.512 9.510 9.503 9.501 9.497 9.494 9.486 9.471	8.964 8.961 8.952 8.949 8.943 8.937 8.931 8.927 8.918	8.880 8.876 8.869 8.862 8.856 8.849 8.843 8.837 8.824



MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI CARICO	RICO (Mpa)) E	d	CICLO DI CARICO	M	IODU	LO DI		ORM/ pa)	AZIOI	ONE Ed			
	TRASDUT	TORE 1	TRASDU*	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDUTTORE 1 TRASDUTTORE 2 TRASDUTTORE			TTORE 3	з MEDIA					
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
•	11.9	17.6	11.9	17.6	11.9	17.6	11.9	17.6	1°	0.0	11.5	0.0	11.5	0.0	11.5	0.0	11.5		
2°	2549		10561		3891		36	96	·	90	69	15	87	12	33	11	74		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
	18.3	30.1	18.3	30.1	18.3	30.1	18.3	30.1		0.2	17.6	0.3	17.6	0.1	17.6	0.2	17.6		
3°	36	44	109	931	54	66	51	01	2°	32	24	43	15	33	88	35	26		
	<mark></mark>						P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)					
									0.2	30.1	0.2	30.1	0.2	30.1	0.2	30.1			
								3°	40	39	65	73	58	76	51	02			

CICLO DI		MC	DUL	O DI F	RICAF	RICO	Ed		CICLO DI	MODULO ELASTICO					CO E	Ee		
RICARICO				(M _l	pa)				scarico (Mpa)									
	TRASDUT	TTORE 1	TRASDU	TTORE 2	TRASDU*	TTORE 3	ME	DIA		TRASDU"	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	MEDIA		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	0.2	11.9	0.3	11.9	0.1	11.9	0.2	11.9		11.5	0.2	11.5	0.3	11.5	0.1	11.5	0.2	
2°	3701		3343		3188 344		49	1°	47	28	35	43	52	80	44	41		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	0.2	18.3	0.2	18.3	0.2	18.3	0.2	18.3		17.6	0.2	17.6	0.2	17.6	0.2	17.6	0.2	
3°	43	47	52	17	61	78	51	03	2°	49	90	49	90	75	22	55	04	
										P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
										30.1	0.1	30.1	0.1	30.1	0.1	30.1	0.1	
								3°	49	25	77	82	73	41	62	76		

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **3676** Mpa

SONDAGGIO: E023

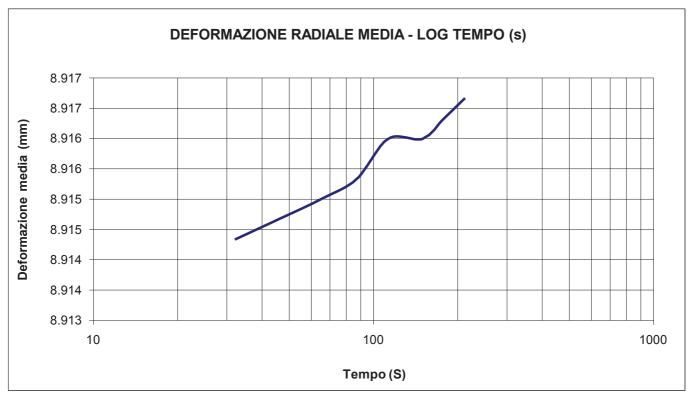
PROVA N.: D3

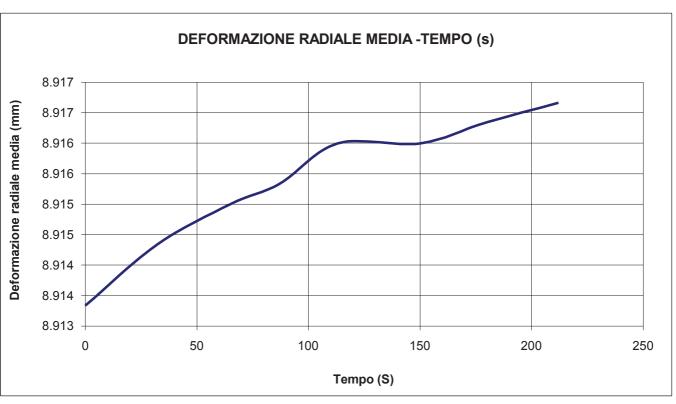
DATA: 15/03/2017

PROVA DI CREEP

PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI 33.2 bar

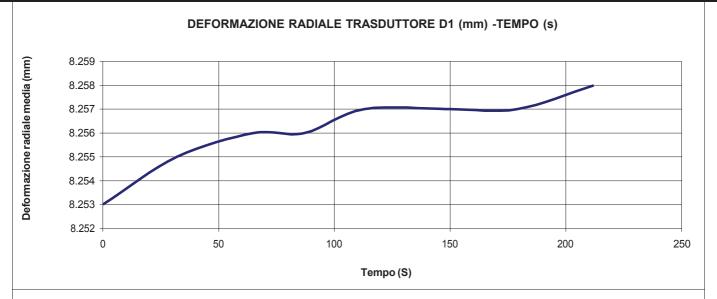
TEMPO MAX DELLA PROVA: 212 SEC 3.5 Min

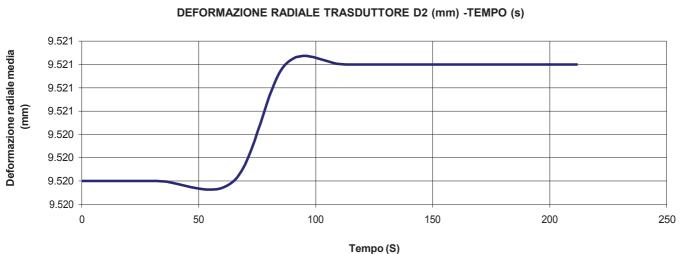

TABELLA DATI

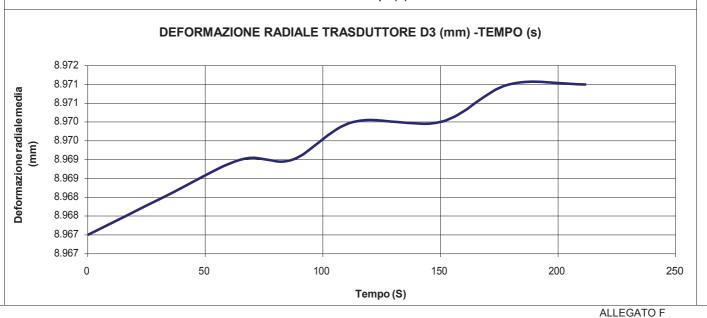

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
10.16.34	33.2	8.253	9.520	8.967	0	8.913	0.000
10.17.06	33.2	8.255	9.520	8.968	32	8.914	0.001
10.17.39	33.2	8.256	9.520	8.969	65	8.915	0.002
10.18.01	33.2	8.256	9.521	8.969	87	8.915	0.002
10.18.27	33.2	8.257	9.521	8.970	113	8.916	0.003
10.19.04	33.2	8.257	9.521	8.970	150	8.916	0.003
10.19.33	33.2	8.257	9.521	8.971	179	8.916	0.003
10.20.06	33.2	8.258	9.521	8.971	212	8.917	0.003
<u> </u>							
<u> </u>							

ALLEGATO F

SONDAGGIO: EO23 PROVA N.: D3 DATA: 15/03/2017




S


SONDAGGIO: E023

PROVA N.: D3

DATA: 15/03/2017

PROVA DILATOMETRICA

con DILAROC TELEMAC

PROF. PROVA (m): 27,0

DIAMETRO FORO (mm):

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

LOCALITA': PONTE GARDENA (BZ)

SONDAGGIO: EO23 UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO

PROVA N.: **D4** INCLINAZIONE (%): **90**

DATA: 15/03/2017 ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

95

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

SONDA: Nº11D01

TIPO GUAINA:

DIAMETRO GUAINA(mm):

PRESSIONE MAX. (Mpa): 20

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 10-15 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

Ed **2540**

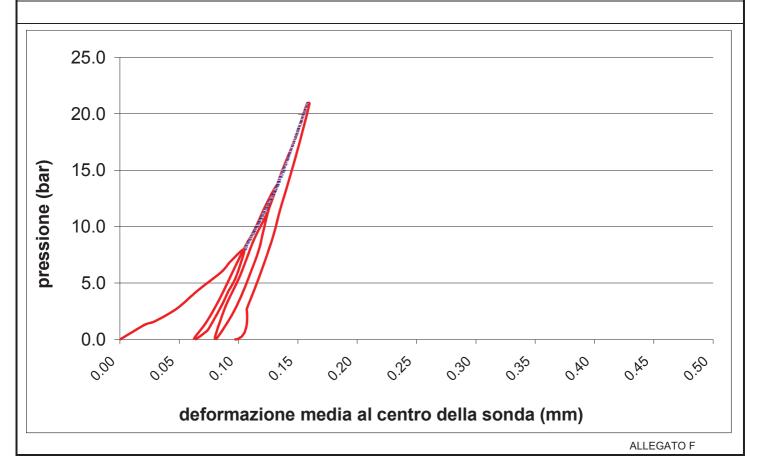
Ee

3419 Mpa

104.6

MODULO DI DEFORMAZIONE:

CALCOLATO SUL 2°CARICO


Mpa

CALCOLATO SUL 2°SCARICO

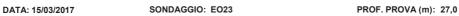
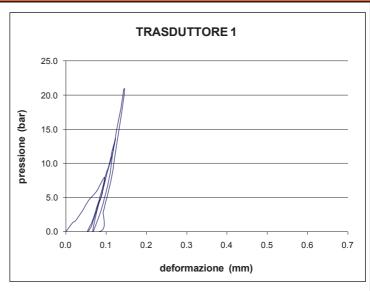
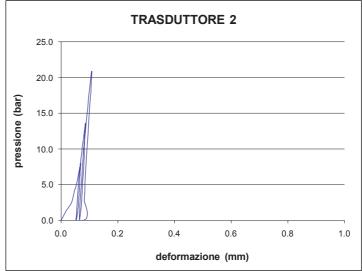
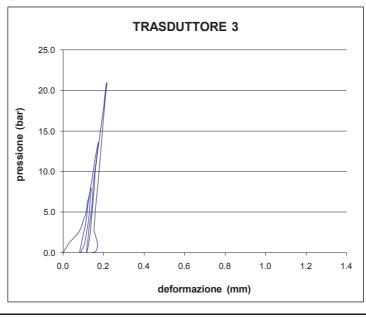

MODULO ELASTICO:

GRAFICO PRESSIONE - DEFORMAZIONE

(deformazione ricavata dalla media dei tre trasduttori)

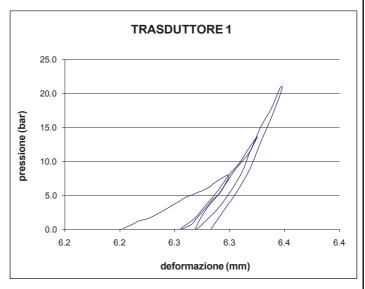

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

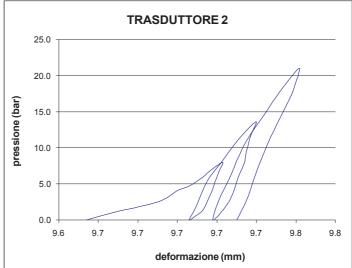

					1
Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.5 16.0 16.5 17.0 17.5 18.0 19.5 20.0 20.5 21.0 21.5 22.0	15.4 16.9 14.9 12.8 11.3 9.4 6.9 5.0 3.3 6.1 8.9 12.1 14.7 18.3 21.1 24.2 24.2 20.9 17.9 14.9 12.3 9.2 6.0	0.116 0.123 0.117 0.112 0.108 0.101 0.090 0.079 0.067 0.090 0.103 0.116 0.126 0.136 0.144 0.146 0.139 0.131 0.123 0.117 0.106 0.092	0.080 0.086 0.083 0.081 0.080 0.077 0.074 0.070 0.064 0.067 0.072 0.077 0.082 0.091 0.108 0.107 0.108 0.104 0.099 0.093 0.085 0.081	0.162 0.174 0.164 0.156 0.153 0.147 0.137 0.130 0.116 0.127 0.140 0.151 0.164 0.184 0.199 0.213 0.216 0.202 0.194 0.181 0.174 0.162 0.152	0.110 0.118 0.112 0.108 0.106 0.101 0.094 0.087 0.077 0.083 0.093 0.102 0.111 0.123 0.143 0.145 0.138 0.131 0.123 0.118 0.110 0.110
22.5 23.0 23.5 24.0 24.5 25.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 31.5 32.0 32.5 33.0 33.5	3.3	0.081	0.076	0.142	0.092

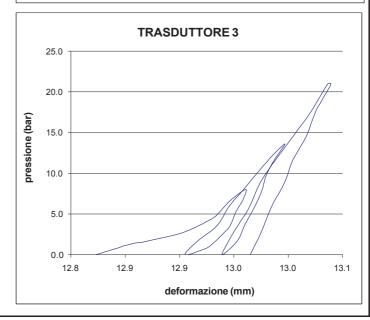

34.0 34.5

35.0 35.5

36.0 36.5

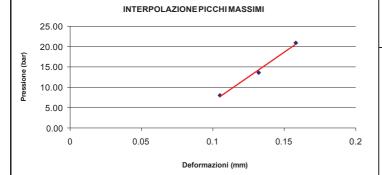



DATA: 15/03/2017

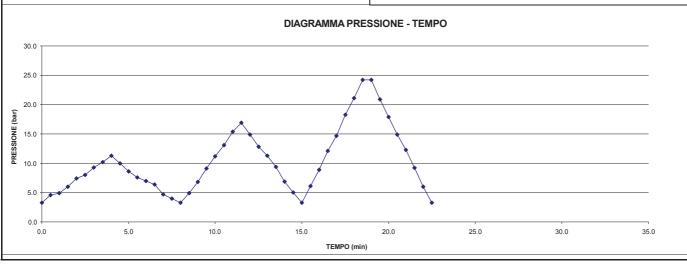

PROF. PROVA (m): 27,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

(min) (bar) (mm) (mm) (mm) (mm) 0.0 3.3 6.202 9.654 12.823 8.751 0.5 4.6 6.219 9.671 12.855 8.772 1.0 4.9 6.226 9.677 12.868 8.780 1.5 6.0 6.239 9.692 12.903 8.799 2.0 7.4 6.254 9.700 12.925 8.814 2.5 8.0 6.260 9.706 12.933 8.821 3.0 9.3 6.279 9.713 12.942 8.837 3.5 10.2 6.287 9.717 12.949 8.844 4.0 11.3 6.299 9.723 12.961 8.856 4.5 10.0 6.296 9.721 12.958 8.853 5.5 7.6 6.284 9.718 12.949 8.843 6.0 7.0 6.281 9.717 12.947 8.840 6.5 <t< th=""></t<>
13.5 9.4 6.303 9.731 12.970 8.862 14.0 6.9 6.292 9.728 12.960 8.862 14.5 5.0 6.281 9.724 12.953 8.843 15.0 3.3 6.269 9.718 12.939 8.831 15.5 6.1 6.278 9.721 12.950 8.840 16.0 8.9 6.292 9.726 12.963 8.852 16.5 12.1 6.305 9.731 12.974 8.864 17.0 14.7 6.318 9.736 12.987 8.876 17.5 18.3 6.328 9.745 13.007 8.888 18.0 21.1 6.338 9.752 13.022 8.899 18.5 24.2 6.346 9.761 13.036 8.909 19.0 24.2 6.348 9.762 13.039 8.911 19.5 20.9 6.341 9.758 13.025 8.903 20.0 17.9 6.325 9.747 13.004 8.887 21.0<



MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI	N	ИODL	ILO D	I PRII	MO C	ARIC	O E	d	CICLO DI	MODULO DI DEFORMAZIONE Ed								
CARICO				(M	pa)				CARICO				(M	pa)				
	TRASDU	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDUTTORE 1 TRASDUTTORE 2 TRASDUTTORE 3					TTORE 3	3 MEDIA		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
2°	7.9	13.6	7.9	13.6	7.9	13.6	7.9	13.6	1°	0.0	8.0	0.0	8.0	0.0	8.0	0.0	8.0	
2°	2866		4140		1911 266		61		10	78	15	16	7!	58	99	96		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	15.0	20.9	15.0	20.9	15.0	20.9	15.0	20.9		0.0	13.6	0.1	13.6	0.1	13.6	0.0	13.6	
3°	42	85	48	21	26	60	36	73	2°	25	40	51	91	19	18	25	40	
							P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)				
										0.0	20.9	0.0	20.9	0.0	20.9	0.0	20.9	
								3°	35	48	63	54	28	17	35	03		

CICLO DI RICARICO	(8.4)								CICLO DI SCARICO		M	ODUI	LO EL (M)	ASTI	CO E	Ee			
	TRASDU	TTORE 1	TRASDU	, ,	TRASDU	TTORE 3	ME	DIA		TRASDU	TTORE 1	TRASDU	` '	TRASDU	TTORE 3	ME	DIA		
							P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)			
	0.0	7.9	0.1	7.9	0.1	7.9	0.0	7.9		8.0	0.0	8.0	0.1	8.0	0.1	8.0	0.0		
2°	2° 2347 6373				19	24	24	59	1°	23	77	60	75	18	44	24	32		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)							P1(bar)	P2(bar)			
	0.0	15.0	0.0	15.0	0.0	15.0	0.0	15.0		13.6	0.0	13.6	0.0	13.6	0.0	13.6	0.0		
3°	3° 3324 7263 2884 3440					40	2°	31	75	80	81	30	65	34	19				
								P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)				
										20.9	0.0	20.9	0.0	20.9	0.0	20.9	0.0		
									3°	42	03	85	38	36	92	43	37		

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **3179 M**pa

SONDAGGIO: EO23

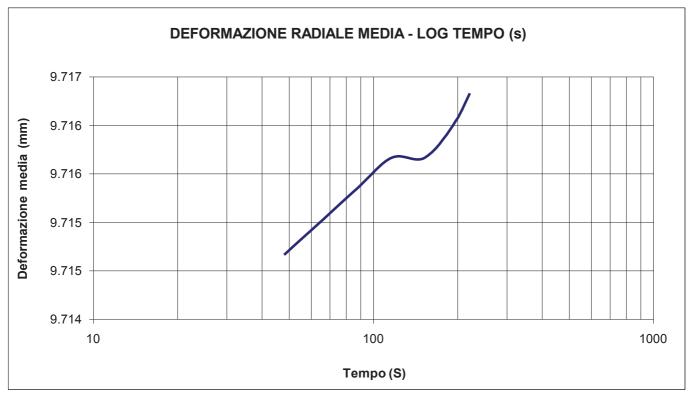
PROVA N.: D4

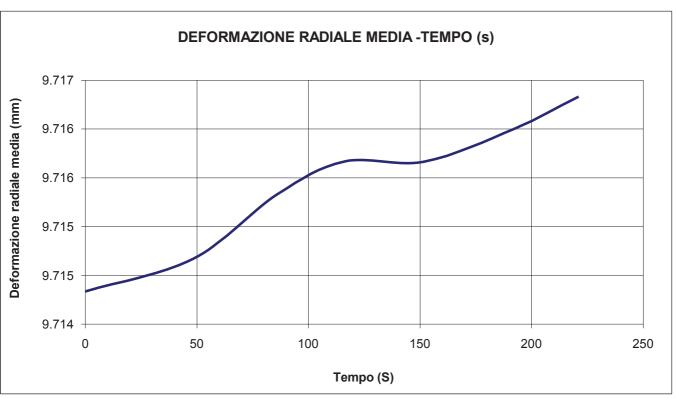
DATA: 15/03/2017

PROVA DI CREEP

PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI **24.2** bar

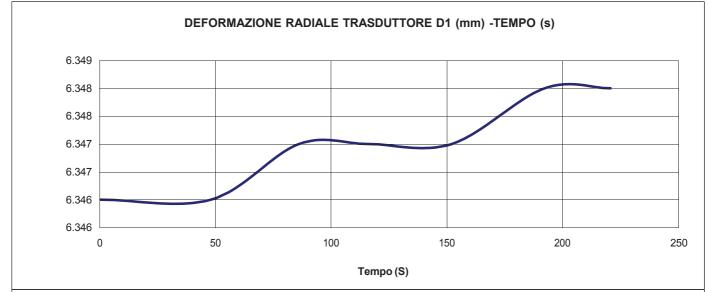
TEMPO MAX DELLA PROVA: 221 SEC 3.7 Min

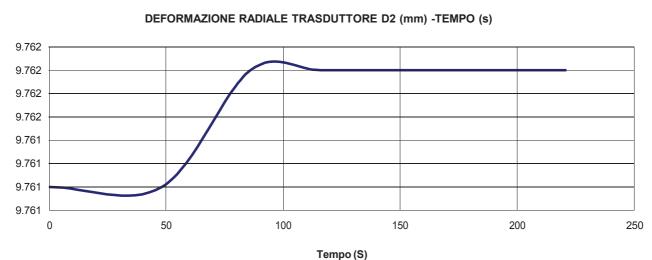

TABELLA DATI

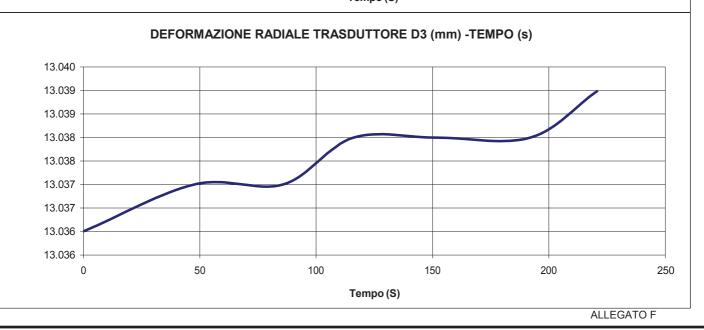

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
10.57.23	24.2	6.346	9.761	13.036	0	9.714	0.000
10.58.11	24.2	6.346	9.761	13.037	48	9.715	0.000
10.58.49	24.2	6.347	9.762	13.037	86	9.715	0.001
10.59.19	24.2	6.347	9.762	13.038	116	9.716	0.001
10.59.55	24.2	6.347	9.762	13.038	152	9.716	0.001
11.00.35	24.2	6.348	9.762	13.038	192	9.716	0.002
11.01.04	24.2	6.348	9.762	13.039	221	9.716	0.002
		0.00.00					0.002

ALLEGATO F

SONDAGGIO: EO23 PROVA N.: D4 DATA: 15/03/2017






SONDAGGIO: EO23

PROVA N.: D4

DATA: 15/03/2017

PROVA DILATOMETRICA con DILAROC TELEMAC

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

PROF. PROVA (m): 23,0

LOCALITA': **PONTE GARDENA (BZ)** DIAMETRO FORO (mm): 103.1

UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO SONDAGGIO: EO23

PROVA N.: D5 INCLINAZIONE (°): 90

DATA: 15/03/2017 ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

SONDA: Nº11D01

DIAMETRO GUAINA(mm): 95

TIPO GUAINA:

PRESSIONE MAX. (Mpa): 20

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 60-65 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

Ed

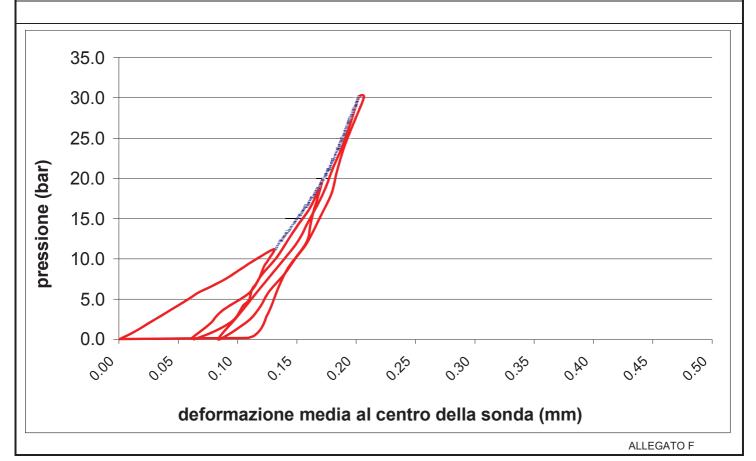
Ee

MODULO DI DEFORMAZIONE:

2311

Mpa

MODULO ELASTICO: CALCOLATO SUL 2°SCARICO

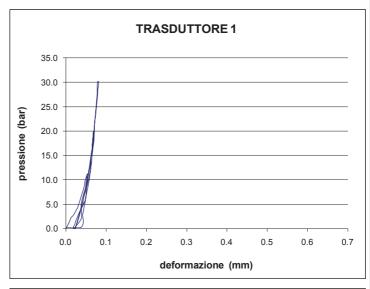

2915

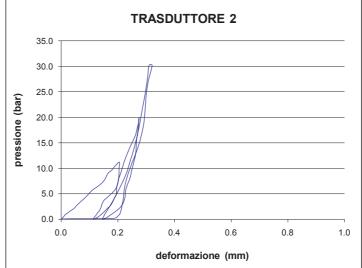
Mpa

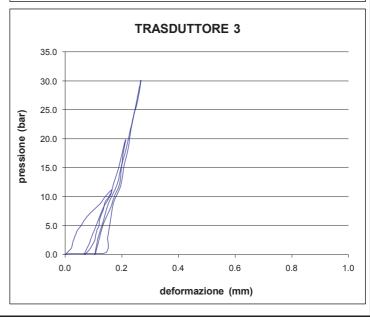
CALCOLATO SUL 2°CARICO

GRAFICO PRESSIONE - DEFORMAZIONE

(deformazione ricavata dalla media dei tre trasduttori)

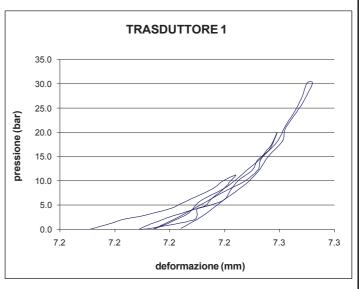


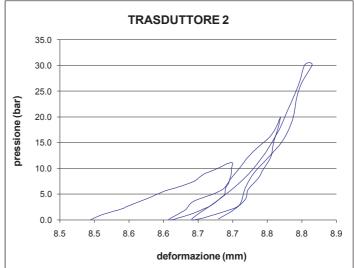

PROF. PROVA (m): 23,0

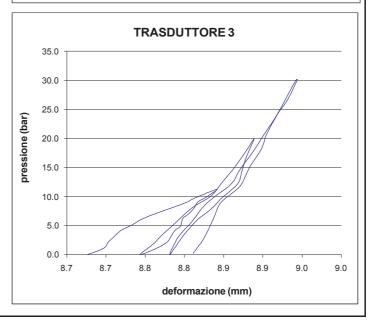

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

SONDAGGIO: EO23

Tempo (min)	Pressione	trasd. 1	trasd. 2	trasd. 3	media
	(bar)	(mm)	(mm)	(mm)	(mm)
20.5	5.3	0.031	0.206	0.117	0.066
21.0	3.1	0.023	0.147	0.105	0.050
21.5	6.1	0.035	0.176	0.116	0.070
22.0	8.9	0.040	0.203	0.134	0.080
22.5	11.9	0.050	0.228	0.152	0.097
23.0	15.2	0.057	0.248	0.183	0.111
23.5	17.6	0.062	0.260	0.194	0.119
24.0	21.1	0.068	0.275	0.213	0.130



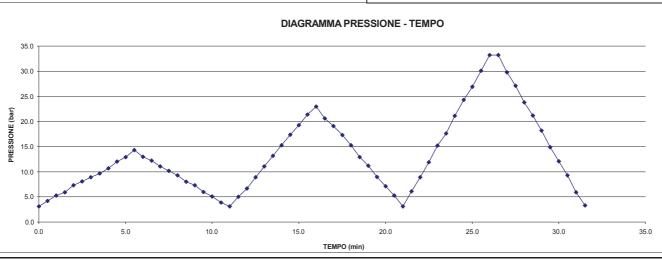



DATA: 15/03/2017

PROF. PROVA (m): 23,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI CARICO	ARICO (Mpa)							d	CICLO DI CARICO	M	IODU	LO DI		ORM/ pa)	AZIOI	NE E	d
	TRASDUT	TTORE 1	TRASDU*	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDU	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	MEDIA	
	P1(bar) P2(bar) P1(bar) P2(bar) P1(bar) P2(bar) P1(bar) P2(bar) P2(bar)					P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
•							19.9	1°	0.0 11.2		0.0 11.2		0.0 11.2		0.0 11.2		
2°	^{2°} 11030 2112 2364 33					33	09		27	24	70	08	87	75	11	02	
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	21.2	30.1	21.2	30.1	21.2	30.1	21.2	30.1		0.0	19.9	0.1	19.9	0.1	19.9	0.0	19.9
3°	3° 14342 4590 2942 5215					15	2°	51	31	15	76	17	48	23	11		
									P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
										0.0	30.1	0.0	30.1	0.0	30.1	0.0	30.1
									3°	^{3°} 6929 2381 2395				3289			

CICLO DI RICARICO	(Mpa)								CICLO DI SCARICO		М	ODUI	LO EL (M)	_ASTI pa)	CO E	Ee		
	TRASDU*	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA		TRASDUTTORE 1 TRASDUTTORE 2 TRASDUTTORE 3			TTORE 3	MEDIA				
							P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
	0.0	12.2	0.1	12.2	0.1	12.2	0.0	12.2		11.2	0.0	11.2	0.1	11.2	0.1	11.2	0.0	
2°	3836 1356				15	00	19	42	1°	41	25	15	73	14	60	20	63	
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar) P2(bar) P1(bar) P2(bar) P1(bar) P2			P2(bar)	P1(bar)	P2(bar)			
	0.0	21.2	0.0	21.2	0.0	21.2	0.0	21.2		19.9	0.0	19.9	0.0	19.9	0.0	19.9	0.0	
3°	3° 5694 1981 2222 2847					47	2°	57	01	20	04	23	75	29	15			
								P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)			
										30.1	0.2	30.1	0.2	30.1	0.2	30.1	0.2	
									3°	80	31	28	34	28	98	39	33	

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **3391** Mpa

SONDAGGIO: E023

PROVA N.: D5

DATA: 15/03/2017

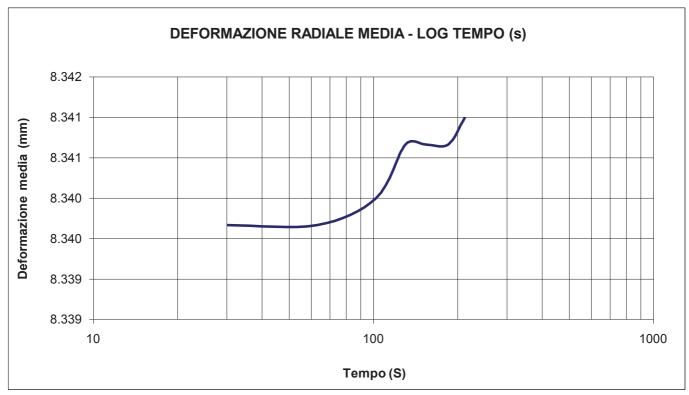
PROVA DI CREEP

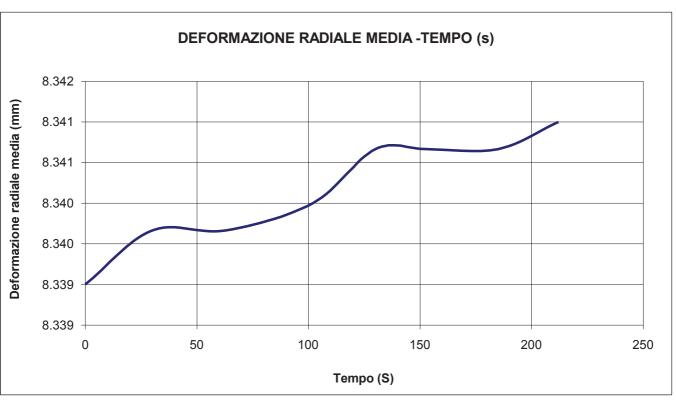
PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI 33.2 bar

TEMPO MAX DELLA PROVA: 212 SEC 3.5 Min

TABELLA DATI

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
11.38.22	33.2	7.270	8.804	8.943	0	8.339	0.000
11.38.52	33.2	7.271	8.805	8.943	30	8.340	0.001
11.39.25	33.2	7.271	8.805	8.943	63	8.340	0.001
11.40.04	33.2	7.272	8.806	8.942	102	8.340	0.001
11.40.32	33.2	7.272	8.807	8.943	130	8.341	0.002
11.40.55	33.2	7.272	8.807	8.943	153	8.341	0.002
11.41.27	33.2	7.272	8.807	8.943	185	8.341	0.002
11.41.54	33.2	7.272	8.807	8.944	212	8.341	0.002

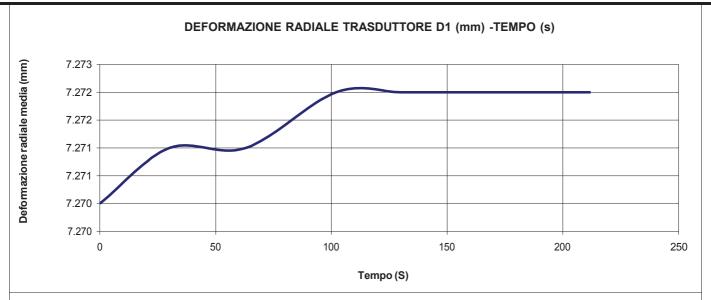

ALLEGATO F

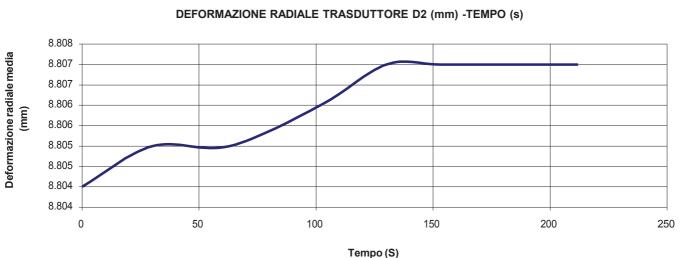


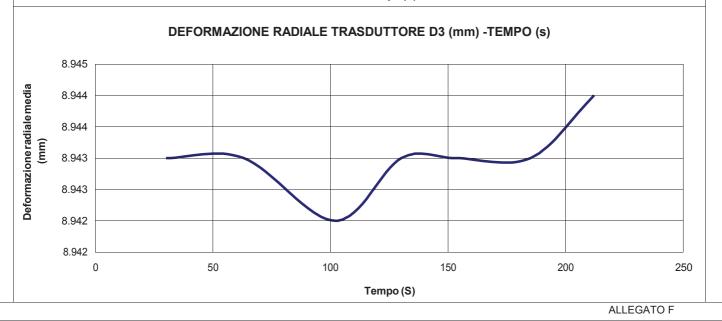
SONDAGGIO: EO23 PROVA N.: D5

PROVA DI CREEP

DATA: 15/03/2017






SONDAGGIO: EO23

PROVA N.: D5

DATA: 15/03/2017

PROVA DILATOMETRICA

PROF. PROVA (m): 18,0

DIAMETRO FORO (mm):

con DILAROC TELEMAC

DATI PROVA

COMMITTENTE: ITALFERR S.p.A.

LOCALITA': **PONTE GARDENA (BZ)**

UTENSILE DI PERFORAZIONE: CAROTIERE DOPPIO SONDAGGIO: EO23

PROVA N.: D6 INCLINAZIONE (°): 90

DATA: 15/03/2017 ESECUZ. ED INTERPRETAZIONE: DOTT. COLOTTI

STRUMENTAZIONE IMPIEGATA

TIPO STRUMENTO: DILATOMETRO FLESSIBILE DILAROC

95

CENTRAL.ACQUISIZIONE:LM 99/16 MOD. DMP 02/95

SONDA: Nº11D01

TIPO GUAINA:

DIAMETRO GUAINA(mm):

PRESSIONE MAX. (Mpa): 20

DATI LITOLOGICI

LITOLOGIA: FILLADI RQD (stimato): 75-80 %

PROFONDITA' FALDA DA p.c.: GRADO DI ALTERAZIONE:

MODULO DI DEFORMAZIONE:

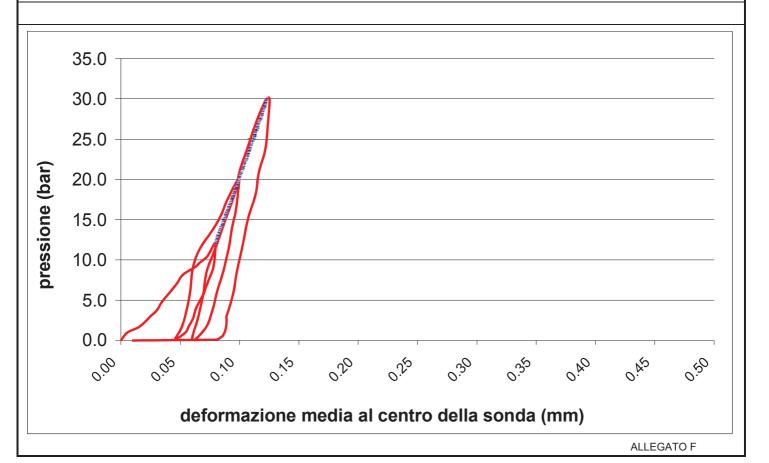
Ed 4736

Mpa

MODULO ELASTICO:

CALCOLATO SUL 2°SCARICO

Ee

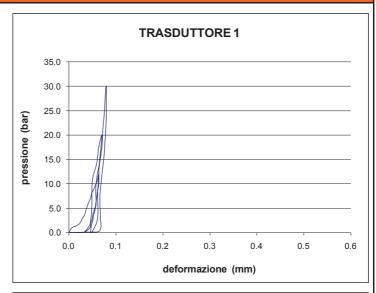

6501 Mpa

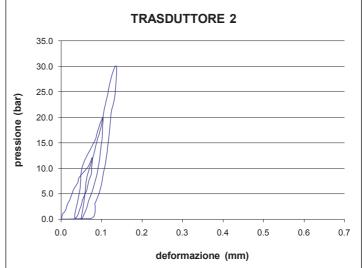
101.4

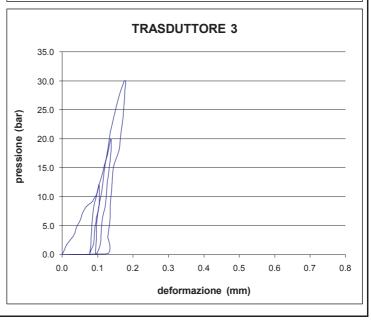
CALCOLATO SUL 2°CARICO

GRAFICO PRESSIONE - DEFORMAZIONE

(deformazione ricavata dalla media dei tre trasduttori)

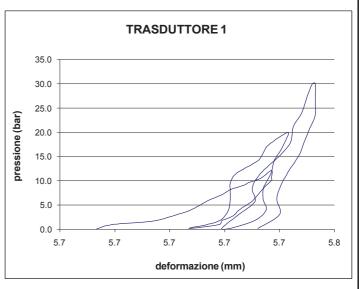


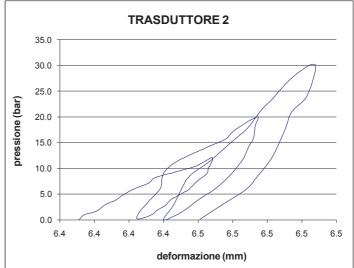

PROF. PROVA (m): 18,0

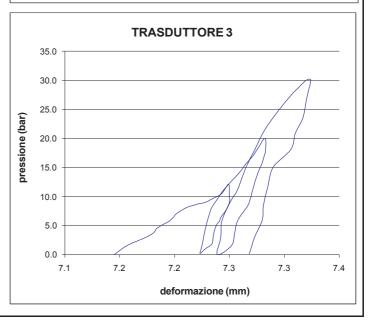

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori relativi)

Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
0.0	3.2	0.000	0.000	0.000	0.000
0.5 1.0	4.2 4.9	0.006 0.021	0.003 0.010	0.007 0.013	0.005 0.013
1.5	6.3	0.021	0.010	0.013	0.013
2.0	7.0	0.034	0.021	0.036	0.029
2.5	7.9	0.037	0.025	0.040	0.033
3.0	9.1	0.041	0.031	0.051	0.039
3.5	10.3	0.046 0.049	0.040	0.057 0.067	0.047
4.0 4.5	11.4 12.3	0.049	0.044 0.054	0.084	0.052 0.061
5.0	12.9	0.056	0.060	0.090	0.066
5.5	13.7	0.060	0.068	0.098	0.072
6.0	15.3	0.064	0.077	0.104	0.078
6.5 7.0	13.9 13.3	0.064 0.064	0.076 0.075	0.105 0.105	0.078 0.078
7.5	12.2	0.062	0.073	0.105	0.078
8.0	10.9	0.060	0.069	0.102	0.073
8.5	9.6	0.058	0.065	0.097	0.070
9.0	9.0	0.057	0.063	0.096	0.068
9.5 10.0	8.2 7.1	0.055 0.052	0.059 0.053	0.093 0.091	0.065 0.061
10.5	6.0	0.052	0.050	0.090	0.059
11.0	5.0	0.046	0.045	0.089	0.054
11.5	4.2	0.045	0.042	0.083	0.052
12.0 12.5	3.4 4.7	0.034 0.044	0.034 0.035	0.078 0.080	0.042 0.047
13.0	6.6	0.044	0.033	0.082	0.047
13.5	9.2	0.049	0.047	0.085	0.056
14.0	11.3	0.049	0.048	0.089	0.057
14.5	12.7	0.049	0.050	0.094	0.059
15.0 15.5	14.6 17.3	0.051 0.059	0.057 0.074	0.101 0.114	0.064 0.076
16.0	18.9	0.053	0.074	0.114	0.070
16.5	20.6	0.063	0.090	0.128	0.086
17.0	23.2	0.070	0.103	0.137	0.096
17.5 18.0	21.3 19.1	0.069 0.067	0.102 0.101	0.138 0.135	0.095 0.093
18.5	17.3	0.067	0.101	0.133	0.093
19.0	15.0	0.064	0.095	0.127	0.088
19.5	12.8	0.062	0.090	0.124	0.085
20.0 20.5	11.4 9.3	0.061 0.061	0.086 0.079	0.121 0.113	0.083 0.079
21.0	7.1	0.061	0.079	0.113	0.079
21.5	4.8	0.057	0.060	0.107	0.069
22.0	3.2	0.046	0.049	0.094	0.057
22.5	6.2	0.052 0.058	0.055 0.059	0.097	0.063
23.0 23.5	8.9 11.7	0.058	0.059	0.098 0.104	0.068 0.070
24.0	14.7	0.060	0.076	0.113	0.078
24.5	18.3	0.067	0.088	0.120	0.087
25.0	21.2	0.071	0.098	0.128	0.093
25.5 26.0	24.3 27.1	0.072 0.075	0.105 0.113	0.136 0.146	0.098 0.103
26.5	30.4	0.077	0.122	0.160	0.109
27.0	33.2	0.079	0.133	0.175	0.116
27.5	33.2	0.080	0.137	0.179	0.118
28.0 28.5	29.8 26.8	0.080 0.080	0.135 0.131	0.175 0.172	0.117 0.116
28.5	26.8	0.080	0.131	0.172	0.116
29.5	21.3	0.076	0.120	0.161	0.108
30.0	18.3	0.074	0.116	0.145	0.103
30.5	14.9	0.070	0.111	0.140	0.099
31.0 31.5	11.6 9.2	0.067 0.066	0.103 0.097	0.136 0.135	0.094 0.091
32.0	6.2	0.067	0.087	0.133	0.086
32.5	3.3	0.059	0.070	0.123	0.076
33.0					
33.5					
34.0 34.5					
35.0					
35.5					
36.0 36.5					

36.5



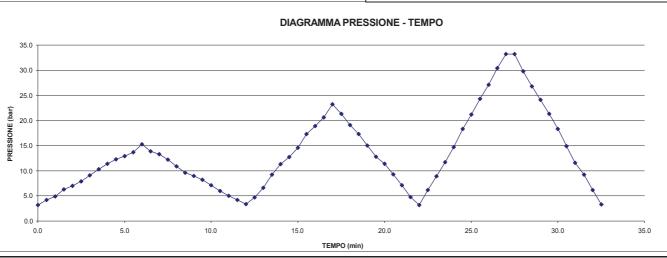

DATA: 15/03/2017


PROF. PROVA (m): 18,0

VALORI REGISTRATI DAI SINGOLI TRASDUTTORI (valori assoluti)

Tempo	Pressione	trasd. 1	trasd. 2	trasd. 3	media
(min)	(bar)	(mm)	(mm)	(mm)	(mm)
(111111)	(bui)				
0.0	3.2	5.673	6.391	7.145	6.346
0.5 1.0	4.2 4.9	5.679 5.694	6.394 6.401	7.152 7.158	6.352 6.362
1.0	6.3	5.703	6.407	7.158	6.362
2.0	7.0	5.707	6.412	7.173	6.377
2.5	7.9	5.710	6.416	7.185	6.381
3.0	9.1	5.714	6.422	7.196	6.387
3.5	10.3	5.719	6.431	7.202	6.394
4.0	11.4	5.722	6.435	7.212	6.399
4.5 5.0	12.3 12.9	5.727 5.729	6.445 6.451	7.229 7.235	6.409 6.413
5.5	13.7	5.729	6.459	7.233	6.420
6.0	15.3	5.737	6.468	7.249	6.426
6.5	13.9	5.737	6.467	7.250	6.426
7.0	13.3	5.737	6.466	7.250	6.425
7.5	12.2	5.735	6.465	7.250	6.424
8.0	10.9	5.733	6.460	7.247	6.421
8.5 9.0	9.6 9.0	5.731 5.730	6.456 6.454	7.242 7.241	6.418 6.416
9.5	8.2	5.728	6.450	7.241	6.413
10.0	7.1	5.725	6.444	7.236	6.410
10.5	6.0	5.723	6.441	7.235	6.407
11.0	5.0	5.719	6.436	7.234	6.404
11.5	4.2	5.718	6.433	7.228	6.401
12.0	3.4	5.707	6.425	7.223	6.392
12.5	4.7	5.717	6.426	7.225	6.397
13.0 13.5	6.6 9.2	5.721 5.722	6.431 6.438	7.227 7.230	6.401 6.405
14.0	11.3	5.722	6.439	7.234	6.406
14.5	12.7	5.722	6.441	7.239	6.408
15.0	14.6	5.724	6.448	7.246	6.413
15.5	17.3	5.732	6.465	7.259	6.425
16.0	18.9	5.734	6.476	7.265	6.431
16.5	20.6	5.736	6.481	7.273	6.436
17.0 17.5	23.2 21.3	5.743 5.742	6.494 6.493	7.282 7.283	6.446 6.445
18.0	19.1	5.742	6.492	7.280	6.443
18.5	17.3	5.738	6.489	7.276	6.440
19.0	15.0	5.737	6.486	7.272	6.438
19.5	12.8	5.735	6.481	7.269	6.435
20.0	11.4	5.734	6.477	7.266	6.432
20.5 21.0	9.3	5.734	6.470	7.258	6.428
21.0	7.1 4.8	5.735 5.730	6.460 6.451	7.255 7.252	6.424 6.418
22.0	3.2	5.719	6.440	7.232	6.406
22.5	6.2	5.725	6.446	7.242	6.412
23.0	8.9	5.731	6.450	7.243	6.416
23.5	11.7	5.730	6.455	7.249	6.419
24.0	14.7	5.733	6.467	7.258	6.426
24.5	18.3	5.740 5.744	6.479	7.265	6.435 6.442
25.0 25.5	21.2 24.3	5.744	6.489 6.496	7.273 7.281	6.447
26.0	27.1	5.748	6.504	7.291	6.453
26.5	30.4	5.750	6.513	7.305	6.461
27.0	33.2	5.752	6.524	7.320	6.469
27.5	33.2	5.753	6.528	7.324	6.472
28.0	29.8	5.753	6.526	7.320	6.470
28.5	26.8	5.753	6.522	7.317	6.468
29.0 29.5	24.1 21.3	5.751 5.749	6.514 6.511	7.310 7.306	6.463 6.460
30.0	18.3	5.749	6.507	7.300	6.454
30.5	14.9	5.743	6.502	7.285	6.449
31.0	11.6	5.740	6.494	7.281	6.444
31.5	9.2	5.739	6.488	7.280	6.441
32.0	6.2	5.740	6.474	7.273	6.435
32.5	3.3	5.732	6.461	7.268	6.426
33.0					
33.5 34.0					
34.5					
35.0					
35.5					
36.0					
36.5	1	1			Ì

MODULI DI DEFORMAZIONE E MODULI ELASTICI CALCOLATI PER OGNI TRASDUTTORE E SULLA DEFORMAZIONE MEDIA


CICLO DI CARICO	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							d	CICLO DI CARICO	M	IODU	LO DI		ORM/ pa)	AZIOI	NE E	d	
	TRASDUTTORE 1 TRASDUTTORE 2 TRASDUTTORE 3 MEDIA						DIA		TRASDU	TTORE 1	TRASDU	TTORE 2	TRASDU	TTORE 3	ME	DIA		
	P1(bar) P2(bar) P1(bar) P2(bar) P1(bar) P2(bar) P2(bar) P2(bar) P2(bar)					P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)			
•							20.0	1°	0.0	12.1	0.0	12.1	0.0	12.1	0.0	12.1		
2°	2° 5738 2370 3028					34	07	·	23	97	19	92	14	75	19	42		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	
	21.1	30.0	21.1	30.0	21.1	30.0	21.1	30.0		0.2	20.0	0.3	20.0	0.1	20.0	0.2	20.0	
3°	3° 16117 4029 2893 4905					05	2°	69	72	36	19	42	75	47	'36			
									P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
									20	0.0	30.0	0.0	30.0	0.0	30.0	0.0	30.0	
									3°	115	524	45	27	46	95	6036		

CICLO DI RICARICO	/B.4. \								CICLO DI SCARICO		M	ODUI	LO EL (M)	-ASTI	CO E	е	
1410/414100							I ME	DIA					` '	' ' 		MEDIA	
	TRASDU*	TTORE 1	TRASDU	TTORE 2	TRASDU*	TTORE 3	IVIE	DIA		TRASDU	ITORE 1	TRASDU	ITORE 2	TRASDU	TTORE 3	IVIE	DIA
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	0.2	11.4	0.3	11.4	0.1	11.4	0.2	11.4		12.1	0.2	12.1	0.3	12.1	0.1	12.1	0.2
2°	2° 8351 6118				6228 6761		1°	50	28	34	79	58	50	45	71		
	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)
	0.0	21.1	0.0	21.1	0.0	21.1	0.0	21.1		20.0	0.0	20.0	0.0	20.0	0.0	20.0	0.0
3°	102	287	47	76	63	6 8	66	87	2°	10	563	46	95	58	96	65	01
								P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)	P1(bar)	P2(bar)		
										30.0	0.1	30.0	0.1	30.0	0.1	30.0	0.1
									3°	180)48	56	57	67	68	84	23

MODULO RICAVATO DALL'INTERPOLAZIONE DEI VALORI MASSIMI DI PRESSIONE RAGGIUNTI AD OGNI CICLO

Ed= **5161** Mpa

SONDAGGIO: EO23

PROVA N.: D6

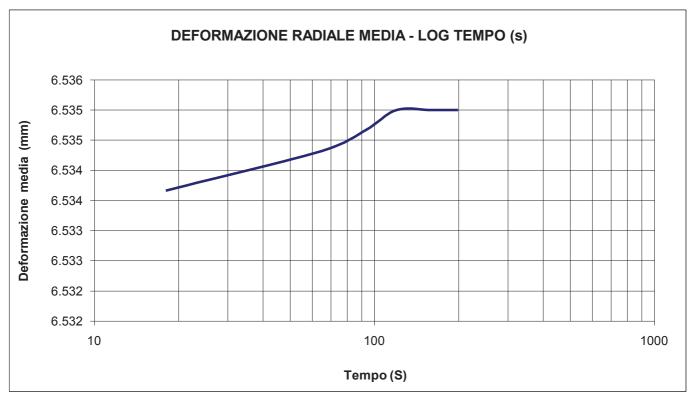
DATA: 15/03/2017

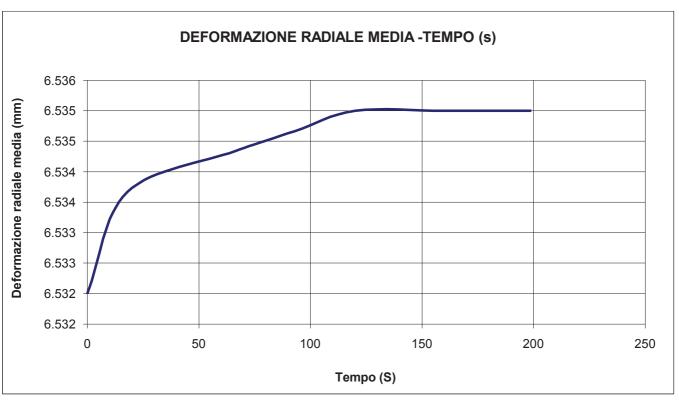
PROVA DI CREEP

PROVA ESEGUITA ALLA PRESSIONE COSTANTE DI 33.2 bar

TEMPO MAX DELLA PROVA: 199 SEC 3.3 Min

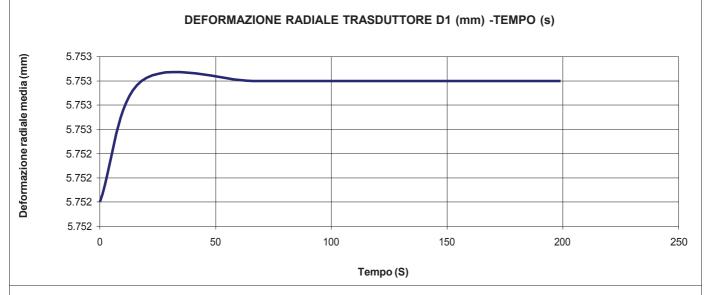
TABELLA DATI

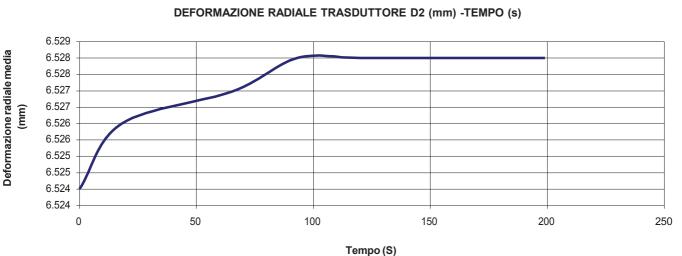

ORA	PRESS.	D1	D2	D3	TEMPO(s)	D(medio)	ΔD
12.16.13	33.2	5.752	6.524	7.320	0	6.532	0.000
12.16.31	33.2	5.753	6.526	7.322	18	6.534	0.002
12.17.19	33.2	5.753	6.527	7.323	66	6.534	0.002
12.17.46	33.2	5.753	6.528	7.323	93	6.535	0.003
12.18.13	33.2	5.753	6.528	7.324	120	6.535	0.003
12.18.53	33.2	5.753	6.528	7.324	160	6.535	0.003
12.19.32	33.2	5.753	6.528	7.324	199	6.535	0.003
				1			

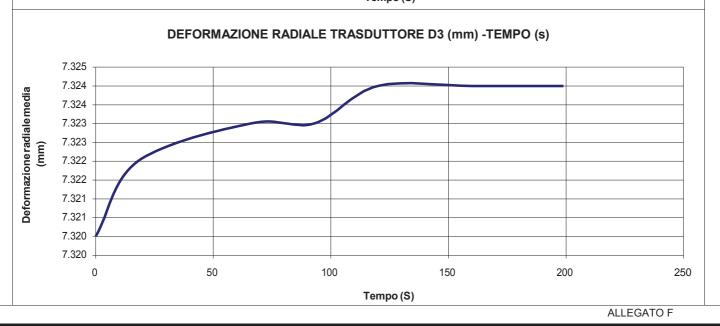

ALLEGATO F

SONDAGGIO: EO23

PROVA N.: D6 DATA: 15/03/2017






SONDAGGIO: E023

PROVA N.: D6

DATA: 15/03/2017

EO24

Allegati:

- A Ubicazione planimetrica dei sondaggi
- **B** Report Stratigrafico
- **C** Fotodocumentazione
- **E** Prove di Permeabilità

UBICAZIONE PLANIMETRICA DEL SONDAGGIO

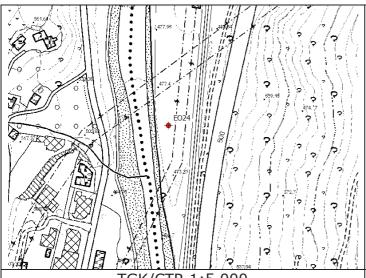
AUFTRAGGEBER/COMMITTENTE: ITALFERR SPA PROJEKT/PROGETTO:

Sondaggi ordinari su

interconnessione Ponte Gardena

ÖRTLICHKEIT/LOCALITA': Ponte Gardena

Datum/Data: 31/05/2017 Bohrung/Sondaggio:


EO24

MONOGRAFIE DES BOHRPUNKTES SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

KOORDINATEN/ COORDINATE

GAUSS BOAGA

Coord. N = 5 164 673.561 mCoord. E = 1 694 124.286 m H = 477.695 m.s.m

TGK/CTR 1:5.000

Ortofoto2011

Foto Positionierung/postazione

REPORT STRATIGRAFICO

 Committente:
 Italferr S.P.A
 Sondaggio:
 EO24

 Riferimento:
 Ponte Gardena
 Data:
 08.05-13.05.2017

 Coordinate:
 X: 1694124.286 --- Y: 5164673.561
 Quota:
 477.695

 Perforazione:

SCALA 1:88 STRATIGRAFIA - EO24 Pagina 1/2 Prel. % R LITOLOGIA Pro DESCRIZIONE Campioni RP VT Terreno vegetale Ghiaia eterometrica sabbiosa debolmente limosa e ciottoli, clasti angolari di natura metamorfica (fillade), Ømax ciottoli = 11cm, matrice di colore marrone-rossastro-grigio Ghiaia e sabbia, clasti angolari di natura metamorfica (fillade), singoli ciottoli (ciottolo di asfalto a 2,0m), marrone-grigio Ciottoli e trovanti, clasti angolari (Ømax 30cm) di natura metamorfica (fillade), grigio Ghiaia sabbiosa con singoli ciottoli, clasti da angolari a subangolari di natura metamorfica (fillade);Ømax ciottoli = 12cm, matrice di colore grigio 39/12cm) Rim < 3,40 3.70 Trovante di natura metamorfica (micascisto), grigio scuro 40/9cm Ghiaia sabbiosa con singoli ciottoli, clasti da angolari a subangolari a subarrotondati di natura metamorfica (fillade), matrice di colore marrone Rim < 8,00 Ghiaia medio/grossolana con singoli ciottoli, clasti da arrotondati a subarrotondati di natura metamorfica (fillade), subordinatamente di natura carbonatica, Ømax ciottoli = 11cm. Trovante di natura metamorfica (micascisto) fra 10,00m-10,40m, grigio Sabbia debolmente ghiaiosa e singoli ciottoli (Ømax 7cm) di natura metamorfica (fillade),marrone Ghiaia medio/grossolana e singoli ciottoli, clasti da arrotondati a subarrotondati di natura metamorfica (fillade),subordinatamente di natura carbonatica, Ømax ciottoli = 14cm. Trovante di natura metamorfica (micascisto) da 13,60m a 13,90m, grigio-grigio scuro Ghiaia con sabbia limosa e singoli ciottoli, clasti da angolari ad arrotondati di natura poligenica (micascisto), Ømax ciottoli = 11 cm, marrone. Fra 14.00m-14.30m e 15.00m-15.35m, grigio < 15,40 Ghiaia con ciottoli e trovanti, clasti da subangolari a subarrotondati di natura metamorfica (fillade e micascisto) Livelli: sabbioso fra 16,70m-17,00m; sabbioso, debolmente limoso fra 17,75m-18,45m. Trovanti di natura metamorfica (micascisto) fra 18,70m-19,00m e 20,40m-20,7m. Matrice di colore grigio 16_ 39/11cm 18_ 19 20_ 40/11cm im < 20,10 Ghiaia eterometrica sabbiosa debolmente limosa con singoli ciottoli, clasti da subangolari a subarrotondati di natura metamorfica (fillade, micascisto), subordinatamente di natura carbonatica; Ømax ciottoli = 10cm, matrice di colore nocciola. Livelli: limoso fra 21,40m-21,50m, 24,00m-24,30m; ghiaia fine sabbiosa fra 26,70m-26,9m (marrone) e 27,50m-27,70m (grigio) 21_ 22_ 25/13cm 22,50 23_ 25_ 37/6cm 36-57/13cm < 27,00 Ghiaia medio/grossolana con trovanti e singoli ciottoli, clasti da arrotondati ad angolari di natura poligenica (fillade prevalente, micascisto, granito, carbonati), matrice bruna. Trovanti di natura metamorfica (micascisto) fra 28,00m-28,20m e di natura metamorfica (gneiss) fra 28,20m-28,70m. 28_

Committente: Italferr S.P.A		Sondaggio: EO24
Riferimento: Ponte Gardena		Data: 08.05-13.05.2017
Coordinate: X: 1694124.286 \	<i>Y</i> : 5164673.561	Quota: 477.695
Perforazione:		
SCALA 1:88	STRATICRAFIA - FO24	Pagina 2/2

	T OTTOTALIOTTO:			
	SCALA 1:88	STRATIGRAFIA - EO24		Pagina 2/2
metri g R LITOLOGIA prof. m	DESC	CRIZIONE		P.T. N RP VT prove A Pz
Ghiaia medio/grossolana con tri prevalente, micascisto, granito, 28,00m-28,20m e di natura me	rovanti e singoli ciottoli, carbonati), matrice bru tamorfica (gneiss) fra 2	clasti da arrotondati ad angolari di natura poligenica (fillade ına. Trovanti di natura metamorfica (micascisto) fra 8,20m-28,70m.	K) Rim < 30,00	
Ghiaia eterometrica sabbiosa c	lebolmente limosa con s ri di natura poligenica (f e grigio. Livello limoso d	singoli ciottoli, fillade prevalente, micascisto, granite, carbonati), Ømax debolmente argilloso fra 32,10m-32,50m.		
34. Ghiaia eterometrica debolment clasti da subangolari ad arrotor di colore marrone. Trovante di natura metamorfica	ndati di natura poligenic	a (fillade prevalente, micascisto, granito e carbonati), matrice		
35. Sabbia medio/grossolana ghiai clasti da subangolari a arrotono carbonati), matrice di colore gri Livello di chiaia media fra 35.6	lati (Ømax = 6cm) di na gio-marrone.	tura poligenica (fillade prevalente, micascisto, granito,		
37. See See See See See See See See See Se	лн-ээ,оонг.			
38. Ghiaia eterometrica con singoli prevalente, micascisto, granito natura metamorfica (micascisto	carbonati, basalti); Øm	i da subangolari a subarrotondati di natura poligenica (fillade nax ciottoli = 7cm, matrice di colore marrone. Trovante di		
39.1				
40 101 2 Sabbia ghiaiosa debolmente lir	nosa, nocciola	1 -4004		

Falda:

01.06.2017 ore 12.00: -8.58 da p.c. 24.07.2017: -9.98 da p.c.

Tipo di piezometro: Norton Denominazione: Piez 3" Diametro del tubo (mm): 76.2 Tubo cieco (m): 0-3 Tratto filtrante (m): 3-30

Il Direttore: Dr. geol. Marco Martintoni Lo Sperimentatore : Dr. Thomas Pinter Coordinate Gauss-Boaga: X: 1694124.286 Y: 5164673.561 Certificato: NL076/S/EO24/17 del 27.07.2017

FOTODOCUMENTAZIONE

Ponte Gardena: EO24 − Box 1 − m 0.00 ÷ m 5.00

Ponte Gardena: EO24 − Box 2 − m 5.00 ÷ m 10.00

Ponte Gardena: EO24 − Box 3 − m 10.00 ÷ m 15.00

Ponte Gardena: EO24 – Box 4 – m 15.00 ÷ m 20.00

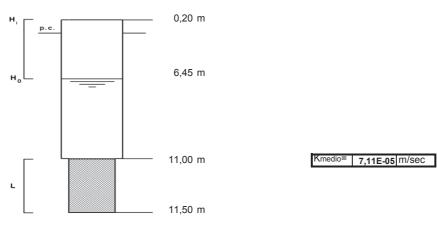
Ponte Gardena: EO24 − Box 5 − m 20.00 ÷ m 25.00

Ponte Gardena: EO24 – Box 6 – m 25.00 \div m 30.00

Ponte Gardena: EO24 − Box 7 − m 30.00 ÷ m 35.00

Ponte Gardena: EO24 − Box 8 − m 35.00 ÷ m 40.00

PROVE DI PERMEABILITA'



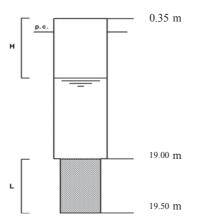
PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER		ITALFERR			
LOCALITA' LOKALITÄT		Ponte Gardena			
DATA ESECUZIONE PROVA DATUM		09/05/2017			
SONDAGGIO BOHRUNG		EO24			
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	11,00	÷	11,50		

t (s)	0	2	4	8	15	30	60	120	240	480	900	1800
h _i (m)	6,450	6,450	6,330	6,190	5,970	5,640	4,970	4,030	2,820	1,440	0,460	0,000
K	0,00E+00	0,00E+00	1,50E-04	8,96E-05	8,28E-05	6,07E-05	6,75E-05	5,60E-05	4,77E-05	4,49E-05	4,35E-05	0,00E+00
А	Area base foro Fläche der Bohrlochbasis							m ²			0,008	
d		Diametro tratto di prova Durchmesser im Versuchsabschnitt					m			0,101		
1		Altezza finestra Versuchsabschnitt						m			0,50	
cf	Coefficiente di forma L>>d Formkoefizient									0,500		
h ₀	Quota falda prima della prova da bocca foro Wasserspiegel zu Beginn der Probe ab ROK					m			6,45			
S	Sporgenza rivestimento da p.c.						m			0,20		
hi ₍₀₎	Altezza c Wassers	olonna di äule zum	_		0				m			6,45

Certificato Nr.	NL076/K2/EO24.	del	18/05/2017	Lo Sperimentatore	Dr. Thomas Pinter
Zertifikat Nr.	1/17	vom	16/03/2017	Bearbeiter	Dr. Thomas Finter
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	DI. Marco Martintoni


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO COSTANTE

DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT KONSTANTER SCHÜTTUNG

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER	ITALFERR
LOCALITA' LOKALITÄT	Ponte Gardena
DATA ESECUZIONE PROVA DATUM	11/05/2017
SONDAGGIO BOHRUNG	EO24
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	19.00 ÷ 19.50

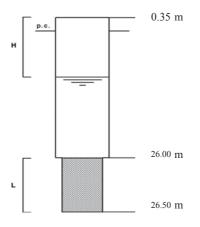
K=	2.75E-04	m/sec
K=	2.75E-02	cm/sec

Tratto di prova	da m	19.00	a m	19.50
Versuchsabschnitt	von m	19.00	bis m	19.50
Portata	1/min	189.00	ma/saa	3.15E-03
Schüttung	1/111111	109.00	mc/sec	3.13E-03

	Sporgenza tubo da pc Rohroberkante ab GOK		m	0.35
	Livello falda prima della prova da p.c. Wasserspiegel zu Beginn der Probe ab GOK			8.04
	Livello falda durante la prova da bocca Wasserspiegel während der Probe ab RO		m	0.00
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt		m	0.101
I	Altezza finestra Höhe des Versuchsabschnittes		m	0.50
F	Coefficiente di forma Formkoefizient	$2\pi I/log_e((I/d)+\sqrt{(1+(I/d))^2)}$		1.36
h	Altezza colonna H ₂ O Wassersäule		m	8.39

Certificato Zertifikat	NL076/K1/EO24.1/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Dr. Thomas Pinter
Pagina	1	di von	1	Il Direttore Direktor	Dr. Marco Martintoni

PROVA DI PERMEABILITA TIPO LEFRANC A CARICO COSTANTE



Norma di riferimento:

Norm:

COMMITTENTE AUFTRAGGEBER		ITALFERR		
LOCALITA' LOKALITÄT		Ponte Gardena		
DATA ESECUZIONE PROVA DATUM		12/05/2017		
SONDAGGIO BOHRUNG		EO24		
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	26.00	÷	26.50	

K=	1.08E-04	m/sec
K=	1.08E-02	cm/sec

Tratto di prova Versuchsabschnitt	da m von m	26.00	a m bis m	26.50
Portata Schüttung	1/min	76.00	mc/sec	1.27E-03

	Sporgenza tubo da pc Rohroberkante ab GOK		m	0.35
	Livello falda prima della prova da p.c. Wasserspiegel zu Beginn der Probe ab GOK			8.25
	Livello falda durante la prova da bocca Wasserspiegel während der Probe ab RO	m	0.00	
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt		m	0.101
I	Altezza finestra Höhe des Versuchsabschnittes		m	0.50
F	Coefficiente di forma Formkoefizient	$2\pi I/log_e((I/d)+\sqrt{(1+(I/d))^2}))$		1.36
h	Altezza colonna H ₂ O Wassersäule		m	8.60

Certificato Zertifikat	NL076/K1/EO24.2/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Dr. Thomas Pinter
Pagina	1	di von	1	Il Direttore Direktor	Dr. Marco Martintoni

E025

Allegati:

- A Ubicazione planimetrica dei sondaggi
- **B** Report Stratigrafico
- **C** Fotodocumentazione
- **E** Prove di Permeabilità

UBICAZIONE PLANIMETRICA DEL SONDAGGIO

AUFTRAGGEBER/COMMITTENTE: ITALFERR SPA

PROJEKT/PROGETTO: Sondaggi ordinari su

interconnessione Ponte Gardena

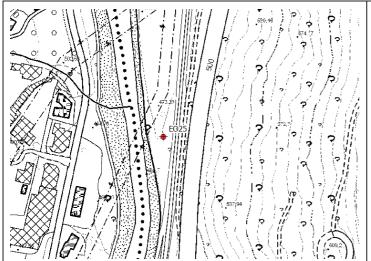
ÖRTLICHKEIT/LOCALITA': Ponte Gardena

Datum/Data: 31/05/2017

Bohrung/Sondaggio:

EO25

MONOGRAFIE DES BOHRPUNKTES SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE


KOORDINATEN/ COORDINATE

GAUSS BOAGA

Coord. N = 5 164 556.556 m

Coord. E = 1 694 138.312 m

H = 473.366 m.s.m

TGK/CTR 1:5.000

Ortofoto2011

Foto Positionierung/postazione

REPORT STRATIGRAFICO

Committente: Italferr S.P.ASondaggio: EO25Riferimento: Ponte GardenaData: 15.05-20.05.2017Coordinate: X: 1694138.312 --- Y: 5164556.556Quota: 473.366Perforazione:

		Perforazione:						
	ln l	SCALA 1:88 STRATIGRAFIA - E025	D 1.0	/	S.P.T.		Pagina 1/2	
metri ø batt. mm	R LITOLOGIA Pro	DESCRIZIONE	Prel. 9 0 10		S.P.T.	N RP V	/T prove in foro	A r s Pz
8		² Terreno vegetale						
1 8		Sabbia medio-fine ghiaiosa, clasti angolari (Ømax 7cm) di natura metamorfica (filladi), grigio-marrone						
1-8	1	Olimpia sabbiosa, clasti da subarrotondati a subangolari di natura metamorfica (filladi) e singoli ciottoli di fillade		H				
1 8		(Ømax 16cm), grigio						
2		Trovante di ignimbrite da 1,20m a 1,50m.						
1 8								
3_	3	0		A) Rim < 3,00 3,30	35/12cm	Rif		
1 8		Ghiaia sabbiosa debolmente limosa, clasti da subarrotondati a subangolari (Ømax 10cm) di natura metamorfica (filladi), matrice di colore marrone						
1 4 8	3	8						
4_5		Sabbia debolmente ghiaiosa, debolmente limosa, colore grigio						
- 8		Sabbia ghiaiosa, debolmente limosa, clasti da subarrotondati a subangolari (Ømax 10cm) di natura metamorfica (filladi) e singoli ciottoli di fillade (Ømax 7cm), marrone						
5_	5	(mind) e singon diction di finade (2011ax 7011), manone	ШШ					1 12
8	600000000000000000000000000000000000000	Ghiaia debolmente sabbiosa, clasti da subangolari ad arrotondati (Ø da 2-4 cm) di natura metamorfica (filladi),	7111111					
8	00000000	subordinatamente carbonatica (Ømax 10cm) e rari ciottoli di fillade (Ømax 10cm). Trovanti di fillade quarzifera tra 6,2 e 6,9, 7,0 e 7,4, 8,15 e 8,30, 8,45 e 8,60, matrice di colore marrone						
6_	6600000	0,2 e 0,3, 7,0 e7,4, 0,13 e 0,30, 0,43 e 0,00, mainte di colore marione						
1 8	000000000							
7 0	000000000000000000000000000000000000000							
7_	5000000			B) Rim < 7,40	39/9cm	Rif	Lefranc CC	1 12
8	600 0000			B) Rim < 7,70			Editate GO	
8_	00000000							
1 8	000,000,000							
	0000							
9_	65,000,000							7
8	000000000000000000000000000000000000000			C) Rim < 9,60	42/11cm	Rif		
10_	000000000000000000000000000000000000000			5,50				
8	000000000000000000000000000000000000000	3						
1 8	0.00	Ghiaia con singoli ciottoli e blocchi, clasti da subangolari a arrotondati (Ømax 10cm) di natura metamorfica (filladi), subordinatamente di natura carbonatica. Trovante di fillade tra 11,15m - 11,90m, matrice di colore marrone			40/8cm	Dif		
11_		Substituting definition of the definition of the substitution of t		D) Rim < 11,00 11,30	40/6CIII	IKII		
1 8								
12_	11	8						
12-18		Sabbia fine debolmente limosa, colore marrone		40.50	22-30-50	80		
8	***************************************	Sabbia debolmente limosa e ghiaiosa, clasti da subangolari ad angolari (max 6cm) di natura metamorfica (filladi), colore marrone		E) Rim < 12,50 13,00	22 00 00			
13_		colore marrone						
8								
l 8								
14_	14	1			7-10-12	22		
8	***********	Limo e sabbia ghiaioso, clasti da subarrotondati a subangolari (Ømax 4cm) di natura metamorfica (filladi), grigio-marrone chiaro (14,10m - 15,70m), grigio scuro argenteo (15,70m - 17,40m)		F) Rim < 14,40 14,90	1-10-12			
15_		grigo manero emare (1.1,10m), grigo esare argentes (10,10m)						
1 8	***********							
1 8								
16_							Lefranc CV	
1 8								
17_				G) Rim < 17,00	12-21-32	53		
18	17	4		G) Killi 17,50				
8	00000000	Ghiaia con tracce di limo e singoli ciottoli (Ømax 11cm), clasti angolari di natura metamorfica (filladi)	ШШ					
18_	00000000							
8	830000000				27/9cm	Pif		
19_	000000000			H) Rim < 18,70 19,00	27/30111			1 19
	8,68,80,00,19	2						
8		Limo con singoli granuli di quarzo (Ømax 2mm), colore grigio argenteo						
20_								
21	20	7 Sabbia fina limaga dabalmanta ahigiaga grigia marrana		24.00	39/12cm	Rif		
21_		Sabbia fine limosa debolmente ghiaiosa, grigio-marrone		I) Rim < 21,00 21,30				P
BI	000 D 00 D 0	Ghiaia debolmente sabbiosa, clasti da subangolari ad arrotondati (Ø 2-4cm) di natura poligenica (fillade, granito) e						1
22_	2000000	singoli ciottoli di granito (Ømax 10cm), colore marrone-grigio						
BI	20000000000000000000000000000000000000							
as B	000000000							
23_	66666000						Lefranc CC	
8	B0000000							
24_	[50% 60% 00 00 00 00 00 00 00 00 00 00 00 00 0							P
78	2000000							
8	000000000000000000000000000000000000000	6 Cabbia dabalwanta liwaaa dabalwanta whici		H				
25_		Tra 24.60m e 25m; sabbia con ghiaia debolmente limosa		J) Rim < 25,00 25,50	3-5-12	1/		
8		Sabbia debolmente limosa, debolmente ghiaiosa, marrone chiaro Tra 24,60m e 25m: sabbia con ghiaia debolmente limosa Tra 27,50m e 27,70m: sabbia con limo, debolmente ghiaioso Tra 27,70m e 28m: sabbia con ghiaia debolmente limosa						
26_		Tra 27,70m e 28m: sabbia con gniala depolmente limosa						
20_		was don was how the						
BI		When 92 Martin						
27_		V						
8								
	200000000000000000000000000000000000000				7-21-27	18		
28_				K) Rim < 28,00 28,50	1-27-21	40		
8								
29_	28	9						
-~-		Sabbia prevalentemente medio/fine da limosa a con limo, marrone. Livello di ghiaia da mt. 30.00-30.30.						
8								
30								

Committente: Italferr S.P.A	Sondaggio: EO25
Riferimento: Ponte Gardena	Data: 15.05-20.05.2017
Coordinate: X: 1694138.312 Y: 5164556.556	Quota: 473.366
Perforazione:	

		Periorazione.				
		SCALA 1:88	STRATIGRAFIA - EO25		Pagii	na 2/2
metri ø batt. mm		DESC	RIZIONE	Prel. % Campioni S.P.T. S.P.T.		prove A PZ
	\$0,000,00 \$0,000,00 30,8	Sabbia prevalententemente medio/fine da limosa a cor	limo, marrone. Livello di ghiaia da mt. 30.00-30.30.			
31_	30.8	Sabbia sciolta con singoli clasti millimetrici, marrone-gr	igio			
32_						
33_						
34_	34.4		L cordi QGI			
35 101	35,0	Sabbia fine/media limosa compatta con screziature ocr	acee			

Falda:

01.06.2017 ore 12.00: -5.18 da p.c. 24.07.2017: -6.24 da p.c.

Tipo di piezometro: Norton Denominazione: Piez 3" Diametro del tubo (mm): 76.2 Tubo cieco (m): 0-3 Tratto filtrante (m): 3-30

Il Direttore: Dr. geol. Marco Martintoni Lo Sperimentatore : Dr. Thomas Pinter Coordinate Gauss-Boaga: X: 1694138.312 Y: 5164556.556 Certificato: NL076/S/EO25/17 del 27.07.2017

FOTODOCUMENTAZIONE

Ponte Gardena: EO25 − Box 1 − m 0.00 ÷ m 5.00

Ponte Gardena: EO25 − Box 2 − m 5.00 ÷ m 10.00

Ponte Gardena: EO25 − Box 3 − m 10.00 ÷ m 15.00

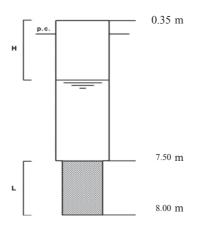
Ponte Gardena: EO25 − Box 4 − m 15.00 ÷ m 20.00

Ponte Gardena: EO25 − Box 5 − m 20.00 ÷ m 25.00

Ponte Gardena: EO25 − Box 6 − m 25.00 ÷ m 30.00

Ponte Gardena: EO25 − Box 7 − m 30.00 ÷ m 35.00

PROVE DI PERMEABILITA'


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO COSTANTE

DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT KONSTANTER SCHÜTTUNG

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER		ITALFERR			
LOCALITA' LOKALITÄT	Ponte Gardena				
DATA ESECUZIONE PROVA DATUM	16/05/2017				
SONDAGGIO BOHRUNG	EO25				
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	7.50	÷	8.00		

K=	3.74E-04	m/sec
K=	3.74E-02	cm/sec

Tratto di prova	da m	7.50	a m	8.00
Versuchsabschnitt	von m	7.50	bis m	8.00
Portata	1/min	163.00	malaaa	2.72E-03
Schüttung	1/111111	103.00	mc/sec	2./2E-03

	Sporgenza tubo da pc		m	0.35
	Rohroberkante ab GOK		111	0.33
	Livello falda prima della prova da p.c. Wasserspiegel zu Beginn der Probe ab GOK		m	4.98
	Livello falda durante la prova da bocca foro Wasserspiegel während der Probe ab ROK			0.00
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt		m	0.101
I	Altezza finestra Höhe des Versuchsabschnittes		m	0.50
F	Coefficiente di forma Formkoefizient	$2\pi I/log_e((I/d)+\sqrt{(1+(I/d))^2)})$		1.36
h	Altezza colonna H ₂ O Wassersäule		m	5.33


Certificato Zertifikat	NL076/K1/EO25.1/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Dr. Thomas Pinter
Pagina	1	di von	1	Il Direttore Direktor	Dr. Marco Martintoni

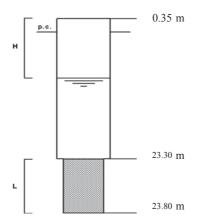
PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER		ITALFERR				
LOCALITA' LOKALITÄT		Ponte Gardena				
DATA ESECUZIONE PROVA DATUM		17/05/2017				
SONDAGGIO BOHRUNG		EO25				
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	16,00	16,00 ÷ 16,50				

t (s) h _i (m)	0 5.210	2 5,210	4 5.210	8 5,210	15 5,200	30 5,195	60 5,190	120 5,180	240 5,160	480 5,120	900 5,040	1800 0,000
K				-			-	5,15E-07	•	5,20E-07	-	
Α	Area bas Fläche de		chbasis						m^2			0,008
d		Diametro tratto di prova Durchmesser im Versuchsabschnitt										0,101
I	Altezza fi Versuchs		t						m			0,50
cf	Coefficie Formkoe		ma			L>	>d					0,500
h ₀	Quota fal Wassers								m			5,21
S	Sporgenz	za rivesti	mento da	p.c.					m			0,20
hi ₍₀₎	Altezza c Wassers		_		0				m			5,21

Certificato Nr.	NL076/K2/EO25.	del	18/05/2017	Lo Sperimentatore	Dr. Thomas Pinter
Zertifikat Nr.	1/17	vom	16/03/2017	Bearbeiter	Dr. Thomas Finter
Pagina	1	, di		Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	DI. Marco Martintoni


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO COSTANTE

DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT KONSTANTER SCHÜTTUNG

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER	ITALFERR	ITALFERR					
LOCALITA' LOKALITÄT	Ponte Gardena	Ponte Gardena					
DATA ESECUZIONE PROVA DATUM	19/05/2017	19/05/2017					
SONDAGGIO BOHRUNG	EO25						
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	23.30 ÷ 23.8	30					

K=	4.59E-04	m/sec
K=	4.59E-02	cm/sec

Tratto di prova	da m	23.30	a m	23.80	
Versuchsabschnitt	von m	25.50	bis m	23.00	
Portata	1/min	200.00	ma/saa	3.33E-03	
Schüttung	1/111111	200.00	mc/sec	3.33E-03	

	Sporgenza tubo da pc Rohroberkante ab GOK		m	0.35
	Livello falda prima della prova da p.c. Wasserspiegel zu Beginn der Probe ab G	GOK	m	4.98
	Livello falda durante la prova da bocca Wasserspiegel während der Probe ab RO		m	0.00
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt		m	0.101
I	Altezza finestra Höhe des Versuchsabschnittes		m	0.50
F	Coefficiente di forma Formkoefizient	$2\pi I/log_e((I/d)+\sqrt{(1+(I/d))^2)})$		1.36
h	Altezza colonna H ₂ O Wassersäule		m	5.33

Certificato Zertifikat	NL076/K1/EO25.1/17	del vom	18/05/2017	Lo Sperimentatore Bearbeiter	Dr. Thomas Pinter
Pagina	1	di von	1	Il Direttore Direktor	Dr. Marco Martintoni

E028

Allegati:

- A Ubicazione planimetrica dei sondaggi
- **B** Report Stratigrafico
- **C** Fotodocumentazione
- **E** Prove di Permeabilità

UBICAZIONE PLANIMETRICA DEL SONDAGGIO

AUFTRAGGEBER/COMMITTENTE: ITALFERR SPA

Sondaggi ordinari su

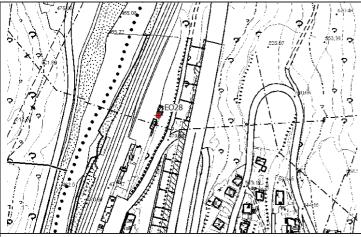
interconnessione Ponte Gardena

ÖRTLICHKEIT/LOCALITA': Ponte Gardena

Datum/Data: 31/05/2017

PROJEKT/PROGETTO:

Bohrung/Sondaggio:


EO28

MONOGRAFIE DES BOHRPUNKTES SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

KOORDINATEN/ COORDINATE

GAUSS BOAGA

Coord. N = 5 164 112.192 m Coord. E = 1 694 078.56 m H = 471.534 m.s.m

TGK/CTR 1:5.000

Ortofoto2011

Foto Positionierung/postazione

REPORT STRATIGRAFICO

Committente: Italferr S.P.ASondaggio: EO28Riferimento: Ponte GardenaData: 06.04-10.04.2017Coordinate: X: 1694078.56 --- Y: 5164112.192Quota: 471.534Perforazione:

			SCALA 1:88 STRATIGRAFIA - EO2	8				Pagina 1	/2
metri ø batt. mn	R LITOLOGIA	prof. m	DESCRIZIONE	Prel. 0	% Campioni	S.P.T. S.P.T.	N RP V	VT prove in foro	A Pz
3	0.0.0.00		Sabbia fine con ghiaia e singoli ciottoli, clasti da subangolari ad arrotondati di natura poligenica (fillade, granito, ignimbrite, carbonati); Ømax ghiaia = 4cm, Ømax ciottoli = 7cm, grigio						
1 8		0,7	Ghiaia sabbiosa con ciottoli, clasti da arrotondati a subangolari di natura poligenica (fillade, granito, ignimbrite,		H				
1 3			carbonati);Ømax ghiaia = 5,5cm, Ømax ciottoli = 9,0cm, matrice di colore bruno						
2_		1,8	Sabbia con ghiaia e singoli ciottoli, clasti da arrotondati a subangolari di natura prevalentemente metamorfica		\mathbf{H}	44/9cm			
8			Gillade), subordinatamente di natura carbonatica e granitica;@max ghiaia = 5,0cm, @max ciottoli = 8,0cm, grigio-marrone chiaro. Livello di ghiaia e ciottoli fra 2,40m-2,70m e 3,40m-3,60m.						
3_			gnglo-martone chiaro. Livello di gniala e ciottoli fra 2,40m-2,70m e 3,40m-3,00m.		A) Rim < 3,01	21/9cm	Rif		
8					3,3	,			
4_		3,8	Sabbia medio/fine ghiaiosa con singoli ciottoli, clasti da subangolari adarrotondati di natura poligenica (fillade		\mathbb{H}				
8	000000		Sabbia medio/fine ghiaiosa con singoli ciottoli, clasti da subangolari adarrotondati di natura poligenica (fillade, granito, carbonati); Ømax ghiaia = 4,5cm, Ømax ciottoli = 7cm, marrone-grigio						
5_	0.0000								
8	000000								
6_	000000	6.1						Lefranc CV	
8			Sabbia fine limosa, marrone-rossastro-grigio						+8
7_					B) Rim < 7,01	4-5-5	10		
8									
8_		7,9	Sabbia medio/fine debolmente limosa, marrone-grigio		C) Rim < 8,01 8,51	6-8-9	17		
8	************	8,4	Sabbia medio/fine con limo, marrone-rossastro-grigio		Ш				
9_	03/04/06/01	9,0			D) Rim < 9,01	11-29-38	67		
8			Sabbia medio/grossolana ghiaiosa con singoli ciottoli, clasti da subangolari ad arrotondati di natura poligenica (fillade, quarzo, granito, basalto, carbonati); Ømax ghiaia = 4,5cm,Ømax ciottoli = 8cm, grigio-marrone chiaro						
10_									
8									
11_	8,70,52								
- 8									
12_					E) Rim < 12,01	37/5cm	Rif		
- 8									
13_	24 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13,0	Ghiaia medio/fine sabbiosa, clasti da subangolari a arrotondati (Ømax = 6cm) di natura poligenica (fillade, granit		Ш				
- 8		13,5	carbonati), grigio-marrone chiaro	o,	Н				
14_	9:0:00		Sabbia medio/grossolana con ghiaia medio/fine e singoli ciottoli, clasti da subangolari adarrotondati di natura prevalentemente metamorfica (fillade),subordinatamente di natura carbonatica e granitica; Ømax ghiaia = 3,0cm	.	F) Rim < 14,01	8-12-16	28		
8			Ømax ciottoli = 7,5cm, marrone	'					
15_		15,0	Sabbia fine con ghiaia medio/grossolana debolmente limosa e singoli ciottoli, clasti da subangolari ad arrotondal	i di	G) Rim < 15,0 15,3	41/11cm	Rif		
8	\$000		natura poligenica (fillade,granito, carbonati); Ømax ghiaia = 5,5cm, Ømax ciottoli = 8,5cm, marrone chiaro	. u.					
16_									
8									
17_	8700	17,2			Щ			Lefranc CV	
8			Sabbia medio/grossolana ghiaiosa debolmente limosa, clasti da subangolari ad arrotondati (Ømax = 4,5cm) di natura prevalentemente metamorfica (fillade), subordinatamente di natura carbonatica, grigio						
18_									
						13-32-56	88		
19_		19,0	Sabbia medio/grossolana con ghiaia eterometrica debolmente limosa e singoli ciottoli, clasti da subangolari a		H) Rim < 19,0 19,5	3			
20			arrotondati di natura poligenica (fillade, quarzo, granito, carbonati); Ømax ghiaia = 5,0cm, Ømax ciottoli = 10,0cr grigio. Livello limoso fra 20,00m-20,50m.	n,					
20_	**********								
21_									
- ' -									
22_									
23_					I) Rim < 23,01	44/9cm	Rif		
1					23,3	1			
24_									
25_	2000		. A Hang GERACO	SI L					
8			ORDNE US WANNING GEOLOGENKANNI	ناللة					
26_			N. 92 MARIE MARINE					Lefranc CV	
8			Milande						
27_									
8									
28_					J) Rim < 28,01				
	0.0.0.0.								
29_						34-56/6cm	Rif		
30 101		30,0							

Committente: Italferr S.P.A		Sondaggio: EO28		
Riferimento: Ponte Gardena	Data: 06.04-10.04.2017			
Coordinate: X: 1694078.56 Y: 5164112.19	92	Quota: 471.534		
Perforazione:				
SCALA 1:88	STRATIGRAFIA - EO28	Pagina 2/2		

Falda: 01.06.2017 ore 12.15: -6.42 da p.c. 24.07.2017: -7.08 da p.c.

Tipo di piezometro: Norton Denominazione: Piez 3" Diametro del tubo (mm): 76.2 Tubo cieco (m): 0-3 Tratto filtrante (m): 3-30

Il Direttore: Dr. geol. Marco Martintoni Lo Sperimentatore : Dr. Thomas Pinter

Coordinate Gauss-Boaga: X: 1694078.56 Y: 5164112.192 Certificato: NL076/S/EO28/17 del 27.07.2017

FOTODOCUMENTAZIONE

Ponte Gardena: EO28 – Box 1 – m 0.00 ÷ m 5.00

Ponte Gardena: EO28 – Box 2 – m $5.00 \div m 10.00$

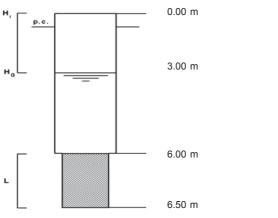
Ponte Gardena: EO28 − Box 3 − m 10.00 ÷ m 15.00

Ponte Gardena: EO28 – Box 4 – m 15.00 ÷ m 20.00

Ponte Gardena: EO28 - Box 5 - m 20.00 ÷ m 25.00

Ponte Gardena: EO28 – Box 6 – m 25.00 ÷ m 30.00

PROVE DI PERMEABILITA'


PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC

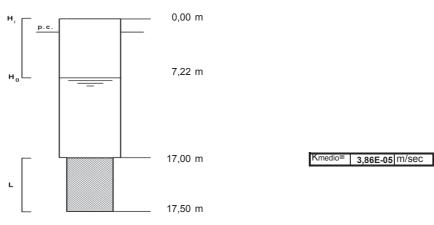
MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER		ITALFERR					
LOCALITA' LOKALITÄT		Ponte Gardena					
DATA ESECUZIONE PROVA DATUM		07/04/2017					
SONDAGGIO BOHRUNG		EO28					
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	6.00	6.00 ÷ 6.50					

Kmedio=	6 98F-06	m/sec

t (s)	0	2	4	8	15	30	60	120	240	480	900	1800
h _i (m)	3.000	3.000	3.000	2.990	2.980	2.960	2.920	2.840	2.700	2.510	2.240	1.800
K	0.00E+00	0.00E+00	0.00E+00	1.34E-05	7.67E-06	7.19E-06	7.27E-06	7.42E-06	6.75E-06	4.87E-06	4.34E-06	3.89E-06
Α	Area bas	e foro							m²			0.008
	Fläche de											
d	Diametro								m			0.101
u	Durchme	sser im \	/ersuchsa	abschnitt								0.101
1	Altezza f	inestra							m			0.50
'	Versuchs	sabschnit	t .						111			0.50
cf	Coefficie	nte di for	ma			15	>d					0.500
G	Formkoe	fizient					~u					0.500
h ₀	Quota fal	da prima	della pro	va da bo	cca foro				m			3.00
110	Wassers	piegel zu	Beginn d	ler Probe	ab ROK				111			3.00
S	Sporgenz	za rivestii	mento da	p.c.	•	•			m	·	•	0.00
hi	Altezza c	olonna d	i H ₂ 0 nel	tempo t=	0	<u> </u>						2.00
hi ₍₀₎	Wassers	äule zum	Zeitpunk	t t=0					m			3.00

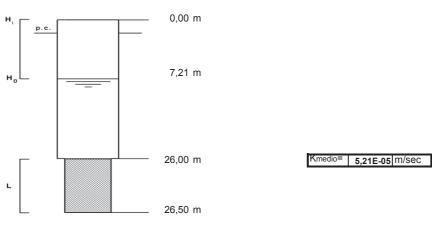

Certificato Nr.	NL076/K2/EO28.	del	18/05/2017	Lo Sperimentatore	Daniel Ebner
Zertifikat Nr.	1/17	vom	16/03/2017	Bearbeiter	Daniel Eonei
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	Di. Marco Martintoni

PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER	ITALFERR					
LOCALITA' LOKALITÄT	Ponte Gardena					
DATA ESECUZIONE PROVA DATUM	08/04/2017					
SONDAGGIO BOHRUNG	EO28					
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	17,00 ÷ 17,50					

t (s) h _i (m)	0 7,220	2 7,220	4 7,170	8 7,090	15 6,970	30 6,740	60 6,320	120 5,570	240 4,330	480 2,690	900 0,000	1800 0,000
K	0,00E+00	0,00E+00	5,57E-05	4,49E-05	3,91E-05	3,58E-05	3,44E-05	3,37E-05	3,36E-05	3,18E-05	1,09E-03	8,24E-05
Α	Area bas Fläche de		chbasis	m²			0,008					
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt								m			0,101
I	Altezza finestra Versuchsabschnitt											0,50
cf	Coefficiente di forma L>>d Formkoefizient											0,500
h ₀	Quota falda prima della prova da bocca foro Wasserspiegel zu Beginn der Probe ab ROK								m			7,22
S	Sporgenza rivestimento da p.c.								m			0,00
hi ₍₀₎	Altezza colonna di H ₂ 0 nel tempo t=0 Wassersäule zum Zeitpunkt t=0											7,22


Certificato Nr.	NL076/K2/EO28.	del	18/05/2017	Lo Sperimentatore	Daniel Ebner
Zertifikat Nr.	2/17	vom	16/03/2017	Bearbeiter	Daniel Eblief
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	DI. IVIAICO IVIAITIIIIUIII

PROVA DI PERMEABILITA TIPO LEFRANC A CARICO VARIABILE DURCHLÄSSIGKEITSVERSUCH NACH LEFRANC MIT VARIABLER WASSERSÄULE

Norma di riferimento: Norm:

COMMITTENTE AUFTRAGGEBER	ITALFERR					
LOCALITA' LOKALITÄT	Ponte Gardena					
DATA ESECUZIONE PROVA DATUM	10/04/2017					
SONDAGGIO BOHRUNG	EO28					
PROFONDITÀ PROVA (m) VERSUCHSABSCHNITT (m)	26,00 ÷ 26,50					

t (s) h _i (m)	0 7.210	2	4 7.210	8 7.060	15	30	60	120	240	480	900	1800
11 (111)	7,210	7,210	7,210	7,000	6,890	6,600	6,060	5,120	3,680	1,910	0,000	0,000
K	0,00E+00	0,00E+00	0,00E+00	8,42E-05	5,58E-05	4,59E-05	4,56E-05	4,50E-05	4,41E-05	4,38E-05	0,00E+00	0,00E+00
Α	Area bas Fläche de		chbasis		m^2			0,008				
d	Diametro tratto di prova Durchmesser im Versuchsabschnitt											0,101
I	Altezza finestra Versuchsabschnitt											0,50
cf	Coefficiente di forma L>>d Formkoefizient											0,500
h ₀	Quota falda prima della prova da bocca foro Wasserspiegel zu Beginn der Probe ab ROK											7,21
S	Sporgenza rivestimento da p.c.											0,00
hi ₍₀₎	Altezza o Wassers		_		0				m			7,21

Certificato Nr.	NL076/K2/EO28.	del	18/05/2017	Lo Sperimentatore	Daniel Ebner
Zertifikat Nr.	3/17	vom	16/03/2017	Bearbeiter	Daniel Eoliel
Pagina	1	di	2	Il Direttore	Dr. Marco Martintoni
Seite	1	von	2	Direktor	DI. IVIAICO IVIAITIIIUIII