

PROVINCIA DI POTENZA COMUNE DI CANCELLARA

PROGETTO DEFINITIVO DI UN PARCO EOLICO E DELLE OPERE CONNESSE SITO NEL TERRITORIO DEL COMUNE DI CANCELLARA DI POTENZA COMPLESSIVA PARI A 32 MW

Proponente:

BUONVENTO s.r.l.

BUONVENTO s.r.l.

via Tiburtina, 1143 - 00156 ROMA tel. +39 06 4111087 mail: office@buonvento srl.it

Dott. Luca RAINOLDI

Progettisti:

Responsabile opere civili:

STUDIO DI INGEGNERIA ED ARCHITETTURA MARGIOTTA ASSOCIATI

via N. Vaccaro, 37 - 85100 POTENZA (PZ) tel. +39 0971 37512 mail: studio@associatimargiotta.it

Arch. Donata M.R. MARGIOTTA Prof. Ing. Salvatore MARGIOTTA

Responsabile opere elettriche:

STUDIO ACQUASANTA

via D. Alighieri, 13/D - 75100 MATERA (MT) tel. +39 0835 336718 mail: ing.acquasanta@gmail.com

Ing. Paolo ACQUASANTA
Ing. Eustachio SANTARSIA

Responsabile S.I.A: STUDIO ALESSANDRIA

via Circonvallazione Nomentana, 138 - 00162 ROMA tel. +39 348 5145564 mail: f.ales@libero.it

Prof. arch. Francesco ALESSANDRIA

Responsabile geologia:

GEO-STUDIO DI GEOLOGIA E GEOINGEGNERIA

via del Seminario Maggiore, 35 - 85100 POTENZA (PZ) tel. +39 0971 1800373 mail: studiogeopotenza@libero.it

Dott. geol. Antonio DE CARLO

SCALA: -	NOME FILE: A.5_Analisi anemologica e stima di producibilità.doc
CODICE ELABORATO:	TITOLO ELABORATO:
A.5	Analisi anemologica e stima di producibilità

Α	Consegna progetto	06/2023	M.Taurasi	M.Taurasi	M.Taurasi
REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO

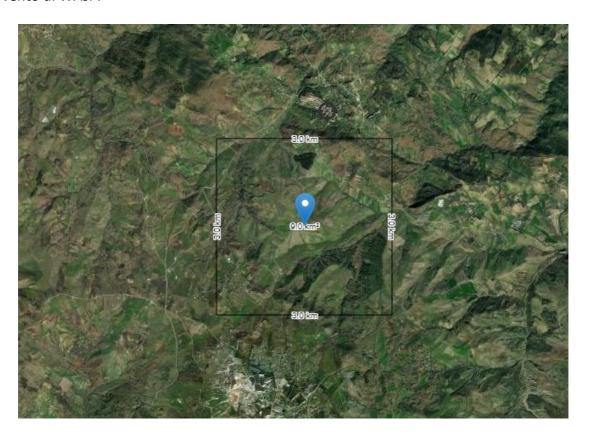
Indice

1	1 PREMESSA					
2	ANEN	MOMETRIA	3			
3	CENT	RALE EOLICA	4			
	3.1	Ubicazione	4			
	3.2	Aerogeneratore V136-4.0MW	5			
4	ANAL	ISI DI PRODUCIBILITÀ	6			
	4.1	Modello orografico digitale	6			
	4.2	Mappatura del campo di vento	7			
	4.3	Risultati dell'analisi anemologica	9			
	4.4	Producibilità netta	10			
	4.5	Densità volumetrica	10			

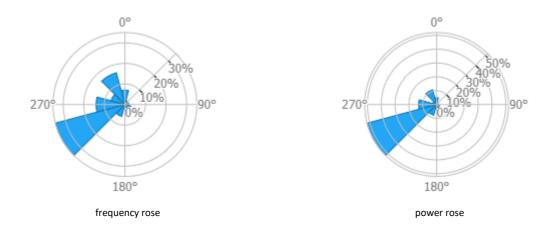
Informazioni documento

Categoria documento	Relazione Tecnica
Progetto	Centrale eolica nel Comune di Cancellara (PZ)
Titolo documento	Analisi anemologica e stima di producibilità
Cliente	Zefiro srl
Numero di pagine	11
Data Registrazione	
Indice Revisione	rev. 0

1 PREMESSA


La presente analisi anemologica e di producibilità si pone come obiettivo la quantificazione delle potenzialità eoliche del sito e la stima di producibilità delle turbine previste per l'installazione sull'area di progetto.

Come input al codice di simulazione anemologica WASP⁽¹⁾, non avendo a disposizione dati di un anemometro in zona, sono stati considerati dati areali. Il modello territoriale, o DTM, fornisce al software tutte le informazioni legate all'andamento altimetrico del terreno, alla distribuzione di rugosità superficiale ed, eventualmente, alla presenza di ostacoli naturali o infrastrutturali che possono esercitare un sensibile effetto indotto sul regime anemologico locale.


Attraverso l'applicazione di un particolare algoritmo di estrapolazione, WASP è in grado di calcolare la distribuzione, e quindi la mappatura, a varie altezze rispetto al suolo, dei principali parametri anemologici caratterizzanti l'area circostante il punto di misura. I valori di tali parametri, calcolati su ciascuna delle posizioni previste per l'installazione delle macchine, ed associati alle curve di prestazioni del modello di aerogeneratore selezionato, permettono di operare una stima del valore di produzione di energia media annua attesa dall'impianto, al netto delle perdite per scia aerodinamica indotte dagli effetti d'interferenza reciproca tra le turbine.

2 ANEMOMETRIA

A supporto del presente studio sono stati utilizzati i dati anemometrici relativi all'atlante di vento di WASP.

⁽¹⁾ WAsP (Wind Atlas Analysis and Application Program), codice di simulazione anemologica sviluppato in Danimarca presso il RISØ National Laboratory, Centro di prova e certificazione per turbine eoliche.

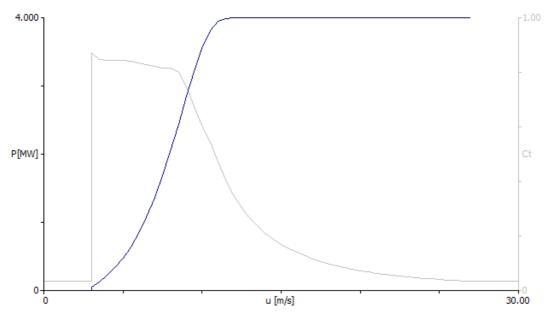
3 CENTRALE EOLICA

3.1 Ubicazione

Gli aerogeneratori in progetto insistono sul territorio del comune di Cancellara ad un'altitudine media pari a circa 780 m slm.

Nella tabella sottostante è riportata la posizione puntuale in coordinate geografiche *UTM*:

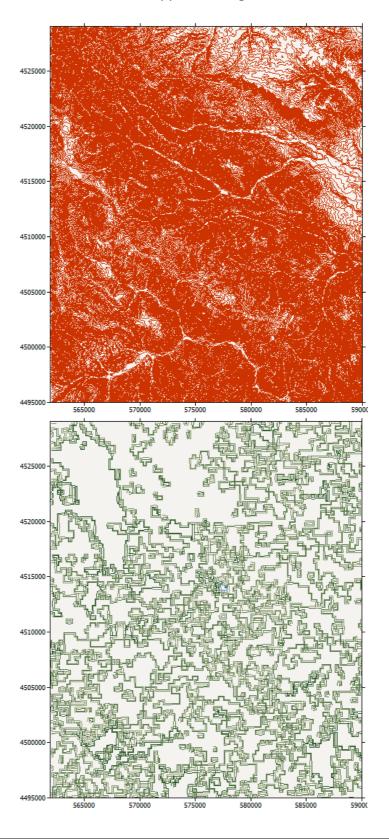
	UTM –	Altitudine		
Turbina	Long. E [m]	Lat. N [m]	[m]	
WTG01	576783	4507275	798	
WTG02	577175	4506962	813	
WTG03	577452	4507420	833	
WTG04	577172	4507791	802	
WTG05	577812	4506895	786	
WTG06	578587	4507066	707	
WTG07	578460	4507509	726	
WTG08	577982	4507475	791	


La posizione degli aerogeneratori, così come il modello di aerogeneratore, sono stati forniti dal cliente.

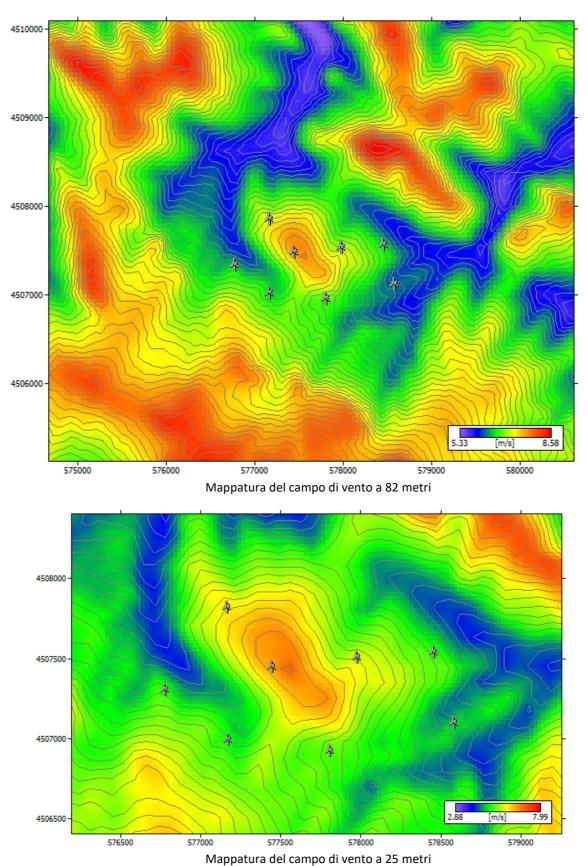
3.2 Aerogeneratore V136-4.0MW

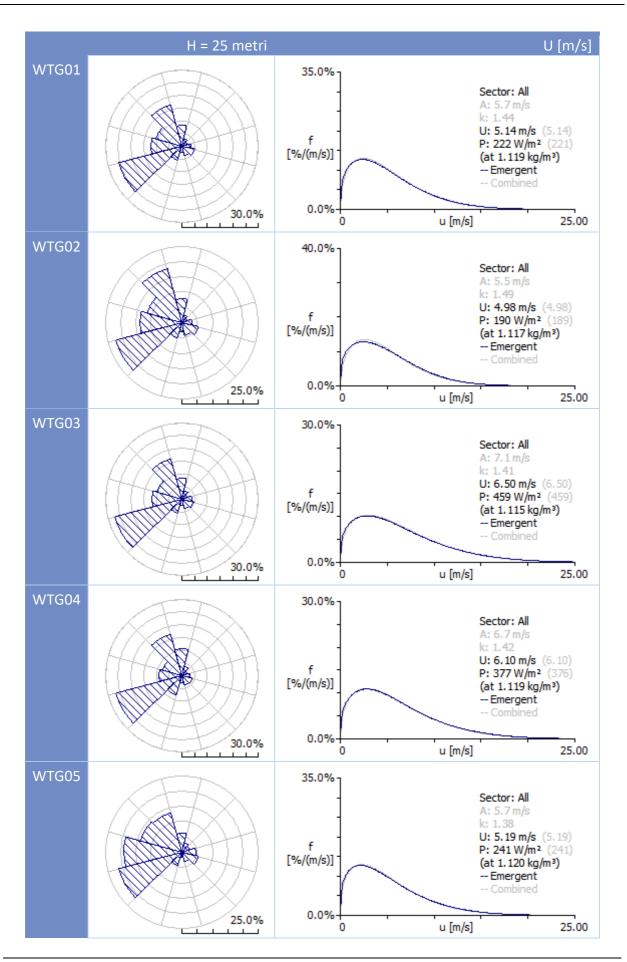
Le principali caratteristiche tecniche dell'aerogeneratore, in condizioni standard al livello del mare, sono riassunte di seguito:

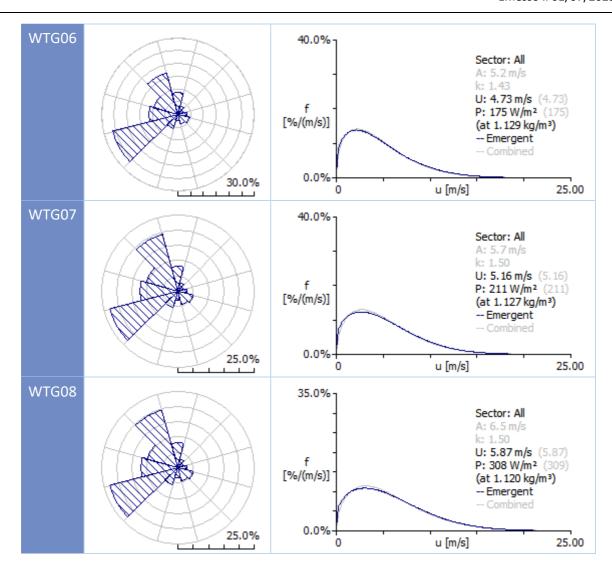
Potenza nominale	4000 kW
n° pale	3
Diametro rotore	136.0 m
Altezza mozzo rotore	82 m
Tipologia torre	tubolare
Velocità vento di avvio (cut-in)	3.0 m/s
Velocità vento di stacco (cut-out)	27.0 m/s



4 ANALISI DI PRODUCIBILITÀ


4.1 Modello orografico digitale


Per il sito in oggetto è stato assunto, nell'algoritmo di calcolo della producibilità, un modello orografico del terreno ed una mappa della rugosità scaricati dal DataBase di WASP.



4.2 Mappatura del campo di vento

L'atlante di vento geostrofico dell'area è stato calcolato ad altezza pari alla quota alla quale si trovano i mozzi rotore delle turbine in progetto ed a 25 metri dal suolo.

4.3 Risultati dell'analisi anemologica

La stima della resa energetica d'impianto è stata eseguita calcolando la producibilità per il modello di turbina preso in considerazione.

modello ad	erogene	eratore	h mozzo	A [m/s]	k	Velocità vento al mozzo [m/s]	Perdite per scia aerodinamica	Producibilità netta WAsP [GWh/anno]
WTG01	4.0	MW	82	7.38	1.61	6.61	1.55%	11.968
WTG02	4.0	MW	82	7.43	1.65	6.64	4.30%	11.803
WTG03	4.0	MW	82	8.45	1.59	7.58	8.01%	13.468
WTG04	4.0	MW	82	8.17	1.59	7.33	3.15%	13.562
WTG05	4.0	MW	82	7.50	1.57	6.74	7.43%	11.543
WTG06	4.0	MW	82	6.98	1.58	6.27	8.54%	10.214
WTG07	4.0	MW	82	7.40	1.66	6.61	9.20%	11.183
WTG08	4.0	MW	82	8.01	1.65	7.16	8.04%	12.685

4.4 Producibilità netta

Ai fini del calcolo della producibilità netta di impianto, ovvero quella effettivamente messa in rete e dunque fatturata ai fini della vendita dell'energia, sono stati considerati fattori di perdita aggiuntivi sulla base dei quali si può stimare che la <u>producibilità netta media annua</u> della centrale eolica è la seguente:

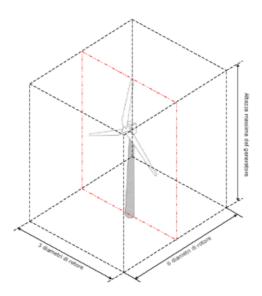
	Energia annua	ore equivalenti
	P50	(P 50)
	[GWh/anno]	[h]
WTG01	10.338	2584
WTG02	10.195	2549
WTG03	11.633	2908
WTG04	11.715	2929
WTG05	9.971	2493
WTG06	8.823	2206
WTG07	9.660	2415
WTG08	10.957	2739

Per una maggiore precisione nella valutazione delle interferenze aerodinamiche andrebbero considerati tutti i parchi eolici insistenti in zona ed è auspicabile installare un anemometro in sito per aver risultati più attendibili.

4.5 Densità volumetrica

La densità volumetrica annua (Ev) è il rapporto tra la produzione annuale stimata dell'aerogeneratore e il volume occupato nel campo visuale dalla turbina, espresso in metri cubi. Tale parametro, dunque, viene adoperato per "misurare" l'impatto visivo.

Il detto parametro è calcolato come indicato dalla formula seguente:


$$Ev = E/18HD^2 \ge 0.15 [kWh/(anno*m^3)]$$
 (Modificata dalla L.R. 4/2014)

dove: E = energia prodotta dalla turbina (kWh / anno);

D = diametro del rotore (metri);

H = altezza totale della turbina (m), somma del raggio del rotore e dell'altezza del mozzo.

Praticamente la densità volumetrica è data dal rapporto fra la stima della produzione annua di energia elettrica dell'aerogeneratore e il volume del campo visivo occupato dall'aerogeneratore espresso in metri cubi e pari al volume del parallelepipedo di lati 3D, 6D e H, dove D è il diametro del rotore e H è l'altezza complessiva della macchina (altezza del mozzo + lunghezza della pala).

Considerando il modello di turbina studiato nel presente elaborato, che ha diametro di 136 m e altezza totale pari a 150 m (altezza del mozzo di 82 m + raggio rotore di 68 m), si ottiene una densità volumetrica media del parco di 0,208 kWh/(anno·m³).