

REGIONE AUTONOMA DELLA SARDEGNA COMUNE DI VILLASOR

Provincia del Sud Sardegna (SU)

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN CAVIDOTTO PER LA CONNESSIONE DI UN IMPIANTO FV ALLA RTN

Potenza Nominale 64.50 MW - Tensione Nominale: 36 kV

	Coordinamento Progettisti	Gruppo di lavoro VIA (S.I.G.E.A. S.r.I.)
	INNOVA SERVICE S.r.I.	Dott. Geol. Luigi Maccioni - Coordinamento VIA
INNOVA SERVICE SRL	Via Santa Margherita n. 4 - 09124 Cagliari (CA)	Ing. Manuela Maccioni - Paesaggio
	P.IVA 03379940921, PEC: innovaserviceca@pec.it	Dr. Nat. Roberto Cogoni - Fauna Flora Vegetazione
	Coordinamento gruppo di lavoro VIA	Dott.ssa Cristiana Cilla - Archeologia
	5 11	Dott. Geol. Stefano Demontis – Georisorse
S.I.G.E.A. S.r.I.	S.I.G.E.A. S.r.I.	Dott. Geol. Valentino Demurtas – Georisorse
S.I.G.E.A. S.F.I.	Via Cavalcanti n. 1 - 09047 Selargius (CA)	Gruppo di lavoro Progettazione Agronomica
	P.IVA 02698620925, PEC: sigeamaccioni@pec.it	Agr.Stefano Atzeni – Agronomo
	Committente - Sviluppo progetto FV:	Gruppo di lavoro Progettazione Elettrica
. 44		Ing. Silvio Matta – Ing. Elettrico
Canadian Solar	ALFA ARIETE S.r.I	g. =e
MAKE THE BAT ENERGE	Via Mercato n. 3/5 - 20121 Milano (MI)	Altri Progettisti
	P.IVA 11850890960, PEC: alfaarietesrl@lamiapec.it	Ing. Luca Marmocchi – Strutturista
		Arch. Giorgio Roberto Porpiglia – Progettista

Elaborato

RELAZIONE TECNICA LINEA DI CONNESSIONE ALLA RTN

Codice elaborato REL_PE_CONN			Scala	Formato
REV.	DATA ESEGUITO		VERIFICATO	APPROVATO
00	Luglio 2023 Ing. Silvio Matta			ALFA ARIETE S.r.l.

Note

SOMMARIO

<u>1.</u>	PREMESSA	<u>. 7</u>
<u>2.</u>	MOTIVAZIONI DELL'OPERA	<u>. 8</u>
<u>3.</u>	INQUADRAMENTO TERRITORIALE	<u>. 8</u>
<u>4.</u>	CAVIDOTTO	<u>10</u>
1.1.	QUADRO NORMATIVO	10
1.2.	CRITERI DI SCELTA DEL TRACCIATO	10
1.3.	PERCORSO DEL TRACCIATO	11
<u>5.</u>	IL PROGETTO	<u>13</u>
1.4.	PREMESSA	13
1.5.	AREE IMPEGNATE E FASCE DI RISPETTO	13
	5.2.1. Descrizione del tracciato dell'elettrodotto	14
	5.2.2. Province e comuni interessati	14
	5.2.3. Vincoli	14
1.6.	PROGETTO DELL'ELETTRODOTTO	14
1.7.	CARATTERISTICHE ELETTRICHE DEL COLLEGAMENTO IN CAVO	14
1.8.	COMPOSIZIONE DEL COLLEGAMENTO	16
1.9.	MODALITÀ DI POSA E DI ATTRAVERSAMENTO	17
1.10.	TEMPERATURE DI POSA	17
1.11.	Raggi di curvatura dei cavi	17
1.12.	SOLLECITAZIONE A TRAZIONE	18
1.13.	CAVI INTERRATI	18
1.14.	CAVI MUNITI DI GUAINA	18
<u>6.</u>	PROTEZIONE CONTRO LE SOVRACCORRENTI	<u>19</u>
1.15.	EFFETTI TERMICI	19
1.16.	EFFETTI DINAMICI	19
1.17.	DISPOSITIVI DI PROTEZIONE	19

1.18	. Pro	TEZIONE CONTRO LE CORRENTI DI CORTOCIRCUITO	20
1.19	. Pro	TEZIONE CONTRO LE CORRENTI DI SOVRACCARICO	20
<u>7.</u>	PROTE	ZIONE CONTRO I CONTATTI DIRETTI E INDIRETTI	20
1.20	. Uso	DEI RIVESTIMENTI METALLICI DEI CAVI COME PROTEZIONE CONTRO I CONTATTI DIRETTI E INDIRETTI	20
1.21	. Mes	SSA A TERRA DEL RIVESTIMENTO METALLICO DEI CAVI	21
1.22	. LAV	ORI SU LINEE IN CAVO	21
1.23	. Mes	SSA A TERRA DELLE PARTI METALLICHE DELLE CANALIZZAZIONI	21
<u>8.</u>	MISUR	E DI PROTEZIONI DEI CAVI	22
1.24	. Pro	TEZIONE MECCANICA BASE	22
1.25	. Pro	TEZIONE CONTRO LE VIBRAZIONI	22
1.26	. Pro	TEZIONE CONTRO LE SOLLECITAZIONI TERMICHE ESTERNE	22
	8.3.1.	Installazione in ambienti a elevata temperatura	22
1.27	. Pro	TEZIONE IN RELAZIONE ALLE CONDIZIONI CLIMATICHE, CONTRO SOSTANZE CORROSIVE O INQUINANTI, CONTRO	LA FAUNA E LA
FLOR	A O CON	TRO INFLUENZE ELETTRICHE	22
	8.4.1.	Esposizione all'acqua	22
	8.4.2.	Drenaggi	23
	8.4.3.	Esposizione alla presenza di flora	23
	8.4.4.	Esposizione alla presenza di fauna	23
<u>9.</u>	COESIS	STENZA TRA CAVI DI ENERGIA ED ALTRI SERVIZI TECNOLOGICI INTERRATI	23
9.1	COESIST	ENZA TRA CAVI DI ENERGIA E TELECOMUNICAZIONE	23
	9.1.1.	Incroci tra cavi	23
	9.1.2.	Parallelismi fra cavi	24
9.2.	Disa	POSITIVI DI PROTEZIONE	24
9.3.	COE	SISTENZA TRA CAVI DI ENERGIA E CAVI DI COMANDO E SEGNALAMENTO	24
9.4.	COE	SISTENZA TRA CAVI DI ENERGIA E TUBAZIONE O SERBATOI METALLICI, INTERRATI	25
	9.4.1.	Incroci fra cavi di energia e tubazioni metalliche, interrati	25
	9.4.2.	Parallelismi fra cavi di energia e tubazioni metalliche, interrati	25
9.5.	COE	SISTENZA TRA CAVI DI ENERGIA E GASDOTTI	26

9.	.5.1. Serbatoi di liquidi e gas infiammabili	26
<u>10.</u>	ATTRAVERSAMENTI DI LINEE IN CAVO CON FERROVIE, TRANVIE, FILOVIE, FUNICOLARI TERF	ESTRI,
AUTOS	STRADE, STRADE STATALI E PROVINCIALI	<u>26</u>
<u>11.</u>	PRESCRIZIONI SULLA DETERMINAZIONE DELLE DISTANZE	<u> 27</u>
11.1.	CAMPI ELETTROMAGNETICI	27
11.2.	CAMPI ELETTRICI DOVUTI A LINEE IN CAVO SCHERMATO	27
11.3.	CAMPI MAGNETICI DOVUTI A LINEE IN CAVO INTERRATE	27
<u>12.</u>	ACCESSORI	28
12.1.	SCELTA IN RELAZIONE ALLE CONDIZIONI DI POSA E DI ESERCIZIO	28
12.2.	SCELTA DEGLI ACCESSORI IN RELAZIONE ALLE TENSIONI	28
12.3.	SCELTA DEGLI ACCESSORI IN RELAZIONE A CONDIZIONI DI CORRENTE DI CORTOCIREUITO	28
12.4.	CONNESSIONI	28
12.5.	ISOLAMENTO	29
12.6.	CONDIZIONI DI POSA	29
<u>13.</u>	COLLAUDO DOPO POSA	<u> 29</u>
13.1.	COLLAUDO DOPO POSA	29
13.2.	PROVA DI TENSIONE APPLICATA	30
<u>14.</u>	SISTEMA DI TELECOMUNICAZIONI	<u> 30</u>
<u>15.</u>	RUMORE	30
<u>16.</u>	CARATTERISTICHE ELETTRICHE/MECCANICHE DEL CONDUTTORE DI ENERGIA	<u> 31</u>
16.1.	DATI TECNICI DEL CAVO	31
<u>17.</u>	CAMPI ELETTRICI E MAGNETICI	<u> 31</u>
17.1.	RICHIAMI NORMATIVI	32
17.2.	CONFIGURAZIONI DI CARICO	33
<u> 18.</u>	REALIZZAZIONE DELL'OPERA	<u> 35</u>
18.1.	FASI DI COSTRUZIONE	35
18.2.	REALIZZAZIONE DELLE INFRASTRUTTURE TEMPORANEE DI CANTIERE PER LA POSA DEL CAVO	35
18.3.	APERTURA DELLA FASCIA DI LAVORO E SCAVO DELLA TRINCEA	35

18.4	. Posa i	DEL CAVO	36
18.5	. RICOPI	ERTURA E RIPRISTINI	36
18.6	. Scavo	DELLA TRINCEA IN CORRISPONDENZA DEI TRATTI LUNGO PERCORSO STRADALE	37
18.7	. TRIVEL	LLAZIONE ORIZZONTALE CONTROLLATA	37
18.8	. SICURE	EZZA NEI CANTIERI	37
<u>19.</u>	NORN	MATIVA DI RIFERIMENTO	38
	Norme C	EI	38
<u> 20.</u>	VALU.	TAZIONE DEGLI IMPATTI	40
20.1	. PREM	1ESSA	40
20.2	. PIANO	O PAESAGGISTICO REGIONALE (PPR)	41
20.3	. PIANO	O PAI – PGRA - PSFF	42
20.4	. ECOSI	ISTEMA FAUNA FLORA-VEGETAZIONE	44
20.5	. VALE	NZE ARCHEOLOGICHE, STORICHE, CULTURALI	44
20.6	. IMPA	TTI E MISURE DI MITIGAZIONE	45
	20.6.1.	> Alterazione Ecosistema	45
	20.6.2.	> Accumulo terre da scavo	45
	20.6.3.	> Inquinamento acustico	46
	20.6.4.	- Inquinamento da polvere	46
	20.6.5.	- Emissioni gas dai mezzi meccanici	47
	20.6.6.	- Distruzione emergenze archeologiche	47
<u>21.</u>	TAVO	PLE ALLEGATE	47

1. PREMESSA

La società *ALFA ARIETE S.r.l.* con sede in Via Mercato 3/5 - 20121 Milano - ha in progetto la realizzazione di un impianto agri-fotovoltaico in agro del Comune di Villasor (CA) in Località "Su Pranu", tipologia di impianto che abbina la produzione di energia con un piano di miglioramento delle preesistenti attività agricole.

L'area considerata in progetto dista dal centro abitato circa 2.5 km e occupa complessivamente 132 ettari, e su essa è prevista la costruzione e l'esercizio di un impianto fotovoltaico a terra, con sistema ad inseguitori monoassiali, con una potenza complessiva installata pari a **72,06 MWp** e una potenza in uscita dall'impianto e quindi in immissione alla RTN (P.O.I.) pari a **64,45 MW** per cui si stima una produzione annua di energia pari a circa **134,54 GWh**.

All'interno dell'area di impianto è presente (ed è parte integrante di esso)anche un sistema di accumulo (storage) di tipo elettrochimico con una potenza di **26.33 MW** e **99.00 MWh**, che sarà dotato di un sistema di gestione, regolazione e controllo tale da impedire all'impianto di erogare in uscita una potenza superiore a quella autorizzata da TERNA per l'immissione in rete.

L'impianto FV è del tipo grid-connected, e sarà pertanto collegato alla RTN ed esercito in parallelo alla stessa, e dunque sarà collegato alla rete di Alta tensione di Terna tramite una linea trifase nel rispetto delle condizioni per la connessione definite nella soluzione tecnica minima generale preventivo STMG, a suo tempo ottenuta e accettata.

Il livello di tensione previsto in uscita dall'impianto, corrispondente al livello di tensione previsto per la nuova connessione, è pari a 36 kV, in osservanza alla nuova tipologia di soluzione tecnica di connessione alla RTN per gli impianti di produzione indicate nella ultima versione dell'Allegato A.2 del Codice di Rete del 15/10/2021, che dovrebbe consentire una "migliore integrazione degli impianti di produzione di energia elettrica di potenza fino a 100 MW attraverso soluzioni di connessione alla RTN più efficienti e adeguate alla taglia dei medesimi impianti di produzione".

Il percorso in progetto descriverà dunque un cavidotto interrato con un percorso di circa 3.4 km.

2. MOTIVAZIONI DELL'OPERA

L'opera è necessaria per trasferire l'energia prodotta dalla Centrale Elettrica Fotovoltaica alla Rete Elettrica Nazionale (RTN).

La progettazione dell'opera oggetto del presente documento è stata sviluppata tenendo in considerazione un sistema di indicatori sociali, ambientali e territoriali, che hanno permesso di valutare gli effetti della pianificazione elettrica nell'ambito territoriale considerato, nel pieno rispetto degli obiettivi della salvaguardia, tutela e miglioramento della qualità dell'ambiente, della protezione della salute umana e dell'utilizzazione accorta e razionale delle risorse naturali.

3. INQUADRAMENTO TERRITORIALE

L'area dell'impianto è ricompresa nella Cartografia I.G.M. in scala 1:25.000, F.556, I quadrante (Villasor) e nella Cartografia Tecnica Regionale, in scala 1:10.000, F° 556-030.

L'area è attraversata dalla strada comunale per Decimoputzu alla quale si accede svoltando alla sinistra all'altezza al Km 11,3 di fronte alla centrale elettrica Terna spa, lungo la strada Statale 196 che dall'abitato di Villasor conduce a Villacidro.

L'area di impianto dista circa 1 km dalla SS 196 ed è facilmente raggiungibile anche attraverso vari stradelli interpoderali.

La tipologia di impianto prescelta abbina la produzione di energia con un piano di miglioramento delle preesistenti attività agricole. La seguente tabella mostra la ripartizione delle superfici.

Superficie totale del progetto	Ha 132.50.46
Superficie utilizzabile agricoltura sotto i tracker	Ha 27.69.12
Superficie utilizzabile agricoltura, interfila tracker e altre superfici agricole	Ha 72.30.88
Superficie di rispetto perimetrale (aree verdi di mitigazione)	Ha 9.57.70
Superfici occupate dalla viabilità	Ha 10.51.54
Tare	Ha 5.91.83

Tabella 1 - Utilizzazione dell'area dell'impianto

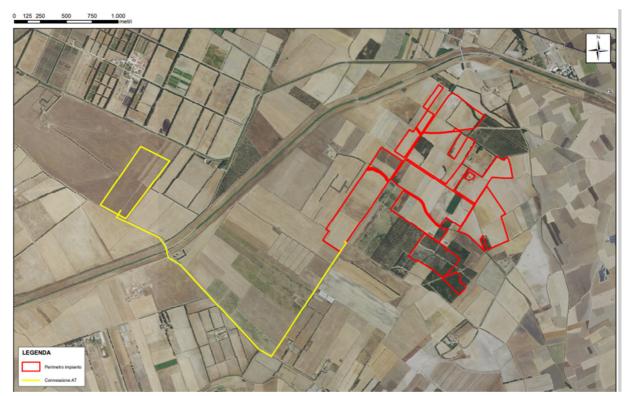


Figura 1 - Area impianto fotovoltaico (rosso) e Cavidotto di connessione in AT (giallo).

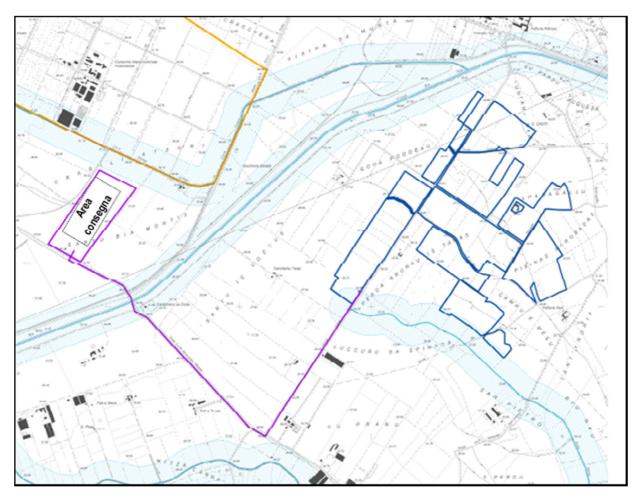


Figura 2 – Impianto fotovoltaico (blu) e percorso del cavidotto (viola) di connessione fino alla S.E. di TERNA.

4. CAVIDOTTO

1.1. QUADRO NORMATIVO

La realizzazione di una linea in cavo sotterraneo (trincea, protezioni, segnaletica) è disciplinata dalla Norma CEI 11-17.

In particolare, la norma stabilisce che al fine di garantire l'integrità dei cavi, nel caso di cavi MT posati a profondità inferiori a 1,7 m, sia predisposta una robusta protezione meccanica in grado di assorbire, senza danni per il cavo stesso, le sollecitazioni meccaniche, statiche e dinamiche, derivanti dal traffico veicolare (resistenza a schiacciamento) e dagli abituali attrezzi manuali di scavo (resistenza a urto).

Il Nuovo Codice della Strada prescrive che la profondità minima di posa per le strade di uso pubblico ricada ad 1 m dall'estradosso della protezione:

- Per tutti gli altri suoli e le strade di uso privato la norma CEI 11-17 stabilisce la profondità minima di posa in 0,6 m (su terreno privato) e 0,8 m (su terreno pubblico).
- In aggiunta alle prescrizioni normative, è buona pratica attenersi ai seguenti principi informatori:
- i cavidotti, anche se posati a profondità superiore a 60 cm, siano sempre dotati di una protezione meccanica supplementare (tegolo o lastra);
- i cavidotti posati a profondità compresa fra 40 cm e 60 cm siano annegati in un getto di calcestruzzo (cemento magrone con dosaggio inferiore a 150 kg/m3);
- i cavidotti posati a profondità inferiore a 40 cm o comunque transitanti all'interno dell'edificio servito (detto percorso dovrà sempre essere il più breve possibile) siano installati all'interno di un tubo in acciaio dotato di una protezione meccanica supplementare (tegolo o lastra);
- il percorso dei cavidotti dovrà essere tale da consentire un'agevole stesura dei cavi possibilmente senza dover ricorrere all'uso di pozzetti rompitratta;
- qualora fosse necessario ricorrere a pozzetti rompitratta, questi dovranno presentare dimensioni idonee (indicativamente 1000 x 1000 mm).

Qualunque sia la profondità di installazione dei cavidotti, è sempre consigliabile posare un nastro monitore ad una distanza di circa 20-30 cm sopra la tubazione in modo da segnalarne la presenza durante eventuali scavi.

1.2. CRITERI DI SCELTA DEL TRACCIATO

La scelta del tracciato del cavidotto scaturisce da un processo di valutazione che ha cercato limitare ed ove possibile eliminare gli oneri ambientali legati alla realizzazione dell'opera

In particolare, la scelta ha cercato di coniugare i seguenti principi:

- evitare interferenze con ambiti tutelati ai sensi dei vigenti piani urbanistico-territorialipaesaggistici-ambientali;
- minimizzare la lunghezza dei cavi al fine di ottimizzare il layout elettrico d'impianto,
- garantirne la massima efficienza, limitare e contenere gli impatti indotti dalla messa in opera dei cavidotti;
- limitare i costi sia in termini ambientali che monetari legati alla realizzazione dell'opera;
- utilizzare, ove possibile, la viabilità esistente, al fine di limitare l'occupazione territoriale;
- garantire la sicurezza dei cavidotti, in relazione ai rischi di spostamento e deterioramento dei cavi;
- garantire la fattibilità della messa in opera limitando i disagi legati alla fase di cantiere.

1.3. PERCORSO DEL TRACCIATO

La connessione dell'impianto fotovoltaico prevede la realizzazione di un elettrodotto che partendo dalla Cabina di Raccolta Generale collega l'impianto fotovoltaico all'area SE Terna di nuova realizzazione. La connessione avverrà tramite un cavidotto che si estende per circa 3.380 metri lungo il lato destro delle strade di comunali di Bruncu Tanas e Decimoputzu-Villacidro ricadenti in Comune di Villasor. Il percorso si sviluppa per circa 1.310 metri lungo la strada Bruncu Tanas e per 2.070 metri lungo la Decimoputzu-Villacidro (fig. 3).

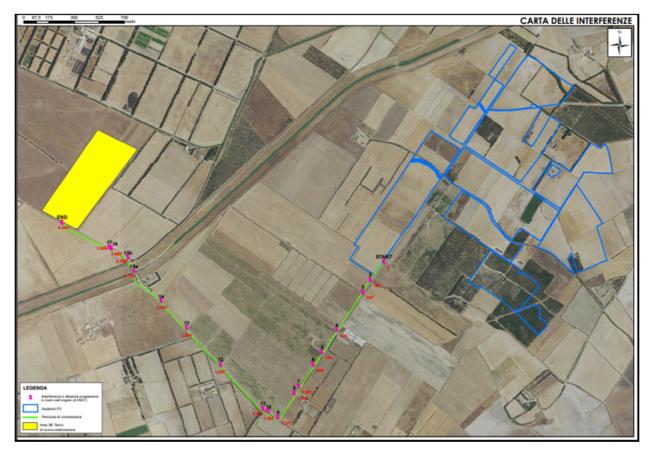


Figura 3 – Percorso cavidotto (verde) e area SE Terna (giallo)

Lungo il percorso, il tracciato del cavidotto incontra una serie interferenze rappresentate nella figura 3 e, in maggior dettaglio e foto, nell'elaborato cartografico TAV_TC_04.

Le interferenze interessano accessi a fondi rurali (es. foto 1) e strutture di attraversamenti stradali (foto2).

Il tracciato attraversa per oltre un centinaio di metri il ponte sul canale Riu Nou (foto 3).

Foto 1 -Accesso a fondo rurale

Foto 2 – Attraversamento stradale

Foto 3 Ponte sul Canale Riu Nou

5. IL PROGETTO

1.4. PREMESSA

Per poter immettere nella Rete Elettrica Nazionale l'energia elettrica prodotta dal nuovo impianto fotovoltaico "VILLASOR-2" da 64.45 MW si rende necessario connettere tale impianto alla RTN tramite apposita linea.

Per tale connessione è stata a suo tempo inoltrata istanza all'Ente Gestore (TERNA) della rete, e successivamente alla STMG ottenuta sono state avviate le attività di progettazione, in accordo alle linee guida e alle direttive contenute nella STMG ottenuta, che prevedevano un collegamento in antenna alla nuova S.E. sezione 36 kV, della nuova SE Tuili – Villasor e "Taloro – Villasor".

Il presente documento fornisce la descrizione generale del progetto definitivo del nuovo elettrodotto a 36 kV che si intende realizzare per collegare il nuovo impianto FV VILLASOR-2 alla futura S.E. di TERNA.

1.5. AREE IMPEGNATE E FASCE DI RISPETTO

Le aree interessate da un elettrodotto interrato sono individuate, dal Testo Unico sugli espropri, come Aree Impegnate, cioè le aree necessarie per la sicurezza dell'esercizio e manutenzione dell' elettrodotto; nel caso specifico esse hanno un'ampiezza di 1.5 m dall' asse linea per parte per il tratto in cavo interrato.

Il vincolo preordinato all' esproprio sarà invece apposto sulle "aree potenzialmente impegnate", che equivalgano alle zone di rispetto di cui all' art, 52 quater, comma 6. del Testo Unico sugli espropri n. 327 del 08/06/2001 e successive modificazioni, all'interno delle quali poter inserire eventuali modeste varianti al tracciato dell'elettrodotto senza che le stesse comportino la necessità di nuove autorizzazioni. Da una prima analisi, l'ampiezza delle zone di rispetto (ovvero aree potenzialmente impegnate) sarà di circa 3.35 m dall'asse linea per parte per il tratto in cavo interrato (ma corrispondente a quella circa impegnata nei tratti su sede stradale), come meglio indicato nella planimetria catastale allegata. Pertanto, ai fini dell' apposizione del vincolo preordinato all'esproprio, le "aree potenzialmente impegnate" coincidono con le "zone di rispetto"; di conseguenza i terreni ricadenti all'interno di dette zone risulteranno soggetti al suddetto vincolo. In fase di progetto esecutivo dell'opera si procederà alla delimitazione delle aree effettivamente impegnate dalla stessa con conseguente riduzione delle porzioni di territorio soggette a vincolo preordinato all'esproprio e servitù.

Le "fasce di rispetto" sono quelle definite dalla Legge 22 febbraio 2001 n. 36, all' interno delle quali non è consentita alcuna destinazione di edifici ad uso residenziale, scolastico, sanitario, ovvero un uso che comporti una permanenza superiore a 4 ore. da determinare in conformità alla metodologia di cui al D.P.C.M. 08/07/2003, emanata con Decreto MATT del 29 Maggio 2008.

Le simulazioni di campo magnetico riportate nei paragrafi seguenti sono state elaborate tramite l'ausilio di software, le cui routine di calcolo fanno riferimento alla norma CEI 211-4; norma di riferimento anche per la metodologia di calcolo utilizzata nella CEL 106-11.

5.2.1. Descrizione del tracciato dell'elettrodotto

Il tracciato dell'elettrodotto in cavo interrato, quale risulta dalla corografia allegata, è stato studiato in armonia con quanto dettato dall'art.121 del T.U. 11/12/1933 ne 1775, comparando le esigenze della pubblica utilità delle opere con gli interessi sia pubblici che privati coinvolti.

Esso utilizza interamente corridoi già impegnati dalla viabilità stradale principale e secondaria esistente e di piano, con posa dei cavi il più possibile al margine della sede stradale.

L'elettrodotto è stato progettato in modo tale da recare minor sacrificio possibile alle proprietà interessate, avendo cura di vagliare le situazioni esistenti sui fondi da asservire rispetto anche alle condizioni dei terreni limitrofi.

5.2.2. Province e comuni interessati

Il tracciato dell' elettrodotto interessa il Comune di Villasor.

5.2.3. Vincoli

Il tracciato dell' elettrodotto in cavo interrato in oggetto non interferisce con aree soggette a vincolo.

I lavori per la realizzazione del cavidotto verranno effettuati nel rispetto dei limiti imposti dalla legislazione vigente in modo da garantire la salvaguardia dell'ecosistema.

L'intero cavidotto sarà contiguo alla sede stradale, effettuando un ridotto scavo, non si andrà di fatto a modificare visivamente lo stato dei luoghi.

1.6. PROGETTO DELL'ELETTRODOTTO

L'elettrodotto sarà costituito da una linea elettrica in cavo interrato lunga di 3'400 metri, capace di trasportare la potenza di 64.45 MW ad una tensione di 36 kV a cui corrisponde, per cos φ =0.95, una corrente nominale di 1'088 A.

1.7. Caratteristiche elettriche del collegamento in cavo

Il collegamento dovrà essere in grado di trasportare la potenza massima dell'impianto in modo continuativo.

Se si considera che l'impianto erogherà una potenza di 64.45 MW alla tensione di 36 kV, assumendo un funzionamento a $\cos \varphi$ = 0.95 avremo:

 $I = \frac{P}{\sqrt{3}V\cos\varphi}$

Ossia la corrente massima è pari a: I = 1'088 A

Data la tensione della linea, si sceglie di utilizzare un cavo di tipo TRATOS HIGH VOLTAGE ® (IEC 60840) HV-38/66 kV XLPE, in alluminio, di cui segue una tabella con la portata in corrente in funzione della sezione e delle modalità di posa:

38/66 (72.5) kV Aluminium conductors								
Size csa		Trefoil solidly bonded		Laid flat soli	ldly bonded			
mm²	Laid direct	Laid direct In ducts In air		Laid direct	In ducts			
	A	A	A	Α	A			
150	320	320	400	325	300			
185	360	350	450	365	340			
240	415	415	550	420	390			
300	475	460	600	470	435			
400	550	520	705	530	495			
500	610	580	820	600	555			
630	690	650	940	670	625			
800	780	770	1100	750	700			
1000	860	810	1220	820	770			
1200	910	855	1270	855	800			
1400	970	910	1365	910	855			
1600	1010	945	1415	935	880			

Alle seguenti condizioni standard:

Standard depth of laying	1.0m
Thermal resistivity of soil	1.2K.m/W
Standard ground temperature	15°C
Ambient air temperature	25°C
Maximum conductor temperature	90°C

Per la scelta edlla sezione utile occorre determinare i fattori correttivi da utilizzare, in funzione dei seguenti dati:

- il cavo verrà posato direttamente nel terreno, su letto di sabbia;
- Il cavo avrà una formazione elicordata (triangolo);
- la profondità di posa è di 1.60 m;
- la temperatura del terreno è stimata in T_G= 10° C;
- la temperatura esterna è valutata in T_o= 30 °C;
- la resistività termica del terreno è stimata in 1.5 Km/W;
- dati i valori di corrente avremo almeno due cavi per fase in posa a terra (posa tipo D2);

Pertanto la portata del cavo dovrà essere corretta con: I_z= I_o x K1 x K2 x K3 x K4 x k5

dove

- K1 = 1.03 fattore di correzione per temperature al sottosuolo diverse da 15° C.
- K2 = 0.96 fattore di correzione temperature esterne diverse da 20° C.;
- K3 = 0.92 fattore di correzione per profondità di posa diverse da 0.8 m;
- K4 = 0.9 fattore di correzione per terreni con resistività termica diversa da 1 Km/W
- K5 = 1.06 fattore di correzione per gruppi di più circuiti affiancati sullo stesso piano;

Rating factors for depth of laying							
Laying depth	Rating factor						
(m)							
1.0	1.0						
1.2	0.95						
1.5	0.93						
2.0	0.89						
2.5	0.88						
3.0	0.86						

Cables burled directly in soil					
Trefoil Single point bonded	Three single-core cables laid touching throughout in trefoil formation only one end of screen earthed				
Trefoil bonded at both ends	Three single-core cables laid touching throughout in trefoil formation both ends of screen earthed				
Flat Single point bonded	Three single-core cables laid with a clearance of one cable diameter in horizontal flat formation only one end of screen earthed				
Flat bonded at both ends	Three single-core cables laid with a clearance of one cable diameter in horizontal flat formation both ends of screen earthed				

Temperature de-rating factors for Ground temperature									
Ground temperature °C 10 15 20 25 30 35 40						45	50		
Rating factor (Maximum conductor temperature 90 °C)	1.03	1.00	0.96	0.93	0.89	0.85	0.81	0.77	0.73

Temperature de-rating factors for Ambient temperature										
Ambient temperature °C 10 15 20 25 30 35 40 45 50 55									55	
Rating factor	1.1	1.07	1.04	1.00	0.96	0.92	0.87	0.83	0.78	0.73
Maximum conductor temperature 90 °C)										

Rating factors for ground thermal resistivity									
Thermal resistivity Km/W	0.7	1.0	1.2	1.5	2.0	2.5	3.0		
Factor	1.2	1.08	1.0	0.9	0.79	0.70	0.65		

Per cui si ricava che:

K	Valore	Setting	Fattore correttivo per:
k1 =	1.030	[->> 10 °C]	fattore di correzione per temperature al sottosuolo diverse da 15° C.
k2 =	0.960	[->> 30 °C]	fattore di correzione temperature esterne diverse da 20° C.;
k3 =	0.922	[->> -1.60 m]	fattore di correzione per profondità di posa diverse da 0.8 m;
k4 =	1.000	[->> 1.2 km/W]	fattore di correzione per terreni con resistività termica diversa da 1 Km/W
k5 =	1.060	[D2]	fattore di correzione per gruppi di più circuiti affiancati sullo stesso piano (CEI UNEL 35027);
K tot=	0.9663740		

Da cui risulta una corrente "riparametrata" pari a 1'126 A che implica l'utilizzo di più di un cavo per fase.

Le scelte plausibili sono:

Due cavi per fase: 3(1x2x500) mmqTre cavi per fase: 3(1x3x240) mmq

La prima soluzione ha il vantaggio di avere un numero inferiore di conduttori e si presta maggiormente alle possibili limitazioni di TERNA relative al numero di conduttori per fase che è possibile attestare su uno stallo da 36 kV. La scelta può tuttavia essere modificata in fase di progettazione esecutiva, senza che le considerazioni progettuali abbiano a cambiare da quanto esposto nel presente progetto.

1.8. Composizione del collegamento

Per l'elettrodotto in oggetto sono previsti i seguenti componenti:

- n. 2 conduttori di energia da 5000 mmq (in alluminio), per fase, tipo
 TRATOS HIGH VOLTAGE ® (IEC 60840) HV-38/66 kV XLPE Al →> formazione: [3(1x2x500) mmq]
- n. 1 giunti sezionati (dipendente dalla lunghezza delle pezzature di cavo 500 m circa):
- n. 2 x 3 x 2 = 12 terminali di linea;
- n.1 cassette unipolari di messa a terra;
- n. 1 sistema di telecomunicazioni.

1.9. Modalità di posa e di attraversamento

I cavi saranno interrati ed installati normalmente in una trincea della profondità di 1,6 m, con disposizione delle fasi a trifoglio. Nello stesso scavo, a distanza di almeno 0,3 m dai cavi di energia, sarà posato un cavo con fibre ottiche e/o telefoniche per trasmissione dati.

Tutti i cavi verranno alloggiati in letto di sabbia e ricoperti con sabbia e subito sopra con terreno di riporto, la cui resistività termica, se necessario, verrà corretta con una miscela di sabbia vagliata o con cemento "mortar"; saranno protetti e segnalati superiormente da un nastro segnaletico interrato, ed ove necessario anche da lastre di protezione in cemento armato dello spessore di 6 cm. La restante parte della trincea verrà ulteriormente riempita con materiale di risulta e di riporto.

Altre soluzioni particolari, quali l'alloggiamento dei cavi in cunicoli prefabbricati o gettati in opera od in tubazioni di PVC della serie pesante o di ferro, potranno essere adottate per attraversamenti specifici.

Nella fase di posa dei cavi, per limitare al massimo i disagi al traffico veicolare locale, essi saranno posati in fasi successive in modo da poter destinare al transito veicolare, in qualsiasi condizione, almeno una metà della carreggiata qualora essa dovesse essere interessata da tagli e/o scavi. In alternativa, e per casi particolari, potrà essere utilizzato il sistema dello spingitubo o della perforazione teleguidata, che non comportano alcun tipo di interferenza con le strutture superiori esistenti che verranno attraversate in sottopasso.

In tal caso la sezione di posa potrà differire da quella normale sia per quanto attiene il posizionamento dei cavi che per le modalità di progetto delle protezioni da adottare.

1.10. Temperature di posa

Durante le operazioni di posa dei cavi per installazione fissa, la loro temperatura - per tutta la loro lunghezza per tutto tempo in cui essi possono venire piegati raddrizzati non deve essere inferiore a -25° C.

1.11. Raggi di curvatura dei cavi

La curvatura de cavi deve essere tale da non provocare danno ai cavi stessi. Durante le operazioni di posa dei cavi per installazione fissa, se non altrimenti specificato dalle norme particolari o dai costruttori, i raggi di curvatura dei cavi, misurati sula generatrici interna degli stessi, non devono essere inferiori ai seguenti:

- cavi sotto guaina di alluminio, con o senza altri tipi di rivestimento metallico:
 30 D;
- cavi senza guaina di alluminio, sotto guaina di piombo, con o senza altri tipi di rivestimento metallico: 16 D;
 cavi senza guaina di alluminio o di piombo, ma dotati di altro rivestimento metallico quale armatura,
 conduttore concentrico, schermatura a fili o nastri (inclusi i nastri sottili longitudinali placati o saldati): 14 D;
- cavi senza alcun rivestimento metallico:12 D;

Dove D è il diametro esterno del cavo. Nel caso di cavi multipolari costituiti da più cavi unipolari cordati, il diametro D da prendere in considerazione è quello pari a 1.5 volte il diametro esterno del cavo unipolare di maggior diametro. Nel caso di cavi senza alcun rivestimento metallico, il raggio minimo di curvatura sopra indicato vale per conduttori

di classe 1 e 2 (definita secondo la Norma CEI 20-29); per cavi con conduttori di classe 5 e 6 (sempre secondo la Norma CEI 20-29) tale raggio può essere ridotto del 25%.

Nel caso di posa in condizioni favorevoli, i raggi di curvatura sopra indicati possono essere ridotti per arrivare fino alla metà per curvatura finale eseguita su sede sagomata e con temperatura non inferiore a 15° C, salvo diversa indicazione del fabbricante.

1.12. Sollecitazione a trazione

Durante l'installazione i cavi saranno soggetti a sforzi permanenti di trazione, pertanto si adotteranno cavi (autoportanti con organo portante) in grado sopportare la trazione. Gli sforzi di tiro necessari durante le operazioni di posa dei cavi non vanno applicati ai rivestimenti protettivi, bensì ai conduttori, per i quali d'altronde sarà garantito di non superare mai una sollecitazione di 18 KN per conduttori di rame 9 kN per conduttori di alluminio.

Se il cavo è provvisto di un'armatura, a fili o piattine, necessaria quando il previsto sforzo di tiro supera il valore sopportabile dai conduttori come detto sopra, la forza di tiro va applicata all'insieme dei conduttori e dell'armatura, ma non deve superare del 25% le sollecitazioni ammissibili sui conduttori di cui al capoverso precedente. Si adotteranno accorgimenti tali da impedire la rotazione del cavo sul proprio asse quando è sottoposto a tiro.

1.13. Cavi interrati

I cavi interrati saranno muniti di guaina protettiva. I cavi non muniti di armatura metallica o di altra protezione meccanica equivalente come sopra saranno posati con una protezione meccanica supplementare. I componenti e i manufatti adottati per tale protezione saranno progettati per sopportare, in relazione alla profondità di posa, le prevedibili sollecitazioni determinate dai carichi statici, dal traffico veicolare o da attrezzi manuali di scavo.

Le minime profondità di posa tra il piano di appoggio del cavo e la superficie del suolo per le modalità di posa L salvo quanto indicato saranno per i cavi con tensione superiore a 30 kV: 1,0 m o 1,2 m.

Nei tratti in cui si attraversino terreni rocciosi o in altre circostanze eccezionali in cui non possono essere rispettate le profondità minime sopra indicate, devono essere predisposte adeguate protezioni meccaniche.

I percorsi interrati dei cavi saranno segnalati in modo tale da rendere evidente la loro presenza in caso di ulteriori scavi. Rispondono a tale scopo:

- le protezioni meccaniche supplementari suddette:
- i nastri monitori posati nel terreno a non meno di 0,2 m al di sopra dei cavi.

1.14. Cavi muniti di guaina

Quando un cavo è soggetto a carico variabile, esso subisce dilazioni e contrazioni che assai difficilmente si distribuiscono lungo tutto il percorso e che provocano movimenti longitudinali e trasversali del cavo. Specialmente nel caso dei cavi unipolari, tali movimenti, soprattutto se concentrati in pochi punti del percorso, possono provocare la fessurazione della guaina metallica per fenomeni di fatica. Pertanto, quando un cavo munito di guaina metallica è posato in modo tale che i suoi movimenti non risultano impediti lungo tutto il percorso, saranno presi opportuni

accorgimenti per distribuire e controllare l'ampiezza di tali movimenti (onde evitare il verificarsi degli inconvenienti sopra richiamati).

6. PROTEZIONE CONTRO LE SOVRACCORRENTI

1.15. Effetti termici

Il riscaldamento dovuto ad una sovracorrente provoca dilatazioni tra i vari componenti metallici e non metallici del cavo le quali. sovrapponendosi alle condizioni di ridotta resistenza dei materiali riscaldati, possono causare lesioni o invecchiamenti tali da rendere inutilizzabile il cavo. Le protezioni contro le sovracorrenti saranno previste in maniera tale da contenere le temperature massime dei conduttori entro i limiti stabiliti in questo caso i valori delle temperature massime di esercizio e di cortocircuito nel caso dell'isolante in cavo di polietilene reticolato XLPE (E4) max temperatura di esercizio 90° C e max temperatura di c.to c.to 250° C che danno un valore del coefficiente K in funzione delle temperature iniziali e finali di cortocircuito per conduttori di rame 143 e di alluminio 192.

1.16. Effetti dinamici

Per i cavi unipolari e per i cavi multipolari ad elica visibile, gli effetti dinamici sono assorbiti dai dispositivi di fissaggio dei cavi che devono essere conseguentemente dimensionati e distanziati.

1.17. Dispositivi di protezione

Nelle linee in cavo i conduttori attivi devono essere protetti mediante installazione di uno o più dispositivi di interruzione automatica, tra loro coordinati, contro i sovraccarichi e contro cortocircuiti che assicurino l'interruzione dei conduttori di fase. Tali dispositivi possono assicurare:

- a) unicamente la protezione contro sovraccarichi;
- b) unicamente la protezione contro i cortocircuiti;
- c) la protezione contro entrambi i tipi di sovracorrente.

Nel caso a) essi possiedono generalmente un potere di interruzione inferiore alla corrente presunta di cortocircuito nell'impianto, ma devono essere in grado di sopportare tale corrente per la durata richiesta per il funzionamento dei dispositivi di protezione contro cortocircuito; nel caso b) essi devono possedere un potere di interruzione almeno pari alla corrente presunta di cortocircuito nel punto in cui sono stati installati; nel caso c) essi devono sopportare e interrompere ogni corrente compresa tra il valore della loro corrente convenzionale di funzionamento ed il valore della corrente presunta di cortocircuito nel punto in cui sono installati.

1.18. Protezione contro le correnti di cortocircuito

Le lince in cavo devono essere di norma protette contro le correnti di cortocircuito da dispositivi situati a monte della linea, con tempi di intervento sufficientemente rapidi da evitare danni non accettabili al cavo. Ad evitare il deterioramento dell'isolamento, il tempo di intervento deve essere tale che la temperatura dei conduttori non superi il limite massimo ammesso per qualunque valore di sovracorrente risultante da un cortocircuito in ogni punto del cavo protetto.

1.19. Protezione contro le correnti di sovraccarico

La protezione dei cavi contro i sovraccarichi avrà lo scopo di prevedere la loro interruzione prima che si possano verificare effetti nocivi sia ai componenti del cavo, sia alle connessioni, sia all'ambiente esterno limitrofo. Le protezioni saranno situate sia a monte che a valle del cavo, in corrispondenza dei punti di prelievo del carico.

7. PROTEZIONE CONTRO I CONTATTI DIRETTI E INDIRETTI

1.20. Uso dei rivestimenti metallici dei cavi come protezione contro i contatti diretti e indiretti

Le guaine metalliche, i conduttori concentrici, gli schermi metallici e le armature, se rispondenti alle prescrizioni delle norme relative, sono mezzi di protezione sufficienti contro i contatti diretti, purché siano soddisfatte tutte le seguenti condizioni:

- a) il rivestimento metallico sia posto sotto una guaina non metallica qualora esista pericolo di danneggiamento chimico meccanico;
- b) sia assicurata la continuità longitudinale del rivestimento metallico per tutto il percorso del cavo;
- c) il rivestimento metallico sia messo a terra rispettando le disposizioni:
- d) la resistenza elettrica del rivestimento metallico insieme con quella dei relativi collegamenti a terra e di continuità sia tale da rispondere ai requisiti.

Nel caso di terne di cavi unipolari, la continuità dei rivestimenti metallici sarà assicurata anche quando si ricorra alla loro trasposizione ciclica su tre tratti di lunghezza praticamente uguale in modo da annullare la tensione complessiva indotta nella guaina o schermo metallico.

1.21. Messa a terra del rivestimento metallico dei cavi

Tutti i rivestimenti metallici dei cavi saranno messi a terra almeno alle estremità di ogni collegamento, per collegamenti di grande lunghezza sarà inserita a messa a terra del rivestimento metallico in corrispondenza dei giunti a distanze non superiori ai 5 km.

Per collegamenti corti, in genere non superiore al Km, è pure consentita la messa a terra del rivestimento metallico in un sol punto purché vengano adottate le seguenti precauzioni:

- in corrispondenza delle terminazioni e delle interruzioni dei rivestimenti metallici, se accessibili, devono essere applicate opportune protezioni attive ad evitare tensioni di contatto superiori ai valori ammessi dalla Norma CEI 11-1;
- la guaina non metallica di protezione del cavo deve essere in grado di sopportare la massima tensione totale di terra dell'impianto di terra al quale il rivestimento metallico è collegato.

Per i sistemi di Alta Tensione dove il neutro è francamente collegato a terra e le correnti di guasto a terra sono molte elevate, sarà raccomandabile installare parallelamente ai cavi un conduttore di terra di sezione adeguata a sopportare le correnti di guasto e ridurre le sovratensioni transitorie di sequenza zero.

Dove il cavo ha più rivestimenti metallici, essi saranno connessi in parallelo, salvo nel caso di cavi appartenenti a circuiti di misura o segnalamento. Per il collegamento tra il rivestimento metallico del cavo ed il conduttore di terra, verrà ammesso l'impiego di adeguati connettori a compressione; inoltre, per i cavi con rivestimento metallico nastri o a tubo, è anche ammessa la saldatura dolce o la brasatura. In ogni caso occorre verificare che, in relazione alle caratteristiche delle guaine o dei rivestimenti metallici, i loro collegamenti a terra, incluse le connessioni, siano tali da escludere il proprio danneggiamento e quello delle guaine rivestimenti metallici per effetto delle massime correnti che vi possono circolare.

1.22. Lavori su linee in cavo

Quando si fanno lavori lungo un cavo con rivestimento metallico, occorre premunirsi da eventuali trasferimenti di tensioni pericolose di terra o collegando il rivestimento metallico del cavo stesso a tutte le altre masse metalliche accessibili o prendendo precauzioni per isolare gli operatori dalle parti pericolose.

1.23. Messa a terra delle parti metalliche delle canalizzazioni

Tutte le parti metalliche destinate a sostenere o contenere cavi di energia ed i loro accessori verranno elettricamente collegate tra loro a terra secondo quanto previsto dalla Norma CEI 11-1. Per i collegamenti in cavo in AT, con neutro francamente a terra, si dovranno mettere a terra le parti metalliche.

8. MISURE DI PROTEZIONI DEI CAVI

1.24. Protezione meccanica base

Le canalizzazioni devono essere scelte in modo da prevenire danni aventi origine da azioni meccanica esterna. Nelle installazioni fisse, quando esiste il pericolo di danneggiamento meccanico, la protezione può essere fornita dal cavo stesso o dal metodo di installazione o dalla combinazione dei due moduli di protezione. Una protezione meccanica adeguata può ritenersi realizzata in condizioni ordinarie in caso di:

- cavi con rivestimento metallico conforme alla prescrizioni;
- cavi installati in tubi metallici, in materiale plastico, in condotto, in cunicolo o in canale;

tuti gli altri tipi di canalizzazione devono essere installati in posizioni tali da escludere la possibilità di danneggiamento meccanico, oppure devono essere protetti contro il danno meccanico con mezzi adatti che offrano un grado equivalente di protezione.

1.25. Protezione contro le vibrazioni

Le canalizzazione sostenute o fissate a strutture o ad apparecchiature soggette a vibrazioni saranno di tipo adatto a sopportare tale sollecitazione. Precauzioni verranno prese in particolare nell'impiego di conduttori massicci, guaine metalliche, ecc.

1.26. Protezione contro le sollecitazioni termiche esterne

8.3.1. Installazione in ambienti a elevata temperatura

I cavi non verranno installati nei luoghi in cui la temperatura ambiente possa eccedere la massima temperatura di servizio dei cavi indicata nelle rispettive Norme diminuita di -5'C. Le canalizzazioni dovranno essere installate a distanza sufficiente da sorgenti di calore ad alta temperatura, o devono essere separate da tali sorgenti per mezzo di schermi isolati termici ed eventualmente raffreddate.

1.27. Protezione in relazione alle condizioni climatiche, contro sostanze corrosive o inquinanti, contro la fauna e la flora o contro influenze elettriche

8.4.1. Esposizione all'acqua

Le condizioni di esposizioni all'acqua nelle quali i diversi tipi di cavo possono essere impiegati.

Per quanto riguarda i cavi ad isolamento estruso destinati a sistemi con tensione nominale di 10 kV o superiore, la loro idoneità a funzionare in luoghi umidi dipende da vari fattori, quali il tipo di isolante, la tecnologia costruttiva, li

gradiente elettrico di dimensionamento ed il rischio di perforazione accettabile dall'utilizzatore. Una guaina metallica, adeguatamente protetta contro il pericolo di corrosione, impedisce l'infiltrazione di umidità nell'isolante.

Nelle condizioni di esposizione all'acqua tutto il materiale metallico delle canalizzazioni deve essere adeguatamente protetto contro la corrosione interna ed esterna con una copertura di materiale resistente alla corrosione e non deve essere posto in contatto con altri metalli che possono dare origine a coppie elettrolitiche. Gli accessori devono essere a tenuta stagna; inoltre gli isolatori delle terminazioni devono avere una linea di fuga adeguata e devono essere costruiti con materiale resistente all'erosione superficiale causata dalle correnti di fuga.

8.4.2. Drenaggi

La condensa o penetrazione di acqua sarà prevenuta o eliminata mediante adali accorgimenti di istallazione o adatti dispositivi di drenaggio. I cunicoli, qualora la stagnazione di acqua possa determinare corrosioni, avranno il fondo leggermente inclinato, in modo da permettere l'evacuazione dell'acqua.

8.4.3. Esposizione alla presenza di flora

Canalizzazioni esposte alla prevedibile presenza di flora saranno scelte e installate in modo da ridurre la possibilità di danneggiamento, in particolare ci si deve premunire dagli effetti meccanici dovuti allo sviluppo di radici, dagli effetti coibenti termici dovuti a depositi o ricoprimenti vegetali, nonché dagli effetti corrosivi degli umori vegetali.

8.4.4. Esposizione alla presenza di fauna

Canalizzazione esposte alla prevedibile presenza di fauna saranno scelte e installate in modo da ridurre al minimo la possibilità di danneggiamento.

Se è prevedibile la presenza di roditori, i cavi saranno protetti da ricopertura metallica o da un equivalente protezione estera; se è prevedibile la presenza di termiti, i cavi saranno protetti con una guaina appropriata o con una equivalente protezione esterna; sarà prevista la presenza di animali aggredenti il piombo, questo sarà protetto da apposito rivestimento.

9. COESISTENZA TRA CAVI DI ENERGIA ED ALTRI SERVIZI TECNOLOGICI INTERRATI

9.1 Coesistenza tra cavi di energia e telecomunicazione

9.1.1. Incroci tra cavi

Quando entrambi i cavi sono direttamente interrati, saranno osservate le seguenti prescrizioni:

- il cavo di energia deve, essere situato inferiormente al cavo di telecomunicazione:
- la distanza tra i due cavi non deve essere inferiore a 0.30 m:

• il cavo posto superiormente deve essere protetto, per una lunghezza non inferiore ad 1 m, con uno dei dispositivi; detti dispositivi devono essere disposti simmetricamente rispetto all'altro cavo.

Ove, per giustificate esigenze tecniche, non possa essere rispettata la distanza minima della linea precedente, sarà applicata su entrambi i cavi la protezione suddetta, Quando almeno uno dei cavi sarà posto dentro appositi manufatti (tubazioni, cunicoli, eec.) che proteggono il cavo stesso e ne rendono possibile la posa e la successiva manutenzione senza la necessita di effettuare scavi, non è necessario osservare le prescrizioni sopraelencate.

9.1.2. Parallelismi fra cavi

Nei percorsi paralleli, i cavi di energia ed i cavi di telecomunicazione verranno. di regola, posati alla maggiore possibile distanza tra loro; nel caso per es. di posa lungo la stessa strada, possibilmente ai lati opposti di questa.

Ove per giustificare esigenze tecniche criterio di cui sopra non possa essere seguito, è ammesso posare i cavi vicini fra loro purché sia mantenuta, fra essi una distanza minima, in proiezione su di un piano orizzontale, non inferiore a 0,30 m. Qualora detta distanza non possa essere rispettata, sarà applicata sul cavo posato alla minore profondità, oppure su entrambi i cavi quando la differenza di quota fra essi è minore di 0.15 m, uno dei dispositivi di protezione descritti successivamente.

Le prescrizioni di cui sopra non saranno applicati quando almeno uno dei cavi è posato, per tutta la tratta interessata, in appositi manufatti (tubazioni, cunicoli, etc.) che proteggono il cavo stesso e ne rendono possibile la posa e la successiva manutenzione senza la necessità di effettuare scavi Le prescrizioni di cui sopra non saranno applicate quando i due cavi sono posati nello stesso manufatto; per tali situazioni di impianto si dovranno prendere tutte le possibili precauzioni, ai fini di evitare che i cavi di energia e di telecomunicazione verranno a diretto contatto fra loro, anche quando le loro guaine sono elettricamente connesse. In particolare:

- nel caso di gallerie, la posa dei cavi di telecomunicazione e di energia sarà fatta su mensole distinte, chiaramente individuabili:
- nel caso di cunicoli o di condotti, la posa dei cavi di energia e di quelli di telecomunicazione sarà fatta in sedi o fori distinti.

9.2. Dispositivi di protezione

1 dispositivi di protezione saranno costituiti da involucri (cassette o tubi) preferibilmente in acciaio zincato a caldo o inossidabile, con pareti di spessore non inferiore a 2 mm. Sono ammessi involucri protettivi differenti da quelli sopra descritti purché presentino adeguata resistenza meccanica e sono, quando il materiale di cui sono costituiti lo renda necessario, protetti contro la corrosione.

9.3. Coesistenza tra cavi di energia e cavi di comando e segnalamento

I circuiti di comando e segnalamento saranno oggetto di disturbi, tali da alterarne il regolare funzionamento, causati da fenomeni dovuti a transitori sui circuiti di energia che saranno accoppiati con i circuiti di comando e segnalamento stessi. Per ciò che attiene alla mutua influenza dovuta a interferenze magnetiche tra cavi di energia e cavi di comando e segnalamento, valgono le prescrizioni del CT 304 del CEI; per le interferenze di tipo elettrico o meccanico, qualora gli esercenti di questi cavi sono diversi e non esistano tra loro particolari accordi, valgono le prescrizioni precedenti.

9.4. Coesistenza tra cavi di energia e tubazione o serbatoi metallici, interrati

9.4.1. Incroci fra cavi di energia e tubazioni metalliche, interrati

L'incroci fra cavi di energia e tubazioni metalliche adibite al trasporto e alla distribuzione di fluidi (acquedotti, oleodotti e simili) non dovrà effettuarsi sulla proiezione verticale di giunti non saldati delle tubazioni metalliche stesse. Non si dovranno _ avere giunti sui cavi di energia a distanza inferiore a 1 m dal punto di incrocio, a meno che non siano attuati i provvedimenti descritti nel seguito, Nessuna particolare prescrizione è data nel caso in cui la distanza minima, misurata fra le superfici esterne di cavi di energia e di tubazione metalliche o fra quelle di eventuali manufatti di protezione, è superiore a 0,5 m.

Tale distanza sarà ridotta fino ad un minimo di 0,30 m, quando una delle strutture di incrocio è contenuta in manufatto di protezione non metallico, prolungato per almeno 0,30 m per parte rispetto all'ingombro in pianta dell'altra struttura oppure quando fra le strutture che si incrociano venga interposto un elemento separatore non metallico (per es. lastre di calcestruzzo o di materiale isolante rigido); questo elemento deve poter coprire, oltre ala superficie di sovrapposizione in pianta delle strutture che si incrociano, quella di una striscia di circa 0,30 m di larghezza ad essa periferica.

Nota: i manufatti di protezione e gli elementi separatori in calcestruzzo armato si considerano non metallici; come manufatto di protezione di singole strutture con sezione circolare saranno utilizzati collari di materiale isolante fissati ad esse.

Le distanze sopra indicate saranno ulteriormente ridotte, previo accordo fra gli Enti proprietari o Concessionari, se entrambe le strutture sono contenute in manufatto di protezione non metallico Prescrizioni analoghe saranno osservate nel caso in cui non risulti possibile tenere l'incrocio a distanza uguale o superiore a 1 m dal giunto di un cavo oppure nei tratti che procedono o seguono immediatamente incroci eseguiti sotto angoli inferiori a 60° e per i quali non risulti possibile osservare puntualmente le prescrizioni sul distanziamento.

9.4.2. Parallelismi fra cavi di energia e tubazioni metalliche, interrati

Nei parallelismi fra cavi di energia e le tubazioni metalliche saranno posati alla maggiore distanza possibile fra loro. In nessun tratto la distanza, misurata in proiezione orizzontale fra le superfici estere di essi o di eventuali loro manufatti di protezione, deve risultare inferiore a 0,30 m.

Si può tuttavia derogare alla prescrizione suddetta previo accordo fra gli esercenti:

a) a) quando la differenza di quota fra le superfici esterne delle strutture interessate è superiore a 0,50 m;

b) quando tale differenza è compresa tra 0,30 m e 0,50 m, ma si interpongano fra le strutture elementari separatori non metallici nei tratti in cui la tubazione non è contenuta in un manufatto di protezione non metallico.

Non saranno mai disposti nello stesso manufatto di protezione cavi di energia e tubazioni per altro uso, tale tipo di posa è invece consentito, previo accordo fra gli Enti interessati, purché il cavo di energia e le tubazioni non saranno posti a diretto contatto fra loro.

9.5. Coesistenza tra cavi di energia e gasdotti

La coesistenza tra gasdotti interrati e cavi di energia posati in cunicoli od altri manufatti, è regolamentata dal D.M. 24.11.1984 "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8".

Pertanto, nel caso di incroci e parallelismi tra cavi di energia e tubazioni convoglianti gas naturali le modalità di posa ed i provvedimenti da adottare al fine di ottemperare a quanto disposto dal detto D.M. 24.1 1.1984, saranno definiti con gli Enti proprietari o Concessionari del gasdotto. Le prescrizioni contenute negli articoli precedenti del presente Capitolo sono applicabili, ove non in contrasto col suddetto D.M.. per incroci parallelismo con cavi direttamente interati con le modalità di posa L ed M.

9.5.1. Serbatoi di liquidi e gas infiammabili

Le superfici esterne di cavi di energia interrati non devono distare meno di 1 m dalle superfici esterne di serbatoi contenenti liquidi o gas infiammabili.

10. ATTRAVERSAMENTI DI LINEE IN CAVO CON FERROVIE, TRANVIE, FILOVIE, FUNICOLARI TERRESTRI, AUTOSTRADE, STRADE STATALI E PROVINCIALI

In corrispondenza degli attraversamenti delle linee in cavo interrato con ferrovie, tranvie, filovie funicolari terrestri in servizio pubblico o in servizio privato per trasporto di persone, autostrade, strade statali e provinciali e loro collegamenti nell'interno degli abitati, il cavo sarà disposto entro robusti manufatti (tubi, cunicoli etc.) prolungati di almeno 0,60 m fuori della sede ferroviaria o stradale, da ciascun lato di essa, e disposti a profondità non minore di 1,50 m sotto il piano del ferro di ferrovie di grande comunicazione, non minore di 1,0 m sotto il piano del ferro di ferrovie secondarie, tranvie, funicolari terrestri, nonché sotto il piano di autostrade, strade statali e provinciali. Le distanze vanno determinate dal punto più alto della superficie esterna del manufatto. Le gallerie praticabili devono avere gli accessi difesi da chiusure munite di serrature a chiave.

Quando il cavo viene posato in gallerie praticabili sottopassanti 'opera attraversata, non si applicano le prescrizioni di cui sopra purché il cavo sia interrato a profondità non minore di 0,50 m sotto il letto della galleria, o sia protetto contro le azioni meccaniche mediante adatti dispositivi di protezione (di cemento, mattoni, legno o simili).

11. PRESCRIZIONI SULLA DETERMINAZIONE DELLE DISTANZE

Il rispetto delle prescrizioni sulle distanze di cui ai precedenti paragrafi sarà accertato con rilievi diretti eseguiti sul campo, qualora le strutture vengano posate congiuntamente o qualora la posa di una di esse richieda lo scoprimento almeno parziale della o delle altre. Negli altri casi le distanze saranno invece determinate in base alle strutture preesistenti, quale risulta dalle registrazioni disponibili presso i relativi esercenti e, se del caso, mediante sondaggi di verifica effettuati sul luogo.

11.1. Campi elettromagnetici

Agli effetti dell'esposizione del corpo umano dei campi elettrici e magnetici si farà riferimento ai provvedimenti legislativi in vigore.

11.2. Campi elettrici dovuti a linee in cavo schermato

Lo schermo dei cavi sarà sufficiente a ridurre il campo elettrico a livelli trascurabili.

11.3. Campi magnetici dovuti a linee in cavo interrate

Per i metodi di calcolo dei campi magnetici, si farà riferimento alla Norma CEI 211-4 relativa alle linee aeree, ma utilizzabile anche nel caso di cavi sotterranei. Per la misura e la valutazione dei campi magnetici a bassa frequenza, con riferimento all'esposizione umana ad essi, si può far riferimento alla Guida CEL 211-6.

L'intensità del campo magnetico decresce rapidamente con la distanza e che l'incremento della profondità di posa e la loro disposizione a trifoglio, a parità di altre condizioni, attenuano il campo magnetico. La scelta di queste schermature è stata fatta in debita considerazione per le perdite addizionali per correnti indotte che necessariamente verranno a crearsi, e tale effetto dovrà essere valutato ai fini del computo della portata di corrente del collegamento.

Per la scelta delle suddette schermature è stata fatta in debita considerazione per le perdite addizionali per correnti indotte che necessariamente verranno a crearsi, e tale effetto dovrà essere valutato ai fini del computo della portata

di corrente di collegamento. Per la scelta delle suddette schermature, far riferimento alla Guida del CT 106 e del CEI nella quale si stanno definendo criteri generali circa la mitigazione dei campi elettromagnetici.

12. ACCESSORI

12.1. Scelta in relazione alle condizioni di posa e di esercizio

La terminazione le giunzioni per i cavi di energia devono risultare idonee a sopportare le sollecitazioni elettriche, termiche e meccaniche previste durante l'esercizio dei cavi in condizioni ordinarie anomale (sovracorrenti e sovratensioni).

12.2. Scelta degli accessori in relazione alle tensioni

La tensioni di designazione U degli accessori deve essere almeno uguale alla tensione nominale del sistema al quale sono destinati.

Per gli accessori destinati a sistemi a corrente alternata aventi tensione massima superiore a 72,5 KV o a sistemi a corrente continua, è opportuno che acquirente e fornitore concordino caso per caso la scelta della linea di fuga dell'isolatore più appropriata alle reali condizioni ambientali (nebbia salina, inquinamento ambientale, etc).

12.3. Scelta degli accessori in relazione a condizioni di corrente di cortocireuito

Gli accessori devono poter sopportare le correnti di cortocircuito previste per la sezione dei conduttori. delle guaine e degli schermi dei cavi su cui vengono montati. Il superamento delle prove di cortocircuito termico dinamico previste dalla Norma CEI 20-62, è sufficiente per qualificare l'accessorio come idoneo a sopportare gli effetti termici e dinamici delle sovracorrenti di breve durata. I valori delle correnti di prova previsti dalle suddette Norme possono solo costituire una guida per la scelta dell'accessorio in relazione alle condizioni ai esercizio; in ogni caso occorre fare riferimento ai limiti di temperatura ammissibile per l'accessorio.

12.4. Connessioni

I connettori saranno di materiale e di forma appropriati in relazione ai conduttori che dovranno collegare e alla tensione cui si prevede debbano funzionare. La rispondenza dei connettori alla Norma CEI 20-73 è condizione sufficiente per qualificarli idonei al collegamento dei conduttori per cui sono previsti. I connettori ospiteranno e tratteranno sicuramente tutti i fili elementari dei conduttori e saranno realizzati in modo tale che. durante l'esercizio, non si verificheranno sfilamenti dei conduttori conseguenti a fenomeni vibratori, tecnici, ecc.

Nel caso di conduttori di alluminio dovranno essere evitate sollecitazioni meccaniche anomale che facciamo insorgere nelle parti costituenti la connessione coazioni interne tali da compromettere il contatto, adottando eventualmente idonei mezzi per ridurre tale rischio (per es. sistemi autostringenti, ovvero rondelle elastiche).

I connettori a compressione destinati a conduttori dli alluminio risponderanno ai requisiti della Norma CEI 20-73. Nel caso di connessioni non saldate i connettori dovranno preferibilmente essere dello stesso metallo costituente i conduttori. Quando tuttavia si realizzerà una connessione tra conduttori di metalli diversi, i metalli impiegati devono avere potenziali intrinseci quanto più possibile prossimi tra di loro, onde limitare processi di corrosione in presenza di elettrolito (Norma CEI EN 61284).

Nel caso di connessioni non saldate comportanti una superficie di contatto in alluminio, che sarà soggetto a processi di ossidoriduzione con conseguente formazione di strati isolanti di alluminia, è opportuno adottare adeguati provvedimenti per proteggere la connessione (paste inibenti, nastrature tamponanti ecc.). E' necessario inoltre che prima dell'applicazione le superfici di contatto in alluminio saranno spalmate con pasta abrasiva conduttrice.

12.5. Isolamento

I materiali impiegati negli accessori non daranno luogo a reazioni tali da influenzare negativamente la vita della canalizzazione.

12.6. Condizioni di posa

Nel caso di connessioni di tipo permanente l'accessorio sarà installato in posizione compatibilmente con la destinazione dell'ambiente circostante e con l'esistenza di altri servizi. Per es. nel caso di giunzioni interrate è stato ritenuto opportuno evitare la loro posa in corrispondenza di passi carrai e attraversamenti stradali. Per quanto riguarda le distanze da tenere nei confronti di altri servizi tecnologici interrati, verranno osservate le prescrizioni dell'art. 6. Nel caso di connettori sconnettibili (Norma CEI 20-28) l'accessorio sarà installato in posizione tale da permettere l'esecuzione delle manovre relative in condizioni di sicurezza. Il contenitore avrà le dimensioni tali da consentire un agevole stacco e riattacco dei circuiti interessati.

13. COLLAUDO DOPO POSA

13.1. Collaudo dopo posa

Prima della messa in servizio sarà eseguito un controllo, completato dalle prove descritte nei paragrafi seguenti, allo scopo di assicurarsi che il montaggio degli accessori sia stato eseguito senza difetti e che i cavi non siano deteriorati durante la posa. Per la messa a disposizione dei mezzi necessari ad eseguire le prove dopo posa saranno presi accordi caso per caso tra committente ed installatore.

13.2. Prova di tensione applicata

La prova sarà eseguita con tensione continua, applicata per 15 min tra ciascun conduttore e lo schermo. Il valore della tensione continua di prova, in k V, deve essere pari a:

- 4,5 U_o per i cavi isolati in carta impregnata con U_o -36 kV
- 4,0 U_o per i cavi isolati in carta impregnata con 36 kV< U_o <130 KV
- 3,5 U_o. per i cavi isolati in carta impregnata con 130 kV< U_o <230kV
- 3,0 U_o per i cavi con isolante estruso

oppure al 50 % della tensione di tenuta ad impulso atmosferico Up.se questo valore risulta inferiore. Se il cavo termina in un trasformatore o in un interruttore blindato, per questa prova e necessario un accordo tra committente e i costruttori o gli installatori del trasformatore o dell'interruttore e del cavo. Per cavi con isolamento estruso, la prova può essere eseguita in alternativa con uno dei metodi sotto indicati:

- 1. Prova alla frequenza di rete applicando la tensione di esercizio trifase del sistema per la durata di 24 ore;
- 2. Prova alla frequenza variabile compresa tra 20 Hz e 300 Hz applicando la tensione indicata Tensione di esercizio nominale (U= 36 kV, U_o = 52 kV); Tensione di prova fase-terra 52 kV efficaci); tra il conduttore e lo schermo metallico per la durata di un'ora.

Gli attraversamenti delle opere interferenti saranno eseguiti in accordo a quanto previsto dalla Norma CEI 11-17.

14. SISTEMA DI TELECOMUNICAZIONI

Il sistema di telecomunicazioni sarà realizzato per la trasmissione dati Cabina di Raccolta Generale dell'impianto fotovoltaico alla S.E. del Gestore della RTN, e sarà costituito da un cavo con 12 o 24 fibre ottiche, e comunque sempre in concordanza con quanto indicato nelle specifiche dell'Ente gestore della RTN a cui ci si connette. Nella figura seguente è riportato lo schema del cavo f.o. che potrà essere utilizzato per il sistema di telecomunicazioni.

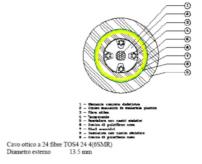


Figura 13.1 – Schema cavo fibre ottiche.

15. RUMORE

L'elettrodotto in cavo non costituisce fonte di rumore.

16. CARATTERISTICHE ELETTRICHE/MECCANICHE DEL CONDUTTORE DI ENERGIA

16.1. Dati tecnici del cavo

Tali dati potranno subire adattamenti comunque non essenziali dovuti alla successiva fase di progettazione esecutiva e di cantierizzazione, anche in funzione delle soluzioni tecnologiche adottate dai fornitori e/o appaltatori.

HIGH VOLTAGE CABLES BASED ON IEC 608040

TRATOS® HV - 38/66 kV-(72.5 kV) CU/XLPE/PB/HDPE

Tratos HV cable is used for the transmission and distribution of electric power and is suitable for installation in ducts, trenches or direct buried underground or within buildings. These cables are ideal for use to connect wind farms and other renewable energy to existing grid systems.

FEATURES AND PERFORMANCES

- Conductor: stranded circular or segmantal compacted copper
 Conductor screen: semi-conducting layer
 Insulation: XLPE
 Insulation: France: The strands of the

- Insulation screen: non metallic semi-conducting layer
 Tape: non-conductive water blocking
- Outer sheath: HDPE sheathed with graphite coating or extruded semi-conducting layer
- Standard colour: black
 Marking: ELECTRIC CABLE 38/66kV + TRATOS Cable type + Cable Size (e.g. "1x150") COMMODITY CODE IEC 60840 + lot production + year + metre marking

STANDARDS

Design and Tested: IEC 60228, 60840 and 60811

Size csa	Tratos Part Number	Nominal Conductor diameter	Thickness Conductor screen	Thickness Insulation	Thick- ness Core screen	Nominal core diameter	Nominal thickness of lead	Nominal diameter over lead	Area of Lead Sheath	Nominal thickness of MDPE	Nominal thickness of HDPE	Ap- proximate overall
										sheath	sheath	diameter
mm²		mm	mm	mm	mm	mm	mm	mm	mm²	mm	mm	mm
150		14.4	1.0	9.0	1.0	38.4	2.0	44.4	390	3.5	3.5	51.4
185		15.6	1.0	9.0	1.0	39.6	2.0	45.6	401	3.5	3.5	52.6
240		18.3	1.0	9.0	1.0	42.3	2.1	48.5	442	3.5	3.5	55.5
300		20.6	1.0	9.0	1.0	44.6	2.1	50.8	465	3.5	3.5	57.8
400		22.9	1.0	9.0	1.0	46.9	2.2	53.3	504	3.5	3.5	60.3
500		26.4	1.0	9.0	1.0	50.4	2.3	57.0	557	4	4.0	65.0
630		29.8	1.0	9.0	1.0	53.8	2.4	60.6	611	4	4.0	68.6
800		36.0	1.0	9.0	1.0	60.0	2.6	67.2	719	4	4.0	75.2
1000		38.2	1.5	9.0	1.5	64.2	2.7	71.6	789	4	4.0	79.6
1200		42.8	1.5	9.0	1.5	68.8	2.9	76.6	891	4.5	4.5	85.6
1400		46.4	1.5	9.0	1.5	72.4	3.0	80.4	960	4.5	4.5	89.4
1600		48.9	1.5	9.0	1.5	74.9	3.1	83.1	1018	4.5	4.5	92.1

17. CAMPI ELETTRICI E MAGNETICI

La linea elettrica durante il suo normale funzionamento genera un campo elettrico e un campo magnetico. Il primo è proporzionale alla tensione della linea stessa, mentre il secondo è proporzionale alla corrente che vi circola. Entrambi B decrescono molto rapidamente con la a come mostrato dai grafici riportati nel seguito.

Tuttavia nel caso di cavi interrati, la presenza dello schermo e la relativa vicinanza dei conduttori delle tre fasi elettriche rende di fatto il campo elettrico nullo ovunque. Pertanto il rispetto della normativa vigente in corrispondenza dei recettori sensibili **è sempre garantito** indipendentemente dalla distanza degli stessi dall' elettrodotto.

Per quanto riguarda invece il campo magnetico si rileva che la maggiore vicinanza dei conduttori delle tre fasi tra di loro rispetto alla soluzione aerea *rende il campo trascurabile già a pochi metri dall'asse dell'elettrodotto*.

Di seguito è esposto l'andamento del campo magnetico lungo il tracciato della linea interrata a 36 kV. Il calcolo è stato effettuato in aderenza alla Norma CEI 211-4, valori esposti si intendono calcolati al suolo.

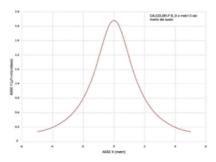


Fig.16.1: andamento della induzione magnetica prodotta dalla linea in cavo

17.1. Richiami normativi

Le lince guida per la limitazione dell'esposizione ai campi elettrici e magnetici variabili nel tempo ed ai campi elettromagnetici sono state indicate nel 1998 dalla ICNIRP.

Il 12-7-99 il Consiglio dell'Unione Europea ha emesso una Raccomandazione agli Stati Membri volta alla creazione di un quadro di protezione della popolazione dai campi elettromagnetici, che si basa sui migliori dati scientifici esistenti; a tale proposito, il Consiglio ha avallato proprio le linee guida dell'ICNIRP. Successivamente nel 2001, a seguito di un'ultima analisi condotta sulla letteratura scientifica, un Comitato di esperti della Commissione Europea ha raccomandato alla CE di continuare ad adottare tali linee guida.

Successivamente è intervenuta, con finalità di riordino e miglioramento della normativa allora vigente in materia, la Legge 3612001. che ha individuato ben tre livelli di esposizione ed ha affidato allo Stato il compito di determinare e di aggiornare periodicamente i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità, in relazione agli impianti suscettibili di provocare inquinamento elettromagnetico.

L'art. 3 della Legge 36/2001 ha definito "limite di esposizione" il valore di campo elettromagnetico da osservare ai fini della tutela della salute da effetti acuti; ha definito il valore di attenzione, come quel valore del campo elettromagnetico da osservare quale misura di cautela ai fini della protezione da possibili effetti a lungo termine: ha definito, infine, l'obiettivo di qualità come criterio localizzativo e standard urbanistico, oltre che come valore di campo elettromagnetico ai fini della progressiva minimizzazione dell'esposizione.

Tale legge quadro italiana (36/2001)., come ricordato sempre dal citato Comitato, è stata emanata nonostante che le raccomandazioni del Consiglio della Comunità Europea del 12-7-99 sollecitassero gli Stati membri ad utilizzare le linee guida internazionali stabilite dall'ICNIRP; tutti i Paesi dell'Unione Europea, hanno accettato il parere del Consiglio della CE, mentre l'Italia ha adottato misure più restrittive di quelle indicate dagli Organismi internazionali.

In esecuzione della predetta Legge, è stato infatti emanato il D.P.C.M. 8.7.2003, che ha fissato il limite di esposizione in **100 microtesla** per l'induzione magnetica e 5 kV/m per il campo elettrico: ha stabilito il valore di attenzione di **10 microtesla**, a titolo di cautela per la protezione da possibili effetti a lungo termine nelle are gioco per !'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere; ha fissato, quale obiettivo di qualità da osservare nella progettazione di nuovi elettrodotti, il valore di **3 microtesla**.

È stato altresì esplicitamente chiarito che tali valori sono da intendersi come mediana di valori nell' arco delle 24 ore, in condizioni normali di esercizio. Non si deve dunque fare riferimento al valore massimo di corrente eventualmente sopportabile da parte della linea Si segnala come i valori di attenzione e gli obbiettivi di qualità stabiliti dal Legislatore italiano siano rispettivamente 10 e 33 volte più bassi di quelli internazionali.

Al riguardo è opportuno anche ricordare che, in relazione ai campi elettromagnetici, la tutela della salute viene attuata - nell'intero territorio nazionale - esclusivamente attraverso il rispetto dei limiti prescritti dal D.P.C.M. 8.7.2003, al quale soltanto può farsi utile riferimento.

17.2. Configurazioni di carico

Di seguito viene esposto il grafico dell'andamento dell'induzione magnetica rispetto all'asse di elettrodotto.

Nel calcolo, essendo il valore dell'induzione magnetica proporzionale alla corrente transitante nella linea, è stata presa in considerazione la configurazione di carico che prevede una posa dei cavi a trifoglio, ad una profondità di 1.6 m, con un valore di corrente pari a **1'088 A.**

La configurazione dell'elettrodotto è quella in assenza di schermature, distanza minima dei conduttori dal piano viario e posa a trifoglio dei conduttori.

In figura a lato è riportato qualitativamente l'andamento dell'induzione magnetica al suolo, determinata avendo considerato una corrente pari a 1'088 A in regime permanente. Considerando che l'impianto fotovoltaico avrà un funzionamento a piena potenza solo in particolari condizioni (mesi estivi e ore di punta per l'irraggiamento solare), le ipotesi considerate rappresentano i valori massimi e NON permanenti per i fenomeni descritti.

Nelle condizioni di funzionamento al di fuori delle ore di punta, le curve indicate manterranno le "forme" ma con valori decisamente inferiori ai massimi indicati.

Ai fini del calcolo della DPA è stata invece considerata la sezione di un cavo in alluminio capace di veicolare la corrente massima in uscita dall'impianto, che risulta essere pari a 2 x 500 mm² per fase, con linea trifase posata a trifoglio.

In base alla seguente formula $\frac{DPA}{\sqrt{I}} = 0.40942 \cdot x^{0.5242}$

SI ottiene D.P.A. = 3.63 che si arrotonda al mezzo metro superiore risultando D.P.A. = 4.00 m.

Viene poi effettuato un calcolo anche mediante software Magic, dal quale è emerso un risultato più preciso per la DPA che risulta essere pari a **3.00 metri**, secondo quanto illustrato nella relativa relazione sui campi elettromagnetici a cui si rimanda per ulteriori dettagli.

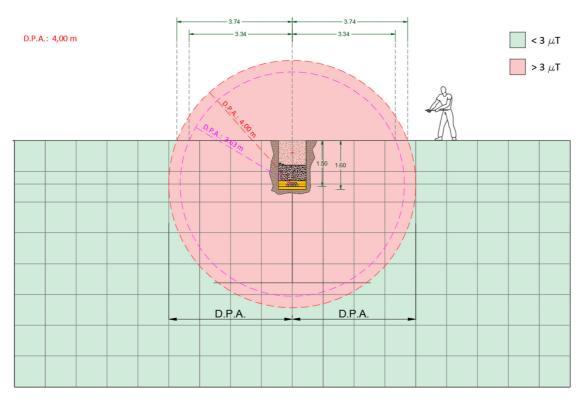


Fig. 16.2: Rappresentazione della DPA dovuta alla linea interrata.

Non è invece rappresentato il calcolo del campo elettrico prodotto dalla linea in cavo, poiché *in un cavo schermato il campo elettrico esterno allo schermo è nullo*.

Il tracciato di posa dei cavi è stato studiato in modo che il valore di induzione magnetica sia sempre inferiore a 3 μ T in corrispondenza dei ricettori sensibili (abitazioni e aree in cui si prevede una permanenza di persone per più di 4 ore nella giornata).

Tuttavia, in casi particolari, ove necessario, potrà essere utilizzata la tecnica di posa con schermatura realizzata inserendo i cavi, con disposizione a trifoglio ed inglobati in tubi in PE riempiti di bentonite, in apposite canalette in materiale ferromagnetico riempite con cemento a resistività termica stabilizzata.

Il comportamento delle canalette ferromagnetiche è stato sperimentalmente provato ed applicato in altri impianti già realizzati con risultati attesi.

L'efficacia della canaletta consentirà un'attenuazione dell'induzione magnetica pari almeno ad un ordine di grandezza; ciò che garantirà il pieno rispetto del limite imposto.

18. REALIZZAZIONE DELL'OPERA

18.1. Fasi di costruzione

La realizzazione dell'opera avverrà per fasi sequenziali di lavoro che permettano di contenere le operazioni in un tratto limitato della linea in progetto (circa 500 metri), avanzando progressivamente sul territorio.

In generale le operazioni si articoleranno secondo le fasi elencate nel modo seguente:

- realizzazione delle infrastrutture temporanee di cantiere:
- apertura della fascia di lavoro e scavo della trincea;
- posa dei cavi e realizzazione delle giunzioni;
- ricopertura della linea e ripristini,

In alcuni casi particolari e comunque dove si renderà necessario, in particolare per tratti interni ai centri abitati e in corrispondenza di attraversamenti, si potrà procedere anche con modalità diverse da quelle su esposte.

In particolare si evidenzia che in alcuni casi sarà necessario procedere con:

- posa del cavo in tubo interrato;
- staffaggio su ponti o strutture pre-esistenti;
- perforazione teleguidata;
- realizzazione manufatti per attraversamenti corsi d' acqua.

Al termine dei lavori civili ed elettromeccanici sarà effettuato il collaudo della linea.

18.2. Realizzazione delle infrastrutture temporanee di cantiere per la posa del cavo

Prima della realizzazione dell'opera sarà necessario realizzare le piazzole di stoccaggio per il deposito delle bobine contenenti i cavi; di norma vengono predisposte piazzole circa ogni 500-600 metri. Tali piazzole sono, ove possibile, realizzate in prossimità di strade percorribili dai mezzi adibiti al trasporto delle bobine e contigue alla fascia di lavoro, al fine di minimizzare le interferenze con il territorio e ridurre la conseguente necessità di opere di ripristino Si eseguiranno, se non già presenti, acesi provvisori dalla viabilità ordinaria per permettere l'ingresso degli autocarri alle piazzole stesse.

18.3. Apertura della fascia di lavoro e scavo della trincea

Le operazioni di scavo e posa dei cavi richiedono l'apertura di un' area di passaggio, denominata "fascia di lavoro". Questa fascia dovrà essere la più continua possibile ed avere una larghezza tale da consentire la buona esecuzione dei lavori ed il transito dei mezzi di servizio.

18.4. Posa del cavo

In accordo alla normativa vigente, l'elettrodotto interrato sarà realizzato in modo da escludere, o rendere estremamente improbabile, la possibilità che avvenga un danneggiamento dei cavi in tensione provocato dalle opere sovrastanti (ad esempio, per rottura del sistema di protezione dei conduttori).

Una volta realizzata la trincea si procederà con la posa dei cavi, che arriveranno nella zona di posa avvolti su bobine. La bobina viene comunemente montata su un cavalletto, piazzato ad una certa distanza dallo scavo in modo da ridurre l'angolo di flessione del conduttore quando esso viene posato sul terreno. Durante le operazioni di posa o di spostamento dei cavi saranno adottate le seguenti precauzioni:

- a) si opererà in modo che la temperatura dei cavi, per tutta la loro lunghezza e per tutto il tempo in cui essi possono venire piegati o raddrizzati, non sia inferiore a 0° C.
- b) i raggi di curvatura dei cavi, misurati sulla generatrice interna degli stessi, non devono essere mai inferiori a 15 volte il diametro esterno del cavo.

18.5. Ricopertura e ripristini

Al termine delle fasi di posa e di rinterro si procederà alla realizzazione degli interventi di ripristino.

La fase comprende tutte le operazioni necessarie per riportare il territorio attraversato nelle condizioni ambientali precedenti la realizzazione dell' opera. Le opere di ripristino previste possono essere raggruppate nelle seguenti due tipologie principali:

- ripristini geomorfologici ed idraulici;
- ripristini della vegetazione.

Preliminarmente si procederà alle sistemazioni generali di linea, che consistono nella ri-profilatura dell'area interessata dai lavori e nella ri-configurazione delle pendenze preesistenti, ricostruendo la morfologia originaria del terreno e provvedendo alla riattivazione di fossi e canali irrigui, nonché delle lince di deflusso eventualmente preesistenti.

La funzione principale del ripristino idraulico è essenzialmente il consolidamento delle coltri superficiali attraverso la regimazione delle acque, evitando il ruscellamento diffuso e favorendo la ricrescita del manto erboso. Successivamente si passerà al ripristino vegetale, avente lo scopo di ricostituire, nel più breve tempo possibile, il manto vegetale preesistente nelle zone con vegetazione naturale Il ripristino avverrà mediante:

- ricollocazione dello strato superficiale del terreno se precedentemente accantonato;
- inerbimento;
- messa a dimora, ove opportuno, di arbusti e alberi di basso fusto.

Per gli inerbimenti verranno utilizzate specie erbacee adatte all'ambiente pedoclimatico, in modo da garantire il migliore attecchimento e sviluppo vegetativo possibile. Le aree agricole saranno ripristinate al fine di restituire l'originaria fertilità.

18.6. Scavo della trincea in corrispondenza dei tratti lungo percorso stradale

Tenendo conto che il tracciato si sviluppa su percorso adiacente alla sede stradale e, quando la strada lo consente e la situazione lo richiede (cioè nel caso in cui la sede stradale permetta lo scambio di due mezzi pesanti) sarà realizzata, come anticipato, la posa in scavo aperto, mantenendo aperto lo scavo per tutto il tratto compreso tra due giunti consecutivi (500-600 m) e istituendo per la circolazione stradale un regime di senso unico alternato mediante semafori iniziale e finale, garantendo la opportuna segnalazione del conseguente restringimento di corsia e del possibile rallentamento della circolazione. In casi particolari e solo quando si renderà necessario potrà essere possibile interrompere al traffico, per brevi periodi, alcuni tratti stradali particolarmente stretti, segnalando anticipatamente ed in modo opportuno la viabilità alterativa e prendendo pendendo i relativi accordi con comuni e gli enti interessati.

Sempre in caso la situazione lo richieda, per i tratti su strade strette o in corrispondenza dei centri abitati, si potrà procedere con lo scavo di trincee più brevi (anche fino a soli 30-50 m) all' interno delle quali sarà posato il tubo di alloggiamento dei cavi, da ricoprire e ripristinare in tempi brevi, effettuando la posa del cavo tramite sonda nell' alloggiamento sotterraneo e mantenendo aperti solo i pozzetti in corrispondenza di eventuali giunti.

18.7. Trivellazione orizzontale controllata

La modalità dell' attraversamento con Trivellazione Orizzontale Controllata consente l'attraversamento di fiumi, canali o altre strutture a notevoli profondità. Questo consente grande sicurezza ed evita, inoltre, interventi alle strutture su argini e/o sponde. In tali casi, l'intervento sarà effettuato nelle fasi seguenti:

- 1) In una prima fase si realizza un foro pilota, infilando nel terreno, mediante spinta e rotazione, una successione di aste che guidate opportunamente dalla testa, creano un percorso sotterraneo che va da un pozzetto di partenza ad uno di arrivo;
- 2) nella seconda fase si prevede che il recupero delle aste venga sfruttato per portarsi dietro un alesatore che, opportunamente avvitato al posto della testa, ruotando con le aste genera il foro del diametro voluto (tipicamente un Φ = 200 mm). Insieme all' alesatore, o successivamente, vengono posate le condutture ben sigillate entro cui verrà posizionato il cavidotto.

La trivellazione viene eseguita ad una profondità di circa 10,00 m sotto l'alveo del corso d'acqua, tale da non essere interessata da fenomeni di erosione, mentre i pozzetti di ispezione che coincidono con quello di partenza e di arrivo della tubazione di attraversamento vengono realizzati alla quota del terreno.

18.8. Sicurezza nei cantieri

lavori si svolgeranno in ossequio alla normativa del D. Lgs. 81/08, e successive modifiche ed integrazioni pertanto, in fase di progettazione la società proponente provvederà a nominare un Coordinatore per la sicurezza in fase di progettazione, abilitato ai sensi della predetta normativa, che redigerà il Piano di Sicurezza e Coordinamento.

Successivamente, in fase di realizzazione dell' opera, sarà nominato un Coordinatore per l'esecuzione dei lavori, anch'esso abilitato, che vigilerà durante tutta la durata dei lavori sul rispetto da parte delle dite appaltatrici delle norme di legge in materia di sicurezza e delle disposizioni previste nel Piano di Sicurezza e Coordinamento.

19. NORMATIVA DI RIFERIMENTO

In questo capitolo si riportano i principali riferimenti normativi da prendere in considerazione per la progettazione, la costruzione e l'esercizio dell'intervento oggetto del presente documento.

Il progetto dei cavi e le modalità per la loro messa in opera rispondono alle norme contenute nel D.M. 21.03.1988, regolamento di attuazione della Legge n. 339 del 28.06.1986, per quanto applicabile, ed alle Norme CEL 11-17.

Leggi

- Regio Decreto 11 dicembre 1933 n° 1775 "Testo Unico delle disposizioni di legge sulle acque e impianti elettrici";
- Legge 23 agosto 2004, n. 239 "Riordino del settore energetico, nonché delega al Governo per il riassetto delle disposizioni vigenti in materia di energia" e ss.mm.ii.;
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";
- DPCM 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti";
- Decreto 29 maggio 2008, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti";
- O DPR 8 giugno 2001 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità" e ss.mm.ii.;
- Legge 24 luglio 1990 n° 241, "Norme sul procedimento amministrativo in materia di conferenza dei servizi"
 come modificato dalla Legge 11 febbraio 2005, n. 15, dal Decreto legge 14 marzo 2005, n. 35 e dalla Legge 2 aprile 2007, n. 40;
- Decreto Legislativo 22 gennaio 2004 n° 42 "Codice dei Beni Ambientali e del Paesaggio, ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137 ";
- Decreto del Presidente del Consiglio dei Ministri 12 dicembre 2005 "Individuazione della documentazione necessaria alla verifica della compatibilità paesaggistica degli interventi proposti, ai sensi dell'articolo 146, comma 3, del Codice dei beni culturali e del paesaggio di cui al decreto legislativo 22 gennaio 2004, n. 42";
- o Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" e ss.mm.ii.;
- Legge 5 novembre 1971 n. 1086. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica. Applicazione delle norme sul cemento armato";
- Decreto Interministeriale 21 marzo 1988 n. 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne";
- o D.M. 03.12.1987 Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate;
- o CNR 10025/98 Istruzioni per il progetto, l'esecuzione ed il controllo delle strutture prefabbricate in calcestruzzo;
- D.Lgs. n. 192 del 19 agosto 2005 Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia.
- o Aggiornamento delle «Norme tecniche per le costruzioni». D. M. 17 gennaio 2018.

Norme tecniche

Norme CEI

CEI 11-4, "Esecuzione delle linee elettriche esterne", quinta edizione, 1998:09;

- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", seconda edizione, 2002-06;
- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", seconda edizione, 2008-09;
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0
 Hz 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01;
- CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto", terza edizione, 1997:12;
- CEI 11-1, "Impianti elettrici con tensione superiore a 1 kV in corrente alternata", nona edizione, 1999-01;
- CEI 304-1 "Interferenza elettromagnetica prodotta da linee elettriche su tubazioni metalliche Identificazione dei rischi e limiti di interferenza", ed. prima 2005;
- CEI 106-11, "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo", prima edizione, 2006:02;
- CEI EN 61936-1 "Impianti elettrici con tensione superiore a 1 kV in c.a Parte 1: Prescrizioni comuni";
- CEI EN 50522 "Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a";
- CEI 11-17, "Impianti di produzione, trasmissione e distribuzione dell'energia elettrica Linee in cavo", terza edizione, 2006-07.

20. VALUTAZIONE DEGLI IMPATTI

20.1. PREMESSA

Il percorso del cavidotto si sviluppa ai bordi di strade e pertanto insiste su un tracciato fortemente alterato dall'attività antropica. Giova richiamare che la realizzazione del cavidotto genera impatti temporanei e reversibili.

Ai fini della valutazione degli impatti potenzialmente generati dalla realizzazione di cavidotto sul contesto di area vasta, si è proceduto ad analizzare la presenza di vincoli e prescrizioni con particolare riferimento a:

- Piano Paesaggistico Regionale (PPR)
- Piano di Assetto Idrogeologico (PAI)
- Piano di Gestione del Rischio Alluvioni (PGRA)
- Piano stralcio delle Fasce Fluviali (PSFF)

Oltre a questi piani, la valutazione ha analizzato il contesto dai seguenti punti di vista:

- fauna, flora;
- valenze archeologiche, storiche, culturali.

Gli impatti temporaneamente e potenzialmente indotti dalle attività connesse all'intervento e i relativi ricettori sono riportati nella seguente tabella.

IMPATTI	RICETTORI
Alterazione ecosistema	Fauna, flora, vegetazione
Accumulo terre da scavo	Suolo
Inquinamento acustico	Fauna, addetti ai lavori
Inquinamento da polvere	Vegetazione e flora
Emissioni gas dai mezzi meccanici	Atmosfera
Distruzione emergenze archeologiche	Beni archeologici

Tabella 2 - Potenziali impatti temporanei e ricettori

20.2. PIANO PAESAGGISTICO REGIONALE (PPR)

Come si evince dalle figure 4 e 5 il tracciato del cavidotto si sviluppa in un interessa areale ad uso agroforestale a bassa sensibilità ambientale. Il tracciato interessa il corso d'acqua Gora Terramaini che ai sensi dell'art. 17 comma 3 lettera h delle N.T.A. del P.P.R. ha una fascia di rispetto di 150 metri (fig. 6).

L'opera è comunque compatibile con questa prescrizione.

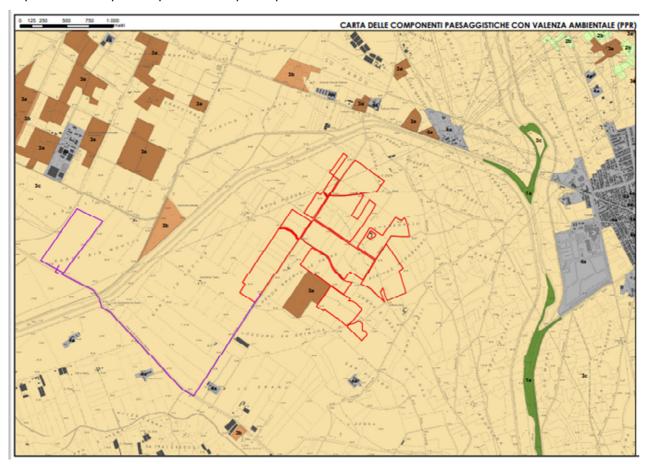


Figura 4 - Stralcio della carta del PPR con tracciato del cavidotto in viola.

CATEGORIE	ELEMENTI COSTITUTIVI	VOCE LEGENDA P.P.R.	SIMBOLO
Aree naturali e sub naturali	Aree che dipendono per il loro mantenimento esclusivamente dall'energia solare e sono ecologicamente omeostasi,	Vegetazione a macchia e in aree umide (aree con vegetazione rada > 5% e < 40%; formazioni di ripa non arboree; macchia mediterranea; letti di torrenti di ampiezza superiore ai 25 m; paludi interne; paludi salmastre; pareti rocciose).	
	autosufficienti grazie alla	Boschi (boschi misti di conifere e latifoglie; boschi di latifoglie).	
Aree	Aree caratterizzate da utilizzazione agrosilvopastorale estensiva,	Praterie (prati stabili; area a pascolo naturale; cespuglietti e arbusteti; gariga; aree a ricolonizzazione naturale).	
seminaturali	con un minimo di apporto di energia suppletiva per garantire e mantenere il loro funzionamento.	Boschi (sugherete e castagneti da frutto).	
Aree con utilizzazioni agro- silvopastorali intensive, con apporto di fertilizzanti,	Colture specializade e arboree (vignet); fruttet; olivet); colture temporanee associate all'olio; colture temporanee associate al vigneto; colture temporanee associate ad altre colture permanenti).		
Aree ad utilizzazione agroforestale	zzazione pratiche agrarie che le	Area agoforestali, area incolte (seminativi in area non infigue; prati artificiali; seminativi semplici e colture orticole a pieno campo; risale; vival; colture in serra; sistemi colturali e particellari complessi; aree prevalentemente occupate da colture agrarie con presenza di spazi naturali importanti; aree agroforestali; oree incolte).	
Aree antropizzate	Aree antropizzate	Aree antropizzate	

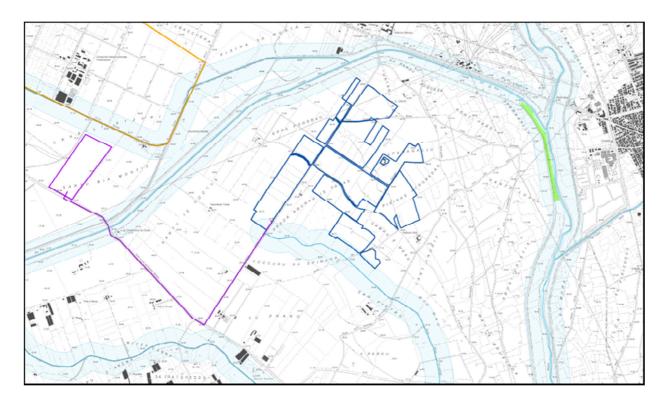


Figura 6 – Corsi d'acqua con fascia di rispetto di 150 metri.

20.3. PIANO PAI – PGRA - PSFF

Come si evince dalla cartografia riportate nelle figure 7 - 8 - 9, gran parte del tracciato del cavidotto si sviluppa in aree a pericolosità idraulica moderata (Hi1) pienamente compatibile con l'opera in progetto.

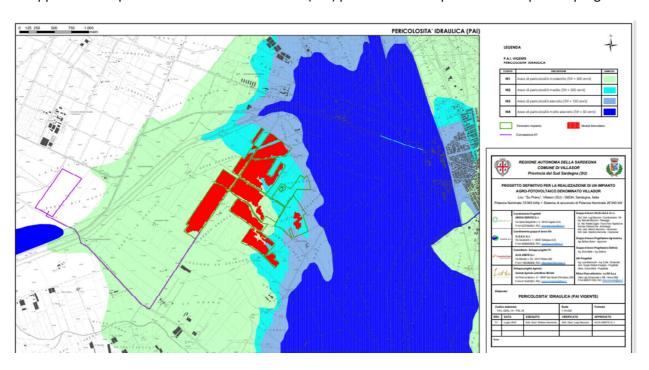


Figura 7 – Carta della pericolosità idraulica (PAI)

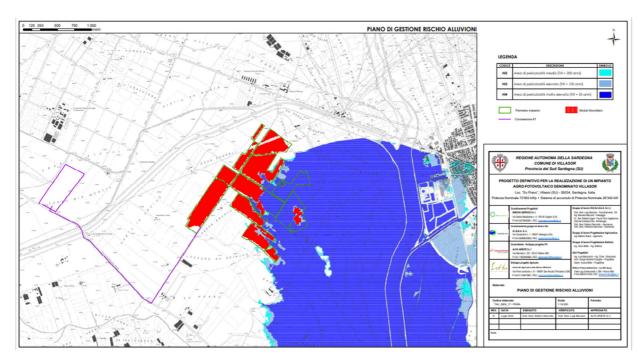


Figura 8 - Carta della Pericolosità Idraulica PGRA

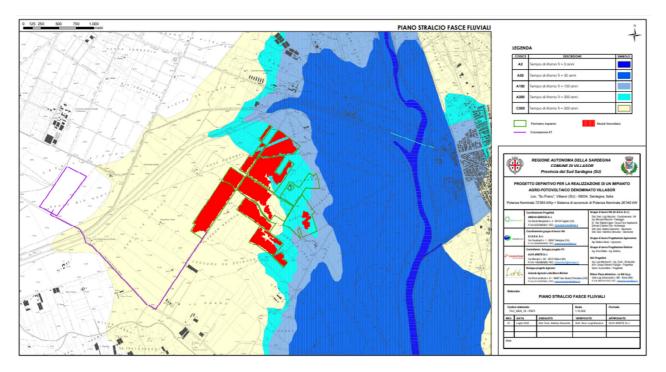


Figura 9 – Carta della pericolosità idraulica PSFF

Ovviamente, tenuto conto del contesto geomorfologico pianeggiante, non sussiste alcuna pericolosità da frana.

20.4. ECOSISTEMA FAUNA FLORA-VEGETAZIONE

I risultati degli studi e monitoraggi nell'areale sul quale ricade impianto svolti non hanno rilevato la presenza di tutte quelle specie legate agli ambienti naturali e seminaturali.

Ciò è riconducibile al fatto che trattasi di un'areale coltivato con scarsità di aree di rifugio per i selvatici e caratterizzato anche dalla mancanza di risorse trofiche non essendoci colture così dette "a perdere" destinate alla fauna selvatica. Pertanto, l'impatto andrà ad incidere su un contesto faunistico di scarsa rilevanza per il disturbo di origine antropica durante le fasi di cantiere. È altrettanto risaputo che, come rilevato in altre esperienze, nelle aree strettamente interessate dai lavori la fauna riprende la sua normale attività durante le pause degli stessi (la notte, sabato e domenica).

La copertura vegetale dell'area di studio si presenta profondamente trasformata e modificata dall'utilizzo antropico del territorio per scopi agrozootecnici a seguito della coltivazione agricola di tipo estensivo di specie erbacee annuali in rotazione elementare, quali erbai per la produzione di foraggi finalizzati all'alimentazione del bestiame allevato (ovini) e al pascolo brado. Alcune superfici sono state dedicate all'impianto di un bosco di eucalitti e a un rimboschimento a ceduo di eucalitto oggetto di taglio recente. Pertanto, le formazioni vegetali naturali risultano pressoché assenti e sostituite dai prati pascolo o dall'impianto di specie arboree alloctone.

20.5. VALENZE ARCHEOLOGICHE, STORICHE, CULTURALI

Lo studio di "verifica preventiva dell'interesse archeologico" ha analizzato in dettaglio l'area vasta nella quale ricade l'impianto fotovoltaico pervenendo alla valutazione del rischio archeologico pervenendo alla valutazione del rischio archeologico. Dalla figura 10 si evince che lungo il percorso del tacciato del cavidotto non sussiste alcun rischio archeologico.

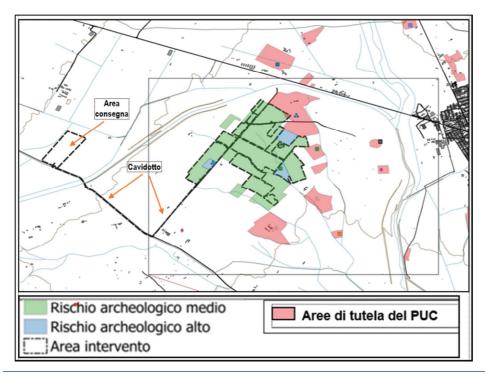


Figura 10- - Carta del rischio archeologico

20.6. IMPATTI E MISURE DI MITIGAZIONE

20.6.1. > Alterazione Ecosistema

Il cavidotto attraversa un'areale coltivato con scarsità di aree di rifugio per i selvatici e caratterizzato anche dalla mancanza di risorse trofiche non essendoci colture così dette "a perdere" destinate alla fauna selvatica.

Pertanto, l'impatto andrà ad incidere su un contesto faunistico di scarsa rilevanza per il disturbo di origine antropica durante le fasi di cantiere.

I ricettori dell'impatto sono la fauna, la flora e la vegetazione. L'impatto è stato valutato irrilevante poiché l'area interessata dal progetto è totalmente coltivata ed è priva di flora e vegetazione, tant'è la sensibilità è stata valutata bassa.

Al fine di minimizzare questi effetti, qualora si rivelasse necessario, saranno intraprese le misure qui di seguito descritte.

- Durante i lavori di scavo lo strato di suolo agrario dovrà essere separato dal substrato inerte.
- La quota parte che non verrà utilizzata per il ricoprimento dei cavidotti sarà spalmata nell'area del cantiere di servizio e lungo il perimetro dell'impianto. Evitare le attività di cantiere da aprile a giugno.

È altrettanto risaputo che, come rilevato in altre esperienze, nelle aree strettamente interessate dai lavori la fauna riprende la sua normale attività durante le pause degli stessi (la notte, sabato e domenica).

20.6.2. > Accumulo terre da scavo

L'impatto potenziale è riconducibile all'abbandono in situ e/o alla erronea gestione delle terre provenienti dagli scavi. Fermo restando che i materiali saranno gestiti in conformità alla normativa vigente, al fine di prevenire il potenziale impatto saranno attivate le seguenti misure di mitigazione:

- predisposizione di un'area adibita a deposito temporaneo con una parte adibita al topsoil e un'altra dedicata al subsoil ed eventuale materiale roccioso;
- durante le operazioni di scavo si provvederà alla rimozione e separazione del topsoil, subsoil ed eventuale materiale roccioso;
- su eventuali volumi di terre in esubero si provvederà a valutare, in accordo con le autorità competenti, la qualità e la possibilità di una utilizzazione in altre aree o una definitiva decisione di avvio a discarica;
- le terre in esubero provenienti dagli scavi verranno in parte riutilizzate per i rinterri e in parte sarà spalmata nell'area perimetrale dell'impianto al fine di aumentare il franco di coltivazione.

20.6.3. > Inquinamento acustico

L'impatto limitato nello spazio e nel tempo è generato dalle macchine operatrici e dalle attrezzature utilizzate, mentre i ricettori sono fauna, gli addetti ai lavori. Non sono presenti abitazioni con popolazione abitualmente residente. Innanzitutto, le macchine in uso dovranno rispettare la normativa vigente in materia di emissioni acustiche ambientali delle macchine attrezzature operanti all'aperto, per mitigare gli effetti indotti dalle emissioni sonore si prevedono le seguenti azioni:

- utilizzazione di mezzi omologati e conformi alle normative vigenti;
- rispettare gli orari imposti dai regolamenti comunali e dalle normative vigenti per lo svolgimento delle attività rumorose;
- movimentazione di mezzi con basse velocità;
- ridurre i tempi di esecuzione delle attività rumorose utilizzando eventualmente più attrezzature e più personale per periodi brevi;
- prediligere attrezzature più silenziose e insonorizzate rispetto a quelle che producono livelli sonori molto elevati (ad es. apparecchiature dotate di silenziatori);
- utilizzare tutti i DPI e le misure di prevenzione necessarie per i lavoratori in cantiere al fine di salvaguardare la salute;
- spegnimento dei mezzi allorquando non sono utilizzati;
- ottimizzazione del numero dei mezzi di cantiere;
- svolgimento delle attività di cantiere dalle ore 7.00 alle ore 20.00;
- svolgimento delle attività di cantiere più rumorose (es. battipalo, betoniere, seghe circolari ecc) nei seguenti orari 8-13 e 15-19.
- predisporre un'accurata e periodica manutenzione dei mezzi e delle attrezzature (eliminare gli attriti attraverso periodiche operazioni di lubrificazione, sostituire i pezzi usurati e che lasciano giochi, serrare le giunzioni, porre attenzione alla bilanciatura delle parti rotanti delle apparecchiature per evitare vibrazioni eccessive, verificare la tenuta dei pannelli di chiusura dei motori). 4.6.6 Emissioni gas dai mezzi meccanici

20.6.4. - Inquinamento da polvere

L'impatto sarà generato dalle attività di cantiere, soprattutto dei mezzi meccanici utilizzati per la realizzazione del cavidotto progetto. In realtà trattasi di una incidenza i cui effetti potrebbero persistere permanentemente

I ricettori di questo impatto limitato nello spazio e nel tempo sono la vegetazione, la flora e gli addetti ai lavori. Per mitigare gli effetti indotti dalle emissioni sonore si prevedono le seguenti azioni:

- Inumidimento dei percorsi e delle aree di manovra degli automezzi e delle macchine operatrici.
- Realizzazione di dossi nelle strade al fine di limitare la velocità. Fermata dei lavori in condizioni anemologiche critiche.

Copertura del carico nei veicoli utilizzati per la movimentazione di inerti durante la fase di trasporto

20.6.5. - Emissioni gas dai mezzi meccanici

Tra gli impatti temporanei bisogna considerare quelli connessi alla fase di realizzazione delle opere dovuti alle emissioni dei gas di scarico delle macchine operatrici ed al traffico dei mezzi di trasporto. Trattasi comunque di impatti di lieve entità tenuto conto della dimensione delle opere.

I ricettori dell'impatto sono l'atmosfera ed il personale addetto ai lavori.

Per minimizzare e gli effetti indotti dalle emissioni del gas di scarico dai mezzi meccanici si raccomanda la Verifica periodica dell'efficienza dei motori e dei sistemi dei gas di scarico

20.6.6. - Distruzione emergenze archeologiche

Lo studio di "verifica preventiva dell'interesse archeologico" ha rilevato che alcune aree archeologiche presenti nel territorio interessato dalle indagini hanno una interferenza diretta con le opere in progetto.

Al fine di prevenire il rischio di una casuale distruzione di emergenze durane l'attività di istallazione del cantiere e di realizzazione dell'impianto si procederà alla sorveglianza archeologica con le modalità eventualmente indicate dalla Soprintendenza.

21. TAVOLE ALLEGATE

- I) Inquadramento Territoriale
- II) Inquadramento Catastale
- III) Inquadramento Ortofoto Satellitare
- IV) Catra delle INTERFERENZE
- V) Schema Unifilare Linea di Connessione
- VI) Cabina Generale e Linea di connessione alla RTN

Cagliari, 30 giugno 2023