

PROGETTO AdSP n. 1951

Estensione delle infrastrutture comuni per lo sviluppo del Punto Franco Nuovo nel porto di Trieste

CUP: C94E21000460001

Progetto di Fattibilità Tecnico Economica

Fascicolo A- intervento PNC da autorizzare

GRUPPO DI PROGETTAZIO	NE:	
arch. Gerardo Nappa	AdSP MAO	Responsabile dell'integrazione e Coordinatore per la Sicurezza in fase di Progettazione
arch. Sofia Dal Piva	AdSP MAO	Progettazione generale
arch. Stefano Semenic	AdSP MAO	Progettazione generale
ing. Roberto Leoni	BITECNO S.r.l.	Sistema di trazione elettrica ferroviaria
ing. Saturno Minnucci	MINNUCCI ASSOCIATI S.r.l.	Impianti speciali e segnalamenti ferroviari
ing. Dario Fedrigo	ALPE ENGINEERING S.r.l.	Progettazione strutturale oo.cc. ferrovia e strade
ing. Andrea Guidolin p.i. Furio Benci	SQS S.r.l.	Progettazione della sicurezza
ing. Sara Agnoletto	HMR Ambiente S.r.l.	Progettazione MISP e cassa di colmata
p.i. Trivellato, dott. G. Malvasi, dott. S. Bartolomei	p.i. Antonio Trivellato d.i.	Modellazione rumore, atmosfera, vibrazioni
dott. Gabriele Cailotto ing. Anca Tamasan	NEXTECO S.r.l.	Studio di impatto ambientale e piano di monitoraggio ambientale
ing. Sebastiano Cristoforetti	CRISCON S.r.l.s.	Relazione di sostenibilità
ing. Tommaso Tassi	F&M Ingegneria S.p.A.	Progettazione degli edifici pubblici nel contesto dell'ex area "a caldo"
ing. Michele Titton	ITS s.r.l.	Connessione stradale alla GVT
RESPONSABILE UNICO DE ing. Paolo Crescenzi	L PROCEDIMENTO:	•

NOME FILE: 3STR_P_R_C-GEO_2AT_001_02_01.docx	SCALA:
TITOLO ELABORATO: RELAZIONE GEOTECNICA E SISMICA OPERE STRADALI	ELABORATO: 3STR_P_R_C-GEO_2AT_001_02_01

Rev.	Data	Descrizione	Redatto	Verificato	Approvato
00	01/02/2023	Definitivo	D. Fedrigo	S.Dal Piva	G.Nappa
01	30/06/2023	Recepimento osservazioni CSLLPP	D.Fedrigo	S.Dal Piva	G.Nappa

Relazione geotecnica e sismica

Pag. 1 di 60

<u>Sommario</u>

	1	GEN	ERA	LITÀ	3
	2	DOC	CUME	ENTI DI RIFERIMENTO	4
	3	MOE	DELL	O GEOLOGICO	5
	4	IND	AGI	NI GEOGNOSTICHE	8
	,	4.1	PROF	ILI STRATIGRAFICI	15
		4.2	STAN	IDARD PENETRATION TEST (SPT)	16
		4.2.	. 1	Analisi delle misure SPT	18
		4.3	Anal	ISI DI LABORATORIO	20
		4.3.	. 1	Risultati delle analisi di laboratorio	20
		4.3.	.1.1	Verticale SG001	22
		4.3.	.1.2	Verticale SG002	30
		4.3.	.1.3	Verticale SG003	38
		4.4	Pros	SPEZIONI GEOFISICHE	43
		4.4.	. 1	Tomografia sismica a rifrazione	45
		4.4.	.2	Prospezioni geolettrico-tomografiche ERT	50
		4.4.	.3	Prospezioni sismiche MASW	51
		4.4.	.3.1	MASW T12	52
		4.4.	.3.2	MASW T22	52
		4.4.	.4	Osservazioni	53
	5	МОГ	DELL	O GEOTECNICO	55
	6	ASP	ETT:	LEGATI ALLA SISMICITÀ	57
		7 In	TERAZ	ZIONE CINEMATICA PER I PALI DI FONDAZIONE	58
		7.1.	. 1	Sollecitazione palo per l'indagine MASW T06	58
Son	<u>ım</u>	ario '	figu	<u>re</u>	
	Fig	gura 4	-1: V	'erticale SG001 - Campione CR1 – Prova a taglio diretto	22
	Fig	gura 4	-2: V	'erticale SG001 - Campione CI1 – Prova a taglio diretto	23
	Fig	gura 4	-3: V	'erticale SG001 - Campione CR2 – Prova a taglio diretto	30
	Fig	gura 4	-4: V	erticale SG002 - Campione CI1 – Prova a taglio diretto	31
	Fig	gura 4	-5: V	'erticale SG002 - Campione CR2 – Prova a taglio diretto	38

Relazione geotecnica e sismica

Pag. 2 di 60

Figura 4-6	5: Verti	cale S0	3003 - Ca	mpione	e CI1 – P	rova	a a taglio dire	etto		 39
Figura 4-7	7: Plan.	zona	di terreno	di cat.	sismica	B (r	riempimento	magenta [*])	 54

Relazione geotecnica e sismica

Pag. 3 di 60

1 GENERALITÀ

Il presente documento riporta l'analisi delle caratteristiche geotecniche e sismiche utili per la progettazione delle opere civili dell'infrastruttura stradale, per la connessione alla Grande Viabilità Triestina, e dell'infrastruttura ferroviaria, opere queste previste tra i lavori di estensione delle infrastrutture comuni per lo sviluppo del Punto Franco Nuovo nel porto di Trieste.

Nell'ambito del Piano Regolatore del Porto di Trieste è prevista un'espansione verso Sud della zona del porto franco, con una nuova infrastruttura (denominata Molo VIII) dedicata alla movimentazione di navi Ro-Ro e container. L'obiettivo di tale intervento è riconvertire l'attività produttiva siderurgica alla funzione portuale e di potenziare il polo logistico a servizio dell'economia del territorio. Un team di progettazione multidisciplinare ha sviluppato il progetto integrato relativo alla nuova opera marittima e alle annesse infrastrutture stradali e ferroviarie, secondo una pianificazione che si sviluppa su più fasi successive.

Relazione geotecnica e sismica

Pag. 4 di 60

2 **DOCUMENTI DI RIFERIMENTO**

- "Prove geotecniche in situ Guida alla stima delle proprietà geotecniche e alla loro applicazione alle fondazioni", A. Bruschi, 2010, ISBN 978-579-0045-2
- "Caratteristiche geolitologiche e geomeccaniche del Flysch nella Provincia di Trieste", Studi Trentini di Scienze Naturali – Acta Geologica, Onofri E., 1982
- "Caratterizzazione meccanica dei depositi di terreni mediante prove penetrometriche dinamiche", Incontro Annuale dei Ricercatori di Geotecnica, N. Squeglia, O.Pallara, E. Mensi, 2006
- "Empirical correlation between penetration resistance and internal friction angle of sandy soils", Soils and Foundations 36(4):1-10, Hatanaka M. e Uchida A., 1996
- "Aspetti geotecnici della progettazione in zona sismica", AGI, 2005
- "Fondazioni: Progetto e analisi", J. E. Bowels, 1991

Si farà riferimento ai seguenti elaborati:

1GNR_P_R_C-GEO_1GE_001_02_01 Relazione geologica

1GNR_P_R_C-GEO_1GE_002_02_00 Relazione sulle indagini

1GNR_P_R_C-GEO_2AT_001_02_00 Relazione idrogeologica

9MISP_P_R_A-GEN_2AT_001_01_01 Relazione generale del Progetto operativo di MISP-parte pubblica

Relazione geotecnica e sismica

Pag. 5 di 60

3 Modello Geologico

Si riporta nel seguito la sintesi del modello geologico come definito nella "Indagini geognostiche a terra - Relazione tecnica"; per una descrizione più dettagliata e precisa dei vari aspetti si rimanda all'elaborato "1GNR_P_R_C-GEO_1GE_001_02_01 relazione geologica" facente parte del presente progetto.

L'area in esame è caratterizzata dalla presenza di un substrato litoide afferente alla Formazione del Flysch triestino la cui parte superiore si presenta alterata e degradata fino a perdere la propria struttura litoide.

La formazione è un'alternanza di rocce clastiche originatesi in ambiente di sedimentazione marino e caratterizzate da due tipi litologici principali, marne e arenarie, a caratteristiche petrografiche e fisiche notevolmente diverse (Onofri R., 1982).

Le arenarie sono prevalentemente delle calcareniti, caratterizzate da una matrice carbonatica con frazione detritica costituita per lo più da granuli di calcite, quarzo, altri silicati e resti di microfossili. Sono rocce molto dure, compatte e rigide, il cui singolo provino di materiale è dotato di altissima resistenza meccanica. Le arenarie sono in genere nettamente stratificate con singoli strati di potenza variabile da centimetrica a pluri-decimetrica.

Le marne hanno composizione mineralogica simile alle arenarie ma si differenziano per una maggiore percentuale di carbonati a scapito degli altri componenti mineralogici, oltre alla ricchezza di resti organici. Le marne, sovente fratturate nel tipico assetto "a cubetti", subiscono facilmente una sorta di desquamazione in piccole scaglie, specialmente nei casi in cui la roccia è stata oggetto di intense deformazioni ad opera di stress tettonici.

I processi di degradazione delle porzioni superficiali del Flysch determinano una completa alterazione, disgregazione e disarticolazione della massa rocciosa, che diviene un terreno costituito da una matrice limosa-sabbiosa-argillosa inglobante corpi detritici di arenaria e, in percentuale minore, di scaglie di marna, identificato come complesso C1 (Onofri R., 1982).

Tali depositi, definiti come argille limoso-sabbiose talora ghiaiose, segnano il passaggio tra il basamento roccioso e i sovrastanti depositi fini marini, con spessori localmente molto variabili anche in aree poco estese. Il Flysch nei termini più superficiali presenta una fascia di alterazione che pur mantenendo la struttura lapidea si presenza parzialmente degradato e disarticolato. In genere, i litotipi marnosi ed arenacei assumono colorazioni giallo-ocracee. Lo spessore di questo livello, usualmente definito Flysch alterato, è molto variabile con potenze medie comprese tra 0.5 e 3.0 m, anche se si possono rivenire spessori maggiori.

Si riportano i cinque tipi principali di Flysch sulla base delle variazioni percentuali delle marne rispetto alle arenarie (Onofri R., 1982):

- Tipo T1 Costituito prevalentemente da arenaria (in genere strati di spessore superiore a 30 cm) con interstratificati pacchetti di lamine di marna dello spessore globale di ordine centimetrico. La stratificazione è distinta e lo spessore del singolo strato è notevolmente costante.
- Tipo T2 Costituito prevalentemente da arenaria (in genere strati di spessore inferiore a 30 cm) con interstratificati poco frequenti pacchetti di lamine di marna dello spessore globale di ordine centimetrico. La stratificazione è distinta e lo spessore del singolo strato è notevolmente costante.

Relazione geotecnica e sismica

Pag. 6 di 60

- Tipo T3 Costituito da circa il 50% da arenaria e circa il 50% da marna (spessori degli strati di arenaria e dei pacchetti di lamine di marna variabili generalmente da 1 cm a circa 20 cm). La stratificazione è distinta e lo spessore del singolo strato è notevolmente costante.
- Tipo T4 Costituito prevalentemente da marna i cui pacchetti possono avere uno spessore variabile da circa 10 cm a circa 50 cm; interstratificati rari strati di arenaria con spessore generalmente compreso tra circa 10 cm e circa 50 cm. La stratificazione è abbastanza distinta e lo spessore del singolo pacchetto, o strato, è piuttosto costante.
- Tipo T4 Costituito prevalentemente da arenarie a buona consistenza litoide ma che ha subito notevoli processi deformativi (spessore degli strati non superiore a 10 cm circa). La stratificazione è talora poco distinta e con spessore poco costante.

Sovrastante il Flysch, laddove presenti, si rilevano sedimenti di origine marina, caratterizzati da argille limose o limi argillosi di colore grigio verde o grigio nero, con frazione organica e livelletti sabbiosi che spesso presentano resti conchigliari e/o torba.

Si tratta di sedimenti marini e in parte continentali, caratterizzati essenzialmente da materiali fini, quali argille e limi, talora con sabbie di colore variabile dal grigio verde al grigio nero, per arrivare al marrone scuro-nero nel caso di intervalli torbosi o a composizione fortemente organica. I depositi grossolani, formati da sedimenti ghiaiosi poligenici, sono presenti principalmente lungo la costiera triestina o lungo le foci delle aste idriche che defluiscono a mare dai rilievi collinari triestini.

Sulla base delle indagini geognostiche e delle prospezioni geofisiche eseguito nel sito oggetto d'analisi, è stata riconosciuta la successione geolitologica e litostratigrafica ed identificato il modello di riferimento dell'area, come schematizzato nella "Indagini geognostiche a terra - Relazione tecnica":

1. Terreni antropici di riporto

Terreni e materiali antropici di riporto, caratterizzati da ghiaia, clasti e ciottoli arenacei spigolosi, normalmente centimetrici, talora frammentici a residui lateritici e a scarti di lavorazione e di demolizione, in matrice limoso sabbiosa debolmente argillosa, di colore nocciola al marrone scuro, talora grigio.

2. Complesso limoso argilloso, debolmente sabbioso

Sedimenti marini caratterizzati da termini limoso argillosi, debolmente sabbiosi, localmente torbosi, di colore variabile da grigio chiaro, a grigio scuro, a grigio verde, talora marrone, morreno-scuro o nero se in presenza di intervalli torbosi, talora con abbondante presenza di resti conchigliari; tale complesso mostra talora la presenza di strati caratterizzati da limo sabbioso argilloso, con sabbia fina.

3. Flysch alterato marnoso arenaceo

Terreni di copertura, propri dei fenomeni di alterazione e di disgregazione dei termini più superficiale della soggiacenza formazione flyschoide, caratterizzato da rari livelli arenacei centimetrici, molto alterati, di colore marrone ocraceo a grigio azzurro (Complesso C1).

Relazione geotecnica e sismica

Pag. 7 di 60

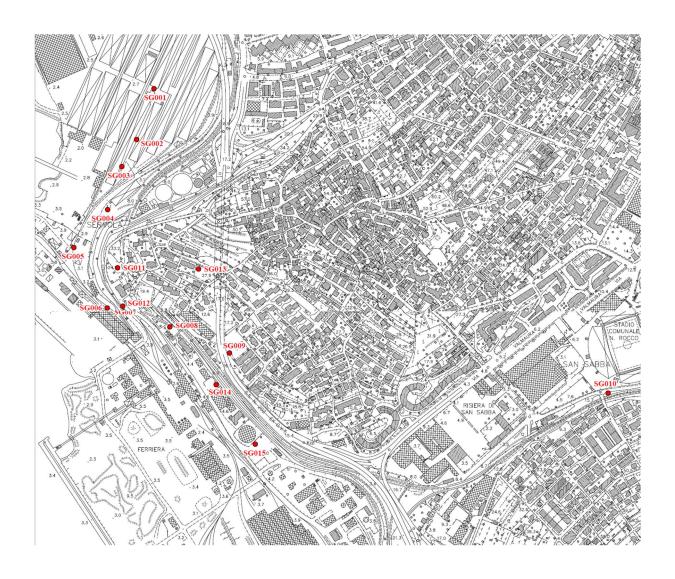
4. Flysch integro marnoso arenaceo

Litotipo caratterizzante il basamento roccioso flyschoide integro marnoso arenaceo fratturato e disarticolato nei suoi termini più superficiali sia a causa dei processi di degradazione fisica, chimica e biologica, sia per probabili processi meccanici propri di stress tettonici; nel complesso si riconosce l'andamento della stratificazione, con presenza di strati arenacei di potenza centimetrica o pluri-centimetrica, di colore variabile da grigio azzurro a marrone ocraceo, alternati a strati di marne di potenza centimetrica o decimetrica, finemente stratificate, con talora fessurazione "a cubetti", disarticolate (tipo T3 e T4).

5. Flysch integro arenaceo marnoso

Litotipo caratterizzante il basamento roccioso flyschoide integro arenaceo marnoso con strati marnosi di colore grigio azzurro di potenza centimetrica, dal classico aspetto fogliettato, alternati a strati decimetrici o pluricentimetrici di arenaria compatti o debolmente fratturati, di colore grigio azzurro, talora con screziature giallo ocracee e rare venature calcitiche (Tipo T2).

Relazione geotecnica e sismica


Pag. 8 di 60

4 INDAGINI GEOGNOSTICHE

Nell'area in esame sono state eseguite, in diversi periodi temporali, diverse e numerose campagne di indagini, associate a diversi e specifici scopi. Di seguito, per mera semplicità espositiva, si fa riferimento solo all'ultima campagna, rimandando all'elaborato "1GNR_P_R_C-GEO_1GE_002_02_00 Relazione sulle indagini" per maggiori dettagli.

Le ultime indagini geognostiche (n. 15 prove) sono state eseguite a carotaggio continuo con carotiere semplice o doppio di diametro 101 mm e rivestimento metallico provvisorio del foro di diametro 127 mm, spinti sino a profondità variabili da 5 a 29.5 m dal p.c..

Si riportano nell'immagine e nella tabella seguenti rispettivamente la posizione in pianta e la localizzazione topografica dei sondaggi eseguiti.

Relazione geotecnica e sismica

Pag. 9 di 60

Condanai-	ET	RF00	Gauss-	Boaga	Quota
Sondaggio	Est	Nord	Est	Nord	(m s.l.m.m)
SG001	404779.57	5053454.84	2424798.20	5053480.70	+ 2.71
SG002	404738.87	5053336.04	2424757.50	5053361.90	+ 2.75
SG003	404704.47	5053272.64	2424723.10	5053298.50	+ 2.78
SG004	404671.27	5053171.83	2424689.90	5053197.69	+ 4.28
SG005	404592.37	5053083.14	2424611.00	5053109.00	+ 2.96
SG006	404670.37	5052941.64	2424689.00	5052967.50	+ 3.18
SG007	404706.67	5052916.84	2424725.30	5052942.70	+ 3.15
SG008	404816.47	5052861.74	2424835.10	5052887.60	+ 6.61
SG009	404989.30	5052814.55	2424995.35	5052837.41	+ 13.14
SG010	405840.23	5052705.84	2425858.86	5052731.64	+ 15.63
SG011	404694.38	5053035.65	2424713.01	5053061.45	+ 26.25
SG012	404706.55	5052946.05	2424725.18	5052971.84	+ 6.05
SG013	404883.70	5053032.92	2424902.33	5053058.72	+ 29.58
SG014	404924.68	5052725.55	2424943.31	5052751.35	+ 6.31
SG015	405016.07	5052587.26	2425034.70	5052613.06	+ 4.78

La soggiacenza della falda è stata misurata in corrispondenza dei sondaggi SG009, SG011, SG012, SG013, SG014 e SG015. Si riportano nelle tabelle seguenti rispettivamente la profondità di indagine delle prove geognostiche con la misura del livello di falda e la conducibilità idraulica tipo Lefranc a carico variabile.

Sondaggio	Profondità (m dal p.c.)	Piezometro (m)	Prova Lefranc	Quota falda (m dal p.c.)
SG001	- 23.5			
SG002	- 24.0			
SG003	- 20.0			
SG004	- 12.0			
SG005	- 14.0			
SG006	- 10.0			
SG007	- 9.5			
SG008	- 8.0			
SG009	- 13.6	13.5	X	- 1.86
SG010	- 9.0			
SG011	- 27.0	27	X	- 13.19
SG012	- 17.0	17	X	- 11.95
SG013	- 29.5	29	Х	- 16.27
SG014	- 5.7	5	х	- 0.43
SG015	- 5.0	5	X	- 1.74

Sondaggio	Tratto in prova (m dal p.c.)	Conducibilità idraulica k (m/s)	Litologia tratto di prove
SG009	da - 5.0 a - 6.0	2.83 x 10 ⁻⁶	Flysch
30009	da - 10.0 a - 11.0	1.46 x 10 ⁻⁶	Flysch
00011	da - 10.0 a - 10.5	3.80 x 10 ⁻⁶	Flysch
SG011	da - 18.0 a - 20.0	5.07 x 10 ⁻⁷	Flysch
25012	da - 9.0 a - 10.0	8.30 x 10 ⁻⁷	Flysch
SG012	da - 12.0 a - 13.0	5.26 x 10 ⁻⁶	Flysch
25012	da - 10.0 a - 10.7	2.07 x 10 ⁻⁶	Flysch
SG013	da - 20.0 a - 21.0	8.32 x 10 ⁻⁷	Flysch
SG014	da - 4.2 a - 5.0	6.95 x 10 ⁻⁶	Flysch
SG015	da - 4.0 a - 4.7	6.53 x 10 ⁻⁶	Flysch

Si osserva che in generale non è possibile definire con certezza il livello della falda perché le prove disponibili sono limitate rispetto alle variabilità spaziale e altimetrica della zona indagata. Ad esempio per le verticali SG011 e SG012 (che sono relativamente vicine) la prima è caratterizzata da un livello di falda posto a circa +13 m s.l.m. (=26.25-13.19) e la seconda è caratterizzata da un livello di falda posto a circa -6 m s.l.m. (=6.05-11.95).

Inoltre, a differenza delle altre verticali d'indagine, lungo la verticale SG014 la falda è prossima al piano campagna, ovvero a -0.43 m (+6.31 m s.l.m.).

Per le verticali SG009, SG011, SG014 e SG015 si osserva che la quota di falda è superiore al livello medio mare.

Relazione geotecnica e sismica

Pag. 10 di 60

Ulteriori aspetti circa l'inquadramento idrogeologico ed idraulico dell'area di intervento, e nello specifico in quella interessata dalle opere strutturali viarie, sono reperibili negli elaborati generali 1GNR_P_R_C-GEO_1GE_001_02_01 e 1GNR_P_R_C-GEO_2AT_001_02_00, a cui si rimanda per maggiori dettagli.

Si riportano i valori minimo, massimo e medio delle resistenze a compressione semplice UCS e a taglio non drenata Cu ottenute mediante le prove speditive effettuate con Pocket Penetrometer e Pocket Vane sulle carote di materiale coesivo (limo), così come riportati nella "Indagini geognostiche a terra - Relazione tecnica".

Pocket Penetrometer

Minimo = $0.25 \text{ kg/cm}^2 \approx 25 \text{ MPa}$

Massimo = $2.75 \text{ kg/cm}^2 \approx 275 \text{ MPa}$

MEDIO = $0.75 \text{ kg/cm}^2 \approx 75 \text{ MPa}$

Vane Test

Minimo = $0.08 \text{ kg/cm}^2 \approx 8 \text{ MPa}$

Massimo = 1.52 kg/cm² \approx 152 MPa

MEDIO = $0.42 \text{ kg/cm}^2 \approx 42 \text{ MPa}$

Si osserva che se si considerano le misure effettuate nelle zone di limo sabbioso e di limo argilloso meno consistenti, le resistenze risultano minori e in particolare per la prova a taglio non drenata si ottiene:

Vane Test (limo sabbioso e limo argilloso meno consistenti)

Minimo = $0.08 \text{ kg/cm}^2 \approx 8 \text{ MPa}$

Massimo = $0.56 \text{ kg/cm}^2 \approx 56 \text{ MPa}$

MEDIO = $0.30 \text{ kg/cm}^2 \approx 30 \text{ MPa}$

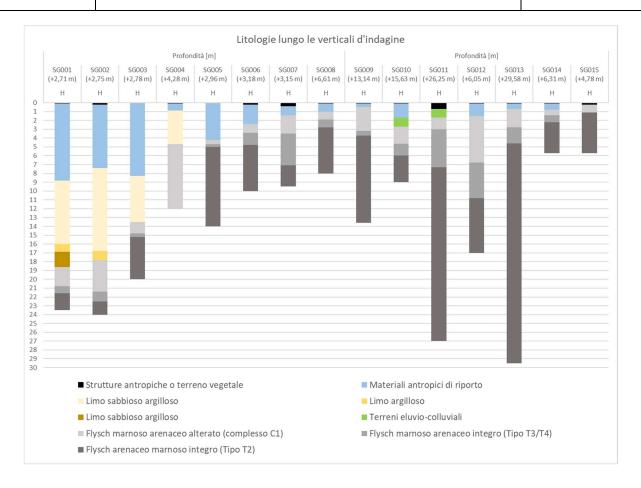
Inoltre, in corrispondenza dei sondaggi SG001, SG002, SG003, SG004, SG005, SG006, SG007, SG008, SG009 e SG010 sono state eseguite n.34 prove tipo Standard Penetration Test SPT in foro a punta chiusa. Le stesse sono riportate in modo esteso ed elaborate nel seguito.

Infine, in corrispondenza dei sondaggi SG001, SG002 e SG003 sono stati prelevati n.11 campioni indisturbati e n.5 campioni rimaneggiati analizzati in laboratorio geotecnico.

Si riportano in tabella e nel grafico le macro-litologie individuate lungo le 15 verticali d'indagine.

Relazione geotecnica e sismica

Pag. 11 di 60


												Profon	dità [m	1										
Litologia	SG00	01 (+2,7	1 m)	SG00	2 (+2,7	75 m)	SG00	03 (+2,7	78 m)	SG00	4 (+4,2	28 m)	SG00	05 (+2,9	6 m)	SG00	06 (+3,1	8 m)	SG00	7 (+3,1	5 m)	SG00	08 (+6,6	i1 m)
	da	a	н	da	а	н	da	а	Н	da	а	Н	da	а	н	da	a	Н	da	а	н	da	а	Н
Strutture antropiche o terreno vegetale	0,00	0,10	0,10	0,00	0,20	0,20				0,00	0,10	0,10				0,00	0,20	0,20	0,00	0,40	0,40	0,00	0,10	0,10
Materiali antropici di riporto	0,10	8,80	8,70	0,20	7,40	7,20	0,00	8,30	8,30	0,10	0,90	0,80	0,00	4,20	4,20	0,20	2,40	2,20	0,40	1,40	1,00	0,10	1,00	0,90
Limo sabbioso argilloso	8,80	16,00	7,20	7,40	16,80	9,40	8,30	13,50	5,20	0,90	4,70	3,80												
Limo argilloso	16,00	16,90	0,90	16,80	17,80	1,00																		
Limo sabbioso argilloso	16,90	18,60	1,70																					
Terreni eluvio-colluviali																								
Flysch marnoso arenaceo alterato (complesso C1)	18,60	20,80	2,20	17,80	21,40	3,60	13,50	14,80	1,30	4,70	12,00	7,30	4,20	4,70	0,50	2,40	3,40	1,00	1,40	3,50	2,10	1,00	1,90	0,90
Flysch marnoso arenaceo integro (Tipo T3/T4)	20,80	21,60	0,80	21,40	22,50	1,10	14,80	15,20	0,40				4,70	5,00	0,30	3,40	4,80	1,40	3,50	7,10	3,60	1,90	2,80	0,90
Flysch arenaceo marnoso integro (Tipo T2)	21,60	23,50	1,90	22,50	24,00	1,50	15,20	20,00	4,80				5,00	14,00	9,00	4,80	10,00	5,20	7,10	9,50	2,40	2,80	8,00	5,20

										Pro	fondità	[m]									
Litologia	SG00	9 (+13,	14 m)	SG01	0 (+15,	63 m)	SG01	1 (+26,	25 m)	SG01	12 (+6,0)5 m)	SG01	3 (+29,	58 m)	SG01	4 (+6,3	1 m)	SG01	5 (+4,7	'8 m)
	da	а	Н	da	a	Н	da	а	Н	da	a	Н	da	а	Н	da	а	Н	da	а	Н
Strutture antropiche o terreno vegetale	0,00	0,10	0,10	0,00	0,10	0,10	0,00	0,70	0,70	0,00	0,10	0,10	0,00	0,10	0,10	0,00	0,10	0,10	0,00	0,20	0,20
Materiali antropici di riporto	0,10	0,50	0,40	0,10	1,70	1,60				0,10	1,50	1,40	0,10	0,70	0,60	0,10	0,80	0,70			
Limo sabbioso argilloso																					
Limo argilloso																					
Limo sabbioso argilloso																					
Terreni eluvio-colluviali				1,70	2,70	1,00	0,70	1,70	1,00												
Flysch marnoso arenaceo alterato (complesso C1)	0,50	3,20	2,70	2,70	4,65	1,95	1,70	3,00	1,30	1,50	6,80	5,30	0,70	2,80	2,10	0,80	1,40	0,60	0,20	1,10	0,90
Flysch marnoso arenaceo integro (Tipo T3/T4)	3,20	3,70	0,50	4,65	6,00	1,35	3,00	7,30	4,30	6,80	10,80	4,00	2,80	4,60	1,80	1,40	2,20	0,80			
Flysch arenaceo marnoso integro (Tipo T2)	3,70	13,60	9,90	6,00	9,00	3,00	7,30	27,00	19,70	10,80	17,00	6,20	4,60	29,50	24,90	2,20	5,70	3,50	1,10	5,70	4,60

Relazione geotecnica e sismica

Pag. 12 di 60

Il grafico sopra riportato sintetizza, in modo semplice seppur approssimato e limitato ai risultati delle prove descritte, l'andamento stratigrafico del sottosuolo.

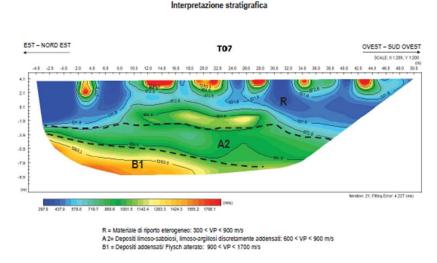
Dal grafico si osserva che in prossimità delle verticali d'indagine SG001, SG002 e SG003 il sito risulta caratterizzato da spessori importanti di materiale di riporto e di terreno a grana mediofine (limo). Per la zona in esame, il Flysch tipo T2-T3-T4 si riscontra a profondità dell'ordine di 21÷22 m per le prime due verticali e a 15 m per la verticale SG003.

Spostandosi verso sud-est si osserva una diminuzione dei terreni maggiormente comprensibili e l'affioramento delle litologie flyschoidi. In prossimità dei sondaggi SG010 e SG011 il sito risulta caratterizzato da materiali di deposito eluvio-colluviali.

Inoltre, in base alle misure speditive con Pocket Penetrometrico (PP) e con Vane Test (VT), il limo argilloso (identificato in colore giallo nel grafico precedente) è caratterizzato da resistenze maggiori rispetto al limo sabbioso argilloso (identificato con il colore sabbia), sia per SG001 che per SG002. Ad esempio, il limo argilloso presenta resistenze di $1.50 \div 2.75$ kg/cm² e $0.88 \div 1.44$ kg/cm² rispettivamente per il PP e per il VT, a fronte delle corrispettive resistenze di $0.25 \div 1.00$ kg/cm² e $0.08 \div 0.44$ kg/cm² misurate per il limo sabbioso argilloso. Differentemente, tale comportamento non viene confermato dalle analisi di laboratorio sui campioni di terreno sottoposti a taglio diretto, dove il campione rimaneggiato di limo argilloso prelevato dal sondaggio SG002

Relazione geotecnica e sismica

Pag. 13 di 60

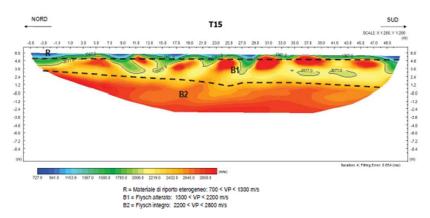

(codificato come CR2) presenta resistenze a taglio inferiori a tutti gli altri campioni analizzati in laboratorio, indice forse questo di una non reale rappresentatività del risultato.

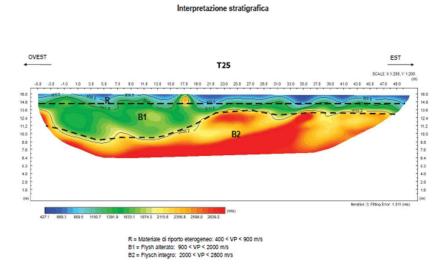
Per quanto riguarda il limo sabbioso identificato in colore ocra nel grafico precedente si osserva che lo stesso è stato intercettato solo lungo la verticale SG001 (alla profondità 16.90÷18.60 m). In base alle prove di laboratorio, tale materiale risulta meccanicamente più resistente rispetto alle altre tipologie di limo caratterizzanti il sito in esame.

Infine, si precisa che il limo sabbioso argilloso della verticale SG004 presenta un colore differente rispetto alle altre tipologie di limo, ovvero nocciola in luogo di grigio. In base ai risultati delle prove SPT, detta litologia presenta caratteristiche meccaniche non inferiori alle altre tipologie di limo.

NOTA 1

Il sito è stato oggetto di prospezioni geofisiche con le quali è possibile interpretare la stratigrafia del sito. Le stesse sono riportate per esteso nel capitolo delle prospezioni geofisiche. Differentemente, nel seguito si ripropongono quelle che sono state realizzate in prossimità dei sondaggi. Le tomografie considerate sono T007, T025 e T015 che sono correlate rispettivamente alle verticali d'indagine SG003, SG010 e SG014.


La tomografia sismica T07 risulta localizzata in prossimità del sondaggio SG003. Nella tomografia (zona di destra del grafico) il materiale di riporto ha uno spessore dell'ordine di 8.5, segue il deposito limoso-sabbioso con spessore di circa 4 m e inferiormente un materiale maggiormente addensato quale Flysch alterato. Dal sondaggio il materiale di riporto ha spessore di 8.30 m, segue il deposito di limo sabbioso-argilloso di spessore pari a 5.20 m e inferiormente il Flysch. I risultati delle due indagini risultano quindi confrontabili. Si evidenzia come la tomografia associ, al deposito limoso-sabbioso, una velocità delle onde P superiore a quella del riporto superficiale, indice probabilmente di un maggior addensamento o comunque di un maggior valore del modulo di deformazione.

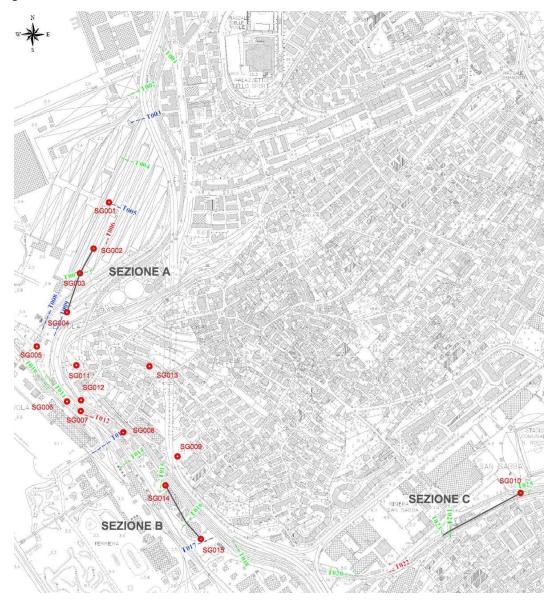

Relazione geotecnica e sismica

Pag. 14 di 60

Interpretazione stratigrafica

La tomografia sismica T15 risulta localizzata in prossimità del sondaggio SG014. Nella tomografia (zona centrale del grafico) il materiale di riporto ha uno spessore dell'ordine di 70 cm, segue il Flysch alterato con spessore di circa 3.5 m e inferiormente il Flysch integro. Dal sondaggio il materiale di riporto ha spessore di circa 80 cm, seguono il Flysch alterato di spessore 60 cm e quello integro. I risultati d'indagine sono tra loro confrontabili e per quanto riguarda la differenza di spessore del Flysch alterato si osserva che le due prove sono localizzate a poca distanza l'una dall'altra e probabilmente la quota del Flysch va aumentando verso est.

La tomografia sismica T25 risulta localizzata in prossimità del sondaggio SG010. Nella tomografia il materiale di riporto ha uno spessore dell'ordine di 1.50 m, segue il Flysch alterato con spessore variabile da 1 a 5 m e inferiormente il Flysch integro. Dal sondaggio il materiale di riporto ha spessore di circa 1.70 m al quale segue 1.0 m di terreno eluvio-colluviale, successivamente si trovano il Flysch alterato di spessore pari a circa 2. m e quello integro. I risultati d'indagine sono tra loro confrontabili a meno del terreno eluvio-colluviale che con la tomografia sismica non risulta ben identificabile.

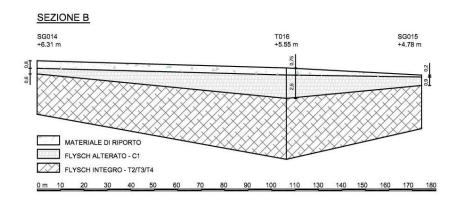

Relazione geotecnica e sismica

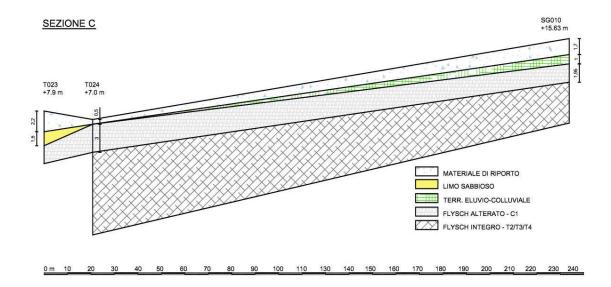
Pag. 15 di 60

4.1 Profili stratigrafici

Si riportano nel seguito la pianta con indicati i sondaggi e le indagini geognostiche effettuate, nonché tre sezioni semplificate per l'interpretazione dei profili stratigrafici nella zona di interesse, integrative rispetto quanto presente nei documenti di riferimento.

Si rimanda alle relazioni generali 1GNR_P_R_C-GEO_1GE_001_02_01 e 1GNR_P_R_C-GEO_1GE_002_02_00 per maggiori dettagli e commenti su risultati delle indagini e sui profili stratigrafici.




Si precisa che per le sezioni B e C le litologie di Flysch T3/T4 e T2 sono state accorpate perché le indagini tomografiche non permettono di individuare in modo univoco le due tipologie di materiale. Si omette la sezione A, relativa ad una zona non interessata da opere strutturali e geotecniche per la viabilità stradale.

Relazione geotecnica e sismica

Pag. 16 di 60

4.2 Standard penetration test (spt)

Si riportano in tabella i risultati delle prove SPT. Nella stessa si raggruppano le prove SPT secondo le seguenti litologie:

- Materiale antropico di riporto → colore azzurro
- Limo sabbioso argilloso → colore sabbia
- Limo argilloso → colore arancione
- Flysch marnoso arenaceo alterato (Complesso C1) → colore grigio chiaro
- Flysch tipo T2/T3/T4 → colore grigio scuro
- Terreni eluvio-colluviali → colore verde

Relazione geotecnica e sismica

Pag. 17 di 60

Sondaggio	SPT	Quota (m dal p.c.)	N di colpi (N ₁ /N ₂ /N ₃)	Napr	N _{SFT} .	N_{63}	$(N_I)_{ij}$
	1	+1.50 ++1.95	2/4/2	6	- 5	3	6
	2	- 3.00 = - 3.45	3/3/3	6	5	- 3	- 5
	3	-4.50 4.95	3/6/7	13	10	9	11
SG001	4	- 6.00 + - 6.45	5/11/11	22	18	16	19
9.000000	4	-7.50 = -7.54	R	1	1	1	1
	6	-17.00 = - 17.45	7/12/19	31	25	24	19
	-7	- 18.50 = - 18.95	13/19/24	43	34	33	25
	1	-3.00 = -3.45	4/7/13	20	16	12	16
	2	- 4.50 = - 4.95	5/5/9	14	11	9	12
SG002	3	- 6.00 + - 6.45	6/8/10	18	14	13	15
	4	-7.50 = - 7.95	2/2/3	5	4	4	4
1	5	-17.00 = - 17.45	4/8/14	22	18	17	14
	1	-1.50 1.84	R	1	1	7.	1
	2	- 3.00 + - 3.05	R	1.1	1	1	1
0.004033935	3	- 4.50 = - 4.95	4/4/22	26	21	17	20
SG003	4	- 6.00 = - 6.24	R	1	10	1	
SOMEONESS.	5	-750 = -795	3/5/6	11	0	8	8
1	6	- 14.00 = - 14.41	R	. /	1	1:	1
	7	-15.50 = -15.56	R	11	1	7	12
1	1	-1.50 + - 1.95	6/69	15	12	9	15
SG004	2	- 3.00 = - 3.45	10/16/8	24	19	14	19
	:3	-4.50 + - 4.61	R	170	W	15	37
	1	-1.50 = -1.70	R	7	1	1	J
SG005	2	-3.00 + - 3.45	24/29/27	56	45	33	43
	- 3	-4.50 = -4.56	R	1	1/	7	1
SG006	1	-1.50 = -1.69	R	. /	1	1	1
22212	1	-1.50 = -1.70	R	- 7	1	1	1
SG007	2	-3.00 +-3.11	R	1	10	1	
00000	1	-1.50 = -1.95	20/24/31	55	44	32	70
SG008	2	- 3.20 = - 3.39	R	1	1	1	17
00000	1	-1.50 = -1.72	R	1	11.	\mathcal{L}	12
SG009	2	-3.00 = -3.08	R	1	11	T.	7.7
*****	1	-1.50 = -1.95	4/4/4	8	6	5	8
SG010	2	- 2.70 + - 3.15	14/18/17	35	28	20	27

*valore normalizzato a N_{M2} punta aperta mediante moltoplicazione per il coefficiente 0,8

I valori misurati sono in linea con le caratteristiche dei terreni indagati e nello specifico si osserva una maggiore variabilità del materiale antropico di riporto che si esplica in più casi con l'impossibilità di proseguire la prova, probabilmente a causa di elementi di maggiore pezzatura che determinano il "rifiuto" d'infissione dello strumento.

Le litologie con materiali a granulometria medio-fine (limi) forniscono valori (N1)₆₀ compresi tra 14 e 19 ad esclusione della prova n.5 della verticale SG002 che fornisce un valore relativamente basso (pari a 4) indicatore di un materiale meccanicamente meno resistente rispetto a quello intercettato con le altre prove SPT. Lo stesso valore risulta misurato all'interno dello strato di limo sabbioso argilloso per il quale, si precisa, sono state effettuate anche n.4 prove di laboratorio su campioni indisturbati. Le stesse sono considerate maggiormente significative perché permettono di indagare in modo maggiormente preciso le caratteristiche meccanica del materiale rispetto alle prove SPT.

Relazione geotecnica e sismica

Pag. 18 di 60

I materiali flyschoidi forniscono resistenze maggiori alla penetrazione e in molti casi con l'impossibilità di proseguire la prova SPT per "rifiuto" del penetrometro.

Infine, l'unica prova eseguita sui terreni di tipo eluvio-colluviali ha fornito un numero di colpi costanti (pari a 4) ai quali corrisponde un coefficiente (N1)60 pari a 8.

4.2.1 Analisi delle misure SPT

In letteratura sono molteplici le formulazioni che permettono di ricavare i parametri meccanici del terreno da prove SPT e nel caso in esame sono state utilizzate quelle che utilizzano come dato di input solo il numero di colpi (non anche lo stato tensionale efficace del terreno) perché per le verticali d'indagine SPT non è nota la posizione della falda.

Il peso di volume è determinato mediante la formulazione di Bruschi (2005), riportata nel libro "Prove geotecniche in situ – Guida alla stima delle proprietà geotecniche e alla loro applicazione alle fondazioni", A. Bruschi, 2010, ISBN 978-579-0045-2, che risulta valida per numero di colpi normalizzati N₆₀ compresi tra 1 e 20:

 \rightarrow Peso di volume, γ (Bruschi, 2005) = 0.0011N₆₀³-0.0528N₆₀²+0.9464N₆₀+12.855 con N₆₀ = 1÷20

L'angolo di attrito è determinato mediante le seguenti tre formulazioni:

- \rightarrow Angolo d'attrito, ϕ' (Shioi e Fukuni, 1982) = 15+(15*N_{SPT})^{0.5}
- \rightarrow Angolo d'attrito, ϕ' (Shioi e Fukuni, 1982) = 27+0.3*N_{SPT}
- \rightarrow Angolo d'attrito, ϕ' (Hatanaka e Uchida, 1996) = 20+(15.4*N₁₍₆₀₎)^{0.5}

Si precisa che il peso di volume è determinato mediante l'analisi dei valori SPT per il materiale antropico di riporto e per il terreno eluvio-colluviali, che risultano rispettivamente pari a 18 e a 16 kN/mc, come riportato nel seguito.

Differentemente, il peso di volume dei materiali a granulometria medio-fine è stato tenuto quello ricavato mediante le prove di laboratorio.

Peso di volume mat. antropico,

 γ (Bruschi, 2005) = 0.0011*10³-0.0528*10²+0.9464*10+12.855 = 18 kN/mc

Peso di volume terr. eluvio-coll.,

 γ (Bruschi, 2005) = 0.0011*5³-0.0528*5²+0.9464*5+12.855 = 16 kN/mc

Si riportano nella tabella seguente la valutazione dell'angolo di attrito da prove SPT per le verticali indagate evidenziando con gli stessi colori indicati in precedenza le differenti unità litologiche.

Nello specifico si osserva che i materiali antropici di riporto sono caratterizzati da un valore medio dell'angolo di attrito di 31÷32°. Valori inferiori sono riscontrabili fino alla profondità di 3.5 m lungo la verticale d'indagine SG001, variabili da 24.5 a 29.6°. Valori superiori al valore medio sono riscontrabili per la stessa profondità lungo la verticale d'indagine SG005 (che a favore di sicurezza sono trascurati nella definizione del modello geotecnico).

Relazione geotecnica e sismica

Pag. 19 di 60

I materiali a granulometria medio-fine (limi) forniscono valori dell'angolo d'attrito compresi tra circa 24 e 37° con valore medio compreso tra 32 e 33°. I valori più bassi si riscontrano lungo la verticale d'indagine SG002 alla profondità di 7.50÷7.95 m, variabili da 23.7 a 27.8°

Il terreno eluvio-colluviale risulta caratterizzato, per l'unica prova effettuata, da un angolo d'attrito mediamente pari a 28÷29°. Considerate le resistenze e visivamente il materiale del terreno estratto, tale tipologia di materiale viene definita come materiale di riporto.

Il Flysch marnoso arenaceo alterato (Complesso C1) presenta angoli d'attrito relativamente elevati con un minimo di 39.6° a un massimo di 52.8°, il valore medio si attesta attorno a 43°. Gli stessi sono valori fittizi in quanto sono il risultato anche della coesione del materiale oltre al fatto che non è certo che le formulazioni utilizzate siano applicabili a tali tipologie di materiali.

Infine, per il Flysch tipo T2, T3 e T4 non sono disponibili dati per rifiuto alla penetrazione. Lo strato è considerato come substrato rigido con alta resistenza meccanica.

Verticale:	SG001							
Prova SPT	Profon	dità [m]	N _{SPT}	N ₆₀	N		φ' [°]	
riova sri	da	a	INSPT	IN 60	N ₁₍₆₀₎	Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
L	1,50	1,95	6	3	6	24,5	28,8	29,6
2	3,00	3,45	6	3	5	24,5	28,8	28,8
3	4,50	4,95	13	9	11	29,0	30,9	33,0
1	6,00	6,45	22	16	19	33,2	33,6	37,1
5	7,50	7,54	R	R	R			
5	17,00	17,45	31	24	19	36,6	36,3	37,1
7	18,50	18,95	43	33	25	40,4	39,9	39,6
/erticale:	SG002							
Prova SPT	Profon	dità [m]	N.	NI NI	N		φ' [°]	
riova se i	da	a	N _{SPT}	N ₆₀	N ₁₍₆₀₎	Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
L	3,00	3,45	20	12	16	32,3	33	35,7
2	4,50	4,95	14	9	12	29,5	31,2	33,6
3	6,00	6,45	18	13	15	31,4	32,4	35,2
1	7,50	7,95	5	4	4	23,7	28,5	27,8
;	17,00	17,45	22	27	14	33,2	33,6	34,7

Verticale:	SG003							
Prova SPT	Profon	dità [m]	N	N.	N.		φ' [°]	
Prova SP1	da	а	N _{SPT}	N ₆₀	N ₁₍₆₀₎	Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
1	1,50	1,84	R	R	R			
2	3,00	3,05	R	R	R			
3	4,50	4,95	26	17	20	34,7	34,8	37,5
4	6,00	6,24	R	R	R			
5	7,50	7,95	11	8	8	27,8	30,3	31,1
6	14,00	14,41	R	R	R			
7	15,50	15,56	R	R	R			
Verticale:	SG004						150	
		dità [m]	N _{SPT}	N ₆₀	N ₁₍₆₀₎		φ' [°]	
	da	а				Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
1	1,50	1,95	15	9	15	30,0	31,5	35,2
2	3,00	3,45	24	14	19	34,0	34,2	37,1
3	4,50	4,61	R	R	R			
Verticale:	SG005							
	Profon	dità [m]					φ' [°]	
Prova SPT	da	a	N _{SPT}	N ₆₀	N ₁₍₆₀₎	Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
1	1,50	1,70	R	R	R	, , , , , , , , , , , , , , , , , , , ,		
2	3,00	3,45	56	33	43	44,0	43,8	45,7
3	4,50	4,56	R	R	R	.,,-	.5,2	,.
Verticale:	SG008						Lim	
Prova SPT		dità [m]	N _{SPT}	N ₆₀	N ₁₍₆₀₎		φ'[°]	
	da	а				Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
1	1,50	1,95	55	32	70	43,7	43,5	52,8
2	3,20	3,39	R	R	R			
Verticale:	SG010							
	Profon	dità [m]					φ'[°]	
Prova SPT	da	a	N _{SPT}	N ₆₀	N ₁₍₆₀₎	Shioi e Fukuni 1, 1982	Shioi e Fukuni 2, 1983	Hatanaka e Uchida, 1996
1	1,50	1,95	8	5	8	26,0	29,4	31,1

Relazione geotecnica e sismica

Pag. 20 di 60

4.3 Analisi di laboratorio

I campioni sono stati prelevati con campionatore a pareti sottili tipo Shelby, infissi a velocità e a pressione costante, utilizzati in relazione alla litologia presente al fine di mantenerne la struttura, la consistenza, il grado di addensamento e l'umidità propria dei terreni attraversati. Si riportano in tabella la codifica dei campioni prelevati, la tipologia di campione e la profondità di prelievo, riferendosi per mera completezza ai risultati dell'intera campagna, senza distinzione se la zona è interessata o meno da opere di tipo stradale.

Sondaggio	Campione	Tipologia	Profondità di prelievo (m dal p.c.)
	CR1	Rimaneggiato	da - 6.0 a - 6.5
	CII	Indisturbato	da - 9.5 a - 10.2
	CI2	Indisturbato	da - 12.5 a - 13.2
SG001	CI3	Indisturbato	da - 14.0 a - 14.7
	CI4	Indisturbato	da - 15.5 a - 16.2
	CR2	Rimaneggiato	da - 18.0 a -18.5
	CR1	Rimaneggiato	da - 5.5 a - 6.0
	CII	Indisturbato	da - 9.5 a - 10.2
SG002	CI2	Indisturbato	da - 11.0 a - 11.7
SG002	CI3	Indisturbato	da - 12.5 a - 13.2
	CI4	Indisturbato	da - 14.0 a - 14.7
	CR2	Rimaneggiato	da - 17.0 a - 17.5
	CR1	Rimaneggiato	da - 5.5 a - 6.0
55003	CII	Indisturbato	da - 9.0 a - 9.7
SG003	CI2	Indisturbato	da - 10.5 a - 11.2
	CI3	Indisturbato	da - 12.5 a - 13.2

4.3.1 Risultati delle analisi di laboratorio

Si riportano a seguire i risultati maggiormente significative delle prove di laboratorio. In generale si osserva, in base agli indici di Atterberg, che il materiale a granulometria medio-fine (limo) risulta caratterizzato da una matrice poco consistente implicabile, probabilmente, alla sedimentazione in ambiente marino. In base all'indice di consistenza il materiale è classificabile come "fluido-plastico", "molle-plastico" e, in alcuni casi, "fluido". Quest'ultimi casi risultano caratterizzati da un contenuto d'acqua superiore al limite liquido.

In base alle foto dei carotaggi e dei campioni prelevati non si osserva un materiale fluido e/o molle e si ritiene che il comportamento osservato (contenuto d'acqua maggiore del limite liquido) sia implicabile all'immissione accidentale d'acqua durante il carotaggio e/o il campionamento. Si riportano nelle tabelle i dati esposti.

Verticale d'indagine e campione	Profondità [m]	Indice di consistentenza	Tipo di terreno
SG01 - CI1	9,5 ÷ 10,2	-0,7	FLUIDO
SG01 - CI2	12,5 ÷ 13,2	0,3	MOLLE-PLASTICO
SG01 - CI3	14 ÷ 14,7	-1,9	FLUIDO
SG01 - CI4	15,5 ÷ 16,2	0,9	SOLIDO-PLASTICO
SG02 - CI1	9,5 ÷ 10,2	0	FLUIDO
SG02 - CI2	11 ÷ 11,7	0,1	FLUIDO-PLASTICO
SG02 - CI3	12,5 ÷ 13,2	-0,7	FLUIDO
SG02 - CI4	14 ÷ 14,7	0,4	MOLLE-PLASTICO
SG03 - CI1	9 ÷ 9,7	0,2	FLUIDO-PLASTICO
SG03 - CI2	10,5 ÷ 11,2	0,4	MOLLE-PLASTICO
SG03 - CI3	12,5 ÷ 13,2	-0,6	FLUIDO

Relazione geotecnica e sismica

Pag. 21 di 60

Verticale d'indagine e campione	Profondità [m]	Contenuto d'acqua medio [%]	Limite liquido [%]	Nota
SG01 - CI1	9,5 ÷ 10,2	30,5	28	MAGGIORE
SG01 - CI2	12,5 ÷ 13,2	31,9	37	MINORE
SG01 - CI3	14 ÷ 14,7	30	24	MAGGIORE
SG01 - CI4	15,5 ÷ 16,2	24,4	44	MINORE
SG02 - CI1	9,5 ÷ 10,2	28,8	29	MINORE
SG02 - CI2	11 ÷ 11,7	28,4	29	MINORE
SG02 - CI3	12,5 ÷ 13,2	27,3	25	MAGGIORE
SG02 - CI4	14 ÷ 14,7	32	36	MINORE
SG03 - CI1	9 ÷ 9,7	29,2	31	MINORE
SG03 - CI2	10,5 ÷ 11,2	32,3	38	MINORE
SG03 - CI3	125÷132	28.5	26	MAGGIORE

Per quanto riguarda i campioni di materiale a granulometria medio-fine (limi), le prove a taglio diretto condotte sui campioni indisturbati hanno fornito angoli d'attrito efficaci compresi tra 29 e 32° con matrice a comportamento coesivo di tipo efficace di valore minimo pari a 20 kPa. In questo caso le resistenze risultano in linea con l'interpretazione dei risultati delle prove SPT.

Inoltre, le prove a taglio diretto sui campioni rimaneggiati hanno fornito resistenze sia maggiori (SG001-CR2 \rightarrow ϕ '=33.7° e c'=38 kPa) che inferiori (SG002-CR2 \rightarrow ϕ '=25.9° e c'=17 kPa) rispetto a quelle sui campioni indisturbati. Si osserva che quest'ultimo valore non è in linea sia con le misure di resistenza alla penetrazione e a taglio effettuate con il Pocket Penetrometer e con il Pocket Vane direttamente sulla carota estratta che con l'interpretazione dei risultati delle prove SPT che indicano un materiale maggiormente resistente. Per questo motivo la prova SG002-CR2 è non utilizzata ai fini della definizione del modello geologico.

Infine, la prova a taglio diretto effettuata sul campione rimeggiato di materiale di riporto ha fornito resistenze in linea con l'interpretazione dei risultati delle prove SPT: SG001-CR1 \rightarrow ϕ '=31° e c'=68 kPa

Si riportano nelle tabelle seguenti la sintesi dei risultati di laboratorio sui provini di terreno.

io re		Analisi granulometrica				Limiti di Atterberg		Prova di taglio diretto		
Sondaggio	Campione	Profondità (m dal p.c.)	Ghiaia	Sabbia	Limo	Argilla	LL	LP	φ'	c'
So	C		(%)	(%)	(%)	(%)	(%)	(%)	(°)	(kN/m²)
SG001	CR1	da - 6.0 a - 6.5	40.1	17.1	32.8	10	35	21	31	68
SG001	CR2	da - 18.0 a - 18.5	36.7	29.1	27.7	6.5	29	19	33.7	38
SG002	CR1	da - 5.5 a - 6.0	50.2	16	27.1	6.7	34	21		
SG002	CR2	da - 17.0 a - 17.5	50.2	16	27.1	6.7	37	24	25.9	17
SG003	CR1	da - 5.5 a - 6.0	29.9	19	41.4	9.7	35	25		

Sio	ne	Profondità	Aı	nalisi gran	nulometr	ica		Limi	ti di At	terberg	1
Sondaggio	Campione	(m dal p.c.)	Ghiaia (%)	Sabbia (%)	Limo (%)	Argilla (%)	LL (%)	LP (%)	IP (%)	IC (-)	IL (-)
SG001	CI1	da - 9.5 a - 10.2	0.0	21.5	70.4	8.1	28	24	4	-0.7	1.7
SG001	CI2	da - 12.5 a - 13.2	0.0	4.1	53.9	42.0	37	19	18	0.3	0.7
SG001	CI3	da - 14.0 a - 14.7	0.1	24.4	63.9	11.6	24	21	3	-1.9	2.9
SG001	CI4	da - 15.5 a - 16.2	1.4	11.3	46.9	40.4	44	22	22	0.9	0.1
SG002	CI1	da - 9.5 a - 10.2	0.0	24.8	65.5	9.7	29	22	7	0.0	1.0
SG002	CI2	da - 11.0 a - 11.7	0.5	31.0	59.6	8.9	29	22	7	0.1	0.9
SG002	CI3	da - 12.5 a - 13.2	0.0	32.2	57.3	10.5	25	22	3	-0.7	1.7
SG002	CI4	da - 14.0 a - 14.7	0.0	7.9	60.7	31.4	36	27	9	0.4	0.6
SG003	CI1	da - 9.0 a - 9.7	0.0	16.3	65.8	17.9	31	22	9	0.2	0.8
SG003	CI2	da - 10.5 a - 11.2	0.2	21.1	59.2	19.5	38	23	15	0.4	0.6
SG003	CI3	da - 12.5 a - 13.2	1.9	27.9	57.9	12.3	26	21	5	-0.6	1.6

Sondaggio	Campione	Profondità (m dal p.c.)	H' (%)	7 (kN/m³)	G: (-)	M _{ed} (MPa)	Cv (cm²/min)	k (m/s)	9 '	c' (kN/m²)
SG001	CI1	da - 9.5 a - 10.2	30.5	18.29	2.69	8	0,0215	4.37x10 ⁻¹¹	30.5	20
SG001	CI2	da - 12.5 a - 13.2	31.9	18.68	2.73	3.7	0,0282	1.26x10 ⁻¹⁰		
SG001	CI3	da - 14.0 a - 14.7	30.0	18.92	2.70	6.1	0,0287	7.66x10 ⁻¹¹		
SG001	CI4	da - 15.5 a - 16.2	24.2	19.82	2.74	4.3	0,0680	2.57x10 ⁻¹⁰		
SG002	CII	da - 9.5 a - 10.2	28.8	18.39	2.67	5.6	0,0246	7.13x10 ⁻¹¹	32.3	34
SG002	CI2	da - 11.0 a - 11.7	28.4	19.04	2.68	6.6	0,0363	8.97x10 ⁻¹¹		
SG002	CI3	da - 12.5 a - 13.2	27.3	18.90	2.66	12.7	0,0189	2.44x10 ⁻¹¹		
SG002	CI4	da - 14.0 a - 14.7	32.0	18.44	2.68	4.5	0,0343	1.25x10 ⁻¹⁰		
SG003	CII	da - 9.0 a - 9.7	29.2	18.82	2.70	4.4	0,0676	2.52x10 ⁻¹⁰	29.1	34
SG003	CI2	da - 10.5 a - 11.2	32.3	18.59	2.69	4.3	0,0601	2.29x10 ⁻¹⁰		
SG003	CI3	da - 12.5 a - 13.2	28.5	18.81	2.72	3.9	0,0399	1.67x10 ⁻¹⁰		

4.3.1.1 Verticale SG001

Campione CR1 (rimaneggiato) - SG001-Profondità 6.0÷6.5 m

Il campione è stato prelevato all'interno della litologia "materiali antropici di riporto" e risulta classificata come:

GHIAIA CON LIMO SABBIOSA LEGGERMENTE ARGILLOSA (clsasiGr)

- Ghiaia = 40.1 %
- Sabbia = 17.1 %
- Limo = 32.8 %
- Argilla = 10.0 %

Inoltre:

- Peso specifico dei grani medio = 2.66 (-)
- Limite liquido = 35%
- Limite plastico = 21%

La prova a taglio diretto ha fornito (valore di picco):

- Angolo di resistenza a taglio = 31°
- Coesione intercetta = 68 kPa

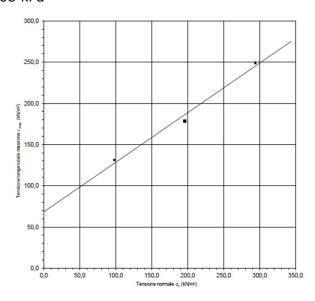


Figura 4-1: Verticale SG001 - Campione CR1 - Prova a taglio diretto

Campione CI1 (indisturbato) - SG001-Profondità 9.5÷10.2 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

LIMO SABBIOSO DEBOLMENTE ARGILLOSO (clsaSi)

- Sabbia = 25.1 %
- Limo = 70.4 %

Relazione geotecnica e sismica

Pag. 23 di 60

Argilla = 8.1 %Inoltre:

w _m	Contenuto d'acqua percentuale medio	30,5	(%)
	Misura del peso dell'unità di	volume - UNI CEN ISO TS 1789	2-2
γ_{m}	Peso di volume apparente medio	18,29	(kN/m³)
	Misura del peso specifico de	i grani - UNI CEN ISO TS 17892	:-3
S ₈ medio	Peso specifico dei grani medio	2,69	(-)
	Param	etri correlati	
e ₀	Indice dei vuoti	0,881	(-)
n	Porosità	46,8	(%)
Sr	Grado di saturazione	93,0	(%)
γ_{d}	Peso di volume secco	14,02	(kN/m ³)
	Limiti di Atterberg -	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	28	(%)
LP	Limite di plasticità	24	(%)
IP	Indice di pasticità	4	(%)
IC	Indice di consistenza	-0,7	(-)
IL	Indice di liquidità	1,7	(-)
LR	Limite di ritiro	2	(%)

La prova a taglio diretto ha fornito (valore di picco):

- Angolo di resistenza a taglio = 30.5°
- Coesione intercetta = 20 kPa

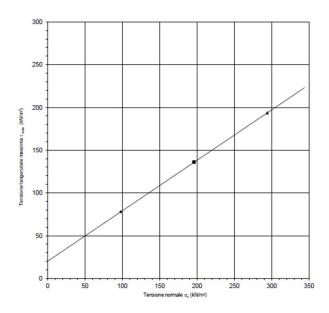
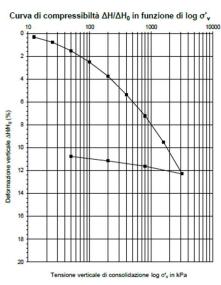
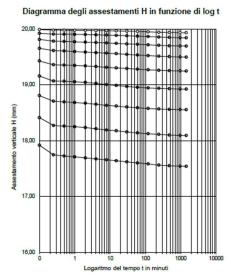


Figura 4-2: Verticale SG001 - Campione CI1 - Prova a taglio diretto.

Relazione geotecnica e sismica


Pag. 24 di 60


Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG001
Campione:	CI1
Profondità:	9,5 ÷ 10,2

Misura	1	2	3	4	5	6	Media
Pocket Penetrometer [kPa]	100	130	150	110	110	90	115
Pocket Vane [kPa]	40	30					35

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Intervallo di carico (kPa)	Coeff. consolid." C _v	Coeff. compress. m _y	Coeff. permeabilità K
	(cm ² /min)	(MPa ⁻¹)	(m/sec)
0 - 12,5 kPa	0,0050	0,264	2,15E-11
12,5 - 25 kPa	0,0072	0,364	4,25E-11
25 - 50 kPa	0,0122	0,298	5,95E-11
50 - 100 kPa	0,0177	0,198	5,71E-11
100 - 200 kPa	0,0215	0,125	4,37E-11
200 - 400 kPa	0,0295	0,081	3,90E-11
400 - 800 kPa	0,0294	0,046	2,22E-11
800 - 1600 kPa	0,0250	0,029	1,18E-12T
1600 - 3200 kPa	0,0149	0,017	400E/12

Campione CI2 (indisturbato) - SG001-Profondità 12.5÷13.2 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

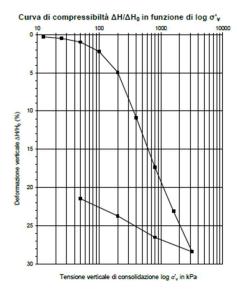
LIMO CON ARGILLA (clSi)

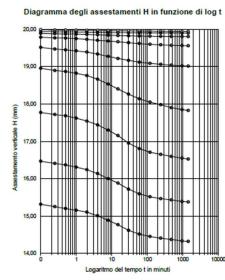
- Sabbia = 4.1 %
- Limo = 53.9 %
- Argilla = 42.0 %

Relazione geotecnica e sismica

Pag. 25 di 60

Inoltre:


	Determinazione del conte	nuto d'acqua - UNI CEN ISO TS 17892-1	
w _m	Contenuto d'acqua percentuale medio	31,9	(%)
	Misura del peso dell'unit	tà di volume - UNI CEN ISO TS 17892-2	
γ_{m}	Peso di volume apparente medio	18,68	(kN/m³)
	Misura del peso specifi	co dei grani - UNI CEN ISO TS 17892-3	
G _c medio	Peso specifico dei grani medio	2,73	(-)
	Pi	arametri correlati	
e ₀	Indice dei vuoti	0,892	(-)
n	Porosità	47,1	(%)
Sr	Grado di saturazione	97,8	(%)
Υd	Peso di volume secco	14,15	(kN/m ³)
	Limiti di Atterber	g - UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	37	(%)
LP	Limite di plasticità	19	(%)
IP	Indice di pasticità	18	(%)
IC	Indice di consistenza	0,3	(-)
IL	Indice di liquidità	0,7	(-)
LR	Limite di ritiro	Ţ	(%)
R	Coefficiente di ritiro		00.


Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG001
Campione:	CI2
Profondità:	12,5 ÷ 13,2

Misura	1	2	3	4	5	6	Media
Pocket Penetrometer [kPa]	120	160	120	100	110	110	120
Pocket Vane [kPa]	40	30					35

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

Pag. 26 di 60

Intervallo di carico (kPa)	Coeff. consolid.* C _v (cm ² /min)	Coeff. compress. m _v (MPa ⁻¹)	Coeff. permeabilità K (m/sec)
0 - 12,5 kPa	0,0199	0,244	7,92E-11
12,5 - 25 kPa	0,0685	0,164	1,83E-10
25 - 50 kPa	0,0433	0,192	1,36E-10
50 - 100 kPa	0,0293	0,245	1,17E-10
100 - 200 kPa	0,0282	0,273	1,26E-10
200 - 400 kPa	0,0174	0,296	8,41E-11
400 - 800 kPa	0,0160	0,163	126E-11
800 - 1600 kPa	0,0158	0,072	a Paris
1600 - 3200 kPa	0,0141	0,033	O 7,60E/12

Campione CI3 (indisturbato) - SG001-Profondità 14.0÷14.7 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

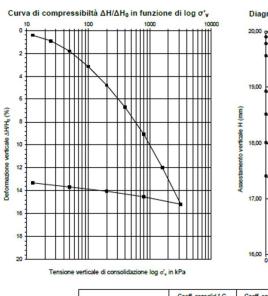
LIMO SABBIOSO DEBOLMENTE ARGILLOSO (clsaSi)

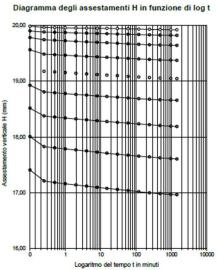
- Ghiaia = 0.1 %
- Sabbia = 24.4 %
- Limo = 63.9 %
- Argilla = 11.6 %

Inoltre:

Wm	Contenuto d'acqua percentuale medio	30,0	(%)
	Misura del neso dell'unità di	volume - UNI CEN ISO TS 1789;	2.2
γ _m	Peso di volume apparente medio	18,92	(kN/m³)
	Misura del peso specifico de	ei grani - UNI CEN ISO TS 17892	-3
6 medio	Peso specifico dei grani medio	2,70	(-)
			•
	Param	etri correlati	
e ₀	Indice dei vuoti	0,822	(-)
n	Porosità	45,1	(%)
Sr	Grado di saturazione	98,7	(%)
γ _d	Peso di volume secco	14,55	(kN/m³)
	10 m 10 m 10 m	Althoracy and the said of the said of	·
	Limiti di Atterberg	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	24	(%)
LP	Limite di plasticità	21	(%)
IP	Indice di pasticità	3	(%)
IC	Indice di consistenza	-1,9	(-)
IL	Indice di liquidità	2,9	(-)
LR	Limite di ritiro	-	(%)

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.


Relazione geotecnica e sismica


Pag. 27 di 60

Verticale:	SG001
Campione:	CI3
Profondità:	14,0 ÷ 14,7

Misura	1	2	3	4	5	6	Media
Pocket Penetrometer [kPa]	160	170	120	130	110	110	133
Pocket Vane [kPa]	20	20					20

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Intervallo di carico (kPa)	Coeff. consolid.* C _v (cm ² /min)	Coeff. compress. m _v (MPa ⁻¹)	Coeff. permeabilità K (m/sec)
0 - 12,5 kPa			
12,5 - 25 kPa	0,0238	0,400	1,55E-10
25 - 50 kPa	0,0291	0,358	1,70E-10
50 - 100 kPa	0,0267	0,268	1,17E-10
100 - 200 kPa	0,0287	0,163	7,66E-11
200 - 400 kPa	0,0281	0,097	4,45E-11
400 - 800 kPa	0,0293	0,059	2.84E-13 D
800 - 1600 kPa /	0 0265	0,036	asien
1600 - 3200 kPa	0 0204	0,020	O6,66E-12

Campione CI4 (indisturbato) - SG001-Profondità 15.5÷16.2 m

Il campione è stato prelevato all'interno delle litologie "limo sabbioso argilloso – limo argilloso" e risulta classificata come:

LIMO CON ARGILLA DEBOLMENTE SABBIOSO (saclSi)

- Ghiaia = 1.4 %
- Sabbia = 11.3 %
- Limo = 46.9 %
- Argilla = 40.4 %

Inoltre:

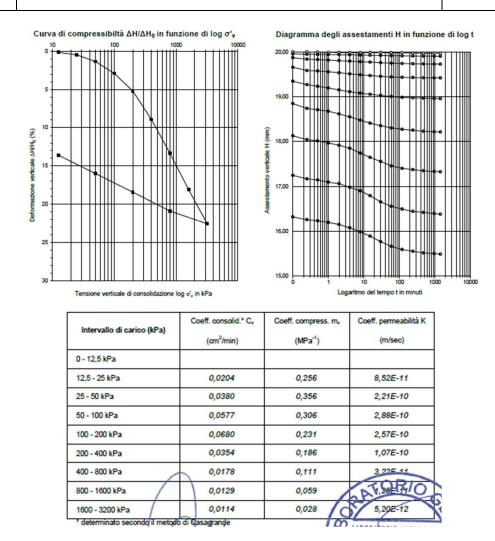
Relazione geotecnica e sismica

Pag. 28 di 60

Wm	Contenuto d'acqua percentuale medio	24,2	(%)
	Misura del peso dell'unità di	volume - UNI CEN ISO TS 1789	2-2
γ _m	Peso di volume apparente medio	19,82	(kN/m³)
	Misura del peso specifico de	ei grani - UNI CEN ISO TS 17892	:-3
_s medio	Peso specifico dei grani medio	2,74	(-)
	Param	etri correlati	
e ₀	Indice dei vuoti	0,682	(-)
n,	Porosità	40,6	(%)
Sr	Grado di saturazione	97,1	(%)
Ϋ́d	Peso di volume secco	15,96	(kN/m³)
	Limiti di Atterberg	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	44	(%)
LP	Limite di plasticità	22	(%)
IP	Indice di pasticità	22	(%)
IC	Indice di consistenza	0,9	(-)
IL	Indice di liquidità	0,1	(-)
	Limite di ritiro	2	(%)
LR			

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG001
Campione:	CI4
Profondità:	15,5 ÷ 16,2


Misura	1	2	3	4	5	6	7	Media
Pocket Penetrometer [kPa]	150	170	220	290	290	320	240	240
Pocket Vane [kPa]	60	120	120					100

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

Pag. 29 di 60

Campione CR2 (rimaneggiato) - SG001-Profondità 18.0÷18.5 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

GHIAIA CON LIMO E SABBIA DEBOLMENTE ARGILLOSA (clsasiGr)

- Ghiaia = 36.7 %
- Sabbia = 29.1 %
- Limo = 27.7 %
- Argilla = 6.5 %

Inoltre:

- Peso specifico dei grani medio = 2.76 (-)
- Limite liquido = 29%
- Limite plastico = 19%

La prova a taglio diretto ha fornito (valore di picco):

Angolo di resistenza a taglio = 33.7°

Relazione geotecnica e sismica

Pag. 30 di 60

Coesione intercetta = 38 kPa

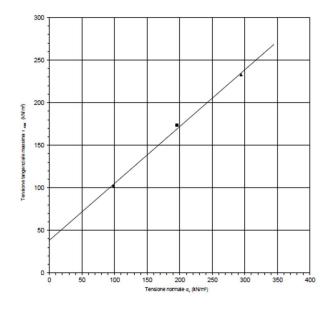


Figura 4-3: Verticale SG001 - Campione CR2 - Prova a taglio diretto.

4.3.1.2 Verticale SG002

Campione CR1 (rimaneggiato) - SG002-Profondità 5.5 ÷ 6.0 m

Il campione è stato prelevato all'interno della litologia "materiali antropici di riporto" e risulta classificata come:

GHIAIA CON LIMO SABBIOSA LEGERMENTE ARGILLOSA (clsasiGr)

- Ghiaia = 50.2 %
- Sabbia = 16.0 %
- Limo = 27.1 %
- Argilla = 6.7 %

Inoltre:

- Peso specifico dei grani medio = 2.78 (-)
- Limite liquido = 34%
- Limite plastico = 21%

Campione CI1 (indisturbato) - SG002-Profondità 9.5÷10.2 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

LIMO SABBIOSO DEBOLMENTE ARGILLOSO (clsaSi)

- Sabbia = 24.8 %
- Limo = 65.5 %
- Argilla = 9.7 %

Inoltre:

Relazione geotecnica e sismica

Pag. 31 di 60

W _m	Contenuto d'acqua percentuale medio	28,8	(%)
	Misura del peso dell'unità di	volume - UNI CEN ISO TS 1789.	2-2
Υm	Peso di volume apparente medio	18,39	(kN/m³)
	Misura del peso specifico de	ei grani - UNI CEN ISO TS 17892	-3
e medio	Peso specifico dei grani medio	2,67	(-)
	Param	etri correlati	
e ₀	Indice dei vuoti	0,837	(-)
n	Porosità	45,6	(%)
Sr	Grado di saturazione	92,2	(%)
γ_{d}	Peso di volume secco	14,27	(kN/m ³)
	Limiti di Atterberg	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	29	(%)
LP	Limite di plasticità	22	(%)
IP	Indice di pasticità	7	(%)
IC	Indice di consistenza	0,0	(-)
IL	Indice di liquidità	1,0	(-)
LR	Limite di ritiro	-1	(%)
R	Coefficiente di ritiro		TORIO"

La prova a taglio diretto ha fornito (valore di picco):

- Angolo di resistenza a taglio = 32.3°
- Coesione intercetta = 34 kPa

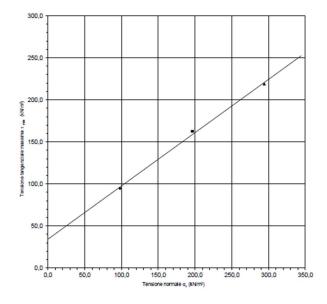
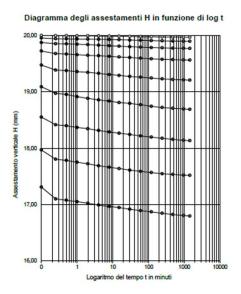


Figura 4-4: Verticale SG002 - Campione CI1 - Prova a taglio diretto.

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Relazione geotecnica e sismica


Pag. 32 di 60

Verticale:	SG002
Campione:	CI1
Profondità:	9,5 ÷ 10,2

Misura	1	2	3	4	5	6	Media
Pocket Penetrometer [kPa]	170	240	160	150	290	290	217
Pocket Vane [kPa]	45	50					48

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Intervallo di carico (kPa)	Coeff. consolid.* C _v	Coeff. compress. m _v	Coeff. permeabilità K	
	(cm²/min)	(MPa ⁻¹)	(m/sec)	
0 - 12,5 kPa	0,0074	0,136	1,65E-11	
12,5 - 25 kPa	0,0101	0,288	4,75E-11	
25 - 50 kPa	0,0300	0,254	1,24E-10	
50 - 100 kPa	0,0205	0,206	6,91E-11	
100 - 200 kPa	0,0246	0,177	7,13E-11	
200 - 400 kPa	0,0377	0,130	7,97E-11	
400 - 800 kPa	0,0341	0,069	2,002-11	
800 - 1600 kPa	0,0380	0,038	PPENIC	
1600 - 3200 kPa	0,0296	0,023	1,09E-11	

Campione CI2 (indisturbato) - SG002-Profondità 11.0÷11.7 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

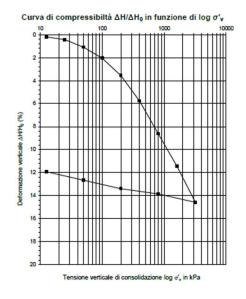
LIMO CON SABBIA LEGGERMENTE ARGILLOSO (clsaSi)

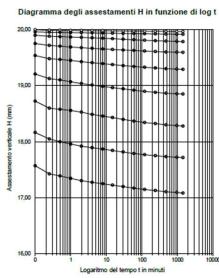
- Ghiaia = 0.5 %
- Sabbia = 31.0 %
- Limo = 59.6 %
- Argilla = 8.9 %

Inoltre:

Relazione geotecnica e sismica

Pag. 33 di 60


Wm	Contenuto d'acqua percentuale medio	28,4	(%)
	Misura del peso dell'unit	à di volume - UNI CEN ISO TS 1789:	2-2
γ_{m}	Peso di volume apparente medio	19,04	(kN/m³)
	Misura del peso specific	co dei grani - UNI CEN ISO TS 17892	-3
G ₆ medio	Peso specifico dei grani medio	2,68	(-)
	Pi	ırametri correlati	
e ₀	Indice dei vuoti	0,770	(-)
n	Porosità	43,5	(%)
Sr	Grado di saturazione	98,8	(%)
γ_{d}	Peso di volume secco	14,82	(kN/m³)
	Limiti di Atterber	g - UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	29	(%)
LP	Limite di plasticità	22	(%)
IP	Indice di pasticità	7	(%)
IC	Indice di consistenza	0,1	(-)
IL	Indice di liquidità	0,9	(-)
LR	Limite di ritiro	ži.	(%)


Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG002	
Campione:	CI2	
Profondità:	11,0 ÷ 11,7	

Misura	1	2	3	4	5	6	Media
Pocket Penetrometer [kPa]	110	100	130	190	200	220	158,3333
Pocket Vane [kPa]	42	40					41

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

Pag. 34 di 60

Intervallo di carico (kPa)	Coeff. consolid.* C _v	Coeff. compress. m _v	Coeff. permeabilità K	
	(cm²/min)	(MPa ⁻¹)	(m/sec)	
0 - 12,5 kPa	0,0191	0,156	4,86E-11	
12,5 - 25 kPa	0,0363	0,196	1,16E-10	
25 - 50 kPa	0,0228	0,264	9,82E-11	
50 - 100 kPa	0,0295	0,190	9,17E-11	
100 - 200 kPa	0,0363	0,151	8,97E-11	
200 - 400 kPa	0,0384	0,110	6,91E-11	
400 - 800 kPa	0,0341	0,071	3,07E-11	
800 - 1600 kPa	0,0352	0,035	Debe III	
1600 - 3200 kPa	0,0381	0,020	1,23€-11	

Campione CI3 (indisturbato) - SG002-Profondità 12.5÷13.2 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

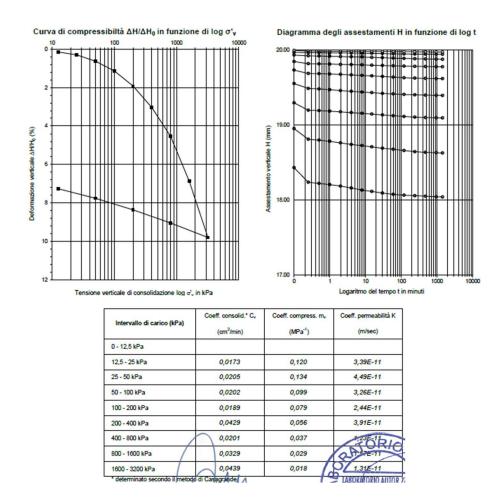
LIMO CON SABBIA ARGILLOSO (clsaSi)

- Sabbia = 32.2 %
- Limo = 57.3 %
- Argilla = 10.5 %

Inoltre:

W _m	Contenuto d'acqua percentuale medio	27,3	(%)
	Misura del peso dell'unità di v	olume - UNI CEN ISO TS 1789	2-2
γ_{m}	Peso di volume apparente medio	18,90	(kN/m³)
	Misura del peso specifico de	i grani - UNI CEN ISO TS 17892	-3
G ₆ medio	Peso specifico dei grani medio	2,66	(-)
	Parame	etri correlati	
e ₀	Indice dei vuoti	0,754	(-)
n	Porosità	43,0	(%)
Sr	Grado di saturazione	96,2	(%)
γ_{d}	Peso di volume secco	14,85	(kN/m³)
	Limiti di Atterberg -	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	25	(%)
LP	Limite di plasticità	22	(%)
IP	Indice di pasticità	3	(%)
IC	Indice di consistenza	-0,7	(-)
IL	Indice di liquidità	1,7	(-)
			·
LR	Limite di ritiro	¥I	(%)
			9R10

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.


Relazione geotecnica e sismica

Pag. 35 di 60

Verticale:	SG002
Campione:	CI3
Profondità:	12,5 ÷ 13,2

Misura	1	2	3	4	5	Media
Pocket Penetrometer [kPa]	20	20	60	170	190	92

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Campione CI4 (indisturbato) - SG002-Profondità 14.0÷14.7 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

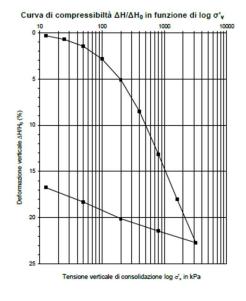
LIMO CON ARGILLA DEBOLMENTE SABBIOSO (saclSi)

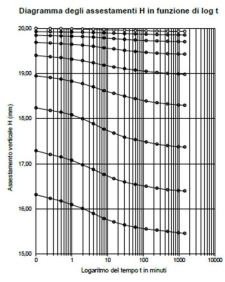
- Sabbia = 7.9 %
- Limo = 60.7 %
- Argilla = 31.4 %

Inoltre:

Relazione geotecnica e sismica

Pag. 36 di 60


w _m	Contenuto d'acqua percentuale medio	32,0	(%)
	Sometime a designal personnal in the so	02,0	(27)
		volume - UNI CEN ISO TS 1789	
γ_{m}	Peso di volume apparente medio	18,44	(kN/m³)
	Misura del peso specifico de	ei grani - UNI CEN ISO TS 17892	-3
e medio	Peso specifico dei grani medio	2,68	(-)
			•
	Param	etri correlati	
e ₀	Indice dei vuoti	0,881	(-)
n	Porosità	46,8	(%)
Sr	Grado di saturazione	97,4	(%)
γ_{d}	Peso di volume secco	13,97	(kN/m³)
	Limiti di Atterberg	UNI CEN ISO TS 17892-12	
700		A PART OF THE PART	1
LL	Limite di liquidità	36	(%)
LP	Limite di plasticità	27	(%)
IP	Indice di pasticità	9	(%)
IC	Indice di consistenza	0,4	(-)
IL	Indice di liquidità	0,6	(-)
LR	Limite di ritiro	-	(%)
			ORIO


Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

SG002	
CI4	
14,0 ÷ 14,7	

Misura	1	2	3	4	5	Media
Pocket Penetrometer [kPa]	150	90	90	90	100	104

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

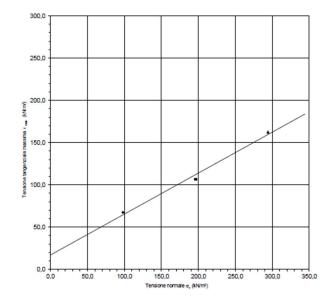
Pag. 37 di 60

Intervallo di carico (kPa)	Coeff. consolid.* C _v (cm ² /min)	Coeff. compress. m _v (MPa ⁻¹)	Coeff. permeabilità K (m/sec)
0 - 12,5 kPa	No. of the last of	100000000	10.110.77
12,5 - 25 kPa	0,0175	0,320	9,16E-11
25 - 50 kPa	0,0193	0,298	9,38E-11
50 - 100 kPa	0,0241	0,275	1,08E-10
100 - 200 kPa	0,0343	0,224	1,25E-10
200 - 400 kPa	0,0302	0,172	8,46E-11
400 - 800 kPa	0,0346	0,115	ô,oTEDT1
800 - 1600 kPa	0,0376	0,061	P130CTO
1600 - 3200 kPa	0,0468	0,029	2/24E-11

Campione CR2 (rimaneggiato) - SG002-Profondità 17.0÷17.5 m

Il campione è stato prelevato all'interno della litologia "limo argilloso" e risulta classificata come:

GHIAIA CON LIMO SABBIOSO DEBOLMENTE ARGILLOSA (clsasiGr)


- Ghiaia = 50.2 %
- Sabbia = 16.0 %
- Limo = 27.1 %
- Argilla = 6.7 %

Inoltre:

- Peso specifico dei grani medio = 2.74 (-)
- Limite liquido = 37%
- Limite plastico = 24%

La prova a taglio diretto ha fornito (valore di picco):

- Angolo di resistenza a taglio = 25.9°
- Coesione intercetta = 17 kPa

Relazione geotecnica e sismica

Pag. 38 di 60

Figura 4-5: Verticale SG002 - Campione CR2 - Prova a taglio diretto.

4.3.1.3 Verticale SG003

Campione CR1 (rimaneggiato) - SG003-Profondità 5.5 ÷ 6.0 m

Il campione è stato prelevato all'interno della litologia "materiali antropici di riporto" e risulta classificata come:

LIMO CON GHIAIA SABBIOSO LEGERMENTE ARGILLOSO

- Ghiaia = 29.9 %
- Sabbia = 19.0 %
- Limo = 41.4 %
- Argilla = 9.7 %

Inoltre:

- Peso specifico dei grani medio = 2.71 (-)
- Limite liquido = 35%
- Limite plastico = 25%

Campione CI1 (indisturbato) - SG003-Profondità 9.0÷9.7 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

LIMO ARGILLOSO SABBIOSO (saclSi)

- Sabbia = 16.3 %
- Limo = 65.8 %
- Argilla = 17.9 %

Inoltre:

w _m	Contenuto d'acqua percentuale medio	29,2	(%)
	Misura del peso dell'ur	nità di volume - UNI CEN ISO TS 17892-2	
γ_{m}	Peso di volume apparente medio	18,82	(kN/m³)
	isura dei peso speci	fico dei grani - UNI CEN ISO TS 17892-3	
		1	
G₅ medio	Peso specifico dei grani medio	2,70	(-)
G₅ medio		2,70 Parametri correlati	(-)
G _s medio			(-)
		Parametri correlati	(190)
e ₀	Indice dei vuoti	Parametri correlati 0,821	(-)

Relazione geotecnica e sismica

Pag. 39 di 60

	Limiti di Atterberg	- UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	31	(%)
LP	Limite di plasticità	22	(%)
IP	Indice di pasticità	9	(%)
IC	Indice di consistenza	0,2	(-)
IL	Indice di liquidità	0,8	(-)
LR	Limite di ritiro	-	(%)
R	Coefficiente di ritiro	(3	ORIO

La prova a taglio diretto ha fornito (valore di picco):

- Angolo di resistenza a taglio = 29.1°
- Coesione intercetta = 34 kPa

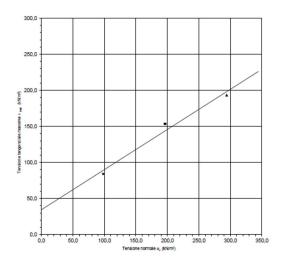
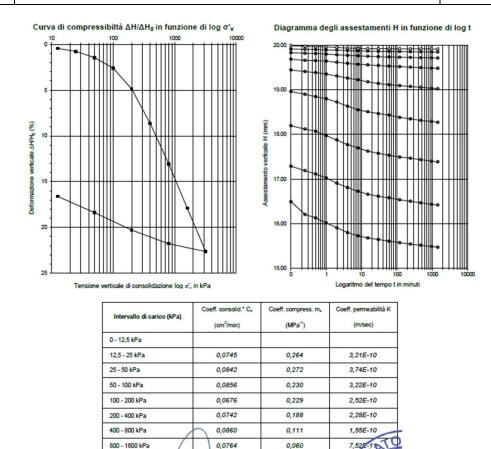


Figura 4-6: Verticale SG003 - Campione CI1 - Prova a taglio diretto.

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG003	
Campione:	CI1	
Profondità:	9,0 ÷ 9,7	


Misura	1	2	3	4	5	Media
Pocket Penetrometer [kPa]	210	130	120	120	140	144
Pocket Vane [kPa]	40	40				40

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

Pag. 40 di 60

Campione CI2 (indisturbato) - SG003-Profondità 10.5÷11.2 m

1600 - 3200 kPa

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

0,0828

ode di Casagrandei

0,030

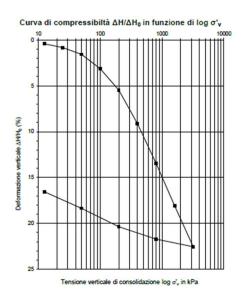
LIMO SABBIOSO ARGILLOSO (clsaSi)

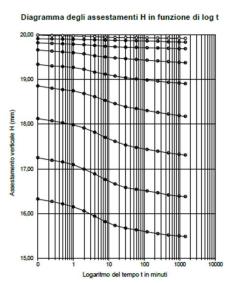
- Ghiaia = 0.2 %
- Sabbia = 21.1 %
- Limo = 59.2 %
- Argilla = 19.5 %

Inoltre:

Relazione geotecnica e sismica

Pag. 41 di 60


w _m	Contenuto d'acqua percentuale medio	32.3	(%)
m			()
	Misura del peso dell'unità di v	olume - UNI CEN ISO TS 1789	
γ_{m}	Peso di volume apparente medio	18,59	(kN/m³)
	Misura del peso specifico de	i grani - UNI CEN ISO TS 17892	-3
G€ medio	Peso specifico dei grani medio	2,69	(-)
			•
	Parame	tri correlati	
e ₀	Indice dei vuoti	0,880	(-)
n	Porosità	46,8	(%)
Sr	Grado di saturazione	98,8	(%)
γ_{d}	Peso di volume secco	14,05	(kN/m³)
	Limiti di Atterberg -	UNI CEN ISO TS 17892-12	
LL	Limite di liquidità	38	(%)
LP	Limite di plasticità	23	(%)
IP	Indice di pasticità	15	(%)
IC	Indice di consistenza	0,4	(-)
IL	Indice di liquidità	0,6	(-)
LR	Limite di ritiro	FI	(%)
			ORIO


Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.

Verticale:	SG003
Campione:	CI2
Profondità:	10,5 ÷ 11,2

Misura	1	2	3	4	5	Media
Pocket Penetrometer [kPa]	110	120	150	110	170	132
Pocket Vane [kPa]	40	30				35

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

Relazione geotecnica e sismica

Pag. 42 di 60

Intervallo di carico (kPa)	Coeff. consolid.* C _v (cm ² /min)	Coeff. compress. m _v (MPa ⁻¹)	Coeff. permeabilità K (m/sec)
0 - 12,5 kPa	0,0822	0,344	4,62E-10
12,5 - 25 kPa			
25 - 50 kPa	0,0863	0,294	4,14E-10
50 - 100 kPa	0,0910	0,311	4,62E-10
100 - 200 kPa	0,0601	0,233	2,29E-10
200 - 400 kPa	0,0392	0,183	1,17E-10
400 - 800 kPa	0,0368	0,108	6,43E-11
800 - 1600 kPa	0,0401	0,058	PINTO
1600 - 3200 kPa	0,0413	0,028	1,88E-11

Campione CI3 (indisturbato) - SG003-Profondità 12.5÷13.2 m

Il campione è stato prelevato all'interno della litologia "limo sabbioso argilloso" e risulta classificata come:

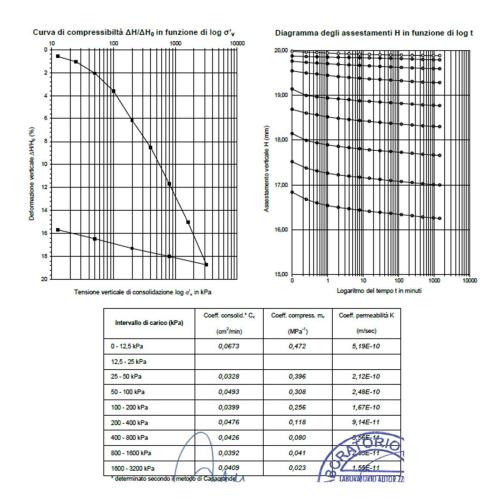
LIMO CON SABBIA ARGILLOSO (clsaSi)

- Ghiaia = 1.9 %
- Sabbia = 27.9 %
- Limo = 57.9 %
- Argilla = 12.3 %

Inoltre:

W m	Contenuto d'acqua percentuale medio	28,5	(%)				
	Misura del peso dell'unità di	volume - UNI CEN ISO TS 1789	2-2				
γ_{m}	Peso di volume apparente medio	18,81	(kN/m³)				
	Misura del peso specifico de	ei grani - UNI CEN ISO TS 17892	!-3				
∂ _¢ medio	Peso specifico dei grani medio	2,72	(-)				
	Param	etri correlati					
e ₀	Indice dei vuoti	0,823					
n	Porosità	45,1	(%)				
Sr	Grado di saturazione	94,3	(%)				
γ_{d}	Peso di volume secco	14,64	(kN/m³)				
	Limiti di Atterberg	UNI CEN ISO TS 17892-12					
LL	Limite di liquidità	26	(%)				
LP	Limite di plasticità	21	(%)				
IP	Indice di pasticità	5	(%)				
IC	Indice di consistenza	-0,6	(-)				
IL Indice di liquidità		1,6					
LR	Limite di ritiro		(%)				

Si riporta in tabella i risultati delle prove dirette sulla carota di terreno.


Relazione geotecnica e sismica

Pag. 43 di 60

Verticale:	SG003
Campione:	CI3
Profondità:	12,5 ÷ 13,2

Misura	1	2	3	4	5	Media
Pocket Penetrometer [kPa]	40	100	80	100	100	84
Pocket Vane [kPa]	20	20				20

La prova edometrica a incremento di carico controllato ha fornito i risultati come riportati di seguito.

4.4 Prospezioni geofisiche

Nell'area di studio sono state eseguite delle prospezioni geofisiche lungo il tracciato delle opere ferroviarie di progetto in corrispondenza dell'area dello Scale Legnami e della Ferriera, e verso le aree limitrofe alla Risiera di San Saba e allo Stadio Comunale N. Rocco. Le stesse consistono in:

• n.14 prospezioni sismiche a rifrazione mediante 24 geofoni verticali allineati ed equidistanti fra loro, al fine di identificare la successione litostratigrafica e la

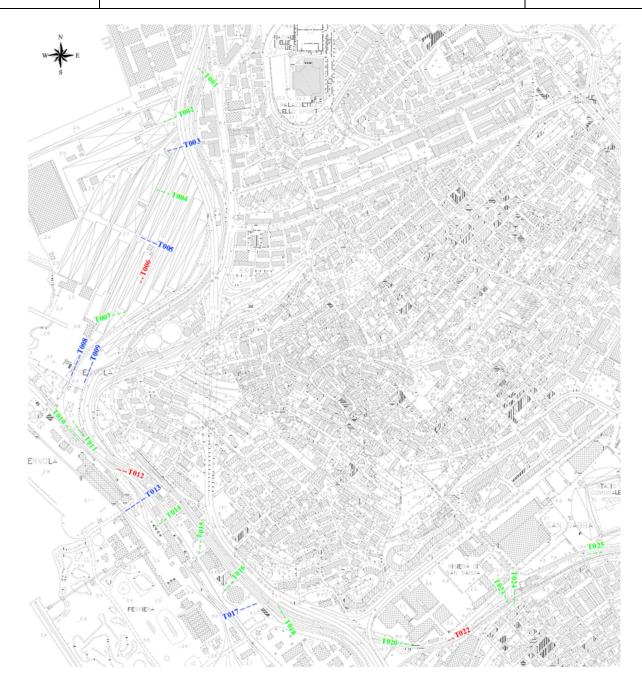
Relazione geotecnica e sismica

Pag. 44 di 60

consistenza dei materiali di copertura mediante la discretizzazione della velocità di propagazione delle onde p (Vp);

- n.3 prospezioni sismiche tipo MASW mediante stendimenti di lunghezza 22÷33 m, con 12 geofoni verticali allineati ed equidistanti fra loro di 2÷3 m, al fine di definire la velocità delle onde Vseq e per la classificazione sismica del sottosuolo;
- n.6 profili geoelettrico-tomografici ERT per identificare i valori di resistività apparente, indicativamente entro i primi 8 m di profondità dal piano campagna, con acquisizione dei dati mediante due diverse metodologie al fine di migliorare la qualità dell'indagine.

Si riportano in tabella l'elenco delle prospezioni geofisiche svolte con indicazione della tipologia di indagine, della lunghezza dello stendimento e della spaziatura dei sensori (geofoni per la sismica ed elettrodi per la geoelettrica), e in figura la loro localizzazione.


Indagine	Tipologia	Lunghezza (m)	Spaziatura (m)	Ubicazione
T01	tomografia sismica	24	1	viabilità
T02	tomografia sismica	46	2	PLT
T03	geoelettrica	52.5	1.5	PLT
T04	tomografia sismica	46	2	PLT
T05	geoelettrica	52.5	1.5	PLT
T06	MASW	22	2-3	Area portuale
T07	tomografia sismica	46	2	Area portuale
T08	geoelettrica	52.5	1.5	Area portuale
T09	geoelettrica	52.5	1.5	Area portuale
T10	tomografia sismica	69	3	Ferriera
T11	tomografia sismica	69	3	Ferriera
T12	MASW	33	2-3	Ferriera
T13	geoelettrica			Ferriera

T14	tomografia sismica	46	2	Ferriera
T15	tomografia sismica	46	2	Ferriera
T16	tomografia sismica	46	2	Ferriera
T17	geoelettrica	52.5	1.5	Ferriera
T18	tomografia sismica	46	2	Binari ferrovia
T20	tomografia sismica	46	2	Parcheggio Bricofer – sottopassi ferroviari
T22	MASW	22	2-3	viabilità
T23	tomografia sismica	24	1	magazzino regionale e binari ferrovia
T24	tomografia sismica	46	2	viabilità
T25	tomografia sismica	46	2	viabilità

Relazione geotecnica e sismica

Pag. 45 di 60

4.4.1 Tomografia sismica a rifrazione

Il metodo di esplorazione sismica consente la caratterizzazione del sottosuolo attraverso l'analisi della distribuzione delle velocità V(x,y,z) di propagazione delle onde elastiche nel sottosuolo stesso. La tecnica di esplorazione sismica consiste nel generare onde elastiche, nel misurare i tempi di propagazione delle onde dalla sorgente al ricevitore e, quindi, di interpretare l'assetto del sottosuolo.

Il segnale trasmesso è impulsivo che nel caso in esame è generato mediante energizzazione con massa battente su piastra. Nell'ipotesi che le piccole deformazioni siano elastiche, è possibile determinare i moduli elastici e la densità del materiale attraversato. Le onde sismiche sono le

Relazione geotecnica e sismica

Pag. 46 di 60

onde di compressione (onde P) e le onde di taglio (onde S), tra loro correlabili per la definizione di alcuni parametri, tra i quali il coefficiente di Poisson quale rapporto tra Vp e Vs.

Per le indagini in esame, sono stati acquisiti i segnali relativi a punti di energizzazione sia interni (ogni 3 geofoni) che esterni (off-end) agli stendimenti. Questi ultimi sono stati posizione a distanza di 5 m dal primo e dell'ultimo geofono.

Inoltre, l'inversione della sorgente rispetto allo stendimento permette la verifica di eventuali orizzonti inclinati e la validazione dei dati acquisiti. Sono state eseguite almeno 3 acquisizioni al fine di sommare i segnali nella successiva fase di elaborazione e di mantenere solo la parte utile del segnale eliminando il rumore.

Le prospezioni sismiche a rifrazione condotte, opportunamente calibrate con i dati acquisiti dai sondaggi a carotaggio continuo, hanno consentito di identificare orizzonti caratterizzati da diverso grado di addensamento, con un generale incremento delle velocità rispetto la profondità di indagine.

In generale, sono stati riscontrati 3 diversi principali sismostrati con caratteristiche differenti in termini di grado di addensamento. Ogni sismostrato è caratterizzato da valori di Vp che ricadono in determinato range di velocità. Sono di seguito riportati i tre principali sismostrati individuati i rispettivi valori di Vp.

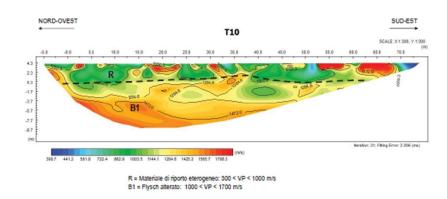
Sismostrato	Vp minima (m/s)	Vp massima (m/s)	Descrizione
R	300	900	Materiale eterogeneo, spesso riferibile a terreni di riporto con frequenti anomalie o forti contrasti dovuti alla presenza di elementi antropici, costituisce il livello più superficiale, affiorante, interpretato quale strato ghiaioso-limoso-sabbioso con frequenti blocchi, pezzi di cls e frammenti lateritici
A	300	900	Depositi sciolti, da poco a discretamente addensati, con generale aumento delle velocità con la profondità, rilevati soggiacenti lo strato R e sovrastanti il substrato roccioso, interpretati quali limi sabbiosi, limi argillosi e sabbie limose, debolmente ghiaiosi
В	900	3.700	Depositi sciolti addensati / roccia alterata /roccia compatta, interpretato quali ghiaie limose addensate quali termini più superficiali di alterazione del Flysch (B1), Flysch marnoso- arenaceo alterato e fratturato (B1) o Flysch integro (B2)

I sismostrati A e B sono stati talvolta suddivisi in due sottocategorie caratterizzate dalle seguenti velocità:

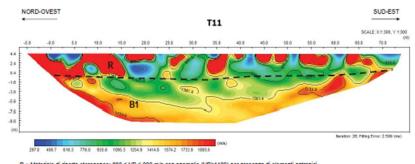
Sismostrato	Vp minima (m/s)	Vp massima (m/s)	Descrizione
Al	300	500	Depositi sciolti poco addensati
A2	500	900	Depositi sciolti discretamente addensati
B1	B1 900 2.200		Depositi sciolti addensati / roccia alterata
B2	1.300	3.700	Roccia compatta

Si riportano nelle immagini seguenti le tomografie sismiche eseguite con interpretazione stratigrafica dei risultati, così come riportata nella "Indagini geognostiche a terra - Relazione tecnica".

Relazione geotecnica e sismica


Pag. 47 di 60

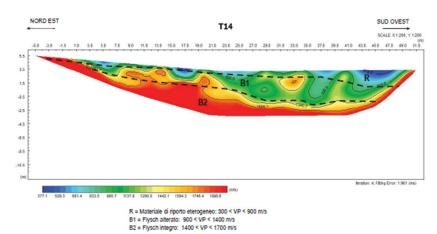
In generale, si osservano spessori di materiale di riporto e di depositi di materiale a grana medio-fine che risultano maggiori nella zona a nord del sito considerato, come evidente dalle tomografie sismiche T001, T002 e T004.

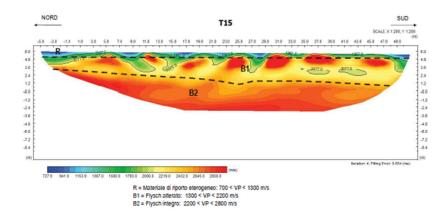

Proseguendo verso sud e sud-est, ovvero verso le tomografie T010, T011 e T013, si osserva un aumento della quota del Flysch e la relativa diminuzione del materiale di riporto e dei depositi a grana medio-fine.

In particolare, per le tomografie T010, T011, T014, T015, T016, T018, T019, T024 e T025 i depositi limosi-sabbiosi sembrano essere assenti anche se in questo caso non si esclude del tutto la loro assenza. Si riportano i risultati per le aree di interesse.

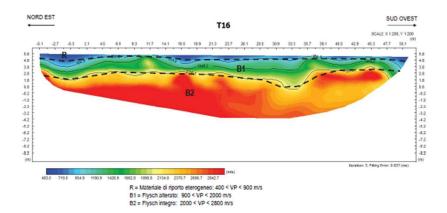
Interpretazione stratigrafica

Interpretazione stratigrafica


R = Materiale di riporto eterogeneo: 300 < VP < 900 m/s con anomalie (VP>1400) per presenza di elementi antropic B1 = Flysch alterato : 900 < VP < 1700 m/s

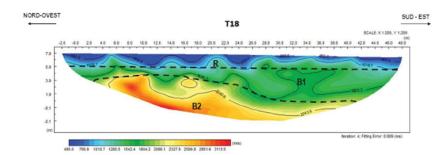

Relazione geotecnica e sismica

Pag. 48 di 60

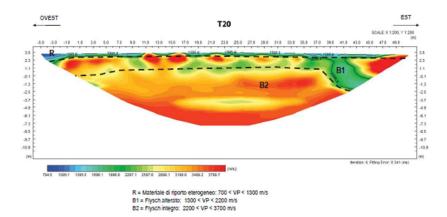

Interpretazione stratigrafica

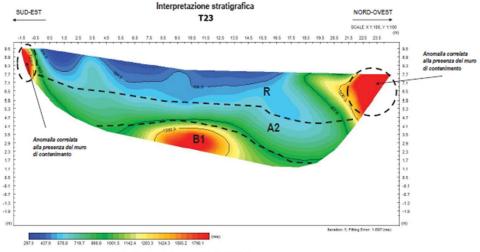
Interpretazione stratigrafica

Interpretazione stratigrafica



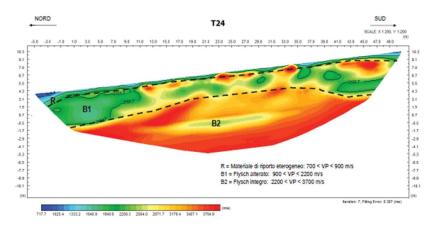
Relazione geotecnica e sismica

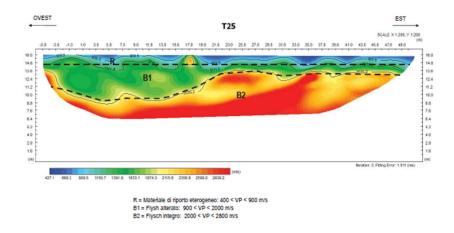

Pag. 49 di 60


Interpretazione stratigrafica

R = Materiale di riporto eterogeneo: $400 \le VP \le 1000$ m/s B1 = Depositi addensati elo Flysch alterato : $1000 \le VP \le 2000$ m/s B2 = Flysch integro: $2000 \le VP \le 3000$ m/s

Interpretazione stratigrafica


R = Materialle di riporto eterogeneo: 300 < VP < 900 m/s A2= Depositi limoso-sabbiosi, limoso-argillosi discretamente addensati: 600 < VP < 900 m/s B1 = Depositi addensati/ Flysch alterato: 900 < VP < 1700 m/s

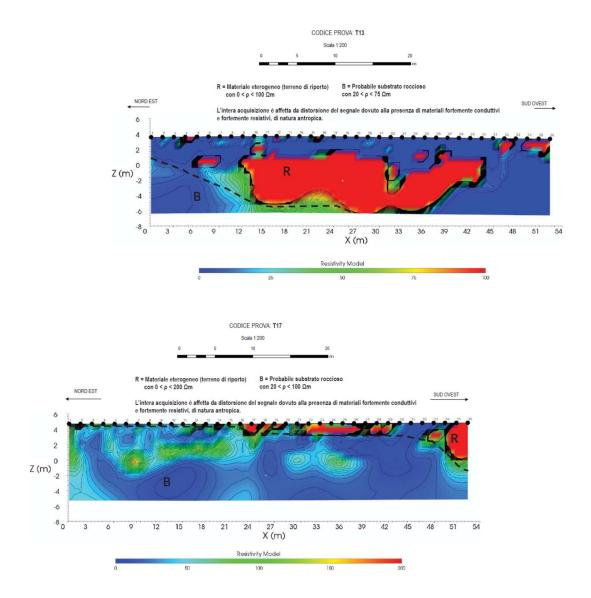

Relazione geotecnica e sismica

Pag. 50 di 60

Interpretazione stratigrafica

4.4.2 Prospezioni geolettrico-tomografiche ERT

Si riportano nel seguito i risultati delle prospezioni ERT e la caratterizzazione stratigrafica del sito così come riportata nella "Indagini geognostiche a terra - Relazione tecnica".


La tecnologia permette di ottenere la distribuzione della resistività elettrica nel sottosuolo, elettricamente disomogeneo, immettendo una corrente continua mediante due elettrodi infissi nel terreno e misurando contemporaneamente la differenza di potenziale associata al campo elettrico generato tra due elettrodi distinti dai primi.

L'interpretazione stratigrafica lungo le sezioni d'indagine risulta in linea con i sondaggi e con le prove tomografiche, alle quali si rimanda.

Relazione geotecnica e sismica

Pag. 51 di 60

4.4.3 Prospezioni sismiche MASW

Al fine di identificare la velocità delle onde di taglio Vs del sottosuolo (Vseq) come disposto dal DM 17.01.2018, sono state eseguite n.3 prospezioni sismiche tipo MASW. La tecnica MASW si basa sul principio di trasmissione di energia nel suolo a seguito di un'energizzazione dello stesso. Parte dell'energia trasmessa nel terreno si propaga come onde tipo s e consente di caratterizzare il fenomeno attraverso la curva di dispersione che associa a ogni frequenza la velocità di propagazione dell'onda. Detta metodologia fornisce per ogni profilo acquisito una stratigrafia puntuale delle onde tipo s.

Nel caso in esame, sono stati eseguiti stendimenti sismici di lunghezza pari a 22 m (identificati come T06 e T22) e pari a 33 m (identificato come T12), con acquisizione mediante n.12 geofoni orizzontali, tra loro distanziati 2÷3 m. L'energizzazione è stata eseguita con massa battente del peso di 8 kg.

Relazione geotecnica e sismica

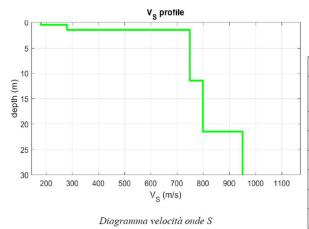
Pag. 52 di 60

Nello specifico, la prova MASW T06 è realizzata in corrispondenza della prospezione ERT codificata come T013 e delle verticali d'indagine SG001 e SG002. La zona in esame risulta caratterizzata da materiali di riporto e da depositi di materiali a granulometria medio-fine con presenza del substrato roccioso integro dell'ordine di 22÷23 m. In base ai risultati MASW il sito è categorizzabile come terreno tipo E.

La prova MASW T12 è realizzata in corrispondenza della prospezione ERT codificata come T005 e delle verticali d'indagine SG007 e SG012.

Mentre, la prova MASW T22 è realizzata tra le prospezioni tomografiche T020 e T023 e a circa 400 m dalla verticale d'indagine SG010.

Per entrambe le indagini il substrato roccioso si trova in prossimità del piano campagna e i due siti d'indagine possono essere categorizzati come terreni di tipo B.


Si osserva che in prossimità della verticale d'indagine SG010 e della prospezione tomografica T025 il sub strato roccioso integro si riscontra alla profondità di circa 5 m e per la stessa zona si categorizza il terreno come tipo E, a favore di sicurezza.

Si riportano nel seguito i risultati delle prove eseguite che interessano le aree in esame.

4.4.3.1 MASW T12

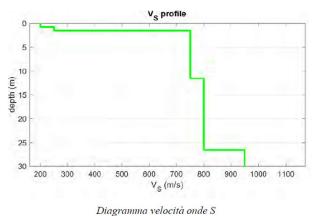
I terreni sono iscrivibili alla categoria B del DM 17.01.2018:

"Categoria B: rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s".

MASW 112									
Thickness (m)	Depth (m)	Vs (m/s)	$Vs_{eq} (m/s)$ $H = 11.5 n$						
0.5	0.0	180							
1.0	0.5	280	-						
10.0	1.5	750	584						
10.0	11.5	800	304						
8.5	21.5	950	-						
/	30	950	-						

MACHETTA

4.4.3.2 MASW T22


I terreni sono iscrivibili alla categoria B del DM 17.01.2018:

Relazione geotecnica e sismica

Pag. 53 di 60

"Categoria B: rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s".

	MASW T22									
Thickness (m)	Depth (m)	Vs (m/s)	$Vs_{eq} (m/s)$ $H = 11.6 m$							
0.8	0.0	200								
0.8	0.8	250								
10.0	1.6	750	565							
15.0	11.6	800	303							
3.4	26.6	950	-							
/	30.0	950								

4.4.4 Osservazioni

In base alle prospezioni geofisiche effettuate, il sito risulta esteso e caratterizzato da differenti risposte sismiche.

Nello specifico, nella zona a nord-ovest il sito è caratterizzato da spessori di materiale con medio-scarse caratteristiche meccaniche e il substrato roccioso si trova a oltre i 20 m di profondità. Lo stesso è quindi sismicamente categorizzabile come tipo E, in accordo con NTC2018. Questa zona non è interessata sa opere geotecnico-strutturali per la viabilità stradale.

Spostandosi verso sud÷sud-est si osserva un aumento di quota del substrato roccioso che permette di caratterizzare sismicamente la zona in esame come tipo B.

Dal confronto delle prove si ritiene adeguata indicare come terreno di categoria tipo B nella zona prossima alle verticali d'indagine che sono comprese tra il sondaggio SG007 e la prospezione sismica MASW T22. Altrove come terreno tipo E.

Si osserva che nella zona ad est del sito la variabilità dello spessore di terreno di riporto e la presenza di terreno eluvio-colluviale non permettono, con i dati in possesso, di categorizzare in modo certo il terreno come tipo B, che a favore di sicurezza viene categorizzato come tipo E.

Infine, si precisa che spostandosi verso la costa non è certo che la quota del Flysch si mantenga prossima al piano campagna e la categorizzazione del sito, se necessario, dovrà essere determinata perché non riportata nel presente documento.

Indicativamente, nell'immagine seguente, si identifica la zona sismicamente categorizzata come tipo B.

Relazione geotecnica e sismica

Pag. 54 di 60

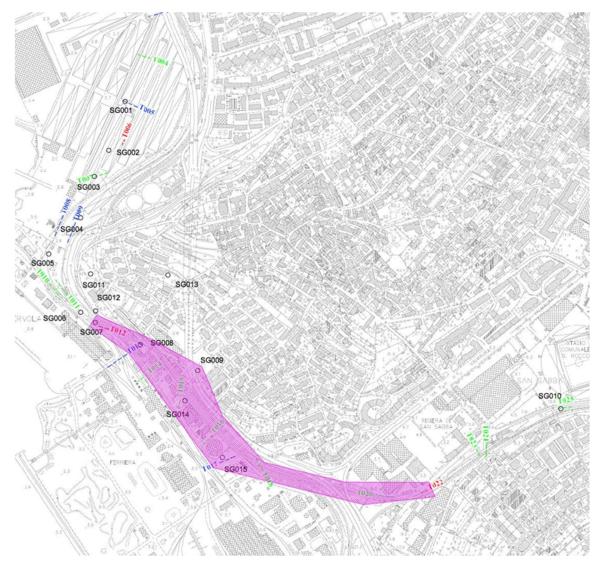


Figura 4-7: Plan. zona di terreno di cat. sismica B (riempimento magenta).

Vale la pena osservare come, dai risultati ottenuti, emerga che in generale si ha un incremento delle proprietà elasto-deformative scendendo in profondità, a prescindere dalla litologia degli strati interessati. Conseguentemente sarebbero da aspettarsi valori del modulo di deformazione quanto meno crescenti con la profondità.

Relazione geotecnica e sismica

Pag. 55 di 60

5 MODELLO GEOTECNICO

Si riporta in tabella il modello geotecnico dell'intera area ottenuto accorpando unità litologiche con caratteristiche fisiche e meccaniche similari. Nel caso di strutture puntuali sarà possibile elaborare uno specifico modello geotecnico in funzione della vicinanza della struttura con le verticali d'indagine.

Si osserva che le prove effettuate non sono sufficienti a caratterizzare in modo completo le litologie individuate e per le stesse si fa riferimento a quanto ottenuto da altre indagini geologiche effettuate in prossimità del sito in esame.

LITOLOGIA	Peso di volume, γ [kN/mc]	Angolo d'attrito efficace φ` [°]	Coesione efficace c' [kPa]	Coesione non drenata c _u [kPa]	Modulo edometrico M [MPa]	Modulo elastico efficace E' [MPa]
Rilevati di nuova realizzazione	19.0÷20.0	36	5	-		50
Materiali antropici di riporto; Terreni eluvio - colluviali	18.0	24.5÷37. 5	5	-		3.0**
Limo sabbioso argilloso; Limo argilloso	18.0÷19.0	23.7÷37. 1	5	30	3.7*	5.0
Flysch marnoso arenaceo alterato (complesso C1)	18.5**	31**	5**	100**	-	20**
Flysch marnoso arenaceo integro (Tipo T3/T4)	23**	22**	40** 250**		-	350**
Flysch marnoso arenaceo integro (Tipo T2)	24**	28**	150**	-	-	800**

^{*:} valore conservativo

Infine, ai fini progettuali si assume che la falda si attesti a quota media di +1.00m l.m.m., valore coerente con i risultati delle indagini e analisi condotte. Situazioni particolari, sulla base della specifica posizione dei manufatti, saranno definite nelle relazioni specialistiche.

^{**:} parametri del modello geotecnico riportato nella relazione del progetto esecutivo dei "Lavori di realizzazione della Piattaforma Logistica in area portuale compresa tra lo scalo legnami e l'ex-italsider e conseguenti opere di collegamento": "RGT0022_relazione_geotecnica_r02" del 15.09.2015

Relazione geotecnica e sismica

Pag. 56 di 60

I parametri relativi agli aspetti deformativi per i singoli strati interessati saranno meglio descritti nel seguito nei paragrafi dedicati alle verifiche in condizione SLE.

Relazione geotecnica e sismica

Pag. 57 di 60

6 ASPETTI LEGATI ALLA SISMICITÀ

Si rimanda in generale alla relazione generale geologica 1GNR_P_R_C-GEO_1GE_001_02_01.

Si evidenzia come nella zona interessata dalle opere stradali il sottosuolo sia caratterizzato, sostanzialmente, dalla presenza di limitati spessori di ricoprimento (riporto antropico), sovrapposti al substrato flyschoide variamente alterato.

Queste caratteristiche della stratigrafia permettono di escludere il rischio di liquefazione per tutte le aree interessate.

Relazione geotecnica e sismica

Pag. 58 di 60

7 INTERAZIONE CINEMATICA PER I PALI DI FONDAZIONE

L'effetto dell'interazione cinematica sui pali è calcolato allo SLV (a_{max}=0.255 g) e nel caso in esame è ricavato con la relazione di Nikolau (2001):

$$M = 0.042 \, \tau_c d^3 \bigg(\frac{L}{d} \bigg)^{0.3} \bigg(\frac{E_p}{E_1} \bigg)^{0.65} \bigg(\frac{V_{s2}}{V_{s1}} \bigg)^{0.5}$$

e il momento massimo in condizioni di non-risonanza:

 $M_{max} = \delta * M \text{ con } \delta = 0.04 * Nc + 0.23 \text{ con Nc assunto pari a 20}$

dove:

- $TC = a_{max,s} * \rho 1 * h 1$
- ρ1 = densità dello strato superiore
- h1 = spessore dello strato superiore
- a_{max,s} = accelerazione massima a piano campagna nelle condizioni di terreno libero (free field)
- L = lunghezza del palo
- d = diametro del palo
- Ep = modulo di rigidezza assiale del palo
- E1= modulo di rigidezza verticale dello strato superiore
- Vs2 = velocità delle onde di taglio nello strato superiore
- Vs1 = velocità delle onde di taglio nello strato inferiore.

Si riportano nel seguito le sollecitazioni flessionali per palo Ø800 mm lungo 20 m valutato lungo la verticale d'indagine MASW T06. Differentemente la sollecitazione lungo le verticali MASW T12 e MASW T22 risulta inferiore perché inferiore è minore la differenza di velocità delle onde di taglio dei due strati e minore è lo spessore dello strato superficiale.

7.1.1 Sollecitazione palo per l'indagine MASW T06

Lungo la verticale MASW T06 il terreno è categorizzato come E e si individuano due principali stratificazioni: la prima con profondità dell'ordine di 18÷19 m con Vs comprese tra 200 e 280 m/s. La seconda con Vs di 700 m/s e oltre i 23 m di profondità con Vs di 800 m/s. Considerato che i pali hanno lunghezza inferiore a 23m si considera Vs dello strato inferiore pari a 700 m/s.

Vs1 [m/s] =	200	Vs1 [m/s] =	280	h1 [m] =	5	h1 [m] =	11	h1 [m] =	19
Vs2 [m/s] =	700								
H1	Mmax	H1	Mmax	Vs1	Mmax	Vs1	Mmax	Vs1	Mmax
[m]	[kNm]	[m]	[kNm]	[m/s]	[kNm]	[m/s]	[kNm]	[m/s]	[kNm]
2	25	2	13	200	62	200	135	200	234
5	62	5	34	220	52	220	114	220	197
8	98	8	54	240	44	240	97	240	168
11	135	11	74	260	38	260	84	260	146
14	172	14	94	280	34	280	74	280	128
17	209	17	114						
19	234	19	128						

Relazione geotecnica e sismica

Pag. 59 di 60

Facendo variare le 2 principali variabili (Vs1 e h1) il momento massimo allo SLV è di 234 kNm.

A confronto si riporta il calcolo del momento flettente con la formulazione proposta da Dobry e O'Rourke (1983) come riportata nelle Linee Guida "Aspetti geotecnici della progettazione in zona sismica" (AGI, 2005).

```
\begin{split} \text{M} &= 1.86*(E_P*I_P)^{3/4}* \; G_1^{1/4}* \; \gamma_1 \; * \; F = 1.86*(30E6 \; kPa*0.02 \; m^4)^{3/4}* \; 75000 \; kPa^{1/4}* \; 0.0012 \\ * \; 0.371 = 295 \; kNm \\ &\text{con } E_P = 30 \; \text{GPa} \\ &\text{con } I_P = 3.14*0.8^4/64 = 0.02 \; m^4 \\ &\text{con } F = \left[ (1-c^{-4})*(1+c^3) \right] / \left[ (1+c)*(c^{-1}+1+c+c^2) = 0.371 \; \left[ - \right] \\ &\text{con } c = \left( G_2 / G_1 \right)^{1/4} = (1152 / 75)^{1/4} = 1.98 \; \left[ - \right] \\ &\text{con } \gamma_1 = \left[ (\rho_1*h_1) / G_1 \right] \; * \; a_{max,s} = \left[ (1886 \; kg/m^3*19 \; m) / \; 75000 \; kPa \right] \; * \; 0.255*9.8 \; m/s^2 = 0.0012 \; \left[ - \right] \end{split}
```

La formulazione conservativa proposta da Dobry e O'Rourke fornisce un momento massimo di 295 kNm superiore ma comunque comparabile con la sollecitazione ottenuta mediante Nikolau.

Questi risultati possono considerarsi rappresentativi del problema, e potranno essere meglio e più precisamente dettagliati e valutati in fase esecutiva.