

PROGETTO AdSP n. 1951

Estensione delle infrastrutture comuni per lo sviluppo del Punto Franco Nuovo nel porto di Trieste CUP: C94E21000460001

Progetto di Fattibilità Tecnico Economica

Fascicolo B – Elaborati di sviluppo complessivo

	. 107) () 0	
arch. Gerardo Nappa	AdSP MAO	Responsabile dell'integrazione e Coordinatore per la Sicurezza in fase di Progettazione
arch. Sofia Dal Piva	AdSP MAO	Progettazione generale
arch. Stefano Semenic	AdSP MAO	Progettazione generale
ing. Roberto Leoni	BITECNO S.r.l.	Sistema di trazione elettrica ferroviaria
ing. Saturno Minnucci	MINNUCCI ASSOCIATI S.r.l.	Impianti speciali e segnalamenti ferroviari
ing. Dario Fedrigo	ALPE ENGINEERING S.r.l.	Progettazione strutturale oo.cc. ferrovia e strade
ing. Andrea Guidolin p.i. Furio Benci	SQS S.r.l.	Progettazione della sicurezza
ing. Sara Agnoletto	HMR Ambiente S.r.l.	Progettazione MISP e cassa di colmata
p.i. Trivellato, dott. G. Malvasi, dott. S. Bartolomei	p.i. Antonio Trivellato d.i.	Modellazione rumore, atmosfera, vibrazioni
dott. Gabriele Cailotto ing. Anca Tamasan	NEXTECO S.r.l.	Studio di impatto ambientale e piano di monitoraggio ambientale
ing. Sebastiano Cristoforetti	CRISCON S.r.l.s.	Relazione di sostenibilità
ing. Tommaso Tassi	F&M Ingegneria S.p.A.	Progettazione degli edifici pubblici nel contesto dell'ex area "a caldo"
ing. Michele Titton	ITS s.r.l.	Connessione stradale alla GVT

RESPONSABILE UNICO DEL PROCEDIMENTO:

ing. Paolo Crescenzi

NOME FILE: 6ML8_P_R_N-STR_2AT_002_02_00.docx	SCALA:
TITOLO ELABORATO: Relazione di calcolo delle fondazioni	ELABORATO: 6ML8_P_R_N-STR_2AT_002_02

Rev.	Data	Descrizione	Redatto	Verificato	Approvato
					10.00
00	01/02/2023	Definitivo	Esterno	S.Dal Piva	G.Nappa

Relazione di calcolo delle fondazioni

SOMMARIO

1	PREME	SSA	4
2	NORM/	ATIVE DI RIFERIMENTO	5
	2.1 LEC	GGI, DECRETI E CIRCOLARI	5
	2.2 No	RME E ISTRUZIONI NAZIONALI	5
	2.3 No	RMATIVA EUROPEA ED INTERNAZIONALE	6
3	CARAT	TERISTICHE DEI MATERIALI	7
	3.1 CA	LCESTRUZZO	7
	3.1.1	Calcestruzzo per pali di fondazione	<i>7</i>
	3.2 Ac	CIAIO	7
	3.2.1	Acciaio per armature	<i>7</i>
4	DESIG	N APPROACH	8
5	TEORI	A DI RIFERIMENTO	11
	5.1 For	NDAZIONI SUPERFICIALI	11
	5.1.1	Normativa	11
	5.1.1	Collasso per carico limite dell'insieme fondazione-terreno	13
	5.1.2	Collasso per scorrimento del piano di posa	15
	5.1.3	Cedimenti	15
	5.2 For	NDAZIONI SU PALI	16
	5.2.1	Normativa	16
6	GRU R	MG	24
	6.1 Mo	DELLO GEOTECNICO	25
	6.1.1	Parametri geotecnici generali	25
	6.1.2	Flysch	25
	6.2 An	ALISI DEI CARICHI	27
	6.2.1	Carichi gru	27
	6.2.2	Peso Proprio	29
	6.2.3	Carichi agenti	29
	6.3 VE	RIFICHE	30
	6.3.1	Capacità Portante	30
7	GRU AS	SC SU CASSA DI COLMATA	33

Relazione di calcolo delle fondazioni

Pag. 2 di 88

	7.1	GEO	TECNICA DI RIFERIMENTO	33
	7.2	Cari	CHI AGENTI	35
	7.3	VERI	FICHE	36
	7.3.	1	Capacità Portante	36
8	MUI	RO F	RANGIVENTO SU CASSA DI COLMATA	40
	8.1	Con	FIGURAZIONE STRUTTURALE	40
	8.2	GEO ⁻	TECNICA DI RIFERIMENTO	41
	8.3	Cari	CHI AGENTI	43
	8.3.	1	Combinazioni SLU di calcolo	43
	8.3.	2	Combinazioni SLE di calcolo	46
	8.3.	3	Disposizione dei pali e sollecitazione massima sul singolo palo	47
	8.4	VERI	FICHE	
	8.4.	1	Capacità Portante	49
9	TOF	RRI F	ARO	55
	9.1	Con	FIGURAZIONE STRUTTURALE	55
	9.2	Cari	CHI AGENTI	56
	9.2.	1	Combinazioni SLU di calcolo	56
	9.3	VERI	FICHE	56
	9.3.		Capacità Portante	
1() E	DIFI	CIO UFFICI	
	10.1	GEO ⁻	TECNICA DI RIFERIMENTO	61
	10.2		ISI DEI CARICHI	
	10.3	VERI	FICHE	71
	10.3		Azioni sul singolo Palo	
	10.3		Capacità Portante D 600 mm	
	10.0			
<u>S</u> (MMC	ARI	<u>O FIGURE</u>	
Fig	gura 1.	1 – F	Planimetria di progetto con indicazione delle fondazioni a terra	4
Fig	gura 2:	Risu	ıltati prove PLT effettuati su strati Flyschodi a Trieste	26
Fie	gura 3:	Cari	chi gru agenti sulle fondazioni	28

Relazione di calcolo delle fondazioni

Pag. 3 di 88

Figura 4 - Dettagli geometrici della struttura torre faro	55
Figura 5 - Capacità portante plinto condizione 1 (SLU)	58
Figura 6 - Verifica condizione 2 (SLV)	60
Figura 7 - Sezione FF	61
Figura 8 - Pianta delle fondazioni	64
Figura 9 - Dimensioni fondazione su plinto	71
Figura 10 - Pianta fondazioni per setti da 30 cm	75
Figura 11 - Disposizione pali D600 setto 65 cm	81

SOMMARIO TABELLE

Tabella 1 – Valori indicativi di k e u per terreni incoerenti

21

1 PREMESSA

La relazione riporta le verifiche delle opere di fondazione per l'area a terra nell'ambito del Progetto di Fattibilità Tecnico-Economica del Molo VIII, come riportato nella seguente figura.

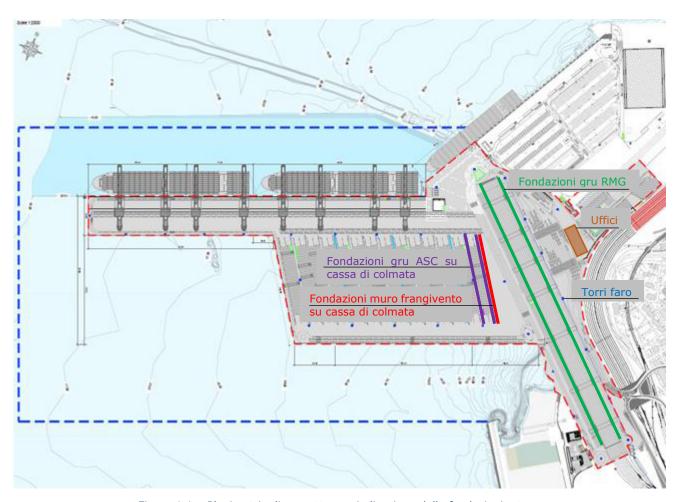


Figura 1.1 - Planimetria di progetto con indicazione delle fondazioni a terra

Relazione di calcolo delle fondazioni

Pag. 5 di 88

2 NORMATIVE DI RIFERIMENTO

2.1 Leggi, decreti e circolari

- L. 5.11.1971, nº 1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- L. 2.02.1974, n° 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 17.01.2018 "Aggiornamento delle Norme tecniche per le costruzioni".
- Circ. Min. n. 7 del 21 gennaio 2019 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Associazione Geotecnica Italiana (1977) "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche".
- Associazione Geotecnica Italiana (1984) "Raccomandazioni sui pali di fondazione".
- Associazione Geotecnica Italiana (2012) "Jetgrouting. Raccomandazioni".
- Raccomandazioni A.I.C.A.P., A.G.I. (2012) "Ancoraggi nei terreni e nelle rocce".

Circa le indicazioni applicative considerate per l'ottenimento dei requisiti prestazionali prescritti nel DM del 17/01/2018, ci si è riferiti, quando non direttamente alle indicazioni delle Norme Tecniche stesse, a normative di comprovata validità e ad altri documenti tecnici elencati nel seguito. In particolare, per quel che riguarda le Verifiche Strutturali, le indicazioni fornite dagli Eurocodici, con le relative Appendici Nazionali, costituiscono indicazioni di comprovata validità e forniscono il sistematico supporto applicativo delle norme.

2.2 Norme e istruzioni nazionali

- UNI EN 206-1 "Calcestruzzo: specificazione, prestazione produzione e conformità".
- UNI 11104 "Calcestruzzo: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- UNI EN 13369 "Regole comuni per prodotti prefabbricati di calcestruzzo".
- UNI EN 13225 "Prodotti prefabbricati di calcestruzzo Elementi strutturali lineari".
- UNI EN 14992- "Prodotti prefabbricati di calcestruzzo Elementi da parete".
- UNI EN 13747- "Prodotti prefabbricati di calcestruzzo- Lastre per solai".

Relazione di calcolo delle fondazioni

Pag. 6 di 88

2.3 Normativa europea ed internazionale

- UNI EN 1990 Eurocodice 0 "Criteri generali di progettazione strutturale".
- UNI EN 1991 Eurocodice 1 "Azioni sulle strutture".
- UNI EN 1992 Eurocodice 2 "Progettazione delle strutture di calcestruzzo".
- UNI EN 1993 Eurocodice 3 "Progettazione delle strutture di acciaio".
- UNI EN 1994 Eurocodice 4 "Progettazione delle strutture composte acciaio-calcestruzzo".
- UNI EN 1997 Eurocodice 7 "Progettazione geotecnica".
- UNI EN 1998 Eurocodice 8 "Progettazione delle strutture per la resistenza sismica".
- BS6349 "Maritime works"
- Recommendation of the Committee for Waterfront Structures EAU, Sixth English Edition (EAU 1990)
- PIANC 2002 "Guidlines for the Design of Fenders Systems"

Relazione di calcolo delle fondazioni

Pag. 7 di 88

3 CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzo

3.1.1 Calcestruzzo per pali di fondazione

Classificazione secondo D.M. 17.01.2018 e UNI-EN 206-1:2016

Classe di resistenza del calcestruzzo C35/45

Classe di abbassamento al cono (slump) S4

Dimensione massima dell'inerte $D_{lower} = 22,4 \text{ mm} \leq D_{max} \leq 31,5 \text{ mm} = D_{upper}$

Classe di esposizione XS3

Minimo contenuto di cemento 360 kg/mc

Massimo rapporto a/c 0,45 Contenuto massimo di cloruri Cl 0,20

COPRIFERRO - Rif. C4.1.6.1.3 Circ. 21/01/2019					
Classe di esposizione:	XS3				
Tipo di ambiente:	Molto aggressivo				
Controllo qualità del copriferro:	Sì				
Classe C.A.:	C35/45				
Tipo di barre:	Barre da c.a.				
Tipo di elemento:	Altri elementi				
Vita nominale V _N :	100	anni			
Tolleranza di posa:	10	mm			
Copriferro minimo tabella C4.1.IV:	45	mm			
Incremento per vita nominale di 100 anni:	10	mm			
Decremento per controllo qualità:	-5	mm			
Incremento per classe C.A. C <c<sub>min:</c<sub>	0	mm			
Copriferro minimo di progetto: 60 mm					

3.2 Acciaio

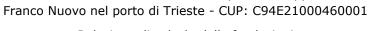
3.2.1 Acciaio per armature

Barre ad aderenza migliorata in acciaio laminato a caldo tipo B450 C secondo DM 17.01.18

Tensione caratteristica di rottura ftk \geq 540 MPa Tensione caratteristica di snervamento fyk \geq 450 MPa

Allungamento caratteristico A_{gtk} $\geq 7.5 \%$

Rapporto $k=f_t/f_y$ 1.15<k<1.35


Rapporto $f_y/f_{y,nom} \leq 1.25$

Relazione di calcolo delle fondazioni

4 DESIGN APPROACH

Generale	I coefficienti parziali per le azioni e i coefficienti di combinazione sono ricavati da normativa nazionale ed Eurocodici, secondo quanto specificato nelle appendici nazionali. Per quanto non specificato si fa riferimento alla normativa BS 6349.			
Struttura di banchina	Combinazioni di esercizio (SLE):			
	$G_1 + G_2 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \cdots$ rara			
	$G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} \dots$ frequente			
	$G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} \dots \qquad \text{quasi}$ permanente			
	Combinazioni ultime (SLU):			
	$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k3} + \cdots$			
	Combinazioni eccezionali:			
	$G_1 + G_2 + P + A_d + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \cdots$			
	Combinazioni sismiche (SLV, SLD ed SLO):			
	$E + G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \cdots$			
	dove:			
	G_1 pesi propri strutturali, spinta del terreno e dell'acqua			
	G ₂ pesi propri degli elementi non strutturali			
	Q accidentali			
	P precompressione			
	A_d azioni eccezionali (urto imbarcazioni)			
	E azioni sismiche allo SLV, SLD o SLO, comprese azioni della spinta idrodinamica (Westergaard) e della spinta sismica del terreno			
	Per gli stati limite strutturali (STR) i coefficienti di combinazione sono:			
	$\gamma_{G1} = 1.3 - 1.0$			
	$\gamma_{G2} = 1.5 - 0.8$			

Relazione di calcolo delle fondazioni

Estensione delle infrastrutture comuni per lo sviluppo del Punto

Pag. 9 di 88

	1 F 0 0					
	$\gamma_Q = 1.5 - 0.0$					
	per accidentali di im	per accidentali di impalcato per combinazione SLU e SLE:				
	Categoria E					
	Coeff. $\Psi_{0,j}$ =1,0	Coeff. $\Psi_{1,j}$ =0,9	Coeff. $\Psi_{2,j}$ =0,8			
Fondazioni su pali	·	i, secondo NTC'2018 stato limite considera	(§6.4.3), devono essere to:			
	per carico li assiali, collas dei carichi sfilamento n stabilità globi - SLU di tipo raggiungimer	mite della palificata so per carico limite de trasversali, collasso ei riguardi dei cari ale. o strutturale (STR)	nei riguardi dei carichi ella palificata nei riguardi per carico limite di chi assiali di trazione, t, tenendo conto del ei pali e raggiungimento ollegamento dei pali.			
	 Verifiche SLU devono essere effettuate applicar combinazione A1+M1+R3 di coefficienti parziali pi dall'Approccio 2, tenendo conto dei valori dei coef parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.4.II e 6 					
	almeno gli ec spostamenti calcolare i va combinazioni esercizio al § requisiti pres prescritto dal	cessivi cedimenti o so trasversali. Specif lori degli spostamenti caratteristiche previs 3 2.5.3, per verificarr stazionali della struttu la condizione (Ed < Ro	dazioni su pali devono			
Paratie di sostegno		siderano i seguenti st zioni SLU e §6.5.3.2 ¡	rati limite ultimi (NTC'18 per SLE):			
	HYD): collass (atto di moto sfilamento di scavo in terr instabilità de	so per rotazione intorro rigido); collasso per uno o più ancorage reni a grana fine in la fondo scavo per sollavo; instabilità globale	di tipo idraulico (UPL e no a un punto dell'opera r carico limite verticale; gi; instabilità del fondo condizioni non drenate; levamento; sifonamento e del complesso opera di			

Relazione di calcolo delle fondazioni

Pag. 10 di 88

	 SLU di tipo strutturale (STR): raggiungimento della resistenza in uno o più ancoraggi; raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto; raggiungimento della resistenza strutturale della paratia.
	Accertando che la condizione ($E_{\text{d}} < R_{\text{d}}$) sia soddisfatta per ogni stato limite considerato.
	Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:
	Combinazione 1: (A1+M1+R1) e Combinazione 2: (A2+M2+R1)
	tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II con i coefficienti γ_r del gruppo R1 pari all'unità.
	Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2
	 SLE - In tutti i casi, nelle condizioni di esercizio, gli spostamenti dell'opera di sostegno e del terreno circostante devono essere valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità di manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali. Per le verifiche SISMICHE le paratie devono rispettare i criteri di verifica § 7.11.6.3
Stabilità globale	 SLU – La verifica di stabilità globale deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali. SISMICA (§ 7.11.4) - si deve controllare che la resistenza del sistema sia maggiore delle azioni impiegando lo stesso approccio di cui al § 6.8.2 per le opere di materiali sciolti e fronti di scavo, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a γR = 1.2.

Relazione di calcolo delle fondazioni

Pag. 11 di 88

5 TEORIA DI RIFERIMENTO

5.1 Fondazioni superficiali

5.1.1 Normativa

<u>NORMATIVA</u> → D.M. 17.01.2018

DI

<u>RIFERIMENTO</u> §6.4.2 FONDAZIONI SUPERFICIALI

Per le verifiche agli stati limite ultimi (SLU) la normativa prescrive:

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite dell'insieme fondazione-terreno;
 - collasso per scorrimento sul piano di posa;
 - stabilità globale.
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

...dove per condizione [6.2.1] si intende:

 $E_D \leq R_D$

Essendo E_D il valore di progetto dell'azione o dell'effetto dell'aione, definito dalle relazioni [6.2.2a] o [6.2.2.b]

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I. Nelle verifiche nei confronti di SLU di tipo strutturale (STR), il coefficiente γ R non deve essere portato in conto.

Relazione di calcolo delle fondazioni

Pag. 12 di 88

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

<i>33</i>	! '	, , , ,			
	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	8,0	8,0	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Q_i}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

 ${\bf Tab.}\ 6.4. {\bf I}-Coefficienti\ parziali\ \gamma_R\ per\ le\ verifiche\ agli\ stati\ limite\ ultimi\ di\ fondazioni\ superficiali$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{\scriptscriptstyle R}$	1,1

Per le verifiche agli stati limite di esercizio (SLE) la normativa prescrive:

Al fine di assicurare che le fondazioni risultino compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), si deve verificare il rispetto della condizione $E_d \leq C_d$ (dove E_d è il valore di progetto dell'effetto delle azioni nelle combinazioni di carico per gli SLE e C_d è il prescritto valore limite dell'effetto delle azioni), calcolando i valori degli spostamenti e delle distorsioni nelle combinazioni di carico per gli SLE specificate al §2.5.3, tenendo conto anche dell'effetto della durata delle azioni.

Forma, dimensioni e rigidezza della struttura di fondazione devono essere stabilite nel rispetto dei summenzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

5.1.1 Collasso per carico limite dell'insieme fondazione-terreno

Per il calcolo della capacità portante in condizioni drenate viene utilizzata la formula di Brinch-Hansen:

$$q_{lim} = \frac{1}{2} \gamma_s B^{'} N_{\gamma} s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} d_{\gamma} + q^{\prime} N_q s_q i_q b_q g_q d_q + c^{\prime} N_c s_c i_c b_c g_c d_c$$

dove:

• γ_s : peso di volume del terreno;

q': carico agente sul piano di posa della fondazione;

• c': coesione

• B' = B - 2e: larghezza fittizia della fondazione

• B: larghezza della fondazione;

• e = M/N: eccentricità del carico;

M: momento agente sulla fondazione;

N: sforzo normale agente sulla fondazione;

N_ν, N_a, N_c: fattori di capacità portante;

• s_{γ} , s_{q} , s_{c} : fattori di forma della fondazione;

• i_{γ} , i_{q} , i_{c} : fattori correttivi che tengono conto dell'inclinazione del carico;

• b_{γ} , b_{q} , b_{c} : fattori correttivi che tengono conto dell'inclinazione della base della fondazione;

• g_{γ} , g_{q} , g_{c} : fattori correttivi che tengono conto dell'inclinazione del piano campagna;

• d_{v} , d_{a} , d_{c} : fattori dipendenti dalla profondità del piano di posa.

Per i fattori N_q e N_c , si fa riferimento alle espressioni ricavate da Prandtl e Reissner:

$$N_q = tan^2 \left(45^{\circ} + \frac{\phi}{2} \right) \cdot e^{\pi \tan \phi}$$

$$N_c = (N_q - 1) \cdot \cot a \, n\phi$$

dove ϕ è l'angolo d'attrito del terreno.

- Per N_{γ} , si fa riferimento all'espressione proposta da Brinch Hansen:

$$N_{\gamma} = 1.5 \cdot (N_q - 1) \cdot \tan \phi$$

- Per i fattori s_{γ} , s_{q} e s_{c} si fa riferimento alle seguenti espressioni:

$$s_{\gamma} = 1 - 0.4 \cdot \frac{B'}{L}$$

$$s_q = 1 + \frac{B^{'}}{L} \cdot \tan \phi$$

Relazione di calcolo delle fondazioni

Pag. 14 di 88

$$s_c = 1 + \frac{N_q}{N_c} \cdot \frac{B'}{L}$$

dove L è la lunghezza della fondazione.

- Per i fattori i_{γ} , i_{q} e i_{c} , si fa riferimento alle espressioni di Brinch Hansen:

$$\begin{split} i_{\gamma} &= 1 - \left[\frac{(0.7 - \beta_2/450) \cdot H}{N + B^{'} \cdot L \cdot c^{'} \cdot \cot a \, n\phi} \right]^{5} \\ i_{q} &= 1 - \left[\frac{0.5 \cdot H}{N + B^{'} \cdot L \cdot c^{'} \cdot \cot a \, n\phi} \right]^{5} \\ i_{c} &= i_{q} - \frac{1 - i_{q}}{N_{c} \cdot \tan \phi} \end{split}$$

dove β_2 è l'angolo di inclinazione del piano di posa espresso in gradi.

Per quanto riguarda i fattori b_{γ} , b_{q} e b_{c} , si fa riferimento alle espressioni di Brinch Hansen:

$$b_{\gamma} = e^{-2.7 \cdot \beta_2 \cdot \tan \phi}$$

$$b_q = e^{-2 \cdot \beta_2 \cdot \tan \phi}$$

$$b_c = 1 - \frac{\beta_2}{1479}$$

- Per quanto riguarda i fattori g_{γ} , g_q e g_c , si fa riferimento alle espressioni di Brinch Hansen:

$$g_{\gamma}=g_{q}=(1-0.5\cdot\tan\beta_{1})^{5}$$

$$g_{c}=1-\frac{\beta_{1}}{147}\circ$$

dove β_1 è l'angolo di inclinazione del piano campagna espresso in gradi.

- Per quanto riguarda i fattori d_{γ} , d_{q} e d_{c} , si fa riferimento alle seguenti espressioni:

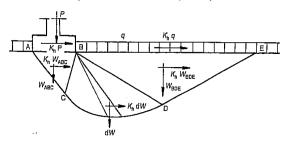
$$d_{\gamma} = 1$$

$$d_{q} = \begin{cases} 1 + 2 \cdot \tan \phi \cdot (1 - \sin \phi)^{2} \cdot \frac{s}{B'} & \left(\frac{s}{B'} \le 1\right) \\ 1 + 2 \cdot \tan \phi \cdot (1 - \sin \phi)^{2} \cdot \arctan\left(\frac{s}{B'}\right) & \left(\frac{s}{B'} > 1\right) \end{cases}$$

$$d_{c} = \begin{cases} 1 + 0.4 \cdot \frac{s}{B'} & \left(\frac{s}{B'} \le 1\right) \\ 1 + 0.4 \cdot \arctan\left(\frac{s}{B'}\right) & \left(\frac{s}{B'} \le 1\right) \end{cases}$$

$$\left(\frac{s}{B'} \le 1\right)$$

dove s è la profondità della fondazione nel terreno.



Relazione di calcolo delle fondazioni

Pag. 15 di 88

Per tener conto della riduzione della capacità portante di una fondazione superficiale in condizioni sismiche vengono inoltre considerati i fattori correttivi proposti da Peck e Paolucci:

Effetti inerziali dovuti al sisma (Paolucci & Pecker, 1995)

Effetti inerziali: fattori correttivi z

$$q_{lim} = \frac{1}{2} \gamma B N_{\gamma} s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} z_{\gamma} + c N_{c} s_{c} d_{c} i_{c} b_{c} g_{c} z_{c} + q N_{q} s_{q} d_{q} i_{q} b_{q} g_{q} z_{q}$$

$$z_{c} = 1 - 0.32k_{h}$$

$$z_{q} = z_{\gamma} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35} \qquad k_{h} = \frac{\gamma_{I} \cdot S \cdot a_{g}}{g}$$

→ Verifica

Deve risultare $R_D > E_D$ (Combinazione A1+M1+R3)

5.1.2 Collasso per scorrimento del piano di posa

La resistenza a scorrimento è così calcolata:

$$R_{res} = N \cdot (tan\delta)$$

Dove:

N = carico verticale agente

 δ = angolo di attrito terreno/fondazione

→ Verifica

Deve risultare $R_D > E_D$ (Combinazione A1+M1+R3)

5.1.3 Cedimenti

Il cedimento di ogni strato viene calcolato mediante la formula:

$$w = \sum_{i=1}^{n} \Delta H_i \left(\frac{\Delta \sigma'_{vr}}{E_{ur,i}} + \frac{\Delta \sigma'_{vc}}{E_i} \right)$$

dove:

 ΔH_i : spessore dello strato i-esimo;

 $\Delta\sigma_{vr}^{'}$: incremento di tensione efficace verticale di ricarico;

- $\Delta\sigma_{vc}^{'}$: incremento di tensione efficace verticale di 1° carico;

 $E_{ur,i} = 3E$: modulo di ricarico dello strato i-esimo;

 E_i : modulo di elasticità dello strato i-esimo;

Relazione di calcolo delle fondazioni

Pag. 16 di 88

n: numero degli strati;

→ Verifica

Deve risultare $R_D > E_D$ (Combinazione A1+M1+R3)

5.2 Fondazioni su pali

5.2.1 Normativa

<u>NORMATIVA DI</u> → D.M. 17.01.2018 RIFERIMENTO

§6.4.3 FONDAZIONI SU PALI

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4.II del DM 17/01/2018.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	Υb	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

 $^{^{(\}prime)}$ da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

La resistenza caratteristica R_k del palo singolo può essere dedotta da:

- risultati di prove di carico statico di progetto su pali pilota (§ 6.4.3.7.1);
- metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
- risultati di prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota (§ 6.4.3.7.1).

Se il valore caratteristico della resistenza a compressione del palo, $R_{c,k}$, o a trazione, $R_{t,k}$, è dedotto dai corrispondenti valori $R_{c,m}$ o $R_{t,m}$, ottenuti elaborando i risultati di una o più prove di carico di progetto, il valore caratteristico della resistenza a compressione e a trazione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.III, in funzione del numero n di prove di carico su pali pilota:

$$R_{c,k} = min\left\{\frac{\left(R_{c,m}\right)_{media}}{\xi_1}; \frac{\left(R_{c,m}\right)_{min}}{\xi_2}\right\}$$

Relazione di calcolo delle fondazioni

Pag. 17 di 88

$$R_{t,k} = min\left\{\frac{\left(R_{t,m}\right)_{media}}{\xi_1}; \frac{\left(R_{t,m}\right)_{min}}{\xi_2}\right\}$$

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥5
ξ_1	1,40	1,30	1,20	1,10	1,0
ξ ₂	1,40	1,20	1,05	1,00	1,0

a) Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate $R_{c,cal}$ (o $R_{t,cal}$) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero n di verticali di indagine:

$$R_{c,k} = min\left\{\frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4}\right\} \qquad \qquad R_{t,k} = min\left\{\frac{(R_{t,cal})_{media}}{\xi_3}; \frac{(R_{t,cal})_{min}}{\xi_4}\right\}$$

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Fatta salva la necessità di almeno una verticale di indagine per ciascun sistema di fondazione, nell'ambito dello stesso sistema di fondazione, ai fini del conteggio delle verticali di indagine per la scelta dei coefficienti ξ in Tab. 6.4.IV si devono prendere solo le verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

Se il valore caratteristico della resistenza $R_{c,k}$ è dedotto dal valore $R_{c,m}$ ottenuto elaborando i risultati di una o più prove dinamiche di progetto ad alto livello di deformazione, il valore caratteristico della resistenza compressione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.V, in funzione del numero n di prove dinamiche eseguite su pali pilota:

$$R_{c,k} = min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_5}; \frac{\left(R_{c,m}\right)_{min}}{\xi_6} \right\}$$

Tab. 6.4.V - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove dinamiche su pali pilota

Numero di prove di carico	≥ 2	≥5	≥ 10	≥ 15	≥ 20
- ξ ₅	1,60	1,50	1,45	1,42	1,40
ξ ₆	1,50	1,35	1,30	1,25	1,25

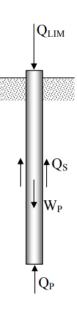
Relazione di calcolo delle fondazioni

Pag. 18 di 88

5.2.1.1 Capacità portante verticale

L'espressione generica utilizzata per il calcolo della portanza di un palo con la punta in terreno granulare soggetto ad un carico verticale è la seguente:

$$Q_{lim} + W_P = Q_S + Q_n$$


dove:

Q_p = portata di punta;

Q_I = portata laterale;

 W_p = peso proprio del palo;

La capacità portante sarò valutata come sommatoria dei contributi dei differenti strati nel caso in cui la fondazione attraversa strati di diversa natura.

Palo in terreno coesivo saturo

• Stima di Qs

La stima della capacità portante per aderenza e/o attrito laterale per un palo di diametro D e lunghezza L è per definizione:

$$Q_s = \pi \cdot D \cdot \int_0^L \tau_S \cdot dz$$

Le tensioni tangenziali limite di attrito e/o aderenza laterale all'interfaccia tra la superficie del palo e il terreno coesivo saturo circostante $\tau_{\mathcal{S}}$ sono difficili da valutare analiticamente, poichè dipendono dal grado di disturbo e dall'alterazione delle pressioni efficaci e interstiziali che le modalità di costruzione del palo producono nel terreno. I metodi attualmente più utilizzati per la definizione di $\tau_{\mathcal{S}}$ sono:

- Metodo α : Si assume che le tensioni tangenziali limite siano una quota parte della resistenza al taglio non drenata originaria del terreno indisturbato.

$$\tau_S = \alpha \cdot c_u$$

 α è un coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno indisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità, dal cedimento del palo. Valori suggeriti:

Relazione di calcolo delle fondazioni

Pag. 19 di 88

(Viggiani 1999)

per pali battuti:

 $25 \le c_u \le 70$

 $70 \le c_u$

$$\alpha = 1$$

 $\alpha = 0.5$

$$c_u \le 25$$
 $\alpha = 1$

$$\alpha = 1 - 0.011 (c_u - 25)$$

$$c_u \le 25$$
 $\alpha = 0.7$

$$25 \le c_u \le 70$$

$$\alpha = 0.7 - 0.008 (c_u - 25)$$

$$70 < c_u$$
 $\alpha = 0.35$

L'Associazione Geotecnica Italiana - AGI

Tipo di palo	Materiale	$C_{u}(kPa)$	α	$\alpha c_{u,max}$ (kPa)		
Infisso (senza asportazione di terreno)		≤ 25	1			
		25 - 50	0,85			
	Calcestruzzo	50 - 75	0,65	120		
		> 75	0,50			
	Acciaio	≤25	1			
		25 - 50	0,80			
		50 - 75	0,65	100		
		> 75	0,50			
Trivellato		≤ 25	0,90			
		25 - 50	0,80	-		
(con asportazione di terreno)	Calcestruzzo	50 - 75	0,60	100		
ui terreno)		> 75	0,40			

Metodo β : Si assume che le sovrappressioni interstiziali che si generano durante la messa in opera del palo si siano dissipate al momento di applicazione del carico, e che pertanto la tensione tangenziale possa essere valutata, con riferimento alle tensioni efficaci, nel modo seguente:

$$\tau_{S} = \sigma'_{h} \cdot tan\delta = K \cdot \sigma'_{v0} \cdot tan\delta = \beta \cdot \sigma'_{v0}$$

In cui:

 σ'_h è la tensione efficace orizzontale nel terreno a contatto con il palo;

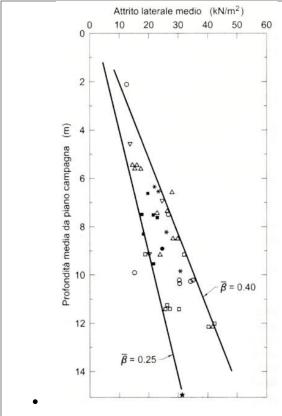
 σ'_{v0} è la tensione efficace verticale iniziale, prima della messa in opera del palo;

K è un coefficiente di spinta, rapporto fra σ'_h e σ'_{v0} ;

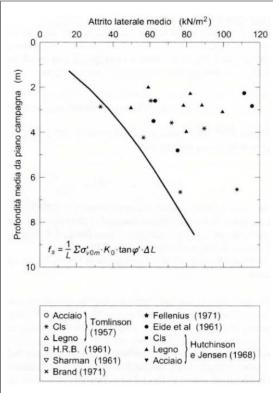
 $tan\delta$ è un coefficiente d'attrito palo-terreno;

 β è un coefficiente pari al prodotto $K \tan \delta$;

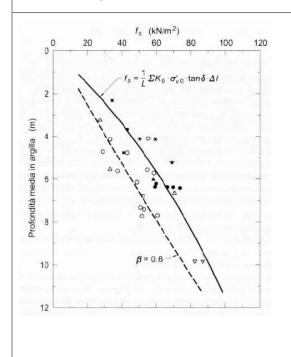
Se l'angolo di attrito palo-terreno δ fosse eguale all'angolo di resistenza al taglio del terreno, \emptyset' , e se l'installazione del palo non producesse alterazioni dello stato tensionale del terreno, si avrebbe:


$$K = K_0 \cong (1 - sen\emptyset') \cdot OCR^{0.5}$$

$$tan\delta = tan\emptyset'$$



Relazione di calcolo delle fondazioni


Pag. 20 di 88

 Valori dell'attrito laterale medio con la profondità per pali infissi in argille tenere

Valori dell'attrito laterale medio con la profondità per pali infissi in argille consistenti

Risultati sperimentali indicano che:

- per pali infissi in terreni coesivi NC il coefficiente β risulta compreso tra 0,25 e 0,40 per cui sembra ragionevole assumere come valore di progetto β =0.3
- per pali infissi in terreni sovra consolidati, i valori del coefficiente sono molto più dispersi ma comunque superiori all'equazione vista in precedenza di K, che si può assumere come valore di progetto.
- per pali trivellati in terreni coesivi NC si po' fare

Relazione di calcolo delle fondazioni

Pag. 21 di 88

consistenti. - per pali trivellati in terreni coesivi OC i valori ottenibili dall'equazione vista in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Stima di Q_p

In genere il termine di capacità portante di punta Qp di pali in terreno coesivo contribuisce in maniera modesta alla capacità portante totale. Per la stima di Qp si esegue un'analisi in condizioni non drenate, in termini di tensioni totali.

$$Q_p = A_p \cdot q_p = A_p \cdot \left(c_u \cdot N_c + \sigma_{v0_p} \right)$$

dove A_p è l'area del palo, c_u è la resistenza a taglio in condizioni non drenate del terreno alla profondità della base del palo, σ_{v0_p} è la tensione verticale totale alla punta, Nc è un fattore di capacità portante, il cui valore è assunto pari a 9.

Palo in terreno incoerente

Stima di Q_s

Si applica il metodo β . Per la scelta dei valori K e $tan\delta$ si può fare riferimento alle indicazioni AGI, nella seguente tabella:

Tabella 1 – Valori indicativi di k e u per terreni incoerenti

	Tipo di palo	Valori di k	Valori di u
	Acciaio	0,5 ÷ 1	tg 20°
Battuto	Calcestruzzo prefabbricato	1 ÷ 2	tg (3/4 φ')
	Calcestruzzo gettato in opera	1 ÷ 3	tg φ′
Trivellato)	0,4 ÷ 0,7 (*)	tg φ'

(*) Decrescente con la profondità

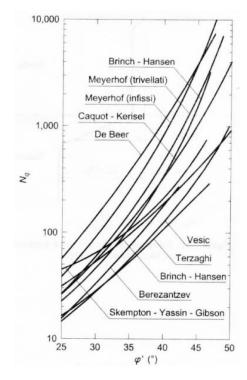
Relazione di calcolo delle fondazioni

Pag. 22 di 88

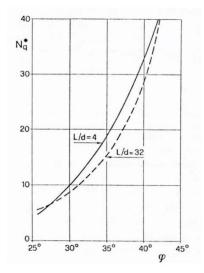

Stima di Q_p

La capacità di punta dei pali in terreni incoerenti è stimata con l'equazione:

$$Q_p = A_p \cdot q_p = A_p \cdot N_q \cdot \sigma'_{v0,P}$$


In cui A_p è l'area di base del palo, q_p è la capacità portante unitaria, $\sigma'_{v_0,p}$ è la tensione verticale efficace alla punta, N_q è un fattore di capacità portante.

Il valore N_q dipende a parità di angolo di resistenza al taglio, dai meccanismi di rottura proposti e i corrispondenti valori di N_q .



Meccanismi di rottura ipotizzati per un palo: *a)*Caquot, Buisman e Terzaghi;

- b) Meyerhof;
- c) Berezantzev;
- d) Skempton, Yassin, Gibson e Vesic

La forte incertezza associata alla stima della capacità portante di punta per i **pali trivellati di grande diametro in terreno incoerente** non è tuttavia quasi mai determinante nelle scelte progettuali. Infatti, esse sono condizionate dai cedimenti ammissibili piuttosto che dalla rottura del sistema palo-terreno, la quale si manifesta per cedimenti dell'ordine del 25% del diametro. Risulta pertanto opportuno riferirsi alla condizione limite di esercizio, ovvero ad un carico alla punta del palo cui corrisponde un cedimento dell'ordine del 6-10% del diametro del palo, utilizzando un'equazione identica alla precedente ma con un coefficiente N_q^* , inferiore a N_q e corrispondente all'insorgere delle prime deformazioni plastiche alla punta (figura a destra).

Relazione di calcolo delle fondazioni

Pag. 23 di 88

5.2.1.2 Capacità portante laterale

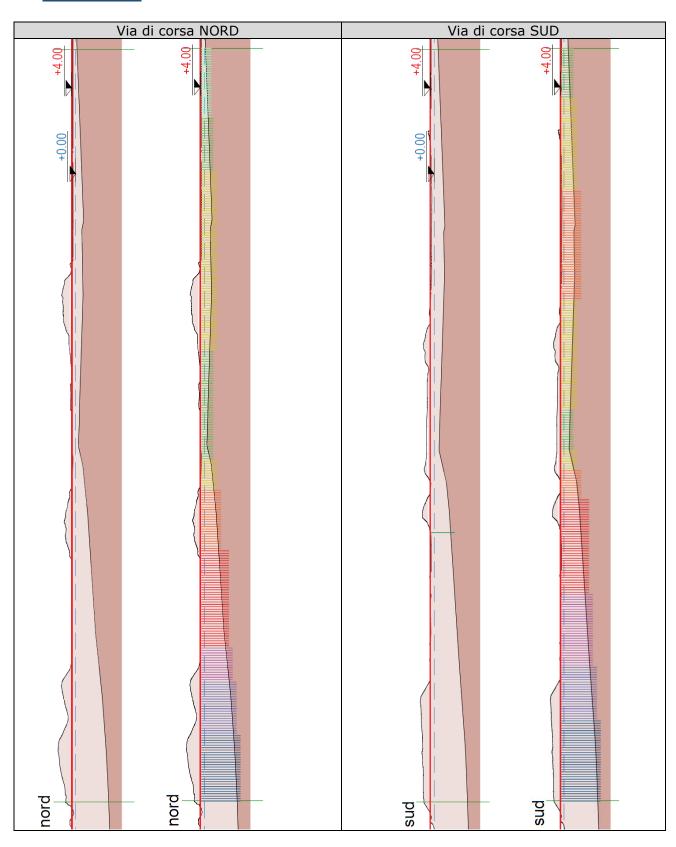
Il calcolo della capacità portante di un palo soggetto ad un carico orizzontale è condotto applicando la teoria di Broms (1964), considerando lo schema di palo vincolato in testa in terreno incoerente soggetto ad un carico orizzontale.

Secondo la teoria di Broms, lo stato tensodeformativo del complesso palo terreno sotto azioni orizzontali, si presenta come un problema tridimensionale per la cui soluzione è necessario introdurre alcune ipotesi semplificative:

- il terreno è omogeneo;
- il comportamento dell'interfaccia palo-terreno è di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente, l'interazione palo-terreno è determinata dalla dimensione caratteristica d della sezione del palo (diametro) misurata normalmente alla direzione del movimento;
- il palo ha un comportamento rigido-perfettamente plastico, ovvero si considerano trascurabili le deformazioni elastiche del palo.

L'ultima ipotesi comporta che il palo abbia solo moti rigidi finché non si raggiunge il momento di plasticizzazione M_y del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua per un tratto di lunghezza non definita con momento costante. La verifica viene soddisfatta se viene rispettata la seguente condizione:

 $E_d < H_d$


ove E_d è il valore di progetto dell'azione esterna calcolata applicando i coefficienti parziali γ_G e γ_Q alle azioni agenti, mentre H_d è il valore di progetto della resistenza del terreno.

[§6.4.3.1.1.1] Per la determinazione del valore di progetto $R_{tr,d}$ della resistenza dei pali soggetti ai carichi trasversali valgono le indicazioni del §6.4.3.1.1 del DM 17.01/2018, applicando il coefficiente parziale γ_T della Tab.6.4VI.

Tab. 6.4.VI - Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)					
$\gamma_T = 1.3$					

6 **GRU RMG**

Relazione di calcolo delle fondazioni

Pag. 25 di 88

6.1 Modello geotecnico

6.1.1 Parametri geotecnici generali

In seguito si illustrano i parametri per il modello geotecnico dell'area a terra:

Litologia	X	ф	C'	Е	Cu
Litologia	[kN/m ³]			[MPa]	[kPa]
R	18	30-35	-	10-40	-
Α	17-19	20-27	15-35	10-20	20-70
В	23	35	0-20	100-130	-
С	23	32-35	270-300	15.000- 20.000	-

Litologia	Cr	Сс	Cs	e0	OCR	G0	Vs	σο
Litologia	[-]	[-]	[-]	[-]	[-]	[MPa]	[m/s]	[MPa]
R	-	-	-	-	-	-	-	-
Α	0,019- 0,127	0,153- 0,464	0.012- 0.110	0,657- 1.275	1-3	55,5-79,1	175-204	-
В	-	-	-	-	-	-	-	-
С	-	-	-	-	-	-	-	10-40

Litologia	K						
Litologia	[m/s]						
R 1.04x10 ⁻⁰⁴							
Α	1.14x10 ⁻⁰⁷ - 7.15x10 ⁻⁰⁸						
B 1.99x10 ⁻⁰⁵ - 4.26x10 ⁻⁰⁸							
C 6.20x10 ⁻⁰⁸							

6.1.2 Flysch

Il bed-rock flyschoide è caratterizzato da livelli marnosi dal colore marrone di spessore centimetrico, dal classico aspetto fogliettato, alternati a strati decimetrici di arenaria in cui la roccia si presenta parzialmente alterata, di colore grigio a spalmature ocracee, talora con presenza di vene calcitiche bianche. Il tetto del Flysch è stato individuato a profondità variabile. Per quanto concerne i parametri di resistenza meccanica e di deformabilità dell'ammasso roccioso si riportato alcuni risultati di prove PLT effettuate in strati Flyschoidi di Trieste.

Relazione di calcolo delle fondazioni

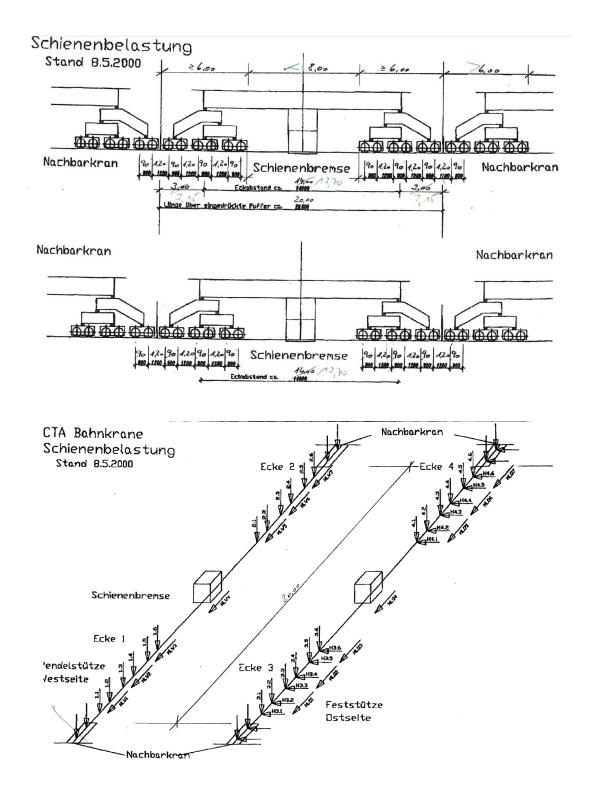
Pag. 26 di 88

Provino	Profondità media (m)	Tipo	Massa Volumica ⁽¹⁾	H _{iniz} (mm)	Largh.	Forza P	Diam.equiv.	I _s	I _{s (50)}	Resistenza a compressione
	Prof		(t/m ³)	D	W	(kN)	(mm)	(MPa)	(MPa)	(MPa)
TS021/042	42,25	D	2,65	83	70	2,2	83	0,32	0,40	8,83
	42,52	Α	2,64	47	83	3,2	70	0,64	0,75	16,54
	42,60	Α	2,44	65	83	2,8	83	0,41	0,51	11,26
	42,75	D	2,45	83	150	2,9	83	0,42	0,53	11,63
	42,85	D	2,41	83	43	1,4	83	0,20	0,26	5,62
TS021/044	26,45	D	2,61	83	90	13,5	83	1,96	2,46	54,16
	27,35	D	2,63	83	175	27,5	83	3,99	5,01	110,32
	27,40	D	2,63	83	105	22,5	83	3,27	4,10	90,26
	27,45	D	2,62	83	65	20,0	83	2,90	3,65	80,23
	27,55	D	2,55	78	56	0,3	78	0,05	0,06	1,33
TS021/049	39,65	Α	2,48	50	83	3,9	73	0,74	0,87	19,22
	39,70	Α	2,47	50	83	3,7	73	0,70	0,83	18,23
	39,80	Α	2,50	40	83	1,9	65	0,45	0,51	11,13
	40,25	Α	2,47	49	83	2,8	72	0,54	0,64	14,01
	40,50	Α	2,50	70	83	5,9	86	0,80	1,02	22,40
	40,85	Α	2,49	63	83	2,2	82	0,33	0,41	9,06

	data di fine pr	ove	12.11.21							
Provino	Profondità media (m)	Tipo	Massa Volumica (1)	H _{iniz}	Largh.	Forza P	Diam.equiv.	I _s	I _{s (50)}	Resistenza a compressione
	Profon		(t/m ³)	D	w	(kN)	(mm)	(MPa)	(MPa)	(MPa)
TS021/049	41,35	D	2,55	83	110	1,9	83	0,27	0,34	7,42
	41,50	Α	2,50	56	83	3,9	77	0,65	0,79	17,37
	41,70	D	2,51	83	90	1,9	83	0,28	0,35	7,62
	42,15	Α	2,51	66	83	2,3	84	0,33	0,42	9,14
	42,45	D	2,54	83	90	2,0	83	0,29	0,36	8,02
	42,70	D	2,52	83	80	4,1	83	0,60	0,75	16,45
	42,90	D	2,60	83	110	5,4	83	0,78	0,98	21,66
TS021/051	34,70	D	2,65	83	135	36,0	83	5, 23	6,56	144,42
	34,80	D	2,65	83	65	29,0	83	4,21	5,29	116,34

Figura 2: Risultati prove PLT effettuati su strati Flyschodi a Trieste

La resistenza a compressione media, togliendo i provini che superino i 100 Mpa, risulta pari a circa **21 MPa**


Relazione di calcolo delle fondazioni

Pag. 27 di 88

6.2 Analisi dei carichi

6.2.1 Carichi gru

Per il carico gru si utilizzano i carichi riportati nelle figure seguenti:

Relazione di calcolo delle fondazioni

Pag. 28 di 88

Abgeleitet aus den Eckl	asten eine	es Herstel	iers mit e	nem Zusc	chiag von	20 %, 9.5	.2000	
Lastfall	1		3		5		7	1
Betrieb/Ruhe	Betrieb	Betrieb	Betrieb	Betrieb	Betrieb	Betrieb	Ruhe	Ruhe
	Pandel-	Pendel-	Pendel-	Fest-	Fest-	Fest-		1
	stützen-	stützen-	stützen-	stützen-	stützen-		A.:	1
Katzstellung	selte	seite	seite	seite	seite	seite		1
Wind bezogen auf				1	1	50.10		
Schiene	Ohne	Langs	Quer	Ohne	Längs	Quer	Längs	Quer
Massenkräfte	Ohne	Mit	Mit	Onne	Mit	Mit	Ohne	Ohne
Rador.		1			Italia	ient	0.1110	- OTHIC
Ecke 1, Vertikallasten			:		-		1	-
1.1	372	347	366	169	139	144	218	26
1.2	372	347				144		
1.3	372	347				144	The second second	25 AE
1.4	372							
1.5	372				139		218	
1.6		347	366		139		218	
cke 2, Vartikaliasten	372	347		169	139	144	218	25
	2232	2082	2196	-				
2.1	372	406	395	169	198		318	
2.2	372	406	398	169	198		318	
2.3	372	408	396		198	174	318	25
2.4	372	406	396	169	198		318	25
2.5	372	ANG	396	169	198	174	318	
2.6	372	406		169	198		318	
Summe Kräfte längs	2232	2436	2376		700	174	010	- 23
ur Schiene, Westseite	4464	4516	4572				()	
HLW	0	293	320	0	140	134	346	
cke 3, Vertikaliasten		203	920	- 0	140	1.34	340	
3.1	110	80	90	24.5			2.57	
3.2	110	80	the Contract of the Contract o	314	288	319	121	
3.3	110		90	314	288	319	121	
3.4		80	90	314	288	319	121	
	110	80	90	314	288	319	121	
3.5	110	80	90	314	288	319	121	186
3.6	110	80	90	314	288	319	121	
cke 3, Horizontal-				1884	1728	1914	726	1116
isten quer zur Schiene					(131A)(135A)	100	-	2500000
H3.1	0	-3	_ 12	0	-7	11	0	48
H3.2	0	-2	13	ō!	-5	11	0	48
H3.3	0	-2	14	0	-3:	13	0	48
H3.4	01	-1	15	0				
H3.5	Ó	0	16		-1:	15	0	48
H3.6	a	1	17	0	0!	17	0	48
cke 4. Vertikaliasten	- 0	- 1	1/	0	2	19	01	48
4.1	- 226		-					
	110	138	112	314	346	341	221	186
4.2	110	138	112	314	346	341	221	186
4.3	110	138	112	314	348	341	221	186
4.4	110	138	112	314	346	341	221	186
4.5	110	138	112	314	348	341		
4.6	110	138	112	314	346	341	221	186
ke 4. Horizontal-	-			4 10 10 1		THE RESERVE THE PERSON NAMED IN	221	186
sten quer zur Schiene				700 T	2076	2046	1326	1116
H4.1	0	14	20					
H4.2	Ö	15	29	0	41	52	Oi	48
H4.3	0		29	0	41	58	0	48
H4.4		16	30	0	44	60	0	48
H4.5	0	17	30	0	44	64	0	48
	0	18	31	0	40	68	0	48
H4.6	0	19	31.	0	49	72	0	48
mme Krafte langs Schiene, Ostseite					268	372		200
HLO	0	91	85		266	0.00000	Telephone III	0

Figura 3: Carichi gru agenti sulle fondazioni

Relazione di calcolo delle fondazioni

Pag. 29 di 88

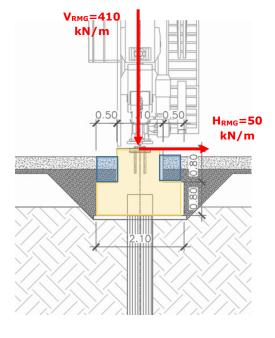
I massimi carichi agenti corrispondono ai punti:

- <u>Punto 4.6</u>: Carico verticale V=406 kN (carico orizzontale disposto longitudinalmente alla trave di fondazione e per questo non considerato)
- <u>Punto 2.6</u>: Carico verticale V=346 kN Carico orizzontale (ortogonale alla direzione della trave) H=49 kN

Per il dimensionamento preliminare delle strutture si utilizza un carico verticale pari a:

V=410 kN/m H=50 kN/m

6.2.2 Peso Proprio


Si considerano i seguenti pesi propri degli elementi strutturali:

Calcestruzzo $\gamma = 25.0 \text{ kN/m}^3$

Acciaio $\gamma = 78.5 \text{ kN/m}^3$

6.2.3 Carichi agenti

L'analisi dei carichi risulta utile per determinare le sollecitazioni agenti alla testa del palo. Il carico verticale della gru RMG verrà incrementata del peso proprio della trave e del terreno gravante nelle parti a sbalzo, ipotizzando quindi di non avere il beneficio della capacità portante della fondazione superficiale.

Peso proprio

 $G_1=25x2,50=62.5 \text{ kN/m}$

Permanenti portati (Peso del terreno)

 $G_2=(18x0.8x0.5)x2=14,4 \text{ kN/m}$

Accidentali concentrati (Carico Verticale gru - V)

V=340 kN/m

Accidentali concentrati (Carico Orizzontale gru - H)

H=34 kN/m

Relazione di calcolo delle fondazioni

Pag. 30 di 88

Carichi verticali sul palo (interasse pali i=2,5 m):

		SLE [kN]	γslu	SLU [kN]
Peso proprio	G ₁ =62.5x2,5=	156	1,3	203
Permanenti portati	G ₂ =14.4x2,5=	36	1,3	47
Accidentali concentrati	V=410x2,5=	1025	1,5	1538
		1217		1788

Carico orizzontale:

- SLE→H=50x2.5x1=125 kN
- SLU →H=50x2.5x1.5=188 kN

6.3 Verifiche

6.3.1 Capacità Portante

Il calcolo della portanza del palo tipo CFA, d=600 mm viene condotto secondo due metodi.

<u>1º Metodo – Pali su Roccia</u>

Secondo quanto riportato in "Analisi e progettazione di fondazioni su pali" di H.G. Poulos, E.H. Davis, studi condotti su pali in roccia da Thorne (1977) evidenziano valori di pressioni ammissibili alla punta variabili da $0.3q_{um}$ a $4q_{um}$, essendo q_{um} il valore di resistenza alla compressione semplice.

Il riferimento alle soluzioni teoriche mostra che assumere una portanza ammissibile alla punta pari a 0.3q_{um} sarebbe abbastanza prudenziale con coefficienti di sicurezza di almeno 3 per le rocce fratturate a brevi intervalli, 12 o più per rocce integre.

Relazione di calcolo delle fondazioni

Pag. 31 di 88

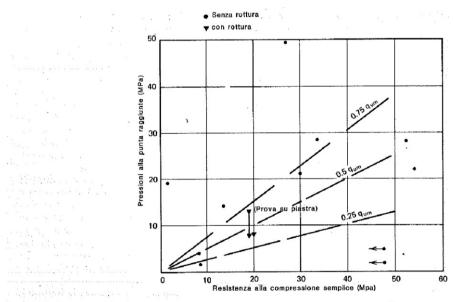


FIGURA 3.26 Pressioni alla punta raggiunte in prove in situ su pali in roccia (Thorne, 1977).

La resistenza limite di punta in condizione di rottura vale secondo gli studi di Thorne, per rocce fratturate: $Q_{punta}(limite) = 3x(0.3xq_{um}) \times A_{punta} = 3x(0.3x21)\times0.283=5349 \text{ kN}.$

Trascurando a favore di sicurezza la resistenza per attrito laterale del palo, la portanza di progetto agli SLU (comb. A1+M1+R3) vale:

$$N_{d,res}(SLU) = 5349/(1.7x1.3) - W_{palo}x1.3 = 2420-82=2338 kN.$$

Ipotizzando un palo lungo 10m (W_{palo max}=63kN)

Tale valore risulta essere maggiore del valore massimo agente agli SLU (1788 kN) cfr. risultati modello di calcolo. Le pressioni agenti alla punta valgono allo SLE:

SLE:
$$Q_p/A_p = 1217 \text{ kN } / 0.283 \text{ mq} = 4300 \text{ kPa} = 4.3 \text{ MPa}$$

In condizione di esercizio assumendo un valore medio di q_{um} pari a 21 MPa e un fattore moltiplicativo prudenziale per rocce fratturate pari a 0.3 si ottiene una pressione ammissibile alla punta del palo (teoria di Thorne) di:

 $q_{amm,punta} = 0.3x21 = 6.3 \text{ MPa} > 4.3 \text{ MPa} \text{ VERIFICA SODDISFATTA}.$

2º Metodo - Pali su Roccia

Il secondo metodo consiste nel calcolare la portanza del palo assimilando lo strato Flyschoide ad un terreno granulare. Si riporta il calcolo di un palo di diametro 600 mm

Relazione di calcolo delle fondazioni

Pag. 32 di 88

CALCOLO CAPACITA' PORTANTE PALI DI FONDAZIONE (D.M. 17.01.2018, cap. n.6)

J.N Tipologia pali : Tipo Verifica : Punta in: 1368 Gru RMG_Pali CFA600 SLU_Combinazione 2 (A1_M1_R3)

Diametro paratia [m]	0,6
γ medio(kN/m ³)	19,0
Quota Falda (m s.l.m.)	-4,30
Prof. Falda da pc [m]	4,30
Lpalo,netta [m]	34,40
Area base [m²]	0,283

Coefficienti parziali per i parametri geotecnici del terreno: (Tab. 6.2.II - D.M. 17.01.2018)

Parametri	Valore	M1	M2
Tangente dell'angolo di resistenza al taglio (tano)	1	1	1,25
Coesione efficace (c'k)	1	1	1,25
Resistenza non drenata (Cuk)	1	1	1,4
Peso dell'unità di volume (γ _γ)	1	1	1

Fattori di correlazione ζ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate: (Tab. 6.4.IV - D.M. 17.01.2018):

Numero di verticali indagate									
Valore 1 2 3 4 5 7					7	≥10			
ζ3	1,70	1,70	1,65	1,60	1,55	1,50	1,45	1,40	
ζ4	1,70	1,70	1,55	1,48	1,42	1,34	1,28	1,21	

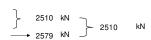
Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali (Tab. 6.4.II - D.M. 17.01.2018):

Resistenza	Simbolo γ _r	Valore (R3)	Pali infissi	Pali trivel.	Pali ad elica cont.
Base	γb	1,30	1,15	1,35	1,30
Laterale in compressione	γs	1,15	1,15	1,15	1,15
Totale (*)	γ	1,25	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1.25	1.25	1.25	1.25

Modello geotecnico

									CC	ESIVO)			INC	COERE	NTE		TOT			
	Quota	Quota				σν' strato	σν strato				β [-]				Stato	β	[-]	qlat	coes	qlat inc	Q _{laterale}
Tipo di terreno	Tetto	Base [m	Prof.	Perim	γ'	medio	finale	Cu _{media}	α		К	tan	C'		adden	К	tan	Metod	Metod	Metod	
	[m.s.l.m.]	s.l.m.]	[m]	[m]	[kN/m³]	[kPa]	[kPa]	[kPa]	[-]	OCR	[-]	(\$\phi_{med})	[kPa]	[°]	same nto	[-]	(\$\phi_{med})	ο α	ο β	ο β	(kN/m)
R	4,30	2,70	1,60	0,00	18,00	14,40	28,80	0,00	1,00	1,00			0,00	30	sciolto	0,60	0,577			5	0
R	2,70	0,30	2,40	1,88	18,00	50,40	74,40	0,00	1,00	1,00			0,00	30	sciolto	0,60	0,577			17	79
R	0,00	-6,60	6,60	1,88	9,00	101,70	199,80	0,00	1,00	1,00			0,00	30	sciolto	0,60	0,577			35	438
R	-6,60	-18,00	11,40	0,00	9,00	182,70	416,40	0,00	1,00	1,00			0,00	30	sciolto	0,60	0,577			63	0
A	-18,00	-22,00	4,00	0,00	9,00	252,00	492,40	0,00	1,00	1,00			0,00	20	sciolto	0,60	0,364			55	0
Α	-22,00	-26,00	4,00	0,00	9,00	288,00	568,40	0,00	1,00	1,00			0,00	20	sciolto	0,60	0,364			63	0
В	-26,00	-28,00	2,00	0,00	9,00	315,00	606,40	0,00	1,00	1,00			15,00	28	sciolto	0,60	0,532			115	0
С	-28,00	-32,00	4,00	0,00	9,00	342,00	682,40	0,00	1,00	1,00			20,00	33	sciolto	0,60	0,649			153	0
С	-32,00	-32,00	0,00	0,00	9,00	360,00	682,40	0,00	1,00	1,00			20,00	33	sciolto	0,60	0,649			160	0
																					517

Calcolo Peso del Palo


L _{tratto fuori falda} (m)	2,90
L _{tratto sotto falda} (m)	10,00
Wp (peso del palo) (kN)	63

Note: a favore di sicurezza si considerano i valori minori (in grossetto) tra qlat coes e qlat inc

SLU - Combinazione 2 (D.M. 17.01.2018)

Calcolo Resistenza di progetto a Compressione (A1+M1+R3)

kN	Q/γ _R
75	
517	
304	265
4962	
2919	2245
3223	2579
	75 517 304 4962 2919

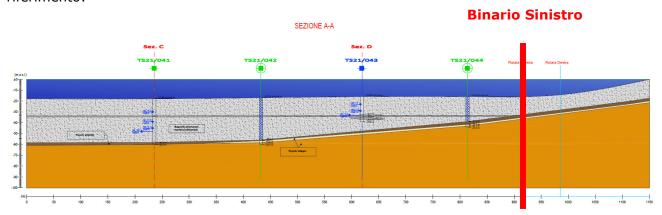
Calcolo Resistenza di progetto a Trazione (A1+M1+R3)

Calcolo Rc,cal media	kN	Q/γ _R				
Q _{laterale, media}	517		۲	243	kN	A questo valore si deve aggiungere il peso del palo
Q _{laterale, media} / ζ ₃	304	243	J			

CONFRONTO RISULTATI

Rd,c (COMPRESSIONE) Rd,t (TRAZIONE) SLU Combinazione 2 (A1_M1_R3) 2428 kN/m (D.M. 17.01.2018) 306 kN/m (D.M. 17.01.2018)

La verifica risulta soddisfatta.


Relazione di calcolo delle fondazioni

Pag. 33 di 88

7 GRU ASC SU CASSA DI COLMATA

7.1 Geotecnica di riferimento

In seguito si riporta la sezione a cui si fa riferimento per la definizione del modello geotecnico di riferimento:

Per la geotecnica di riferimento si rimanda alla relazione specifica in seguito si riportano i parametri desunti da quanto specificato.

Dall'analisi delle indagini eseguite nell'area in studio è possibile determinare il seguente modello geotecnico generale di riferimento per l'area a mare.

Gruppo	Sigla	Formazione	Descrizione
R		Riporto	
	A1	Depositi alluvionali	Limo argilloso a tratti debolmente sabbioso
A	A2	marini/continentali	Limo argilloso-sabbioso
В		Flysch alterato	Matrice limosa-sabbiosa-argillosa con eventuali corpi arenacei, o scaglie di marna, inglobati in essa
С		Flysch integro	Alternanza di marne ed arenarie

L	itologia	Tetto	Letto	Spessore	X	ф	c'	E	Cu
---	----------	-------	-------	----------	---	---	----	---	----

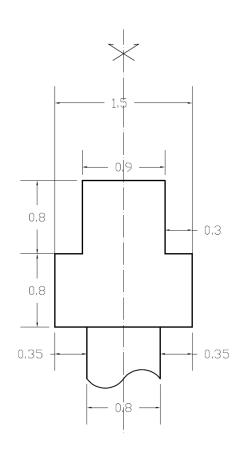
Relazione di calcolo delle fondazioni

Pag. 34 di 88

	[m s.l.m]	[m s.l.m]	[m]	[kN/m3]	[°]	[kPa]	[MPa]	[kPa]
A1	-17	-35	18	16-18	19-21	20-50	13-15	10-20
A2	-35	-48	13	16-18	20-22	55-75	13-15	30-40
В	-48	-51	3	23	35	0-20	100- 130	-
С	-51			23	32-34	270- 300	15.000- 20.000	-

	Tetto	Letto	Cr	Сс	e0	OCR	G0	Vs
Litologia	Litologia [m [m s.l.m] s.l.m]		[-]	[-]	[-]	[-]	[MPa]	[m/s]
A1	-17	-35	0,219- 0,229	0,385- 0,505	1,466- 1,705	1	37,9	148
A2	-35	-48	0,030- 0,132	0,150- 0,363	0,748- 1,136	1	114- 132,3	235- 255
В	-48	-51	-	-	-	-	-	-
С	-51		-	-	-	-	-	-

Litologia	Tetto [m s.l.m.m]	Letto [m s.l.m.m]	σ max uniassiale [MPa]
A1	-17	-35	-
A2	-35	-48	-
В	-48	-51	-
С	-51		10-40



Relazione di calcolo delle fondazioni

Pag. 35 di 88

7.2 Carichi agenti

L'analisi dei carichi risulta utile per determinare le sollecitazioni agenti alla testa del palo. Il carico verticale della gru ASC verrà incrementata del peso proprio della trave e del terreno gravante nelle parti a sbalzo, ipotizzando quindi di non avere il beneficio della capacità portante della fondazione superficiale.

Peso proprio

 $G_1 = \gamma_{cls} \times A = 25 \text{ kN/m}^3 \times 1.9 \text{ m}^2 = 47.5 \text{ kN/m}$

Permanenti portati (Peso del terreno)

 $G_2=(18x0.8x0.3)x2=8.64 \text{ kN/m}$

Accidentali concentrati (Carico Verticale gru - V)

V=1000 kN/m

Accidentali concentrati (Carico Orizzontale gru - H)

H=100 kN/m

• Carichi verticali sul palo (interasse pali i=2,5 m):

		SLE [kN]	γsιυ	SLU [kN]
Peso proprio	G ₁ =47.5x2,5=	<u>119</u>	1,3	155
Permanenti portati	G ₂ =8.64x2,5=	22	1,3	29
Accidentali concentrati	V=1000x2,5=	<u>2500</u>	1,5	3750
		2641		3934

Carico orizzontale:

Relazione di calcolo delle fondazioni

Pag. 36 di 88

- SLE→H=100x2.5x1=250 kN
- SLU →H=100x2.5x1.5=375 kN

7.3 Verifiche

7.3.1 Capacità Portante

Il calcolo della portanza del palo tipo CFA, d=800 mm viene condotto secondo due metodi.

1º Metodo - Pali su Roccia

Secondo quanto riportato in "Analisi e progettazione di fondazioni su pali" di H.G. Poulos, E.H. Davis, studi condotti su pali in roccia da Thorne (1977) evidenziano valori di pressioni ammissibili alla punta variabili da 0.3q_{um} a 4q_{um}, essendo q_{um} il valore di resistenza alla compressione semplice.

Il riferimento alle soluzioni teoriche mostra che assumere una portanza ammissibile alla punta pari a 0.3q_{um} sarebbe abbastanza prudenziale con coefficienti di sicurezza di almeno 3 per le rocce fratturate a brevi intervalli, 12 o più per rocce integre.

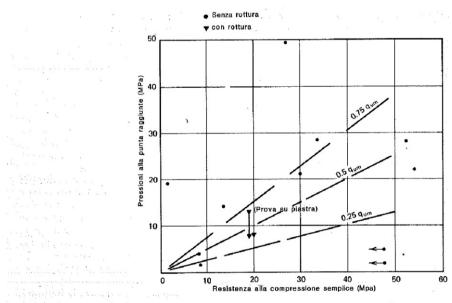


FIGURA 3.26 Pressioni alla punta raggiunte in prove in situ su pali in roccia (Thorne, 1977).

La resistenza limite di punta in condizione di rottura vale secondo gli studi di Thorne, per rocce fratturate: $Q_{punta}(limite) = 3x(0.3xq_{um}) \times A_{punta} = 3x(0.3x22000) \times 0.502 = 9940 \text{ kN}.$

Trascurando a favore di sicurezza la resistenza per attrito laterale del palo, la portanza di progetto agli SLU (comb. A1+M1+R3) considerando 2 verticali indagate vale:

Relazione di calcolo delle fondazioni

Pag. 37 di 88

 $N_{d,res}(SLU) = 9940/(1.65x1.3) - [(W_{palo} - U_{punta}) x1.3] = 4634-511 = 4123 kN.$

Le pressioni agenti alla punta valgono allo SLE:

SLE: $Q_p/A_p = 2641 \text{ kN } / 0.502 \text{ mq} = 5261 \text{ kPa} = 5.2 \text{ MPa}$

In condizione di esercizio assumendo un valore medio di q_{um} pari a 21 MPa e un fattore moltiplicativo prudenziale per rocce fratturate pari a 0.3 si ottiene una pressione ammissibile alla punta del palo (teoria di Thorne) di:

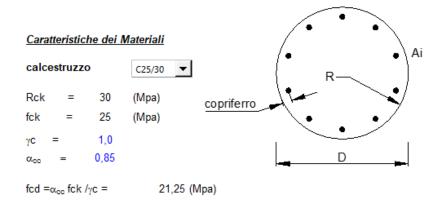
 $q_{amm,punta} = 0.3x22 = 6.6 \text{ MPa} > 5.2 \text{ MPa VERIFICA SODDISFATTA}.$

2º Metodo - Pali su Roccia

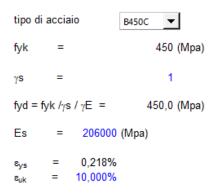
Il secondo metodo consiste nel calcolare la portanza del palo considerando lo strato Flyschoide con il suo angolo di attrito e una coesione c' ridotta dei 2/3. Si riporta il calcolo di un palo di diametro 800 mm nel caso più sfavorevole ovvero considerando la verticale più verso mare.

PAL	I DI FO	ONDAZI	ONE: CA	LCOL	O CA	PACITA'	PORTANT	TE VERT	TICALE	E AI SE	ENSI N	ITC 20	18			
1368 - MOLO VIII Pali trivellato - 800 mm																
Caratterisitche palo]	Coefficie	nti parziali	in funzio	ne del n	umero d	i verticali				
Tipo palo			RIVELLATO	- 2			N. tot.			•	•	4	_	-	≥10	SLE
Diametro Palo [m] Lunghezza Palo		0,8 43,000					N. τοτ. ζ ₃	1.65	1 1,7	2 1.65	3 1.6	1.55	5 1.5	7 1,45	≥1 0 1.4	SLE 1
Area base [m ²]		0,502	'				ς ₃ ζ ₄	1,65	1,7	1,55	1,48	1,42	1,34	1,28	1,21	1
Carico Q a p.c. [kN/m²]		0,0					54	1,00	1,,	1,55	1,40	1,72	1,04	1,20	1,21	
Coefficienti parziali per le azioni (A)]	Coefficie	nti parziali	su paran	netri cara	atteristic	i del terre	no (M)			
Carichi	•	A1	A2	SISMA	SLE		Parametri		·				M1	M2	SISMA	SLE
Permanenti		1,3	1	1	1			dell'angolo		(φ)			1	1,25	1	1
Variabili		1,5	1,3	1	1			efficace (c'		(O)			1	1,25	1	1
								a al taglio n unità di volu		a (Cu)			1	1,4 1	1	1 1
Coefficienti parziali y _R su resisten	ze caratt	teristiche (R)				P	ALI INFISS	il	PAL	I TRIVEL	LATI	PAL	I AD EI	LICA	
Resistenza		,	R1	R2	R3		R1	R2	R3	R1	R2	R3	R1	R2	R3	SLE
Punta		γь	1	1,7	1,35		1	1,45	1,15	1	1,7	1,35	1	1,6	1,3	2,5
Laterale (compressione)		γs	1	1,45	1,15		1	1,45	1,15	1	1,45	1,15	1	1,45	1,15	2,5
Totale (compressione)		γ_t	1	1,6	1,3		1	1,45	1,15	1	1,6	1,3	1	1,55	1,25	2,5
Laterale in trazione		γ _{st}	1	1,6	1,25		1	1,6	1,25	1	1,6	1,25	1	1,6	1,25	2,5
Resistenza a Compressione (Tabe Calcolo Peso Palo	ella riass	untiva)														
Wp,k	325 423	(kN) (kN)			Valore Medio	Valore Minimo	Valore	Valore Medio/ζ4	Rd	Wp		Rd,c - Wp)			
Wp,kx1.3	423	(KIN)			kN	kN	kN	kN	kN	kN		kN				
SLE			SLE		3811	3811	3811	3811	3811	325		3485				
Approccio 1 - Combinazione 1			A1+M1+R1		9527	9527	5774	5774	5774	423		5351				
Approccio 1 - Combinazione 2			A2+M1+R2		5769	5769	3496	3496	3496	325		3171				
Approccio 2			A1+M1+R3		7266	7266	4404	4404	4404	423		3981				

												AMETRI RENATI					ARAMET N DRENA		Qlim. L	ATERALE	Qlim. I	PUNTA
N. STRATO		TIPO TERRENO	QUOTA FALDA (>0)	γ Terreno [kN/m³]	Prof. Tetto [m]	Prof. Base [m]	D [m]	Conicita' [C]	ф	c' [kPa]	α (c')	k	μ	tan (μφ)	Nq	Cu [kPa]	α (Cu)	Nc	Qlim. Lat. Parametri drenati [kPa]	Qlim. Lat. Parametri non drenati [kPa]	Qlim. punta Parametri drenati [kN]	Qlim. punt Parametri non drenai [kN]
		GRANULARE			0.00	0.00	0.00	0.00	_					0.00								
2	H trave Pavimentazione	GRANULARE	4,3 4,3	20,0 19,0	0,00 0,60	0,60 1.80	0,00	0,00	0	0,0 0,0	0,00 0,00	0,0 0,0	0,0 0,0	0,00 0,00								
3	Riempimento	COES.	4,3	19,0	1.80	20,38	0,80	0,00	0	0,0	0,00	0,0	0,0	0,00								
4	A1 Limo Argilloso	COES.	4,3	16,0			0,80	0,00	20	55,0	0,00	0.7	0,4	0,13					,	•		
5	B Flysh Alterato	GRANULARE	4,3	23,0	36,74	40,84	0,80	0,00	35	15,0	0,00	0,4	0,7	0,46								
6	C Flysh	GRANULARE	4,3	23,0	40,84	43,60	0,80	0,00	32	270,0	0,60	0,5	0,6	0,36	12,0				1626	1626	7901	7901
																-			1626	1626	7901	7901



Relazione di calcolo delle fondazioni


Pag. 38 di 88

La verifica risulta soddisfatta.

In seguito di mostra la verifica di capacità portante orizzontale secondo Broms:

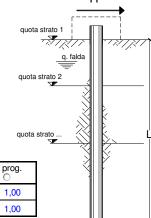
Acciaio

Armature

numero			diametro (m	ım)	area (mm²)	copriferro (mm)
23	+	ф	22		8743,05	50
0	^	ф	0	‡	0,00	0
0	<u>+</u>	ф	0	<u></u>	0,00	0

Momento di Plasticizzazione

My =
$$1617,1$$
 (kN m)



Relazione di calcolo delle fondazioni

Pag. 39 di 88

opera MOLO VIII palo D800

	coefficienti parziali		Į.	1	M		R
	Metodo di calcolo		permanenti γ _G	variabili γα	$\gamma_{\phi'}$	γcu	γт
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,00	1,00	1,60
S	A1+M1+R3	•	1,30	1,50	1,00	1,00	1,30
	SISMA	0	1,00	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00	1,00
definiti d	definiti dal progettista		1,30	1,50	1,25	1,40	1,00

n	1	2	3	4	5	7	≥10 ○	T.A.	prog.
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

									[D]		
						Parametri m	edi	Parametri minimi			
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k_p	Cu	
		(m)	(kN/m^3)	(kN/m^3)	(°)		(kPa)	(°)		(kPa)	
p.c.=strato 1	Riempimento	41,3	19	9	0	1,00	20	0	1,00	20	
✓ strato 2	A1	23,4	16	6	0	1,00	20	0	1,00	20	
✓ strato 3	В	7,1	23	13	35	3,69	0	35	3,69	0	
✓ strato 4	С	3	23	13	32	3,25	0	32	3,25	0	
✓ strato 5	С	0,00	23	13	32	3,25	0	32	3,25	0	
□ strato 6						1,00			1,00		

 Quota falda
 39,51
 (m)

 Diametro del palo
 D
 0,80
 (m)

 Lunghezza del palo
 L
 38,30
 (m)

 Momento di plasticizzazione palo
 My
 1617,10
 (kNm)

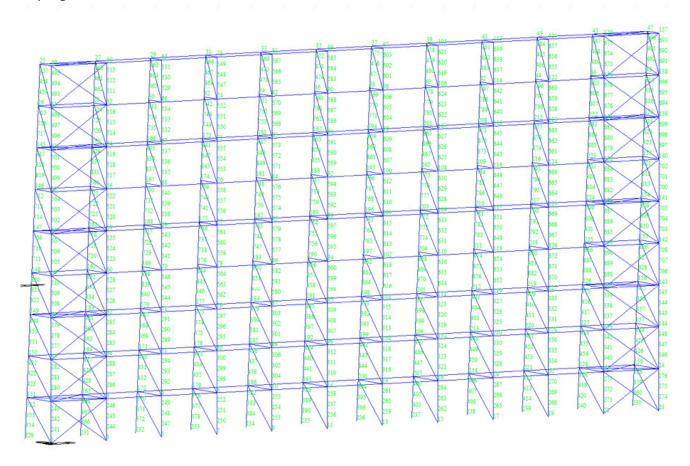
 Step di calcolo
 0,01
 (m)

© palo impedito di ruotare
Calcolo
C palo libero
Calcolo
(ctrl+r)

	<u>H</u>	medio			<u>H r</u>	<u>minimo</u>		
Palo lungo		807,1	(kN)			807,1	(kN)	
Palo intermedio		2798,7	(kN)			2798,7	(kN)	
Palo corto		15770,7	(kN)		1	15770,7	(kN)	
	H_{med}	807,1	(kN)	Palo lungo	H _{min}	807,1	(kN)	Palo lungo
	H _k =	Min(H _{med}	/ξ3;R _m	_{in} /ξ ₄)	489,16	6	(kN)	
	н	$I_d = H_k/\gamma_T$			376,28	3	(kN)	
	Carico Ass	iale Perma	anente (G	G): G =	0		(kN)	
	Carico Ass	iale variab	ile (Q):	Q =	250		(kN)	
	F _d = G	· γ _G + Q · γ	'Q =		375,00)	(kN)	
	FS:	= Hd / Fd	=		1,00			

Relazione di calcolo delle fondazioni

Pag. 40 di 88

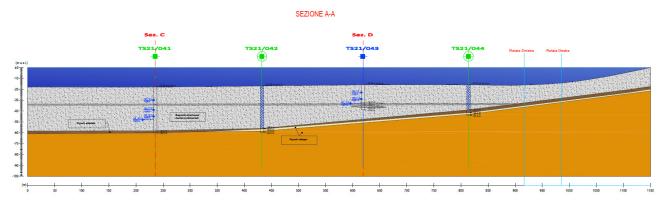

8 MURO FRANGIVENTO SU CASSA DI COLMATA

8.1 Configurazione strutturale

Nell'immagine che segue si illustra lo sviluppo strutturale della barriera frangivento modellata ad elementi beam. Dai risultati del modello strutturali si sono estratti gli scarichi sui nodi di base secondo le combinazioni SLU più gravose sia per le azioni verticali che per quelle orizzontali.

Successivamente sono state redistribuite sulla palificata le cui caratteristiche verranno illustrate in seguito.

La struttura ha uno sviluppo longitudinale di 33 m per uno di 18 m in altezza, secondo moduli di $3 \text{ m} \times 2.5 \text{ m} \times 2 \text{ m}$ per cui verrà ripetuta in modo modulare secondo lo sviluppo lineare ipotizzato in progetto.



Relazione di calcolo delle fondazioni

Pag. 41 di 88

8.2 Geotecnica di riferimento

In seguito si riporta la sezione a cui si fa riferimento per la definizione del modello geotecnico di riferimento:

Per la geotecnica di riferimento si rimanda alla relazione specifica in seguito si riportano i parametri desunti da quanto specificato.

Dall'analisi delle indagini eseguite nell'area in studio è possibile determinare il seguente modello geotecnico generale di riferimento per l'area a mare.

Gruppo	Sigla	Formazione	Descrizione
R		Riporto	
	A1	Depositi alluvionali	Limo argilloso a tratti debolmente sabbioso
A	A2	marini/continentali	Limo argilloso-sabbioso
В		Flysch alterato	Matrice limosa-sabbiosa-argillosa con eventuali corpi arenacei, o scaglie di marna, inglobati in essa
С		Flysch integro	Alternanza di marne ed arenarie

	Tetto	Letto	Spessore	Υ	ф	c'	Е	Cu
Litologia	[m s.l.m]	[m s.l.m]	[m]	[kN/m3]	[°]	[kPa]	[MPa]	[kPa]
A1	-17	-35	18	16-18	19-21	20-50	13-15	10-20
A2	-35	-48	13	16-18	20-22	55-75	13-15	30-40

Relazione di calcolo delle fondazioni

Pag. 42 di 88

	Tetto	Letto	Spessore	¥	ф	c′	Е	Cu
Litologia	[m s.l.m]	[m s.l.m]	[m]	[kN/m3]	[°]	[kPa]	[MPa]	[kPa]
В	-48	-51	3	23	35	0-20	100- 130	-
С	-51			23	32-34	270- 300	15.000- 20.000	-

	Tetto	Letto	Cr	Сс	e ₀	OCR	G ₀	Vs
Litologia	[m s.l.m]	[m s.l.m]	[-]	[-]	[-]	[-]	[MPa]	[m/s]
A1	-17	-35	0,219- 0,229	0,385- 0,505	1,466- 1,705	1	37,9	148
A2	-35	-48	0,030- 0,132	0,150- 0,363	0,748- 1,136	1	114- 132,3	235- 255
В	-48	-51	-	-	-	-	-	-
С	-51		-	-	-	-	-	-

Litologia	Tetto [m s.l.m.m]	Letto [m s.l.m.m]	σ max uniassiale [MPa]
A1	-17	-35	-
A2	-35	-48	-
В	-48	-51	-
С	-51		10-40

Relazione di calcolo delle fondazioni

Pag. 43 di 88

8.3 Carichi agenti

8.3.1 Combinazioni SLU di calcolo

Dall'interrogazione del modello strutturale eseguito con il software FEM Midas si sono estratti gli scarichi per ogni nodo strutturale di base per le combinazioni di calcolo che seguono e da cui si sono desunti lo sforzo assiale N e i momenti M aventi braccio la distanza del lato dei controventi trasversali alla base, pari a 2,5 m

SLU5 (massima compressione)

Node	Load	x [m]	y [m]	z [m]	FX (kN)	FY (kN)	FZ (kN)
1	SLU 5	0	0	0	146,953258	-46,430326	-214,99354
3	SLU 5	3	0	0	126,687844	-123,85378	-785,21727
5	SLU 5	6	0	0	-0,129823	-114,16757	-684,58909
7	SLU 5	9	0	0	-0,074423	-114,1672	-684,59411
9	SLU 5	12	0	0	-0,037712	-114,1672	-684,59411
11	SLU 5	15	0	0	-0,011451	-114,1672	-684,59411
13	SLU 5	18	0	0	0,011451	-114,1672	-684,59411
15	SLU 5	21	0	0	0,037712	-114,1672	-684,59411
17	SLU 5	24	0	0	0,074423	-114,1672	-684,59411
19	SLU 5	27	0	0	0,129823	-114,16757	-684,58909
21	SLU 5	30	0	0	-126,687844	-123,85378	-785,21727
23	SLU 5	33	0	0	-146,953258	-46,430326	-214,99354
229	SLU 5	0	2,5	0	1,509473	-40,256745	521,643036
230	SLU 5	33	2,5	0	-1,509473	-40,256745	521,643036
231	SLU 5	3	2,5	0	0,28181	-46,094153	597,863326
232	SLU 5	6	2,5	0	0,290486	-56,92243	740,263479
233	SLU 5	9	2,5	0	0,238751	-56,922801	740,268502
234	SLU 5	12	2,5	0	0,154461	-56,922802	740,268503
235	SLU 5	15	2,5	0	0,053233	-56,922802	740,268503
236	SLU 5	18	2,5	0	-0,053233	-56,922802	740,268503
237	SLU 5	21	2,5	0	-0,154461	-56,922802	740,268503
238	SLU 5	24	2,5	0	-0,238751	-56,922801	740,268502
239	SLU 5	27	2,5	0	-0,290486	-56,92243	740,263479
240	SLU 5	30	2,5	0	-0,28181	-46,094153	597,863326

SLU 5							
N	683,9	kN					
F_trazione	7819,2	kN					
F_comprex	-7819,2	kN					
Momento	19547,89	kN m					

Relazione di calcolo delle fondazioni

Pag. 44 di 88

SLU7 (massima trazione)

Node	Load	x [m]	y [m]	z [m]	FX (kN)	FY (kN)	FZ (kN)
1	SLU 7	0	0	0	-139,137276	48,396287	302,088636
3	SLU 7	3	0	0	-132,612506	126,548911	875,530649
5	SLU 7	6	0	0	0,096483	116,350686	767,28084
7	SLU 7	9	0	0	0,052018	116,350313	767,285893
9	SLU 7	12	0	0	0,024808	116,350313	767,285894
11	SLU 7	15	0	0	0,007237	116,350313	767,285894
13	SLU 7	18	0	0	-0,007237	116,350313	767,285894
15	SLU 7	21	0	0	-0,024808	116,350313	767,285894
17	SLU 7	24	0	0	-0,052018	116,350313	767,285893
19	SLU 7	27	0	0	-0,096483	116,350686	767,28084
21	SLU 7	30	0	0	132,612506	126,548911	875,530649
23	SLU 7	33	0	0	139,137276	48,396287	302,088636
229	SLU 7	0	2,5	0	-1,521552	38,004941	-492,05881
230	SLU 7	33	2,5	0	1,521552	38,004941	-492,05881
231	SLU 7	3	2,5	0	-0,263403	43,684862	-566,26493
232	SLU 7	6	2,5	0	-0,278662	54,739315	-711,60645
233	SLU 7	9	2,5	0	-0,231414	54,739688	-711,6115
234	SLU 7	12	2,5	0	-0,150466	54,739688	-711,6115
235	SLU 7	15	2,5	0	-0,051965	54,739688	-711,6115
236	SLU 7	18	2,5	0	0,051965	54,739688	-711,6115
237	SLU 7	21	2,5	0	0,150466	54,739688	-711,6115
238	SLU 7	24	2,5	0	0,231414	54,739688	-711,6115
239	SLU 7	27	2,5	0	0,278662	54,739315	-711,60645
240	SLU 7	30	2,5	0	0,263403	43,684862	-566,26493

SLU 7						
N	683,9	kN				
F_trazione	8151,5	kN				
F_compressione	-8151,5	kN				
Momento	20378,8	kN m				

Relazione di calcolo delle fondazioni

Pag. 45 di 88

SLU TRAZIONE

		x [m]	y [m]	z [m]	Fx [kN]	Fy [kN]	Fz [kN]
1	SLU TRAZIONE	0	0	0	-43,6	-78,0	-506,9
3	SLU TRAZIONE	3	0	0	31,7	-93,7	-517,5
5	SLU TRAZIONE	6	0	0	0,1	-114,9	-696,2
7	SLU TRAZIONE	9	0	0	0,1	-114,9	-696,2
9	SLU TRAZIONE	12	0	0	0,1	-114,9	-696,2
11	SLU TRAZIONE	15	0	0	0,0	-114,9	-696,2
13	SLU TRAZIONE	18	0	0	0,0	-114,9	-696,2
15	SLU TRAZIONE	21	0	0	-0,1	-114,9	-696,2
17	SLU TRAZIONE	24	0	0	-0,1	-114,9	-696,2
19	SLU TRAZIONE	27	0	0	-0,1	-114,9	-696,2
21	SLU TRAZIONE	30	0	0	-31,7	-93,7	-517,5
23	SLU TRAZIONE	33	0	0	43,6	-78,0	-506,9
229	SLU TRAZIONE	0	2,5	0	0,4	-39,7	520,3
230	SLU TRAZIONE	33	2,5	0	-0,4	-39,7	520,3
231	SLU TRAZIONE	3	2,5	0	0,0	-45,2	591,2
232	SLU TRAZIONE	6	2,5	0	0,0	-56,2	736,5
233	SLU TRAZIONE	9	2,5	0	0,0	-56,2	736,6
234	SLU TRAZIONE	12	2,5	0	0,0	-56,2	736,6
235	SLU TRAZIONE	15	2,5	0	0,0	-56,2	736,6
236	SLU TRAZIONE	18	2,5	0	0,0	-56,2	736,6
237	SLU TRAZIONE	21	2,5	0	0,0	-56,2	736,6
238	SLU TRAZIONE	24	2,5	0	0,0	-56,2	736,6
239	SLU TRAZIONE	27	2,5	0	0,0	-56,2	736,5
240	SLU TRAZIONE	30	2,5	0	0,0	-45,2	591,2

SLU TRAZIONE					
N	497,3	kN			
F_trazione	7866,9	kN			
F_compressione	-7866,9	kN			
Momento	19667,3	kN m			

Relazione di calcolo delle fondazioni

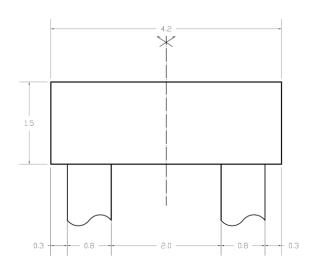
Pag. 46 di 88

8.3.2 Combinazioni SLE di calcolo

<u>SLE</u>

Node		x [m]	y [m]	z [m]	Fx [kN]	Fy [kN]	Fz [kN]
1	SLE	0	0	0	182,4	-17,0	-16,2
3	SLE	3	0	0	126,9	-96,0	-645,3
5	SLE	6	0	0	-0,2	-75,8	-454,2
7	SLE	9	0	0	-0,1	-75,8	-454,2
9	SLE	12	0	0	-0,1	-75,8	-454,2
11	SLE	15	0	0	0,0	-75,8	-454,2
13	SLE	18	0	0	0,0	-75,8	-454,2
15	SLE	21	0	0	0,1	-75,8	-454,2
17	SLE	24	0	0	0,1	-75 <i>,</i> 8	-454,2
19	SLE	27	0	0	0,2	-75 <i>,</i> 8	-454,2
21	SLE	30	0	0	-126,9	-96,0	-645,3
23	SLE	33	0	0	-182,4	-17,0	-16,2
229	SLE	0	2,5	0	1,5	-27,0	347,8
230	SLE	33	2,5	0	-1,5	-27,0	347,8
231	SLE	3	2,5	0	0,3	-31,1	400,9
232	SLE	6	2,5	0	0,3	-38,2	494,6
233	SLE	9	2,5	0	0,3	-38,2	494,6
234	SLE	12	2,5	0	0,2	-38,2	494,6
235	SLE	15	2,5	0	0,1	-38,2	494,6
236	SLE	18	2,5	0	-0,1	-38,2	494,6
237	SLE	21	2,5	0	-0,2	-38,2	494,6
238	SLE	24	2,5	0	-0,3	-38,2	494,6
239	SLE	27	2,5	0	-0,3	-38,2	494,6
240	SLE	30	2,5	0	-0,3	-31,1	400,9

SLE							
N	497,3	kN					
F_trazione	5205,1	kN					
F_compressione	-5205,1	kN					
Momento	25567	kN m					

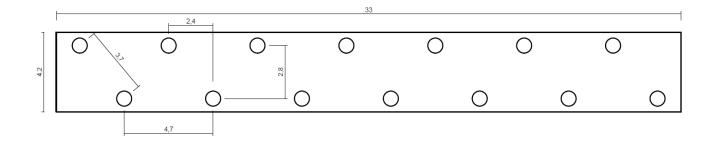

La risultante massima dell'azione orizzontale **Fy SLU** da utilizzare al fine delle verifiche di capacità portante orizziontale è pari a **1882 kN**

Relazione di calcolo delle fondazioni

Pag. 47 di 88

Al carico verticale si aggiunge il peso proprio della struttura calcolato come:

Peso proprio


 $G_1 = \gamma_{cls} \times A = 25 \text{ kN/m}^3 \times 6.3 \text{ m}^2 = 157.5 \text{ kN/m}$ $N_{peso_proprio} = 157.5 \text{ kN/m} \times 33 \text{m} \times 1.3 = 6757 \text{ kN}$

8.3.3 Disposizione dei pali e sollecitazione massima sul singolo palo

In seguito si mostra la dimensione e la disposizione dei pali (D800) e della fondazione in testa al palo. Si fa presente che tale fondazione è da ripetere modularmente al prolungamento della struttura in elevazione.

Tuttavia si mantengano le seguenti misure:

- Distanza dai bordi rispetto alla struttura in elevazione: 0.6 m
- Interasse longitudinale tra i pali sullo stesso corrente: 4.7 m
- Interasse longitudinale tra pali su correnti differenti: 2.4 m
- Interasse trasversale tra pali: 2.8 m
- Distanza tra il bordo longitudinale e trasversale dal confine del palo: 0.3-0.6 cm

Nelle tabelle che seguono si mostrano le sollecitazioni concentrate al centro della trave su pali la quale assolve funzione di ripartizione delle azioni provenienti dalla sovrastruttura :

Relazione di calcolo delle fondazioni

Pag. 48 di 88

Condizione SLU7

C. H N N N	N [kN]	Mz [kN m]	Braccio [m]	n_pali	ez [m]	ey [m]	Combinazione	
Sollecitazioni	-7441	20378,8			0	-2,7	SLU 7	
PALO	y [m]	z [m]	y^2 [m2]	z^2 [m2]	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	-1,4	-1,25	1,96	1,6	-531,5	0,0	-1039,7	-1571,2
2	1,4	-3,75	1,96	14,1	-531,5	0,0	1039,7	508,2
3	-1,4	-6,25	1,96	39,1	-531,5	0,0	-1039,7	-1571,2
4	1,4	-8,75	1,96	76,6	-531,5	0,0	1039,7	508,2
5	-1,4	-11,25	1,96	126,6	-531,5	0,0	-1039,7	-1571,2
6	1,4	-13,75	1,96	189,1	-531,5	0,0	1039,7	508,2
7	-1,4	-16,25	1,96	264,1	-531,5	0,0	-1039,7	-1571,2
8	1,4	1,25	1,96	1,6	-531,5	0,0	1039,7	508,2
9	-1,4	3,75	1,96	14,1	-531,5	0,0	-1039,7	-1571,2
10	1,4	6,25	1,96	39,1	-531,5	0,0	1039,7	508,2
11	-1,4	8,75	1,96	76,6	-531,5	0,0	-1039,7	-1571,2
12	1,4	11,25	1,96	126,6	-531,5	0,0	1039,7	508,2
13	-1,4	13,75	1,96	189,1	-531,5	0,0	-1039,7	-1571,2
14	1,4	16,25	1,96	264,1	-531,5	0,0	1039,7	508,2
Qi_MINIMO	-1571,2	kN						
Qi_MASSIMO	508,2	kN						

Condizione SLU5

Sollecitazioni	N [kN]	Mz [kN m]	Braccio [m]	n_pali	ez [m]	ey [m]	Combinazione	
Sollecitazioni	-7441	19548,0	1,4	14	0	-2,6	SLU 5	
PALO	y [m]	z [m]	y^2 [m2]	z^2 [m2]	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	-1,4	-1,25	1,96	1,6	-531,5	0,0	-997,3	-1528,8
2	1,4	-3,75	1,96	14,1	-531,5	0,0	997,3	465,8
3	-1,4	-6,25	1,96	39,1	-531,5	0,0	-997,3	-1528,8
4	1,4	-8,75	1,96	76,6	-531,5	0,0	997,3	465,8
5	-1,4	-11,25	1,96	126,6	-531,5	0,0	-997,3	-1528,8
6	1,4	-13,75	1,96	189,1	-531,5	0,0	997,3	465,8
7	-1,4	-16,25	1,96	264,1	-531,5	0,0	-997,3	-1528,8
8	1,4	1,25	1,96	1,6	-531,5	0,0	997,3	465,8
9	-1,4	3,75	1,96	14,1	-531,5	0,0	-997,3	-1528,8
10	1,4	6,25	1,96	39,1	-531,5	0,0	997,3	465,8
11	-1,4	8,75	1,96	76,6	-531,5	0,0	-997,3	-1528,8
12	1,4	11,25	1,96	126,6	-531,5	0,0	997,3	465,8
13	-1,4	13,75	1,96	189,1	-531,5	0,0	-997,3	-1528,8
14	1,4	16,25	1,96	264,1	-531,5	0,0	997,3	465,8
Qi_MINIMO	-1528,8	kN						
Qi_MASSIMO	465,8	kN						

Condizione SLU TRAZIONE

Relazione di calcolo delle fondazioni

Pag. 49 di 88

Sollecitazioni	N [kN]	Mz [kN m]	Braccio [m]	n_pali	ez [m]	ey [m]	Combinazione	
Sollecitazioni	-5695,3	25567,0	1,4	14	0	-4,5	SLU TRAZIONE	
PALO	y [m]	z [m]	y^2 [m2]	z^2 [m2]	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	-1,4	-1,25	1,96	1,6	-406,8	0,0	-1304,4	-1711,2
2	1,4	-3,75	1,96	14,1	-406,8	0,0	1304,4	897,6
3	-1,4	-6,25	1,96	39,1	-406,8	0,0	-1304,4	-1711,2
4	1,4	-8,75	1,96	76,6	-406,8	0,0	1304,4	897,6
5	-1,4	-11,25	1,96	126,6	-406,8	0,0	-1304,4	-1711,2
6	1,4	-13,75	1,96	189,1	-406,8	0,0	1304,4	897,6
7	-1,4	-16,25	1,96	264,1	-406,8	0,0	-1304,4	-1711,2
8	1,4	1,25	1,96	1,6	-406,8	0,0	1304,4	897,6
9	-1,4	3,75	1,96	14,1	-406,8	0,0	-1304,4	-1711,2
10	1,4	6,25	1,96	39,1	-406,8	0,0	1304,4	897,6
11	-1,4	8,75	1,96	76,6	-406,8	0,0	-1304,4	-1711,2
12	1,4	11,25	1,96	126,6	-406,8	0,0	1304,4	897,6
13	-1,4	13,75	1,96	189,1	-406,8	0,0	-1304,4	-1711,2
14	1,4	16,25	1,96	264,1	-406,8	0,0	1304,4	897,6
Qi_MINIMO	-1711,2	kN						
Qi_MASSIMO	897,6	kN						

Per la verifica di capacità portante alla Broms, si divide la massima azione trasversale Fy per il numero di pali inserito: 1882 kN / 14 = 134.4 kN

Condizione SLE

Callacitaniani	N [kN]	Mz [kN m]	Braccio [m]	n_pali	ez [m]	ey [m]	Combinazione	
Sollecitazioni	-5694,8	13013,0	1,4	14	0	-2,3	SLE	
PALO	y [m]	z [m]	y^2 [m2]	z^2 [m2]	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	-1,4	-1,25	1,96	1,6	-406,8	0,0	-663,9	-1070,7
2	1,4	-3,75	1,96	14,1	-406,8	0,0	663,9	257,2
3	-1,4	-6,25	1,96	39,1	-406,8	0,0	-663,9	-1070,7
4	1,4	-8,75	1,96	76,6	-406,8	0,0	663,9	257,2
5	-1,4	-11,25	1,96	126,6	-406,8	0,0	-663,9	-1070,7
6	1,4	-13,75	1,96	189,1	-406,8	0,0	663,9	257,2
7	-1,4	-16,25	1,96	264,1	-406,8	0,0	-663,9	-1070,7
8	1,4	1,25	1,96	1,6	-406,8	0,0	663,9	257,2
9	-1,4	3,75	1,96	14,1	-406,8	0,0	-663,9	-1070,7
10	1,4	6,25	1,96	39,1	-406,8	0,0	663,9	257,2
11	-1,4	8,75	1,96	76,6	-406,8	0,0	-663,9	-1070,7
12	1,4	11,25	1,96	126,6	-406,8	0,0	663,9	257,2
13	-1,4	13,75	1,96	189,1	-406,8	0,0	-663,9	-1070,7
14	1,4	16,25	1,96	264,1	-406,8	0,0	663,9	257,2
Qi_MINIMO	-1070,7	kN						
Qi_MASSIMO	257,2	kN						

8.4 Verifiche

8.4.1 Capacità Portante

Il calcolo della portanza del palo tipo CFA, d=800 mm viene condotto secondo due metodi.

1º Metodo (Compressione) - Pali su Roccia

Secondo quanto riportato in "Analisi e progettazione di fondazioni su pali" di H.G. Poulos, E.H. Davis, studi condotti su pali in roccia da Thorne (1977) evidenziano valori di pressioni ammissibili

Relazione di calcolo delle fondazioni

Pag. 50 di 88

alla punta variabili da $0.3q_{um}$ a $4q_{um}$, essendo q_{um} il valore di resistenza alla compressione semplice.

Il riferimento alle soluzioni teoriche mostra che assumere una portanza ammissibile alla punta pari a 0.3q_{um} sarebbe abbastanza prudenziale con coefficienti di sicurezza di almeno 3 per le rocce fratturate a brevi intervalli, 12 o più per rocce integre.

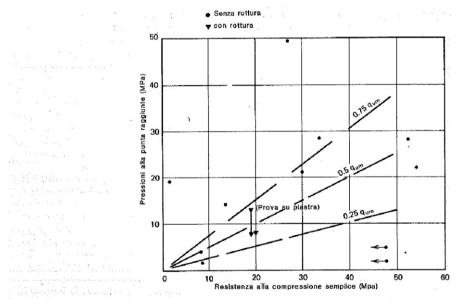


FIGURA 3.26 Pressioni alla punta raggiunte in prove in situ su pali in roccia (Thorne, 1977).

La resistenza limite di punta in condizione di rottura vale secondo gli studi di Thorne, per rocce fratturate: $Q_{punta}(limite) = 3x(0.3xq_{um}) \times A_{punta} = 3x(0.3x21000)\times 0.502 = 9488 \text{ kN}.$

Trascurando a favore di sicurezza la resistenza per attrito laterale del palo, la portanza di progetto agli SLU (comb. A1+M1+R3) considerando 2 verticali indagate vale:

$$N_{d,res}(SLU) = 9940/(1.65 \times 1.3) - [(W_{palo} - U_{punta}) \times 1.3] = 4634-511 = 4123 kN.$$

Le pressioni agenti alla punta valgono allo SLE:

SLE:
$$Q_p/A_p = 1070 \text{ kN} / 0.502 \text{ mq} = 2131 \text{ kPa} = 2.1 \text{ Mpa}$$

In condizione di esercizio assumendo un valore medio di q_{um} pari a 21 MPa e un fattore moltiplicativo prudenziale per rocce fratturate pari a 0.3 si ottiene una pressione ammissibile alla punta del palo (teoria di Thorne) di:

 $q_{amm,punta} = 0.3x22 = 6.6 \text{ MPa} > 2.1 \text{ MPa VERIFICA SODDISFATTA}.$

<u>2º Metodo (Compressione) – Pali su Roccia</u>

Il secondo metodo consiste nel calcolare la portanza del palo considerando lo strato Flyschoide con il suo angolo di attrito e una coesione c' ridotta dei 2/3. Si riporta il calcolo di un palo di diametro 800 mm nel caso più sfavorevole ovvero considerando la verticale più verso mare.

Relazione di calcolo delle fondazioni

Pag. 51 di 88

PALI DI FONDAZIONE: CALCOLO CAPACITA' PORTANTE VERTICALE AI SENSI NTC 2018 1368 - MOLO VIII Pali trivellato - 800 mm Caratterisitche palo Coefficienti parziali in funzione del numero di verticali PALO TRIVELLATO - 2 Tipo palo Diametro Palo [m] 0,8 N. tot. 2 3 5 7 >10 SLE Lunghezza Palo 1.55 1.45 43.000 1.65 1.7 1.65 1.6 1.5 ζ_3 1.4 1 0,502 1,42 1,65 1,7 1,55 1,48 1,28 1,21 Area base [m²] 1,34 1 ζ_4 0,0 Carico Q a p.c. [kN/m²] Coefficienti parziali per le azioni (A) Coefficienti parziali su parametri caratteristici del terreno (M) Carichi SISMA SLE M2 SISMA SLE Parametri Permanenti Variabili 1,3 1,5 Tangente dell'angolo di attrito (φ) Coesione efficace (c') 1,25 1,25 1,3 Resistenza al taglio non drenata (Cu) 1,4 Peso dell'unità di volume (γ) PALI INFISSI Coefficienti parziali γ_R su resistenze caratteristiche (R) PALI TRIVELLATI PALI AD ELICA Resistenza R2 R3 R1 R3 R2 R3 SLE R2 R1 R2 R3 R1 Punta 1,7 1,35 1,45 1,15 1,3 2,5 Laterale (compressione) γS 1,45 1,15 1,45 1,15 1,45 1,15 1,45 1,15 2.5 Totale (compressione) 1.6 1.3 1.45 1.6 1.55 1.25 2.5 γt 1.15 1.3 1,25 1.25 Laterale in trazione 1.6 1.6 1.6 1.6 1.25 Resistenza a Compressione (Tabella riassuntiva) Calcolo Peso Palo Wp,k Wp,kx1.3 Valore Valore Medio Minimo Valore Valore Rd Wp Rd,c - Wp (kN) Medio/ζ3 Medio/ζ4 kN kΝ kΝ kN kΝ kΝ kΝ 3485 SLF SLF 3811 3811 3811 3811 3811 325 Approccio 1 - Combinazione 1 A1+M1+R1 9527 5351 9527 5774 5774 5774 423 Approccio 1 - Combinazione 2 A2+M1+R2 5769 5769 3496 3496 3496 325 3171 3981 4404 4404 4404 423

												RAMETR RENATI					ARAMET N DRENA		Qlim. L	ATERALE	Qlim.	PUNTA
N. STRATO		TIPO TERRENO	QUOTA FALDA (>0)	γ Terreno [kN/m³]	Prof. Tetto [m]	Prof. Base [m]	D [m]	Conicita' [C]	¢	c' [kPa]	α (c')	k	μ	tan (μφ)	Nq	Cu [kPa]	α (Cu)	Nc	Olim. Lat. Parametri drenati [kPa]	Qlim. Lat. Parametri non drenati [kPa]	Olim. punta Parametri drenati [kN]	Qlim. punt Parametri non drenai [kN]
	H trave	GRANULARE	4.3	20,0	0,00	0,60	0,00	0,00	0	0,0	0,00	0,0	0,0	0,00								
2	Pavimentazione	GRANULARE	4,3	19,0	0,60	1.80	0,00	0.00	0	0,0	0,00	0.0	0,0	0,00								
3	Riempimento	COES.	4,3	19,0	1.80	20,38	0,80	0,00	0	0,0	0,00	0,0	0,0	0,00								
4	A1 Limo Argilloso	COES.	4,3	16,0		36,74	0,80	0,00	20	55,0	0,00	0,7	0,4	0,13					•			
5	B Flysh Alterato	GRANULARE	4,3	23,0	36,74	40,84	0,80	0,00	35	15,0	0,00	0,4	0,7	0,46								
6	C Flysh	GRANULARE	4,3	23,0	40,84	43,60	0,80	0,00	32	270,0	0,60	0,5	0,6	0,36	12,0				1626	1626	7901	7901
																			1626	1626	7901	7901

La verifica a compressione risulta soddisfatta.

Relazione di calcolo delle fondazioni

Pag. 52 di 88

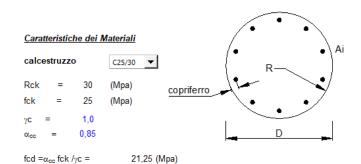
Verifica a trazione

Per la verifica a trazione del palo si considera la coesione non drenata del palo dello strato A1, coesivo, mentre non sono considerati reagenti gli strati superiori. I terreni tipo flysh sottostanti sono stati consideranti come materiale incoerente con una coesione nulla.

1368 - MOLO VIII																	
Pali trivellato - 800 mm																	
Caratterisitche palo						Ī		Coefficie	nti parziali	in funzio	ne del ni	ımero c	li verticali				
Fipo palo		PALO 1	TRIVELLATO	- 2				Coemicie	iti pai ziaii	III IUIIZIC	ine dei in	annero c	ii vei ticali				
Diametro Palo [m]		0.8						N. tot.	2	1	2	3	4	5	7	≥10	SL
unghezza Palo		43.000	1					ζ3	1.65	1.7	1.65	1.6	1.55	1.5	1.45	1.4	- 1
Area base [m²]		0,502						ζ4	1.65	1,7	1.55	1,48	1,42	1,34	1,28	1,21	1
Carico Q a p.c. [kN/m²]		0,0						3"	-,	- ,-	.,	.,	-,	.,	-,	,	
Coefficienti parziali per le azio	oni (A)							Coefficie	nti parziali s	su paran	netri cara	tteristic	i del terre	no (M)			
Carichi		A1		SISMA				Parametri						M1	M2	SISMA	SI
Permanenti		1,3	1	1	1				dell'angolo (φ)			1	1,25	1	
/ariabili		1,5	1,3	1	1				efficace (c')					1	1,25	1	
									a al taglio no unità di volu		a (Cu)			1	1,4 1	1	

<mark>Coefficienti parziali γ_R su res</mark> i Resistenza	istenze caratte	eristiche ((R) R1	R2	R3			P I R1	ALI INFISSI R2	l R3	PALI R1	TRIVE	LLATI R3	PAL R1	I AD EL R2	ICA R3	SI
Punta			1	1,7	1,35			1	1,45	1.15	1	1,7	1,35	1 1	1,6	1,3	2
aterale (compressione)		γb	1	1,45	1,15				1,45	1,15	1	1,45	1,15	1	1,45	1,15	2
Totale (compressione)		γs	1	1,45	1,15			'1	1,45	1,15	1	1,45	1,15	1	1,55	1,15	2
_aterale in trazione		γt	1	1.6	1,3 1.25			'1	1,45	1,15	1	1.6	1,25	1	1,55	1,25	2
Laterale III trazione		γ _{st}	'	1,0	1,23			<u> </u>	1,0	1,20	'	1,0	1,20		1,0	1,20	۷,
Resistenza a Trazione (Tabell	la riassuntiva)																
Calcolo Peso Palo	•																
Np,k Np,k x 1	325 325	(kN) (kN)			Valore Medio	Valore Minimo		Valore Medio/ζ3	Valore Medio/ζ4	Rd	Wp		Rd,t - Wp				
					kN	kN		kN	kN	kN	kN		kN				
pproccio 2			A1+M1+R3		1505	1505		912	912	912	325		1237				
											RAMETRI					ARAME	
		_								D	RENATI				NC	ON DREN	ATI
	ž	à					_										
0	m	ΙŽ	γ	Prof.	Prof.		Conicita' [C]		c'						Cu		
ГАТО	ÄEI		Terreno	Tetto	Base	D [m]	ž Ō	ф	[kPa]	α (c')	k	μ	tan (μφ)	Nq	[kPa]	α (Cu)	1
STRATO	IERREI	, A (>0)			[m]		ŏ		լապ						ارد درا		
A. STRATO	O TERREI	OTA F (><)	[kN/m ³]	[m]	finil			1									
N. STRATO	TIPO TERRENO	QUOTA FALDA (>0)		[m]	[,,,]												
ż			[kN/m ³]			0.00	0.00	0	0.0	0.00	0.0	0.0	0.00			0.70	
<i>z</i> ' 1 H trave	GRANULARE	4,3	[kN/m ³]	0,00	0,60	0,00	0,00	0	0,0	0,00	0,0	0,0	0,00			0,70	
1 H trave 2 Pavimentazione	GRANULARE GRANULARE	4,3 4,3	[kN/m³] 20,0 19,0	0,00 0,60	0,60 1,80	0,80	0,00	0	0,0	0,00	0,0	0,0	0,00			0,70	
<i>z</i> ' 1 H trave	GRANULARE	4,3	[kN/m ³]	0,00	0,60		- ,	_	- ,-				- ,		20		
1 H trave 2 Pavimentazione 3 Riempimento	GRANULARE GRANULARE COES.	4,3 4,3 4,3	[kN/m³] 20,0 19,0 19,0	0,00 0,60 1,80	0,60 1,80 20,38	0,80	0,00	0	0,0	0,00	0,0	0,0	0,00	12,0	20	0,70 0,70	

Qlim. L	ATERALE
Qlim. Lat. Parametri drenati [kPa]	Parametri
_	_
0	0
0	0
0	0
1242	575
878	878
428	428
2548	1881


Relazione di calcolo delle fondazioni

Pag. 53 di 88

Effetto Gruppo		
diametro palo	d	0,8
interasse pali	i	2,4
n. righe	m	6
n. colonne	n	2
	E	0,73

Con una resistenza a trazione di calcolo pari a 1237 kN con un rendimento del 73% diventa pari a 929 kN le verifiche SLU a trazione risultano soddisfatte.

In seguito di mostra la verifica di capacità portante orizzontale secondo Broms che risulta soddisfatta:

Acciaio

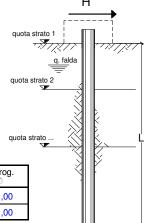
tipo di	i accia	iio	B450C ▼				
fyk	=			450 (Mpa			
γs	=			1			
fyd =	fyk /γs	/γE =	4	50,0 (Mpa			
Es	=	206000	(Mpa)				
ε _{ys} ε _{uk}	=	0,218% 10,000%					

Armature

numero			diametro (mm)	area (mm²)	copriferro (mm)
23	<u></u>	ф	22	8743,05	50
0	÷	ф	0 🛖	0,00	0
0	<u></u>	ф	0 -	0,00	0

Momento di Plasticizzazione

My = 1617,1 (kN m)



Relazione di calcolo delle fondazioni

Pag. 54 di 88

opera MOLO VIII palo D800

	coefficienti parziali		Α.	1	M	R	
	Metodo di calcolo			variabili			
	Metodo di Calcolo		γG	γο	$\gamma_{\phi'}$	γ _{cu}	γт
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,00	1,00	1,60
S	A1+M1+R3	•	1,30	1,50	1,00	1,00	1,30
	SISMA	0	1,00	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00	1,00
definiti d	lal progettista	0	1,30	1,50	1,25	1,40	1,00

n	1	2	3	4	5	7	≥10	T.A.	prog.
ξ_3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

D strati terreno descrizione quote \mathbf{c}_{u} φ \mathbf{c}_{u} (kN/m^3) (kN/m^3) (kPa) (kPa) (m) p.c.=strato 1 Riempimento 41,3 19 0 1,00 20 0 1,00 20 ✓ strato 2 Α1 23,4 16 6 0 20 0 1,00 20 1,00 ✓ strato 3 В 7,1 23 13 35 3,69 0 35 3,69 0 С 32 strato 4 3 23 13 32 3,25 0 3,25 0 С ✓ strato 5 0,00 23 13 3,25 0 32 3,25 0 □ strato 6 1,00 1,00

 Quota falda
 39,51 (m)

 Diametro del palo D
 0,80 (m)

 Lunghezza del palo L
 38,30 (m)

 Momento di plasticizzazione palo My
 1617,10 (kNm)

 Step di calcolo
 0,01 (m)

⊙ palo impedito di ruotare
 C palo libero
 Calcolo (ctrl+r)

	H medio		<u>H minimo</u>	
Palo lungo	807,1	(kN)	807,1	(kN)
Palo intermedio	2798,7	(kN)	2798,7	(kN)
Palo corto	15770,7	(kN)	15770,7	(kN)

 H_{med} 807,1 (kN) Palo lungo H_{min} 807,1 (kN) Palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4)$ 489,16 (kN) $H_d = H_k/\gamma_T$ 376,28 (kN)

9 TORRI FARO

9.1 Configurazione strutturale

Le verifiche che seguono sono riferite all'installazione della torre faro fondata su plinto.

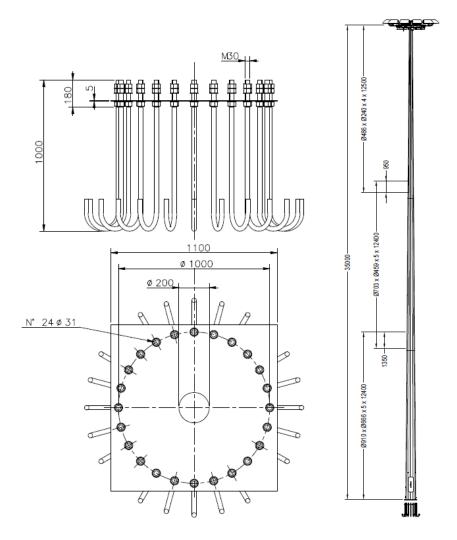
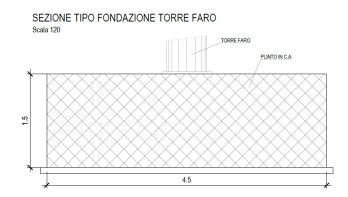


Figura 4 - Dettagli geometrici della struttura torre faro


Relazione di calcolo delle fondazioni

Pag. 56 di 88

9.2 Carichi agenti

9.2.1 Combinazioni SLU di calcolo

Si illustrano in seguito le sollecitazioni con cui si verifica la fondazione su Plinto che si riporta in immagine con la sua geometria BxH paro a 4,5 m x 1,5 m:

<u>SLU</u>

Combinazione 1

Le sollecitazioni SLU di calcolo sono così

definite:

Azione Assiale: Nd = 42,9 kN

Azione Orizziontale (statica): Vd = 39,3 kN

Momento: Md = 983,7 kN m

SLV

Combinazione 2 (sisma)

Azione Assiale: Nd = 33 kN

Azione: Vd = 13,3 kNMomento: Md = 342 kN m

9.3 Verifiche

9.3.1 Capacità Portante

Il calcolo della portanza del plinto viene condotto considerando un angolo di attrito della fondazione pari a 20°

Relazione di calcolo delle fondazioni

Pag. 57 di 88

VERIFICA CAPACITA' PORTANTE FONDAZIONI SUPERFICIALI (D.M. 17-01-2018)

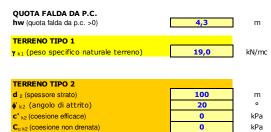
PROGETTO MOLO VIII

LIVELLO DI PROGETTAZIONE Progetto preliminare

J.N. 1368

DATA

DESCRIZIONE


Plinto di fondazione torre faro

GEOMETRIA FONDAZIONE TIPO DI FONDAZIONE : (1) Plinto / Platea L (lato maggiore fondazione) B (lato minore fondazione) 4.5 m TERRENO TIPO 1 H (altezza fondazione) 0,5 m I (lato maggiore dado) b (lato minore dado) 4,5 m TERRENO TIPO 2 m h1 (altezza dado) TERRENO TIPO 3 D (altezza terreno stabilizzante) m γ fon (peso specifico fondazione) kN/mc γ terr (peso spec. terreno sopra fond.) α (angolo inclinazione fondazione>0) 19 kN/mc β (angolo inclinazione pendio>0) Punto Applicazione forze esterne (1) Forze applicate a quota H+h1 - P1 (2) Forze applicate a quota fondo scavo - P2 Μv Braccio Forze esterne 1,5 m Fx mc mc Volume cls fondazione 30 0 Volume terreno sopra fondazione P.P.1 peso proprio fondazione (k) P.P.2 peso proprio terreno sopra fondazione (k) 759 0 kΝ P.P.1 + P.P.2 759 kΝ

kN/mc

kPa

PARAMETRI GEOTECNICI CARATTERISTICI DEL TERRENO

TERRENO TIPO 3		
φ' _{k3} (angolo di attrito)	0	۰
c' k3 (coesione efficace)	0	kPa
C _{u k3} (coesione non drenata)	0	kPa
γ _{k3} (peso specifico naturale)	0	kN/mc
G (modulo di elasticità trasversale)	0	kPa

SEZIONE FONDAZIONE 2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

TERRENO EQ	TERRENO EQUIVALENTE DA MEDIA PESATA									
H _{cuneo}	3,2	m								
φk,eq	20	0								
C' _{k,eq}	0	kPa								
C _{u k,eq}	0	kPa								
γk,eq	19	kN/mc								
G	2308	kPa								

TIPO DI VERIFICA

TIPO DI VERIFICA

(2) NO

VERIFICA IN DIREZIONE

(1) Y (Momento Mxx e forza FY // B)
(2) X (Momento Myy e forza FX // L)

γ_{k2} (peso specifico naturale)

G (modulo di elasticità trasve

(1) Drenata	DRENATA
(2) Non Drenata	
FORMULA PER IL CALCOLO DI N ₇ (1) Meyerhof (1963) (2) Brinch - Hansen (1970) (3) Vesic (1975) (4) Spangler - Handy (1982)	2 BRINCH - HANSEN
FATTORI CORRETTIVI (1) Meyerhof (1963) (2) Brinch - Hansen (1970) (3) Vesic (1970)	2 BRINCH - HANSEN
FATTORI SISMICI (1) SI	2 NO

VERIFICA	DRENATA	A: PRESSIONE	EFFICACE
φ _{k,eq}	20	٥	
C' k,eq	0	kPa	
C _{u k,eq}	0	kPa	
D·γ	28,5	kPa	contributo peso stabilizzante
γ	17,7	kN/mc	contributo forze di attrito

RIEPILOGO VERIFICH (1) D.M. 17/01/2018	E:			
	qd (kPa)	qmax (kPa)	verifica	
(1) SLE - RARA	120	38	SI	
(4) A1+M1+R3	132	123	SI	
(5) SISMA	147	63	SI	

N.B. Nelle verifiche non drenate utilizzare i coeff. di Brinch - Hansen

Relazione di calcolo delle fondazioni

Pag. 58 di 88

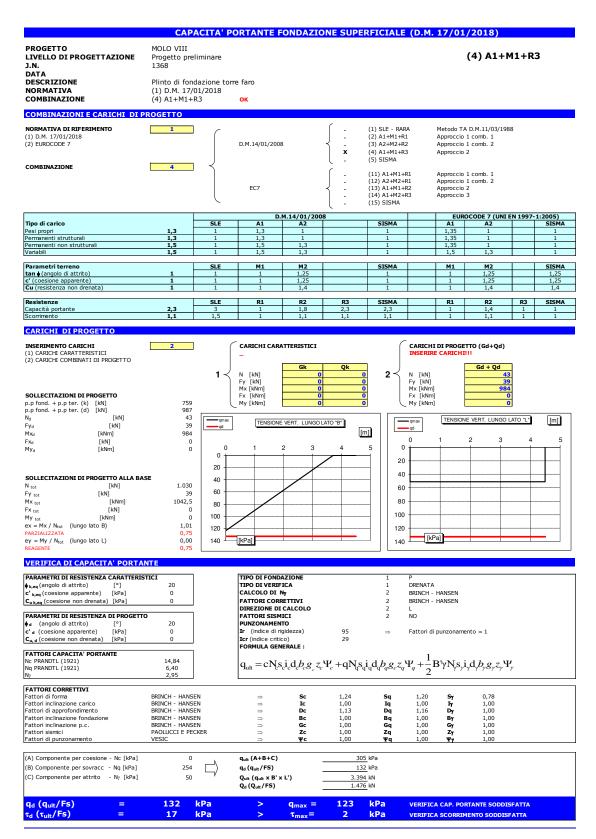


Figura 5 - Capacità portante plinto condizione 1 (SLU)

Relazione di calcolo delle fondazioni

Pag. 59 di 88

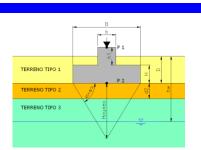
VERIFICA CAPACITA' PORTANTE FONDAZIONI SUPERFICIALI (D.M. 17-01-2018)

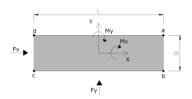
PROGETTO Molo VIII

LIVELLO DI PROGETTAZIONE Progetto preliminare

J.N. 1368 DATA

DESCRIZIONE Plinto torre faro


GEOMETRIA FONDAZIONE


TIPO DI FONDAZIONE : (1) Plinto / Platea (2) Trave	1	P
L (lato maggiore fondazione)	4,5	m
B (lato minore fondazione)	4,5	m
H (altezza fondazione)	0,5	m
I (lato maggiore dado)	4,5	m
b (lato minore dado)	4,5	m
h1 (altezza dado)	1	m
D (altezza terreno stabilizzante)	1,5	m
γ fon (peso specifico fondazione)	25	kN/m
γ terr (peso spec. terreno sopra fond.)	19	kN/m
α (angolo inclinazione fondazione>0)	0	٥
B (angolo inclinazione pendio>0)	0	٥

 $\begin{array}{ll} \textbf{β} \ (angolo \ inclinazione \ pendio > 0) & \textbf{0} \\ \textbf{a}_g/g \ (accelerazione \ sismica \ orizz.) & \textbf{0,12} \\ \textbf{S} \ (coeff. \ stratigrafico) & \textbf{0,9} \\ \end{array}$

Punto Applicazione forze esterne
(1) Forze applicate a quota H+h1 - P1
(2) Forze applicate a quota fondo scavo - P2

Braccio Forze esterne	1,5	m
Volume cls fondazione	30	mo
Volume terreno sopra fondazione	0	mc
P.P.1 peso proprio fondazione (k)	759	kN
P.P.2 peso proprio terreno sopra fondazione (k)	0	kN
P.P.1 + P.P.2	759	kN

PARAMETRI GEOTECNICI CARATTERISTICI DEL TERRENO

hw (quota falda da p.c. >0)	4,3	m
TERRENO TIPO 1		
γ _{k1} (peso specifico naturale terreno)	19,0	kN/mc

TERRENO TIPO 2		1
d 2 (spessore strato)	100	m
φ' k2 (angolo di attrito)	23	۰
c' k2 (coesione efficace)	0	kPa
C _{u k2} (coesione non drenata)	0	kPa
γ _{k2} (peso specifico naturale)	19	kN/mc
G (modulo di plasticità trasversale)	2308	k₽a

k3 (angolo di attrito)	0
c' k3 (coesione efficace)	0
C _{u k3} (coesione non drenata)	0
γ _{k3} (peso specifico naturale)	0
G (modulo di elasticità trasversale)	0

1 - 0,5

SEZIONE FONDAZIONE

kPa kPa kN/mc kPa

TERRENO EQUIVALENTE DA MEDIA PESATA					
H _{cuneo}	3,4	m			
фк,eq	23	•			
C' _{k,eq}	0	kPa			
C _{u k,eq}	0	kPa			
γk,eq	19	kN/mc			
G	2308	kPa			

0,5 1 1,5 2 2,5 3 3,5 4

4,5

TIPO DI VERIFICA

VERIFICA IN DIREZIONE
(1) Y (Momento Mxx e forza FY // B)
(2) X (Momento Myy e forza FX // L)

QUOTA FALDA DA P.C.

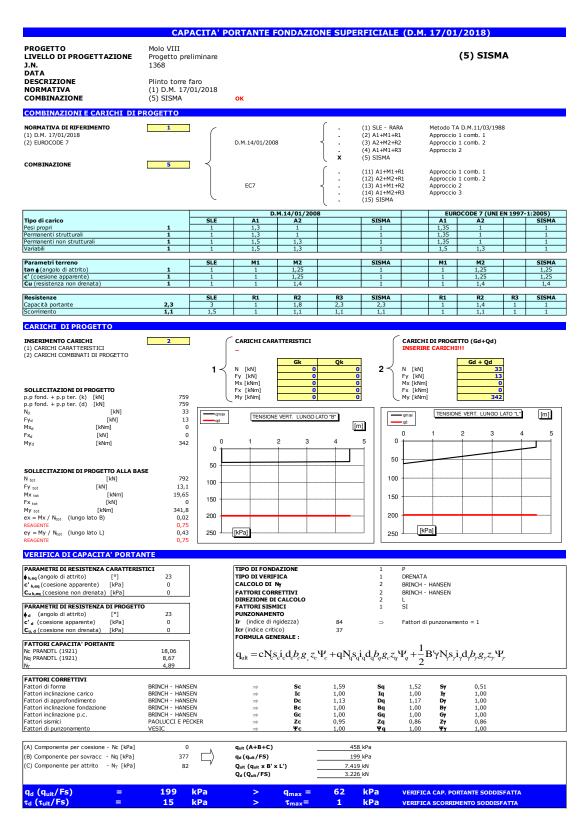
TIPO DI VERIFICA (1) Drenata (2) Non Drenata	1 DRENATA
FORMULA PER IL CALCOLO DI N ₇ (1) Meyerhof (1963) (2) Brinch - Hansen (1970) (3) Vesic (1975) (4) Spangler - Handy (1982)	2 BRINCH - HANSEN
FATTORI CORRETTIVI (1) Meyerhof (1963) (2) Brinch - Hansen (1970) (3) Vesic (1970)	2 BRINCH - HANSEN
FATTORI SISMICI (1) SI	1 SI

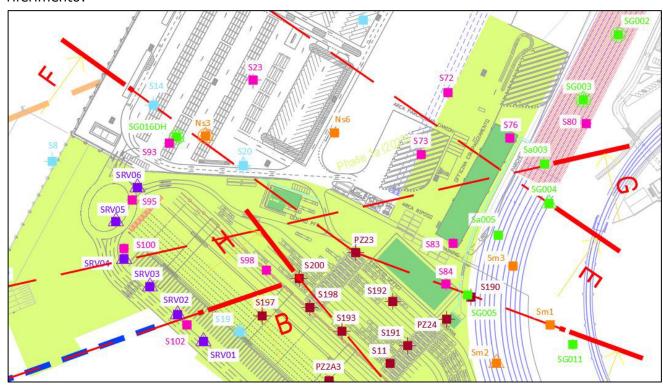
(1) D.M. 17/01/2018	i.			
	qd (kPa)	qmax (kPa)	verifica	
(5) SISMA	199	62	SI	

N.B. Nelle verifiche non drenate utilizzare i coeff. di Brinch - Hansen

Relazione di calcolo delle fondazioni

Pag. 60 di 88




Figura 6 - Verifica condizione 2 (SLV)

La verifica risulta soddisfatta.

10 EDIFICIO UFFICI

10.1 Geotecnica di riferimento

In seguito si riporta la sezione a cui si fa riferimento per la definizione del modello geotecnico di riferimento:

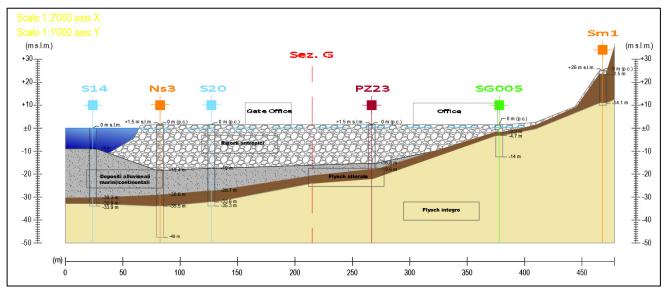
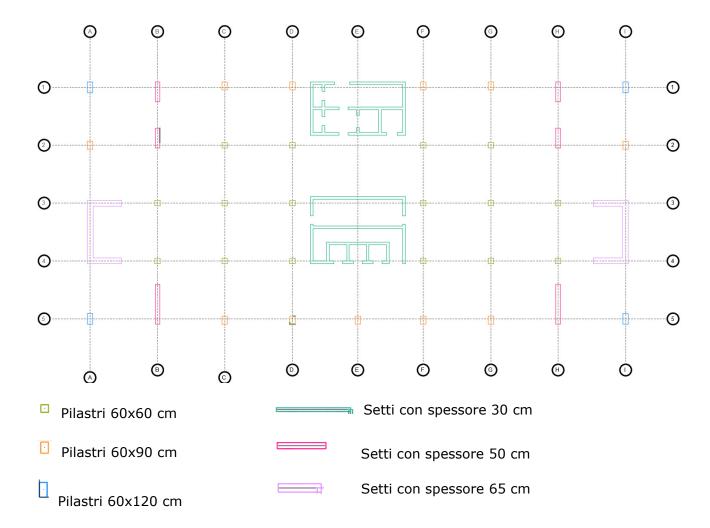


Figura 7 - Sezione FF

Relazione di calcolo delle fondazioni

Pag. 62 di 88

Per la geotecnica di riferimento si rimanda alla relazione specifica in seguito si riportano i parametri desunti da quanto specificato.


Dall'analisi delle indagini eseguite nell'area in studio è possibile determinare il seguente modello geotecnico generale di riferimento per l'area a terra:

Libalasia	Х	ф	c′	Е	Cu
Litologia	[kN/m3] [°]		[kPa]	[MPa]	[kPa]
R	18	30-35	-	10-20	-
A 17-19		20-27	10-30	13-15	30-70
В	18-22	R-22 28-30 10-20		100- 130	-
С	21-24	32-35	10-35	15.000- 20.000	-

Litologia	Cr	Сс	Cs	e0	OCR	G0	Vs	σс
	[-]	[-]	[-]	[-]	[-]	[Mpa]	[m/s]	[MPa]
R	-	-	-	-	-	-	-	-
А	0,019- 0,12	0,15- 0,46	0.012- 0.11	0,65- 1.25	1-3	55,5- 79,1	175-204	-
В	-	-	-	-	-	-	-	-
С	-	-	-	-	-	-	-	10-40

10.2 Analisi dei carichi

Si riportano nel seguito le sagome

Relazione di calcolo delle fondazioni

Pag. 64 di 88

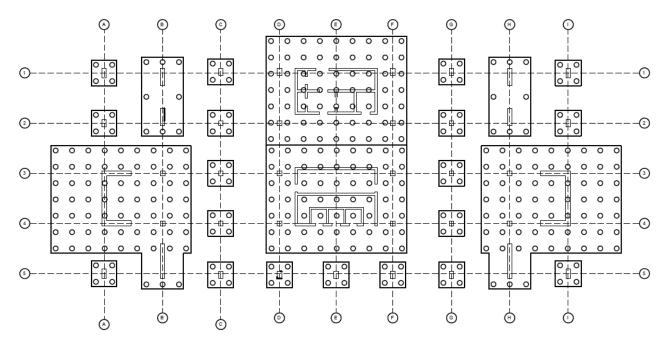


Figura 8 - Pianta delle fondazioni

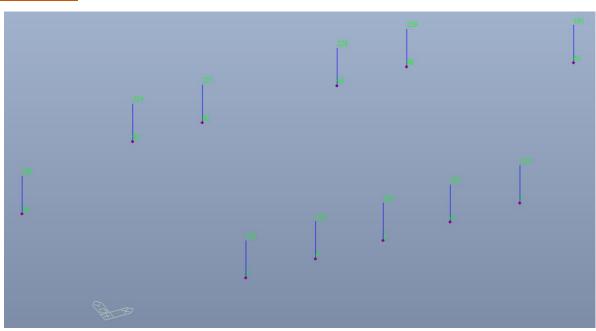
Pilastri 60x60

Pilastri 60x60 (SLU)

Pilastri 60x60 (SLE)

Relazione di calcolo delle fondazioni

Pag. 65 di 88


	Ni- d-	1	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	56	SLU32	2,019	-0,574	4039,338	-0,519	4,211	-0,008
Max Vx	26	SLU32	45,567	-6,261	2721,489	7,904	67,795	-0,008
Max Vy	11	SLU33	35,433	28,679	1822,772	-45,651	51,938	-0,012
Max Mx	58	SLU31	33,103	-10,948	2544,511	18,665	48,614	-0,009
Max My	26	SLU32	45,567	-6,261	2721,489	7,904	67,795	-0,008
Max Mz	11	SLU38	33,295	25,201	1736,818	-38,102	50,546	-0,006
Min N	11	SLU23	32,427	27,138	1690,723	-44,821	47,533	-0,012
Min Vx	13	SLU24	-45,438	-6,260	2725,981	7,801	-67,300	-0,014
Min Vy	58	SLU25	35,955	-11,249	2723,859	17,489	52,793	-0,010
Min Mx	11	SLU33	35,433	28,679	1822,772	-45,651	51,938	-0,012
Min My	13	SLU24	-45,438	-6,260	2725,981	7,801	-67,300	-0,014
Min Mz	28	SLU30	-33,348	25,202	1755,637	-37,812	-50,329	-0,015

	Mada.	1	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	56	SLEr30	1,467	-0,432	3012,506	-0,381	3,005	-0,006
Max Vx	26	SLEr30	33,717	-4,628	2031,711	5,839	50,090	-0,006
Max Vy	11	SLEr31	26,253	21,158	1366,061	-33,525	38,483	-0,009
Max Mx	58	SLEr37	24,715	-8,075	1913,491	13,484	36,298	-0,007
Max My	26	SLEr30	33,717	-4,628	2031,711	5,839	50,090	-0,006
Max Mz	11	SLEr38	24,827	18,839	1308,758	-28,492	37,555	-0,005
Min N	11	SLEr23	24,249	20,130	1278,028	-32,971	35,546	-0,009
Min Vx	13	SLEr24	-33,621	-4,627	2035,095	5,762	-49,719	-0,010
Min Vy	58	SLEr25	26,616	-8,275	2033,056	12,700	39,084	-0,008
Min Mx	11	SLEr31	26,253	21,158	1366,061	-33,525	38,483	-0,009
Min My	13	SLEr24	-33,621	-4,627	2035,095	5,762	-49,719	-0,010
Min Mz	28	SLEr20	-24,855	18,822	1312,546	-28,242	-37,374	-0,011

Pilastri 60x60 (SLV)

	Mada	Lond	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	56	SLV18	6,194	1,477	2586,325	-9,236	27,060	-0,031
Max Vx	26	SLV27	36,139	-4,950	1575,402	10,445	72,256	0,374
Max Vy	11	SLV32	17,919	28,820	969,134	-68,070	18,892	-0,385
Max Mx	57	SLV16	-21,894	-13,572	1708,048	40,642	-27,545	0,370
Max My	26	SLV27	36,139	-4,950	1575,402	10,445	72,256	0,374
Max Mz	26	SLV27	36,139	-4,950	1575,402	10,445	72,256	0,374
Min N	11	SLV22	22,308	28,013	944,191	-65,420	36,273	-0,278
Min Vx	13	SLV1	-36,030	-5,594	1577,621	10,765	-71,681	-0,356
Min Vy	57	SLV16	-21,894	-13,572	1708,048	40,642	-27,545	0,370
Min Mx	11	SLV32	17,919	28,820	969,134	-68,070	18,892	-0,385
Min My	13	SLV1	-36,030	-5,594	1577,621	10,765	-71,681	-0,356
Min Mz	28	SLV11	-29,363	16,710	1137,520	-25,620	-62,572	-0,389

Pilastri 60x90

Relazione di calcolo delle fondazioni

Pag. 66 di 88

Pilastri 60x90 (SLU)

MY Node Load (kN) (kN) (kN) (kN*m) (kN*m) (kN*m) 91 SLU25 0,190 Max N 83,173 4498,316 -114,513 0,700 -0,021 -2,108 3756,217 -0,656 87,085 4419,208 -134,786 47,174 -0,173 61 SLU38 Max Vx 71,842 -0,012 Max Vy 96 SLU33 0.182 -0.024 -0,915 47,174 -89,481 4234,615 135,628 Max Mx 7 SLU31 -1,158 -0,019 -2,108 3756,217 71,842 -0,012 Max My 61 SLU38 -0,656 Max Mz 91 SLU38 0,902 83,750 4274,594 -122,575 4,246 -0,012 Min N 95 SLU23 39,129 64,612 2696,068 -108,003 57,611 -0,024 Min Vx 54 SLU30 -45,570 -2,019 3618,563 -2,126 -68,800 -0,032 Min Vy SLU25 -0,981 -89,508 4458,401 130,225 -0,021 Min Mx 91 SLU39 0,159 86,880 4270,374 -140,052 0,655 -0,024 Min My Min Mz 54 SLU30 91 SLU30 -2,126 -68,800 -0,032 -45,570 -2,019 3618,563 83,832 4272,924 -123,001 -3,071 -0,032 -0,662

Pilastri 60x90 (SLE)

	l., ,		FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	91	SLEr25	0,116	63,742	3377,532	-88,425	0,488	-0,016
Max Vx	61	SLEr38	36,421	-1,628	2834,765	-0,393	55,192	-0,010
Max Vy	96	SLEr31	-0,101	66,371	3317,120	-101,910	0,179	-0,018
Max Mx	7	SLEr37	-0,676	-68,208	3198,239	102,210	-0,856	-0,015
Max My	54	SLEr36	-35,221	-1,560	2732,707	-1,505	-52,913	-0,023
Max Mz	91	SLEr38	0,591	64,126	3228,385	-93,799	2,852	-0,010
Min N	95	SLEr23	29,331	49,191	2041,348	-80,963	43,186	-0,018
Min Vx	54	SLEr36	-35,221	-1,560	2732,707	-1,505	-52,913	-0,023
Min Vy	7	SLEr25	-0,720	-68,226	3347,429	98,609	-0,921	-0,016
Min Mx	91	SLEr39	0,096	66,213	3225,571	-105,451	0,458	-0,018
Min My	61	SLEr38	36,421	-1,628	2834,765	-0,393	55,192	-0,010
Min Mz	91	SLEr36	-0,452	64,181	3227,272	-94,083	-2,027	-0,023

SLU: Si utilizza N=5500 kN; Mx=20 kNm SLE: Si utilizza N=5000 kN; Mx=40 kNm

Pilastri 60x90 (SLV)

	Node	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN*m)	MY (kN*m)	MZ (kN*m)
Max N	91	SLV16	0,856	46,035	_ ` /	10,539	7,528	0,773
Max Vx	61	SLV28	43,375	-6,048	2618,846	25,694	90,729	0,004
Max Vy	91	SLV32	-0,887	80,021	2970,284	-194,591	-6,998	-0,804
Max Mx	3	SLV16	4,818	-82,016	2945,003	191,548	20,523	0,773
Max My	61	SLV28	43,375	-6,048	2618,846	25,694	90,729	0,004
Max Mz	3	SLV27	9,668	-72,361	2970,323	131,290	45,189	0,781
Min N	95	SLV18	37,653	50,634	1720,039	-94,950	82,905	-0,064
Min Vx	54	SLV2	-42,299	-6,557	2531,436	27,866	-88,103	0,033
Min Vy	3	SLV16	4,818	-82,016	2945,003	191,548	20,523	0,773
Min Mx	91	SLV32	-0,887	80,021	2970,284	-194,591	-6,998	-0,804
Min My	54	SLV12	-42,141	3,345	2526,007	-27,853	-88,653	-0,035
Min Mz	91	SLV11	-6,361	70,310	2978,501	-134,253	-32,715	-0,812

SLV: Si utilizza N=5000 kN; Mx=40 kNm

Relazione di calcolo delle fondazioni

Pag. 67 di 88

Pilastri 60x120

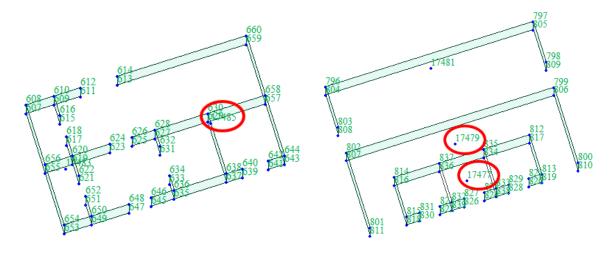
Pilastri 60x120 (SLU)

	Node	Load	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	99	SLU25	60,957	78,321	4750,250	-95,924	89,659	-0,033
Max Vx	99	SLU38	62,342	81,707	4564,817	-118,629	95,023	-0,019
Max Vy	88	SLU39	-59,949	88,734	4457,641	-161,226	-87,058	-0,038
Max Mx	9	SLU31	60,791	-88,145	4553,887	141,033	89,090	-0,030
Max My	99	SLU38	62,342	81,707	4564,817	-118,629	95,023	-0,019
Max Mz	99	SLU38	62,342	81,707	4564,817	-118,629	95,023	-0,019
Min N	88	SLU23	-59,921	88,713	4421,672	-161,141	-87,022	-0,038
Min Vx	1	SLU30	-61,724	-80,926	4561,799	97,153	-93,513	-0,049
Min Vy	9	SLU31	60,791	-88,145	4553,887	141,033	89,090	-0,030
Min Mx	88	SLU39	-59,949	88,734	4457,641	-161,226	-87,058	-0,038
Min My	1	SLU30	-61,724	-80,926	4561,799	97,153	-93,513	-0,049
Min Mz	88	SLU14	-60,839	82,089	4425,635	-122,273	-91,731	-0,049

Pilastri 60x120 (SLV)

	Node	Load	FX	FY	FZ	MX	MY	MZ
	Noue	Loau	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	1	SLV22	-46,212	-21,047	3318,260	-176,974	-62,852	-0,904
Max Vx	9	SLV27	57,630	-56,605	3246,560	60,813	125,616	1,218
Max Vy	88	SLV32	-48,303	105,901	3161,868	-363,523	-77,177	-1,254
Max Mx	1	SLV16	-42,622	-105,871	3211,473	348,495	-44,277	1,206
Max My	9	SLV27	57,630	-56,605	3246,560	60,813	125,616	1,218
Max Mz	1	SLV27	-36,824	-84,786	3251,368	210,422	-12,439	1,218
Min N	88	SLV32	-48,303	105,901	3161,868	-363,523	-77,177	-1,254
Min Vx	1	SLV11	-57,601	-38,070	3273,421	-60,023	-125,289	-1,267
Min Vy	1	SLV16	-42,622	-105,871	3211,473	348,495	-44,277	1,206
Min Mx	88	SLV32	-48,303	105,901	3161,868	-363,523	-77,177	-1,254
Min My	1	SLV11	-57,601	-38,070	3273,421	-60,023	-125,289	-1,267
Min Mz	88	SLV11	-54,244	85,047	3178,330	-225,773	-110,164	-1,267

Pilastri 60x120 (SLE)


	Mada	Load	FX	FY	FZ	MX	MY	MZ
	Node	Luau	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	99	SLEr25	47,045	60,349	3584,504	-75,542	69,185	-0,025
Max Vx	99	SLEr38	47,968	62,607	3460,882	-90,679	72,761	-0,016
Max Vy	88	SLEr39	-46,253	67,325	3381,921	-119,407	-67,179	-0,029
Max Mx	9	SLEr37	46,866	-66,889	3453,443	104,323	68,675	-0,023
Max My	99	SLEr38	47,968	62,607	3460,882	-90,679	72,761	-0,016
Max Mz	99	SLEr22	47,949	62,593	3436,898	-90,639	72,731	-0,015
Min N	88	SLEr23	-46,234	67,311	3357,941	-119,350	-67,155	-0,028
Min Vx	1	SLEr36	-47,484	-62,065	3458,871	74,769	-71,583	-0,036
Min Vy	9	SLEr37	46,866	-66,889	3453,443	104,323	68,675	-0,023
Min Mx	88	SLEr39	-46,253	67,325	3381,921	-119,407	-67,179	-0,029
Min My	1	SLEr36	-47,484	-62,065	3458,871	74,769	-71,583	-0,036
Min Mz	88	SLEr20	-46,846	62,894	3360,584	-93,437	-70,294	-0,036

Relazione di calcolo delle fondazioni

Pag. 68 di 88

Setti 30

Setti 30 (SLU)

	Node	Load	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17485	cLCB24	-394,65	-9,02	16714,07	787,50	-2182,41	829,02
Max Vx	17479	cLCB10	254,20	-37,81	10497,37	-479,62	3984,85	-364,52
Max Vy	17483	cLCB27	50,66	389,58	10967,43	-3888,16	-94,06	-638,93
Max Mx	17485	cLCB11	-45,38	367,89	15893,88	-5486,84	265,28	1281,32
Max My	17479	cLCB10	254,20	-37,81	10497,37	-479,62	3984,85	-364,52
Max Mz	17485	cLCB27	-46,66	371,09	16083,08	-5299,26	244,16	1304,81
Min N	17477	cLCB7	2,99	-254,39	7179,71	1002,94	-15,77	5,63
Min Vx	17485	cLCB24	-394,65	-9,02	16714,07	787,50	-2182,41	829,02
Min Vy	17485	cLCB7	-93,90	-396,39	16040,39	5727,18	136,06	-172,14
Min Mx	17485	cLCB25	-95,18	-393,19	16229,60	5914,76	114,94	-148,65
Min My	17479	cLCB24	-254,50	-36,21	10572,32	-479,78	-4471,99	365,25
Min Mz	17483	cLCB27	50,66	389,58	10967,43	-3888,16	-94,06	-638,93

Setti 30 (SLE)

	Mada.	1	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17485	cLCB143	-267,98	-6,98	12246,35	521,44	-1431,22	583,13
Max Vx	17479	cLCB137	169,55	-26,80	7717,61	-340,34	2644,34	-243,13
Max Vy	17483	cLCB146	37,77	263,90	8056,24	-2600,34	-60,97	-442,63
Max Mx	17485	cLCB144	-68,33	-263,09	11923,36	3939,61	100,35	-68,65
Max My	17479	cLCB137	169,55	-26,80	7717,61	-340,34	2644,34	-243,13
Max Mz	17485	cLCB146	-35,98	246,43	11825,69	-3536,40	186,49	900,33
Min N	17477	cLCB136	2,12	-173,31	5343,07	658,72	-13,34	4,04
Min Vx	17485	cLCB143	-267,98	-6,98	12246,35	521,44	-1431,22	583,13
Min Vy	17485	cLCB136	-67,90	-264,16	11860,29	3877,09	107,39	-76,48
Min Mx	17485	cLCB138	-35,56	245,36	11762,62	-3598,93	193,53	892,49
Min My	17479	cLCB143	-169,52	-25,94	7743,38	-345,38	-2987,80	243,21
Min Mz	17483	cLCB146	37,77	263,90	8056,24	-2600,34	-60,97	-442,63

Setti 30 (SLV)

	Node	Load	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17485	cLCB61	-7617,12	-2099,55	28392,34	42144,30	-61141,30	-8530,29
Max Vx	17485	cLCB77	7515,57	2087,95	-6062,58	-41404,25	61425,15	9310,70
Max Vy	17485	cLCB80	1668,33	5436,28	7146,87	-95755,52	10387,62	13767,06
Max Mx	17485	cLCB64	-1769,88	-5447,88	15182,89	96495,57	-10103,77	-12986,65
Max My	17479	cLCB86	5922,44	-872,51	6273,25	7443,05	121454,76	-8109,91
Max Mz	17485	cLCB80	1668,33	5436,28	7146,87	-95755,52	10387,62	13767,06
Min N	17483	cLCB71	-3222,84	1849,82	-9667,49	-26353,30	-15640,96	-3588,86
Min Vx	17485	cLCB61	-7617,12	-2099,55	28392,34	42144,30	-61141,30	-8530,29
Min Vy	17485	cLCB64	-1769,88	-5447,88	15182,89	96495,57	-10103,77	-12986,65
Min Mx	17485	cLCB80	1668,33	5436,28	7146,87	-95755,52	10387,62	13767,06
Min My	17479	cLCB70	-5922,10	828,70	8045,25	-7994,09	-121754,86	8109,75
Min Mz	17485	cLCB64	-1769,88	-5447,88	15182,89	96495,57	-10103,77	-12986,65

Relazione di calcolo delle fondazioni

Pag. 69 di 88

Setti 50

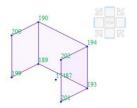
Setti 50 (SLU)

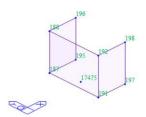
	Node	Load	FX	FY	FZ	MX	MY	MZ
	Node		(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17488	cLCB27	0,00	-15,31	7585,96	-962,36	0,00	0,00
Max Vy	17493	cLCB27	0,00	176,39	5376,22	-464,86	0,00	0,00
Max Mx	17491	cLCB25	0,00	-325,02	7480,95	959,33	0,00	0,00
Min N	17492	cLCB7	0,00	-113,25	5015,52	292,56	0,00	0,00
Min Vy	17491	cLCB25	0,00	-325,02	7480,95	959,33	0,00	0,00
Min Mx	17491	cLCB11	0,00	-3,79	7435,63	-981,24	0,00	0,00

Setti 50 (SLE)

	Mada	Load	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17488	cLCB150	0,00	-62,32	5531,92	-382,40	0,00	0,00
Max Vy	17493	cLCB146	0,00	122,55	3883,25	-320,29	0,00	0,00
Max Mx	17491	cLCB144	0,00	-223,67	5427,00	637,53	0,00	0,00
Min N	17492	cLCB136	0,00	-79,34	3652,10	201,75	0,00	0,00
Min Vy	17491	cLCB144	0,00	-223,67	5427,00	637,53	0,00	0,00
Min Mx	17491	cLCB138	0,00	-13,41	5444,96	-651,33	0,00	0,00

Setti 50 (SLV)


	Node	Load	FX	FY	FZ	MX	MY	MZ
			(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17488	cLCB91	0,00	2545,90	6183,45	-18373,26	0,00	0,00
Max Vy	17488	cLCB91	0,00	2545,90	6183,45	-18373,26	0,00	0,00
Max Mx	17488	cLCB75	0,00	-2774,06	3728,86	18397,55	0,00	0,00
Min N	17492	cLCB64	0,00	-795,85	2452,99	3255,24	0,00	0,00
Min Vy	17488	cLCB75	0,00	-2774,06	3728,86	18397,55	0,00	0,00
Min Mx	17488	cLCB91	0,00	2545,90	6183,45	-18373,26	0,00	0,00



Relazione di calcolo delle fondazioni

Pag. 70 di 88

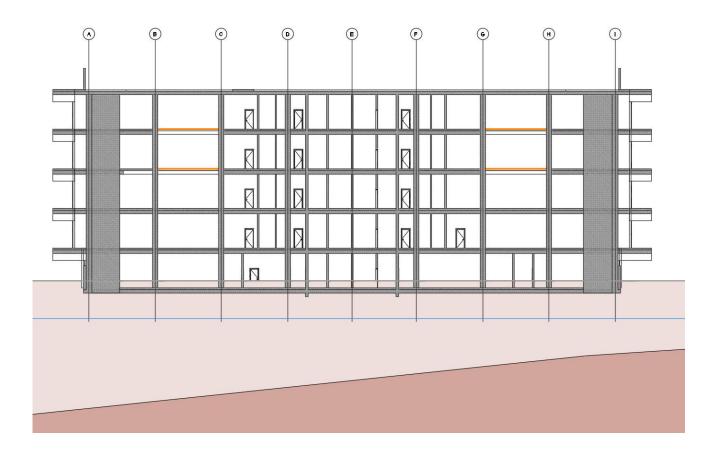
Setti 650

Setti 65 (SLU)

	Node	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN*m)	MY (kN*m)	MZ (kN*m)
Max N	17487	cLCB24	-160,32	58,09	17171,43	-1177,22	-1374,01	166,14
Max Vx	17487	cLCB26	256,70	125,72	17127,72	-2830,10	1531,38	301,85
Max Vy	17487	cLCB27	47,25	752,56	17141,07	-12043,12	53,99	1325,31
Max Mx	17475	cLCB25	-42,34	-567,06	17156,82	8060,94	-123,05	855,37
Max My	17487	cLCB10	241,61	125,61	16863,96	-2939,35	1539,36	304,25
Max Mz	17487	cLCB11	32,16	752,45	16877,31	-12152,37	61,96	1327,71
Min N	17475	cLCB6	-237,34	129,23	16861,95	-2965,04	-1602,09	-309,81
Min Vx	17475	cLCB24	-252,43	129,06	17125,38	-2842,90	-1600,00	-306,81
Min Vy	17487	cLCB7	34,03	-568,87	16894,31	7926,56	111,36	-854,92
Min Mx	17487	cLCB11	32,16	752,45	16877,31	-12152,37	61,96	1327,71
Min My	17475	cLCB6	-237,34	129,23	16861,95	-2965,04	-1602,09	-309,81
Min Mz	17475	cLCB11	-30,40	751,32	16874,42	-12041,04	-173,65	-1323,32

Setti 65 (SLE)

	Node	Load	FX	FY	FZ	MX	MY	MZ
	Node	Load	(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17487	cLCB147	-46,22	52,40	12703,84	-1080,39	-522,32	140,38
Max Vx	17487	cLCB145	171,16	88,44	12592,61	-1998,34	1029,88	213,55
Max Vy	17487	cLCB146	31,53	506,33	12601,51	-8140,36	44,95	895,86
Max Mx	17475	cLCB144	-27,89	-373,27	12611,89	5264,07	-91,66	557,71
Max My	17487	cLCB137	166,13	88,40	12504,69	-2034,76	1032,54	214,36
Max Mz	17487	cLCB138	26,50	506,29	12513,59	-8176,77	47,61	896,66
Min N	17475	cLCB135	-162,92	90,86	12503,12	-2045,87	-1076,98	-218,08
Min Vx	17475	cLCB143	-167,95	90,80	12590,93	-2005,16	-1076,29	-217,08
Min Vy	17487	cLCB136	27,75	-374,59	12524,92	5209,18	80,54	-558,42
Min Mx	17487	cLCB138	26,50	506,29	12513,59	-8176,77	47,61	896,66
Min My	17475	cLCB135	-162,92	90,86	12503,12	-2045,87	-1076,98	-218,08
Min Mz	17475	cLCB138	-24,97	505,59	12511,44	-8096,53	-124,69	-893,75


Setti 65 (SLV)

	Mada.	Node Load	FX	FY	FZ	MX	MY	MZ
	Node		(kN)	(kN)	(kN)	(kN*m)	(kN*m)	(kN*m)
Max N	17475	cLCB86	4579,85	-10223,41	12500,22	179172,53	37698,51	18475,17
Max Vx	17487	cLCB86	4661,56	5202,91	11008,67	-85302,54	37844,44	10058,33
Max Vy	17475	cLCB91	-1879,04	12850,12	11223,67	-232753,85	-15676,31	-22432,44
Max Mx	17475	cLCB75	1798,77	-12738,27	12185,49	230594,93	15492,98	22154,77
Max My	17487	cLCB86	4661,56	5202,91	11008,67	-85302,54	37844,44	10058,33
Max Mz	17475	cLCB75	1798,77	-12738,27	12185,49	230594,93	15492,98	22154,77
Min N	17475	cLCB70	-4660,12	10335,26	10908,94	-181331,46	-37881,84	-18752,84
Min Vx	17475	cLCB70	-4660,12	10335,26	10908,94	-181331,46	-37881,84	-18752,84
Min Vy	17475	cLCB75	1798,77	-12738,27	12185,49	230594,93	15492,98	22154,77
Min Mx	17475	cLCB91	-1879,04	12850,12	11223,67	-232753,85	-15676,31	-22432,44
Min My	17475	cLCB70	-4660,12	10335,26	10908,94	-181331,46	-37881,84	-18752,84
Min Mz	17475	cLCB91	-1879,04	12850,12	11223,67	-232753,85	-15676,31	-22432,44

Relazione di calcolo delle fondazioni

Pag. 71 di 88

10.3 Verifiche

10.3.1Azioni sul singolo Palo

La tipologia di fondazione scelta per lo scarico dei pilastri è stata definita come plinti su pali, in particolare vi sono 4 pali per ogni plinto distanti dal bordo 0,3 m.

Il plinto è a pianta quadrata di altezza 1,5 m e di lato pari a 3,6m:

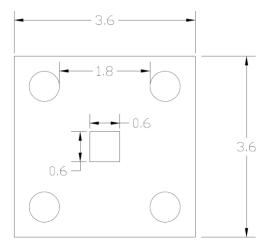


Figura 9 - Dimensioni fondazione su plinto

Relazione di calcolo delle fondazioni

Pag. 72 di 88

Pilastri 60x60

A seguire il calcolo delle sollecitazioni sul singolo palo secondo lo schema strutturale evidenziato precedentemente

		SLI	J MAX N							
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	e	ey [m]				
Sollecitazioni	4039	-0,52	4,2	1	0,00	0,00				
PALO	y [m]	z [m]	y^2	z^2	N	l/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]	
1	0,75	0,7!	0,5	6	0,56	1009,8	-0,2	1,4	10	011,0
2	-0,75	0,7!	0,5	6	0,56	1009,8	-0,2	-1,4	10	008,2
3	0,75	-0,7!	0,5	6	0,56	1009,8	0,2	1,4	10	011,3
4	-0,75	-0,7!	0,5	6	0,56	1009,8	0,2	-1,4	10	008,5
Qi_MINIMO	1008,2									
Qi_MASSIMO	1011,3									
		611	J MAX e					l		
	N [kN]	My [kN m]	Mz [kN m]	a= [m]	1_	[]			-	_
Sollecitazioni	1691	-44,82		ez [m]	-0.02651	ey [m] 0,0				
PALO	y [m]	z [m]	y^2	z^2	-,	,	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]	
1		0,75	•		0,56	422,8	-14,9			423,7
2		0,75	· ·		0,56	422,8	-14,9			423, <i>1</i> 392,0
3	· · · · · ·	-0,75				422,8	14,9			453,5
4					0,56	422,8				
Qi_MINIMO	392,0	-0,75	, 0,5	<u> </u>	0,56	422,8	14,9	-15,8	4	421,8
Qi_MASSIMO	453,5								-	
CI_INIMOSIIVIO	453,5		<u> </u>	<u> </u>					-	
		9	SLE MAX N							
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]		ey [m]				
Sollecitazioni	301	2	0	3	0,0000	00	0,0			
PALO	y [m]	z [m]	y^2	z^2		N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]	
1	1 0,7	5 0,	75 (),56	0,5	56 75	3,0 0	.0 1,0	7	754,0
2	2 -0,7	5 0,	75 (),56	0,5	56 75	3,0 0	.0 -1,0	7	752,0
3	3 0,7	-0,	75 (),56	0,5	56 75	3,0 0	.0 1,0	7	754,0
4),56	0,5			.0 -1,0		752,0
Qi MINIMO	752,0				· · · · · · · · · · · · · · · · · · ·			·		
Qi_MASSIMO	754,0	-								
[_			
			SLE MAX e	1		1				
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]		ey [m]				
	1278	· · · · · · · · · · · · · · · · · · ·	-		0,0278		0,0			
PALO	y [m]	z [m]	y^2	z^2		N/n pali [kN]	Mom_y [kN m]		Q_i [kN]	
1	-,),56	0,5		·			320,4
2	-,),56	0,5		-			342,3
3		<u> </u>),56	0,5	56 31	-			296,7
	-,		75 (),56	0,5	56 31	9,5 -11	.8 11,0	3	318,6
Qi_MINIMO	296,	7								
Qi_MASSIMO	342,	3								
		S	V MAX N							
	N [kN]	My [kN m]	Mz [kN m]	ez [m]		ey [m]				
Sollecitazioni	2587	-9		27	-0,00359		0			
PALO	y [m]	z [m]	y^2	z^2	0,00333	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]	
1	l 0,75		-	56	0,56			9,0		652,7
2	2 -0,75		<u> </u>	56	0,56			-9,0		634,7
3	0.75		_	56	0,56					658,9
4				56	0,56					640,9
Qi_MINIMO	634,7		-, 0,		0,30	340,	-, 3,1	5,0		
Qi_MASSIMO	658,9									
			-	-		!	<u> </u>	-		
	,		SLV MAX e							
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]		ey [m]		_		
JUCO.CULIOTII	157			1,7	0,		0,0			
	y [m]	z [m]	y^2	z^2		N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]		
PALO		sl o	75 (),56	0,5			.6 -23,9		374,0
1	-,			. = a			د اد،	.6 23,9	4	421,8
1 2	2 -0,7	5 0,),56	0,5					
1	2 -0,7! 3 0,7!	5 0, 5 -0,	75 (),56	0,5	56 39	4,3 -3	.6 -23,9	3	366,8
1 2	2 -0,75 3 0,75	5 0, 5 -0,	75 (56 39	4,3 -3	.6 -23,9	3	
2	2 -0,7! 3 0,7!	5 0, 5 -0, 5 -0,	75 (),56	0,5	56 39	4,3 -3	.6 -23,9	3	366,8 414,6

Relazione di calcolo delle fondazioni

Pag. 73 di 88

Pilastri 60x90

A seguire il calcolo delle sollecitazioni sul singolo palo secondo lo schema strutturale evidenziato precedentemente

precedente	Cilicitic							
		SLU	MAX N					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sofiecitazioni	4498,315761	0,700149	-114,51347	0,00				
PALO		• •	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1		0,75	0,56	0,56		0,2		1086,6
2		0,75	0,56	0,56		0,2	38,2	1163,0
3		-0,75	0,56	0,56		-0,2		1086,2
4	-, -	-0,75	0,56	0,56	1124,6	-0,2	38,2	1162,5
Qi_MINIMO	1086,2							
Qi_MASSIMO	1163,0							
		SLU	MAX e					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Jonecitazioni	2696,067833	57,610526	-108,002942	0,02137	0,0			
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	0,75	0,75	0,56	0,56	674,0	19,2	-36,0	657,2
2	-0,75	0,75	0,56	0,56	674,0	19,2		
3	· ' '	-0,75	0,56	0,56		-19,2		
4		-0,75	0,56	0,56	674,0	-19,2	2 36,0	690,8
Qi_MINIMO	618,8							
Qi_MASSIMO	729,2							
		SL	E MAX N					
	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	3377,532478					0,0		
PALO	y [m]	z [m]	v^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q i [kN]
			5 0,	56),2 -29,5	815,1
2	2 -0,75	·),2 29,5	874,0
3		·),2 -29,5	814,7
4	· ·		-),2 29,5	873,7
Qi_MINIMO	814,		-,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	
Qi_MASSIMO	874,0							
Q	G, 1,1						_	
	1	1	E MAX e					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]		_	
	2041,347862	1				0,0		
PALO	y [m]	z [m]	у^2	z^2	N/n pali [kN]	Mom_y [kN m]		
	-,		-		<i>'</i>	10,3 14	·	497,7
		·			·	10,3 14		551,7
3	· · · · · ·	<u> </u>			-	10,3 -14	·	469,0
	4 -0,75	· · · · · · · · · · · · · · · · · · ·	5 0,	56),56 5	10,3 -14	,4 27,0	522,9
Qi_MINIMO	469,0							
Qi_MASSIMO	551,	7						
		SL\	/ MAX N					
	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	3022,954406					0,0		
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1			*		56 75!			761,8
2					56 75!	<u> </u>		754,7
3	3 0,75	-0,75	0,5	6 0,	56 75!	5,7 -2,5	3,5	756,7
4					56 75!			
Qi_MINIMO	749,7		1	1		,-	1	
Qi_MASSIMO	761,8							
	<u> </u>		V 8 4 8 V -			-		
			V MAX e	T.,	1			
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]	0.1		
2410	1720,0392	·				-0,1		0:010
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]		
		•				30,0 27		426,0
						30,0 27		489,3
1 3	3 0,75				_	30,0 -27		370,7
	-							434,0
4	-,	·	5 0,	56	0,56 4	30,0 -27	7,6 31,7	434,0
	4 -0,75 370,7 489,3	7	5 0,	56	0,56 4	30,0 -27	7,6 31,7	434,0

Relazione di calcolo delle fondazioni

Pag. 74 di 88

Pilastri 60x120

A seguire il calcolo delle sollecitazioni sul singolo palo secondo lo schema strutturale evidenziato precedentemente

•	emente							
		SLU	MAX N					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
	4750,250494	89,658938	-95,923979	0,02	· · · · · · · · · · · · · · · · · · ·			
PALO		• •	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1		0,75	0,56	0,56				
2		0,75	0,56	0,56				
3		-0,75	0,56	0,56				
4	-, -	-0,75	0,56	0,56	1187,6	-29,9	32,0	118
Qi_MINIMO	1125,7							
Qi_MASSIMO	1249,4							
		SLU	MAX e					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Jonethazioni	4421,671852	-87,021783	-161,14127	-0,01968	0,0			
PALO			y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	0,75	0,75	0,56	0,56				
2	-0,75	0,75	0,56	0,56				
3		-0,75	0,56	0,56				
4		-0,75	0,56	0,56	1105,4	29,0	53,7	118
Qi_MINIMO	1022,7							
Qi_MASSIMO	1188,1							
		SL	E MAX N					
	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	3584,504288					0,0		
PALO	y [m]	z [m]	v^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q i [kN]
			5 0,	56		96,1 23		89
	2 -0,75	·	·			96,1 23		94
3		·				96,1 -23		84
4						96,1 -23		89
Qi_MINIMO	847,9	·	<u>'</u>		<u> </u>			
Qi_MASSIMO	944,4	1						
			E MAX e					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]	2.2		
5410	3357,94142		,	-		0,0		0 : [] 11
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]		
	•,				<i>'</i>	39,5 -22	·	77
					·	39,5 -22	·	85
	0,75		_			39,5	·	82
	4 -0,75		5] 0,	56	0,56	39,5 22	2,4 39,8	90
Qi_MINIMO	777,3							
Qi_MASSIMO	901,	7						
		SL\	/ MAX N					
	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	3318,260414	-62,851597	-176,97374			0,1		
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	0,75		0,5	66 0,	56 82	9,6 -21,0	-59,0	74
2			0,5		_	9,6 -21,0	59,0	
3	0,75	-0,75	0,5	6 0,	56 82	9,6 21,0	-59,0	79
4	-0,75	-0,75	0,5	6 0,	56 82	9,6 21,0	59,0	
Qi_MINIMO	749,6							
Qi_MASSIMO	909,5							
			V MAX e		-			-
-	NI FIANT			a= [m]	au fer 1			
Sollecitazioni	N [kN] 3161,867699	My [kN m] -77,17747	Mz [kN m]	ez [m]	ey [m]	0.1	_	
DALO	-	·	,	_	0,0	-0,1	Mari - Par 3	O : Ileu
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]		
		· ·				90,5 -25	·	64
	2 -0,75					90,5 -25		88
	3 0,75					90,5		69
	4 -0,75	·	5 0,	56	0,56 7	90,5 25	5,7 121,2	93
Qi_MINIMO	643,6	OI .						
Qi_MASSIMO	937,4							

Relazione di calcolo delle fondazioni

Pag. 75 di 88

Setti da 30 cm

Per il calcolo delle fondazioni dei nuclei in calcestruzzo la combinazione dimensionante è quella agli SLV, si sono calcolati n. 63 pali di diametro pari a 60 cm e ad interasse di 3 diamertri ovvero 1,8 m secondo una matrice 9x7 che si mostra in figura:

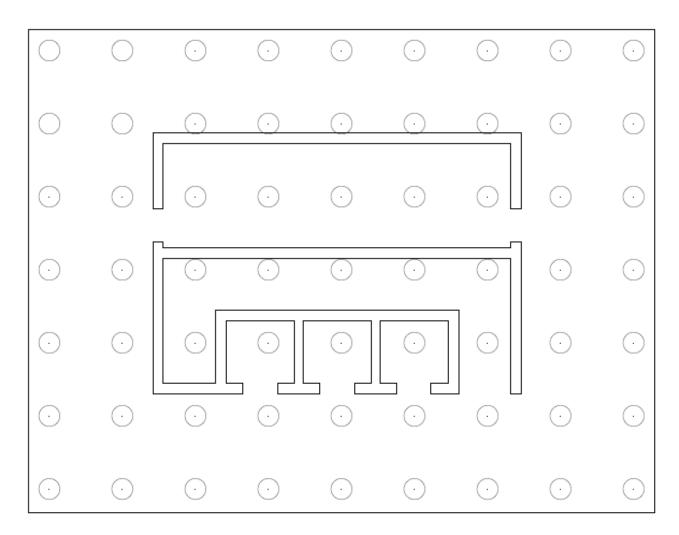


Figura 10 - Pianta fondazioni per setti da 30 cm

Relazione di calcolo delle fondazioni

Pag. 76 di 88

			SLE					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	20831	-220	-52660	-0,01056	-2,5			
PALO	y [m]		y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	4,2			54,17	372,0			149,3
2	,			27,67	372,0		-223,9	149,0
3	,			9,99	372,0	0,5	-223,9	148,6
4			17,64	1,12	372,0	0,2	-223,9	148,3
5	· · · · · · · · · · · · · · · · · · ·		17,64	1,08	372,0	-0,2	-223,9	147,9
6			17,64	9,86	372,0	-0,5	-223,9	147,6
7	,			27,46	372,0		-223,9	147,2
<u>8</u>	-		17,64	53,88	372,0	-1,2	-223,9	146,8
				54,17	372,0		-111,9	261,3
10 11			4,41	27,67	372,0	0,9 0,5	-111,9 -111,9	260,9
11			4,41 4,41	9,99 1,12	372,0 372,0	·	-111,9	260,6 260,2
13			4,41	1,12	372,0	-0,2	-111,9	259,9
14			4,41	9,86	372,0	-0,2	-111,9	259,5
15			4,41	27,46	372,0	-0,9	-111,9	259,1
16			4,41	53,88	372,0	-0,9	-111,9	258,8
17				54,17	372,0	1,2	0,0	373,2
18			0,00	27,67	372,0	0,9	0,0	373,2
19		,		9,99	372,0	0,5	0,0	372,5
20			0,00	1,12	372,0	0,2	0,0	372,2
21		,	0,00	1,08	372,0	-0,2	0,0	371,8
22		· · · · · · · · · · · · · · · · · · ·	0,00	9,86	372,0	-0,5	0,0	371,4
23			0,00	27,46	372,0	-0,9	0,0	371,1
24	0	7,34	0,00	53,88	372,0	-1,2	0,0	370,7
25	-2,1	-7,36	4,41	54,17	372,0	1,2	111,9	485,2
26	-2,1	-5,26	4,41	27,67	372,0	0,9	111,9	484,8
27	-2,1	-3,16	4,41	9,99	372,0	0,5	111,9	484,5
28	-2,1		4,41	1,12	372,0	0,2	111,9	484,1
29		1,04	4,41	1,08	372,0	-0,2	111,9	483,8
30				9,86	372,0		111,9	483,4
31			4,41	27,46	372,0	-0,9	111,9	483,0
32				53,88	372,0		111,9	482,7
33			17,64	54,17	372,0	1,2	223,9	597,1
34				27,67	372,0	0,9		596,8
35				9,99	372,0	0,5	223,9	596,4
36			17,64	1,12	372,0	0,2	223,9	596,1
37 38			17,64	1,08	372,0	-0,2	223,9	595,7
38			17,64	9,86	372,0	-0,5	223,9	595,3
40			17,64 17,64	27,46 53,88	372,0 372,0	-0,9 -1,2	223,9 223,9	595,0 594,6
40			39,69	53,88	372,0 372,0	1,2	-335,8	37,4
42				27,67	372,0	0,9	-335,8	37,4
43			39,69	9,99	372,0	0,9	-335,8	36,7
44				1,12	372,0	0,2	-335,8	36,3
45			39,69	1,08	372,0	-0,2	· ·	36,0
46				9,86	372,0			35,6
47				27,46	372,0			35,3
48				53,88	372,0			34,9
49				54,17	372,0			709,1
50				27,67	372,0			708,7
51	-6,3		39,69	9,99	372,0	0,5	335,8	708,4
52	-6,3			1,12	372,0	0,2	335,8	708,0
53	-6,3			1,08	372,0		335,8	707,6
54				9,86	372,0	-0,5	335,8	707,3
55				27,46				706,9
56	-6,3	7,34	39,69	53,88	372,0	-1,2	335,8	706,6
Qi_MINIMO	34,9							
Qi MASSIMO	709,1							

Relazione di calcolo delle fondazioni

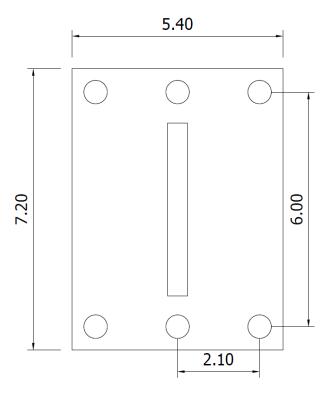
Pag. 77 di 88

			SLU					
Sollecitazioni	N [kN]		Mz [kN m]	ez [m]	ey [m]			
	28415,0			-0,01097	-2,6			
PALO	y [m]		y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	,			54,17	507,4	1,8		199,0
2				27,67	507,4	1,3	-310,2	198,5
3				9,99	507,4	0,8	-310,2	198,0
4			17,64	1,12	507,4	0,3	-310,2	197,5
5	· · · · · · · · · · · · · · · · · · ·		17,64 17,64	1,08 9,86	507,4 507,4	-0,2	-310,2 -310,2	197,0 196,5
7				27,46	507,4	-0,8 -1,3	-310,2	196,0
			17,64	53,88	507,4	-1,3	-310,2	195,5
9		· ·		54,17	507,4	1,8	-155,1	354,2
10			4,41	27,67	507,4	1,3	-155,1	353,6
11			4,41	9,99	507,4	0,8	-155,1	353,1
12			4,41	1,12	507,4	0,3	-155,1	352,6
13			4,41	1,08	507,4	-0,2	-155,1	352,1
14			4,41	9,86	507,4	-0,8	-155,1	351,6
15			4,41	27,46	507,4	-1,3	-155,1	351,1
16			4,41	53,88	507,4	-1,8	-155,1	350,6
17	0		·	54,17	507,4	1,8		509,2
18	0		0,00	27,67	507,4	1,3	0,0	508,7
19		-3,16	0,00	9,99	507,4	0,8	0,0	508,2
20		-1,06	0,00	1,12	507,4	0,3	0,0	507,7
21		1,04	0,00	1,08	507,4	-0,2	0,0	507,2
22		· · · · · · · · · · · · · · · · · · ·	0,00	9,86	507,4	-0,8	0,0	506,7
23			0,00	27,46	507,4	-1,3	0,0	506,2
24		· · · · · · · · · · · · · · · · · · ·	0,00	53,88	507,4	-1,8	0,0	505,6
25				54,17	507,4	1,8	155,1	664,3
26				27,67	507,4	1,3	155,1	663,8
27			4,41	9,99	507,4	0,8	155,1	663,2
28			4,41	1,12	507,4	0,3	155,1	662,7
29			4,41	1,08	507,4	-0,2	155,1	662,2
30 31				9,86	507,4	-0,8	155,1	661,7
31			4,41	27,46	507,4	-1,3	155,1 155,1	661,2 660,7
33			4,41 17,64	53,88 54,17	507,4 507,4	-1,8 1,8	310,2	819,3
33			·	27,67	507,4	1,8	310,2	818,8
35			17,64	9,99	507,4	0,8	310,2	818,3
36			17,64	1,12	507,4	0,3	310,2	817,8
37			17,64	1,08	507,4	-0,2	310,2	817,3
38			17,64	9,86	507,4	-0,8	310,2	816,8
39			17,64	27,46	507,4	-1,3	310,2	816,3
40			17,64	53,88	507,4	-1,8	310,2	815,8
41			39,69	54,17	507,4	1,8	-465,2	44,0
42	6,3		39,69	27,67	507,4	1,3	-465,2	43,4
43	6,3		39,69	9,99	507,4	0,8	-465,2	42,9
44				1,12	507,4	0,3	-465,2	42,4
45			39,69	1,08	507,4	-0,2	-465,2	41,9
46				9,86	507,4	-0,8		41,4
47				27,46	507,4	-1,3		40,9
48				53,88	507,4	-1,8		40,4
49				54,17	507,4	1,8		974,4
50				27,67	507,4	1,3		973,9
51				9,99	507,4	0,8	465,2	973,4
52				1,12	507,4	0,3	465,2	972,9
53						-0,2	465,2	972,4
54				9,86	507,4	-0,8		971,9
55						-1,3		971,4
56			39,69	53,88	507,4	-1,8	465,2	970,9
Qi_MINIMO	40,4							
Qi_MASSIMO	974,4	+						

Relazione di calcolo delle fondazioni

Pag. 78 di 88

			SLV					
Sollecitazioni	N [kN]		Mz [kN m]	ez [m]	ey [m]			
	19544,1		-54851	13,72062	-2,8			0 : [] 1
PALO 1	y [m] . 6,3	z [m] 8,4	y^2 39,69	z^2 70,56	N/n pali [kN] 310,2	Mom_y [kN m] 1216,1	Mom_z [kN m] -310,9	Q_i [kN] 1215,4
2			39,69	39,69	310,2	912,1	-310,9	911,4
3	-,-		39,69	17,64	310,2	608,1	-310,9	607,3
4	6,3	2,1	39,69	4,41	310,2	304,0	-310,9	303,3
5				0,00	310,2	0,0	-310,9	-0,7
6	· · · · · · · · · · · · · · · · · · ·		39,69	4,41	310,2	-304,0	-310,9	-304,8
7			39,69 39,69	17,64 39,69	310,2 310,2	-608,1 -912,1	-310,9 -310,9	-608,8 -912,8
9			39,69	70,56	310,2	-1216,1	-310,9	-1216,9
10			17,64	70,56	310,2	1216,1	-207,3	1319,1
11			17,64	39,69	310,2	912,1	-207,3	1015,0
12			17,64	17,64	310,2	608,1	-207,3	711,0
13 14			17,64	4,41	310,2	304,0	-207,3 -207,3	407,0
14			17,64 17,64	0,00 4,41	310,2 310,2	0,0 -304,0	-207,3	102,9 -201,1
16			17,64	17,64	310,2	-608,1	-207,3	-505,1
17			17,64	39,69	310,2	-912,1	-207,3	-809,2
18			17,64	70,56	310,2	-1216,1	-207,3	-1113,2
19			4,41	70,56	310,2	1216,1	-103,6	1422,7
20			4,41 4,41	39,69 17,64	310,2 310,2	912,1 608,1	-103,6 -103,6	1118,7 814,6
22			4,41	4,41	310,2	304,0	-103,6	510,6
23				0,00	310,2	0,0	-103,6	206,6
24			4,41	4,41	310,2	-304,0	-103,6	-97,5
25			4,41	17,64	310,2	-608,1	-103,6	-401,5
26			4,41	39,69	310,2	-912,1	-103,6	-705,5
27			4,41 0,00	70,56 70,56	310,2 310,2	-1216,1 1216,1	-103,6 0,0	-1009,6 1526,4
29			0,00	39,69	310,2	912,1	0,0	1222,3
30			0,00	17,64	310,2	608,1	0,0	918,3
31		2,1	0,00	4,41	310,2	304,0	0,0	614,3
32				0,00	310,2	0,0	0,0	310,2
33		, , , , , , , , , , , , , , , , , , ,	0,00	4,41	310,2	-304,0	0,0	6,2
34			0,00	17,64 39,69	310,2 310,2	-608,1 -912,1	0,0	-297,8 -601,9
36		· · · · · · · · · · · · · · · · · · ·	0,00	70,56	310,2	-1216,1	0,0	-905,9
37		,	4,41	70,56	310,2	1216,1	103,6	1630,0
38			4,41	39,69	310,2	912,1	103,6	1326,0
39			4,41	17,64	310,2	608,1	103,6	1021,9
40			4,41 4,41	4,41 0,00	310,2 310,2	304,0 0,0	103,6 103,6	717,9 413,9
42			4,41	4,41	310,2	-304,0	103,6	109,8
43			4,41	17,64	310,2	-608,1	103,6	-194,2
44	-2,1	-6,3	4,41	39,69	310,2	-912,1	103,6	-498,2
45				70,56	310,2	-1216,1	103,6	
46			17,64	70,56	310,2	1216,1	207,3	1733,7
47				39,69 17,64	310,2 310,2	912,1 608,1	207,3 207,3	1429,6 1125,6
49			17,64	4,41	310,2	304,0	207,3	821,6
50	-4,2			0,00	310,2	0,0	207,3	517,5
51	-4,2		17,64	4,41	310,2	-304,0	207,3	213,5
52			17,64	17,64	310,2	-608,1	207,3	-90,5
53 54			17,64 17,64	39,69 70,56	310,2 310,2	-912,1 -1216,1	207,3 207,3	-394,6 -698,6
54				70,56	310,2	-1216,1 1216,1	207,3 310,9	-698,6 1837,3
56			39,69	39,69	310,2	912,1	310,9	1533,3
57	-6,3	4,2	39,69	17,64	310,2	608,1	310,9	1229,2
58			39,69	4,41	310,2	304,0	310,9	925,2
59				0,00	310,2	0,0	310,9	621,2
60			39,69	4,41	310,2 310,2	-304,0 -608,1	310,9 310,9	317,1
62			39,69 39,69	17,64 39,69	310,2 310,2	-608,1 -912,1	310,9	13,1 -290,9
63				70,56	310,2	-1216,1	310,9	-595,0
64				0,00	0,0	0,0	0,0	0,0
65	0	0	0,00	0,00	0,0	0,0	0,0	0,0
Qi_MINIMO	-1216,9							
Qi_MASSIMO	1837,3							



Relazione di calcolo delle fondazioni

Pag. 79 di 88

Setti da 50 cm

Per i setti da 50 cm si dispongono pali da diametro D600 disposti come in figura

		SLU	MAX N					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Soliecitazioni	7585,96	0	-962,36	0,00	-0,13			
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	3	0	9,00	0,00	1264,3	0,0	-53,5	1210,9
2	3	1,8	9,00	3,24	1264,3	0,0	-53,5	1210,9
3	3	-1,8	9,00	3,24	1264,3	0,0	-53,5	1210,9
4	-3	0	9,00	0,00	1264,3	0,0	53,5	1317,8
5	-3	1,8	9,00	3,24	1264,3	0,0	53,5	1317,8
6	-3	-1,8	9,00	3,24	1264,3	0,0	53,5	1317,8
Qi_MINIMO	1210,9							
Qi_MASSIMO	1317,8							

		SLU	MAX e					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	7435,63	0	-981,24	0,00000	-0,1			
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	3	0	9,00	0,00	1239,3	0,0	-54,5	1184,8
2	3	1,8	9,00	3,24	1239,3	0,0	-54,5	1184,8
3	3	-1,8	9,00	3,24	1239,3	0,0	-54,5	1184,8
4	-3	0	9,00	0,00	1239,3	0,0	54,5	1293,8
5	-3	1,8	9,00	3,24	1239,3	0,0	54,5	1293,8
6	-3	-1,8	9,00	3,24	1239,3	0,0	54,5	1293,8
Qi_MINIMO	1184,8							
Qi_MASSIMO	1293,8							

Qi_MINIMO Qi_MASSIMO

-400,6 1643,6

Estensione delle infrastrutture comuni per lo sviluppo del Punto Franco Nuovo nel porto di Trieste - CUP: C94E21000460001

Relazione di calcolo delle fondazioni

Pag. 80 di 88

		SLE	MAX N					
Sollecitazioni	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Jonetharion	5531,92	. 0	-382,4	0,00000	-0,1			
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
3	1 3	0	9,00	0,00	922,0	0,0	-21,2	900,
2	2 3	1,8	9,00	3,24	922,0	0,0	-21,2	900,
3	3	-1,8	9,00	3,24	922,0	0,0	-21,2	900,
4	-3	0	9,00	0,00	922,0	0,0	21,2	943,
į	-3	1,8	9,00	3,24	922,0	0,0	21,2	943,
(-3	-1,8	9,00	3,24	922,0	0,0	21,2	943,
Qi_MINIMO	900,7	(
Qi_MASSIMO	943,2							
		CI E	MAX e			1		
	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	5444,96							
PALO	y [m]	z [m]	v^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
PALO			,				-36,2	871,
		+	9,00	·			-36,2	871,
			9,00			,	-36,2	871,
3		· · · · · · · · · · · · · · · · · · ·	,			· · · · · · · · · · · · · · · · · · ·		943,
						· · · · · · · · · · · · · · · · · · ·	36,2	,
		·	9,00	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	36,2	943,
	1	7-	9,00	3,24	907,5	0,0	36,2	943,
Qi_MINIMO	871,3							
Qi_MASSIMO	943,7							
			MAX N					
Sollecitazioni	N [kN]			ez [m]	ey [m]			
001100110111	6183		-18373,26	0,00000	-3,0			
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1		0	9,00	0,00	1030,5	0,0	-1020,7	9,
2			9,00	3,24	1030,5	0,0	-1020,7	9,
3		,	9,00	3,24	1030,5	0,0	-1020,7	9,
4		0	9,00	0,00	1030,5	0,0	1020,7	2051,
5			9,00	3,24	1030,5	0,0	1020,7	2051,
6	-3	-1,8	9,00	3,24	1030,5	0,0	1020,7	2051,
Qi_MINIMO	9,8							
Qi_MASSIMO	2051,2							
		SLV	MAX e					
6 11 11 1	N [kN]	My [kN m]	Mz [kN m]	ez [m]	ey [m]			
Sollecitazioni	3728,86	0	18397,55	0,0				
PALO	y [m]	z [m]	y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
:			9,00	0,00	621,5		1022,1	1643,
			9,00				1022,1	1643,
4		·	·		-	· · · · · · · · · · · · · · · · · · ·		,
	3	-1,8	9,00	3,24	621,5	0,0	1022,1	1643,
		· · · · · · · · · · · · · · · · · · ·	·		-	· · · · · · · · · · · · · · · · · · ·	-1022,1	1643, -400,
	-3	0		0,00	621,5	0,0	· · · · · · · · · · · · · · · · · · ·	,

Relazione di calcolo delle fondazioni

Pag. 81 di 88

Setti da 65 cm

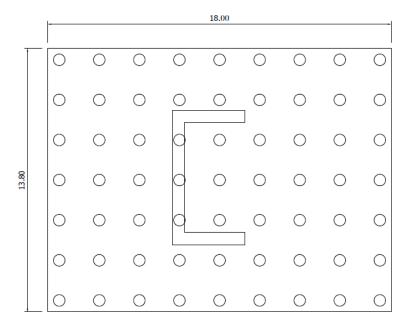


Figura 11 - Disposizione pali D600 setto 65 cm

Relazione di calcolo delle fondazioni

Pag. 82 di 88

			SLU					
Sollecitazioni	N [kN]		Mz [kN m]	ez [m]	ey [m]			
	17141		-12043		-0,7			
	y [m]		y^2	z^2	N/n pali [kN]		Mom_z [kN m]	Q_i [kN]
1	4,2			54,17	306,1	-0,3	-51,2	254,6
2			17,64	27,67	306,1	-0,2	-51,2	254,7
3	4,2		17,64	9,99	306,1	-0,1	-51,2	254,8
4	,		17,64	1,12	306,1	0,0	-51,2	254,8
5 6	4,2		17,64	1,08	306,1	0,0 0,1	-51,2 -51,2	254,9 255,0
7			17,64	9,86	306,1	0,1	-51,2	255,0
8	4,2 4,2		17,64 17,64	27,46 53,88	306,1 306,1	0,2	-51,2	255,2
9				54,17	306,1	-0,3	-25,6	280,2
10	2,1		4,41	27,67	306,1	-0,3	-25,6	280,3
11	2,1		4,41	9,99	306,1	-0,2	-25,6	280,4
12	2,1		4,41	1,12	306,1	0,0	-25,6	280,4
13	2,1		4,41	1,08	306,1	0,0	-25,6	280,5
14	2,1		4,41	9,86	306,1	0,1	-25,6	280,6
15	2,1		4,41	27,46	306,1	0,2	-25,6	280,7
16	2,1		4,41	53,88	306,1	0,3	-25,6	280,8
17	0		0,00	54,17	306,1	-0,3	0,0	305,8
18	0		0,00	27,67	306,1	-0,2	0,0	305,9
19	0		0,00	9,99	306,1	-0,1	0,0	306,0
20	0		0,00	1,12	306,1	0,0	0,0	306,0
21	0		0,00	1,08	306,1	0,0	0,0	306,1
22	0	3,14	0,00	9,86	306,1	0,1	0,0	306,2
23	0		0,00	27,46	306,1	0,2	0,0	306,3
24	0	7,34	0,00	53,88	306,1	0,3	0,0	306,4
25	-2,1	-7,36	4,41	54,17	306,1	-0,3	25,6	331,4
26	-2,1	-5,26	4,41	27,67	306,1	-0,2	25,6	331,5
27	-2,1	-3,16	4,41	9,99	306,1	-0,1	25,6	331,6
28	-2,1	-1,06	4,41	1,12	306,1	0,0	25,6	331,6
29	-2,1	1,04	4,41	1,08	306,1	0,0	25,6	331,7
30	-2,1		4,41	9,86	306,1	0,1	25,6	331,8
31	-2,1		4,41	27,46	306,1	0,2	25,6	331,9
32	-2,1		4,41	53,88	306,1	0,3	25,6	332,0
33	-4,2		17,64	54,17	306,1	-0,3	51,2	357,0
34	-4,2		17,64	27,67	306,1	-0,2	51,2	357,1
35	-4,2		17,64	9,99	306,1	-0,1	51,2	357,2
36	-4,2		17,64	1,12	306,1	0,0	51,2	357,2
37	-4,2		17,64	1,08	306,1	0,0	51,2	357,3
38	-4,2		17,64	9,86	306,1	0,1	51,2	357,4
39	-4,2		17,64	27,46	306,1	0,2	51,2	357,5
40	-4,2		17,64	53,88	306,1	0,3	51,2	357,6
41 42	6,3		39,69	54,17	306,1	-0,3 -0,2	-76,8 -76,8	229,0 229,1
42	6,3 6,3		39,69 39,69	27,67 9,99	306,1 306,1	-0,2 -0,1	-76,8 -76,8	229,1
43 44	6,3		39,69	9,99	306,1	-0,1	-76,8 -76,8	229,2
45	6,3		39,69		306,1	0,0	-76,8	229,3
46			39,69		306,1	0,0	-76,8	229,4
47	6,3		39,69		306,1	0,1	-76,8	229,5
48			39,69		306,1	0,3	-76,8	229,6
49	-6,3				306,1	-0,3	76,8	382,6
50	-6,3				306,1	-0,2	76,8	382,7
51	-6,3				306,1	-0,1	76,8	382,8
52	-6,3		39,69		306,1	0,0	76,8	382,8
53	-6,3					0,0		382,9
54					306,1	0,1	76,8	383,0
55						0,2	76,8	383,1
56					306,1	0,3	76,8	383,2
Qi_MINIMO	229,0		,	23,00	-,	-,-	-,-	
Qi MASSIMO	383,2							

Relazione di calcolo delle fondazioni

Pag. 83 di 88

			SLEr					
Sollecitazioni	N [kN]		Mz [kN m]	ez [m]	ey [m]			
	12511	,			-0,6			
PALO	y [m]		y^2	z^2	N/n pali [kN]	Mom_y [kN m]	Mom_z [kN m]	Q_i [kN]
1	,	·		54,17	223,4	0,7	-34,4	189,7
3	· · · · · · · · · · · · · · · · · · ·			27,67	223,4	0,5	-34,4	189,5
4			17,64 17,64	9,99 1,12	223,4 223,4	0,3 0,1	-34,4 -34,4	189,3 189,1
5		·		1,12	223,4	-0,1	-34,4	188,9
6			17,64	9,86	223,4	-0,3	-34,4	188,7
7			17,64	27,46	223,4	-0,5		188,5
8			17,64	53,88	223,4	-0,7	-34,4	188,3
9	2,1	-7,36	4,41	54,17	223,4	0,7	-17,2	206,9
10	2,1	-5,26	4,41	27,67	223,4	0,5	-17,2	206,7
11	2,1	-3,16	4,41	9,99	223,4	0,3	-17,2	206,5
12		-1,06	4,41	1,12	223,4	0,1	-17,2	206,3
13			4,41	1,08	223,4	-0,1	-17,2	206,1
14			4,41	9,86	223,4	-0,3	-17,2	205,9
15			4,41	27,46	223,4	-0,5		205,7
16		·		53,88	223,4	-0,7	-17,2	205,5
17 18				54,17	223,4 223,4	0,7 0,5	0,0	224,1
18				27,67 9,99		0,5	0,0	223,9 223,7
20			0,00	1,12	223,4	0,3	0,0	223,7
21		, , , , , , , , , , , , , , , , , , ,	0,00	1,08	223,4	-0,1	0,0	223,3
22			0,00	9,86	223,4	-0,3	0,0	223,1
23			0,00	27,46	223,4	-0,5	0,0	222,9
24			0,00	53,88	223,4	-0,7	0,0	222,7
25			4,41	54,17	223,4	0,7	17,2	241,3
26		-5,26	4,41	27,67	223,4	0,5	17,2	241,1
27	-2,1	-3,16	4,41	9,99	223,4	0,3	17,2	240,9
28		-1,06		1,12	223,4	0,1	17,2	240,7
29			4,41	1,08	223,4	-0,1	17,2	240,5
30			4,41	9,86	223,4	-0,3	17,2	240,3
31			4,41	27,46	223,4	-0,5	17,2	240,1
32			4,41	53,88	223,4	-0,7	17,2	239,9
33 34				54,17	223,4 223,4	0,7 0,5	34,4 34,4	258,5 258,3
35				27,67 9,99	223,4	0,3	34,4	258,3
36			17,64	1,12	223,4	0,1	34,4	257,9
37			17,64	1,08	223,4	-0,1	34,4	257,7
38			17,64	9,86	223,4	-0,3	34,4	257,5
39			17,64	27,46	223,4	-0,5		257,3
40	-4,2	7,34	17,64	53,88	223,4	-0,7	34,4	257,1
41	6,3		39,69	54,17	223,4	0,7	-51,6	172,5
42	-		39,69	27,67	223,4	0,5		172,3
43				9,99	223,4	0,3		172,1
44				1,12	223,4	0,1	-51,6	171,9
45								
46			39,69	9,86	223,4	-0,3		171,5
47						-0,5		171,3
48 49				53,88 54,17	223,4 223,4	-0,7 0,7		171,1 275,8
50					223,4	0,7		
51					223,4	0,3		275,4
52					223,4	0,1	51,6	275,1
53						-0,1	51,6	274,9
54			39,69		223,4	-0,3		274,7
55				·	223,4	-0,5	·	274,5
56	-6,3			53,88	223,4	-0,7	51,6	274,3
Qi_MINIMO	171,1			,,,,,				
Qi_MASSIMO	275,8							

Relazione di calcolo delle fondazioni

Pag. 84 di 88

			SLV					
Sollecitazioni	N [kN]		Mz [kN m]		ey [m]			
	11223,67			-1,39672	-20,7			0 : [] 11
PALO 1	y [m] . 6,3	-	y^2 39,69	z^2 70,56	N/n pali [kN] 178,2	Mom_y [kN m] -71,1	Mom_z [kN m] -1319,5	Q_i [kN] -1212,4
2			39,69	39,69	178,2	-53,3	-1319,5	-1194,6
3			39,69	17,64	178,2	-35,5	-1319,5	-1176,9
4	-,-		39,69	4,41	178,2	-17,8	-1319,5	-1159,1
5				0,00	178,2	0,0		-1141,3
- 6	· · · · · · · · · · · · · · · · · · ·		39,69	4,41	178,2	17,8	-1319,5	-1123,5
			39,69 39,69	17,64 39,69	178,2 178,2	35,5 53,3	-1319,5 -1319,5	-1105,8 -1088,0
9			39,69	70,56	178,2	71,1	-1319,5	-1070,2
10	4,2		17,64	70,56	178,2	-71,1	-879,6	-772,6
11			17,64	39,69	178,2	-53,3	-879,6	-754,8
12			17,64	17,64	178,2	-35,5	-879,6	-737,0
13			17,64 17,64	4,41 0,00	178,2 178,2	-17,8 0,0	-879,6 -879,6	-719,3 -701,5
15			17,64	4,41	178,2	17,8	-879,6	-683,7
16			17,64	17,64	178,2	35,5	-879,6	-665,9
17	4,2	-6,3	17,64	39,69	178,2	53,3	-879,6	-648,2
18			17,64	70,56	178,2	71,1	-879,6	-630,4
19			4,41	70,56	178,2	-71,1	-439,8	-332,8
20		6,3 4,2	4,41 4,41	39,69 17,64	178,2 178,2	-53,3 -35,5	-439,8 -439,8	-315,0 -297,2
22		2,1	4,41	4,41	178,2	-17,8	-439,8	-279,4
23	2,1	0		0,00	178,2	0,0	-439,8	-261,7
24		-2,1	4,41	4,41	178,2	17,8	-439,8	-243,9
25		-4,2	4,41	17,64	178,2	35,5	-439,8	-226,1
26		-6,3 -8,4	4,41 4,41	39,69 70,56	178,2 178,2	53,3 71,1	-439,8 -439,8	-208,3 -190,6
28			0,00	70,56	178,2	-71,1	0,0	107,1
29			0,00	39,69	178,2	-53,3	0,0	124,8
30			0,00	17,64	178,2	-35,5	0,0	142,6
31		,	0,00	4,41	178,2	-17,8	0,0	160,4
32				0,00	178,2	0,0	0,0	178,2
33			0,00 0,00	4,41 17,64	178,2 178,2	17,8 35,5	0,0	195,9 213,7
35			0,00	39,69	178,2	53,3	0,0	231,5
36			0,00	70,56	178,2	71,1	0,0	249,2
37			4,41	70,56	178,2	-71,1	439,8	546,9
38			4,41	39,69	178,2	-53,3	439,8	564,7
39			4,41 4,41	17,64 4,41	178,2 178,2	-35,5 -17,8	439,8 439,8	582,4 600,2
41				0,00	178,2	0,0	439,8	618,0
42			4,41	4,41	178,2	17,8	439,8	635,7
43	-2,1	-4,2	4,41	17,64	178,2	35,5	439,8	653,5
44			4,41	39,69	178,2	53,3	439,8	671,3
45		-8,4 8,4	4,41	70,56	178,2	71,1	439,8	689,1
47			17,64 17,64	70,56 39,69	178,2 178,2	-71,1 -53,3	879,6 879,6	986,7 1004,5
48			17,64	17,64	178,2	-35,5		1022,3
49	-4,2	2,1	17,64	4,41	178,2	-17,8		1040,0
50		0	•	0,00	178,2	0,0		1057,8
51			17,64	4,41	178,2	17,8		1075,6
52 53			17,64 17,64	17,64 39,69	178,2 178,2	35,5 53,3	879,6 879,6	1093,3 1111,1
54			17,64	70,56	178,2	71,1	879,6	1128,9
55	-6,3	8,4	39,69	70,56	178,2	-71,1	1319,5	1426,5
56			39,69	39,69	178,2	-53,3	1319,5	1444,3
57			39,69	17,64	178,2	-35,5		1462,1
58 59			39,69 39,69	4,41 0,00	178,2 178,2	-17,8 0,0	1319,5 1319,5	1479,8 1497,6
60			39,69	4,41	178,2	17,8	1319,5	1515,4
61			39,69	17,64	178,2	35,5	1319,5	1533,2
62	-6,3	-6,3	39,69	39,69	178,2	53,3	1319,5	1550,9
63			39,69	70,56	178,2	71,1	1319,5	1568,7
64				0,00	0,0	0,0		0,0
65			0,00	0,00	0,0	0,0	0,0	0,0
Qi_MINIMO	-1212,4							
Qi_MASSIMO	1568,7	<u> </u>						

Relazione di calcolo delle fondazioni

Pag. 85 di 88

10.3.2Capacità Portante D 600 mm

Il calcolo della portanza a compressione del palo tipo CFA, d=600 mm viene condotto un solo modo ovvero quello che prevede esclusivamente la capacità portante in punta, intestata per 3-4 m in roccia.

La resistenza limite di punta in condizione di rottura vale secondo gli studi di Thorne, per rocce fratturate: $Q_{punta}(limite) = 3x(0.3xq_{um}) \times A_{punta} = 3x(0.3x21)\times0.283=5349 \text{ kN}.$

Trascurando a favore di sicurezza la resistenza per attrito laterale del palo, la portanza di progetto agli SLU (comb. A1+M1+R3) vale:

$$N_{d,res}(SLU) = 5349/(1.7x1.3) - W_{palo}x1.3 = 2420-143=2277 kN.$$

Ipotizzando un palo lungo 10m (W_{palo max}=63 kN).

Tale valore risulta essere maggiore del valore massimo agente agli SLU (2051 kN) cfr. risultati modello di calcolo.

Le pressioni agenti alla punta valgono allo SLE:

SLE: $Q_p/A_p = 944 \text{ kN} / 0.283 \text{ mq} = 3.3 \text{ MPa}$

In condizione di esercizio assumendo un valore medio di q_{um} pari a 21 MPa e un fattore moltiplicativo prudenziale per rocce fratturate pari a 0.3 si ottiene una pressione ammissibile alla punta del palo (teoria di Thorne) di:

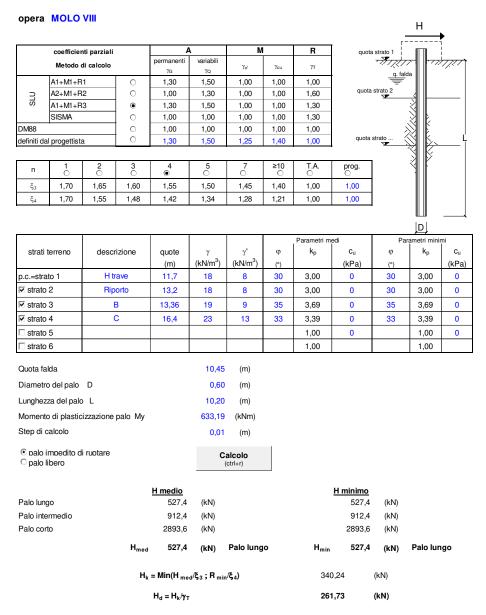
 $q_{amm,punta} = 0.3x21 = 6.3 \text{ MPa} > 3.3 \text{ MPa VERIFICA SODDISFATTA}.$

In vece per gli sforzi di trazione si riporta la seguente capacità portante per cui si è fatto affidamento esclusivamente alla resistenza laterale del palo immerso in almeno 7 m dell'ultimo strato di flysh compatto il quale in questo caso si trova prossimo alla superficie dopo uno strato di riporto antropico e flysh poco resistente:

	P	ALI DI	FONDA	ZION	I SENSI NTC 2018		
1368 - MOLO VIII Pali trivellato - 600 mm							
Caratterisitche palo Tipo palo	PALO TR	DIVELLAT	·0-2		Coefficienti parziali in funzione del nume	ro di vertic	ali
Diametro Palo [m]	0,6	IVELLA	0-2		N. tot. 1 1 2	3 4	5
Lunghezza Palo	10,200				ζ ₃ 1,7 1,65 1	,6 1,55	1,5
Area base [m ²]	0,283				ζ ₄ 1,7 1,7 1,55 1	48 1,42	1,3
Carico Q a p.c. [kN/m²]	0,0						
Coefficienti parziali per le azioni (A)					Coefficienti parziali su parametri caratter	stici del te	rreno (N
Carichi	A1	A2	SISMA	SLE	Parametri		M1
Permanenti	1,3	1	1	1	Tangente dell'angolo di attrito (φ)		1
Variabili	1,5	1,3	1	1	Coesione efficace (c')		1
					Resistenza al taglio non drenata (Cu) Peso dell'unità di volume (γ)		1
Coefficienti parziali γ _R su resistenze cara	ttoristishs / P				PALI INFISSI PALI TR	IVELLATI	LI AD
Resistenza	itteriotiche (n	R1	R2	R3		R2 R3	I R1
Punta	γb	1	1.7	1.35		,7 1,35	
_aterale (compressione)	γS	i	1.45	1.15		45 1,15	
Totale (compressione)	γι	i	1.6	1.3		,6 1,3	
Laterale in trazione	7st		1.6	1,25	7.1	,6 1,25	

Resistenza a Trazione (Ta	bella riassuntiva)								
Calcolo Peso Palo										
Wp,k	44	(kN)		Valore	Valore	Valore	Valore	Rd	Wp	Rd,t - Wp
Wp,k Wp,k x 1	44	(kN)		Medio	Minimo	Medio/53	Medio/ζ4			•
				kN	kN	kN	kN	kN	kN	kN
Approccio 2			A1+M1+R3	2119	2119	1246	1246	1246	44	1290

Relazione di calcolo delle fondazioni

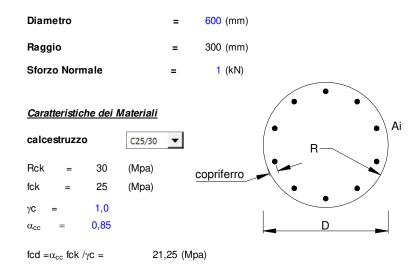

Pag. 86 di 88

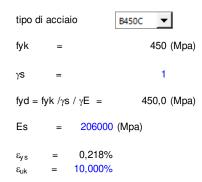
									PRESIONI					PARAMETRI DRENATI								Qlim. LATERALE						
N. STRATO		TIPO TERRENO	QUOTA FALDA (>0)	γ Terreno [kN/m³]	Prof. Tetto [m]	Prof. Base [m]	D [m]	Conicita" [C]	Area laterale [m²]	Area punta [m²]	Δ Z [m]	U base [kPa]	U media [kPa]	Ptot base [kPa]	Ptot media [kPa]	P' base [kPa]	P' media [kPa]	•	c' [kPa]	α (C')	k	μ	tan (μφ)	Nq	tau [kPa] parametri drenati	tau [kPa] non drenati	Qlim. Lat. Parametri drenati [kPa]	Qlim. Lat. Parametri non drenati [kPa]
														_														
1	H trave	GRANULARE	1,5	18,0	0,00	1,50	0,00	0,00	0,00	0,000	1,50	0	0	27	14	27	14	0	0,0	0,00	0,0	0,0	0,00					
2	Riporto Antropico	GRANULARE	1,5	18,0	1,50	1,66	0,60	0,00	0,30	0,283	0,16	2	1	29,88	28	28	28	0	0,0	0,00	0,0	0,0	0,00					
3	B Flysh Alterato	GRANULARE	1,5	19,0	1,66	4,70	0,60	0,00	5,73	0,283	3,04	31	16	87,64	59	56	43	35	15,0	0,00	0,5	0,7	0,46					
4	C Flysh	GRANULARE	1,5	22,5	4,70	11,70	0,60	0,00	13,19	0,283	7,00	100	51	245,14	166	145	116	32	270,0	0,67	0,5	0,6	0,36		201	0	2649	2649
																											2649	2649

Quindi si considera una resistenza a trazione massima del singolo palo pari a Rtd = 2276 kN

Si raccomanda di rispettare tale profondità nello strato del flysh C (7 m) resistente per garantire una adequata resistenza alla trazione per quanto riguarda le fondazioni degli elementi setto.

Mentre per gli elementi pilastro è sufficiente una profondità nello strato di flysh resistente C di 3-4 m in quanto questi elementi non generano sforzi di trazione data la loro modesta rigidezza rispetto ai setti.




Relazione di calcolo delle fondazioni

Pag. 87 di 88

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

Armature

numero	d	iametro (mm)	area (mm²)	copriferro (mm)
22	ф	20	6911,50	50
0	ф	18	0,00	70
0	ф	8	0,00	30
		calcolo		

Momento di Plasticizzazione

My = 633,2 (kN m) Inserisci

— M. Mancina, R. Nori, P.lasiello - Progetti e Calcoli di Geotecnica con Excel vol.2 - ed. DEI—

La massima sollecitazione sul singolo palo è pari a 254 kN per cui i pali risultano verificati.