

Stantec

GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

1 di/of 74

TITLE:

AVAILABLE LANGUAGE: IT

# IMPIANTO EOLICO GREENFIELD "SANLURI-SARDARA"

# PROGETTO DEFINITIVO

# Relazione di calcolo preliminare Fondazioni Aerogeneratori

|                       |                     | File: GR        | E.EEC.C.2       | 5.IT.W.1 | 7279.0     | 0.097    | .00 ·   | Relazi    | one di  | i ca         | Icolo    | prel    | imina    | are F    | ondazio      | oni A        | erog     | enera  | tori. | locx    |
|-----------------------|---------------------|-----------------|-----------------|----------|------------|----------|---------|-----------|---------|--------------|----------|---------|----------|----------|--------------|--------------|----------|--------|-------|---------|
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
|                       |                     |                 |                 |          |            |          |         |           |         |              |          |         |          |          |              |              |          |        |       |         |
| 00                    | 17/06/2022          | Prima en        | Prima emissione |          |            |          |         |           |         | A. Filiberti |          |         | G.Alfano |          |              | P. Polinelli |          |        |       |         |
| REV.                  | DATE                |                 |                 | DESC     | RIPTIO     | N        |         |           |         |              | PREPARED |         |          | VERIFIED |              |              | APPROVED |        |       |         |
|                       |                     |                 |                 |          | G          | RE V     | 'AL     | IDATI     | ON      |              |          |         |          |          |              |              |          |        |       |         |
|                       | Nam                 | ne              |                 |          | Name       |          |         |           |         |              | Name     |         |          |          |              |              |          |        |       |         |
|                       | COLLABO             | RATORS          |                 |          |            | VE       | RIFI    | ED BY     |         |              |          |         |          |          | VALIDATED BY |              |          |        |       |         |
| PROJECT               | / PLANT             |                 |                 |          |            |          |         | G         | RE C    | OD           | E        |         |          |          |              |              |          |        |       |         |
| Sanlu                 | ri-Sardara          | GROUP           | FUNCION         | TYPE     | ISS        | UER      | CO      | DUNTRY    | TEC     |              |          | PLAN    | Т        |          | SYSTE        | И P          | PROGR    | ESSIVE | RE    | VISION  |
|                       |                     | GRE             | EEC             | С        | 2          | 5        | I       | Т         | W       | 1            | 7        | 2       | 7        | 9        | 0 0          | 0            | 9        | 7      | 0     | 0       |
| CLASSIFICATION PUBLIC |                     |                 |                 |          | UTIL       | .IZA1    | TION SC | OPE       | B       | AS           | IC       | DE      | ESI      | GN       |              |              |          |        |       |         |
| This docu             | iment is property o | f Enel Green Pr | wer Solar Eng   | ray Sr L | lt is stri | ctly for | hiddo   | n to renr | duce th | is da        | ocume    | nt in i | whole    | or in r  | art and      | o prov       | ide to   | others | anv r | related |

This document is property of Enel Green Power Solar Energy S.r.l. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any re information without the previous written consent by Enel Green Power Solar Energy S.r.l.





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE 2 di/of 74

**Engineering & Construction** 

#### INDEX

| 1. | INTRODUZI  | IONE 4                                        |
|----|------------|-----------------------------------------------|
|    | 1.1. Des   | crizione del proponente 4                     |
|    | 1.2. Con   | itenuti della relazione                       |
| 2. | INQUADRA   | MENTO TERRITORIALE                            |
| 3. | NORMATIV   | A DI RIFERIMENTO E FONTI CONSULTATE           |
| 4. | DESCRIZIO  | NE DELLE OPERE 8                              |
| 5. | PARAMETRI  | I GEOTECNICI                                  |
| 6. | CARICHI DI | I PROGETTO                                    |
|    | 6.1. Car   | ichi permanenti                               |
|    | 6.1.1.     | Pesi permanenti strutturali (G1) 9            |
|    | 6.1.2.     | Pesi permanenti non strutturali (G2)10        |
|    | 6.2. Sov   | raccarichi (Q)10                              |
|    | 6.2.1.     | Carichi indotti dal vento (W)10               |
|    | 6.3. Azio  | one sismica (E)10                             |
|    | 6.3.1.     | Spettri di progetto11                         |
|    | 6.3.2.     | Determinazione della forzante sismica13       |
| 7. | MATERIALI  |                                               |
|    | 7.1. Calo  | cestruzzo armato14                            |
|    | 7.1.1.     | Magrone                                       |
|    | 7.1.2.     | Pali15                                        |
|    | 7.1.3.     | Basamento15                                   |
|    | 7.1.4.     | Colletto di innesto15                         |
|    | 7.2. Acc   | iaio di armatura16                            |
| 8. | SOFTWARE   | IMPIEGATO PER LE ANALISI FEM16                |
|    | 8.1. Sist  | emi di riferimento16                          |
|    | 8.2. Eler  | menti beam16                                  |
|    | 8.2.1.     | Output delle azioni interne17                 |
|    | 8.3. Eler  | menti plate17                                 |
|    | 8.3.1.     | Gradi di libertà degli elementi e ECS18       |
|    | 8.3.2.     | Output delle azioni interne19                 |
| 9. | ANALISI ST | RUTTURALE E VERIFICHE                         |
|    | 9.1. Ana   | lisi strutturale tramite modello FEM22        |
|    | 9.1.1.     | Geometria del modello22                       |
|    | 9.1.2.     | Vincoli24                                     |
|    | 9.1.3.     | Casi di di carico24                           |
|    | 9.1.4.     | Combinazioni di carico                        |
|    | 9.1.5.     | Giudizio motivato accettabilità dei risultati |
|    |            |                                               |



**Engineering & Construction** 



GRE CODE **GRE.EEC.C.25.IT.W.17279.00.097.00** PAGE

3 di/of 74

| 9.2. Risu | ultati del modello FEM32                             |
|-----------|------------------------------------------------------|
| 9.2.1.    | Direzioni fissate per gli assi locali degli elementi |
| 9.2.2.    | Azioni assiali sui pali                              |
| 9.2.3.    | Azioni sul basamento                                 |
| 9.2.4.    | Verifica degli elementi strutturali56                |
| 9.2.5.    | Verifica strutturale del palo56                      |
| 9.2.6.    | Verifica a flessione platea60                        |
| 9.2.7.    | Verifica a taglio platea69                           |
| 9.2.8.    | Verifica a punzonamento platea72                     |
| 9.2.9.    | Verifiche tensionali in esercizio73                  |
| 9.2.10    | . Calcolo rigidezza alla rotazione73                 |





PAGE

4 di/of 74

**Engineering & Construction** 

## 1. INTRODUZIONE

Stantec S.p.A., in qualità di Consulente Tecnico, è stata incaricata da Marte Srl di redigere il progetto definitivo per la costruzione di un nuovo impianto eolico denominato "Sanluri-Sardara" ubicato nei comuni di Sardara, Sanluri e Villanovaforru, che si trovano in provincia di Sud Sardegna.

Il progetto proposto prevede l'installazione di 12 nuove turbine eoliche ciascuna di potenza nominale fino a 6 MW, in linea con gli standard più alti presenti sul mercato, per una potenza installata totale fino a 72 MW.

L'energia prodotta dagli aerogeneratori, attraverso il sistema di cavidotti interrati in media tensione, verrà convogliata ad una stazione di trasformazione 33/36 kV di nuova realizzazione, all'interno del comune di Sanluri, e poi da qui convogliata alla futura Stazione Elettrica (SE) a 380/150 kV della RTN da inserire in entra – esce alla linea RTN a 380 kV "Ittiri – Selargius", situata nel comune di Sanluri.

In aggiunta alla stessa sottostazione sarà connesso un sistema di accumulo elettrochimico BESS (Battery Energy Storage System) da 35 MW, per un totale di capacità di stoccaggio pari a 280 MWh.

Il progetto è in linea con gli obbiettivi nazionali ed europei per la riduzione delle emissioni di  $CO_{2}$ , legate a processi di produzione di energia elettrica.

#### **1.1.** Descrizione del proponente

Marte Srl., in qualità di soggetto proponente del progetto, è una società del Gruppo Enel che si occupa dello sviluppo e della gestione delle attività di generazione di energia da fonti rinnovabili facente capo a Enel Green Power Spa.

Il Gruppo Enel, tramite la controllata Enel Green Power Spa, è presente in 28 Paesi nei 5 continenti con una capacità gestita di oltre 46 GW e più di 1200 impianti.

In Italia, il parco di generazione di Enel Green Power è rappresentato dalle seguenti tecnologie rinnovabili: idroelettrico, eolico, fotovoltaico, geotermia. Attualmente nel Paese conta una capacità gestita complessiva di oltre 14 GW.

#### 1.2. Contenuti della relazione

La presente relazione ha l'obiettivo di illustrare lo studio delle strutture necessarie a garantire i requisiti di sicurezza e di funzionalità dell'opera. In particolare, il presente elaborato contiene i calcoli di stabilità e resistenza del basamento di innesto della struttura metallica.

Nella valutazione dell'apparato fondale si è fatto riferimento allo studio preliminare geologico e geotecnico.

Per i particolare costruttivi e maggiori dettagli dimensionali sulle strutture progettate si faccia riferimento agli elaborati grafici oggetto del presente progetto.

La relazione è stata redatta sulla base dei dati geologici e geotecnici desunti dalle relazioni specialistiche apposite. Eventuali e maggiori approfondimenti dal punto di vista geognostico possono portare a variazioni dei risultati di seguito presentati.





**Engineering & Construction** 

# 2. INQUADRAMENTO TERRITORIALE

Il sito si trova nella provincia di Sud Sardegna ed interessa il territorio dei comuni di Villanovaforru, Sardara e Sanluri.

L'area è identificata dalle seguenti coordinate geografiche:

- Latitudine: 39°35'49,84"N
- Longitudine: 8°52'32,16"E

L'impianto in progetto ricade all'interno dei seguenti fogli catastali:

 Comune di Sanluri: n° 1, n° 2, n° 3, n° 4, n° 5, n° 7, n° 8, n° 11, n° 12, n° 13, n° 14, n° 19

PAGE

5 di/of 74

- Comune di Sardara: nº 31, nº 43, nº 44, nº 45, nº 46, nº 58, nº 59
- Comune di Villanovaforru: nº 14, nº 15, nº 16

L'area di progetto ricade all'interno dei fogli I.G.M. in scala 1:25.000 codificati 225-I-NE, denominato "Lunamatrona" e 225-I-SE denominato "Sanluri".

Di seguito è riportato l'inquadramento territoriale dell'area di progetto e la posizione degli aerogeneratori su ortofoto.



Figura 2-1: Inquadramento generale dell'area di progetto



Figura 2-2: Configurazione proposta su ortofoto

Si riporta invece in formato tabellare un dettaglio sulla localizzazione delle WTG di nuova costruzione, in coordinate WGS84 UTM fuso 33 N:

| ID  | Comune         | Est [m] | Nord [m] | Altitudine [m s.l.m.] |
|-----|----------------|---------|----------|-----------------------|
| V01 | Sardara        | 486748  | 4383451  | 160                   |
| V02 | Sardara        | 487322  | 4382411  | 160                   |
| V03 | Sardara        | 487838  | 4382546  | 186                   |
| V04 | Sardara        | 487680  | 4383073  | 193                   |
| V05 | Sardara        | 488349  | 4384173  | 265                   |
| V06 | Villanovaforru | 489520  | 4384555  | 287                   |
| V07 | Sanluri        | 488979  | 4380917  | 157                   |
| V08 | Sanluri        | 489393  | 4381267  | 187                   |
| V09 | Sanluri        | 489627  | 4382180  | 229                   |
| V10 | Sanluri        | 489319  | 4383057  | 236                   |
| V11 | Sanluri        | 489926  | 4383162  | 283                   |
| V12 | Sanluri        | 490660  | 4383432  | 297                   |

| Tabella 1 | 1: Coordinate | aerogeneratori |
|-----------|---------------|----------------|
|-----------|---------------|----------------|





**Engineering & Construction** 

PAGE

7 di/of 74

# 3. NORMATIVA DI RIFERIMENTO E FONTI CONSULTATE

Di seguito sono elencati i principali riferimenti Normativi a cui si farà riferimento nella presente relazione.

- [1] D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»".
- [2] Circolare n.7 Reg. Atti Int. CONSUP del 21.01.2019 "Istruzioni per l'applicazione dello "Aggiornamento delle «Norme tecniche per le costruzioni»" di cui al decreto ministeriale 17 gennaio 2018
- [3] UNI EN 1990. Criteri generali di progettazione strutturale.
- [4] UNI EN 1991-1-1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [5] UNI EN 1992-1-1 Parte 1-1: Progettazione delle strutture di calcestruzzo. Regole generali e regole per gli edifici
- [6] UNI EN 1993-1-1 Parte 1-1: Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici
- [7] UNI EN 1993-1-8 Parte 1-8: Progettazione delle strutture in acciaio. Progettazione dei collegamenti
- [8] UNI EN 1997-1 Parte 1: Progettazione geotecnica. Regole generali
- [9] Scheda tecnica del produttore delle turbina "Preliminary Generic Site Roads and Hardstands requirements SG 6.0-170"
- [10] Scheda tecnica del produttore della turbina "Foundation loads T135-50A SG 6.0-170"
- [11] Scheda tecnica del produttore della turbina "Developer Package SG 6.0-170"
- [12] Linee guida fornite dal Proponente, Enel Green Power Italia S.r.L "Design and construction guidelines for the foundations of wind turbine generators"





**Engineering & Construction** 

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

8 di/of 74

## 4. DESCRIZIONE DELLE OPERE

Le opere in progetto sono costituite da un basamento di fondazione per una turbina eolica. La turbina ha un'altezza di 135 metri al mozzo ed è sostenuta da una torre costituita da un tubolare in acciaio a sezione variabile innestato alla struttura di base in calcestruzzo armato.

Per i dettagli relativi alla torre di sostegno si faccia riferimento alle specifiche del produttore.

Il basamento è costituito da un plinto, a base circolare su pali, di diametro 25 m. L'altezza dell'elemento è variabile, da un minimo 1.5 m sul perimetro esterno del plinto a un massimo di 3.75 metri nella porzione centrale. In corrispondenza della sezione di innesto della torre di sostegno è realizzato un colletto aggiuntivo di altezza 0.5 m. Come verrà descritto in seguito, risulta necessario prevedere per questi aerogeneratori fondazioni costituite da plinti su pali di diametro 1.2 m e lunghezza 37 m.

Il calcestruzzo selezionato per le strutture è di classe di resistenza C25/30 per i pali e C32/40 per il basamento, il colletto dovrà invece essere realizzato un successivo getto con classe di resistenza C45/55. In ogni caso, all'interfaccia tra il calcestruzzo del colletto e le strutture metalliche, dovrà essere interposta un'idonea malta ad alta resistenza per permettere un livellamento ottimale e garantire la perfetta verticalità delle strutture e permettere un'idonea distribuzione degli sforzi di contatto.



Si riporta di seguito la sezione del plinto di fondazione:





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

9 di/of 74

**Engineering & Construction** 

# 5. PARAMETRI GEOTECNICI

Sulla base delle proprietà dei terreni forniti dalla relazione preliminare geologica e geotecnica è possibile individuare la seguente stratigrafia tipo ed i relativi parametri geotecnici di progetto. Si riportano le tabelle estratte dall'elaborato "GRE.EEC.R.25.IT.W.17279.00.024.00 – Relazione geologica e geotecnica":

Stantec

| ID STRATO     | DESCRIZIONE                                                                                                                                                           | PROFONDITA'<br>(m da p.c.) |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| SISMOSTRATO 1 | Materiali di copertura della sottostante formazione<br>marnosa - arenacea, costituiti da clasti marnosi alterati e/o<br>fratturati immersi in una matrice fine limosa | 10                         |
| SISMOSTRATO 2 | Formazione marnoso – arenacea                                                                                                                                         | >10                        |

| ID<br>STRATO | γ<br>(KN/m³) | ¢<br>(°) | С | Coeff.<br>di<br>Poisso<br>n v | Mod.<br>di<br>Young<br>din.<br>Ed<br>(Mpa) | Mod.<br>di<br>Young<br>st. Es<br>(Mpa) | Mod. di<br>taglio<br>(rigidità<br>)<br>G0<br>(Mpa) | Mod.<br>di<br>Bulk K<br>(Mpa) | Mod. ed. Mo<br>(kg/m3 |
|--------------|--------------|----------|---|-------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------|-----------------------|
| STRATO 1     | 19,1         | 22       | - | 0.2                           | 201                                        | 24.2                                   | 264.6                                              | 347.1                         | 71345                 |
| STRATO 2     | 22.5         | 25       | - | 0.3                           | 869                                        | 104.7                                  | 1044                                               | 3134                          | 461407                |

Tabella 2: Stratigrafia di progetto

Tabella 3: Parametri geotecnici di progetto

Inoltre, per profondità maggiori di 6 m da piano campagna, è stata considerata la presenza di falda.

Si precisa anche in questa sede che i dati forniti dalla relazione geotecnica preliminare sono stati ricavati da fonti bibliografiche, risulta quindi necessario, nella successiva fase esecutiva, prevedere una campagna di indagini in sito che possa definire la stratigrafia realmente presente ed i relativi parametri geotecnici.

# 6. CARICHI DI PROGETTO

#### 6.1. Carichi permanenti

#### 6.1.1. Pesi permanenti strutturali (G1)

Il peso proprio delle strutture è calcolato in automatico dal software a elementi finiti, tenuto conto dei volumi degli elementi strutturali e del peso specifico dei materiali assegnati agli elementi. Per gli elementi in calcestruzzo armato si è considerato un peso specifico pari a 25 kN/m<sup>3</sup>, per le strutture in acciaio è stato assunto un peso specifico pari a 78.50 kN/m<sup>3</sup>.



Stantec

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

10 di/of 74

#### Engineering & Construction

#### 6.1.2. Pesi permanenti non strutturali (G2)

I carichi permanenti non strutturali sono rappresentati dal peso del terreno sovrastante il basamento (G2\_terreno) e quello imputabile al peso della torre e delle macchine installate sul basamento (G2\_wtg). Quest'ultimo viene considerato nelle combinazioni di carico diverse da quelle che utilizzano il carico da vento (W), in cui il peso è già stato considerato.

#### 6.2. Sovraccarichi (Q)

#### 6.2.1. Carichi indotti dal vento (W)

Il carichi da vento, relativi alle diverse situazioni previste sono riportati nelle seguenti tabelle estratte dal documento [10] Scheda tecnica del produttore della turbina "Foundation loads T135-50A SG 6.0-170"

Carichi da vento caratteristici (W\_Characteristic):

| Load case                                                                | F <sub>x</sub> (kN) | F <sub>y</sub> (kN) | F <sub>z</sub> (kN) | F <sub>xy</sub> (kN) | M <sub>x</sub> (kNm) | M <sub>y</sub> (kNm) | M <sub>z</sub> (kNm) | M <sub>xy</sub> (kNm) |  |
|--------------------------------------------------------------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|--|
| Dlc14_v90.0_p_000                                                        | 1316,18             | 54,14               | -7707,99            | 1317,29              | 2463,44              | 186812,5             | 294,48               | 186828,7              |  |
| Table 4 SG 6 0-170 HH135m Characteristics Loads at the base of the tower |                     |                     |                     |                      |                      |                      |                      |                       |  |

Carichi da vento in condizione extreme (W\_Extreme), relativi a situazioni eccezionali:

| Load case            | Load<br>factor | F <sub>x</sub> (kN) | F <sub>y</sub> (kN) | F <sub>z</sub> (kN) | F <sub>xy</sub> (kN) | M <sub>x</sub> (kNm) | M <sub>y</sub> (kNm) | M <sub>z</sub> (kNm) | M <sub>xv</sub><br>(kNm) |
|----------------------|----------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|
| Dlc22_3bn_v11.0_p_s8 | 1,1            | 1899,37             | -30,2               | -8518,03            | 1899,61              | 10542,98             | 248324,9             | 848,69               | 248548,63                |

Table 3 SG 6.0-170 HH135m Factored/Unfactored Extreme loads at tower bottom

Carichi da vento in condizione quasi permanente (W\_QP) e relativi alle normali condizioni di esercizio della turbina:

| pf=0.01000                           |         | Tower loads at section |          |          |          |          |           |          |  |  |
|--------------------------------------|---------|------------------------|----------|----------|----------|----------|-----------|----------|--|--|
| Section<br>Height from<br>bottom (m) | Fx (KN) | Fy (KN)                | Fxy (KN) | Fz (KN)  | Mx (KNm) | My (KNm) | Mxy (KNm) | Mz (KNm) |  |  |
| 0                                    | 1006,5  | 113,9                  | 1007,01  | -7544,75 | 20249,99 | 139551,8 | 139856,37 | 4991,2   |  |  |

Table 5 SG 6.0-170 HH135m Quasi Permanent Loads at tower bottom

#### 6.3. Azione sismica (E)

L'azione sismica agente sull'elemento viene determinata in maniera semplificata rilevando l'accelerazione sismica ottenuta in corrispondenza del periodo proprio proprio della struttura, quest'ultimo ottenuto ricorrendo al metodo di Rayleigh, nel quale si applica una distribuzione di forze pari alla forza peso pensata come distribuita in maniera discreta su un'asta di rigidezza pari alla rigidezza traslazionale del sistema in esame.

$$T = 2 \pi \sqrt{\frac{\sum W_i \,\delta_i^2}{g \,\sum W_i \,\delta_i}}$$

In cui:

Wi è il peso delle masse strutturali, pensate come distribuite in punti





PAGE

11 di/of 74

**Engineering & Construction** 

discreti

- $\delta_i\,$  è lo spostamento misurato in corrispondenza del punto di applicazione della forza
  - g è l'accelerazione di gravità

I pesi dei vari tronchi della torre e degli altri componenti sono stati desunti da [9] Scheda tecnica del produttore delle turbina "Preliminary Generic - Site Roads and Hardstands requirements SG 6.0-170".

#### 6.3.1. Spettri di progetto

L'azione sismica è tradotta da spettri in accelerazione. Vista la complessità della struttura si persegue l'obiettivo di una progettazione non dissipativa, le valutazioni sismiche verranno quindi eseguite su spettri di progetto elastici, adottando un fattore di comportamento q=1. Gli spettri vengono calcolati rispetto alle coordinate di progetto definite nella parte introduttiva e si definisce una vita nominale per la struttura V<sub>N</sub> = 50 anni e una classe d'uso IV. In queste condizioni si ottiene un periodo di riferimento per la costruzione pari a :

$$V_R = V_R \cdot C_U = 50 \cdot 2 = 100 \text{ anni}$$

Da cui ne deriveranno i periodi di ritorno determinati nella seguente figura.







GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

12 di/of 74

#### **Engineering & Construction**

Per la determinazione dell'azione sismica di progetto sono stati considerati i seguenti parametri di azione sismica:

|     | T <sub>R</sub> | ag    | F <sub>0</sub> | T* <sub>C</sub> |
|-----|----------------|-------|----------------|-----------------|
| SLO | 60             | 0.025 | 2.685          | 0.299           |
| SLD | 101            | 0.031 | 2.730          | 0.307           |
| SLV | 949            | 0.060 | 2.976          | 0.371           |
| SLC | 1950           | 0.071 | 3.061          | 0.393           |

Dalla relazioni geologica e geotecnica è stato rilevato che la Categoria di Sottosuolo che interessa il sito di progetto è la **B** mentre la Categoria Topografica è **T1**.

Secondo quanto indicato al paragrafo 7.2 del [12] *Linee guida fornite dal Proponente, Enel Green Power Italia S.r.L* "*Design and construction guidelines for the foundations of wind turbine generators*" si assume un valore del coefficiente di smorzamento pari all'1%.

Si riportano di seguito le espressioni ed i parametri caratterizzanti lo spettro di risposta orizzontale allo SLV:

#### Espressioni dei parametri dipendenti

| $S = S_S \cdot S_T$                                                                                  | (NTC-08 Eq. 3.2.5)             |
|------------------------------------------------------------------------------------------------------|--------------------------------|
| $\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$                                                    | (NTC-08 Eq. 3.2.6; §. 3.2.3.5) |
| $T_{\rm B} = T_{\rm C}/3$                                                                            | (NTC-07 Eq. 3.2.8)             |
| $\mathbf{T}_{\!_{\mathrm{C}}} = \mathbf{C}_{\!_{\mathrm{C}}} \cdot \mathbf{T}_{\!_{\mathrm{C}}}^{*}$ | (NTC-07 Eq. 3.2.7)             |
| $T_0 = 4, 0 \cdot a_y / g + 1, 6$                                                                    | (NTC-07 Eq. 3.2.9)             |

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{B} & \left| \begin{array}{c} S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[ \frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left( 1 - \frac{T}{T_{B}} \right) \right] \\ T_{B} \leq T < T_{C} & \left| \begin{array}{c} S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \\ T_{C} \leq T < T_{D} \end{array} \right| \\ S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left( \frac{T_{C}}{T} \right) \\ T_{D} \leq T & \left| \begin{array}{c} S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left( \frac{T_{C}}{T} \right) \\ S_{e}(T) = \mathbf{a}_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left( \frac{T_{C}}{T^{2}} \right) \\ \end{array} \right| \end{split}$$

| Categoria di sottosuolo        |                         |                                   |                  | В         |
|--------------------------------|-------------------------|-----------------------------------|------------------|-----------|
| Categoria topografica          |                         |                                   |                  | T1        |
| Coefficiente amplificazione st | ratigrafica             |                                   | S <sub>S</sub> = | 1.2       |
| Coefficiente di amplificazione | topografica             |                                   | S <sub>T</sub> = | 1.0       |
| Coefficiente S                 |                         | $S = S_s \cdot S_T$               | S                | 1.2       |
| Coefficiente C <sub>C</sub>    |                         |                                   | Cc               | 1.3       |
| Smorzamento Convenzionale      |                         |                                   |                  | NO        |
| Coefficiente di smorzamento    | viscoso non convenziona | ale                               | ζ                | 1.00      |
| Fattore che altera lo spettro  |                         | $\eta$ = sqrt(10/5+ $\zeta$ )     | $\eta$           | 1.3       |
| T <sub>C</sub>                 |                         | $T_{C} = C_{C} \cdot T_{C}^{*}$   | T <sub>C</sub>   | 0.498 [s] |
| T <sub>B</sub>                 |                         | $T_B = T_C/3$                     | T <sub>B</sub>   | 0.166 [s] |
| TD                             |                         | $T_{C} = 4.0 \cdot a_{g}/g + 1.6$ | TD               | 1.840 [s] |



0.100

0.050

0.000

0

0.5

1



2

Periodo T [s]

2.5

3

3.5

4

1.5

Per quanto riguarda l'accelerazione sismica da adottare nei calcoli strutturali, si ipotizza che lo spettro di risposta oltre i 4s sia caratterizzato dal medesimo andamento avente per  $T_D \leq T \leq$  4s. Come illustrato in tabella sottostante, il periodo proprio della struttura viene determinato pensando la torre incastrata alla base, e risulta pari a 7.87 s. Per questo valore si ottiene Sd=0.0041g.

| Node ID | d <sub>i</sub> | Wi     | d <sub>i</sub> <sup>2</sup> | $W_i d_i^2$       | $\mathbf{W}_{i}  \mathbf{d}_{i}$ | т    |
|---------|----------------|--------|-----------------------------|-------------------|----------------------------------|------|
|         | m              | kN     | m <sup>2</sup>              | kN m <sup>2</sup> | kN m                             | S    |
| 14      | 19.42          | 569.3  | 377.1364                    | 214703.753        | 11055.81                         | 7.87 |
| 7       | 16.750         | 3471.0 | 280.563                     | 973827            | 58139                            |      |
| 13      | 14.300         | 697.9  | 204.490                     | 142714            | 9980                             |      |
| 12      | 9.600          | 844.7  | 92.16                       | 77848             | 8109                             |      |
| 11      | 5.860          | 850.5  | 34.3396                     | 29206             | 4984                             |      |
| 10      | 1.390          | 839.4  | 1.9321                      | 1622              | 1167                             |      |
| 9       | 0.033          | 907.1  | 0.001089                    | 1                 | 30                               |      |
|         |                |        | Σ                           | 1439920           | 93464                            |      |





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

14 di/of 74

#### **Engineering & Construction**

L'accelerazione assunta nei calcoli, come anticipato, sarà pari a 0.0041g, da cui ne seguono le forze statiche equivalenti all'azione sismica riportate in seguito.

| Elemento         | <b>Z</b> <sub>min</sub> | <b>Z</b> <sub>max</sub> | z      | Δz    | m      | Ν      | V    | М      |
|------------------|-------------------------|-------------------------|--------|-------|--------|--------|------|--------|
|                  | m                       | m                       | m      | m     | kg     | kN     | kN   | kN m   |
| Navicella+rotore | 135.00                  | 135.00                  | 135.00 |       | 347098 | 3471.0 | 14.2 | 1921   |
| Concio fusto 1/6 | 0.00                    | 15.00                   | 7.50   | 15.00 | 90710  | 907.1  | 3.7  | 28     |
| Concio fusto 2/6 | 15.00                   | 62.64                   | 38.82  | 47.64 | 83940  | 839.4  | 3.4  | 134    |
| Concio fusto 3/6 | 62.64                   | 83.36                   | 73.00  | 20.72 | 85050  | 850.5  | 3.5  | 255    |
| Concio fusto 4/6 | 83.36                   | 108.28                  | 95.82  | 24.92 | 84470  | 844.7  | 3.5  |        |
| Concio fusto 5/6 | 108.28                  | 135.72                  | 122.00 | 27.44 | 69790  | 697.9  | 2.9  | 349    |
| Concio fusto 6/6 | 135.72                  | 162.41                  | 149.07 | 26.69 | 56930  | 569.3  | 2.3  | 348    |
|                  |                         |                         |        |       |        | 8179.9 | 33.5 | 3034.3 |

Per tenere conto della variabilità spaziale del moto sismico e di incertezze nella localizzazione delle masse, come indicato al paragrafo 7.2.6 delle NTC2018 si attribuisce un'eccentricità accidentale pari al 5% del diametro del basamento. Inoltre, per tenere conto della contemporaneità dell'azione sismica nelle due direzioni ortogonali si considera applicato in direzione Y il 30% dell'azione sismica applicata lungo X. Nella tabella sottostante vengono riassunte le forze sismiche risultanti:

eccentricità 0.05\*D 1.25 m

|                 | N       | Fx    | Fy    | Му     | Mx    | Mz   |
|-----------------|---------|-------|-------|--------|-------|------|
|                 | kN      | kN    | kN    | kN m   | kN m  | kN m |
| SISMA X + 0.3 Y | 8179.88 | 33.54 | 10.06 | 3034.3 | 910.3 | 41.9 |

#### 7. MATERIALI

#### 7.1. Calcestruzzo armato

#### 7.1.1. Magrone

Per il getto di magrone posto al fine di realizzare il piano di fondazioni, plinti, e di tutte le opere che ne necessitano è reliazzato con calcestruzzo di classe di resistenza C12/15 e presenta le seguenti caratteristiche meccaniche:

E<sub>cm</sub> = 27000 MPa;

v = 0.20;

 $\gamma = 25 \text{ kN/m3};$ 

 $f_{ck} = 12 \text{ MPa};$ 

 $f_{cd} = 6.8 \text{ MPa} (0.85 \text{fck}/1.5)$ 





PAGE

15 di/of 74

Engineering & Construction

## 7.1.2. Pali

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C25/30 e presenta le seguenti caratteristiche meccaniche:

E<sub>cm</sub> = 31500 MPa;

v = 0.20;

 $\gamma = 25 \text{ kN/m}^3$ ;

 $f_{ck} = 25 \text{ MPa};$ 

 $f_{cd} = 14.17 \text{ MPa} (=0.85 f_{ck}/1.5)$ 

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC2 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

#### 7.1.3. Basamento

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C32/40 e presenta le seguenti caratteristiche meccaniche:

E<sub>cm</sub> = 33300 MPa;

v = 0.20;

 $\gamma = 25 \text{ kN/m}^3$ ;

f<sub>ck</sub> = 32 MPa;

 $f_{cd} = 18.13 \text{ MPa} (=0.85 f_{ck}/1.5)$ 

Classe di consistenza: S4 (slump tra 16 e 21 cm)

Classe di esposizione: XC4 (Bagnato, raramente asciutto)

Dimensione massima aggregato: 25 mm

#### 7.1.4. Colletto di innesto

Il calcestruzzo previsto per la realizzazione degli elementi di fondazione è di classe di resistenza C45/55 e presenta le seguenti caratteristiche meccaniche:

$$\begin{split} & E_{cm} = 36200 \text{ MPa}; \\ & v = 0.20; \\ & \gamma = 25 \text{ kN/m}^3; \\ & f_{ck} = 45 \text{ MPa}; \\ & f_{cd} = 25.5 \text{ MPa} (= 0.85 f_{ck}/1.5) \\ & \text{Classe di consistenza: S4 (slump tra 16 e 21 cm)} \\ & \text{Classe di esposizione: XC4 (Bagnato, raramente asciutto)} \\ & \text{Dimensione massima aggregato: 25 mm} \end{split}$$





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

16 di/of 74

Engineering & Construction

#### 7.2. Acciaio di armatura

L'acciaio impiegato per le armature di strutture in CA deve essere di tipo B450C e presentare le seguenti caratteristiche:

E = 200000 MPa;

v = 0.30;

 $a = 12 \cdot 10^{-6};$ 

 $\gamma = 78.50 \text{ kN/m}^3$ ;

f<sub>yk</sub> = 450 MPa;

f<sub>uk</sub> = 540 Mpa.

## 8. SOFTWARE IMPIEGATO PER LE ANALISI FEM

Le sollecitazioni di progetto utili per la verifica delle strutture sono state desunte da un modello agli elementi finiti tridimensionale elaborato con il codice di calcolo Midas Gen di Midas Information Tecnology di estesa commercializzazione.

I modelli strutturali sono stati realizzati congruentemente alle geometrie strutturali e alle caratteristiche dei materiali rappresentate negli elaborati strutturali di progetto.

#### 8.1. Sistemi di riferimento

In Midas Gen sono definiti i seguenti sistemi di coordinate

- Global Coordinate System (GCS)
- Element Coordinate System (ECS)
- Node local Coordinate System (NCS)

Il GCS usa le lettere maiuscole X, Y e Z per definire un sistema di coordinate cartesiale globale, che segue la regola della mano destra. È utilizzato per la maggior parte della definizione degli input, compreso ad esempio la definizione dei nodi e la restituzione di risultati globali ad essi associati, quali spostamenti e reazioni vincolari.

Il GCS definisce la posizione geometrica della struttura da analizzare e il suo punto di riferimento (l'origine) è automaticamente fissata al set di coordinate (0,0,0). Dal momento che la direzione verticale è rappresentata dall'asse Z è convenzionale modellare le strutture nel loro sviluppo verticale lungo questo asse.

L'ECS usa le lettere minuscole x,y e z per definire un sistema di riferimento cartesiano, che segue la regola della mano destra, associati a un elemento. I risultati delle analisi in termini di forze interne e tensioni e la maggior parte degli input associati al singolo elemento sono espressi in questo sistema di coordinate locali.

#### 8.2. Elementi beam

Gli elementi a due nodi assimilabili a elementi strutturali monodimensionali, quali travi e pilatri, sono stati modellati come elementi beam. La formulazione di tali elementi è basata sulla teoria della trave di Timoshenko, considerando le capacità di rigidezza in tensione e compressione, taglio e le capacità deformative in condizione di flessione e torsione. La definizione delle caratteristiche della sezione trasversale, caratterizzanti la meccanica dell'elemento, sono definite da apposite finestre di dialogo all'interno del software.





PAGE

17 di/of 74

Engineering & Construction

#### 8.2.1. Output delle azioni interne

Per gli elementi beam la convenzione dei segni è quella riportata nella figura seguente, le frecce indicano i versi delle sollecitazioni considerate come positive.



#### 8.3. Elementi plate

Gli elementi planari a 3 o 4 nodi sono definiti come elementi plate (i nodi che definiscono l'elemento saranno chiamati N1. N2. N3 e, nel caso di elemento a 4 nodi, N4). Questa tipologia di elemento è capace di terer conto di tensioni e compressioni nel piano, sforzi di taglio dento e fuori dal piano e sollecitazioni di momento flettente nel piano.

Questo elemento può essere utilizzato per modellare strutture in cui sono permette sia flessioni nel piano sia fuori dal piano, ad esempio per definire serbatoi in pressioni, muri di contenimento, impalcati da ponte, impalcati di edifici, fondazioni continue.

I carichi di pressione possono essere applicati sulle superfici degli elementi secondo i sistemi di riferimento GCS o ECS.

Un elemento plate può avere forma quadrilatera o triangolare, con rigidezza assiale e a taglio nel piano e rigidezza flessionale e a taglio fuori dal piano di riferimento.

Il comportamento flessionale degli elementi plate è descritto secondo due approcci: DKT/DKQ (Discrete Kirchhoff elements) e DKMT/DKMQ (Discrete Kirchhoff-Mindlin elements). DKT/DKQ è sviluppato sula base della teoria della teoria di Kirchhoff per elementi bidimensionali sottili, DKMT/DKMQ è sviluppata sulla base della teoria Mindlin-Reissner per elementi bidimensionali moderatamente spessi.

Il comportamento nel piano è formulato in accordo alla teoria LST (Linear Strain Triangle) per gli elementi a 3 nodi e in accordo alla formulazione degli elementi isoparametrici a tensione piana con aggiunta di modi incompatibili per gli elementi a 4 nodi.

In generale, la rigidezza è valutata in maniera automatica dal software a partire dallo spessore e dai parametri meccanici definiti dall'utente per gil elementi; il peso proprio strutturale e la massa strutturale di un elemento plate sono valutati in maniera automatica dal software a partire dallo spessore assegnato all'elemento e da peso nell'unità di volume e densità di massa definita per il materiale assegnati all'elemento.



**Engineering & Construction** 

Stantec

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

18 di/of 74

#### 8.3.1. Gradi di libertà degli elementi e ECS

Il sistema di riferimento ECS di ogni elemento è utilizzato quando il programma calcola la matrice di rigidezza per l'elemento. Gli output grafici delle componenti di sollecitazione soono riportate anche nell'ECS nella fase di post-processing.

I gradi di liberà traslazionali esistono nell'ECS come direzioni XYZ e le rotazioni sono definite rispetto agli assi x e y dell'ECS. Le direzioni degli assi dell'ECS sono rappresentate nella Figura 7-1. In caso di elementi quadrilateri, la direzione del pollice rispetto alla regola della mano destra definisce l'asse Z dell'ECS. La direzione di rotazione (N1, N2, N3, N4) segue la regola della mano destra e definisce la direzione del verso positivo. L'asse Z dell'ECS ha origine dal centro della superficie dell'elemento e ha direzione perpendicolare a essa. La linea che connette il punto medio tra N1 e N4 e il punto medio tra N2 e N3 definisce la direzione dell'asse x. La direzione perpendicolare all'asse x diventa la direzione dell'asse y dell'ECS con verso stabilito dalla regola della mano destra.

Per un elemento triangolare, la linea parallela alla direzione che va da N1 a N2, passante per il centro dell'elemento diventa l'asse X dell'ECS. Le direzioni y e z sono definite come per gli elementi a 4 lati prima descritti.



Figura 7-1 - Definizione degli elementi plate e rispettivi ECS





PAGE

19 di/of 74

Engineering & Construction

## 8.3.2. Output delle azioni interne

La convenzione dei segni per le azioni interne di un elemento plate e per le sollecitazioni è definita sia dall'ECS che dal GCS.

I seguenti risultati di output sono definite con riferimento all'ECS:

Azioni sui nodi di connessione

Azioni per unità di lunghezza sui nodi di connessione e sul baricentro dell'elemento

Tensioni sulla superficie superiore e inferiore in corrispondenza dei nodi di connessione

In ogni nodo, moltiplicando ogni componente di spostamento nodale per la corrispondente componenti di rigidezza viene determinata l'azione dell'elemento sul nodo.

Per calcolare le forze per unità di lunghezza in un nodo di connessione o nel baricentro di un elemento, le tensioni sono calcolate separatamente per il comportamento nel piano e quello fuori dal piano e integrate nella direzione dello spessore.

Nelle figure successive sono mostrate le convenzioni secondo le quali sono esplicitate le sollecitazioni sugli elementi plate. Le frecce indicano il verso positivo delle forze.



Figura 7-2 - Convenzione dei segni per le forze nodali degli elementi plate





Figura 7-4 - Convenzione dei segni per le azioni flessionali fuori dal piano



Figura 7-6 - Determinazione delle principali componenti di tensione





**Engineering & Construction** 

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

22 di/of 74

# 9. ANALISI STRUTTURALE E VERIFICHE

#### 9.1. Analisi strutturale tramite modello FEM

L'analisi strutturale è stata utilizzata utilizzando il softwarare MidasGen 2021 v3.1, realizzando un modello ad elementi finiti tridimensionale. Gli elementi strutturali sono stati schematizzate mediante elementi finiti di tipo beam e plate, introducendo le condizioni di vincolo esterno e gli opportuni svincoli nei punti in cui in vincolo di collegamento è a cerniera.

Vista la condizione di simmetria dei carichi indotti e delle strutture, i carichi orizzontali verranno applicati in direzione radiale lungo un'unica direzione.

Le azioni di vento e sisma verranno applicate con approccio statico equivalente, secondo le determinazione dei loro effetti determinati nei capitoli precedenti.

I quantitativi di armatura ottenuti nelle seguenti elaborazioni dovranno essere disposti nella piastra in maniera simmetrica rispetto all'asse verticale baricentrico della platea.

Nei successivi paragrafi vengono riportati con maggiore dettaglio le ipotesi poste alla base delle analisi.

#### 9.1.1. Geometria del modello

Il basamento è stato discretizzato attraverso una mesh di elementi plate che simulano anche l'effetto della variazione della sezione in altezza. Il modello segue quindi con buona approssimazione la variazione di peso e rigidezza della sezione resistente e la forma circolare del basamento.

Sul perimetro di innesto della struttura metallica sono stati disposti una serie di nodi collegati mediante un link rigido a un nodo master, nel quali sono state applicate le componenti delle forze che derivano dalla turbina. Nel nodo vengono quindi applicate le seguenti forze:

- carichi gravitazionali delle strutture innestate
- azioni del vento sulla turbina, come definite in 6.2.1
- azioni sismiche, come definite in 6.3

Il nodo è stato posizionato a una quota di 4.25 m superiore rispetto alla quota di testa dei pali, per poter tener conto degli effetti di eccentricità dei carichi verticali rispetto alla platea.



Figure 9-1 - Nodo master per lapplicazione dei carichi provenienti dalla torre





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

23 di/of 74

#### **Engineering & Construction**

I pali sono stati modellati alla distanza esatta a cui verranno posti rispetto alla platea mediante elementi beam incastrati nei nodi.



Figure 9-2 - Modello FEM, vista prospettica



Figure 9-3 - Modello FEM, vista dall'alto





\_\_\_\_\_

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

24 di/of 74

Engineering & Construction

#### 9.1.2. Vincoli

Essendo la struttura su pali, si immagina che l'intero carico venga ripartito su tali elementi. Lo spostamento orizzontale viene bloccato sulla testa del palo, mentre in punta è vincolato con un vincolo a molla che simula il cedimento dovuto al carico subito.

Stantec

La rigidezza della molla si calcola a partire da una stima della portata del singolo palo e del relativo cedimento utilizzando la formulazione di Viggiani:

STIMA APPROSSIMATA DEL CEDIMENTO - Secondo Viggiani

| Q    | carico in esercizio sul palo          | 47  | 31.5 I | kN   | Tipo di palo | Terreno    | λ   |
|------|---------------------------------------|-----|--------|------|--------------|------------|-----|
| Qlim | portata limite di calcolo             | 171 | 97.9   | kN   | ripo di palo |            |     |
| λ    | coefficiente relativo al tipo di palo |     | 40     |      | Battuto      | Incoerente | 60  |
| w    | cedimento stimato                     |     | 0.01 ı | m    |              | Coesivo    | 120 |
| k    | rigidezza verticale                   | 573 | 3264 I | kN/m | Trivellato   | Incoerente | 40  |
|      |                                       |     |        |      |              | Coesivo    | 100 |
|      |                                       |     |        |      | Trivellato   | Incoerente | 50  |
|      |                                       |     |        |      | pressato     | Coesivo    | 100 |

#### 9.1.3. Casi di di carico

Si riportano le condizioni di carico applicate al modello di calcolo

Carico G2 rappresentante i pesi permanenti non strutturali viene diviso tra peso del terreno sovrastante il basamento (G2\_terreno) e peso proprio della turbina e relative componenti (G2\_WGT). Quest'ultimo viene applicato per tenere in considerazione l'effetto del peso sul basamento solamente nelle combinazioni dove non è presente l'azione del vento nella quale invece è già compreso nei carichi forniti dalle specifiche del produttore.













PAGE

28 di/of 74

GRE.EEC.C.25.IT.W.17279.00.097.00

Engineering & Construction

#### 9.1.4. Combinazioni di carico

Le combinazioni di calcolo selezionate per le verifiche di tipo STR per le quali dovranno essere impiegati i coefficienti definiti nella colonna A1 della tabella Tab. 2.6.I delle NTC2018.

| 22 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "           | , , ,        |     |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----|-----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Coefficiente | EQU | A1  | A2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ΥF           |     |     |     |
| Carichi assessati C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Favorevoli  | 24           | 0,9 | 1,0 | 1,0 |
| Canchi permanenti Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sfavorevoli | Ϋ́G1         | 1,1 | 1,3 | 1,0 |
| Contraction of the state of the | Favorevoli  | 24           | 0,8 | 0,8 | 0,8 |
| Carichi permanenti non strutturali G2 <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sfavorevoli | ΥG2          | 1,5 | 1,5 | 1,3 |
| Azioni warishili O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Favorevoli  | 2            | 0,0 | 0,0 | 0,0 |
| Azioni variaoni Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sfavorevoli | ľ Qi         | 1,5 | 1,5 | 1,3 |

<sup>(0)</sup>Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Di seguito vengono elencati i carichi oggetto delle successive combinazioni, i valori sono indicati nelle rispettive tabelle estratte da "*Foundation loads T135-50A SG 6.0-170"* al precedente paragrafo 6.2.

| Casi di carico   |                                                                  |
|------------------|------------------------------------------------------------------|
| Cat.             |                                                                  |
| G1               | pesi permanenti strutturali                                      |
| G2_terreno       | pesi permanenti non strutturali                                  |
| G2_wtg           | pesi permanenti non strutturali                                  |
| W_Characteristic | carichi da vento caratteristici                                  |
| W_QP             | carichi da vento in condizione quasi permanente                  |
| W_Extreme        | carichi da vento in condizione extreme (load factor 1.1)         |
| W_Frequent       | carichi 0.9*W_Characteristic eccetto Fz = Fz di W_Characteristic |
| E                | sisma                                                            |

La seguente tabella contiene le combinazioni di carico utilizzate nei calcoli.

| СОМВО  | ТҮРЕ                    |     | G1 teren | W GL | norocieisn | A C  | W Ethern | W fiequel | ~    | r    |
|--------|-------------------------|-----|----------|------|------------|------|----------|-----------|------|------|
| SLU1   | Strength/Stress         | Add | 1.30     | 1.50 | 1.50       |      |          |           |      |      |
| SLU2   | Strength/Stress         | Add | 1.30     | 1.50 |            |      | 1.35     |           |      |      |
| SLU3   | Strength/Stress         | Add | 1.00     | 0.80 |            |      | 1.35     |           |      |      |
| SLUext | Strength/Stress         | Add | 1.00     | 1.00 |            |      |          | 1.00      |      |      |
| SLV1   | Strength/Stress(Elastic | Add | 1.00     | 1.00 | 1.00       |      |          |           |      | 1.00 |
| SLV2   | Strenght/Stress(Elastic | Add | 1.00     | 1.00 |            |      | 1.00     |           |      | 1.00 |
| SLEr   | Serviceability          | Add | 1.00     | 1.00 |            | 1.00 |          |           |      |      |
| SLEf   | Serviceability          | Add | 1.00     | 1.00 |            |      |          |           | 1.00 |      |
| SLEqp  | Serviceability          | Add | 1.00     | 1.00 |            |      | 1.00     |           |      |      |





PAGE

29 di/of 74

#### **Engineering & Construction**

Le combinazioni "SLU2" e "SLU3" si riferiscono alla combinazione fondamentale allo Stato Limite Ultimo. Viene attribuito il coefficiente amplificativo 1.35 in quanto si fa riferimento alla condizione "Normal", ovvero le normali condizioni di esercizio della turbina, come riportato nella sottostante tabella estratta documento "*Design and construction guidelines for the foundations of wind turbine generators*". Tale documento viene considerato come "di comprovata validità" rispetto alle NTC2018. I carichi da utilizzare nella condizione "Normal", sono quelli riportati nella tabella dei carichi guasi-permanenti (W\_QP), come precisato dal produttore.

La combinazione "SLUext" si riferisce alla combinazione allo Stato Limite Ultimo per azioni di tipo eccezionale. In questa combinazione i carichi da vento utilizzati sono gli "Extreme loads" (W\_Extreme) in condizione "Abnormal", quindi quelli riportati nella relativa tabella in corrispondenza del load factor 1.1, proprio della condizione "Abnormal".

La combinazione "SLV1" rappresenta la combinazione allo Stato Limite Ultimo per sisma.

La combinazione "SLV2" rappresenta la combinazione allo Stato Limite Ultimo per sisma combinata con l'azione del vento nelle normali condizioni di esercizio della turbina (W\_QP), come indicato al paragrafo 7.3 del documento "Design and construction guidelines for the foundations of wind turbine generators".

La combinazione "SLEr" contiene i carichi da vento caratteristici (W\_Characteristic).

La combinazione "SLEf" contiene i carichi da vento caratteristici (W\_Characteristic) moltiplicati per il fattore riduttivo 0.9, ad eccezione del carico Fz, che rimane pari a quello caratteristico.

La combinazione "SLEqp" contiene i carichi da vento in condizione quasi-permanente (W\_QP).

|                                                                   | Unfavourable                                                                    | loads                                                                                                                  | Favourable <sup>9</sup> loads                             |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                   | Type of design situatio                                                         | n (see Table 2)                                                                                                        | til dealer altustions                                     |
| Normal (N)                                                        | Abnormal (A)                                                                    | Transport and erection (T)                                                                                             | All design situations                                     |
| 1,35*                                                             | 1,1                                                                             | 1,5                                                                                                                    | 0,9                                                       |
| f for normal design<br>or the design situa<br>oading from gravity | situations the characteristion in question, and grav<br>and other sources may h | stic value of the load response F <sub>gravity</sub> d<br>ity is an unfavourable load, the partial i<br>have the value | ue to gravity can be calculate<br>oad factor for combined |

Oltre ai casi di carico sopra elencati sono state introdotte anche delle combinazioni di inviluppo delle combinazioni di stato limite ultimo ("SLUenv").



**Engineering & Construction** 



GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

30 di/of 74

#### 9.1.5. Giudizio motivato accettabilità dei risultati

Al fine di validare il modello di calcolo vengono confrontati i risultati ottenuti da:

- Modello di calcolo FEM con vincoli a cerniera al posto dei pali
- Calcolo manuale su piastra rigida delle reazioni alla testa dei pali con foglio excel

Visti gli spessori degli elementi assunti i due risultati portano a valori di reazione verticale simile. Le valutazioni vengono eseguite sulla combinazione di carico "SLEr".



Figure 9-11 - Reazioni verticali su modello FEM



Figure 9-12 - Reazioni verticali foglio di calcolo Excel

Lo scarto tra i risultati forniti dai due modelli è trascurabile; il modello FEM risponde in maniera efficace agli input dati.



Stantec

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

32 di/of 74

Engineering & Construction

## 9.2. Risultati del modello FEM

## 9.2.1. Direzioni fissate per gli assi locali degli elementi

L'analisi strutturale è stata eseguita facendo riferimento al sistema di riferimento globale per la definizione delle azioni agenti.

Per migliorare la lettura delle sollecitazioni sono stati orientati gli assi di riferimento locale degli elementi in direzione radiale (assi x) e circonferenziale (assi y).



Figure 9-13 Assi di riferimento locali su elementi plate

Le armature che verranno assegnate agli elementi plate vengono definite in direzione circonferenziale e radiale per gli elementi posti esternamente al nucleo di innesto della torre della turbina eolica, la porzione centrale ha armature definite in direzione X e Y



Figure 9-14 - Assi di riferimento delle armature





PAGE

34 di/of 74

Engineering & Construction

#### 9.2.2. Azioni assiali sui pali

Nell'immagine sottostante si riportano le reazioni massime risultate dal modello FEM, misurate alla base dei pali per l'inviluppo delle combinazioni SLU e SLV. Le forze sono indicate in kN ed il software indica con il segno (+) azioni assiali di compressione.



Figure 9-15 - Reazioni verticali massime riportate alla punta del palo

Si è provveduto a stimare la portata verticale limite mediante metodi statici considerendo la stratigrafia ed i relativi parametri di progetto riportata al paragrafo 5, se ne riportano i risultati, che prevedono l'impiego di pali di diametro 1.2 m e profondità 37 m per poter fornire una portata compatibile con le reazioni risultate dal calcolo. Essendo la stratigrafia caratterizzata da materiali di tipo incoerente, il calcolo è stato svolto in condizioni drenate.





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

35 di/of 74

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O PORTA                                                                                                                                                                                                                                                                                                         | TA PALI TI                                                                                                                                                                                                                                                                   | RIVELLATI                                                                                              |                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------|
| DATI DI IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPUT                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | diametro d                                                                                                                                                                                                                                                                                                      | lel palo                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                                                           |                                                                                                                                                   | 1.20                                                                                                                                                | [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     | FS                                                                                                                              | Coefficien                                           | te parziale res                                                                                                                             | stenza alla base              | Yb                                                        | 1.                                                               | 35 [-]                |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lunghezza                                                                                                                                                                                                                                                                                                       | massima di                                                                                                                                                                                                                                                                   | calcolo                                                                                                |                                                                                                                                                                                           |                                                                                                                                                   | 37.00                                                                                                                                               | [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                 | Coefficien                                           | te parziale res                                                                                                                             | stenza laterale               | Y.                                                        | 1.                                                               | 15 [-]                |
| zw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | profondità                                                                                                                                                                                                                                                                                                      | della falda d                                                                                                                                                                                                                                                                | lal p.c.                                                                                               |                                                                                                                                                                                           |                                                                                                                                                   | 6.00                                                                                                                                                | [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                 | Fattori di d                                         | orrelazione ξ                                                                                                                               |                               | ξ                                                         | 1.                                                               | 70 [-]                |
| f <sub>cd</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | resistenza                                                                                                                                                                                                                                                                                                      | di calcolo d                                                                                                                                                                                                                                                                 | el c.l.s.                                                                                              |                                                                                                                                                                                           |                                                                                                                                                   | 14.17                                                                                                                                               | [Mpa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     |                                                                                                                                 |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
| n° strato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tipo                                                                                                                                                                                                                                                                                                            | DHi                                                                                                                                                                                                                                                                          | H,                                                                                                     | <b>7</b> n                                                                                                                                                                                | ۲'                                                                                                                                                | N <sub>SPT</sub>                                                                                                                                    | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | к                                                                                                   | C u                                                                                                                             | α                                                    | C a                                                                                                                                         |                               |                                                           |                                                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | terreno                                                                                                                                                                                                                                                                                                         | [m]                                                                                                                                                                                                                                                                          | [m]                                                                                                    | [kN/m <sup>3</sup> ]                                                                                                                                                                      | [kN/m <sup>3</sup> ]                                                                                                                              | [-]                                                                                                                                                 | [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [-]                                                                                                 | [kPa]                                                                                                                           | [-]                                                  | [kPa]                                                                                                                                       |                               | L                                                         | EGENDA                                                           |                       |
| 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 6.00                                                                                                                                                                                                                                                                         | 6.00                                                                                                   | 19.10                                                                                                                                                                                     | 19.10                                                                                                                                             |                                                                                                                                                     | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | DH                            | spesso                                                    | re dello strati                                                  | D<br>                 |
| 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | 4.00                                                                                                                                                                                                                                                                         | 10.00                                                                                                  | 19.10                                                                                                                                                                                     | 9.10                                                                                                                                              |                                                                                                                                                     | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | н,                            | protono                                                   | lita dello stra                                                  | to dal p.c.           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 27.00                                                                                                                                                                                                                                                                        | 37.00                                                                                                  | 22.50                                                                                                                                                                                     | 12.50                                                                                                                                             |                                                                                                                                                     | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | <b>7</b> n                    | peso sp                                                   |                                                                  | erreno natural        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           | 0.00                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | γ<br>Ν                        | Numero                                                    | o colni al nie                                                   | ace<br>de (solo granu |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           | 0.00                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | SPT                           | angolo                                                    | di attrito (sol                                                  | o aranulari)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           | 0.00                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | ĸ                             | rapport                                                   | o tra σ <sub>b</sub> /σ <sub>v</sub>                             | o granulari)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           | 0.00                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | c,                            | coesior                                                   | ne non drena                                                     | ita (solo coesi       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           | 0.00                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 | 0.00                                                 | 0.00                                                                                                                                        | <i>c</i> <sub>a</sub> = α     | C, adesion                                                | ne (solo coes                                                    | sivi)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     | •                                                                                                                               |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
| PORTATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALLA BASE                                                                                                                                                                                                                                                                                                       | E - protocol                                                                                                                                                                                                                                                                 | llo di Beren                                                                                           | zantzev                                                                                                                                                                                   |                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
| n° strato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tipo                                                                                                                                                                                                                                                                                                            | DHi                                                                                                                                                                                                                                                                          | H <sub>f</sub>                                                                                         | <b>y</b> n                                                                                                                                                                                | ۲'                                                                                                                                                | N <sub>SPT</sub>                                                                                                                                    | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | к                                                                                                   | C u                                                                                                                             | α                                                    | C a                                                                                                                                         |                               |                                                           |                                                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | terreno                                                                                                                                                                                                                                                                                                         | [m]                                                                                                                                                                                                                                                                          | [m]                                                                                                    | [kN/m <sup>3</sup> ]                                                                                                                                                                      | [kN/m <sup>3</sup> ]                                                                                                                              | [-]                                                                                                                                                 | [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [-]                                                                                                 | [kPa]                                                                                                                           | [-]                                                  | [kPa]                                                                                                                                       |                               |                                                           |                                                                  |                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 | 27.00                                                                                                                                                                                                                                                                        | 37.00                                                                                                  | 22.50                                                                                                                                                                                     | 12.50                                                                                                                                             | 0.00                                                                                                                                                | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                | 0.00                                                                                                                            | 0.00                                                 | 0.00                                                                                                                                        |                               |                                                           |                                                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                 |                                                      |                                                                                                                                             |                               |                                                           |                                                                  |                       |
| ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroo dollo                                                                                                                                                                                                                                                                                                      | hana dal pa                                                                                                                                                                                                                                                                  | le.                                                                                                    | 1 12                                                                                                                                                                                      | [m²]                                                                                                                                              | <b>_</b>                                                                                                                                            | 26°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                 | 240                                                                                                                             | 270                                                  | 40°                                                                                                                                         |                               |                                                           |                                                                  |                       |
| A <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area della<br>Pressione                                                                                                                                                                                                                                                                                         | base del pa                                                                                                                                                                                                                                                                  | lo<br>li base                                                                                          | 1.13                                                                                                                                                                                      | [m²]<br>[kPa]                                                                                                                                     | ¢<br>B                                                                                                                                              | 26°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°                                                                                                 | 34°                                                                                                                             | 37°                                                  | 40°                                                                                                                                         | Tabella                       | per il calco                                              | lo di B                                                          |                       |
| Ab<br>SvL<br>N-=1)Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Area della<br>Pressione<br>Coeff di p                                                                                                                                                                                                                                                                           | base del pal<br>geostatica d                                                                                                                                                                                                                                                 | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80                                                                                                                                                                     | [m²]<br>[kPa]                                                                                                                                     | ∳<br>B <sub>k</sub>                                                                                                                                 | 26°<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30°<br>33.00                                                                                        | 34°<br>63.00                                                                                                                    | 37°<br>104.00                                        | 40°<br>186.00                                                                                                                               | Tabella                       | per il calco                                              | lo di B <sub>k</sub>                                             |                       |
| A⊳<br>s <sub>vL</sub><br>Nq=∪B <sub>k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Area della<br>Pressione<br>Coeff. di p                                                                                                                                                                                                                                                                          | base del pal<br>geostatica d<br>ressione ge<br>alla base                                                                                                                                                                                                                     | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80<br>0.00                                                                                                                                                             | [m <sup>-</sup> ]<br>[kPa]<br>[kPa]                                                                                                               | ♦<br>B <sub>k</sub>                                                                                                                                 | 26°<br>20.00<br>26°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°<br>33.00<br>30°                                                                                 | 34°<br>63.00                                                                                                                    | 37°<br>104.00                                        | 40°<br>186.00<br>40°                                                                                                                        | Tabella  <br>Tabella          | per il calco                                              | lodiB <sub>k</sub>                                               |                       |
| A <sub>b</sub><br>s <sub>v⊥</sub><br>N <sub>q</sub> =∪B <sub>k</sub><br>c<br>N <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c                                                                                                                                                                                                                                             | base del pal<br>geostatica d<br>ressione ge<br>alla base<br>coesione                                                                                                                                                                                                         | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80<br>0.00<br>9.00                                                                                                                                                     | [m²]<br>[kPa]<br>[kPa]                                                                                                                            | •<br>B <sub>k</sub><br>H/D<br>5                                                                                                                     | 26°<br>20.00<br>26°<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30°<br>33.00<br>30°<br>0.77                                                                         | 34°<br>63.00<br>34°<br>0.81                                                                                                     | 37°<br>104.00<br>37°<br>0.83                         | 40°<br>186.00<br>40°<br>0.85                                                                                                                | Tabella  <br>Tabella          | per il calco<br>per il calco                              | lodiB <sub>k</sub><br>lodiυ                                      |                       |
| A <sub>b</sub><br>s <sub>v⊥</sub><br>N <sub>q</sub> =∪B <sub>k</sub><br>c<br>N <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c                                                                                                                                                                                                                                             | base del pal<br>geostatica d<br>oressione geo<br>alla base<br>coesione                                                                                                                                                                                                       | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80<br>0.00<br>9.00                                                                                                                                                     | [m²]<br>[kPa]<br>[kPa]                                                                                                                            | ♦<br>B <sub>k</sub><br>H/D<br>5<br>10                                                                                                               | 26°<br>20.00<br>26°<br>0.75<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°<br>33.00<br>30°<br>0.77<br>0.67                                                                 | 34°<br>63.00<br>34°<br>0.81<br>0.73                                                                                             | 37°<br>104.00<br>37°<br>0.83<br>0.76                 | 40°<br>186.00<br>40°<br>0.85<br>0.79                                                                                                        | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3                         | lodiB <sub>k</sub><br>lodiυ<br>0.8                               |                       |
| A <sub>b</sub><br>s <sub>vL</sub><br>N <sub>q</sub> =∪B <sub>k</sub><br>c<br>N <sub>c</sub><br>Q <sub>b.lim</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim                                                                                                                                                                                                                              | base del pal<br>geostatica d<br>pressione ger<br>alla base<br>coesione                                                                                                                                                                                                       | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br><b>3184.89</b>                                                                                                                                   | [m <sup>-</sup> ]<br>[kPa]<br>[kPa]<br><b>[kN]</b>                                                                                                | ♦<br>B <sub>k</sub><br>H/D<br>5<br>10<br>15                                                                                                         | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30°<br>33.00<br>30°<br>0.77<br>0.67<br>0.61                                                         | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68                                                                                     | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73         | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77                                                                                                | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3                         | lodiB <sub>k</sub><br>lodiບ<br>0.8                               |                       |
| A <sub>b</sub><br>S <sub>vL</sub><br>N <sub>q</sub> =vB <sub>k</sub><br>c<br>N <sub>c</sub><br>Q <sub>b,lim</sub><br>Q <sub>b,amm</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am                                                                                                                                                                                                                | base del pal<br>geostatica d<br>oressione ge<br>alla base<br>coesione<br>nite di base                                                                                                                                                                                        | lo<br>li base<br>ostatica                                                                              | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18                                                                                                                               | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]                                                                                               | <ul> <li>♦</li> <li>B<sub>k</sub></li> <li>H/D</li> <li>5</li> <li>10</li> <li>15</li> <li>20</li> </ul>                                            | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°<br>33.00<br>30°<br>0.77<br>0.67<br>0.61<br>0.57                                                 | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65                                                                             | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75                                                                                        | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3                         | lodiΒ <sub>k</sub><br>lodiυ<br>0.8                               |                       |
| A <sub>b</sub><br>S <sub>VL</sub><br>N <sub>q</sub> =∪B <sub>k</sub><br>c<br>N <sub>c</sub><br>Q <sub>b,lim</sub><br>Q <sub>b,amm</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am                                                                                                                                                                                                                | base del pal<br>geostatica d<br>ressione ger<br>alla base<br>coesione<br>ite di base<br>m. di base                                                                                                                                                                           | lo<br>li base<br>ostatica<br>o di Viggiar                                                              | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18                                                                                                                               | [m <sup>4</sup> ]<br>[kPa]<br>[kPa]<br><b>[kN]</b>                                                                                                | <ul> <li>♦</li> <li>B<sub>k</sub></li> <li>H/D</li> <li>5</li> <li>10</li> <li>15</li> <li>20</li> </ul>                                            | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°<br>33.00<br>30°<br>0.77<br>0.67<br>0.61<br>0.57                                                 | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65                                                                             | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75                                                                                        | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3                         | lodiB <sub>k</sub><br>lodiυ<br>0.8                               |                       |
| A <sub>b</sub><br>S <sub>vL</sub><br>N <sub>q</sub> =∪B <sub>k</sub><br>C<br>N <sub>c</sub><br>Q <sub>b,lim</sub><br>Q <sub>b,amm</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am                                                                                                                                                                                                                | base del pai<br>geostatica d<br>oressione ger<br>alla base<br>coesione<br>nite di base<br>nite di base<br>- protocollo                                                                                                                                                       | lo<br>di base<br>ostatica<br><b>o di Viggia</b> r                                                      | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br><b>3184.89</b><br>2359.18<br>ni                                                                                                                  | [m <sup>4</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]                                                                                               |                                                                                                                                                     | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30°<br>33.00<br>30°<br>0.77<br>0.67<br>0.61<br>0.57                                                 | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65                                                                             | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75                                                                                        | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>σ = c <sub>a.i</sub> | lodiB <sub>k</sub><br>lodi∪<br>0.8<br>+ σ <sub>h.med.i</sub> tai | ιφ                    |
| $\begin{array}{l} \textbf{A}_{b} \\ \textbf{S}_{VL} \\ \textbf{N}_{q} = \upsilon \textbf{B}_{k} \\ \textbf{C} \\ \textbf{N}_{c} \\ \\ \textbf{Q}_{b,lim} \\ \textbf{Q}_{b,amm} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE                                                                                                                                                                                                    | base del pai<br>geostatica d<br>oressione ger<br>alla base<br>coesione<br>ite di base<br>mm. di base<br>- protocollo<br>aterale strato                                                                                                                                       | lo<br>di base<br>ostatica<br>o di Viggian<br>1°                                                        | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18<br>ni<br>0.00                                                                                                                 | [m <sup>4</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>[kN]<br>114.60                                                                             |                                                                                                                                                     | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>G</b> <sub>h.med</sub><br>45.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30°<br>33.00<br>30°<br>0.77<br>0.67<br>0.61<br>0.57                                                 | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> <sub>a</sub><br>0.00                                            | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>o</b> .75                                                                        | Tabella (<br>Tabella (<br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{a,i}$   | lodiB <sub>k</sub><br>lodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tal | 1 <b>φ</b>            |
| $\begin{array}{l} \textbf{A}_{b} \\ \textbf{S}_{VL} \\ \textbf{N}_{q} = \textbf{D} \textbf{B}_{k} \\ \textbf{C} \\ \textbf{N}_{c} \\ \textbf{N}_{c} \\ \textbf{Q}_{b,lim} \\ \textbf{Q}_{b,amm} \\ \textbf{PORTATA} \\ \textbf{\sigma}_{h,1} \\ \textbf{\sigma}_{h,2} \end{array}$                                                                                                                                                                                                                                                                                                                                                               | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE                                                                                                                                                                                                    | base del pai<br>geostatica d<br>ressione ge<br>alla base<br>coesione<br>itte di base<br>inte di base<br><b>- protocolla</b><br>aterale strato                                                                                                                                | lo<br>di base<br>ostatica<br><b>o di Viggiar</b><br>1°<br>2°                                           | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br><b>3184.89</b><br>2359.18<br>ni<br><b>σ</b> <sub>v,i</sub><br>0.00<br>114.60                                                                     | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00                                                                           |                                                                                                                                                     | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>0</b> ,49<br><b>0</b> ,h.med<br>45.84<br>106.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30°<br>33.00<br>0.77<br>0.67<br>0.61<br>0.57<br>[kPa]<br>[kPa]                                      | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br>C <sub>a</sub><br>0.00<br>0.00                                           | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92                                                                 | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{a,i}$   | lodiB <sub>k</sub><br>lodiυ<br>0.8<br>+σ <sub>h.med.i</sub> tal  | ηφ                    |
| $\begin{array}{l} \textbf{A}_{b} \\ \textbf{S}_{vL} \\ \textbf{N}_{q} = \textbf{D} \textbf{B}_{k} \\ \textbf{C} \\ \textbf{N}_{c} \\ \textbf{N}_{c} \\ \textbf{Q}_{b,lim} \\ \textbf{Q}_{b,amm} \\ \textbf{PORTATA} \\ \textbf{\sigma}_{h.1} \\ \textbf{\sigma}_{h.2} \\ \textbf{\sigma}_{h.3} \end{array}$                                                                                                                                                                                                                                                                                                                                      | Area della<br>Pressione<br>Coeff. di p<br>Coesione <i>a</i><br>Coesione <i>a</i><br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la                                                                                                                                          | base del pai<br>geostatica d<br>ressione ge<br>alla base<br>coesione<br>ite di base<br>- protocollo<br>terale strato<br>aterale strato                                                                                                                                       | lo<br>di base<br>ostatica<br><b>o di Viggia</b><br>1°<br>2°<br>3°                                      | 1.13<br>488.5<br>9.80<br>0.00<br>3184.89<br>2359.18<br>ni<br><b>o</b> .00<br>114.60<br>151.00                                                                                             | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50                                                                 | ♦<br>B <sub>k</sub><br>5<br>10<br>15<br>20<br>57.30<br>132.80<br>319.75                                                                             | 26°<br>20.00<br>26°<br>0.75<br>0.65<br>0.49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,24<br><b>1</b> ,06,24<br><b>1</b> ,06,25<br><b>1</b> ,07,25<br><b>1</b> ,07,25<br><b>1</b> ,07,25<br><b>1</b> ,07,2 | 30°<br>33.00<br>0.77<br>0.67<br>0.61<br>0.57<br>[kPa]<br>[kPa]<br>[kPa]                             | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> <sub>a</sub><br><b>C</b> <sub>a</sub><br>0.00<br>0.000<br>0.000 | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92<br>89.46                                                 | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{a,i}$   | lodiB <sub>k</sub><br>lodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tal | 1 <b>¢</b>            |
| $\begin{array}{l} {{\rm{A}}_{{\rm{b}}}} \\ {{\rm{S}}_{{\rm{v}}_{L}}} \\ {{\rm{N}}_{{\rm{q}}}}{=}{{\rm{U}}{\rm{B}}_{{\rm{k}}}} \\ {{\rm{c}}} \\ {{\rm{N}}_{{\rm{c}}}} \\ \\ {{\rm{Q}}_{{\rm{b}},{\rm{dim}}}} \\ \\ {{\rm{Q}}_{{\rm{b}},{\rm{dim}}}} \\ \\ {{\rm{Q}}_{{\rm{b}},{\rm{dim}}}} \\ \\ {{\rm{PORTATA}}} \\ \\ {{\sigma}_{{\rm{h}},1}} \\ \\ {{\sigma}_{{\rm{h}},2}} \\ \\ {{\sigma}_{{\rm{h}},3}} \\ \\ {{\sigma}_{{\rm{h}},4}} \\ \end{array} \end{array}$                                                                                                                                                                             | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la<br>tensione la<br>tensione la                                                                                                                                        | base del pal<br>geostatica di<br>ressione gei<br>alla base<br>coesione<br>ite di base<br>m. di base<br>- protocollo<br>terale strato<br>terale strato<br>terale strato<br>terale strato                                                                                      | lo<br>li base<br>ostatica<br>o di Viggion<br>1°<br>2°<br>3°<br>4°                                      | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br><b>3184.89</b><br><b>2359.18</b><br>ni<br><b>0</b> .00<br>114.60<br>114.60<br>151.00<br>0.00                                                     | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00                                                         | ♦<br>B <sub>k</sub><br>5<br>10<br>15<br>20<br>57.30<br>132.80<br>319.75<br>0.00                                                                     | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>σ</b> <sub>h.med</sub><br>45.84<br>106.24<br>191.85<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30°<br>33.00<br>30°<br>0.77<br>0.61<br>0.57<br>(kPa]<br>[kPa]<br>[kPa]                              | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> <sub>a</sub><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00            | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92<br>42.92<br>89.46<br>0.00                                | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{n,i}$   | kodiB <sub>k</sub><br>kodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tat | 1 <b>¢</b>            |
| $\begin{array}{l} \textbf{A}_{b} \\ \textbf{S}_{kL} \\ \textbf{N}_{q} = \upsilon \textbf{B}_{k} \\ \textbf{C} \\ \textbf{N}_{c} \\ \end{array}$ $\begin{array}{l} \textbf{Q}_{b,lim} \\ \textbf{Q}_{b,amm} \\ \end{array}$ $\begin{array}{l} \textbf{PORTATA} \\ \textbf{\sigma}_{h.1} \\ \textbf{\sigma}_{h.2} \\ \textbf{\sigma}_{h.3} \\ \textbf{\sigma}_{h.4} \\ \textbf{\sigma}_{h.5} \end{array}$                                                                                                                                                                                                                                          | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coesione a<br>Coeff. di c<br>Portata im<br>Portata am<br>LATERALE<br>tensione la<br>tensione la<br>tensione la<br>tensione la                                                                                                                           | base del pal<br>geostatica o<br>rressione ge<br>alla base<br>oosione<br>ite di base<br>m. di base<br>- protocolid<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato                                                                       | lo<br>li base<br>ostatica<br><b>b di Viggian</b><br>1°<br>2°<br>3°<br>4°<br>5°                         | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18<br>11<br>0.00<br>114.60<br>151.00<br>0.00<br>0.00                                                                             | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00<br>0.00                                                 | ♦<br>B <sub>k</sub><br>10<br>15<br>20<br>57.30<br>132.80<br>319.75<br>0.00<br>0.00                                                                  | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>T</b> <sub>h.med</sub><br>45.84<br>106.24<br>191.85<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30°<br>33.00<br>0.77<br>0.61<br>0.57<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]                            | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> <sub>a</sub><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00    | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>σ</b><br>18.52<br>42.92<br>89.46<br>0.00<br>0.00                                 | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{a,i}$   | NodiB <sub>k</sub><br>Nodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tat | n ¢                   |
| $\begin{array}{l} {{\rm{A}}_{\rm{b}}} \\ {{\rm{S}}_{\rm{L}L}} \\ {{\rm{N}}_{\rm{q}}} = \cup {{\rm{B}}_{\rm{k}}} \\ {\rm{c}} \\ {{\rm{N}}_{\rm{c}}} \\ \\ {{\rm{Q}}_{\rm{b,sim}}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la                                                                                                           | base del pai<br>geostatica o<br>rressione ge<br>alla base<br>ocesione<br>itte di base<br>- protocollo<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato                                | lo<br>li base<br>ostatica<br><b>o di Viggion</b><br>1°<br>2°<br>3°<br>4°<br>5°<br>6°                   | $\begin{array}{c} 1.13\\ 488.5\\ 9.80\\ 0.00\\ 9.00\\ \hline \end{array}$                                                                                                                 | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00<br>0.00<br>0.00                                         | ♦<br>B <sub>k</sub><br>H/D<br>5<br>10<br>15<br>20<br>σ <sub>v.med</sub><br>57.30<br>132.80<br>319.75<br>0.000<br>0.000<br>0.000                     | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>σ</b> <sub>humed</sub><br>45.84<br>106.24<br>191.85<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30°<br>33.00<br>0.77<br>0.67<br>0.61<br>0.57<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]           | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> a<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92<br>89.46<br>0.00<br>0.00<br>0.00                         | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{n,i}$   | kodiB <sub>k</sub><br>Nodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tat | n ¢                   |
| A <sub>b</sub><br>S <sub>VL</sub><br>N <sub>q</sub> =υB <sub>k</sub><br>c<br>N <sub>c</sub><br>Q <sub>b,lim</sub><br>Q <sub>b,lim</sub><br>PORTATA<br>σ <sub>h.1</sub><br>σ <sub>h.2</sub><br>σ <sub>h.3</sub><br>σ <sub>h.4</sub><br>σ <sub>h.5</sub><br>σ <sub>h.6</sub>                                                                                                                                                                                                                                                                                                                                                                       | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la                                                                            | base del pal<br>geostatica o<br>rressione ge<br>alla base<br>coesione<br>ite di base<br>m. di base<br>- profocolla<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato  | lo<br>li base<br>ostatica<br>o di Viggion<br>1°<br>2°<br>3°<br>4°<br>5°<br>6°<br>7°                    | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18<br>11<br><b>0</b><br>114.60<br>114.60<br>151.00<br>0.00<br>0.00<br>0.00<br>0.00                                               | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00<br>0.00<br>0.00<br>0.00                         | ψ         Bk           H/D         5           10         15           20         57.30           319.75         0.00           0.000         0.000 | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>0</b> ,49<br><b>0</b> ,49<br><b>0</b> ,45,84<br>106,24<br>191,85<br>0.00<br>0.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30°<br>33.00<br>30°<br>0.77<br>0.61<br>0.57<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]   | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br><b>C</b> a<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°           186.00           40°           0.85           0.79           0.75                                                             | Tabella  <br>Tabella  <br>H/D | per il calco<br>per il calco<br>3<br>$\sigma = c_{n,i}$   | kodiB <sub>k</sub><br>kodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tad | n ¢                   |
| $\begin{array}{l} {{\rm A}_{\rm b}} \\ {{\rm S}_{\rm kL}} \\ {{\rm N}_{\rm q}} = \cup {{\rm B}_{\rm k}} \\ {\rm c} \\ {{\rm N}_{\rm c}} \\ \\ {{\rm Q}_{\rm b,lim}} \\ {{\rm Q}_{\rm b,amm}} \\ \end{array} \\ \begin{array}{l} {{\rm PORTATA}} \\ {{\rm \sigma}_{\rm h,1}} \\ {{\rm \sigma}_{\rm h,2}} \\ {{\rm \sigma}_{\rm h,3}} \\ {{\rm \sigma}_{\rm h,3}} \\ {{\rm \sigma}_{\rm h,4}} \\ {{\rm \sigma}_{\rm h,5}} \\ {{\rm \sigma}_{\rm h,6}} \\ {{\rm \sigma}_{\rm h,7}} \\ {{\rm \sigma}_{\rm h,8}} \\ \end{array} \end{array}$                                                                                                          | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la<br>tensione la                                              | base del pal<br>geostatica o<br>rressione ge-<br>alla base<br>ocesione<br>ite di base<br>m. di base<br>- protocollo<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato | lo<br>li base<br>ostatica<br><b>b di Viggian</b><br>1°<br>2°<br>3°<br>4°<br>5°<br>6°<br>7°<br>8°       | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18<br>ni<br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b> | [m <sup>2</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | ♦<br>B <sub>k</sub><br>H/D<br>5<br>10<br>15<br>20<br><sup>σ</sup> v.med<br>57.30<br>132.80<br>319.75<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000    | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.49<br><b>°</b> <sub>h,med</sub><br>45.84<br>106.24<br>191.85<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30°<br>33.00<br>30°<br>0.77<br>0.61<br>0.57<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]   | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65                                                                             | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92<br>89.46<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | Tabella  <br>Tabella  <br>₩D  | per il calco<br>per il calco<br>3<br>σ = c <sub>a.i</sub> | kodiB <sub>k</sub><br>kodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tat | 1 ¢                   |
| $\begin{array}{l} \textbf{A}_{b} & \\ \textbf{S}_{vL} & \\ \textbf{N}_{q} = \cup \textbf{B}_{k} & \\ \textbf{C} & \\ \textbf{N}_{c} & \\ \textbf{M}_{b,amm} & \\ \textbf{PORTATA} & \\ \textbf{G}_{h.1} & \\ \textbf{G}_{h.2} & \\ \textbf{G}_{h.3} & \\ \textbf{G}_{h.4} & \\ \textbf{G}_{h.5} & \\ \textbf{G}_{h.6} & \\ \textbf{G}_{h.7} & \\ \textbf{G}_{h.8} & \\ \textbf{G}_{h.9} & \\ \end{array}$                                                                                                                                                                                                                                        | Area della<br>Pressione<br>Coeff. di p<br>Coesione a<br>Coeff. di c<br>Portata lim<br>Portata am<br>LATERALE<br>tensione la<br>tensione la | base del pal<br>geostatica o<br>rressione ge-<br>alla base<br>ocesione<br>ite di base<br>m. di base<br>- protocollo<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato<br>terale strato | lo<br>li base<br>ostatica<br><b>b di Viggian</b><br>1°<br>2°<br>3°<br>4°<br>5°<br>6°<br>7°<br>8°<br>9° | 1.13<br>488.5<br>9.80<br>0.00<br>9.00<br>3184.89<br>2359.18<br>ni<br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b> | [m <sup>c</sup> ]<br>[kPa]<br>[kPa]<br>[kN]<br>[kN]<br>[kN]<br>114.60<br>151.00<br>488.50<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | ♦<br>B <sub>k</sub><br>5<br>10<br>15<br>20<br><sup>σ</sup> v.med<br>57.30<br>132.80<br>319.75<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000  | 26°<br>20.00<br>26°<br>0.75<br>0.62<br>0.55<br>0.49<br><b>σ</b> <sub>h.med</sub><br>45.84<br>106.24<br>191.85<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30°<br>33.00<br>0.77<br>0.67<br>0.57<br>(kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa]<br>[kPa] | 34°<br>63.00<br>34°<br>0.81<br>0.73<br>0.68<br>0.65<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                     | 37°<br>104.00<br>37°<br>0.83<br>0.76<br>0.73<br>0.71 | 40°<br>186.00<br>40°<br>0.85<br>0.79<br>0.77<br>0.75<br><b>°</b><br>18.52<br>42.92<br>89.46<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Tabella  <br>Tabella  <br>₩D  | per il calco<br>per il calco<br>3<br>$\sigma = c_{a,i}$   | kodiB <sub>k</sub><br>kodiυ<br>0.8<br>+ σ <sub>h.med.i</sub> tat | 1 ¢                   |

PORTATA TOTALE LIMITE 6516.21 [kN]





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

36 di/of 74

**Engineering & Construction** 

#### 9.2.3. Azioni sul basamento

Si riportano di seguito le sollecitazioni flettenti e taglianti sul basamento, calcolate secondo la teoria Wood Armer, in direzione radiale e circonferenziale.

Inviluppo delle combinazioni SLU: "SLUenv"



Figure 9-16 – SLUenv: Momento direzione radiale, Bottom












Figure 9-22 – SLV2: Momento direzione radiale, Bottom













Figure 8-28 – SLEr: Momento direzione radiale, Bottom



Figure 9-29 – SLEr: Momento direzione circonferenziale, Bottom







Figure 9-32 – SLEqp: Momento direzione radiale, Bottom







Figure 9-35 – SLEqp: Momento direzione circonferenziale, Top





GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

**Engineering & Construction** 

## 9.3. Verifica degli elementi strutturali

Le verifiche sugli elementi strutturali vengono eseguite come segue:

 SLU: Verifica con acciaio snervato e calcestruzzo con deformazione allo 0.35%

PAGE

56 di/of 74

- SLV: Verifica con acciaio in campo elastico e calcestruzzo in campo elastico
- SLE caratteristica (rara): verifica tensionale sulla massima tensione delle fibre d'acciaio  $\sigma_s \leq 0.8 * f_{yk}$  e sulla massima tensione di compressione del calcestruzzo  $\sigma_c \leq 0.6 * f_{ck}$
- SLE quasi permanente: verifica sulla massima tensione di compressione del calcestruzzo  $\sigma_c \leq 0.45*f_{ck}$

## 9.3.1. Verifica strutturale del palo

Sul palo sono state disposti 16Ø20 longitudinali e un'armatura a spirale Ø10/25 su tutta la sua lunghezza per garantire adeguato confinamento. Tale armatura è maggiore del minimo indicato al paragrafo 7.7.2.5 delle NTC2018.

| 📅 Verifica C.A. S.L.U File: SLU_longitudin | ale                                                    | - X                                        |
|--------------------------------------------|--------------------------------------------------------|--------------------------------------------|
| File Materiali Opzioni Visualizza Pr       | ogetto Sez. Rett. Sismica Normativa:                   | NTC 2018 ?                                 |
| 🗅 🚅 🖶 🎒                                    |                                                        |                                            |
| Titolo : SLU_longitudinale                 |                                                        | Tipo Sezione                               |
| Sezione circolare cava                     | N* barre 0 Zoom                                        | O a T O Circolare                          |
| Raggio esterno 60 [cm]                     |                                                        | O Rettangoli O Coord.                      |
| Raggio interno 0 [cm]                      |                                                        | O DXF                                      |
| N* barre uguali 16                         |                                                        |                                            |
| Diametro barre 2 [cm]                      |                                                        |                                            |
| Copriferro (baric.) 9 [cm]                 |                                                        |                                            |
| Sollecitazioni                             | P.to applicazione N                                    |                                            |
| S.L.U. 🗕 Metodo n                          | ⊙ Centro ○ Baricentro cls                              | • + <sub>N</sub> •                         |
|                                            | O Coord.[cm]                                           | \`                                         |
|                                            | JN Q                                                   |                                            |
|                                            | - Tipo rottura<br>Lato calcestruzzo - Acciaio spervatr |                                            |
| yEd                                        |                                                        | Metodo di calcolo                          |
| Materiali                                  | M <sub>xRd</sub> 962 kN m                              | S.L.U.+ O S.L.U     Metodo n               |
|                                            |                                                        | Tino flessione                             |
| f 201 2 11 2 2 %                           | σ <sub>c</sub> -14,17 N/mm <sup>2</sup>                | <ul> <li>Retta</li> <li>Deviata</li> </ul> |
| yd 331,3 N/mm² Ccu 3,3                     | σ <sub>s</sub> 391,3 N/mm <sup>2</sup>                 | Vertici: 52 N* rett 100                    |
| E /E 1E f ( 0.00                           | ε <sub>c</sub> 3,5 ‰                                   | Calcola MBd Dominio M-N                    |
| S = 1 057 m C = 1 0.75                     | ε <sub>s</sub> 16,93 ‰                                 |                                            |
| C 1 255 11 2 7 0 C                         | d 111 cm L                                             | O CM COL MODEllo                           |
| Us,adm 233 N/mm* Co U,6                    | x 19,02 x/d 0,1713                                     | M-curvatura                                |
| <sup>c</sup> c1 1,829                      | δ 0,7                                                  |                                            |





GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00 PAGE

57 di/of 74

## **Engineering & Construction**

Le sollecitazioni di taglio vengono estratte dalle reazioni orizzontali globali e ripartite sui 20 pali presenti.

| Load   | F <sub>x</sub> (kN) | F <sub>Y</sub> (kN) | F <sub>z</sub> (kN) | V <sub>TOT</sub> (kN) | V <sub>PALO</sub> (kN) |
|--------|---------------------|---------------------|---------------------|-----------------------|------------------------|
| SLU1   | 0                   | 0                   | 92934.7             | 0.00                  | 0.00                   |
| SLU2   | -1358.78            | -153.765            | 90850.26            | 1367.45               | 68.37                  |
| SLU3   | -1358.78            | -153.765            | 68920.47            | 1367.45               | 68.37                  |
| SLUext | -1899.37            | 30.2                | 69126.68            | 1899.61               | 94.98                  |
| SLV1   | -24.54              | -7.36               | 68788.55            | 25.62                 | 1.28                   |
| SLV2   | -1031.04            | -121.26             | 68153.4             | 1038.15               | 51.91                  |

Si considera il valore di azione sollecitante tagliante derivante dalla combinazione "SLUext", più gravosa.

La resistenza a taglio viene calcolata su una sezione rettangolare equivalente attraverso il Metodo di Clarke & Birjandi.



Figure 9-36 – Sezione rettangolare equivalente



Stantec

GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE 58 di/of 74

### **Engineering & Construction**

Si procede alla verifica a taglio:

| DETERMINA                             | ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C                         | :.A N  | TC2018  |                                                                                                      |
|---------------------------------------|-------------------------------------------------------------------------|--------|---------|------------------------------------------------------------------------------------------------------|
| Caratteristic                         | che dei materiali                                                       |        |         |                                                                                                      |
| f <sub>ck</sub>                       |                                                                         | MPa    | 25      |                                                                                                      |
| $\alpha_{cc}$                         |                                                                         |        | 0.85    |                                                                                                      |
| γ <sub>c</sub>                        |                                                                         |        | 1.5     |                                                                                                      |
| f <sub>cd</sub>                       | resistenza di calcolo a compressione del calcestruzzo                   | MPa    | 14.17   | $a_{cc} \cdot f_{cd} / g_c$                                                                          |
| γs                                    |                                                                         |        | 1.15    |                                                                                                      |
| f <sub>y,wd</sub>                     |                                                                         | MPa    | 391.30  | f <sub>yd</sub> / g <sub>s</sub>                                                                     |
| Caratteristic                         | che della sezione resistente                                            |        |         |                                                                                                      |
| $V_{Ed}$                              | taglio sollecitante di progetto                                         | kN     | 95      |                                                                                                      |
| b <sub>w</sub>                        | larghezza della sezione                                                 | ст     | 102.82  |                                                                                                      |
| h                                     | altezza totale della sezione                                            | ст     | 109.99  |                                                                                                      |
| С                                     | distanza asse barre dal lembo teso                                      | ст     | 9.5     |                                                                                                      |
| d                                     | altezza utile della sezione                                             | ст     | 100.49  | h - c                                                                                                |
| d*                                    |                                                                         | ст     | 90.441  | 0.9 d                                                                                                |
| ĸ                                     |                                                                         | 2      | 1.446   | min[1.0+1/(20/d) , 2.0 ]                                                                             |
| A <sub>si</sub>                       | area di armatura longitudinale tesa                                     | cm-    | 40.82   |                                                                                                      |
| ρι                                    | rapporto geometrico di armatura longitudinale tesa                      | 2      | 0.0036  |                                                                                                      |
| A <sub>sw</sub>                       | area di armatura a taglio disposta                                      | ст     | 1.571   |                                                                                                      |
| S                                     | spaziatura statte                                                       | ст     | 25      |                                                                                                      |
| Controllo n                           | ecessità di armatura a taglio                                           |        |         |                                                                                                      |
| V <sub>Rdc1</sub>                     |                                                                         | kN     | 373.29  | [ U.18 · K · (100 · ρI · fck) <sup>λ</sup> (1/3) ] / γc · bw · d                                     |
| V <sub>Rdc2</sub>                     |                                                                         | kN     | 314.45  | [0.035 · k^(3/2) · √(fck)] · bw · d                                                                  |
| V <sub>Rdc</sub>                      | resistenza della sezione non armata a taglio                            | kN     | 373.29  | max[ V <sub>Rdc1</sub> , V <sub>Rdc2</sub> ]                                                         |
| V <sub>Ed</sub> / V <sub>Rdc</sub>    | non è necessario prevedere l'armatura a taglio VRo                      | c > VE | d       |                                                                                                      |
| Controllo c                           | apacità massima della sezione a taglio                                  |        |         |                                                                                                      |
| ν                                     | coefficiente di riduzione della resistenza del cls fessurato per taglic |        | 0.5     |                                                                                                      |
| α <sub>c</sub>                        | coefficiente per effetti dello sforzo assiale di compressione           |        | 1       | "                                                                                                    |
| α                                     | inclinazione armature a taglio                                          | rad    | 1.5/1   | gradi 90                                                                                             |
| V <sub>Rd,max</sub>                   | massima resistenza a taglio-compressione della sezione                  | KIN    | 3293.45 | $1.0 \cdot \nabla \cdot t_{cd}$ (cot(45)+tan(45)) · bW · 0.9 · d"                                    |
| V <sub>Ed</sub> / V <sub>Rd,max</sub> | sezione sufficiente per la resistenza taglio                            |        | 0.029   |                                                                                                      |
| Calcolo de                            | lla resistenza della sezione con armatura a taglio                      | C      |         |                                                                                                      |
| ω <sub>sw</sub>                       | percentuale meccanica di armatura trasversale (per alfa=90°)            |        | 0.02    | $(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$                                                     |
| 9, <sub>calc</sub>                    | valore di teta calcolato                                                | rad    | 0.185   | = $10.58^{\circ}$ cot ( $\theta_{,calc}$ ) = 5.35                                                    |
| 9, <sub>min</sub>                     | valore minimo di teta                                                   | rad    | 0.785   | $= 45^{\circ} \qquad \cot(\theta_{,\min}) = 1.00$                                                    |
| 9, <sub>max</sub>                     | valore massimo di teta                                                  | rad    | 0.381   | $= 21.8^{\circ}$ cot ( $9_{max}$ ) $= 2.50$                                                          |
| 8                                     | valore di calcolo di teta                                               | rad    | 0.381   | $= 21.8^{\circ}$ $\cot(9) = 2.50$                                                                    |
| V <sub>Rsd</sub>                      | resistenza a taglio trazione                                            | κN     | 555.98  | $A_{sw} \cdot t_{yd} \cdot d^* / s \cdot (\cot(\alpha) + \cot(\vartheta)) \cdot sen(\alpha)$         |
| V <sub>Rcd</sub>                      | resistenza a taglio compressione                                        | kN     | 2271.34 | $b \cdot d^* a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\vartheta)) / (1 + \cot^2(\alpha))$ |
| V <sub>Rd</sub>                       | resistenza a taglio della sezione                                       | kN     | 555.98  |                                                                                                      |
| V <sub>Ed</sub> /V <sub>Rd</sub>      | coefficiente di sfruttamento della capacità di resistenza a taglio      |        | 0.171   |                                                                                                      |

Si ottiene che non è necessario prevedere armatura a taglio, la resistenza del calcestruzzo è sufficiente a garantire adeguata resistenza all'elemento.



GRE.EEC.C.25.IT.W.17279.00.097.00

Engineering & Construction

PAGE

59 di/of 74

| Si procede al calcolo della resist               | enza dei pali a ca                 | richi latera     | li utilizzando la I        | ceoria di Br | oms:                    |
|--------------------------------------------------|------------------------------------|------------------|----------------------------|--------------|-------------------------|
| INPUTS                                           |                                    |                  |                            |              |                         |
| Geometria                                        |                                    |                  |                            |              |                         |
| Dimensione sezionale del palo                    |                                    | d =              | 1.20 m                     |              |                         |
| Lunghezza palo                                   |                                    | L =              | 37.00 m                    |              |                         |
| Momento di plasticizzazione della sezione        |                                    | M <sub>v</sub> = | 962.00 kN m                |              |                         |
| Parametri geotecnici                             |                                    |                  |                            |              |                         |
| Peso specifico terreno                           |                                    | γ =              | 22.50 kN/m <sup>2</sup>    |              |                         |
| Angolo di resistenza al taglio terrreno          |                                    | $\phi =$         | 25.00 °                    | = 0.44       | rad                     |
| Coefficienti parziali                            |                                    |                  |                            |              |                         |
| Coefficiente parziale SLU per pali soggetti a ca | richi trasversali                  | γ <sub>T</sub> = | 1.30                       |              | <sup>1</sup> Tab.6.4.VI |
| Fattore di correlazione                          |                                    | $\zeta =$        | 1.70                       |              | <sup>1</sup> Tab.6.4.IV |
| CALCOLO PER PALI IN CD                           |                                    |                  |                            |              |                         |
| Coefficiente di spinta passiva                   | K <sub>P</sub> = (1+senφ)/(1-senφ) | K <sub>P</sub> = | 2.46                       |              |                         |
| Pressione in testa                               | p=3*Kp*γ*D*z                       | p(z=0) =         | 0.00 kN/m <sup>2</sup>     |              |                         |
| Pressione in punta                               | p=3*Kp*γ*D*z                       | p(z=L) =         | 7,384.35 kN/m <sup>2</sup> |              |                         |
| Meccanismo di palo corto                         |                                    |                  |                            |              |                         |
| Resistenza alla traslazione orizzontale          | H <sub>C</sub> = f(KP,d,L)         | H <sub>C</sub> = | 136,610.41 kN              |              |                         |
| Momento massimo                                  | M <sub>max</sub> =2/3 H L          | Mmax =           | 3,369,723.54 kN m          |              |                         |
| Meccanismo di palo intermedio                    |                                    |                  |                            |              |                         |
| Resistenza alla traslazione orizzontale          | $H_M = f(C_u, d, L, M_y)$          | H <sub>M</sub> = | 45,562.80 kN               |              |                         |
| Meccanismo di palo lungo                         |                                    |                  |                            |              |                         |
| Resistenza alla traslazione orizzontale          | $H_L = f(C_{u,d},M_y)$             | $H_L =$          | 940.51 kN                  |              |                         |
|                                                  |                                    |                  |                            |              |                         |
| Meccanismo di rottura                            |                                    | Meccanismo o     | di palo lungo              |              |                         |

Stantec

La resistenza di calcolo del palo a forze orizzontali è maggiore della massima sollecitazione tagliante, si deduce quindi che i valori di resistenza geotecnica e strutturale del palo sono sufficienti a garantirne la stabilità.





GRE.EEC.C.25.IT.W.17279.00.097.00

Green Power
Engineering & Construction

PAGE

60 di/of 74

## 9.3.2. Verifica a flessione platea

Preliminarmente è stato calcolato il quantitativo di armatura disposto in termini di sezione trasversale per metro. Se ne riportano i risultati nelle tabelle sottostanti.

| ARMATUR     | A RADIALE | BOLLOW      |        |         |                 |                    |
|-------------|-----------|-------------|--------|---------|-----------------|--------------------|
| r           | S         | layer       | n      | fi      | As              | Note               |
| ст          | mm        |             |        | mm      | cm <sup>2</sup> |                    |
| 300         | 105       | 2           | 19.05  | 32      | 153.1           |                    |
| 350         | 122       | 2           | 16.39  | 32      | 131.8           |                    |
| 470         | 164       | 2           | 12.20  | 32      | 98.0            |                    |
| 890         | 310       | 2           | 6.45   | 32      | 51.9            |                    |
| 1070        | 373       | 2           | 5.36   | 32      | 43.1            |                    |
| 775         | 270       | 2           | 7.41   | 32      | 59.5            | Mezzeria Basamento |
|             |           |             | POTTOM |         |                 |                    |
|             |           | lavor       | n n    | fi      | ٨٩              | Noto               |
| 1           | 3         | layer       | 11     | 11      | <b>A5</b>       | NOLE               |
| <u>CM</u>   | 100       | 0           | 20.00  | <u></u> |                 |                    |
| 900         | 100       | 2           | 20.00  | 22      | 70.0            |                    |
| 890         | 100       | ۲<br>۲      | 20.00  | 22      | 20.0            |                    |
| 090<br>1200 | 100       | 1           | 10.00  | 22      | 30.U<br>29.0    |                    |
| 1200        | 200       | 1           | 5.00   | 22      | 10.0            |                    |
| 1250        | 200       | 1           | 5.00   | 22      | 19.0            |                    |
| 775         | 100       | 2           | 20.00  | 22      | 76.0            | Mezzeria Basamento |
| 1070        | 100       | 1           | 10.00  | 22      | 38.0            | Centro palo        |
|             |           |             |        |         |                 |                    |
| ARMATUR     | A RADIALE | TOP         |        |         |                 |                    |
| r           | S         | layer       | n      | fi      | As              | Note               |
| ст          | mm        |             |        | mm      | cm <sup>2</sup> |                    |
| 300         | 105       | 1           | 9.52   | 30      | 67.3            |                    |
| 470         | 164       | 1           | 6.10   | 30      | 43.1            |                    |
| 775         | 270       | 1           | 3.70   | 30      | 26.2            | Mezzeria Basamento |
| 1070        | 373       | 1           | 2.68   | 30      | 18.9            | Centro palo        |
|             |           |             |        |         |                 |                    |
| ARMATUR     | A CIRCON  | IFERENZIALI | ETOP   |         |                 |                    |
| r           | S         | layer       | n      | fi      | As              | Note               |
| ст          | mm        | -           |        | mm      | cm <sup>2</sup> |                    |
| 215         | 150       | 2           | 13.33  | 20      | 41.9            |                    |
| 470         | 150       | 2           | 13.33  | 20      | 41.9            |                    |
| 470         | 100       | 1           | 10.00  | 20      | 31.4            |                    |
| 1200        | 100       | 1           | 10.00  | 20      | 31.4            |                    |
| 1200        | 200       | 1           | 5.00   | 20      | 15.7            |                    |
| 1250        | 200       | 1           | 5.00   | 20      | 15.7            |                    |
| 775         | 100       | 1           | 10.00  | 20      | 31.4            | Mezzeria Basamento |
| 1070        | 100       | 1           | 10.00  | 20      | 31.4            | Centro palo        |



GRE.EEC.C.25.IT.W.17279.00.097.00

 $C.S = M_{Ed}/M_{Rd} = 0.883$ 

PAGE

61 di/of 74

### **Engineering & Construction**

La verifica a flessione della platea è stata eseguita in tre sezioni significative, in entrambe le direzioni radiale e circonferenziale, confrontando il momento resistente con quello sollecitante Wood Armer riportato al paragrafo 9.2.3. Le verifiche sono state svolte considerando l'inviluppo delle combinazioni stato limite ultimo "SLUenv" e la combinazione "SLV2", con differenti parametri dei materiali per soddisfare le condizioni al paragrafo 9.2.4.

Stantec

La verifica lato Top è stata eseguita solamente sulla sezione del colletto, più sollecitata.

Verifiche allo Stato Limite Ultimo: inviluppo combinazioni SLU

Sezione Colletto: Verifica direzione radiale, Bottom

| M <sub>Ed</sub> = 21155 kNm | M <sub>Rd</sub> = 21471 kNm | $C.S = M_{Ed}/M_{Rd} = 0.985$ |
|-----------------------------|-----------------------------|-------------------------------|

| 🔂 Verifica C.A. S.IU File: SLU_h375_radiale<br>File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  | ×                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| Image: Second state         N* strati         Second state           N* figure elementari         1         Zoom         N* strati         Second state           N* b (cm)         h (cm)         N* As (cm²)         d (cm)         1         100         275           1         100         275         1         1623         8.5         1         1623         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tipo Sezione<br>⊙ Rettan.re<br>○ a T<br>○ Rettangoli             | O Trapezi<br>O Circolare<br>O Coord.        |
| 2 153,1 367,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                             |
| Sollecitazioni         P.to applicazione N           S.LU.         ▲ Metodo n           N Ed         0           0         kN           7         Coord.lcm           yN         0           Tipo tollura         Image: Solution of the so                                                                                                                                                                                                                                                                   |                                                                  | N                                           |
| Mgcdu         u         Lato carcettruzzo - Accuao snervato           Materiali         MgRd         21.471         kN m           Esu         67.5         %         62         2         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Metodo di cal<br>S.L.U.+<br>O Met<br>- Tipo flessione<br>Retta | olo<br>O S.L.U<br>odo n                     |
| $ \begin{bmatrix} 1 & y_{3} & 391.3 \\ y_{3} & y_{3}$ | Calcola MRd                                                      | N* rett. 100<br>Dominio M-N<br>Col. modello |
| σ <sub>s,adm</sub> 255         N/mm²         τ <sub>co</sub> 0.7333         x         22,77         x/d         0.06196           τ <sub>c1</sub> 2.114         5         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Precor                                                           | M-curvatura<br>npresso                      |

Sezione Colletto: Verifica direzione circonferenziale, Bottom

| Mr. –               | 01/1/ | kNm    |
|---------------------|-------|--------|
| I <sup>M</sup> Ed = | 9144  | KINIII |

 $M_{Rd} = 10364 \text{ kNm}$ 

📅 Verifica C.A. S.L.U. - File: SLU\_h375\_circonferenziale  $\times$ File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ? 🗅 🗃 🖬 🎒 
 Tipo Sezione

 O Rettan.re
 O Trapezi

 O a T
 O Circolare
 Titolo : SLU h375 circonf 2 Zoom Zoom 4 N\* Vertici N\* barre 
 N\*
 As [cm²]
 x [cm]
 y [cm]

 1
 76
 50
 7,5

 2
 41,9
 50
 353,65
 O Retta oli 💿 Coord. N\* y [cm] x [cm] O DXF P.to appli
 Centro ione N O Baricentro cls + Metodo n +<sub>N</sub> S.L.U. xN 0 O Coord.[cm] NEd 0 kN yN 0 kNm Tipo rottura Lato calcestruzzo - Acciaio snervate 0 MVEd M<sub>xRd</sub> 10.364 kN m O S.L.U Materia O S.L.I B450C C25/30 su 67,5 % 391,3 N/mm<sup>2</sup> ε<sub>c2</sub> 2 ‰ -14,17 N/mm<sup>2</sup> °, - H Ecu 391,3 N/mm<sup>2</sup> os E C N\* rett. 100 0 N/mm<sup>2</sup> <sup>f</sup>cd 14.1 Es 3,5 E<sub>s</sub>/E<sub>c</sub> 15 fcc / fcd 0.8 ? Calcola MBd Dominio M-N ε<sub>s</sub> 36,85 % ε<sub>syd</sub> 1,957 % 0c,adm 9,75 Lo O cm Col. modello d 367,5 cm σ<sub>s,adm</sub> 255 N/mm<sup>2</sup> τ<sub>co</sub> 0,6 × 31,88 x/d 0.08675 M-curvatura τ<sub>c1</sub> 1,829 8 0,7 



GRE.EEC.C.25.IT.W.17279.00.097.00

 $C.S = M_{Ed}/M_{Rd} = 0.368$ 

PAGE

62 di/of 74

### **Engineering & Construction**

Sezione Colletto: Verifica direzione radiale, Top

 $M_{Ed} = 6655 \text{ kNm}$ 



) Stantec

Sezione Colletto: Verifica direzione circonferenziale, Top

| $M_{Ed} = 21$ | 03 kNm |
|---------------|--------|
|---------------|--------|

M<sub>Rd</sub> = 5709 kNm

| ) 🗳 🖥 🚭                                                                                                                                                    |                                                                                                                                                    |                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| itolo : SLU h375 circonf<br>I* Vertici 4 Zoom                                                                                                              | N* barre 2 Zoom                                                                                                                                    | O Rettan.re O Trapezi                                  |
| N*         x [cm]         y [cm]           1         0         0           2         0         375           2         100         251                     | N*         As [cm²]         x [cm]         y [cm]           1         76         50         7.5           2         41,9         50         353,65 | O Rettangoli ⊙ Coord.<br>O DXF                         |
| 4 100 0                                                                                                                                                    |                                                                                                                                                    |                                                        |
| Sollecitazioni<br>S.L.U.                                                                                                                                   | P.to applicazione N     Centro O Baricentro cls     N                                                                                              | + <sub>N</sub>                                         |
| N <sub>Ed</sub> U U KN<br>M <sub>xEd</sub> O O KNm<br>M <sub>vEd</sub> O O                                                                                 | Tipo rottura<br>Lato acciaio - Acciaio snervato                                                                                                    |                                                        |
| Materiali<br>B450C C25/30                                                                                                                                  | M <sub>xRd</sub> -5.709 kN m                                                                                                                       | - Metodo di calcolo<br>O S.L.U.+ O S.L.U<br>O Metodo n |
| ε <sub>su</sub> 67,5 ‰ ε <sub>c2</sub> 2 ‰<br><sup>f</sup> yd 391,3 N/mm² ε <sub>cu</sub> 3,5                                                              | σ <sub>c</sub> -14,16 N/mm <sup>2</sup><br>σ 391.3 N/mm <sup>2</sup>                                                                               | Tipo flessione<br>⊙ Retta O Deviata                    |
| E <sub>s</sub> 200.000 N/mm <sup>2</sup> <sup>f</sup> cd 14,17<br>E <sub>s</sub> /E <sub>c</sub> 15 <sup>f</sup> cc / fcd 0,8 ?                            | ε <sub>c</sub> 1,939 ‰<br>ε <sub>s</sub> 67,5 ‰                                                                                                    | N* rett. 100<br>Calcola MRd Dominio M-N                |
| $\begin{array}{c c} \epsilon_{syd} & 1.957 \\ \eta_{so} & \sigma_{c,adm} & 9.75 \\ \sigma_{s,adm} & 255 \\ N/mm^2 & \tau_{co} & 0.6 \\ \hline \end{array}$ | d 353,7 cm L<br>x 9,873 x/d 0,02792                                                                                                                | o Col. modello<br>M-curvatura                          |
| τ <sub>c1</sub> <b>1,829</b>                                                                                                                               | δ 0,7                                                                                                                                              |                                                        |



GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

63 di/of 74

### **Engineering & Construction**

Sezione in mezzeria del basamento: Verifica direzione radiale

 $M_{Ed} = 4221 \text{ kNm}$ 



Stantec

Sezione in mezzeria del basamento: Verifica direzione circonferenziale







Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale

| $M_{Ed} = 1121 \text{ kNm}$ | M <sub>Rd</sub> =                                                                | 2771 kNm                                              | $C.S = M_{Ed}/M_{Rd} = 0.405$  |
|-----------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|
|                             |                                                                                  |                                                       |                                |
|                             | 🏋 Verifica C.A. S.L.U File: SLU_h193 (p                                          | alo)_circonferenziale                                 | – 🗆 X                          |
|                             | File Materiali Opzioni Visualizza                                                | Progetto Sez. Rett. Sismica Normativa: NTC            | 2018 ?                         |
|                             |                                                                                  | ·                                                     |                                |
|                             | Titolo : SLU_Sez palo_circonferenzi                                              |                                                       | Rettan.re O Trapezi            |
|                             | N* Vertici 4 Zoon                                                                | N* barre 2 Zoom                                       | a T O Circolare                |
|                             | N* x[cm] y[cm]<br>1 0 0                                                          | N* As [cm <sup>2</sup> ] x [cm] y [cm] 0<br>1 38 50 5 | Rettangoli O Coord.            |
|                             | 2 0 204                                                                          | 2 31,42 50 188                                        |                                |
|                             | 4 100 0                                                                          |                                                       |                                |
|                             |                                                                                  |                                                       |                                |
|                             | Sollecitazioni                                                                   | P.to applicazione N                                   |                                |
|                             | S.L.U. Ketodo n                                                                  | ⊙ Centro ⊖ Baricentro cls                             | + <sub>N</sub>                 |
|                             | N <sub>Ed</sub> O kN                                                             | O Coord.[cm]                                          |                                |
|                             | M xEd 0 kNm                                                                      | Tipo rottura                                          | •                              |
|                             | M <sub>yEd</sub> O                                                               | Lato calcestruzzo - Acciaio snervato                  | alada di asiaola               |
|                             | Materiali                                                                        | M <sub>xBd</sub> 2.771 kNm                            | S.L.U.+ O S.L.U                |
|                             | B450C C32/40                                                                     |                                                       | O Metodo n                     |
|                             | $\epsilon_{su} = \frac{67.5}{67.5} \% = \epsilon_{c2} = \frac{2}{3} \frac{1}{5}$ | <sup>6</sup> σ <sub>c</sub> -18,13 N/mm <sup>2</sup>  | po nessione<br>Retta O Deviata |
|                             | yd 351,3 N/mm² Cu 3,3                                                            | σ <sub>s</sub> 391,3 N/mm <sup>2</sup>                | N* rett. 100                   |
|                             | E <sub>s</sub> /E <sub>c</sub> 15 f <sub>cc</sub> / f <sub>cd</sub> 0.8          | ? 5 3.5 ‰<br>? 5 21.51 % Cale                         | ola MRd Dominio M-N            |
|                             | ε <sub>syd</sub> 1,957 ‰ σ <sub>c,adm</sub> 12,25                                | d 199 cm Lo                                           | cm Col. modello                |
|                             | σ <sub>s,adm</sub> 255 <sub>N/mm<sup>2</sup></sub> τ <sub>co</sub> 0,7333        | x 19,89 x/d 0,09997                                   | M-curvatura                    |
|                             | τ <sub>c1</sub> 2,114                                                            | ] <u>\$ 0,7</u>                                       |                                |
|                             |                                                                                  | *                                                     |                                |
|                             |                                                                                  |                                                       |                                |
|                             |                                                                                  |                                                       |                                |
|                             |                                                                                  |                                                       |                                |
|                             |                                                                                  |                                                       |                                |





 $M_{Rd} = 20265 \text{ kNm}$ 

GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

 $C.S = M_{Ed}/M_{Rd} = 0.740$ 

PAGE

65 di/of 74

### **Engineering & Construction**

#### Verifica Stato Limite di Vita: combinazione SLV2

Sezione Colletto: Verifica direzione radiale, Bottom

 $M_{Ed} = 14997 \text{ kNm}$ 

🍸 Verifica C.A. S.L.U. - File: SLV\_h375\_radiale  $\times$ File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ? 🗅 🚅 🖶 🎒 Tipo Sezione Titolo : Sezione Rettan.re
 Trapezi N\* figure elementari 1 Zoom N\* strati barre 2 Zoom OaT O Circolare 
 N\*
 As [cm²]
 d [cm]

 1
 67,3
 8,5

 2
 153,1
 367,5
 b [cm] h [cm] 100 375 O Rettangoli O Coord. N\* 1 O DXF P.to applicazione N • Centro O Baricentro cls Sollecitazioni S.L.U. → Metodo n <sub>xN</sub> 0 O Coord.[cm] 0 kN yN 0

NEd kNm M <sub>xEd</sub> 0 0 Tipo rottura-0 M<sub>yEd</sub>0 Lato acciaio - Acciaio snervato M<sub>xRd</sub> 20.265 kN m O S.L.U. Materiali ⊙ S.L.U.+ B450C C32/40 Metodo n Esu 1,957 % 8c2 2 % -10,21 N/mm<sup>2</sup> σ<sub>c</sub> O Deviata 391,3 N/mm<sup>2</sup> σ E<sub>s</sub> 200.000 N/mm<sup>2</sup> <sup>f</sup>cd 18,13 N\* rett. 100 0,6784 <mark>ء</mark> د % fcc / fcd 0,8 2 Calcola MRd Dominio M-N E<sub>s</sub>/E<sub>c</sub> 15 ε<sub>s</sub> 1,957 ‰ L<sub>o</sub> O ε<sub>syd</sub> 1,957 ‰ σ<sub>c,adm</sub> 12,25 cm Col. modello d 367,5 cm σ<sub>s,adm</sub> 255 N/mm<sup>2</sup> τ<sub>co</sub> 0,7333 x 94,6 x/d 0,2574 M-curvatura τ<sub>c1</sub> 2,114 § 0,7618 

Sezione Colletto: Verifica direzione circonferenziale, Bottom

 $M_{Ed} = 6636 \text{ kNm}$  $M_{Rd} = 9958 \text{ kNm}$  $C.S = M_{Ed}/M_{Rd} = 0.667$ Verifica C.A. S.L.U. - File: SLU\_h375\_circonferenziale  $\times$ File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ? 🗋 🖻 🖥 🎒 Titolo : SLU h375 circonf Tipo Sezione O Rettan.re O Trapezi 4 Zoom N\* barre 2 Zoom N\* Vertici O Circolare OaT 
 N\*
 As [cm²]
 x [cm]
 y [cm]

 1
 76
 50
 7,5

 2
 41,9
 50
 353,65
 y [cm] ○ Rettangoli ⓒ Coord. N\* x [cm] 0 375 351,3 O DXF 100 3 4 100 0 Sollecitazioni S.L.U. 🔁 Metodo n P.to applicazione N • Centro O Baricentro cls +<sub>N</sub> <sub>xN</sub> 0 O Coord.[cm] 0 kN N <sub>Ed</sub> yN 0 MxEd kNm 0 Tipo rottura-0 Lato acciaio - Acciaio spervato M<sub>yEd</sub>O ● S.L.U.+ ● ● Metodo n O S.L.U.-M<sub>xRd</sub> 9.958 kN m B450C C32/40 ε<sub>c2</sub> 2 ‰ ε<sub>su</sub> 1,957 ‰ σ<sub>c</sub> -8,49 fle N/mm<sup>2</sup> 🔿 Deviata <sup>f</sup>yd **391,3** N/mm² ε<sub>cu</sub> σ<sub>s</sub> 391,3 N/mm<sup>2</sup> E<sub>s</sub> 200.000 N/mm<sup>2</sup> <sup>f</sup>cd 18,13 N\* rett. 100 0,5416 ‰ <mark>ء</mark> د E<sub>s</sub>/E<sub>c</sub> 15 f<sub>cc</sub> / f<sub>cd</sub> 0.8 ? Calcola MRd Dominio M-N ε<sub>s</sub> 1,957 %.. L<sub>o</sub> O ε<sub>syd</sub> 1,957 ‰ σ<sub>c,adm</sub> 12,25 cm Col. modello d 367,5 cm σ<sub>s,adm</sub> 255 N/mm<sup>2</sup> τ<sub>co</sub> 0,7333 M-curvatura x 79,66 x/d 0,2168 τ<sub>c1</sub> 2,114 § 0,711 Precompresso



GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

66 di/of 74

#### Engineering & Construction

Sezione Colletto: Verifica direzione radiale, Top

 $M_{Ed} = 749 \text{ kNm}$ 



Sezione Colletto: Verifica direzione circonferenziale, Top





GRE.EEC.C.25.IT.W.17279.00.097.00

 $C.S = M_{Ed}/M_{Rd} = 0.564$ 

PAGE

67 di/of 74

### Engineering & Construction

Sezione mezzeria basamento: Verifica direzione radiale

 $M_{Ed} = 3134 \text{ kNm}$ 

🚰 Verifica C.A. S.L.U. - File: SLU\_h263 (mezzeria)\_radiale X File Materiali Opzioni Visualizza Progetto Sez. Rett. Sismica Normativa: NTC 2018 ? 🗅 🚅 🖶 🎒 Titolo : SLU\_H263\_Radiale Tino Sezione ⊙ Rettan.re O Trapezi N\* figure elementari 1 Zoom N\* strati barre 2 Zoom OaT O Circolare O Rettangoli O Coord. N\* As [cm²] d [cm] N\* b[cm] h [cm] 26,2 59,5 263 1 8 5 O DXF 2 255,5 P.to applicazione N Sollecitazioni Hetodo n O Baricentro cls S.L.U. Centro xN 0 O Coord.[cm] kN N <sub>Ed</sub> 0 0 yN 0 0 M<sub>xEd</sub>0 kNm - Tipo rottura-M<sub>yEd</sub>0 0 Lato acciaio - Acciaio snervato M xRd 5.559 kN m ⊙ S.L.U.+ O S.L.U. Materiali O Metodo B450C C32/40 ε<sub>su</sub> 1,957 <sub>‰</sub> 2 % ε<sub>c2</sub> -7,843 N/mm<sup>2</sup> σ<sub>c</sub> O Retta O Deviata <sup>f</sup>yd **391,3** N/mm² ε<sub>cu</sub> 2 σ 391,3 \_\_\_\_\_N/mm <sup>2</sup> N\* rett. 100 E<sub>s</sub> 200.000 N/mm<sup>2</sup> <sup>f</sup>cd 18,13 0,4935 ε<sub>c</sub> ‰ Calcola MRd Dominio M-N fcc / fcd 0.8 ? E<sub>s</sub>/E<sub>c</sub> 15 1,957 ‰ ε σ<sub>c,adm</sub> 12,25 L<sub>0</sub> 0 cm Col. modello ε<sub>syd</sub> 1,957 ‰ 255,5 d cm σ<sub>s,adm</sub> 255 N/mm<sup>2</sup> τ<sub>co</sub> 0,7333 x 51,45 x/d 0,2014 M-curvatura τ<sub>c1</sub> 2,114 ô 0,7 

Stantec

 $M_{Rd} = 5559 \text{ kNm}$ 

Sezione mezzeria basamento: Verifica direzione circonferenziale





Sezione perimetrale del basamento, asse palo: Verifica direzione circonferenziale



 $M_{Rd} = 2654 \text{ kNm}$   $C.S = M_{Ed}/M_{Rd} = 0.311$ 

|                                                              | ioni Visualizza Pr                                                | rogetto Sez. Rett. Sismica Norma                                                                                                 | ativa: NTC 2018 ?                                                  |
|--------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ) 🖻 🖥 🖨 👘                                                    |                                                                   |                                                                                                                                  |                                                                    |
| Titolo : SLU_Sez p                                           | alo_circonferenzial                                               | le                                                                                                                               | Tipo Sezione                                                       |
| N* Vertici                                                   | 4 Zoom                                                            | N* barre 2 Zo                                                                                                                    | O Rettan.re O Trapezi<br>Dom O a T O Circolare                     |
| N* x [cm]                                                    | y [cm]                                                            | N* As [cm²] x [cm] y [cm]                                                                                                        | ○ Rettangoli ⓒ Coord.                                              |
| 1 0                                                          | 0                                                                 | 1 38 50 5                                                                                                                        | O DXF                                                              |
| 3 100                                                        | 181                                                               | 2 31,42 50 188                                                                                                                   |                                                                    |
| 4 100                                                        | 0                                                                 |                                                                                                                                  | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                             |
|                                                              |                                                                   |                                                                                                                                  |                                                                    |
| Sollecitazioni<br>S.L.U.<br>N Ed<br>M $_{xEd}$<br>M $_{yEd}$ | Metodo n                                                          | P.to applicazione N<br>O Centro O Baricentro cls<br>N 0<br>Coord.[cm]<br>yN 0<br>Tipo rottura<br>Lato acciaio - Acciaio snervato | +N<br>Metodo di calcolo                                            |
| B450C Mat                                                    | c32/40                                                            | M <sub>xRd</sub> 2.654 kN m                                                                                                      | ● S.L.U.+ ● S.L.U<br>● Metodo n                                    |
| ε <sub>su</sub> 1,957 <sub>‰</sub>                           | ε <sub>c2</sub> 2 ‰<br>1² ε <sub>cu</sub> 2                       | σ <sub>c</sub> -8,918 N/mm <sup>2</sup>                                                                                          | <ul> <li>Tipo flessione</li> <li>Retta</li> <li>Deviata</li> </ul> |
| E <sub>s</sub> 200.000 N/m                                   | m <sup>2</sup> f 18.13                                            | s 0.5711 ~                                                                                                                       | N* rett. 100                                                       |
| E. /E. 15                                                    | fcc / fcd 0.8 ?                                                   | ε <sub>ε</sub> 1,957 ‰                                                                                                           | Calcola MRd Dominio M-N                                            |
| -31-0                                                        |                                                                   |                                                                                                                                  | I O Cal madalla                                                    |
| ε <sub>syd</sub> <b>1.957</b> ‰                              | σ <sub>c,adm</sub> 12,25                                          | d <b>199</b> cm                                                                                                                  | L <sub>0</sub> Cm Col. Induend                                     |
| E <sub>syd</sub> 1,957 ‰                                     | σ <sub>c,adm</sub> 12,25<br>m <sup>2</sup> τ <sub>co</sub> 0,7333 | d 199 cm<br>x 45,16 x/d 0,2269                                                                                                   | L <sub>o</sub> o cm <u>Cor moueno</u><br>M-curvatura               |





GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

69 di/of 74

# Engineering & Construction

### 9.3.3. Verifica a taglio platea

Si considerano i valori di taglio massimo Vxx in combinazione "SLUenv", come riportati al paragrafo 9.2.3, essendo in questa direzione le azioni più gravose.

### Sezione Colletto:

Nelle zone di maggior sollecitazione, riscontrabili nel perimetro prossimo al colletto di innesto della torre dovrà essere disposto un opportuno quantitativo di armatura trasversale in modo da incrementare la resistenza a taglio della piastra.

Dovranno essere disposti nella zona prossima al colletto a passo 25 cm almeno 6.28 cm<sup>2</sup> di armatura (2 $\emptyset$ 20) per metro, come mostrato nella verifica sottostante.

| DETERMINA                                         | DETERMINAZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C.A NTC2018      |                 |         |                                                                                                                                                        |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Caratteristic                                     | che dei materiali                                                       |                 |         |                                                                                                                                                        |  |  |  |  |
| f <sub>ck</sub>                                   |                                                                         | MPa             | 32      |                                                                                                                                                        |  |  |  |  |
| $\alpha_{cc}$                                     |                                                                         |                 | 0.85    |                                                                                                                                                        |  |  |  |  |
| γc                                                |                                                                         |                 | 1.5     |                                                                                                                                                        |  |  |  |  |
| f <sub>cd</sub>                                   | resistenza di calcolo a compressione del calcestruzzo                   | MPa             | 18.13   | $a_{cc} \cdot f_{cd} / g_c$                                                                                                                            |  |  |  |  |
| γs                                                |                                                                         |                 | 1.15    |                                                                                                                                                        |  |  |  |  |
| <b>f</b> <sub>y,wd</sub>                          |                                                                         | MPa             | 391.30  | f <sub>yd</sub> / g <sub>s</sub>                                                                                                                       |  |  |  |  |
| Caratteristic                                     | che della sezione resistente                                            |                 |         |                                                                                                                                                        |  |  |  |  |
| V <sub>Ed</sub>                                   | taglio sollecitante di progetto                                         | kN              | 4940    |                                                                                                                                                        |  |  |  |  |
| b.,,                                              | larghezza della sezione                                                 | ст              | 100     |                                                                                                                                                        |  |  |  |  |
| h                                                 | altezza totale della sezione                                            | ст              | 375     |                                                                                                                                                        |  |  |  |  |
| с                                                 | distanza asse barre dal lembo teso                                      | ст              | 8.5     |                                                                                                                                                        |  |  |  |  |
| d                                                 | altezza utile della sezione                                             | ст              | 366.5   | h - c                                                                                                                                                  |  |  |  |  |
| d*                                                |                                                                         | ст              | 329.85  | b 9.0                                                                                                                                                  |  |  |  |  |
| k                                                 |                                                                         |                 | 1.234   | min[1.0+√(20/d) , 2.0 ]                                                                                                                                |  |  |  |  |
| A <sub>sl</sub>                                   | area di armatura longitudinale tesa                                     | cm <sup>2</sup> | 153.1   |                                                                                                                                                        |  |  |  |  |
| ρΙ                                                | rapporto geometrico di armatura longitudinale tesa                      |                 | 0.0041  |                                                                                                                                                        |  |  |  |  |
| A <sub>sw</sub>                                   | area di armatura a taglio disposta                                      | cm <sup>2</sup> | 6.28    |                                                                                                                                                        |  |  |  |  |
| s                                                 | spaziatura staffe                                                       | ст              | 25      |                                                                                                                                                        |  |  |  |  |
| Controllo necessità di armatura a taglio          |                                                                         |                 |         |                                                                                                                                                        |  |  |  |  |
| V <sub>Rdc1</sub>                                 |                                                                         | kN              | 1277.80 | [0.18 · k · (100 · ρl · fck)^(1/3)] / γc · bw · d                                                                                                      |  |  |  |  |
| V <sub>Rdc2</sub>                                 |                                                                         | kN              | 994.21  | [ 0.035 · k^(3/2) · √(fck) ] · bw · d                                                                                                                  |  |  |  |  |
| V <sub>Rdc</sub>                                  | resistenza della sezione non armata a taglio                            | kN              | 1277.80 | max[ V <sub>Rdc1</sub> , V <sub>Rdc2</sub> ]                                                                                                           |  |  |  |  |
| V <sub>Ed</sub> / V <sub>Rdc</sub>                | è necessario prevedere l'armatura a taglio VRdc < V                     | /Ed             |         |                                                                                                                                                        |  |  |  |  |
| Controllo capacità massima della sezione a taalio |                                                                         |                 |         |                                                                                                                                                        |  |  |  |  |
| v                                                 | coefficiente di riduzione della resistenza del cls fessurato per taglio |                 | 0.5     |                                                                                                                                                        |  |  |  |  |
| α <sub>c</sub>                                    | coefficiente per effetti dello sforzo assiale di compressione           |                 | 1       |                                                                                                                                                        |  |  |  |  |
| α                                                 | inclinazione armature a taglio                                          | rad             | 1.571   | gradi 90                                                                                                                                               |  |  |  |  |
| $V_{Rd,max}$                                      | massima resistenza a taglio-compressione della sezione                  | kN              | 14953   | $1.0 \cdot v \cdot f_{cd}$ {cot(45)+tan(45)} $\cdot bw \cdot 0.9 \cdot d^*$                                                                            |  |  |  |  |
| V <sub>Ed</sub> / V <sub>Rd,max</sub>             | sezione sufficiente per la resistenza taglio                            |                 | 0.330   |                                                                                                                                                        |  |  |  |  |
| Calcolo de                                        | lla resistenza della sezione con armatura a taglia                      | ,               |         |                                                                                                                                                        |  |  |  |  |
| ω <sub>sw</sub>                                   | percentuale meccanica di armatura trasversale (per alfa=90°)            |                 | 0.05    | $(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$                                                                                                       |  |  |  |  |
| 9, <sub>calc</sub>                                | valore di teta calcolato                                                | rad             | 0.336   | = $19.22^{\circ}$ cot ( $\vartheta_{calc}$ ) = 2.87                                                                                                    |  |  |  |  |
| 9. <sub>min</sub>                                 | valore minimo di teta                                                   | rad             | 0.785   | $= 45^{\circ}$ cot (9 <sub>.min</sub> ) = 1.00                                                                                                         |  |  |  |  |
| 9.max                                             | valore massimo di teta                                                  | rad             | 0.381   | $= 21.8^{\circ}$ $\cot(9_{max}) = 2.50$                                                                                                                |  |  |  |  |
| 9                                                 | valore di calcolo di teta                                               | rad             | 0.381   | = 21.8° cot (9) = 2.50                                                                                                                                 |  |  |  |  |
| V <sub>Rsd</sub>                                  | resistenza a taglio trazione                                            | kN              | 8106    | $A_{sw} \cdot f_{yd} \cdot d^*  /  s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$                                                           |  |  |  |  |
| V <sub>Rcd</sub>                                  | resistenza a taglio compressione                                        | kN              | 10313   | $\mathbf{b} \cdot \mathbf{d}^* = \mathbf{a}_{\mathbf{c}} \cdot \mathbf{n} \cdot \mathbf{f}_{cd} \cdot (\cot(\alpha) + \cot(9)) / (1 + \cot^2(\alpha))$ |  |  |  |  |
| V <sub>Rd</sub>                                   | resistenza a taglio della sezione                                       | kN              | 8106    |                                                                                                                                                        |  |  |  |  |
| V <sub>Ed</sub> /V <sub>Rd</sub>                  | coefficiente di sfruttamento della capacità di resistenza a taglio      |                 | 0.609   |                                                                                                                                                        |  |  |  |  |
|                                                   |                                                                         |                 |         |                                                                                                                                                        |  |  |  |  |



Stantec

GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

70 di/of 74

### **Engineering & Construction**

Nelle altre zone si è verificato che è sufficiente una spaziatura inferiore.

Nel tratto centrale del basamento è possibile aumentare il passo a 50 cm, come mostrato nella verifica sottostante, nella sezione posta a 470 cm dal centro del basamento.

| DETERMINA                                         | ZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C                         | .A N     | TC2018  |                                                                                                   |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------|----------|---------|---------------------------------------------------------------------------------------------------|--|--|--|
| Caratteristi                                      | che dei materiali                                                       |          |         |                                                                                                   |  |  |  |
| f <sub>ck</sub>                                   |                                                                         | MPa      | 32      |                                                                                                   |  |  |  |
| $\alpha_{cc}$                                     |                                                                         |          | 0.85    |                                                                                                   |  |  |  |
| γc                                                |                                                                         |          | 1.5     |                                                                                                   |  |  |  |
| f <sub>cd</sub>                                   | resistenza di calcolo a compressione del calcestruzzo                   | MPa      | 18.13   | $a_{cc} \cdot f_{cd} / g_c$                                                                       |  |  |  |
| γs                                                |                                                                         |          | 1.15    |                                                                                                   |  |  |  |
| <b>f</b> <sub>y,wd</sub>                          |                                                                         | MPa      | 391.30  | f <sub>yd</sub> / g <sub>s</sub>                                                                  |  |  |  |
| Caratteristi                                      | che della sezione resistente                                            |          |         |                                                                                                   |  |  |  |
| $V_{Ed}$                                          | taglio sollecitante di progetto                                         | kΝ       | 2762    |                                                                                                   |  |  |  |
| b <sub>w</sub>                                    | larghezza della sezione                                                 | ст       | 100     |                                                                                                   |  |  |  |
| h                                                 | altezza totale della sezione                                            | ст       | 335     |                                                                                                   |  |  |  |
| с                                                 | distanza asse barre dal lembo teso                                      | ст       | 8.5     |                                                                                                   |  |  |  |
| d                                                 | altezza utile della sezione                                             | ст       | 326.5   | h - c                                                                                             |  |  |  |
| d*                                                |                                                                         | ст       | 293.85  | 0.9 d                                                                                             |  |  |  |
| k                                                 |                                                                         | 2        | 1.247   | min[1.0+√(20/d) , 2.0 ]                                                                           |  |  |  |
| A <sub>sl</sub>                                   | area di armatura longitudinale tesa                                     | cm²      | 98      |                                                                                                   |  |  |  |
| ρΙ                                                | rapporto geometrico di armatura longitudinale tesa                      |          | 0.0029  |                                                                                                   |  |  |  |
| A <sub>sw</sub>                                   | area di armatura a taglio disposta                                      | cm²      | 6.28    |                                                                                                   |  |  |  |
| s                                                 | spaziatura staffe                                                       | ст       | 50      |                                                                                                   |  |  |  |
| Controllo n                                       | ecessità di armatura a taglio                                           |          |         |                                                                                                   |  |  |  |
| V <sub>Rdc1</sub>                                 |                                                                         | kΝ       | 1030.11 | [ 0.18 · k · (100 · ρl · fck)^(1/3) ] / γc · bw · d                                               |  |  |  |
| V <sub>Rdc2</sub>                                 |                                                                         | kΝ       | 900.71  | [ 0.035 · k^(3/2) · √(fck) ] · bw · d                                                             |  |  |  |
| V <sub>Rdc</sub>                                  | resistenza della sezione non armata a taglio                            | kΝ       | 1030.11 | max[ V <sub>Rdc1</sub> , V <sub>Rdc2</sub> ]                                                      |  |  |  |
| $V_{Ed}$ / $V_{Rdc}$                              | è necessario prevedere l'armatura a taglio VRdc < \                     | /Ed      |         |                                                                                                   |  |  |  |
| Controllo capacità massima della sezione a taglio |                                                                         |          |         |                                                                                                   |  |  |  |
| ν                                                 | coefficiente di riduzione della resistenza del cls fessurato per taglio |          | 0.5     |                                                                                                   |  |  |  |
| α <sub>c</sub>                                    | coefficiente per effetti dello sforzo assiale di compressione           |          | 1       |                                                                                                   |  |  |  |
| α                                                 | inclinazione armature a taglio                                          | rad      | 1.571   | gradi 90                                                                                          |  |  |  |
| $V_{Rd,max}$                                      | massima resistenza a taglio-compressione della sezione                  | kΝ       | 13321   | $1.0 \cdot v \cdot f_{cd}$ (cot(45)+tan(45)} $\cdot$ bw $\cdot 0.9 \cdot d^*$                     |  |  |  |
| V <sub>Ed</sub> / V <sub>Rd,max</sub>             | sezione sufficiente per la resistenza taglio                            |          | 0.207   |                                                                                                   |  |  |  |
| Calcolo de                                        | lla resistenza della sezione con armatura a taglic                      | <b>b</b> |         |                                                                                                   |  |  |  |
| ω <sub>sw</sub>                                   | percentuale meccanica di armatura trasversale (per alfa=90°)            |          | 0.03    | $(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$                                                  |  |  |  |
| 9, <sub>calc</sub>                                | valore di teta calcolato                                                | rad      | 0.235   | = $13.46^{\circ}$ cot ( $\vartheta_{,calc}$ ) = 4.18                                              |  |  |  |
| 9, <sub>min</sub>                                 | valore minimo di teta                                                   | rad      | 0.785   | = 45° cot (9 <sub>,min</sub> ) = 1.00                                                             |  |  |  |
| 9 <sub>,max</sub>                                 | valore massimo di teta                                                  | rad      | 0.381   | = $21.8^{\circ}$ cot ( $9_{max}$ ) = 2.50                                                         |  |  |  |
| 9                                                 | valore di calcolo di teta                                               | rad      | 0.381   | = 21.8° cot (9) = 2.50                                                                            |  |  |  |
| V <sub>Rsd</sub>                                  | resistenza a taglio trazione                                            | kN       | 3611    | $A_{sw} \cdot f_{yd} \cdot d^*  /  s \cdot (cot(\alpha) + cot(\vartheta)) \cdot sen(\alpha)$      |  |  |  |
| V <sub>Rcd</sub>                                  | resistenza a taglio compressione                                        | kN       | 9187    | $b \cdot d^* a_c \cdot n \cdot f_{cd} \cdot (\cot(\alpha) + \cot(\theta)) / (1 + \cot^2(\alpha))$ |  |  |  |
| V <sub>Rd</sub>                                   | resistenza a taglio della sezione                                       | kN       | 3611    |                                                                                                   |  |  |  |
| $V_{Ed}/V_{Rd}$                                   | coefficiente di sfruttamento della capacità di resistenza a taglio      |          | 0.765   |                                                                                                   |  |  |  |



GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

71 di/of 74

## **Engineering & Construction**

Nella zona più periferica è possibile aumentare il passo fino a 1 m come evidenziato nella verifica sottostante, per una sezione a 1130 cm dal centro del basamento.

Stantec

| DETERMINAZIONE DELLA RESISTENZA A TAGLIO DI SEZIONI IN C.A NTC2018 |                                                                         |     |        |                                                                                                         |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------|-----|--------|---------------------------------------------------------------------------------------------------------|--|--|
| Caratteristic                                                      | che dei materiali                                                       |     |        |                                                                                                         |  |  |
| f <sub>ck</sub>                                                    |                                                                         | MPa | 32     |                                                                                                         |  |  |
| $\alpha_{cc}$                                                      |                                                                         |     | 0.85   |                                                                                                         |  |  |
| Ŷc                                                                 |                                                                         |     | 1.5    |                                                                                                         |  |  |
| f <sub>cd</sub>                                                    | resistenza di calcolo a compressione del calcestruzzo                   | MPa | 18.13  | $a_{cc} \cdot f_{cd} / g_c$                                                                             |  |  |
| γs                                                                 |                                                                         |     | 1.15   |                                                                                                         |  |  |
| f <sub>y,wd</sub>                                                  |                                                                         | MPa | 391.30 | f <sub>yd</sub> / g <sub>s</sub>                                                                        |  |  |
| Caratteristic                                                      | che della sezione resistente                                            |     |        |                                                                                                         |  |  |
| V <sub>Ed</sub>                                                    | taglio sollecitante di progetto                                         | kN  | 797    |                                                                                                         |  |  |
| b <sub>w</sub>                                                     | larghezza della sezione                                                 | ст  | 100    |                                                                                                         |  |  |
| h                                                                  | altezza totale della sezione                                            | ст  | 175    |                                                                                                         |  |  |
| с                                                                  | distanza asse barre dal lembo teso                                      | ст  | 8.5    |                                                                                                         |  |  |
| d                                                                  | altezza utile della sezione                                             | ст  | 166.5  | h - c                                                                                                   |  |  |
| d*                                                                 |                                                                         | ст  | 149.85 | 0.9 d                                                                                                   |  |  |
| K                                                                  |                                                                         | 2   | 1.347  | min[1.0+√(20/d) , 2.0 ]                                                                                 |  |  |
| A <sub>sl</sub>                                                    | area di armatura longitudinale tesa                                     | cm* | 40.8   |                                                                                                         |  |  |
| ρι                                                                 | rapporto geometrico di armatura longitudinale tesa                      | 2   | 0.0023 |                                                                                                         |  |  |
| A <sub>sw</sub>                                                    | area di armatura a taglio disposta                                      | cm⁻ | 6.28   |                                                                                                         |  |  |
| S                                                                  | spaziatura statte                                                       | ст  | 100    |                                                                                                         |  |  |
| Controllo ne                                                       | ecessità di armatura a taglio                                           |     |        |                                                                                                         |  |  |
| V <sub>Rdc1</sub>                                                  |                                                                         | kN  | 525.72 | [ 0.18 · k · (100 · ρl · fck)^(1/3) ] / γc · bw · d                                                     |  |  |
| V <sub>Rdc2</sub>                                                  |                                                                         | kN  | 515.12 | [ 0.035 · k^(3/2) · √(fck) ] · bw · d                                                                   |  |  |
| V <sub>Rdc</sub>                                                   | resistenza della sezione non armata a taglio                            | kN  | 525.72 | max[ V <sub>Rdc1</sub> , V <sub>Rdc2</sub> ]                                                            |  |  |
| V <sub>Ed</sub> / V <sub>Rdc</sub>                                 | e necessario prevedere l'armatura a taglio VRdc < VEd                   |     |        |                                                                                                         |  |  |
| Controllo capacità massima della sezione a taglio                  |                                                                         |     |        |                                                                                                         |  |  |
| ν                                                                  | coefficiente di riduzione della resistenza del cls fessurato per taglio |     | 0.5    |                                                                                                         |  |  |
| α <sub>c</sub>                                                     | coefficiente per effetti dello sforzo assiale di compressione           |     | 1      |                                                                                                         |  |  |
| α                                                                  | inclinazione armature a taglio                                          | rad | 1.571  | gradi 90                                                                                                |  |  |
| V <sub>Rd,max</sub>                                                | massima resistenza a taglio-compressione della sezione                  | kN  | 6793   | 1.0 · ∨ · f <sub>cd</sub> /{cot(45)+tan(45)} · bw · 0.9 · d*                                            |  |  |
| V <sub>Ed</sub> / V <sub>Rd,max</sub>                              | sezione sufficiente per la resistenza taglio                            |     | 0.117  |                                                                                                         |  |  |
| Calcolo de                                                         | lla resistenza della sezione con armatura a taglio                      | )   |        |                                                                                                         |  |  |
| ω <sub>sw</sub>                                                    | percentuale meccanica di armatura trasversale (per alfa=90°)            |     | 0.01   | $(A_{sw} \cdot f_{yd})/(b \cdot s \cdot f_{cd})$                                                        |  |  |
| 9, <sub>calc</sub>                                                 | valore di teta calcolato                                                | rad | 0.165  | = $9.47^{\circ}$ cot ( $\theta_{,calc}$ ) = 5.99                                                        |  |  |
| <del>Գ</del> ,min                                                  | valore minimo di teta                                                   | rad | 0.785  | = 45° cot (9 <sub>,min</sub> ) = 1.00                                                                   |  |  |
| 9, <sub>max</sub>                                                  | valore massimo di teta                                                  | rad | 0.381  | = 21.8° $\cot(\theta_{,max}) = 2.50$                                                                    |  |  |
| 9                                                                  | valore di calcolo di teta                                               | rad | 0.381  | = $21.8^{\circ}$ cot (9) = 2.50                                                                         |  |  |
| V <sub>Rsd</sub>                                                   | resistenza a taglio trazione                                            | kN  | 921    | $A_{sw} \cdot f_{yd} \cdot d^*  /  s \cdot (cot(\alpha) \! + \! cot(\vartheta)) \cdot sen(\alpha)$      |  |  |
| V <sub>Rcd</sub>                                                   | resistenza a taglio compressione                                        | kN  | 4685   | $b \cdot d^*  a_{c} \cdot n \cdot f_{cd} \cdot  (cot(\alpha) + cot(\vartheta))  /  (1 + cot^2(\alpha))$ |  |  |
| V <sub>Rd</sub>                                                    | resistenza a taglio della sezione                                       | kN  | 921    |                                                                                                         |  |  |
| $V_{Ed}/V_{Rd}$                                                    | coefficiente di sfruttamento della capacità di resistenza a taglio      |     | 0.866  |                                                                                                         |  |  |



**Engineering & Construction** 

GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

72 di/of 74

### 9.3.4. Verifica a punzonamento platea

Stantec

La verifica di punzonamento viene eseguita considerando la reazione massima (combinazione "SLUenv") misurata alla base del palo meno il peso proprio del palo, sulla base delle indicazioni dell'EC2. Cautelativamente il coefficiente  $\beta$  viene adottato pari a 1.5, come per il caso di elementi posti all'angolo di piastre.

 $V_{Ed} = 6321 - 1045 = 5276 \text{ kN}$ 

|                        | E        | lemento:            | Basamento pala eolica |                                                                           |                                                                                |                      |          |  |  |
|------------------------|----------|---------------------|-----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|----------|--|--|
| $V_{Ed,g}$             |          | daN                 | 527,600               | Forza globale di taglio-punzonamento di progetto                          |                                                                                |                      |          |  |  |
| $\Delta V_{\text{Ed}}$ |          | daN                 | 0                     | Forza contraria a <b>V</b>                                                | Forza contraria a <b>V</b> <sub>Ed.g</sub> (eventuale, nel caso di fondazioni) |                      |          |  |  |
| β                      |          | n.o puro            | 1.50                  | coefficiente amplificativo della forza, in caso di eccentricità di carico |                                                                                |                      |          |  |  |
| н                      |          | cm                  | 177.00                | Altezze totale della                                                      | piastra                                                                        |                      |          |  |  |
| dy                     |          | cm                  | 168.00                | altezze utili relative                                                    | alle armature pos                                                              | te nelle due dir. or | togonali |  |  |
| dz                     |          | cm                  | 165.00                | altezze utili relative alle armature poste nelle due dir. ortogonali      |                                                                                |                      |          |  |  |
| r <sub>ly</sub>        |          | %                   | 0.21%                 | Rapporto % dell'armat. tesa in direz. "y" rispetto area sezione           |                                                                                |                      |          |  |  |
| <b>r</b> <sub>Iz</sub> |          | %                   | 0.09%                 | Rapporto % dell'armat. tesa in direz. "z" rispetto area sezione           |                                                                                |                      |          |  |  |
| Rck                    |          | daN/cm <sup>2</sup> | 400.0                 | Resistenza caratteristica cubica del calcestruzzo della lastra            |                                                                                |                      | lastra   |  |  |
|                        | Pilastro | Sezione             | b) Circolare          |                                                                           | С                                                                              | sim bolo             |          |  |  |
|                        | Pilastro | Posizione           | d) di Bordo co        | on sporto                                                                 | BS                                                                             | sim bolo             |          |  |  |
|                        | Fori     | Vicinanza           | a) No                 |                                                                           | N                                                                              | sim bolo             |          |  |  |
| Φ                      |          | cm                  | 120.00                | diametro pilastro c                                                       | ircolare                                                                       |                      |          |  |  |

#### Dati dedotti dai materiali e dai dati di input

| <b>f</b> <sub>ck</sub>                                  | daN/cm <sup>2</sup> | 332.0    | Resistenza caratteristica cilindrica del calcestruzzo                              |
|---------------------------------------------------------|---------------------|----------|------------------------------------------------------------------------------------|
| <b>f</b> <sub>cd</sub>                                  | daN/cm <sup>2</sup> | 188.1    | Resistenza di calcolo a compressione del calcestruzzo                              |
| $\mathbf{f} = \mathbf{f}_{ck}^{1/2} / \mathbf{f}_{yk}$  | cm/daN1/2           | 0.004049 | Parte dipendente dai materiali nella formula (9.11)                                |
| $d = d_{eff}$                                           | cm                  | 166.50   | Altezza utile della sezione                                                        |
| $\mathbf{r}_{iyz} = RADQ(\rho iy \times \rho iz)$       | n.o puro            | 0.00140  | Radice quadrata del prodotto delle percentuali di armatura                         |
| <b>Γ</b> := min (0.02 ; <b>ρ</b> lyz)                   | n.o puro            | 0.00140  | Coefficiente della formula (6.47): deve essere comunque <= 0.02                    |
| $d_{u1} = 2 \times d$                                   | cm                  | 333.00   | Distanza di <b>u</b> <sub>1</sub> dal filo pilastro                                |
| $\mathbf{d}_{est} = \mathbf{k}_{out} \times \mathbf{d}$ | cm                  | 249.75   | Distanza da u <sub>out</sub> dell'armatura più lontana dal filo pilastro           |
| d <sub>min</sub> = 0.3 x d                              | cm                  | 49.95    | Distanza dal filo pilastro dell'armatura più vicina (cuciture verticali)           |
| d <sub>rad,max</sub> = 0.75 x d                         | cm                  | 124.88   | Distanza radiale massima fra cuciture                                              |
| d <sub>cir,max,i</sub> = 1.5 x d                        | cm                  | 249.75   | Distanza circonferenziale massima per cuciture interne a $\mathbf{u}_{\text{out}}$ |
| d <sub>cir,max,e</sub> = 2.0 x d                        | cm                  | 333.00   | Distanza circonferenziale massima per cuciture esterne a $\mathbf{u}_{\text{out}}$ |

#### Dati dedotti: forze, tensioni, perimetro di verifica

| $\mathbf{V}_{Ed} = \mathbf{\beta} \times (\mathbf{V}_{Ed,g} - \mathbf{\Delta} \mathbf{V}_{Ed})$            | daN                 | 791,400 | Forza effettiva di taglio-punzonamento di progetto                                            |
|------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------------------------------------------------------------------------------------------|
| $\tau_{\text{Rd,max}} = \mathbf{v}_{\text{V}} \mathbf{x} \mathbf{v} \mathbf{x} \mathbf{f}_{\text{cd}}$     | daN/cm <sup>2</sup> | 37.63   | Tensione di taglio-punzonamento massima assoluta                                              |
| <b>k</b> = min (2 ; 1 + (20/ <b>d</b> ) <sup>1/2</sup> )                                                   | n.o puro            | 1.347   | Coefficiente della formula (6.47): deve essere comunque <= 2.00                               |
| $\tau_{a} = \mathbf{C}_{Rd,c} \times \mathbf{k} \times (100 \times \rho_{l} \times \mathbf{f}_{ck})^{1/3}$ | daN/cm <sup>2</sup> | 2.698   | Tensione massima ammessa senza armatura da confrontare con $\tau_{\text{min}}$                |
| $\tau_{\rm min} = 0.1107 \text{ x } \text{k}^{3/2} \text{ x fck}^{1/2}$                                    | daN/cm <sup>2</sup> | 3.152   | Tensione massima ammessa senza armatura: valore minimo comunque                               |
| $\mathbf{\tau}_{Rd,c} = \max{(\mathbf{\tau}_{a}; \mathbf{\tau}_{min})}$                                    | daN/cm <sup>2</sup> | 3.152   | Tensione massima ammessa senza armatura (max fra ${m 	au}_{\sf min}$ e ${m 	au}_{\sf Rd,c}$ ) |
| $\mathbf{u}_{out} = \mathbf{V}_{Ed} / (\mathbf{\tau}_{Rd,c} \times \mathbf{d})$                            | cm                  | 1,508.0 | Perimetro di verifica oltre il quale non serve armatura                                       |
|                                                                                                            |                     |         |                                                                                               |
|                                                                                                            |                     |         |                                                                                               |

| Perimetro di filo pilastro: u <sub>0</sub>    | cm | 377.0   | Perimetro di verifica di filo pilastro |
|-----------------------------------------------|----|---------|----------------------------------------|
| Perimetro di verifica di base: u <sub>1</sub> | cm | 1,554.6 | Perimetro di verifica di base          |

#### Verifica alla faccia del pilastro; controllo della correttezza di materiali e dimensioni

| $\boldsymbol{\tau}_{Ed} = \boldsymbol{\beta} \times \boldsymbol{V}_{Ed,g} / (\boldsymbol{u}_0 \times \boldsymbol{d})$ | daN/cm <sup>2</sup> | 12.61 | Tensione di progetto in corrispondenza della faccia del pilastro |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|-------|------------------------------------------------------------------|--|--|--|
| $\mathbf{r} = \mathbf{\tau}_{Rd,max} / \mathbf{\tau}_{Ed}$                                                            | n.o puro            | 2.984 | materiali e geometria idonei                                     |  |  |  |
| Verifica al perimetro di base; controllo della necessità di armatura                                                  |                     |       |                                                                  |  |  |  |
| $\boldsymbol{\tau}_{Ed,1} = \mathbf{V}_{Ed} / (\mathbf{u}_1 \mathbf{x} \mathbf{d})$                                   | daN/cm <sup>2</sup> | 3.057 | Tensione di progetto in corrispondenza della sezione di base     |  |  |  |
| $\mathbf{r} = \mathbf{\tau}_{\mathrm{Rd,c}} / \mathbf{\tau}_{\mathrm{Ed,1}}$                                          | n.o puro            | 1.031 | non è necessaria l'armatura                                      |  |  |  |


**Engineering & Construction** 



GRE CODE GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

73 di/of 74

## 9.3.5. Verifiche tensionali in esercizio

Si esegue il controllo delle tensioni sulla sezione del colletto, più sollecitata, e si verifica che siano compatibili con i seguenti limiti imposti dalle NTC2018.

Sono stati ottenuti i seguenti risultati, che verificano le sezioni analizzate.

|              | Normativa                    | Valore limite                    | Valore progetto   |                            |
|--------------|------------------------------|----------------------------------|-------------------|----------------------------|
| Combinazione |                              |                                  | Direzione radiale | Direzione circonferenziale |
|              |                              |                                  | Bottom            |                            |
| SLEr         | $\sigma_s \le 0.8 * f_{yk}$  | $\sigma_s \leq 360 \text{ MPa}$  | 338.1 MPa         | 302.1 MPa                  |
|              | $\sigma_c \le 0.6 * f_{ck}$  | $\sigma_c \leq 19.2 \text{ MPa}$ | 8.6 MPa           | 5.4 MPa                    |
|              |                              |                                  | Тор               |                            |
|              | $\sigma_s \le 0.8 * f_{yk}$  | $\sigma_s \leq 360 \text{ MPa}$  | 143.6 MPa         | 55.2 MPa                   |
|              | $\sigma_c \le 0.6 * f_{ck}$  | $\sigma_c \leq 19.2 \text{ MPa}$ | 1.9 MPa           | 0.6 MPa                    |
|              |                              |                                  | Bottom            |                            |
| SLEqp        | $\sigma_c \le 0.45 * f_{ck}$ | $\sigma_c \leq 14.4 \text{ MPa}$ | 7.3 MPa           | 5 MPa                      |
|              |                              |                                  | Тор               |                            |
|              | $\sigma_c \le 0.45 * f_{ck}$ | $\sigma_c \leq 14.4 \text{ MPa}$ | 0.4 MPa           | 0.2 MPa                    |

## 9.3.6. Calcolo rigidezza alla rotazione

Ai fini del calcolo della rigidezza alla rotazione si sono presi in considerazione i nodi agli estremi della fondazione (16 e 336) indicati nell'immagine seguente e distanti 2500 cm.



Figure 9-37 – Identificazione nodi



GRE CODE

GRE.EEC.C.25.IT.W.17279.00.097.00

PAGE

74 di/of 74

**Engineering & Construction** 

Il documento "Design and construction guidelines for the foundations of wind turbine generators", al paragrafo 9.1, specifica di verificare la rigidezza del basamento allo Stato Limite di Esercizio. Si considerano quindi gli spostamenti dei nodi precedentemente indicati, nelle combinazioni "SLEr" e "SLEqp".

) Stantec

La seguente tabella riassume i dati di input ed i risultati relativi al calcolo della rigidezza rotazionale del basamento:

|                               | Combinazione SLEr  | Combinazione SLEqp |
|-------------------------------|--------------------|--------------------|
| Spostamento massimo (Nodo 16) | 1.94 cm            | 1.75 cm            |
| Spostamento minimo (Nodo 336) | 0.431 cm           | 0.62 cm            |
| Differenza                    | 1.509 cm           | 1.13 cm            |
| Angolo                        | 0.0006036 rad      | 0.000452 rad       |
| Momento flettente applicato   | 186812500 Nm       | 139551800 Nm       |
| Rigidezza rotazionale         | 3.09497E+11 Nm/rad | 3.08743E+11 Nm/rad |

La rigidezza alla rotazione, calcolata come (M/  $\sigma$ ) è superiore per entrambe le combinazioni di calcolo, al valore minimo indicato nella specifica fornita dal produttore della turbina (1.5E+11 Nm/rad) e riportata nell'immagine sottostante.

| WTG                                                      | SG 6.0-170 T135-50A |  |
|----------------------------------------------------------|---------------------|--|
| Minimum rotational stiffness of the foundation           | 1.5E+11 Nm/rad      |  |
| Table 2 SG 6.0-170 T135-50A Minimum rotational stiffness |                     |  |