

PROGETTO DEFINITIVO

Impianto di produzione di energia elettrica da fonte eolica "Del Giudice" di potenza in immissione pari a 50.4 MW e relative opere connesse da realizzarsi nei comuni di Santa Margherita di Belice, Sambuca di Sicilia, Menfi (AG) e Contessa Entellina (PA)

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

F0577BR08A

Progettazione

F4 ingegneria srl

Via Di Giura - Centro direzionale, 85100 Potenza Tel: +39 0971 1944797 - Fax: +39 0971 55452 www.f4ingegneria.it - f4ingegneria@pec.it

> Il Direttore Tecnico (ing. Giovanni Di Santo

Gruppo di lavoro

Dott. For. Luigi ZUCCARO Dott. For. Francesco NIGRO

Ing. Alessandro Carmine DE PAOLA

Ing. Federica COLANGELO

Ing. Mariagrazia LOVALLO

Ing. Gerardo Giuseppe SCAVONE

Ing. jr. Flavio Gerardo TRIANI Dott. Ing. Daniele GERARDI Ing. Manuela NARDOZZA

Società certificata secondo le norme UNI-EN ISO 9001:2015 e UNI-EN ISO 14001:2015 per l'erogazione di servizi di ingegneria nei settori: civile, idraulica, acustica, energia, ambiente (settore IAF: 34).

Consulenze specialistiche

Committente

RH Sambuca Wind S.r.l.

Via dei Condotti 11 00187 - Roma (RM)

Data	Descrizione	Redatto	Verificato	Approvato
Ottobre 2023	Prima emissione	DGE	GMA	GDS

File sorgente: F0577BR08A - RS06REL0007A0 - Studio sugli effetti dello shadow flickering.docx

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

Sommario

1	Premessa	2
2	Informazioni essenziali	3
3	Il fenomeno dello shadow flickering	4
4	Individuazione dei ricettori	7
5	Modelli di calcolo	10
6	Risultati	13

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

1 Premessa

La presente relazione riporta i criteri di valutazione ed i risultati relativi allo studio del fenomeno dello shadow flickering, per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica, denominato "Del Giudice", da realizzarsi nei territori comunali di Santa Margherita di Belice, Sambuca di Sicilia, Menfi e Contessa Entellina nella provincia di Agrigento e Palermo, presentato dalla **società RH Sambuca Wind S.r.l.** con sede in Via dei Condotti, 11, 00187 – Roma (RM), in qualità di proponente.

Caratteristiche della fonte utilizzata

Nell'ambito del processo di progettazione di un impianto eolico e più in generale nelle fasi dello sviluppo del sito è necessario conoscere con una buona affidabilità la consistenza della risorsa eolica disponibile e quindi della sua produzione attesa. Ciò è garantito da idonee rilevazioni in sito delle grandezze di velocità e di direzione del vento per un periodo di alcuni anni.

Il parco eolico è costituito da 9 aerogeneratori di potenza unitaria pari a 5.6 MW, in accordo con la potenza di immissione da STMG. L'impianto è collegato in antenna 36kV, mediante elettrodotto interrato su una nuova stazione di trasformazione della RTN, come da soluzione tecnica minima generale STMG, codice pratica del preventivo di connessione 202300176.

Le valutazioni di producibilità sono state effettuate considerando il modello Siemens Gamesa SG170-Hh115m, HTot 200m o altro modello similare. Si può affermare che i risultati delle misurazioni della ventosità, pur considerando le tipiche incertezze di misura proprie delle apparecchiature utilizzate, che sono state opportunamente e cautelativamente stimate, indicano che l'entità della risorsa disponibile rientra tra quelle di interesse per la realizzazione di un impianto eolico.

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

2 Informazioni essenziali

Proponente	RH Sambuca Wind S.r.l.
Potenza singola WTG	5.6 MW
Numero aerogeneratori	9
Altezza hub max	115 m
Diametro rotore max	170 m
Altezza complessiva max	200 m
Area poligono impianto	518.4 ha

L'intervento proposto consiste nella realizzazione di un nuovo parco eolico, denominato "Del Giudice", localizzato nei territori comunali di Santa Margherita di Belice, Sambuca di Sicilia, Menfi e Contessa Entellina, in provincia di Agrigento e Palermo. L'impianto sarà composto da n. 9 aerogeneratori con la potenza complessiva in immissione di 50.4 MW, in accordo con quanto previsto nella STMG Terna ID 202300176. Le relative opere di connessione saranno ubicate nei Comuni di Santa Margherita di Belice, Sambuca di Sicilia, Menfi e Contessa Entellina.

Gli aerogeneratori che potranno essere installati sono delle seguenti tipologie: Siemens Gamesa SG170-HH115 m o altro modello similare.

Il progetto proposto ricade al punto 2 dell'elenco di cui all'allegato II alla Parte Seconda del d.lgs. n. 152/2006 e s.m.i., come modificato dal d.lgs. n. 104/2017, "impianti eolici per la produzione di energia elettrica sulla terraferma con potenza complessiva superiore a 30 MW", pertanto risulta soggetto al procedimento di Valutazione di Impatto Ambientale per il quale il Ministero dell'Ambiente e della Sicurezza energetica di concerto con il Ministero della Cultura, svolge il ruolo di autorità competente in materia.

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

3 II fenomeno dello shadow flickering

Gli aerogeneratori, al pari di tutte le altre strutture fortemente sviluppate in altezza, proiettano un'ombra sulle aree circostanti in presenza di irraggiamento solare diretto.

Lo shadow flickering (letteralmente ombreggiamento intermittente) è l'espressione comunemente impiegata per descrivere una fluttuazione periodica dell'intensità luminosa osservata. Tale effetto (stroboscopico) è causato dalla proiezione, su una generica superficie, dell'ombra indotta da oggetti in movimento. Nel caso specifico di un impianto eolico il fenomeno è generato dalla proiezione, al suolo o su un ricettore (abitazione), dell'ombra prodotta dalle pale degli aerogeneratori in rotazione allorquando il sole si trova alle loro spalle (cfr. figura successiva).

Il fenomeno, dal punto di vista di un potenziale ricettore, si traduce in una variazione alternata e ciclica di intensità luminosa che, a lungo andare, può provocare fastidio agli occupanti delle abitazioni le cui finestre risultano esposte al fenomeno stesso. Il fenomeno, ovviamente, risulta assente sia quando il sole è oscurato da nuvole o dalla nebbia, sia quando, in assenza di vento, le pale dell'aerogeneratore non sono in rotazione.

In particolare, le frequenze che possono provocare un senso di fastidio sono comprese tra i 2,5 ed i 20 Hz (Verkuijlen and Westra, 1984), e, l'effetto sugli individui è simile a quello che si sperimenterebbe in seguito alle variazioni di intensità luminosa di una lampada ad incandescenza a causa di continui sbalzi della tensione della rete di alimentazione elettrica.

I più recenti aerogeneratori tripala operano ad una velocità di rotazione di molto inferiore ai 35 giri al minuto, corrispondente ad una frequenza di passaggio delle pale sulla verticale inferiore a 1,75 Hz, minore, quindi, della frequenza critica di 2,5 Hz riportata in letteratura. Inoltre, i generatori di grande potenza (dal MW in su) raramente superano la velocità di rotazione di 15 giri al minuto, corrispondente a frequenze di passaggio delle pale ampiamente minori di quelle ritenute fastidiose per la maggioranza degli individui.

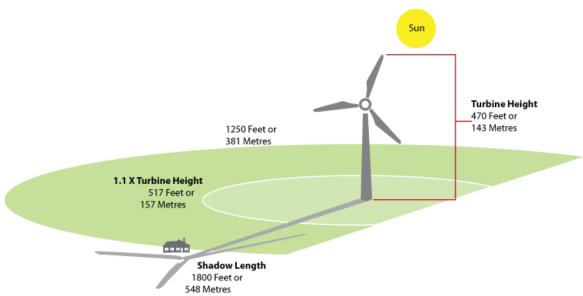


Figura 1: Rappresentazione schematica del fenomeno dello shadow flikering

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

Tale fenomeno, se sperimentato da un ricettore per periodi di tempo prolungati, può generare un disturbo, nelle seguenti condizioni:

- presenza di un livello sufficiente di intensità luminosa, ovvero in condizioni di cielo sereno sgombro da nubi ed in assenza di nebbia e con sole alto rispetto all'orizzonte;
- assenza di ostacoli sulla congiungente ricettore aerogeneratore: la presenza di vegetazione e/o edifici interposti all'ombra generata da questi ultimi annullerebbe il fenomeno. Quindi, condizione favorevole affinché il fenomeno in esame si verifichi, è quella rappresentata dall'orientamento perpendicolare delle finestre di un'abitazione rispetto alla linea congiungente il ricettore all'aerogeneratore in assenza di ostacoli fisici (alberi, altri edifici ecc...);
- orientamento perpendicolare del rotore rispetto alla congiungente sole ricettore: infatti, quando il piano del rotore è perpendicolare alla linea sole-ricettore, l'ombra proiettata dalle pale risulta muoversi all'interno di un "disco" che induce un effetto non trascurabile di shadow flickering; viceversa, nel caso in cui il piano del rotore risulti essere in linea con il sole, l'ombra proiettata risulterebbe molto assottigliata e di bassa intensità per cui l'effetto di shadow flickering sarebbe del tutto trascurabile.

Inoltre, affinché lo shadow flickering, abbia un'intensità non trascurabile è necessario che:

- le pale del rotore siano ovviamente in rotazione;
- l'aerogeneratore ed il potenziale ricettore non siano troppo distanti: infatti, le ombre proiettate in prossimità dell'aerogeneratore risultano di maggiore intensità rispetto a quelle proiettate ad una distanza crescente. Tale condizione deriva dal fatto che in presenza di un ricettore molto prossimo all'aerogeneratore, una porzione ampia di pala copre il disco solare così come osservato dal punto di vista del ricettore stesso, e, quindi, l'intensità del flicker risulta maggiormente percepibile. All'aumentare della distanza tra aerogeneratore e ricettore, le pale, durante il loro moto di rotazione, andranno a coprire una porzione sempre più piccola del disco solare, inducendo un effetto di flicker di minore intensità.

Alla luce di quanto sopra esposto, le relazioni spaziali tra un aerogeneratore ed un ricettore (abitazione), così come la direzione del vento risultano essere fattori chiave per la durata del fenomeno di shadow flicker. Per distanze dell'ordine dei 400-500 m, il fenomeno in esame potrebbe verificarsi all'alba oppure al tramonto, ovvero in quelle ore in cui le ombre risultano molto lunghe e la radiazione diretta è di minore intensità per effetto della piccola elevazione solare. Al di là di una certa distanza l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala ed il diametro apparente del sole diventa molto piccolo. Quindi, come è facile immaginare, la condizione più penalizzante corrisponde al caso in cui il piano del rotore risulti ortogonale alla congiungente ricettore – sole; infatti, in tali condizioni, l'ombra proiettata darà origine ad un cerchio di diametro pari a quello del rotore del generatore eolico.

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti con finestrature rivolte verso le ombre. In generale, l'area soggetta a shadow flicker non si estende oltre i 500÷1000 m dall'aerogeneratore e le zone a maggiore impatto ricadono entro i 500 m di distanza dalle macchine con durata del fenomeno dell'ordine delle 200 ore all'anno; il flickering, se presente, non supera in genere i 30/40 minuti di durata potenziale nell'arco di una giornata.

L'intensità del fenomeno è definita come la differenza di luminosità che si percepisce in presenza ed in assenza di flickering in una data posizione. In definitiva, si può affermare che:

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

- avendo le pale una forma rastremata con lo spessore che cresce verso il mozzo; il fenomeno risulterà tanto più intenso quanto maggiore sarà la porzione di disco solare coperta dalla pala stessa e quanto minore la distanza dal ricettore;
- l'intensità del flickering sarà minima quando l'ombra prodotta è generata all'estremità delle pale;
- maggiori distanze tra generatore e ricettore determinano ombre meno nette; in tal caso l'effetto flickering risulterà meno intenso e distinto.

La presente relazione ha lo scopo di stimare le aree potenzialmente interessate dal fenomeno in relazione agli aerogeneratori che costituiscono il parco eolico in oggetto.

Nello specifico, quando si valuta l'impatto da shadow flickering, lo stesso può essere realizzato attraverso l'analisi di due casi specifici:

- il worst case, in cui viene valutata la massima durata del fenomeno, ovvero quella astronomica, che corrisponde alle condizioni di cielo sempre sgombro da nubi, di rotore in movimento continuo e di perpendicolarità tra quest'ultimo ed il potenziale ricettore;
- il real case, in cui viene valutata la durata realistica del fenomeno, tenendo conto del soleggiamento effettivo dell'area e delle specifiche condizioni anemologiche che determinano la reale operabilità degli aerogenertori.

In Italia, dove questo fenomeno è meno importante rispetto alle latitudini più settentrionali (come ad esempio Danimarca, Germania, Olanda e Svezia), non esiste alcuna normativa regolamentare che regoli questo aspetto a livello nazionale.

La maggior parte dei paesi che hanno adottato specifiche linee guida o regolamenti in materia si sono basati sulle norme di riferimento tedesche e sui limiti di accettabilità da esse introdotti. In assenza di una specifica normativa o linea guida, nazioni quali Austria, Brasile, Canada, India, Giappone e Polonia, impiegano, come buona pratica, le indicazioni contenute nelle linee guida tedesche.

Nello specifico, tali linee guida sono state introdotte nel 2002 dal comitato statale per il controllo dell'inquinamento e, da allora, sono state adottate dalla maggior parte dei Lander e sono comunemente considerate buone pratiche nella valutazione dell'impatto prodotto da un parco eolico. In particolare, tali linee guida, stabiliscono che lo shadow flickering deve essere valutato:

- fino ad una distanza tale che il rotore copra il 20% del disco solare; a distanze superiori il fenomeno è considerato troppo diffuso da poter produrre fastidio;
- per angoli del sole sull'orizzonte superiori a 3 gradi; per angoli inferiori il fenomeno si ritiene schermato dalla presenza di edifici e/o vegetazione;
- ad un'altezza di 2 metri dal suolo;

I valori limite di accettabilità stabiliti dalle suddette linee guida sono un massimo di:

- 30 minuti al giorno;
- 30 ore all'anno.

4 Individuazione dei ricettori

Allo scopo di valutare l'impatto indotto sugli edifici da parte dell'impianto eolico in progetto, sono stati individuati i recettori potenzialmente sensibili presenti in un'areale corrispondente all'inviluppo delle aree buffer circolari di raggio pari a 10 volte il diametro del rotore (nel caso in esame 1700 m) del modello di aerogeneratore previsto in progetto, con centro coincidente con le postazioni delle WTG in oggetto; ciò in accordo con quanto stabilito dalla "National Policy Statement for Renewable Energy Infrastructure (EN-3)" (UK, 2011) (PPS22 per l'Inghilterra, TAN8 per il Galles), secondo la quale è improbabile che si verifichi un impatto significativo da shadow flickering a distanze superiori a dieci volte il diametro del rotore. Sebbene il fenomeno possa essere percepito anche all'esterno degli edifici, esso risulta evidente e potenzialmente fastidioso in quegli ambienti con finestrature localizzate lungo la direttrice soleaerogeneratore e, per tale ragione, si è considerato nella simulazione la presenza di finestre di altezza pari a 1,0 metri e larghezza pari ad 1 metro,il cui centro è posizionato ad una quota dal suolo di 1,5 metri e disposte su tutte le facciate degli edifici considerati, in direzione dei quattro punti cardinali (N-E-S-W).

Di seguito sono riportati i riferimenti geografici dei potenziali recettori individuati.

Tabella 1: Riepilogo dei ricettori

Disattors	Coordinate UTM-WGS 84 fuso 33		Camana	Catagoria catostala	
Ricettore	Est	Nord	Comune	Categoria catastale	
R01	329843,55	4168547,36	Sambuca di Sicilia	D01	
R02	330165,87	4168608,53	Sambuca di Sicilia	A03	
R03	328769,78	4168842,5	Santa Margherita di		
11.00			Belice	A07/C02/06	
R04	329179	4168957	Santa Margherita di		
			Belice	A04/C02	
R05	330923,86	4168715,08	Sambuca di Sicilia	A04	
R06	330821,92	4169053,91	Sambuca di Sicilia	A04/C02	
R07	331668,83	4169179,63	Sambuca di Sicilia	A03	
R08	331877,24	4168755,85	Sambuca di Sicilia	D10	
R09	329803,15	4169306,6	Santa Margherita di		
NO9			Belice	A04	
R10	330250,58	4170013,1	Sambuca di Sicilia	D10	
R11	331446,7	4169632,89	Sambuca di Sicilia	A02/C03	
R12	331802,48	4169510,21	Sambuca di Sicilia	A03/D01	
R13	332246,16	4169144,2	Sambuca di Sicilia	C03/D01	
R14	332272,37	4169116,04	Sambuca di Sicilia	D07	
R15	332219,95	4169034,49	Sambuca di Sicilia	C03	
R16	332316,06	4169103,42	Sambuca di Sicilia	D01	
R17	332348,1	4169091,77	Sambuca di Sicilia	D07	
R18	332360,2	4169031,52	Sambuca di Sicilia	C01/02/D07	
R19	332468,49	4169392,73	Sambuca di Sicilia	D01	
R20	332649,07	4169553,89	Sambuca di Sicilia	C01/D01	
R21	332632,56	4169451,96	Sambuca di Sicilia	A03/C02	
R22	332736,66	4169580,81	Sambuca di Sicilia	A02/D01	
R23	330658,61	4170658,78	Sambuca di Sicilia	D02	

	Coordinate UTM-WGS 84 fuso 33				
Ricettore	Est	Nord	Comune	Categoria catastale	
R24	328374,4	4171395,6	Santa Margherita di		
N24			Belice	D10	
R25	328103,55	4171880,39	Santa Margherita di		
			Belice	D08	
R26	328108,25	4171829,82	Santa Margherita di	D07	
	220706.24	4472042.26	Belice	D07	
R27	328786,34	4172042,36	Santa Margherita di Belice	A04	
	329990,9	4173799,67	Santa Margherita di	A04	
R28	323330,3	1173733,07	Belice	A04/C06	
R29	330935,94	4172715,81	Sambuca di Sicilia	A03	
R30	331321,91	4172315,97	Sambuca di Sicilia	A03	
R31	331305,41	4172306,26	Sambuca di Sicilia	A03	
R32	332481,11	4173470,31	Sambuca di Sicilia	A05	
D22	329416,31	4174017,3	Santa Margherita di		
R33			Belice	A07/C02/06	
R34	329418,07	4174193,59	Santa Margherita di		
11.54			Belice	A02/C02/C06	
R35	328645,27	4173296,53	Santa Margherita di		
			Belice	D01	
R36	332054,15	4172151,15	Sambuca di Sicilia	A03	
R37	331876,75	4171790,74	Sambuca di Sicilia	A03	
R38	331825,3	4171555,79	Sambuca di Sicilia	A03/C02	
R39	331845,2	4171536,37	Sambuca di Sicilia	A04	
R40	331613,17	4171885,39	Sambuca di Sicilia	A04	
R41	331482,1	4171815,49	Sambuca di Sicilia	A04/C02	
R42 R43	331696,66 331785,38	4171378,61 4171053,17	Sambuca di Sicilia Sambuca di Sicilia	A03 A03	
R44	332380,14	4170637,85	Sambuca di Sicilia	A03 A03	
R45	332499,55	4170347,57	Sambuca di Sicilia	A03	
R46	332297,64	4170399,73	Sambuca di Sicilia	C01	
R47	332780,13	4170476,69	Sambuca di Sicilia	A03	
R48	332769,45	4170368,92	Sambuca di Sicilia	A04	
R49	332744,21	4170318,44	Sambuca di Sicilia	A03/C02	
R50	330767,32	4171000,5	Sambuca di Sicilia	A03/C06	
R51	330387,95	4171027,16	Sambuca di Sicilia	D07	
	330181,34	4170991,89	Santa Margherita di		
R52	ĺ	,	Belice	D07	
R53	330803,13	4171547,8	Sambuca di Sicilia	A02/C02	
R54	331014,66	4172603,89	Sambuca di Sicilia	A04/C02	
R55			Santa Margherita di		
רכע	327900	4172018	Belice	A03/D01	
R56	327930		Santa Margherita di		
		4172023	Belice	A03/D01	
R57	330453	4168402	Sambuca di Sicilia	A03/C02	

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

Disattors	Coordinate UTI	M-WGS 84 fuso 33	Comuno	Catagoria catactala
Ricettore	Est	Nord	Comune	Categoria catastale
R58	330956	4168671	Sambuca di Sicilia	A03/C06
R59	332419	4169004	Sambuca di Sicilia	A02/D08/F04
R60	332380	4169002	Sambuca di Sicilia	A02/D08/F04
R61	332404	4169050	Sambuca di Sicilia	A02/D08/F04
R62	332489	4169074	Sambuca di Sicilia	A02/D01
R63	332800	4169315	Sambuca di Sicilia	A02/D01
R64	332742	4169574	Sambuca di Sicilia	A02/D01
R65	332940	4170230	Sambuca di Sicilia	A04
R66	332817	4170669	Sambuca di Sicilia	A03
R67	332784	4170848	Sambuca di Sicilia	A07
R68	332769	4170847	Sambuca di Sicilia	A07
R69	332796	4170932	Sambuca di Sicilia	A03/C02
R70	332672	4171101	Sambuca di Sicilia	A07
R71	332808	4171136	Sambuca di Sicilia	A02
R72	332804	4171383	Sambuca di Sicilia	A07

Di seguito si riportano le coordinate degli aerogeneratori di progetto e le specifiche tecniche.

Tabella 2: Riepilogo degli aerogeneratori

Nome	Coordinate UTM-WGS 84 fuso 33		Coordinate UTM-WGS 84 fuso 33 Coordinate Gauss Boaga		Diam (m)	Hhub (m)	Htot (m)
	Est	Nord	Est	Nord			
T01	329369	4169673	2349372	4169674	170	115	200
T02	329931	4169932	2349934	4169933	170	115	200
T03	331342	4170133	2351345	4170134	170	115	200
T04	329519	4170845	2349522	4170846	170	115	200
T05	331166	4170978	2351169	4170979	170	115	200
T06	329593	4171957	2349596	4171958	170	115	200
T07	329895	4172527	2349898	4172528	170	115	200
T08	330395	4173245	2350399	4173246	170	115	200
T09	331064	4173350	2351067	4173352	170	115	200

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

5 Modelli di calcolo

L'analisi dell'impatto da shadow flickering prodotto da un parco eolico è realizzata, generalmente, attraverso l'impiego di specifici applicativi che modellano il fenomeno in esame. I pacchetti software impiegati comunemente per la progettazione di impianti eolici contengono moduli specifici per il calcolo e l'analisi del fenomeno di flickering.

L'analisi si basa necessariamente sull'impiego di un modello digitale del terreno dell'area oggetto di progettazione, sulle posizioni (E, N, quota) degli aerogeneratori e dei potenziali ricettori sensibili, nonché sui dati che correlano la posizione del sole nell'arco dell'anno con le condizioni operative delle turbine nello stesso arco di tempo.

Al fine di calcolare la posizione relativa del sole nell'arco di un anno rispetto al parco eolico ed ai ricettori è necessario definire la longitudine, la latitudine ed il fuso orario dell'area interessata dal progetto (coordinate baricentriche del dominio di calcolo).

Nello specifico, nel presente studio, è stato impiegato il modulo shadow flickering del software WindFarm 5.0.1.2 (ReSoft Limited©). Esso consente di analizzare la posizione del sole nell'arco di un anno allo scopo di identificare i tempi in cui ogni aerogeneratore può proiettare ombre sulle finestre delle abitazioni vicine. In particolare, il modello permette di:

- calcolare il potenziale per le ombre intermittenti alle finestre delle abitazioni;
- mostrare un calendario grafico degli eventi di flickering;
- mostrare un elenco dettagliato di ciascun evento di ombreggiamento (ora di inizio, di fine, durata del fenomeno, aerogeneratore/i coinvolti ecc...);
- creare mappe di impatto potenziale che mostrano le ore d'ombra intermittente per l'intero parco eolico o per le singole macchine (curve di isodurata) nell'arco dell'anno.

Al di là di una certa distanza, come già osservato, l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala e il diametro apparente del disco solare diventa piccolo. Poiché non vi è un valore generalmente accettato per questa distanza massima, WindFarm permette di specificare il limite in metri o multipli del diametro o dell'altezza complessiva del generatore eolico.

Come accennato sopra, nel caso in esame, per quanto concerne le simulazioni effettuate, si è assunta una distanza massima di influenza del fenomeno in esame pari a 10 volte il diametro dell'aerogeneratore di progetto (1700 m) ed un angolo minimo di altezza del sole sull'orizzonte pari a 3°.

Tali assunzioni di input al modello risultano molto conservative in relazione a quanto espresso sopra in termini teorici in riferimento al fenomeno di shadow flickering.

In particolare, il modello numerico utilizzato, al pari degli altri presenti sul mercato, produce in output una mappa di impatto nel caso più penalizzante, il così detto "WORST CASE", corrispondente alle ore in cui il sole permane al di sopra dell'orizzonte nell'arco dell'anno (ore di luce, ca. 4380 h/a), indipendentemente dalla presenza o meno di nubi, le quali inficerebbero il fenomeno stesso dello shadow flickering per l'impossibilità che si generino ombre.

Nello specifico, il **worst case** è caratterizzato dalle seguenti ipotesi:

- assenza di qualsiasi ostacolo naturale o artificiale (alberature, muri di cinta, edifici, ecc...), ad eccezione dell'orografia dell'area, frapposto tra i ricettori e gli aerogeneratori, tale da limitare o eliminare completamente il fenomeno dello shadow flickering;
- aerogeneratori sempre operativi;
- presenza di sole durante tutto il periodo diurno dell'anno (assenza di nubi);

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

 perpendicolarità tra il piano del rotore e la congiungente sole-ricettore (worst case wind direction), ovvero l'aerogeneratore insegue il sole;

Ciò considerato si evince che i risultati ai quali si perverrà risultano estremamente cautelativi, trattandosi di una stima puramente teorica.

Quindi, allo scopo di pervenire a valori più realistici di impatto, prossimi al caso reale (**REAL CASE**), si dovrebbe considerare il valore di eliofania locale, ovvero il numero di ore di cielo libero da nubi durante il giorno, e quello delle ore stimate di funzionamento dell'impianto eolico nell'arco dell'anno. Per l'area in esame il valore medio di eliofania corrisponde a circa 2700 $h/a^{1/2}$, quindi, i risultati del calcolo possono, ragionevolmente, essere abbattuti del 38.36%, pari al complemento a 1 del rapporto 2700/4380 = 61.64%.

In altri termini, rispetto al **WORST CASE**, la probabilità di occorrenza del fenomeno di shadow flickering si riduce realisticamente, per l'area in esame, al 38.36% del valore calcolato dal modello impiegato e che corrisponde proprio alla probabilità che il disco solare risulti libero da nubi.

Inoltre, dal momento che il fenomeno in esame è prodotto dalla contemporanea presenza di sole libero da nubi (potenzialità di generare ombre) e di velocità del vento superiori a quella di cut-in (rotore in moto), i valori calcolati dal modello (considerando la condizione più penalizzante di rotore permanentemente in moto) possono essere ulteriormente abbattuti di una percentuale corrispondente alle ore annue di effettivo funzionamento macchina rispetto al totale delle ore in un anno (8760 h).

Per il parco eolico in esame le ore macchina sono state stimate pari al 60.13³%, delle ore anno, ovvero 5267 ore; in altri termini, la probabilità che il rotore di un aerogeneratore risulti in rotazione è appunto dell'ordine del 60.13 % (pari appunto al rapporto 5267/8760).

In definitiva, i valori calcolati dal modello numerico (ore di ombreggiamento intermittente all'anno presso i diversi ricettori individuati) possono, realisticamente, essere ridotti di un fattore pari al complemento a 1 del prodotto 61.64% x 60.13% =37.06 %, ovvero 62.94%, corrispondente alla probabilità composta di avere contemporaneamente l'occorrenza di rotore in rotazione (vento) e sole libero da nubi (ombre), fenomeni, questi ultimi, stocasticamente indipendenti per cui la probabilità composta risulta pari al prodotto delle singole probabilità.

¹ Pinna M. (1985). L'eliofania in Italia. Mem. Soc. Geogr. It., 39: pag. 23-58.

² Lavagnini A., Martorelli S., Coretti C. (1987). Radiazione solare in Italia. Mappe mensili della radiazione globale giornaliera. Roma, CNR, Ist. Fis. Atm.

³ Considerando il report anemologico disponibile ed il fatto che la wtg prevista in progetto è caratterizzata da una velocità di cut-in dell'ordine di 3 m/s, le ore macchina dovrebbero essere dell'ordine del 61.98% di quelle annuali. Tenendo conto dei valori di disponibilità dell'impianto e della rete rispettivamente pari a 98% e 99%, l'assunzione del 60.13% sembra molto ragionevole.

m/s	ore/anno	%	m/s	ore/anno	%
0.0	8760.0	100.00	0.5	8047.8	91.87
1.0	7626.7	87.06	1.5	7244.0	82.69
2.0	6759.2	77.16	2.5	6150.8	70.21
3.0	5429.7	61.98	3.5	4645.1	53.03
4.0	3867.8	44.15	4.5	3165.1	36.13
5.0	2552.2	29.13	5.5	2024.4	23.11
6.0	1560.5	17.81	6.5	1203.8	13.74
7.0	916.5	10.46	7.5	680.3	7.77
8.0	509.7	5.82	8.5	375.0	4.28
9.0	276.7	3.16	9.5	209.0	2.39
10.0	158.2	1.81	10.5	113.7	1.30
11.0	80.5	0.92	11.5	57.9	0.66
12.0	43.1	0.49	12.5	31.0	0.35
13.0	20.2	0.23	13.5	11.7	0.13
14.0	7.2	0.08	14.5	4.3	0.05
15.0	2.4	0.03	15.5	1.0	0.01
16.0	0.3	0.00	16.5	0.3	0.00
17.0	0.2	0.00	17.5	0.0	0.00
18.0	0.0	0.00	18.5	0.0	0.00
19.0	0.0	0.00	19.5	0.0	0.00
20.0	0.0	0.00	20.5	0.0	0.00
21.0	0.0	0.00	21.5	0.0	0.00
22.0	0.0	0.00	22.5	0.0	0.00
23.0	0.0	0.00	23.5	0.0	0.00
24.0	0.0	0.00	24.5	0.0	0.00
25.0	0.0	0.00	25.5	0.0	0.00
26.0	0.0	0.00	26.5	0.0	0.00
27.0	0.0	0.00	27.5	0.0	0.00
28.0	0.0	0.00	28.5	0.0	0.00
29.0	0.0	0.00	29.5	0.0	0.00
30.0	0.0	0.00	30.5	0.0	0.00
31.0	0.0	0.00	31.5	0.0	0.00

Figura 2: Curva di durata della velocità del vento

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

6 Risultati

Al fine di verificare la presenza e l'intensità del fenomeno dello shadow flickering indotto dal parco eolico in progetto sono state effettuate una serie di simulazioni con software dedicato che hanno tenuto conto:

- della latitudine locale, allo scopo di considerare il corretto diagramma solare;
- della geometria effettiva delle macchine previste, ed in particolare dell'altezza complessiva di macchina, intesa come somma tra l'altezza del mozzo ed il raggio del rotore;
- dell'orientamento del rotore rispetto al ricettore;
- della posizione del sole e quindi della proiezione dell'ombra rispetto ai recettori;
- dell'orografia locale, tramite un modello digitale del terreno (DTM) dell'area di installazione del parco;
- della posizione dei possibili ricettori (abitazioni), nonché degli aerogeneratori (layout di progetto).

Come sopra accennato, le simulazioni effettuate sono state condotte in condizioni conservative, assumendo il cielo completamente sgombro da nubi, foschia, ecc. e nessun ostacolo interposto tra i ricettori individuati e gli aerogeneratori previsti in progetto.

Il programma effettua il calcolo delle ore del giorno in cui si potrebbe avere l'effetto del flickering sul ricettore considerato, facendo la somma dei minuti in cui il fenomeno risulta presente. Effettua poi la somma teorica dei minuti di ciascun mese (worst case) che poi può essere ridotta in considerazione delle giornate soleggiate, dell'operatività effettiva dell'impianto eolico, della direzione del vento ecc... Inoltre, avendo calcolato geometricamente l'evoluzione delle ombre durante la giornata, è possibile identificare l'area in cui avviene il fenomeno dello shadow flickering per ciascun aerogeneratore. Si ottengono così i dati sinteticamente riportati nella seguente tabella.

La frequenza dello shadow flickering è correlata alla velocità di rotazione del rotore; le frequenze tipiche per le macchine considerate nel presente progetto sono dell'ordine di 0,55-0,75 Hz (corrispondenti a 11 - 15 rpm, circa un passaggio ogni 1,8-1,3 secondi). In termini di impatto sulla popolazione, tali frequenze sono innocue; basti pensare che le lampade stroboscopiche, largamente impiegate nelle discoteche, producono frequenze comprese tra 5 e 10 Hz.

La tabella seguente riassume i risultati dell'analisi eseguita secondo la metodologia di calcolo descritta nelle sezioni precedenti. Nello specifico, la tabella seguente riporta il numero di giorni e di ore in cui è fisicamente possibile che il fenomeno si presenti (caso peggiore) e il valore realistico atteso di ore nell'arco dell'anno in cui il fenomeno potrebbe presentarsi. A tal proposito è importante sottolineare che anche il caso realistico, valutato tenendo conto dell'eliofania locale nonché delle ore di funzionamento dell'impianto (rotore in rotazione), rappresenta comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al fatto che il piano di rotazione delle pale non sempre risulta ortogonale alla direttrice sole-ricettore e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole ed il singolo ricettore analizzato. In aggiunta, sempre per un'ipotesi a vantaggio di sicurezza, non si è tenuto conto della stagionalità del fenomeno.

Infatti, se si considera il grafico della frequenza relativa alla direzione di provenienza del vento (figura successiva) per la torre anemometrica del parco eolico in oggetto si evince che i risultati possono essere ridotti di almeno un ulteriore 64.9%, dal momento che la direzione prevalente del vento risulta

essere la congiungente N-S e NNE-SSO. Alla luce di ciò, le ore del fenomeno subiscono un ulteriore abbattimento, che le porta ad essere circa il 13% di quelle calcolate dal modello nell'ipotesi WORST CASE.

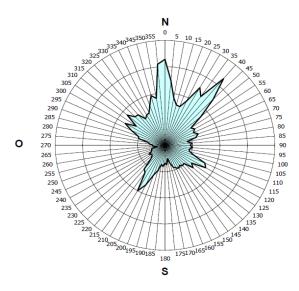


Figura 3: Rosa dei venti

Sett.	%	n	Vmed (m/s)	sigV (m/s)	Vcub (m/s)	Vmax (m/s)	Pv (W/m²)
N	14.5	7396	4.30	2.06	5.18	14.2	85
NNE	13.2	6697	4.66	2.09	5.50	15.6	102
ENE	8.7	4432	3.27	1.77	4.16	12.3	44
Е	5.8	2940	2.89	1.37	3.49	10.2	26
ESE	7.8	3943	5.43	2.71	6.65	15.6	180
SSE	5.7	2879	5.11	2.19	5.92	12.6	127
S	4.4	2230	3.21	1.57	3.88	8.6	36
SSO	8.1	4132	2.92	1.06	3.26	8.2	21
OSO	3.6	1827	4.12	1.95	4.92	17.2	73
0	3.1	1573	4.57	2.46	5.70	12.6	113
ONO	8.2	4168	5.50	2.68	6.64	17.0	179
NNO	8.8	4487	4.26	2.45	5.52	15.7	103
NoDir	0.0	0	n.d.	n.d.	n.d.	n.d.	n.d.
Calme 8.1 4133 (velocità del vento minore o uguale a 0.5 m/s)					/s)		
Totale = 50837 3.92 2.42 5.19 17.2				86			

Figura 4: Parametri della velocità del vento per settori di direzione

Ricettore	Worst case (caso peggiore) Caso "realistico"		Categoria		
in oction	giorni/anno	ore/anno	[ore/anno]	[minuti/giorno]	Cutoportu
R01	0	0	0,0	0,0	D01
R02	0	0	0,0	0,0	A03
R03	0	0	0,0	0,0	A07/C02/06
R04	0	0	0,0	0,0	A04/C02
R05	0	0	0,0	0,0	A04
R06	54	18,8	2,4	2,7	A04/C02
R07	0	0	0,0	0,0	A03
R08	0	0	0,0	0,0	D10
R09	0	0	0,0	0,0	A04
R10	219	266,8	34,7	9,5	D10
R11	36	8,6	1,1	1,9	A02/C03
R12	0	0	0,0	0,0	A03/D01
R13	0	0	0,0	0,0	C03/D01
R14	0	0	0,0	0,0	D07
R15	0	0	0,0	0,0	C03
R16	0	0	0,0	0,0	D01
R17	0	0	0,0	0,0	D07
R18	0	0	0,0	0,0	C01/02/D07
R19	47	14,8	1,9	2,5	D01
R20	60	20,9	2,7	2,7	C01/D01
R21	87	34,6	4,5	3,1	A03/C02
R22	50	15,6	2,0	2,4	A02/D01
R23	149	89	11,6	4,7	D02
R24	47	20,7	2,7	3,4	D10
R25	40	15,1	2,0	2,9	D08
R26	42	15,8	2,1	2,9	D07
R27	95	50,8	6,6	4,2	A04
R28	114	68,8	9,0	4,7	A04/C06
R29	115	49,9	6,5	3,4	A03
R30	38	11,5	1,5	2,4	A03
R31	38	11,9	1,5	2,4	A03
R32	0	0	0,0	0,0	A05
R33	88	39,4	5,1	3,5	A07/C02/06
R34	46	16,8	2,2	2,9	A02/C02/C06
R35	47	18,3	2,4	3,0	D01
R36	0	0	0,0	0,0	A03
R37	0	0	0,0	0,0	A03

Ricettore	Worst case (caso peggiore)		Caso '	"realistico"	Categoria
	giorni/anno	ore/anno	[ore/anno]	[minuti/giorno]	C
R38	0	0	0,0	0,0	A03/C02
R39	0	0	0,0	0,0	A04
R40	0	0	0,0	0,0	A04
R41	0	0	0,0	0,0	A04/C02
R42	70	51,9	6,8	5,8	A03
R43	84	68,6	8,9	6,4	A03
R44	128	44,6	5,8	2,7	A03
R45	107	32,1	4,2	2,3	A03
R46	159	64	8,3	3,1	C01
R47	39	9,7	1,3	1,9	A03
R48	37	9,8	1,3	2,1	A04
R49	38	10,2	1,3	2,1	A03/C02
R50	204	208,9	27,2	8,0	A03/C06
R51	174	99,3	12,9	4,5	D07
R52	214	118,9	15,5	4,3	D07
R53	129	54,9	7,1	3,3	A02/C02
R54	117	42,3	5,5	2,8	A04/C02
R55	33	11	1,4	2,6	A03/D01
R56	34	11,4	1,5	2,6	A03/D01
R57	0	0	0,0	0,0	A03/C02
R58	0	0	0,0	0,0	A03/C06
R59	0	0	0,0	0,0	A02/D08/F04
R60	0	0	0,0	0,0	A02/D08/F04
R61	0	0	0,0	0,0	A02/D08/F04
R62	0	0	0,0	0,0	A02/D01
R63	79	26,9	3,5	2,7	A02/D01
R64	50	15,5	2,0	2,4	A02/D01
R65	31	6,4	0,8	1,6	A04
R66	76	15,3	2,0	1,6	A03
R67	92	19,4	2,5	1,6	A07
R68	93	19,8	2,6	1,7	A07
R69	71	14,8	1,9	1,6	A03/C02
R70	33	7,4	1,0	1,8	A07
R71	29	5,3	0,7	1,4	A02
R72	31	4,9	0,6	1,2	A07

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

Alla luce di quanto descritto nei paragrafi precedenti, l'impatto del fenomeno dello shadow flickering risulta accettabile e compatibile con il contesto in cui si inserisce il progetto.

Difatti, tranne il ricettore R10 che presenta un valore di esposizione pari a 34.7 ore/anno, gli altri ricettori non superano il valore limite di 30 ore/anno e nessun ricettore supera il limite di 30 minuti al giorno.

È comunque utile sottolineare che, a vantaggio di sicurezza, le simulazioni effettuate sono state eseguite in condizioni non realistiche, ipotizzando che si verifichino contemporaneamente le condizioni più sfavorevoli per un determinato ricettore potenzialmente soggetto a shadow flickering, ovvero in concomitanza dei seguenti fattori: assenza di nuvole o nebbia, rotore frontale ai ricettori, rotore in movimento continuo, assenza di ostacoli, luce diretta.

Tutta via si evidenzia come l'analisi condotta non ha tenuto conto della presenza di "zone di esclusione" naturali o artificiali che hanno la facoltà di inibire (parzialmente o totalmente) il fenomeno di Shadow Flicker sui ricettori individuati (es.: presenza di alberatura, tendaggi, infissi, ecc.), poiché il calcolo si è basato esclusivamente sui dati orografici e geografici de sito in esame.

Sulla base dei primi esiti della indagine, effettuata in sito e dalle valutazioni condotte tramite ortofoto, per comprendere la configurazione del territorio in cui si collocano i recettori sensibili e le caratteristiche stesse degli edifici, si sottolinea come alcuni dei recettori individuati non siano abitati oppure siano già caratterizzati dalla presenza di barriere fisiche (i.e. alberature, portici, tende da sole) che riducono l'esposizione al fenomeno dell'ombreggiamento intermittente.

Pertanto, si sottolinea che i risultati presentati rappresentano il caso peggiore in cui si verificano i fattori sopra esposti in concomitanza per cui è ragionevole ritenere che tale fenomeno possa essere difficilmente percepito nelle condizioni reali.

A valle di quanto appena descritto, qualora si ritenga necessario, potranno essere adottate misure di mitigazione in corrispondenza del ricettore R10 al fine di ridurre il fenomeno, di comune accordo con il proprietario del fabbricato.

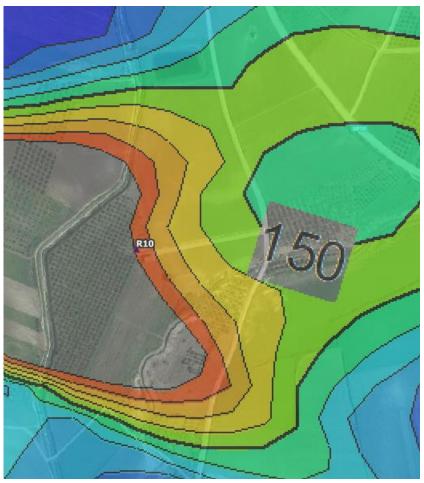
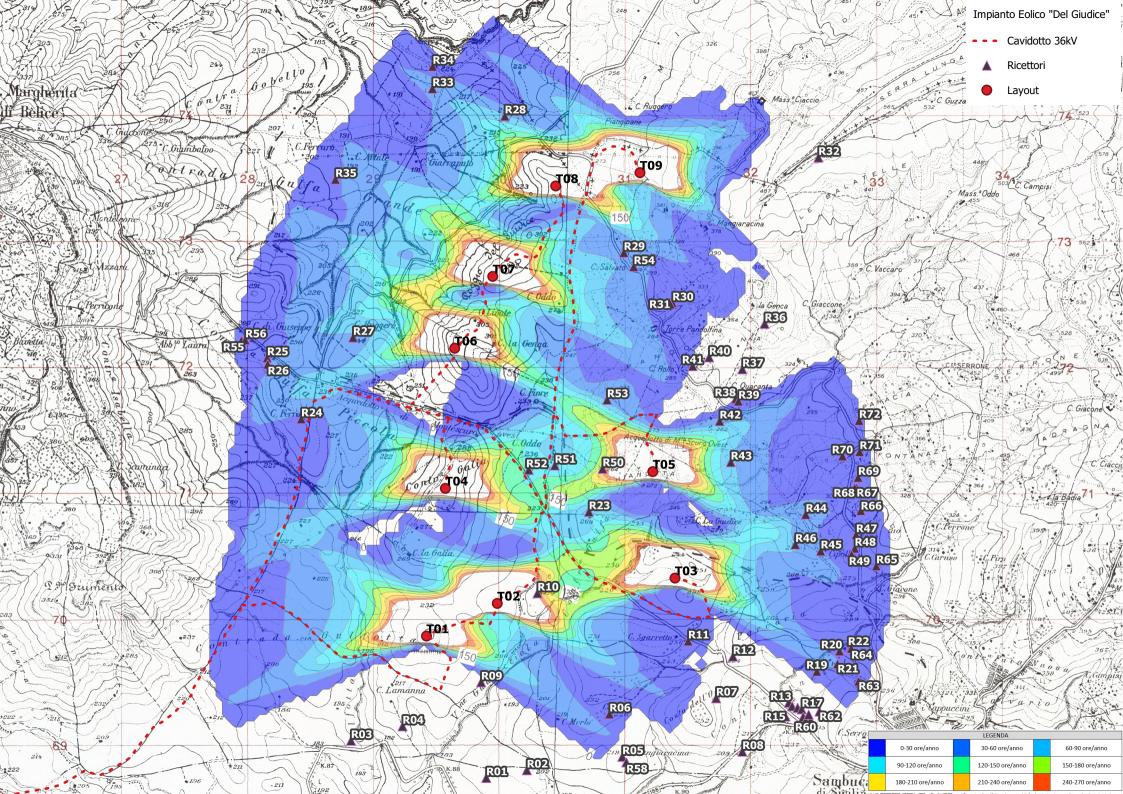



Figura 5: Inquadramento tramite ortofoto del Ricettore R10

RS06REL0007A0 - Studio sugli effetti dello shadow flickering

7 Allegati

