Regione Sicilia

Città metropolitana di Catania

Comune di Caltagirone

Committente:

CALTA WIND S.r.I. Piazza Europa,14 87100 Cosenza (CS)

Documento:

PROGETTO DEFINITIVO

Titolo del Progetto:

PARCO EOLICO "CALTAGIRONE"

Elaborato:

REPORT SHADOW FLICKERING

ID ELABORATO	DISCIPLINA	AMBITO	TIPO ELABORATO	SCALA	FORMATO	
W-CAL-A-RE-06	W-CAL	Α	RE		A4	
NOME FILE:	W-CAL-A-RE-06_Report_Shadow_Flickering					

Progettazione:

Ing. Mauro Di Prete

Rev:	Prima Emissione	Descrizione Revisione	Redatto	Controllato	Approvato
00	09/2023	PRIMA EMISSIONE	IRIDE	GEMSA PRO	CALTA WIND S.r.I.

Indice

1	Pre	emessa	3
2	Cer	nni sul fenomeno dello shadow flickering	3
3	Cal	Icolo dello shadow flickering	6
3.	1	Descrizione del contesto territoriale	6
	3.1.	.1 Configurazione di impianto	7
3	2	Definizione dell'ambito di studio	9
3	3	Individuazione dei ricettori	10
3.	4	Metodologia di calcolo del software utilizzato	12
3	5	Risultati	
4	Cor	nclusioni	24
5	Δni	nendice A	25

1 PREMESSA

Nel Comune di Caltagirone in provincia di Catania (CT) è prevista la realizzazione di un campo eolico costituito da 14 aerogeneratori, ciascuno di potenza nominale pari a 4,5 MW.

Figura 1-1 Localizzazione del campo eolico oggetto di studio

La tipologia di macchina impiegata è di tipo ad asse orizzontale in cui il sostegno, ovvero una torre tubolare con altezza pari a 113 m, porta alla sua sommità la navicella, al cui lato esterno è collegata un rotore di diametro di 163 m.

2 CENNI SUL FENOMENO DELLO SHADOW FLICKERING

Le turbine eoliche, come altre strutture fortemente sviluppate in altezza, proiettano un'ombra sulle aree adiacenti in presenza di luce solare diretta.

I cosiddetto fenomeno del "flickering" indica l'effetto di lampeggiamento che si verifica quando le pale del rotore in movimento "tagliano" la luce solare in maniera intermittente.

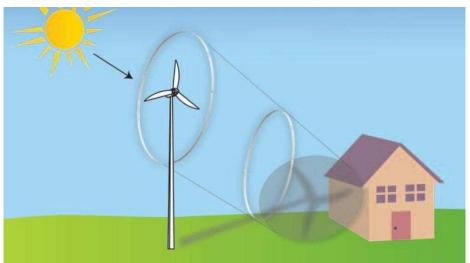


Figura 2-1 Esempio di effetto flickering

Questa variazione alternata di intensità luminosa, a lungo andare, può provocare fastidio agli occupanti delle abitazioni le cui finestre risultano esposte al fenomeno stesso. Ovviamente, tale fenomeno risulta assente sia quando il sole è oscurato da nuvole o nebbia, sia quando, in specifiche condizioni di vento, le pale del generatore non sono in rotazione.

In particolare, le frequenze che possono provocare un senso di fastidio sono comprese tra i 2,5 ed i 20 Hz (Verkuijlen and Westra, 1984), e, l'effetto sugli individui è simile a quello che si sperimenterebbe in seguito alle variazioni di intensità luminosa di una lampada ad incandescenza sottoposta a continui sbalzi della tensione della rete di alimentazione elettrica.

Tuttavia, i più recenti aerogeneratori tripala operano ad una velocità di rotazione massima di 25 giri al minuto, corrispondente ad una frequenza di passaggio delle pale sulla verticale inferiore a 0,5 Hz, minore, quindi, della frequenza critica di 2,5 Hz.

Inoltre, i generatori di grande potenza (dal MW in su, come nel caso in oggetto) mediamente non superano la velocità di rotazione di 15 giri al minuto, corrispondente a frequenze di passaggio delle pale (0,25 Hz) ampiamente minori di quelle ritenute fastidiose per la maggioranza degli individui.

Studi condotti sui possibili effetti dello shadow flickering sulla salute umana raccomandano, al fine di ridurre al minimo i fastidi, una velocità di flickering non superiore a 3 tagli al secondo (Harding, 4 Aprile 2008). Nel caso di aerogeneratori tripala, tale frequenza si traduce in una velocità massima di rotazione del rotore di 60 rpm (rotazioni per minuto).

Le relazioni spaziali tra un aerogeneratore ed un ricettore sensibile, così come la direzione del vento, l'intensità del medesimo, la copertura del cielo, la posizione del sole (variabile nell'arco dell'anno) risultano essere fattori chiave per la esistenza e durata del fenomeno di shadow flickering.

Per distanze dell'ordine dei 500 m, il fenomeno in esame potrebbe verificarsi all'alba oppure al tramonto, ossia in quelle ore in cui le ombre risultano molto lunghe per effetto della piccola

elevazione solare. Al di là di una certa distanza, in realtà l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala ed il diametro del sole diventa molto piccolo.

Come è facile immaginare, la condizione più penalizzante corrisponde al caso in cui il piano del rotore risulta ortogonale alla congiungente ricettore – sole; infatti, in tali condizioni, l'ombra proiettata darà origine ad un cerchio di diametro pari al rotore del generatore eolico.

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti con finestrature rivolte verso le ombre.

In un'ottica generale e in relazione alle condizioni meteoclimatiche medie della penisola italiana, è possibile affermare che le aree soggette al fenomeno di shadow flickering non si estendono mai oltre i 500-1000 m dall'aerogeneratore e le zone a maggiore impatto ricadono solitamente entro i 300 m di distanza dalle macchine con durata del fenomeno dell'ordine delle 200 ore all'anno e non superiore in genere ai 20/30 minuti di durata nell'arco di una giornata.

L'intensità del fenomeno è definita come la differenza di luminosità che si percepisce in presenza ed in assenza di flickering in una data posizione. In generale, si può affermare che:

- avendo le pale una forma rastremata con lo spessore che cresce verso il mozzo; il fenomeno risulterà tanto più intenso quanto maggiore sarà la porzione di disco solare coperta dalla pala stessa e quanto minore la distanza dal ricettore;
- l'intensità del flickering sarà minima quando l'ombra prodotta è generata all'estremità delle pale;
- maggiori distanze tra generatore e ricettore determinano ombre meno nette; in tal caso l'effetto flickering risulterà meno intenso e distinto.

La tipologia di aerogeneratore prevista per l'installazione ha una velocità di rotazione massima di 8,5 rpm che corrisponde ad una velocità massima di flickering di 0,45 tagli al secondo, nettamente inferiore alla frequenza massima raccomandata per la tutela della salute umana.

Tuttavia, una progettazione attenta è fondamentale per evitare questo fenomeno.

In relazione a ciò, si fa presente che, quale misura di prevenzione, già in fase di scelta delle aree sulle quali ubicare l'impianto si è cercato di localizzare gli aerogeneratori il più possibile distanti dall'area urbana oltreché dagli edifici abitativi e lavorativi.

3 CALCOLO DELLO SHADOW FLICKERING

3.1 Descrizione del contesto territoriale

Il comune si estende per 382 km² e ha una densità abitativa di 99,6 abitanti/ km². Il comune di Caltagirone si trova ad un'altitudine di 608 metri sul livello del mare.

Figura 3-1 Contesto territoriale in cui si prevede l'inserimento del campo eolico

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza dal campo eolico di progetto.

Nello specifico, il contesto in cui il progetto si inserisce è delimitato:

- a Nord ovest dal centro abitato di Caltagirone;
- a Nord dal centro abitato di Grammichele oltreché dalla strada statale 683;
- ad Est dalla strada statale 514.

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza dal campo eolico di progetto.

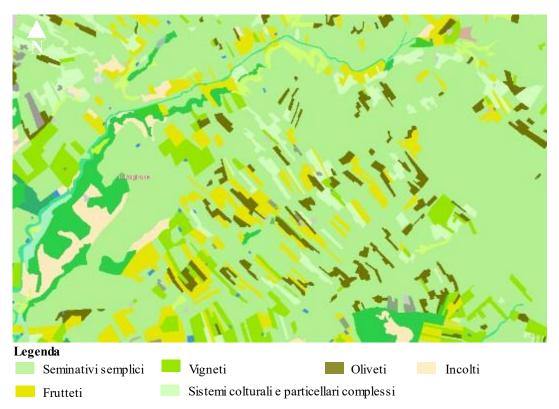


Figura 3-2 Inquadramento area di intervento su Carta uso suolo Corine Land Cover, fonte: Geo portale Regione Sicilia

Come si evince dalla figura, l'intera area di progetto ricade in terreni ad uso seminativo semplice, vigneti, oliveti e frutteti.

In generale, l'area interessata dalla realizzazione del parco eolico è omogenea per conformazione e caratteristiche meteo climatiche in quanto tutto l'ambito di studio ricade su territori collinari con elevazione compresa tra i 350 m e 550 m s.l.m.

3.1.1 Configurazione di impianto

Nelle seguenti tabelle vengono geolocalizzate, definite e descritte dal punto di vista tecnico le turbine la cui installazione è prevista per il campo eolico in progetto.

Turbina	Comune	Coordina	Altitudine	
Turbina	Comune	Long. E [m]	Lat. N [m]	[m]
CA01	Caltagirone	465196,00	4111785,00	399
CA02	Caltagirone	466945,00	4115568,00	457
CA03	Caltagirone	463684,00	4114496,00	418

Turkina	Commo	Coordina	ate UTM	Altitudine	
Turbina	Comune	Long. E [m] Lat. N [m		[m]	
CA04	Caltagirone	465788,00	4114549,00	438	
CA05	Caltagirone	462805,00	4113844,00	410	
CA06	Caltagirone	464873,00	4113860,00	427	
CA07	Caltagirone	466304,00	4113562,00	436	
CA08	Caltagirone	463435,00	4113312,00	411	
CA09	Caltagirone	465677,00	4112470,00	419	
CA10	Caltagirone	467210,00	4112822,00	446	
CA11	Caltagirone	468143,00	4112912,00	456	
CA12	Caltagirone	463703,00	4111277,00	384	
CA13	Caltagirone	467122,00	4111854,00	433	
CA14	Caltagirone	464664,00	4110634,00	382	

Tabella 3-1 Coordinate geografiche puntuali turbine d'impianto

Figura 3-3 Posizione delle turbine di progetto CA01-CA14 sul territorio

Di seguito è riportata una scheda riassuntiva delle principali caratteristiche della turbina che si intendono installare di potenza nominale pari a 4,5 MW:

Potenza nominale	4,5 MW
rotenza nominale	7,5 1.100
N° pale	14
Diametro rotore	163 m
Area spazzata	20.867 m ²
Altezza mozzo rotore	113,0 m
Tipologia torre	Tubolare
Velocità di rotazione del rotore	8,5 rpm
Velocità vento di avvio	3,0 m/s
Velocità vento nominale	15,0 m/s
Velocità vento di stacco	26,0 m/s

Tabella 3-2 Estratto delle specifiche tecniche delle turbine che si intendono installare.

3.2 Definizione dell'ambito di studio

In generale, come ambito di studio si intende la porzione di territorio che si ritiene potenzialmente interferita dalle opere in progetto nelle loro modalità di funzionamento. Di conseguenza, a ciascun aerogeneratore è stata associata un'area di potenziale interferenza dovuta al fenomeno di shadow flickering delimitata da una circonferenza avente centro nel singolo aerogeneratore e raggio pari a 1000 m.

L'ambito di studio complessivo (cfr. Figura 3-4) del parco eolico in progetto è quindi definito dall'inviluppo delle 14 singole aree, ciascuna definita per ogni aerogeneratore secondo il suddetto criterio.

Figura 3-4 Ambito di studio shadow flickering per il campo eolico in progetto

3.3 Individuazione dei ricettori

Ai fini della previsione degli impatti indotti sulle abitazioni e sugli edifici lavorativi dall'impianto eolico in progetto, sono stati censiti i ricettori presenti nel raggio di 1km dagli aerogeneratori. Distanza oltre la quale si può ipotizzare essere nullo il fenomeno di shadow flickering.

I ricettori sono stati individuati calcolando l'inviluppo delle circonferenze di raggio pari a 1km con centro geometrico corrispondente alle coordinate geografiche delle turbine, precedentemente indicate (vedi Tabella 3-1).

Per snellire il modello di calcolo, considerato che il software di analisi WindFarm R5 non è in grado di tenere conto delle zone d'ombra prodotte reciprocamente da edifici ravvicinati, le quali di fatto annullano il fenomeno di shadow flickering dovuto alle turbine, nel caso di più edifici molto ravvicinati tra loro si prendono in considerazione i soli ricettori perimetrali.

Sono stati quindi censiti un totale di 208 edifici, appartenenti al Comune di Caltagirone, i quali risultano essere adibiti ad uso residenziale e industriale. In particolare, dal censimento risultano 191 edifici residenziali e 17 edifici industriali.

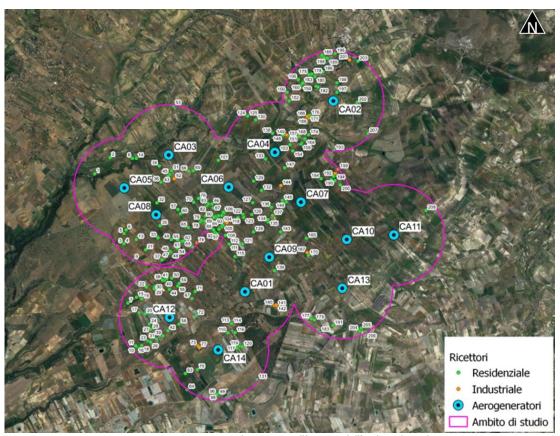


Figura 3-5 Censimento dei ricettori all'interno dell'ambito di studio

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti abitativi o lavorativi con finestrature che si trovano sul prolungamento della direttrice sole-turbina, per questo motivo, si è considerato nella simulazione la presenza di finestre di altezza 1 metro e larghezza 1 metro posizionate ad altezza dal suolo di 2 metri e disposte su tutte le facciate degli edifici. Per lo stesso motivo, seppur censiti per completezza, **sono stati esclusi dall'analisi i ricettori industriali** in quanto non sensibili al fenomeno indagato.

In Appendice A sono riportati i riferimenti geografici, l'uso in atto dei fabbricati, la distanza dall'aerogeneratore più vicino e l'orientamento delle finestre ipotizzato. Le celle evidenziate in tabella rappresentano i ricettori per i quali è stata eseguita l'analisi dell'interferenza da shadow flickering in quanto a destinazione d'uso residenziale.

Figura 3-6 Esempio di identificazione dell'orientamento delle finestre dei ricettori

Data l'entità dei ricettori in studio, è stata ipotizzata una disposizione fissa delle finestre rispetto al nord pari a 0, 90, 180 e 270 gradi. In questo modo sono state prese in considerazioni tutte le possibili esposizioni delle finestrature al fenomeno di shadow flickering, rendendo i risultati dell'analisi ancor più cautelativi e completi.

3.4 Metodologia di calcolo del software utilizzato

L'analisi dell'impatto da shadow flickering prodotto da un campo eolico è realizzata, generalmente, attraverso l'impiego di specifici applicativi che modellano il fenomeno in esame. I pacchetti software impiegati per la progettazione di impianti eolici contengono moduli specifici per il calcolo e l'analisi del fenomeno di flickering.

L'analisi si basa sull'impiego di un modello digitale del terreno dell'area oggetto di progettazione, sulle posizioni (E, N, quota) degli aerogeneratori e dei ricettori sensibili, nonché sui dati che correlano la posizione del sole nell'arco dell'anno con le condizioni operative delle turbine nello stesso arco di tempo.

Al fine di calcolare la posizione relativa del sole nell'arco di un anno rispetto al parco eolico ed ai ricettori è necessario definire la longitudine, la latitudine ed il fuso orario dell'area interessata dal progetto.

Nello specifico, la valutazione tecnica è stata eseguita con l'ausilio del software WindFarm 5 della ReSoft Ltd, software di simulazione specifico per la progettazione di impianti eolici.

Figura 3-7 Stralcio dell'area di studio in Windfarm: ricettori (rosa) e aerogeneratori (ciano)

Il Software consente di analizzare la posizione del sole nell'arco di un anno per identificare i tempi in cui ogni turbina può proiettare ombre sulle finestre degli edifici vicini. In particolare, il modello permette di:

- calcolare il potenziale per le ombre intermittenti alle finestre delle abitazioni;
- creare mappe di impatto potenziale che mostrano le ore d'ombra intermittente per l'intero parco eolico o per le singole macchine (curve di isodurata) nell'arco dell'anno.

Il software utilizza una serie di dati di input caratterizzanti quali:

- l'altimetria della zona simulata (formato GTH, vedi Figura 3-8);
- la disposizione geografica delle turbine e dimensione geometrica dei loro componenti (torre e pale);
- la disposizione geografica dei ricettori sensibili al fenomeno indagato (abitazioni/edifici lavorativi e relative finestre);
- la latitudine e longitudine dell'area interessata.

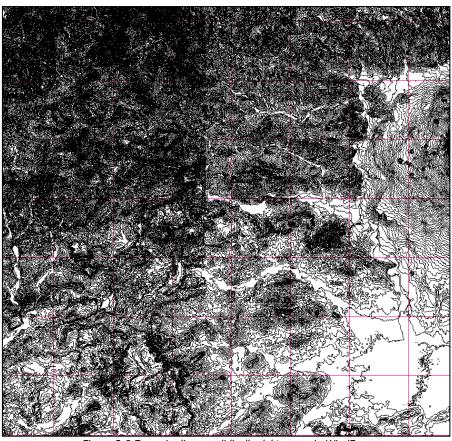


Figura 3-8 Esempio di curve di livello del terreno in WindFarm

Sulla base di questi dati il software calcola il numero di ore annue di esposizione allo shadow flickering per ciascun nodo del grigliato che copre l'intera area, nonché il numero di ore di esposizione per gli ambienti abitativi/lavorativi attraverso le finestre.

Run N	Project : CALTAGIRONE Run Name : Caltagirone.WFK Title : Caltagirone Time : 15:05:17, 24 May 2023											
	DV	OF MERGEL	•	-		WINDO	ודע פטבווי	TIIDRI	NES			
		Easting	Northing	Width	Depth	Height	_		_		Mean	Total
Wind	low						North	angle	year	nours	hours	hours
				(m)	(m)	(m)	1102011		year	day	_	
1/	1	462220	4114124	1.0	1.0	2.0	0.0	0.0	22	0.25	0.20	4.4
1/	2	462220	4114124	1.0	1.0	2.0	90.0	0.0	70	0.52	0.33	23.2
1/	3	462220	4114124	1.0	1.0	2.0	180.0	0.0	48	0.52	0.39	18.7
1/	4	462220	4114124	1.0	1.0	2.0	270.0	0.0	0	0.00	0.00	0.0
2/	1	462522	4114446	1.0	1.0	2.0	0.0	0.0	23	0.30	0.24	5.5
2/	2	462522	4114446	1.0	1.0	2.0	90.0	0.0	24	0.30	0.23	5.6
2/	3	462522	4114446		1.0	2.0	180.0	0.0	0	0.00	0.00	0.0
2/	4	462522	4114446		1.0	2.0	270.0	0.0	0	0.00	0.00	0.0
3/	1	462792	4112732		1.0	2.0	0.0	0.0	0	0.00	0.00	0.0
3/	2	462792	4112732		1.0	2.0	90.0	0.0	0	0.00	0.00	0.0
3/	3	462792	4112732		1.0	2.0	180.0	0.0	0	0.00	0.00	0.0
3/	4	462792	4112732		1.0	2.0	270.0	0.0	0	0.00	0.00	0.0
4/	1	462799	4112738	1.0	1.0	2.0	0.0	0.0	0	0.00	0.00	0.0
4/	2	462799	4112738		1.0	2.0	90.0	0.0	0	0.00	0.00	0.0
4/	3	462799	4112738	1.0	1.0	2.0	180.0	0.0	0	0.00	0.00	0.0
4/	4	462799	4112738		1.0	2.0	270.0	0.0	0	0.00	0.00	0.0
5/	1	462800	4112940	1.0	1.0	2.0	0.0	0.0	0	0.00	0.00	0.0
5/	2	462800	4112940	1.0	1.0	2.0	90.0	0.0	0	0.00	0.00	0.0
5/	3	462800	4112940		1.0	2.0	180.0	0.0	0	0.00	0.00	0.0
5/	4	462800	4112940	1.0	1.0	2.0	270.0	0.0	0	0.00	0.00	0.0
6/	1	462841	4113011		1.0	2.0	0.0	0.0	50	0.49	0.40	20.2
6/	2	462841	4113011	1.0	1.0	2.0	90.0	0.0	50	0.49	0.41	20.3

Figura 3-9 Esempio di output elaborato tramite WindFarm5

Per l'esecuzione della simulazione sono stati fissati i seguenti parametri:

- coordinate geografiche baricentriche (UTM): 457600,00 m Est, 4102000,00 m-Nord;
- coordinate geografiche delle turbine considerate (vedi Tabella 3-1);
- coordinate geografiche dei ricettori considerati e disposizione delle finestre;
- risoluzione di calcolo: 20 m;
- raggio d'influenza massimo: 1 km dal punto di installazione dell'aerogeneratore;
- altezza del punto di vista dell'osservatore: 2 m;
- parametri turbina (cfr. Tabella 3-2):
 - o diametro rotore: 163 m,
 - o altezza torre: 113 m,
 - o larghezza media della pala: 3 m.

Il modello numerico utilizzato, produce in output una mappa di impatto, e prende in considerazione un caso molto cautelativo relativo, ad una configurazione puramente teorica che vede la costante e contemporanea presenza dei fattori di attivazione del fenomeno, ossia sole scevro da nubi (potenzialità di generare ombre) e velocità del vento superiore a quella di cut-in (rotore in moto).

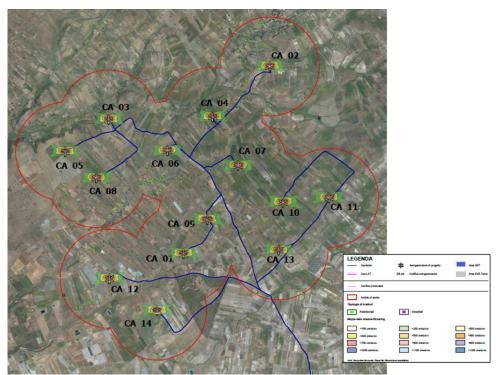


Figura 3-10 Stralcio della carta con l'output restituito dal software WindFarm

Di seguito vengono riportate tutte le ipotesi utilizzate per il calcolo del fenomeno di shadow flickering effettuato tramite il software WindFarm:

- il sole splende per tutta la giornata, dall'alba al tramonto (cioè, si è sempre in assenza di copertura nuvolosa);
- il piano di rotazione delle pale è sempre perpendicolare alla direttrice sole aerogeneratore (ovvero l'aerogeneratore "inseque" il sole);
- gli aerogeneratori sono sempre operativi;
- non sono presenti alberi o altri ostacoli che, intercettando l'ombra degli aerogeneratori, riducano o annullino l'effetto di flickering.

Ciò considerato si evince che i risultati ai quali si perverrà sono estremamente cautelativi, trattandosi di una stima puramente teorica. Allo scopo di pervenire a valori più realistici, prossimi al caso reale, è stato corretto il dato di output prendendo in considerazione l'eliofania locale e le ore stimate di funzionamento dell'impianto eolico nell'arco dell'anno.

Nel caso in analisi, sapendo che il tempo in cui il sole permane al di sopra dell'orizzonte nell'arco dell'anno è di circa 4380 ore; tenendo conto dell'eliofania media locale (3669 h/anno), ovvero il numero di ore in cui il cielo è libero da nubi durante il giorno e a partire dalle registrazioni anemometriche relative alla stazione meteorologica più vicina all'area di studio e climaticamente compatibile, ovvero quella di Tortolì (OG), si è stimato che l'impianto eolico sarà in funzione per circa il 60% del tempo nell'arco dell'anno, corrispondente a 2633 ore.

In definitiva, i valori calcolati dal modello numerico (ore di ombreggiamento intermittente all'anno) sono desunti in funzione della probabilità composta di avere contemporaneamente l'occorrenza di rotore in moto (vento) e sole libero da nubi (ombre), fenomeni, questi ultimi, stocasticamente indipendenti.

3.5 Risultati

La seguente tabella riassume i risultati dell'analisi eseguita, sui 191 ricettori residenziali, secondo la metodologia di calcolo descritta nel paragrafo precedente.

Disabbass	Caso po	Caso reale	
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R1	98	38	23
R2	24	6	3
R3	0	0	0
R4	0	0	0
R5	0	0	0
R6	0	0	0
R7	42	13	8
R8	0	0	0
R9	0	0	0
R10	6	1	1
R11	8	1	1
R12	10	2	1
R13	0	0	0
R14	42	17	10
R15	0	0	0
R16	0	0	0
R17	81	25	15
R18	18	3	2
R19	0	0	0
R20	75	30	18
R21	0	0	0
R22	4	1	0
R23	20	4	2
R24	143	75	45
R25	20	4	3
R26	20	4	3
R27	26	5	3
R28	25	5	3
R29	16	2	1
R30	16	2	1
R31	23	5	3
R32	77	24	14

D'	Caso po	Caso reale	
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R33	0	0	0
R34	25	5	3
R35	0	0	0
R36	51	16	9
R37	28	4	3
R38	17	3	2
R39	27	7	4
R40	18	3	2
R41	19	3	2
R42	43	11	7
R43	56	14	8
R44	19	3	2
R45	57	14	8
R46	14	2	1
R47	16	2	1
R48	14	2	1
R49	15	2	1
R50	37	6	4
R51	67	16	9
R53	0	0	0
R54	11	2	1
R55	16	3	2
R56	45	8	5
R57	133	67	40
R58	0	0	0
R59	43	8	5
R60	102	33	20
R61	14	2	1
R62	14	2	1
R63	0	0	0
R64	0	0	0
R65	102	38	23
R66	103	25	15
R67	27	7	4
R68	18	3	2
R69	110	31	18

Discussion.	Caso pe	eggiore	Caso reale
Ricettore	Giorni /anno Ore /anno		[ore/anno]
R70	128	41	25
R71	48	10	6
R72	48	23	14
R75	0	0	0
R76	152	55	33
R78	70	14	8
R79	87	17	10
R80	97	18	11
R81	73	13	8
R82	59	11	6
R83	62	11	6
R84	75	13	8
R85	60	10	6
R86	60	10	6
R87	62	9	6
R88	99	19	11
R89	66	11	6
R90	66	11	6
R91	113	29	17
R92	106	27	16
R93	65	10	6
R94	64	10	6
R95	65	10	6
R96	0	0	0
R97	122	30	18
R98	0	0	0
R99	0	0	0
R100	63	9	6
R101	56	14	8
R102	52	10	6
R103	49	9	5
R104	40	7	4
R105	47	8	5
R106	39	7	4
R107	40	7	4
R108	112	26	16

D'	Caso pe	eggiore	Caso reale
Ricettore	Giorni /anno Ore /ann		[ore/anno]
R110	30	6	4
R111	105	23	14
R112	100	22	13
R113	24	4	3
R114	22	4	3
R115	37	14	9
R116	25	4	3
R117	98	49	29
R118	43	8	5
R119	120	45	27
R120	119	38	23
R121	67	24	14
R122	36	6	4
R123	32	5	3
R124	28	4	2
R125	31	4	3
R126	67	13	8
R127	42	9	5
R128	32	4	2
R129	132	49	30
R130	54	9	5
R131	0	0	0
R132	111	33	20
R133	14	1	1
R134	19	3	2
R135	20	4	2
R136	132	38	23
R137	71	23	14
R138	0	0	0
R139	68	15	9
R143	21	5	3
R145	97	52	31
R146	0	0	0
R147	34	7	4
R148	112	76	45
R150	29	9	5

5 '	Caso po	eggiore	Caso reale
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R151	0	0	0
R152	30	9	6
R153	94	76	45
R154	69	49	29
R156	0	0	0
R157	0	0	0
R158	60	29	17
R159	61	25	15
R160	41	14	8
R161	65	30	18
R162	45	15	9
R163	0	0	0
R164	74	33	20
R165	77	24	14
R168	38	13	8
R170	118	40	24
R171	0	0	0
R172	40	14	8
R173	40	14	8
R174	45	15	9
R175	0	0	0
R176	0	0	0
R177	84	12	7
R178	0	0	0
R179	81	10	6
R180	0	0	0
R181	0	0	0
R182	0	0	0
R183	0	0	0
R184	16	1	1
R185	0	0	0
R186	0	0	0
R187	0	0	0
R188	0	0	0
R189	0	0	0
R190	10	1	0

Disaltana	Caso peggiore		Caso reale
Ricettore	Giorni /anno	Ore /anno	[ore/anno]
R191	0	0	0
R192	66	13	8
R193	24	4	2
R195	28	3	2
R196	0	0	0
R197	0	0	0
R198	0	0	0
R200	69	22	13
R202	55	29	18
R203	0	0	0
R204	0	0	0
R205	0	0	0
R206	0	0	0
R207	16	1	1
R208	28,0	2	1

Tabella 3-3 Risultati di calcolo

In particolare, nella Tabella 3-3 vengono riportati il numero di giorni e di ore in cui è fisicamente possibile che il fenomeno si presenti (caso peggiore) e il valore reale atteso di ore l'anno in cui il fenomeno potrebbe presentarsi (caso reale). A tal proposito è importante sottolineare che anche il caso reale, calcolato tenendo conto dell'eliofania locale e delle ore di funzionamento dell'impianto, è comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra.

Sempre dalla Tabella 3-3 si evince che dei 191 ricettori residenziali quelli interessati dal fenomeno di Shadow Flickering sono 146.

Tuttavia, tale effetto si può considerare trascurabile per via della scarsa durata del fenomeno che si riduce, nel caso reale, ad un numero esiguo di ore l'anno. Inoltre, le ore annue <u>del caso peggiore</u> non risultano mai superiori a 100.

4 CONCLUSIONI

A seguito di quanto descritto nei paragrafi precedenti si può concludere che, pur considerando una stima cautelativa, in quanto non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra, il fenomeno dello shadow flickering si può verificare su 146 dei 191 fabbricati considerati ai fini dell'analisi (vedi Tabella 3-3).

L'incidenza di tale fenomeno sulla qualità della vita può ritenersi trascurabile in quanto, il valore di durata simulato ed atteso del fenomeno è sempre inferiore al valore di riferimento pari ad 100 ore l'anno.

Se si rapporta tale valore a quello di eliofania media locale dell'area (3669 ore/anno) si avrebbe un'incidenza percentuale del fenomeno mediamente inferiore all'1%.

A tali considerazioni va altresì sottolineato che:

- la velocità di rotazione della turbina è 8,5 rotazioni al minuto, quindi nettamente inferiore a 60 rpm, frequenza massima raccomandata al fine di ridurre al minimo i fastidi e soddisfare le condizioni di benessere;
- le turbine in progetto sono lontane dai ricettori, essendo le distanze comprese tra 183 m e 996 m con la maggioranza dei ricettori localizzati a più di 500 metri di distanza. In tali circostanze l'effetto dell'ombra è trascurabile poiché il rapporto tra lo spessore della pala e la distanza dal recettore è molto ridotto.

Stante tutto quanto sopra riportato è possibile concludere come l'interferenza tra la componente in esame, relativa allo shadow flickering, sui ricettori presi in considerazione possa considerarsi trascurabile.

5 APPENDICE A

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R1	Residenziale	641,67	462220,94	4114124,44
R2	Residenziale	662,12	462522,99	4114446,80
R3	Residenziale	858,99	462792,78	4112732,24
R4	Residenziale	852,91	462799,35	4112738,67
R5	Residenziale	729,47	462800,14	4112940,68
R6	Residenziale	657,01	462841,70	4113011,32
R7	Residenziale	871,19	462876,69	4111560,05
R8	Residenziale	601,38	462965,76	4114432,73
R9	Residenziale	985,89	462988,34	4112421,18
R10	Residenziale	869,40	463037,68	4110692,36
R11	Residenziale	874,62	463029,61	4110714,00
R12	Residenziale	866,12	463034,66	4110717,83
R13	Residenziale	619,42	463044,59	4112821,06
R14	Residenziale	624,80	463043,58	4114432,64
R15	Residenziale	762,95	463045,27	4111676,55
R16	Residenziale	870,13	463049,32	4110696,28
R17	Residenziale	605,74	463097,42	4111368,47
R18	Residenziale	775,20	463152,81	4110718,30
R19	Residenziale	654,93	463151,67	4111644,53
R20	Residenziale	485,86	463215,60	4111347,43
R21	Residenziale	719,35	463228,09	4112617,16
R22	Residenziale	748,99	463242,61	4111878,19
R23	Residenziale	626,60	463274,29	4110808,46
R24	Residenziale	420,55	463299,80	4111145,37
R25	Residenziale	607,61	463315,35	4110793,48
R26	Residenziale	613,84	463328,11	4110783,62
R27	Residenziale	440,49	463329,89	4111036,61
R28	Residenziale	432,97	463337,22	4111038,42
R29	Residenziale	637,90	463396,62	4111843,19
R30	Residenziale	671,60	463400,00	4111882,05
R31	Residenziale	489,62	463446,48	4110850,02

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R32	Residenziale	231,93	463452,06	4113550,39
R33	Residenziale	452,11	463471,01	4112855,63
R34	Residenziale	278,09	463497,93	4114280,59
R35	Residenziale	223,40	463513,03	4113096,34
R36	Residenziale	552,35	463532,10	4113960,21
R37	Residenziale	890,30	463550,35	4112419,78
R38	Residenziale	746,47	463559,45	4112017,43
R39	Residenziale	384,10	463571,88	4110911,35
R40	Residenziale	735,20	463599,74	4112010,05
R41	Residenziale	768,80	463645,60	4112048,77
R42	Residenziale	256,72	463670,20	4111013,95
R43	Residenziale	410,74	463675,10	4114076,04
R44	Residenziale	546,46	463699,27	4111830,61
R45	Residenziale	379,94	463702,50	4114111,65
R46	Residenziale	776,24	463705,70	4112578,57
R47	Residenziale	771,62	463714,51	4112585,65
R48	Residenziale	797,09	463731,87	4112564,85
R49	Residenziale	572,51	463736,34	4112821,09
R50	Residenziale	771,31	463743,98	4112056,22
R51	Residenziale	306,70	463742,85	4114191,02
R52	Industriale	460,18	463791,37	4114026,43
R53	Residenziale	980,24	463782,92	4115474,94
R54	Residenziale	774,79	463854,58	4112650,34
R55	Residenziale	647,36	463856,67	4112816,87
R56	Residenziale	636,11	463864,80	4111899,33
R57	Residenziale	441,90	463869,21	4113418,04
R58	Residenziale	224,66	463893,66	4111144,42
R59	Residenziale	692,58	463894,55	4111952,75
R60	Residenziale	473,84	463915,04	4113330,07
R61	Residenziale	729,58	463948,56	4112782,96
R62	Residenziale	743,82	463973,04	4112791,98
R63	Residenziale	797,59	464014,46	4110164,89

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R64	Residenziale	996,08	464049,07	4109845,23
R65	Residenziale	680,12	464072,49	4113057,95
R66	Residenziale	503,88	464079,88	4114175,46
R67	Residenziale	575,41	464145,30	4111651,38
R68	Residenziale	956,99	464158,70	4112672,57
R69	Residenziale	574,28	464171,83	4114183,21
R70	Residenziale	747,64	464180,55	4113558,96
R71	Residenziale	711,77	464206,59	4111790,65
R72	Residenziale	519,72	464231,75	4111313,32
R73	Industriale	382,11	464263,99	4110711,89
R74	Industriale	978,49	464246,03	4112752,99
R75	Residenziale	561,35	464254,43	4110242,98
R76	Residenziale	631,20	464276,11	4113635,71
R77	Industriale	352,64	464291,33	4110678,31
R78	Residenziale	879,69	464313,20	4113171,54
R79	Residenziale	844,78	464333,87	4113203,71
R80	Residenziale	815,24	464399,21	4113185,76
R81	Residenziale	730,64	464411,09	4113287,96
R82	Residenziale	556,72	464447,43	4113494,84
R83	Residenziale	514,79	464471,21	4113528,67
R84	Residenziale	743,19	464502,34	4113208,38
R85	Residenziale	463,07	464538,43	4113531,55
R86	Residenziale	464,22	464541,26	4113527,05
R87	Residenziale	506,54	464563,59	4113448,76
R88	Residenziale	891,51	464572,60	4113014,59
R89	Residenziale	665,64	464579,71	4113254,39
R90	Residenziale	661,71	464579,28	4113262,88
R91	Residenziale	945,17	464590,16	4112949,16
R92	Residenziale	931,05	464599,38	4112964,20
R93	Residenziale	659,14	464604,19	4113250,67
R94	Residenziale	634,03	464609,87	4113274,40
R95	Residenziale	643,36	464632,68	4113256,45

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R96	Residenziale	877,31	464639,47	4109748,04
R97	Residenziale	946,71	464639,64	4112937,67
R98	Residenziale	868,08	464655,57	4109758,70
R99	Residenziale	886,68	464657,71	4109739,79
R100	Residenziale	597,94	464667,87	4113289,23
R101	Residenziale	563,75	464667,37	4114391,39
R102	Residenziale	850,23	464678,38	4113024,04
R103	Residenziale	786,70	464734,76	4113076,12
R104	Residenziale	568,74	464736,00	4113299,32
R105	Residenziale	754,10	464757,78	4113106,75
R106	Residenziale	503,51	464766,38	4113361,54
R107	Residenziale	516,44	464783,81	4113345,87
R108	Residenziale	953,71	464807,84	4112901,42
R109	Industriale	700,19	464839,03	4113152,33
R110	Residenziale	382,88	464854,51	4110970,96
R111	Residenziale	828,04	464880,48	4112729,05
R112	Residenziale	835,29	464880,62	4112732,06
R113	Residenziale	577,02	464921,23	4111156,67
R114	Residenziale	582,15	464934,26	4111153,96
R115	Residenziale	669,40	464998,42	4112482,03
R116	Residenziale	474,84	465000,15	4110976,34
R117	Residenziale	365,05	465036,69	4110665,78
R118	Residenziale	625,07	465054,45	4113253,37
R119	Residenziale	435,91	465099,94	4110704,50
R120	Residenziale	474,06	465139,91	4110697,57
R121	Residenziale	584,27	465146,06	4112735,09
R122	Residenziale	603,76	465154,61	4113319,76
R123	Residenziale	665,41	465169,01	4113259,75
R124	Residenziale	898,24	465240,00	4115269,84
R125	Residenziale	896,85	465248,38	4115270,53
R126	Residenziale	701,35	465330,02	4113316,69
R127	Residenziale	558,20	465348,08	4113553,84

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R128	Residenziale	588,34	465363,57	4112971,96
R129	Residenziale	501,46	465364,82	4113980,45
R130	Residenziale	743,52	465407,19	4115194,24
R131	Residenziale	967,99	465434,68	4110042,65
R132	Residenziale	645,87	465522,75	4113795,87
R133	Residenziale	224,26	465603,04	4114415,67
R134	Residenziale	696,47	465646,49	4113173,05
R135	Residenziale	733,17	465652,29	4113214,92
R136	Residenziale	585,14	465719,96	4113460,38
R137	Residenziale	616,70	465739,29	4113298,06
R138	Residenziale	371,10	465740,47	4114925,62
R139	Residenziale	278,44	465779,51	4112204,02
R140	Industriale	638,10	465778,08	4111512,46
R141	Industriale	665,24	465814,63	4111505,60
R142	Industriale	668,15	465815,11	4111521,98
R143	Residenziale	544,52	465900,02	4112973,71
R144	Industriale	505,31	465908,03	4113892,85
R145	Residenziale	356,23	465936,34	4113594,71
R146	Residenziale	371,59	465950,76	4114892,39
R147	Residenziale	355,23	465979,83	4114244,26
R148	Residenziale	287,78	466010,80	4113567,93
R149	Industriale	404,46	466020,38	4114894,45
R150	Residenziale	925,56	466029,12	4115740,28
R151	Residenziale	409,47	466036,43	4114885,77
R152	Residenziale	859,81	466071,35	4115570,92
R153	Residenziale	329,77	466088,32	4114700,87
R154	Residenziale	349,00	466142,04	4114579,34
R155	Industriale	573,25	466262,00	4114891,19
R156	Residenziale	809,12	466251,39	4115994,30
R157	Residenziale	561,99	466267,02	4114861,10
R158	Residenziale	532,45	466304,65	4114710,96
R159	Residenziale	702,60	466313,45	4115884,90

		Distanza da	Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R160	Residenziale	707,88	466318,98	4115907,70
R161	Residenziale	557,59	466320,64	4114733,61
R162	Residenziale	704,13	466322,39	4115903,01
R163	Residenziale	695,47	466338,58	4115923,39
R164	Residenziale	646,55	466382,01	4114818,82
R165	Residenziale	714,31	466412,00	4112846,72
R166	Industriale	589,03	466427,72	4115259,45
R167	Industriale	746,21	466427,90	4112563,14
R168	Residenziale	732,95	466442,37	4114893,65
R169	Industriale	588,04	466452,45	4115232,11
R170	Residenziale	765,91	466448,39	4112507,07
R171	Residenziale	552,42	466457,06	4115283,49
R172	Residenziale	742,62	466449,16	4114895,77
R173	Residenziale	748,00	466454,15	4114897,36
R174	Residenziale	745,59	466455,11	4114892,78
R175	Residenziale	704,83	466461,20	4116091,24
R176	Residenziale	539,19	466478,57	4115282,78
R177	Residenziale	853,74	466514,47	4111247,22
R178	Residenziale	678,78	466518,72	4116102,48
R179	Residenziale	833,94	466570,28	4111223,09
R180	Residenziale	601,08	466579,49	4116049,65
R181	Residenziale	447,44	466600,84	4115860,57
R182	Residenziale	402,98	466643,14	4115842,99
R183	Residenziale	978,03	466670,84	4110981,03
R184	Residenziale	606,19	466702,56	4114027,99
R185	Residenziale	926,06	466720,53	4116474,08
R186	Residenziale	610,61	466740,98	4116153,12
R187	Residenziale	865,97	466755,43	4116422,76
R188	Residenziale	851,94	466814,90	4116420,49
R189	Residenziale	839,77	466834,87	4116408,25
R190	Residenziale	742,81	466903,61	4114008,08
R191	Residenziale	753,87	466938,06	4111116,78

		Distanza da		Coordinate UTM	
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]	
R192	Residenziale	820,12	466950,98	4114075,72	
R193	Residenziale	974,07	466954,79	4114587,27	
R194	Industriale	874,13	466978,73	4114130,98	
R195	Residenziale	793,30	466976,79	4113989,64	
R196	Residenziale	933,85	466980,24	4116509,67	
R197	Residenziale	183,23	467013,96	4115741,94	
R198	Residenziale	360,62	467017,52	4115929,89	
R199	Industriale	974,77	467041,45	4114220,06	
R200	Residenziale	843,83	467080,75	4113903,91	
R201	Industriale	862,57	467265,46	4116383,01	
R202	Residenziale	466,27	467416,85	4115538,81	
R203	Residenziale	920,35	467430,02	4116356,58	
R204	Residenziale	905,89	467464,27	4111008,57	
R205	Residenziale	870,77	467495,32	4111063,20	
R206	Residenziale	979,15	467596,38	4110982,33	
R207	Residenziale	932,41	467629,61	4114924,12	
R208	Residenziale	794,97	468781,13	4113397,63	