REGIONE SARDEGNA

Provincia del Nord-Est Sardegna

COMUNE DI BUDDUSO'

02	EMISSIONE PER INTEGRAZIONI MIC	30/06/23	URSO A.	BELFIORE G.	LOMBARDO A.
01	EMISSIONE PER ENTI ESTERNI	13/10/21	URSO A.	FURNO C.	NASTASI A.
00	EMISSIONE PER COMMENTI	17/09/21	URSO A	FURNO C.	NASTASI A.
REV.	DESCRIZIONE	DATA	REDATTO	CONTROL.	APPROV.

Committente:

Hergo Renewables S.p.A.

Ingegneria & Innovazione

Via Privata Maria Teresa, 8 — 20123 Milano (MI) P.IVA: 10416260965; R.E.A. n.2529663

Società di Progettazione:

Via Jonica, 16 — Loc. Belvedere — 96100 Siracusa (SR) Tel. 0931.1663409 Web: www.antexgroup.it e-mail: info@antexgroup.it

PROGETTO:

PARCO EOLICO DI "BUDDUSO""

Progettista/Resp. Tecnico: Dott. Ing. Cesare Furno Ordine degli Ingegneri della Provincia di Catania n° 6130 sez. A

Elaborato:

RELAZIONE FLORO-FAUNISTICA

Agronomo:

Dott. Agr. Arturo Urso Ordine dei Dottori Agronomi e dei Dottori Forestali di Catania n° 1280

Scala:

Nome DIS/FILE:

Allegato:

Livello:

NA

C20025S05-VA-RT-04-02

1/1

Α4

F.to:

DEFINITIVO

ll presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.2

SOMMARIO

1 L	Localizzazione e descrizione dell'intervento	4
1.1	Localizzazione	4
1.2	Descrizione dell'intervento	4
2. Asp	petti floristici	6
2.1	Fitogeografia	6
	Endemismi sardi	
2.3	Aspetti fitogeografici ed associazioni vegetali dell'area	10
2.4	Specie rare ed endemiche del Goceano	11
2.4	Situazione rilevata sul luogo	11
3. Fau	una selvatica censita nell'area	15
3.1	Anfibi	15
	Rettili	
3.3	Mammiferi	16
3.4	Avifauna	18
3.5	Invertebrati endemici	21
4. Effe	etti sulla vegetazione	22
5. Effe	etti sulla fauna	22
5.1	Perdita di superficie e habitat	22
	Effetti sull'avifauna stanziale e migratoria	
	Spazi liberi tra le nuove installazioni	
	ni di monitoraggio dell'avifauna e della chirotterofauna	
6.1	Osservazioni diurne da punti fissi	27
	Monitoraggio dei chirotteri	
	nclusioni	
Biblio	ografia:	31
Siti in	nternet consultati:	31

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.3

Premessa

Con nota del 19/10/2021, acquisita al prot. MATTM-115575 in data 25/10/2021, la Società Infrastrutture S.p.a., ora Hergo Renewables Spa, ha presentato istanza per l'avvio del procedimento "Procedura di Valutazione di Impatto Ambientale ai sensi del l'art .23 del D.Lgs 152/2006 relativa al progetto di un impianto per la produzione di energia elettrica da fonte eolica denominato "Parco eolico Buddusò" costituito da 7 aereogeneratori con potenza unitaria di 6MW, per una potenza complessiva di 42MW, collegati alla stazione elettrica nel Comune di Buddusò ed opere accessorie nel comune di Buddusò". Per tale istanza è stata comunicata la procedibilità in data 19/07/23 – nota MITE 0090205 - con codice procedura ID: 7555.

In riscontro alla "Richiesta di chiarimenti e integrazioni alla documentazione di progetto" del Ministero della Cultura -nota MIC_SS-PNRR_17/08/2022_0002524-P del 18/08/2022, e a seguito della nota del Ministero dell'Ambiente e della Sicurezza Energetica – nota MASE registro ufficiale uscita 0077793 del 15/05/23, il progetto definitivo è stato integrato con i chiarimenti e la documentazione aggiuntiva richiesta tenendo conto anche di una nuova configurazione del layout, per i motivi meglio specificati a seguire.

La Società proponente ha ottimizzato la configurazione del Layout modificando l'ubicazione di alcuni aerogeneratori al fine di ridurre l'impatto paesaggistico, rispondere alle esigenze del territorio e trovare il consenso dei proprietari dei terreni interessati dall'iniziativa.

In particolare:

- lo spostamento della turbina B3 è stato motivato sia da esigenze agricolo-pastorali sia per l'ottimizzazione della producibilità;
- lo spostamento della turbina B4 è stato motivato dalla volontà di allontanarsi dall'abitato di Buddusò, riducendo in questo modo l'impatto paesaggistico e lo sviluppo di viabilità e cavidotto interno;
- i piccoli spostamenti delle turbine B6 e B7, inferiori a 200 m, e della relativa viabilità di accesso, sono dovuti alle richieste dei proprietari dei terreni, volte a salvaguardare l'attività agricolo-pastorale;

Queste lievi variazioni hanno permesso di raggiungere il pieno consenso dei proprietari dei terreni interessati dall'iniziativa, che ha portato a siglare contratti per la costituzione del diritto di superficie per tutti gli aerogeneratori a progetto.

Tutti gli elaborati di progetto sono stati aggiornati recependo queste modifiche.

RELAZIONE FLORO-FAUNISTICA

Localizzazione e descrizione dell'intervento

1.1 Localizzazione

Nel dettaglio il progetto prevede l'installazione di n. 7 aerogeneratori nel territorio del Comune di Buddusò. L'impianto sarà collegato alla nuova Stazione di Trasformazione Utente, posta sempre nel territorio del Comune di Buddusò.

L'area di intervento ricade per intero sull'area centro-orientale della Sardegna, nella sub-regione del Goceano; le nuove torri, identificate con codice ID WTG B-00, saranno installate alle seguenti coordinate:

ID WTG	Est	Nord	Comune
B-01	91513.86 E	403218.06 m N	Buddusò
B-02	91532.52 E	403244.75 m N	Buddusò
B-03	91439.14 E	403334.67 m N	Buddusò
B-04	91427.06 E	403322.26 m N	Buddusò
B-05	91332.68 E	403311.58 m N	Buddusò
B-06	91318.46 E	403255.61 m N	Buddusò
B-07	9139.05 E	403233.40 m N	Buddusò
SSEU	91724.29 m E	409407.45 m N	Buddusò

Per quanto riguarda la localizzazione dell'impianto rispetto alle aree naturali tutelate, si riportano di seguito le distanze minime in linea d'aria degli aerogeneratori dai confini dei Parchi Naturali Nazionali e Regionali (cfr. Cartografia C20025S05-VA-PL-1.1-02), e delle Aree della Rete Natura 2000 (cfr. Cartografia C20025S05-VA-PL-3.1-02):

Denominazione	Tipologia	Distanza minima [km]
Parco Nazionale del Golfo di Orosei e del Gennargentu	Parco Nazionale	33,00
Parco Regionale di Tepilora (L.R. 21 Ottobre 2014, n.21)	Parco Regionale	12,00
ZSC Catena Del Marghine e del Goceano (ITB011102)	Zona Speciale di Conservazione	15,90
ZSC Campo di Ozieri e Pianure Comprese tra Tula e Oschiri (ITB011113)	Zona Speciale di Conservazione	19,40

Date le distanze del sito dai confini delle Aree della Rete Natura 2000 - superiori ai km 10,0 - non si verificano i presupposti per avanzare l'istanza di Valutazione di Incidenza Ambientale (V.Inc.A.).

1.2 Descrizione dell'intervento

Il progetto prevede l'installazione di n. 7 nuovi aerogeneratori con potenza unitaria di 6,00 MW, per una potenza complessiva di impianto di 42,00 MW, tutti nel territorio del comune di Buddusò.

Gli aerogeneratori saranno collegati alla nuova Stazione di trasformazione Utente, posta sempre nel comune di Buddusò, tramite cavidotti interrati con tensione nominale pari a 30,0 kV. La stazione di trasformazione utente riceverà l'energia proveniente dall'impianto eolico a 30,0 kV e la eleverà alla tensione di 150 kV.

RELAZIONE FLORO-FAUNISTICA

Tutta l'energia elettrica prodotta verrà ceduta alla rete tramite collegamento in antenna a 150 kV su una nuova Stazione Elettrica (SE) della RTN a 150 kV, in GIS denominata "Buddusò", già in iter nel Piano di Sviluppo di Terna.

L'intervento consisterà in una prima fase, durante la quale dovranno compiere gli scavi, compresi quelli per i relativi cavidotti, e la realizzazione della viabilità e delle piazzole; seguirà poi una seconda fase di trasporto e montaggio delle 7 nuove macchine sui punti sopra elencati, con tutte le strutture annesse (cavidotti e fondazioni in c.a.).

Le nuove macchine, tra le più potenti al mondo nell'ambito dell'eolico *on-shore*, presentano i seguenti dati:

Potenza massima	Altezza massima al fulcro	Altezza massima al TIP	Diametro rotore	Frequenza massima di rotazione
6,00 MW	119,00 m	199,50 m	162,00 m	11,80 rpm

Di seguito le dimensioni delle opere civili necessarie all'installazione di ogni macchina, escludendo viabilità e cavidotti:

Superficie piazzola	Diametro base torre	Diametro massimo fondazione c.a.	Altezza fondazione c.a.	Volume fondazione c.a.
2.200,00 m ²	6,40 m	23,10 m	4,30 m	890,00 m ³

Le piazzole che saranno realizzate per l'installazione delle nuove macchine, incluse le aree di sedime delle torri, ad intervento ultimato avranno una superficie pari a circa 1.305 m² ciascuna, per una superficie complessiva pari a m² 9.135.

L'intervento prevede anche la realizzazione di nuove stradine sterrate per una lunghezza stimata pari a m 2.037. Considerando una larghezza media di 5,0 m, la superficie complessivamente occupata dalla nuova viabilità sarà pari a circa m² 10.185. La STU, inoltre, presenterà una superficie complessiva pari a circa m² 2.000.

Pertanto, le nuove realizzazioni occuperanno una superficie (frammentata) pari a m² 21.320, con un rapporto potenza/superficie pari a 19,70 MW/ha. Per fare un semplice confronto, sempre nell'ambito delle energie rinnovabili, per ottenere la stessa potenza di picco (42,00 MW) con un moderno impianto fotovoltaico ad inseguimento mono-assiale sarebbero stati necessari circa 96,60 ha di superficie non frammentata (2,30 ha per ogni MW installato).

RELAZIONE FLORO-FAUNISTICA

Parte I – Flora spontanea e Fauna selvatica dell'area di indagine

La presente relazione ha per oggetto la valutazione delle caratteristiche vegetazionali e faunistiche di un'area del settore centro-orientale della Sardegna, nella sub-regione del Goceano.

L'area di installazione degli aerogeneratori, ricadente per intero nel comune di Buddusò, rientra su un comprensorio che prende appunto il nome di "Altopiano di Buddusò".

2 Aspetti floristici

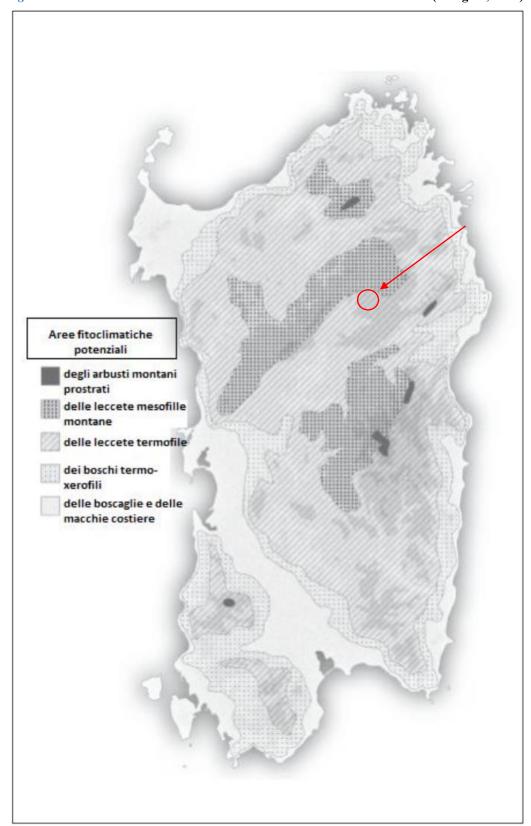
2.1 Fitogeografia

La Fitogeografia è la branca della biogeografia (detta anche geobotanica) che studia i tipi e la distribuzione dei raggruppamenti vegetali sulla Terra e le cause della diversificazione delle maggiori comunità vegetali. Gli insiemi delle piante, sia che si considerino come singole unità tassonomiche (e perciò dal punto di vista floristico), sia come raggruppamenti in comunità (o fitocenosi), si determinano ricorrendo a tabulazioni, ricavando dati preliminari da erbari e lavori scientifici, e costruendo carte in relazione agli scopi e al tipo di fatti da rappresentare. La fitogeografia, pur avendo metodi propri, è strettamente correlata a diverse discipline botaniche e di altra natura: essa presuppone la conoscenza della sistematica, per la classificazione dei taxa che compongono le flore e le vegetazioni; della geografia, sia generale sia regionale, per la definizione delle caratteristiche fisiche della superficie terrestre, per l'individuazione delle interconnessioni con le attività antropiche e per la nomenclatura necessaria a indicare fenomeni e regioni; e inoltre della geologia, della microbiologia del suolo, della pedologia, della meteorologia, della storia ecc., da cui si desumono dati per spiegare la distribuzione e la frequenza delle specie vegetali nelle varie regioni della Terra. Come indicato alla Parte I, a livello bioclimatico l'area di intervento rientra della fascia Mesomediterranea superiore, subumida inferiore, euceanica attenuata.

Arrigoni (2006) ha messo in evidenza la correlazione esistente fra clima e vegetazione della Sardegna, riconoscendo 5 zone fitoclimatiche diverse (Figura II-1):

- Area degli arbusti montani prostrati
- Area delle leccete mesofile montane
- Area delle leccete termofile
- Area dei boschi termo-xerofili
- Area delle boscaglie e delle macchie costiere

L'area in esame al presente studio è quella delle leccete termofile.



RELAZIONE FLORO-FAUNISTICA

Figura II-1. Individuazione dell'area di intervento sulla carta fitoclimatica (Arrigoni, 2006).

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.8

Il quadro teorico della vegetazione nella realtà è fortemente influenzato dalle condizioni geomorfologiche, edafiche, pedologiche e in modo particolare dalle attività agricole e pastorali. Ciò ha dato origine all'ampio mosaico di situazioni boschive che hanno favorito le formazioni secondarie di boschi misti di querce, in modo particolare la sughera (*Quercus suber*) e la roverella (*Quercus pubescens* s.l.). In aree ristrette permangono formazioni a *Taxus baccata* e *Ilex aquifolium* e boschi secondari di castagno (*Castanea sativa*) e colture di nocciolo (*Corylus avellana*). Le attività di silvicoltura - sia da parte degli enti pubblici che da parte di privati - hanno sinora privilegiato soprattutto le conifere sia spontanee (*Pinus halepensis, Pinus pinea*) che esotiche (*Pinus nigra, Cedrus atlantica*) e meno frequentemente altre specie minori.

Lungo i corsi d'acqua, nelle aree al di sotto dei 400-500 m, le formazioni igrofile sono caratterizzate da formazioni miste dominate di volta in volta da specie diverse quali ontano nero (*Alnus glutinosa*), frassino (*Fraxinus oxycarpa*), salici (*Salix* sp.pl.), tamerici (*Tamarix* africana), oleandro (*Nerium oleander*) e agnocasto (*Vitex agnocastus*).

2.2 **2.2 Endemismi sardi**

La Sardegna, a causa dell'insularità e dell'elevata biodiversità ecosistemica, risulta ricca di unità tassonomiche endemiche ed in particolar modo lo sono i suoi massicci montuosi per effetto dell'orofitismo (Bacchetta *et al.*, 2005). Si determina quindi, specialmente per le montagne a litologia carbonatica, una condizione di insularità ecologica che crea un effetto *hot spot* (Médail, Quézel, 1997).

Tali condizioni, unitamente alla peculiare evoluzione filogenetica della flora endemica sarda, permettono di riferire i territori in oggetto alla regione biogeografica mediterranea (Rivas-Martínez *et al.*, 1999), subregione mediterranea occidentale e provincia sardo-corsa (Arrigoni, 1983; Bacchetta *et al.*, 2005). Il riconoscimento di una provincia biogeografica autonoma si fonda su un elevato contingente di unità tassonomiche paleoendemiche esclusive delle due isole e sulla presenza di due generi endemici monotipici: *Morisia Gay* e *Nananthea DC*.

Sono stati censiti in totale 347 endemismi, appartenenti a 158 generi e 52 famiglie; di questi 277 hanno rango specifico, 54 sottospecifico, 10 varietale e 6 sono ibridi.

Lo spettro biologico evidenzia una dominanza delle emicriptofite (34.3%), seguite da camefite (30.0%), geofite (17,3%), terofite (8,4%), nanofanerofite (7,8%), fanerofite (2,0%) e idrofite (0,3%). L'alto numero di emicriptofite e di camefite è da ricondurre alla mediterraneità del clima e alla elevata presenza di habitat naturali, in particolar modo rupicoli. L'elevato valore delle geofite può essere considerato una conferma del clima marcatamente mediterraneo e dall'influenza percentuale delle Orchidaceae, che ne rappresentano il 28%. I bassi valori percentuali delle nanofanerofite e fanerofite si spiegano considerando la lentezza della

Comm.: C20-025-S05

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.9

speciazione di queste entità, causata dai lunghi intervalli generazionali. Quelli delle terofite testimoniano l'elevato grado di naturalità dei territori sardi, anche se potrebbero semplicemente essere legati alla maggior capacità di diffusione delle terofite, in particolare per via antropocora e zoocora. Le idrofite sono rappresentate dalla sola *Isoëtes velata* A. Braun ssp. *tegulensis* (Gennari) Bat. et Trabault, unica entità endemica idrofita della Sardegna, a conferma del fatto che l'acqua è un fattore omogeneizzante per la flora. Bisogna peraltro considerare la scarsità di nicchie ecologiche idonee a specie idrofite nei territori sardi.

La quasi totalità degli endemismi vascolari della Sardegna è rappresentata da Angiospermae, in particolare 289 sono Dicotyledones e 55 Monocotyledones; solo 3 sono Pteridophyta mentre non si riscontrano Gymnospermae. La famiglia con il più alto numero di endemiti è quella delle Asteraceae (49), seguita dalle Plumbaginaceae (43), Caryophyllaceae (32) e Fabaceae (23). I generi maggiormente rappresentati sono Limonium (39), Ophrys e Genista (14), Silene (12). Tra i taxa endemici rilevati hanno particolare importanza quelli esclusivi della Sardegna (159) ed in particolare con areale puntiforme tra i quali si ricordano: Anchusa capellii Moris, A. formosa Selvi, Bigazzi et Bacch., Astragalus maritimus Moris, A. verrucosus Moris, Borago morisiana Bigazzi et Ricceri, Centranthus amazonum Fridlender et A. Raynal, Dianthus morisianus Vals., Euphrasia genargentea (Feoli) Diana, Limonium merxmuelleri Erben, Linum muelleri Moris, Nepeta foliosa Moris, Ribes sardoum Martelli. Importanti dal punto di vista biogeografico risultano i generi monospecifici la cui distribuzione interessa Sardegna e Corsica [Morisia monanthos (Viv.) Asch., Nananthea perpusilla (Loisel.) DC.] ed anche i territori dell'Arcipelago Toscano e delle Isole Baleari [Soleirolia soleirolii (Req.) Dandy]; questi taxa confermano l'elevato livello di autonomia floristica dei territori sardi. Per quanto concerne la corologia, si pone in evidenza come le endemiche esclusive della Sardegna rappresentino la quota più rilevante (45,8%) e che unitamente a quelle sardo-corse (26,2%), costituiscono il 72% del totale. In particolare, come già evidenziato da Arrigoni, Di Tommaso (1991) e Mossa, Bacchetta (1998), gli endemismi esclusivi della Sardegna appaiono più legati ai substrati di natura carbonatica, mentre quelli sardo-corsi ai substrati cristallini e secondariamente metamorfici. Le unità tassonomiche il cui areale è limitato ai territori insulari risultano nettamente maggioritari (88,7%). All'interno di questa categoria, oltre agli endemismi sardi e sardocorsi, è possibile distinguere quelli tirrenico-insulari (5,2%), mediterraneo-occidentali insulari (6,9%) e sardosiculi (4,6%). La componente endemica estesa anche a territori continentali risulta pari al 11,3%, di cui il 4,6% è rappresentato da endemiche tirreniche insulari presenti anche in Nord Africa, il 6,1% da endemiche tirreniche s.s.

Questi dati evidenziano l'elevato grado di autonomia della flora sardo-corsa e testimoniano l'evoluzione in situ a partire da una flora di tipo prevalentemente mediterraneo, secondo quanto proposto per la vicina Corsica da diversi autori in passato (Braun-Blanquet, 1926; Contandriopoulos, 1962; Faverger, 1975; Arrigoni, 1983). Questa ipotesi viene confermata dall'elevato numero di unità tassonomiche endemiche esclusive, dal basso

RELAZIONE FLORO-FAUNISTICA

numero di entità in comune con le aree continentali e dalle maggiori similitudini con i territori del Mediterraneo occidentale. Ad ulteriore conferma di ciò si evidenzia il numero estremamente ridotto di entità subspecifiche (54) rispetto ai *taxa* di rango specifico (277).

2.3 Aspetti fitogeografici ed associazioni vegetali dell'area

Nell'area di indagine prevale una tipologia climatica ad *ombrotipo subumido* (*Lauretum*, sottozona fredda, secondo la classificazione del Pavari) caratterizato da formazioni dominate da specie tipicamente sclerofille quali leccio (*Quercus ilex*), sughera (*Quercus suber*) con, vista la quota e le precipitazioni medie osservabili durante l'anno, presenza di specie più mesofile quali la roverella (*Quercus pubescens*).

A livello di macro-scala (paesaggio) l'area si presenta dominata dalla cosiddetta "serie della lecceta" (Viburno-Quercetum ilicis) che, nella sua forma più matura (nonché di maggiore naturalità), si presenta come un bosco denso di alto fusto, nella quale le specie legnose sono tutte sempreverdi. Proprio a causa della densa copertura dello strato arboreo si denota spesso una grande limitazione allo sviluppo degli arbusti e delle erbe nel sottobosco. Infatti, in un normale rilievo della vegetazione effettuato nell'area in superfici di circa 100 m² difficilmente sono state rilevate più di 20-25 specie (in alcuni casi tale numero si riduce a 10). In generale, le formazioni boschive a leccio osservate nella zona, riflettono sicuramente le situazioni a più elevata naturalità. Si tratta spesso di formazioni chiuse nella quale si osserva sovente un sottobosco formato da tipiche specie mediterranee quali Arbutus unedo, Rhamnus alaternus, Erica arborea, Ruscus aculeatus, Asparagus acutifolius, Smilax aspera, Myrtus communis, Phillyrea angustifolia, Phillyrea latifolia, Pistacia lentiscus, Jiuniperus oxycedrus. Quando la lecceta si dirada entrano a far parte con maggiore insistenza (sia in numero di esemplari che in copertura) le specie sopra indicate, formando estensioni di macchia più o meno ampie.

Naturalmente a questi aspetti di media-elevata naturalità, si contrappongono sovente altri nei quali l'impatto antropico a portato allo sviluppo di cenosi con sempre più forte prevalenza di specie antropogeniche. Le interconnessioni dinamiche tra queste differenti fisionomie vegetali sono fortemente correlabili e legate da strette relazioni di feedback sia positivo che negativo.

Infatti, è possibile rilevare la successione nella figura seguente (Figura II-2).

Lecceta (Quercion ilicis)	Lecceta con Sughera	Macchia	☐⇒ Gariga	Praterie antropogeniche
	Azione di impatto d	dovuta a pascolo, ce	duazione o fuoco	

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.11

2.4 Specie rare ed endemiche del Goceano

Le caratteristiche geologiche e climatiche hanno una grande influenza sugli ecosistemi, la flora, la vegetazione e la fauna. L'area più interessante dal punto di vista fitogeografico si trova a circa 15 km a ovest-nordovest rispetto all'area di progetto, e presenta la copertura forestale più densa e continua riscontrabile in Sardegna (Farris e Farris, 2019), caratterizzata da un'alta diversità di specie e formazioni autoctone e bassa presenza di rimboschimenti con specie aliene. Alle sugherete sugli altopiani succedono alle quote più elevate estesi boschi di roverella e leccete montane. Alle querce dominanti si accompagnano varie specie arboree e arbustive, prime fra tutte l'agrifoglio (Ilex aquifolium) e l'acero minore (Acer monspessulanum). Altre specie sono ristrette a territori più limitati, come il ciavardello (Sorbus torminalis) quasi esclusivo dei territori montani di Bolotana e Illorai. Sono queste formazioni forestali mesofile la vera caratteristica dell'area, inclusi alcuni esempi di boschi vetusti con alberi che sfiorano i 30 metri di altezza come nella montagna di Illorai. Altrove i boschi sono più giovani, talvolta omogenei e coetanei, in conseguenza di tagli e incendi, talvolta disastrosi come quello che devastò la foresta demaniale di Anela nell'estate del 1945. Le specie esclusive sono poche, tra queste possiamo menzionare il rovo di Arrigoni (Rubus arrigonii) a Sos Nibberos e il garofano di Todde (Dianthus ichnusae subsp. toddei) nei rocciai del Goceano. Sono invece molte le specie che hanno in questa catena montuosa stazioni di rifugio, grazie al clima fresco e umido: il tasso (Taxus baccata) presenta qui popolazioni tra le più antiche ed estese, come a Badde Salighes, Sos Nibberos, Su Tassu e parte sommitale del Monte Lerno (Pattada). A Mularza Noa, nel Murghine, è presente una popolazione isolata del ribes sardo (Ribes multiflorum subsp. sandalioticum), oltre all'unica popolazione sarda di caprifoglio etrusco (Lonicera etrusca). L'espansione della copertura forestale ha causato negli ultimi decenni la contrazione degli habitat aperti come i pascoli e le garighe (cfr. cartografia allegata). Questi sono caratterizzati dalla presenza di molte piante rare, come la ginestra di Desole (Genista desoleana) e il timo erba barona (Thymus herba-barona) nelle garighe, mentre i pascoli – intesi come pascoli naturali, e non coltivati dall'uomo - sono ricchissimi di specie erbacee interessanti: sui suoli aridi si stabiliscono fienarola bulbosa (Poa bulbosa) e trifoglio sotterraneo con latte di gallina di Corsica (Ornitogalum corsicum) e zafferano minore (Crocus minimus), su quelli umidi si rinvengono cenosi dense, con festuca di Moris (Festuca morisiana) e ginestrino alpino (Lotus alpinus), spesso accompagnate da morisia (Morisia monanthos) e peverina palustre (Cerastium palustre).

2.4 Situazione rilevata sul luogo

Durante i sopralluoghi effettuati in campo nei periodi tardo-autunnale, invernale e tardo-primaverile, è stato possibile effettuare delle osservazioni in merito alla vegetazione presente sui luoghi di intervento. Si riportano di seguito alcune immagini delle aree di intervento, in alcuni casi in entrambi i sopralluoghi, con relativo commento.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.12

Figura II-3 e II-4. Riprese dal punto di installazione B-01. In questo caso si tratta di un pascolo semi-naturale con prevalenza di avena.

Figura II-5 e II-6. Riprese dal punto di installazione B-02. In questo caso si tratta di un pascolo con elevata pietrosità e roccia affiorante.

Figura II-7 e II-8. Area di installazione B-03. Anche qui si rileva la presenza di flora selvatica comune del Mediterraneo: cardo selvatico, camomilla, poacee. Le piante arboree non rientrano nell'area di progetto.

RELAZIONE FLORO-FAUNISTICA

REV: 1

30/06/2023

Pag.13

Figura II-9 e II-10. Area di installazione B-04. A parte la comune flora selvatica annuale (poacee in particolare), si notano delle

Figura II-11 e II-12. Riprese dal punto di installazione B-05. Anche qui si tratta di pascolo naturale, con elevata pietrosità. Le specie arboree rilevato sono roverelle, perastri e in misura minore, querce da sughero (queste ultime non rientrano comunque sulla superficie di progetto).

Figura II-13 e II-14. Riprese dal punto di installazione B-06. In questo caso si tratta di un prato semi-naturale, costituito prevalentemente da avena e loietto. Piante sparse di roverella e leccio.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.14

Figura II-15 e II-16. Riprese dal punto di installazione B-07. Condizioni analoghe alla precedente.

Figura II-17 e II-18. Riprese dall'area di costruzione della SSU Buddusò (progetto Terna). Trattasi di boschetto di roverelle, con una presenza stimata pari al 5% di querce da sughero.

RELAZIONE FLORO-FAUNISTICA

3 Fauna selvatica censita nell'area

Come evidenziato nella carta di uso del suolo, le aree nelle quali è prevista la realizzazione degli impianti sono in genere costituite da pascoli o ex-coltivi oggi destinati a pascolo, che talvolta sono interessati da processi di evoluzione verso forme più complesse. In alcuni casi, infatti, sono presenti dei cespuglieti (comunemente denominati "mantelli") di neo-formazione. La fauna presente nelle aree interessate è pertanto quella tipica dei pascoli e degli ex-coltivi, di norma rappresentata da specie ad amplissima diffusione.

Di seguito viene riportato un elenco delle specie rinvenute e/o probabilmente rinvenibili nelle aree di intervento, affiancando a ciascuna specie le informazioni sul grado di rischio che la specie corre in termini di. conservazione. Il sistema di classificazione applicato è adattato dai criteri stabiliti dal IUCN (*International Union for the Conservation of Nature*) che individua 7 categorie (Tab. I-1).

Tabella I-1. Classificazione del grado di conservazione specie IUCN.

LC	Least Concern	Minima preoccupazione
NT	Near Threatened	Prossimo alla minaccia
VU	Vulnerable	Vulnerabile
EN	Endangered	In pericolo
CR	Critically Endangered	In grave pericolo
EW	Extinct in the Wild	Estinto in natura
EX	Extinct	Estinto

3.1 Anfibi

Gli anfibi dell'area sono comuni al resto del territorio sardo. Sono legati agli ambienti umidi, pertanto la loro vulnerabilità dipende molto dalla vulnerabilità degli habitat in cui vivono. I geotritoni (Famiglia *Plethodonthidae*) costituiscono degli esempi di endemismo particolarmente interessante; l'area di impianto non presenta caratteristiche ambientali adatte a questi animali. I dati riportati in tabella I-2 sono desunti dall'indagine di Caredda e Isoni (2005).

Tabella I-2. Specie di anfibi censiti sull'intero territorio regionale sardo.

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status
Ordine Anura		
Famiglia Discoglossidae		
Discoglosso sardo – Discoglossus sardus	Ambienti acquatici anche artificiali	LC
Famiglia Bufonidae		
Rospo comune - Bufo bufo spinosus	Ambienti acquatici in periodo riproduttivo - Ubiquitario	LC
Rospo verde - Bufo viridis viridis	Ambienti acquatici anche artificiali, più diffuso in aree costiere	LC
Famiglia Hylidae		
Raganella sarda - Hyla sarda	Ambienti acquatici ricchi di vegetazione	LC
Famiglia Ranidae		
Rana comune - Pelophylax esculentus	Ubiquitaria	LC
Ordine Urodela		
Famiglia Plethodonthidae		
Geotritone del Monte Albo - Speleomantes flavus	Grotte carsiche e fessure	VU
Geotritone dell'Iglesiente - Speleomantes genei	Grotte carsiche e fessure	VU
Geotritone imperiale - Speleomantes imperialis	Grotte carsiche e fessure	NT

Comm.: C20-025-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.16

3.2 Rettili

Come per gli anfibi, i rettili della dell'area sono comuni a buona parte del territorio sardo. Escludendo - per ovvi motivi - le tartarughe marine, delle 20 specie censite in Sardegna, solo 3 sono a basso rischio (NT) ed 1 vulnerabile (VU). Si tratta comunque di specie non compatibili con le caratteristiche dell'area di impianto. Le restanti 17 risultano non minacciate (LC). Anche per i rettili a rischio, la minaccia proviene dalla rarefazione degli habitat al quali sono legati. I dati riportati in tabella I-3 sono desunti dalla bibliografia (Caredda e Isoni, 2005).

Tabella I-3. Specie di rettili censite in Sardegna (escl. tartarughe marine).

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status
Ordine Testudines		
Famiglia Emydidae		
Tartaruga palustre europea - Emys orbicularis	Ambienti acquatici paludosi	NT
Famiglia Testudinidae		
Testuggine comune - Testudo hermanni hermanni	Ambienti naturali e semi-naturali	NT
Testuggine marginata – Testudo marginata	Ambienti naturali e semi-naturali	LC
Testuggine greca – Testudo graeca	Ambienti naturali e semi-naturali	VU
Ordine Squamata		
Famiglia Gekkomidae		
Emidattilo verrucoso - Hemidactylus turcicus	Ambienti naturali e antropizzati. Più diffuso in aree costiere	LC
Tarantolino – Euleptes europea	Ambienti naturali aridi e rocciosi	NT
Geco comune/Tarantola muraiola - Tarentola mauritanica	Ambienti antropizzati	LC
Famiglia Lacertidae		
Ramarro occidentale - Lacerta bilineata chloronota	Più numerosa in luoghi umidi	LC
Lucertola campestre - Podarcis siculus	Predilige ambienti antropizzati	LC
Lucertola di Bedriaga – Archaeolacerta bedriagae	Aree secche e soleggiate - Endemismo Sardo-Corso	NT
Lucertola tirrenica – Podarcis tiliguerta	Aree secche e soleggiate – Endemismo Sardo-Corso	LC
Algiroide nano – Algyroides fitzingeri	Ubiquitario – Endemismo Sardo-Corso	LC
Lucertola siciliana - Podarcis waglerianus	Ambienti naturali e semi-naturali	LC
Famiglia Scincidae		
Luscengola - Chalcides chalcides	Pendii assolati	LC
Gongilo ocellato - Chalcides ocellatus	Ubiquitario	LC
Famiglia Colubridae		
Biacco maggiore - Hierophis viridiflavus	Ubiquitario	LC
Colubro di Esculapio – Elaphe longissima	Boschi, aree rurali	LC
Colubro ferro di cavallo (o sardo) – Coluber hippocrepis	Boschi, aree rurali non umide	LC
Natrice viperina – Natrix maura	Ubiquitario	
Natrice di Cetti - Natrix natrix cetti	Ubiquitario	LC
Famiglia Viperidae		
Vipera comune - Vipera aspis	Prati, pascoli	LC

3.3 Mammiferi

La mammalofauna della sub-regione del Goceano è quella propria di tutta la Sardegna, che appartiene alla regione paleartica e ha conservato caratteri mediterranei. Precisamente, quasi tutti i mammiferi presenti in Sardegna sono presenti anche nel Goceano.

Delle 39 specie di mammiferi selvatici presenti in Sardegna, ben 17 (Tab. I-4) sono chirotteri prevalentemente cavernicoli (o *troglofili*). L'area di progetto si trova all'esterno delle *aree di attenzione per la chirotterofauna* - e delle relative aree buffer di 5 km - indicate dalla Regione Sardegna. Vi sono anche delle specie di mammiferi

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.17

che vivono esclusivamente in are forestali, come il muflone, il cervo sardo e il daino, pertanto non frequentano l'area di impianto, caratterizzata invece da altopiani.

Per quanto concerne lo status della mammalofauna selvatica sarda, solo tre specie risultano a rischio (VU), il vespertilio di cappaccini (*Myotis capaccinii*), l'orecchione sardo (*Plecotus sardus*) e il muflone (*Ovis orientalis musimon*), quattro a basso rischio (NT), il barbastello (*Barbastella barbastellus*), il rinofolo euriale (*Rhinolophus euryale*), il miniottero (*Miniopterus schreibersii*) e il quercino sardo (*Eliomys quercinus sardus*), mentre tutti gli altri sono a minimo rischio (LC); altri due, la martora e il gatto selvatico, sono minacciate dalle modificazioni ambientali. Le specie contrassegnate da asterisco sono quelle di interesse venatorio nella regione.

Tabella I-4. Specie di mammiferi selvatici censiti in Sardegna.

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status
Ordine Insectivora		
Famiglia Erinaceidae		
Riccio - Erinaceus europaeus italicus	Ubiquitaria	LC
Famiglia Soricidae		
Crocidura rossiccia sarda - Crocidura russula ichnusae	Ubiquitaria – Sottosp. endemica	LC
Mustiolo – Suncus etruscus pachyrus	Ubiquitaria – Sottosp. Endemica	LC
Ordine artiodactyla		
Famiglia bovidae		
Muflone – Ovis orientalis musimon	Zone rocciose e boschi	VU
Famiglia Cervidae		
Cervo sardo - Cervus elaphus corsicanus	Aree forestali	LC
Daino – <i>Dama dama</i>	Aree forestali	LC
Famiglia Suidae		
Cinghiale – Sus scrofa meridionalis*	Ubiquitaria	LC
Ordine Chiroptera		
Famiglia Rhinolophidae		
Rinolofo euriale - Rhinolophus euryale	Grotte/Anfratti - Attività predatoria	NT
Ferro di cavallo maggiore - Rhinolophus ferrumequinum	Grotte/Anfratti - Attività predatoria	LC
Ferro di cavallo minore - Rhinolophus hipposideros	Grotte/Anfratti - Attività predatoria	LC
Famiglia Vespertilionidae		
Vespertilio di Capaccini - Myotis capaccinii	Grotte/Anfratti - Attività predatoria	VU
Vespertilio maggiore - Myotis mystacinus	Grotte/Anfratti - Attività predatoria	LC
Vespertilio di Natterer - Myotis nattereri	Grotte/Anfratti - Attività predatoria	LC
Pipistrello albolimbato - Pipistrellus kuhli	Grotte/Anfratti - Attività predatoria	LC
Pipistrello nano – Pipistrellus pipistrellus	Grotte/Anfratti - Attività predatoria	LC
Pipistrello di Savi - Hypsugo savii	Grotte/Anfratti - Attività predatoria	LC
Serotino comune - Eptesicus serotinus	Grotte/Anfratti - Attività predatoria	LC
Rinolofo di Mehely – Rhinopholus mehelyi	Grotte/Anfratti - Attività predatoria	VU
Barbastello - Barbastella barbastellus	Grotte/Anfratti - Attività predatoria	NT
Vespertilione di Daubenton – Myotis daubentonii	Grotte/Anfratti - Attività predatoria	LC
Vespertilione smarginato – Myotis emarginatus	Grotte/Anfratti - Attività predatoria	LC
Vespertilione maggiore – Myotis myotis	Grotte/Anfratti - Attività predatoria	LC
Orecchione comune - Plecotus auritus	Grotte/Anfratti - Attività predatoria	LC
Orecchione sardo – Plecotus sardus	Grotte/Anfratti - Attività predatoria	VU
Miniottero - Miniopterus schreibersii	Grotte/Anfratti - Attività predatoria	NT
Famiglia Molossidae		
Molosso di Cestoni - Tadarita teniotis	Grotte/Anfratti - Attività predatoria	LC
Ordine Lagomorpha		
Famiglia Leporidae		
Coniglio selvatico - Oryctolagus cuniculus*	Ubiquitaria	LC
Lepre - Lepus europaeus corsicanus*	Aree con vegetazione rada	LC
Famiglia Myoxidae (=Gliridae)	·	
Topo quercino sardo - Eliomys quercinus sardus	Macchie e boschi	NT
Ghiro sardo - Glis glis melonii	Boschi	LC
-		

Comm.: C20-025-S05

ISO 3001
BUREAU VERITAS
Certification

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

RELAZIONE FLORO-FAUNISTICA

30/06/2023 REV: 1

Pag.18

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status
Famiglia Microtidae		
Arvicola del Savi - Microtus savii	Ubiquitaria	LC
Famiglia Muridae		
Topo selvatico - Apodernus sylvaticus	Ubiquitaria	LC
Ratto nero - Rafius rattus	Legato alla presenza di alberi	LC
Ratto - Rattus norvegicu	Ubiquitaria	LC
Topolino comune - Illfus dornesticus	Legato alla presenza dell'uomo	LC
Ordine Carnivora		
Famiglia Canidae		
Volpe sarda - Vulpes vulpes ichnusae	Ubiquitaria	LC
Famiglia Mustelidae		
Donnola sarda - Mustela nivalis boccamelai	Ubiquitaria	LC
Martora - Martes martes	Macchie e boschi	LC
Famiglia Felidae		
Gatto selvatico sardo - Felis sylvestris lybica	Ambienti naturali in genere	LC

Solitamente non vi sono dati molto esaurienti sulla presenza di mammiferi su una determinata area di indagine. Tuttavia, l'Ente Foreste della Sardegna aveva pubblicato nel 2014, nell'ambito del *Piano Forestale particolareggiato del complesso forestale "Altopiano di Buddusò"*, un'indagine da cui risulta la presenza nell'area di sole sei specie di chirotteri (*Pipistrellus kuhlii*, *Pipistrellus pipistrellus*, *Pipistrellus pygmaeus*, *Hypsugo savii*, *Miniopterus schreibersii*, *Tadarida teniotis*). Il numero totale di specie è risultato piuttosto basso, anche rispetto ai valori registrati in altri complessi. Sebbene sia da considerare possibile anche la presenza di altre specie come ad esempio il rinolofo minore *Rhinolophus hipposideros* (per il quali mancano rifugi invernali idonei ma che potrebbe comunque essere presente in piccolo numero) diffuso in tutta la Sardegna (Mucedda et al., 1998; Mucedda, 2008) ma, come tutti i rinolofi, difficilmente rilevabile col bat-detector, questa povertà riflette indubbiamente alcuni caratteri ambientali. Infatti non solo nell'area mancano rifugi importanti per specie troglofile, ma sono anche molto poco diffusi ambienti forestali idonei per i chirotteri, in particolare boschi di latifoglie che sono poco estesi e in genere di modesto sviluppo.

Per quanto invece riguarda gli altri mammiferi, sullo stesso report si rileva nell'area la presenza di quelli più comuni in Sardegna, con una netta prevalenza di ungulati (cinghiale, in particolare), della volpe e del coniglio domestico.

3.4 Avifauna

Le conoscenze sulle avifaune locali si limitano quasi sempre ad elenchi di presenza-assenza o ad analisi appena più approfondite sulla fenologia delle singole specie (Iapichino, 1996). Nel corso del tempo gli studi ornitologici si sono evoluti verso forme di indagine che pongono attenzione ai rapporti ecologici che collegano le diverse specie all'interno di una stessa comunità e con l'ambiente in cui vivono e di cui sono parte integrante.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

Pag.19

Allo stesso modo, dal dato puramente qualitativo si tende ad affiancare dati quantitativi che meglio possono rappresentare l'avifauna e la sua evoluzione nel tempo.

Il numero di specie nidificanti è chiaramente legato alle caratteristiche dell'ambiente: se la maggior parte degli uccelli della Sardegna è in grado di vivere e riprodursi in un ampio spettro ecologico, vi sono alcune specie più esigenti che certamente nidificano solo in un tipo di habitat. Mancano, ad esempio, le (poche) specie limitate in Sardegna ad altitudini superiori ai 1.000 m s.l.m. o, date le distanze, quelle distribuite lungo la fascia costiera, ad eccezione del gabbiano, ormai divenuto ubiquitario.

In totale in Sardegna sono state censite 167 specie di uccelli (Caredda e Isoni, 2005b). Di queste, nessuna presenta caratteristiche di esclusività della sub-regione del Goceano. Alla Tabella I-5 sono elencate le specie dell'avifauna che, per le loro caratteristiche, si ritiene possano essere compatibili con le aree di impianto, tutte situate sull'Altopiano di Buddusò, in quanto rilevate sul Report dell'Ente Foreste Sardegna. Si dovrà comunque procedere con un monitoraggio dell'avifauna (cfr. cap. 6) nei periodi autunnale e primaverile per avere conferma della presenza di queste specie.

Sempre nella stessa tabella viene indicato lo status IUCN di ogni specie. Status che ad oggi, dalla consultazione del sito istituzionale IUCN, risulta essere a rischio minimo (LC) su tutte le specie.

Tabella I-5. Specie di uccelli rilevate nell'aera e relativo IUCN Status.

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status	Specie non cacciabile
Ordine Accipitriformes			
Famiglia Accipitridae			
Poiana - Buteo buteo	A - C - D	LC	X
Aquila reale - Aquila chrysaetos	A - C - D	LC	X
Sparviero – Accipiter nisus	A - C - D	LC	X
Ordine Pelecaniformes			
Famiglia Ardeidae			
Airone guardabuoi - Bubulcus ibis	B - I	LC	Χ
Nitticora - Nycticorax nycticorax	B - I	LC	Χ
Ordine Charadriiformes			
Famiglia Laridae			
Gabbiano reale - Larus michahellis	F - H - I	LC	Х
Ordine Falconiformes			
Famiglia Falconidae			
Gheppio - Falco tinnunculus	A - C - D - E	LC	X
Falco pellegrino - Falco peregrinus	Α	A LC X	
Ordine Columbiformes			
Famiglia Columbidae			
Piccione selvatico - Columba livia	Α	LC	
Colombaccio - Columba pattoribus	B - C - D - E	LC	
Tortora - Streptopelia turtur	B - C - D - E	LC	
Ordine Coraciiformes			
Famiglia Meropidae			
Gruccione - Merops apiaster	B - E - F - G - I	LC	Χ
Ordine Cuculiformes			
Famiglia Cuculidae			
Cuculo - Cuculus canorus	C - E	LC	X
Ordine Strigifonnes		·	

Famiglia Tytonidae

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.20

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status	Specie non cacciabile
Barbagianni - Tyto alba Famiglia Strigidae	A - E - H	LC	X
Assiolo - Otus scops	B - C - D - E - H	LC	X
Civetta Athene noctua	C-E-G-H	LC	X
Ordine Apodiformes	С-Е-О-П	LC	^
Famiglia Apodidae	Λ 11	1.0	V
Rondone - Apus apus	A - H	LC	X
Famiglia Upupidae	C D F	1.0	V
Upupa - Upupa epops	C - D - E	LC	X
Ordine Piciformes			
Famiglia Picidae		1.0	V
Picchio rosso maggiore - Picoides major	С	LC	Х
Ordine gruiformes			
Famiglia rallidae			
Folaga – <i>Fulica atra</i>			
Ordine Passeriformes			
Famiglia Regulidae			
Fiorrancino - Regulus ignicapilla	C - E	LC	
Ordine Podicipediformes			
Famiglia Podicipedidae			
Tuffetto - Tachybaptus ruficollis		LC	
Ordine Galliformes			
Famiglia Phasianidae			
Pernice sarda - Alectoris barbara	E - F	LC	Х
	C-F	LC	۸
Famiglia Alaudidae			
Allodola – Aulada arvensis	E - G	LC	
Tottavilla - <i>Lullula arborea</i>	C - E	LC	Х
Famiglia Ilirundinidae			
Rondine - <i>Ilirundo rustica</i>	E - H	LC	X
Balestruccio - <i>Delichon urbica</i>	A - H	LC	X
Famiglia Motacillidae			
Ballerina bianca - Motacilla alba	B - H	LC	Χ
Famiglia Turdidae			
Pettirosso - <i>Erithacus rubecula</i>	B - C	LC	X
Usignolo - <i>Luscinia megarhynchos</i>	B - C - E - F	LC	X
Saltimpalo - Saxicola torquatus	E - F - G	LC	X
Passero solitario - Monticola solitarius	A - H	LC	X
Merlo - Turdus merula	B - C - D - E	LC	
Famiglia Sylvidae			
Famiglia Sylvidae Capinera - Sylvia atricapilla	B - C	LC	Х
·	В - С F - G		
Sterpazzola di sardegna - Sylvia conspicillata	F - G F - G	LC LC	X X
Magnanina sarda - <i>Sylvia sarda</i> Occhiocotto - <i>Sylvia melanochephala</i>	F - G B - C - D - E - F - H - I		
		LC	X
Luì piccolo - Phylloscopus collybita	B - C	LC	Х
Famiglia Muscicapidae			
Pettirosso - Erithacus rubecura	B - C	LC	X
Tordo bottaccio - Turdus philomelos	B - C	LC	X
Codirosso - Phoenicurus phoenicurus	B - C	LC	Х
Famiglia Paridae			
Cinciarella - Parus caeruleus	B - C - D - E - H	LC	X
Cinciallegra - Parus major	B - C - D - E - H	LC	X
Famiglia Laniidae			
Averla capirossa - Lanius senator	C - E	LC	Χ
Famiglia Corvidae		·	
Ghiandaia - <i>Garrulus glandarius</i>	B - C - D - E - H	LC	
Corvo imperiale - Corvus corax	Α	LC	Χ
Cornacchia grigia - Corvus corone	C - D - E	LC	X
Taccola - Corvus monedulix	Α	LC	Χ
Famiglia Sturnidae			
Storno nero - Sturnus unicolor	A - H	LC	Χ
Storno comune - <i>Sturnus vulgaris</i>	Н	LC	X

RELAZIONE FLORO-FAUNISTICA

30/06/2023 REV: 1

Pag.21

Ordine/Famiglia/Genere/Specie	Habitat	IUCN Status	Specie non cacciabile	
Famiglia Passeridae				
Passera sarda - Passer hispaniolensis	B - C - D - E - H	LC	Χ	
Passera mattugia - Passer montanus	C - D - E - H	LC	Χ	
Famiglia Fringillidae				
Verzellino - Serinus serínus	C - D - E - H	LC	Χ	
Fanello - Carduelis cannabina	C - D - E - F - G - H - I	LC	Χ	
Cardellino - Carduelis carduelis	C - D - E - F - G - H	LC	Χ	
Verdone - Carduelis chloris	C - D - E - H	LC	Χ	
Famiglia Emberizidae				
Strillozzo - Milaria calandra	D - E - F - G	LC	X	

Dove:

Α	pareti rocciose
В	fondovalle umidi e torrenti
С	boschi naturali (leccete e sugherete)
D	rimboschimenti di conifere
E	aree agricole arborate estensive (quercete, leccete)
F	aree a macchia
G	zone cerealicole e a pascolo, garighe
Н	zone urbane
ı	zone umide costiere

3.5 Invertebrati endemici

Qui di seguito è riportata la lista (Tab. I-6) delle specie endemiche presenti nel territorio sardo, nel sito tematico della Regione Sardegna (Sardegna Foreste). Vengono suddivisi secondo le seguenti caratteristiche territoriali:

- > S: Endemismo Sardo
- > SCB: Endemismo Sardo-Corso-Balearico
- > SCNA: Endemismo Sarco-Corso-Nord Africano
- > SCSB: Endemismo Sardo-Corso-Siculo-Balearico
- > SCSE: Endemismo Sardo-Corso-Siculo-Elbano (Malta Inclusa)
- > SNA: Endemismo Sardo-Nord Africano
- > SS: Endemismo Sardo-Sicuno-Isole Minori

Tabella I-6. Specie di insetti endemiche della Sardegna.

Ordine	Famiglia	Specie	Nome comune	Endemismo
Odonata - Zygoptera	Coenagrionidae	Ischnura genei	Damigella blu	SCSE
Coleoptera	Carabidae	Lophyra flexuosa sardea	Cicindela sarda	SS
Coleoptera	Lucanidae	Dorcus musimon	Dorco sardo	SCNA
Neuroptera	Myrmeleontidae	Myrmeleon mariaemathildae	Formicaleone di Maria Matilde	SNA
Laepidoptera	Sphingidae	Hyles dahlii	Sfinge dell'euforbia sarda	SCB
Coleoptera	Lampyridae	Lampyris sardiniae	Lucciola di Sardegna	S
Hymenoptera	Apidae	Bombus terrestris sassaricus	Bombo	S
Coleoptera	Geotrupidae	Chelotrupes matutinalis	Scarabeo dalle corna sardo	S
Ortoptera	Panphgidae	Pamphagous sardeus	Panfago sardo	S
Coleoptera	Carabidae	Sardaphaenops supramontanus	-	S

Comm.: C20-025-S05

ISO 9001
BUREAU VERITAS
Certification

RELAZIONE FLORO-FAUNISTICA

Parte II – Problematiche ed interferenze con la flora e la fauna

4 Effetti sulla vegetazione

Per quanto concerne la flora e la vegetazione, come evidenziato prima, le aree in cui ricadranno i nuovi aerogeneratori si caratterizzano per la presenza di flora non a rischio, essendo spesso aree a pascolo, in alcuni casi erose da vari agenti (tra cui, chiaramente, anche il vento). Le specie arboree selvatiche rilevate nell'area sono di fatto ridotte a tre: il leccio (*Quercus ilex*), la quercia comune o roverella (*Quercus pubescens*) e la quercia da sughero (*Quercus suber*).

A tal proposito, si può comunque affermare che il progetto non potrà produrre alcun impatto negativo sulla vegetazione endemica poiché, al termine delle operazioni di installazione dell'impianto, le aree di cantiere verranno ripristinate come *ante-operam*. Bisogna inoltre considerare che l'area risulta essere già antropizzata per via della costante cura e coltivazione dei terreni agricoli (tutti destinati a pascolo) su cui sorgeranno le nuove installazioni. La superficie direttamente interessata dall'intervento è costituita da aree con vegetazione rada, perlopiù destinate a pascolo arborato con querce da sughero sparse, che non ospitano specie vegetali rare o con problemi a livello conservazionistico: si ritiene pertanto che l'intervento in programma non possa avere alcuna problematica sulla flora dell'area.

5 Effetti sulla fauna

5.1 Perdita di superficie e habitat

Come specificato per la vegetazione, le perdite di superficie naturale a seguito dell'intervento sono minime. Tali perdite, per quanto riguarda la fauna, non possono essere considerate come un danno su biocenosi particolarmente complesse: le caratteristiche dei suoli non consentono un'elevata densità di popolazione animale selvatica, pertanto la perdita di superficie non può essere considerata come una minaccia alla fauna selvatica, volatile e non, dell'area in esame.

5.2 Effetti sull'avifauna stanziale e migratoria

Le grandi centrali elettriche alimentate da fonte eolica si stanno diffondendo in Europa a ritmi sempre crescenti a partire dal periodo compreso tra la fine degli anni '90 e i primi anni 2000.

Proprio durante i primi anni 2000 numerose associazioni ambientaliste avevano avanzato, oltre alle problematiche sul paesaggio, dubbi e ipotesi in merito alla possibilità che gli aerogeneratori di grandi dimensioni potessero arrecare un grave danno all'avifauna, sia stanziale che migratoria, per via di probabili urti con uccelli in grado di volare a quote relativamente elevate (grandi stormi migratori, rapaci di taglia medio-

RELAZIONE FLORO-FAUNISTICA

grande). Negli anni a seguire, è stato possibile ottenere un quadro scientifico più chiaro in merito ai danni che i grandi impianti eolici possono arrecare all'avifauna, con risultati decisamente confortanti.

Di seguito si riportano tre esempi di ricerche piuttosto recenti.

- Secondo uno studio (Sovacool *et al.*, 2009) che ha considerato le morti di uccelli per unità di potenza generata da turbine eoliche, impianti fossili o centrali nucleari, le prime sono responsabili di 0,3 abbattimenti per GWh di elettricità prodotta, contro le 5,2 delle centrali fossili (15 volte tanto) e le 0,4 di quelle nucleari. Secondo le stime, nel 2006 le turbine eoliche americane hanno causato la morte di 7 mila uccelli; le centrali fossili di 14,5 milioni, quelle nucleari di 327.000. Uno studio simile è stato compiuto dal NYSERDA (*The New York State Energy Research and Development Authority*), sempre nel 2009.
- Uno studio spagnolo (Ferrer *et al.*, 2012) condotto dal 2005 al 2008 su 20 grandi impianti eolici, con 252 turbine in totale, ha rilevato una media annuale di uccelli uccisi pari a 1,33 per turbina. La ricerca è stata realizzata vicino allo Stretto di Gibilterra, un'area attraversata da imponenti stormi migratori.
- Un terzo rapporto (Calvert *et al.*) pubblicato nel 2013 sulla rivista *Avian Conservation and Ecology* e che riguarda il Canada indica che, nel paese, le turbine eoliche sono responsabili di una morte di uccello ogni 14.275; i gatti domestici, di una ogni 3,40.

5.3 Spazi liberi tra le nuove installazioni

Il rischio di collisione, come si può facilmente intuire, risulta tanto maggiore quanto maggiore è la densità delle macchine. Appare quindi evidente come un impianto possa costituire una barriera significativa soprattutto in presenza di macchine molto ravvicinate fra loro. Gli spazi disponibili per il volo dipendono non solo dalla distanza "fisica" delle macchine (gli spazi effettivamente occupati dalle pale, vale a dire l'area spazzata), ma anche da un ulteriore impedimento costituito dal campo di flusso perturbato generato dall'incontro del vento con le pale oltre che dal rumore da esse generato. Gli aerogeneratori di ultima generazione, installati su torri tubolari e non a traliccio, caratterizzati da grandi dimensioni delle pale e quindi di diametro del rotore (l'aerogeneratore di progetto ha un rotore di diametro pari a 163 m), velocità massima di rotazione del rotore di poco superiore ai 12,10 rpm (l'aerogeneratore di progetto ha una velocità massima di rotazione pari a 11,80 rpm), installati a distanze minime superiori a 3 volte il diametro del rotore, realizzati in materiali opachi e non riflettenti, costituiscono elementi permanenti nel contesto territoriale che sono ben percepiti ed individuati dagli animali.

Il disturbo indotto dagli aerogeneratori, sia con riferimento alla perturbazione fluidodinamica indotta dalla rotazione delle pale, sia con riferimento all'emissione di rumore, costituiscono un segnale di allarme per

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1 Pag.24

zi sono presenti ormai da molti anni

l'avifauna. Ed infatti, osservazioni condotte in siti ove gli impianti eolici sono presenti ormai da molti anni hanno permesso di rilevare come, una volta che le specie predatrici si siano adattate alla presenza degli aerogeneratori, un numero sempre maggiore di individui tenterà la penetrazione nelle aree di impianto tenendosi a distanza dalle macchine sufficiente ad evitare le zone di flusso perturbato e le zone ove il rumore prodotto dalle macchine riesce ancora a costituire un deterrente per ulteriori avvicinamenti, e pertanto evitare il rischio di collisione. Tutte le specie animali, comprese quelle considerate più sensibili, in tempi più o meno brevi, si adattano alle nuove situazioni al massimo deviando, nei loro spostamenti, per evitare l'ostacolo.

In tale situazione appare più che evidente come uno degli interventi fondamentali di mitigazione sia costituito dalla disposizione delle macchine a distanze sufficienti fra loro, tale da garantire spazi indisturbati disponibili per il volo.

L'estensione di quest'area dipende anche dalla velocità del vento e dalla velocità del rotore ma, per opportuna semplificazione, un calcolo indicativo della distanza utile per mantenere un accettabile corridoio fra le macchine può essere fatto sottraendo alla distanza fra le torri il diametro del rotore aumentato di 0,7 volte il raggio, che risulta essere, in prima approssimazione, il limite del campo perturbato alla punta della pala. Indicata con D la distanza minima esistente fra le torri, R il raggio della pala, si ottiene che lo spazio libero minimo è dato da S = D-2(R+R*0,7). Date le caratteristiche del progetto, ai fini della valutazione dell'impatto cumulativo, sono state quindi valutate le inter-distanze tra le turbine del parco eolico secondo il seguente schema.

Spazio libero minimo fruibile	Valutazione	Spiegazione
> 400	Ottimo	Lo spazio può essere percorso dall'avifauna in regime di notevole sicurezza essendo utile per l'attraversamento dell'impianto e per lo svolgimento di attività al suo interno. Questa condizione si verifica su 4 delle 5 possibili interdistanze tra le torri.
> 300; < 400	Buono	Lo spazio può essere percorso dall'avifauna in regime di buona sicurezza essendo utile per l'attraversamento dell'impianto e per lo svolgimento di minime attività (soprattutto trofiche) al suo interno. Il transito dell'avifauna risulta agevole e con minimo rischio di collisione. Le distanze fra le torri agevolano il rientro dopo l'allontanamento in fase di cantiere e di primo esercizio. In tempi medi l'avifauna riesce anche a cacciare fra le torri. L'effetto barriera è minimo. Questa condizione di verifica su 1 dell 6 possibili interdistanze tra le torri.
> 200; < 300	Sufficiente	È sufficientemente agevole l'attraversamento dell'impianto. Il rischio di collisione e l'effetto barriera sono ancora bassi. L'adattamento avviene in tempi medio – lunghi si assiste ad un relativo adattamento e la piccola avifauna riesce a condurre attività di alimentazione anche fra le torri. Questa condizione di verifica su 1 dell 6 possibili interdistanze tra le torri.
> 100; < 200	Insufficiente	L'attraversamento avviene con una certa difficoltà soprattutto per le specie di maggiori dimensioni che rimangono al di fuori dell'impianto. Si verificano tempi lunghi per l'adattamento dell'avifauna alla presenza dell'impianto. L'effetto barriera è più consistente qualora queste interdistanze insufficienti interessino diverse torri adiacenti. Condizione non verificabile nel caso in esame considerato il raggio del rotore pari a m 81.
< 100	Critico	Lo spazio è troppo esiguo per permettere l'attraversamento in condizioni di sicurezza e si incrementa il rischio di collisione. Qualora questo giudizio interessi più pale adiacenti si verifica un forte effetto barriera, l'attraversamento è difficoltoso per tutte le specie medio grandi o poco confidenti, la maggior parte dell'avifauna rimane al di fuori dell'impianto a distanze di rispetto osservate varianti da circa 300 metri a 150 metri per le specie più confidenti. Condizione non verificabile nel caso in esame considerato il raggio del rotore pari a m 81.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.25

Pertanto, per l'impianto proposto (R=81,0 m) si ha:

Torre 1	Torre 2	distanza torri [m]	spazio libero minimo [m]	Valutazione inter-distanza
B-01	B-02	954	678,60	Ottimo
B-02	B-03	595	319,60	Buono
B-03	B-04	1320	1.044,60	Ottimo
B-04	B-05	476	200,60	Sufficiente
B-05	B-06	1986	1.710,60	Ottimo
B-06	B-07	932	656,60	Ottimo

L'impianto in progetto presenterà quindi uno spazio libero minimo tra le torri attigue compreso tra 200,60 e 1.710,60 m.

6 Piani di monitoraggio dell'avifauna e della chirotterofauna

Al fine di individuare la presenza di specie volatili nei pressi dell'area di intervento, si prevede l'attuazione di un idoneo piano di monitoraggio – sia in fase di pre-installazione che in fase di esercizio – dell'area di installazione del nuovo impianto. La definizione delle procedure che si vogliono adottare per lo svolgimento dei monitoraggi sulla fauna potenzialmente interessata dal progetto fa riferimento, principalmente, a quanto descritto nel Protocollo di Monitoraggio dell'Osservatorio Nazionale su Eolico e Fauna, redatto in collaborazione con ISPRA, ANEV (Associazione Nazionale Energia del Vento) e Legambiente Onlus. Al fine di ampliare le conoscenze scientifiche sul tema del rapporto tra produzione di energia elettrica da fonte eolica e popolazioni ornitiche e di chirottero-fauna, il principale obiettivo del citato Protocollo di Monitoraggio è quello di rafforzare la tutela ambientale e al tempo stesso promuovere uno sviluppo di impianti eolici sul territorio italiano che sia attento alla conservazione della biodiversità.

Le metodologie proposte sono il frutto di un compromesso tra l'esigenza di ottenere, attraverso il monitoraggio, una base di dati che possa risultare di utilità per gli obiettivi prefissati, e la necessità di razionalizzare le attività di monitoraggio affinché queste siano quanto più redditizie in termini di rapporto tra qualità/quantità dei dati e sforzo di campionamento.

Esistono soluzioni operative alternative o in grado di adattarsi alle diverse situazioni ambientali: ciò implica che, a seconda delle caratteristiche geografiche ed ambientali del contesto di indagine e delle peculiarità naturalistiche, il personale deputato a pianificare localmente le attività di monitoraggio deve individuare le soluzioni più idonee e più razionali affinché siano perseguiti gli obiettivi specifici del protocollo.

Obiettivi:

- acquisire informazioni sulla mortalità causata da collisioni con l'impianto eolico;
- stimare gli indici di mortalità;
- individuare le zone e i periodi che causano maggiore mortalità.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.26

Protocollo d'ispezione: Si tratta di un'indagine basata sull'ispezione del terreno circostante e sottostante le turbine eoliche per la ricerca di carcasse, basata sull'assunto che gli uccelli colpiti cadano al suolo entro un certo raggio dalla base della torre. Idealmente, per ogni aereo-generatore l'area campione di ricerca carcasse dovrebbe essere estesa a due fasce di terreno adiacenti ad un asse principale, passante per la torre e direzionato perpendicolarmente al vento dominante. Nell'area campione l'ispezione sarà effettuata da transetti approssimativamente lineari, distanziati tra loro circa 30 m, di lunghezza pari a due volte il diametro dell'elica, di cui uno coincidente con l'asse principale e gli altri ad esso paralleli, in numero variabile da 4 a 6 a seconda della grandezza dell'aereogeneratore. Il posizionamento dei transetti dovrebbe essere tale da coprire una superficie della parte sottovento al vento dominante di dimensioni maggiori del 30-35 % rispetto a quella sopravento (rapporto sup. soprav. / sup. sottov. = 0,7 circa). L'ispezione lungo i transetti andrà condotta su entrambi i lati, procedendo ad una velocità compresa tra 1,9 e 2,5 km/ora. La velocità deve essere inversamente proporzionale alla percentuale di copertura di vegetazione (erbacea, arbustiva, arborea) di altezza superiore a 30 cm, o tale da nascondere le carcasse e da impedire una facile osservazione a distanza. Per superfici con suolo nudo o a copertura erbacea bassa, quale il pascolo, a una velocità di 2,5 km/ora il tempo d'ispezione/area campione stimato è di 40-45 minuti (per le torri con altezza ≥ m 130,00). Alla velocità minima (1,9 km/h), da applicare su superfici con copertura di erba alta o con copertura arbustiva o arborea del 100%, il tempo stimato è di 60 minuti.

In presenza di colture seminative, si procederà a concordare con il proprietario o con il conduttore la disposizione dei transetti, eventualmente sfruttando la possibilità di un rimborso per il mancato raccolto della superficie calpestata o disponendo i transetti nelle superfici non coltivate (margini, scoline, solchi di interfila) anche lungo direzioni diverse da quelle consigliate, ma in modo tale da garantire una copertura uniforme su tutta l'area campione e approssimativamente corrispondente a quella ideale.

Oltre ad essere identificate, le carcasse vanno classificate, ove possibile, per sesso ed età, stimando anche la data di morte e descrivendone le condizioni, anche tramite riprese fotografiche. Le condizioni delle carcasse saranno descritte usando le seguenti categorie (Johnson *et al.*, 2002):

- Intatta (una carcassa completamente intatta, non decomposta, senza segni di predazione);
- Predata (una carcassa che mostri segni di un predatore o decompositore o parti di carcassa ala, zampe, ecc.);
- Ciuffo di piume (10 o più piume in un sito che indichi predazione).

Deve essere inoltre annotata la posizione del ritrovamento con strumentazione GPS (coordinate, direzione in rapporto alla torre, distanza dalla base della torre), annotando anche

il tipo e l'altezza della vegetazione nel punto di ritrovamento, nonché le condizioni meteorologiche durante i rilievi (temperatura, direzione e intensità del vento) e le fasi di Luna.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.27

6.1 Osservazioni diurne da punti fissi

Obiettivo: acquisire informazioni sulla frequentazione dell'area interessata dall'impianto eolico da parte di uccelli migratori diurni.

Il rilevamento prevede l'osservazione da un punto fisso degli uccelli sorvolanti l'area dell'impianto eolico, nonché la loro identificazione, il conteggio, la mappatura su carta in scala 1:5.000 delle traiettorie di volo (per individui singoli o per stormi di uccelli migratori), con annotazioni relative al comportamento, all'orario, all'altezza approssimativa dal suolo e al l'altezza rilevata al momento del l'attraversamento del l'asse principale dell' impianto, del crinale o dell' area di sviluppo del medesimo. Il controllo intorno al punto è condotto esplorando con binocolo 10x40 lo spazio aereo circostante, e con un cannocchiale 30-60x montato su treppiede per le identificazioni a distanza più problematiche. Le sessioni di osservazione devono essere svolte tra le 10 e le 16, in giornate con condizioni meteorologiche caratterizzate da velocità tra 0 e 5 m/s, buona visibilità e assenza di foschia, nebbia o nuvole basse. Dal 15 di marzo al 10 di novembre saranno svolte 24 sessioni di osservazione. Almeno 4 sessioni devono ricadere nel periodo tra il 24 aprile e il 7 di maggio e 4 sessioni tra il 16 di ottobre e il 6 novembre, al fine di intercettare il periodo di maggiore flusso di migratori diurni. L'ubicazione del punto deve soddisfare i seguenti criteri, qui descritti secondo un ordine di priorità decrescente:

- Ogni punto deve permettere il controllo di una porzione quanto più elevata dell'insieme dei volumi aerei determinati da un raggio immaginario di 500 m intorno ad ogni pala;
- Ogni punto dovrebbe essere il più possibile centrale rispetto allo sviluppo (lineare o superficiale) dell'impianto;
- Saranno preferiti, a parità di condizioni soddisfatte dai punti precedenti, i punti di osservazione che offrono una visuale con maggiore percentuale di sfondo celeste.
- Utilizzando la metodologia visual count sull'avifauna migratrice, nei periodi marzo-maggio e settembreottobre sarà verificato il transito di rapaci in un'area di circa 2 km in linea d'aria intorno al sito
 dell'impianto, con le seguenti modalità:
 - il punto di osservazione sarà identificato da coordinate geografiche e cartografato con precisione;
 - saranno compiute almeno 2 osservazioni a settimana, con l'ausilio di binocolo e cannocchiale, sul luogo dell'impianto eolico, nelle quali saranno determinati e annotati tutti gli individui e le specie che transitano nel campo visivo dell'operatore, con dettagli sull'orario di passaggio e direzione.

I dati saranno elaborati e restituiti ricostruendo il fenomeno migratorio sia in ermini di specie e numero d'individui in contesti temporali differenti (orario, giornaliero, per decade e mensile), sia per quel che concerne direzioni prevalenti, altezze prevalenti ecc.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.28

6.2 Monitoraggio dei chirotteri

Il monitoraggio di questi animali va effettuato solo se si rileva che l'area interessata dall'intervento si trova in prossimità di grotte/anfratti che ospitano importanti colonie di chirotteri rari o a rischio estinzione, o comunque in aree in cui ne sia accertata la presenza diffusa.

Si ritiene pertanto opportuno effettuare una prima *ricerca roost* (cioè la ricerca dei rifugi) e, <u>solo in caso di esito positivo</u>, successivamente mettere in atto un eventuale monitoraggio dei chirotteri secondo le modalità descritte di seguito, sempre proposte dalla ANEV.

La grande varietà di comportamenti presentata da questo ordine di Mammiferi impone l'adozione di metodologie di indagine diversificate e articolate così da poter rilevare tutte le specie presumibilmente presenti nell'area di studio. È necessario visitare, durante il giorno, i potenziali rifugi. Dal tramonto a tutta la notte devono essere effettuati rilievi con sistemi di trasduzione del segnale bioacustico ultrasonico, comunemente indicati come *bat-detector*. Sono disponibili vari modelli e metodi di approccio alla trasduzione ma attualmente solo i sistemi con metodologie di *time-expansion* o di campionamento diretto permettono un'accuratezza e qualità del segnale da poter poi essere utilizzata adeguatamente per un'analisi qualitativa oltre che quantitativa. I segnali vanno registrati su supporto digitale adeguato, in file non compressi (ad es. .wav), per una loro successiva analisi. Sono disponibili vari software specifici dedicati alla misura e osservazione delle caratteristiche dei suoni utili all'identificazione delle specie e loro attività.

Segue una descrizione delle principali metodologie e tempistiche finalizzate alla valutazione della compatibilità ambientale di un impianto eolico con le criticità potenzialmente presenti nel sito d'indagine. Le principali fasi del monitoraggio consigliate sono:

- 1. *Ricerca roost:* Censire i rifugi in un intorno di 5 o meglio 10 km dal potenziale sito d'impianto. In particolare deve essere effettuata la ricerca e l'ispezione di rifugi invernali, estivi e di warming quali: cavità sotterranee naturali e artificiali, chiese, cascine e ponti. Per ogni rifugio censito si deve specificare la specie e il numero di individui. Tale conteggio può essere effettuato mediante telecamera a raggi infrarossi, dispositivo fotografico o conteggio diretto. Nel caso in cui la colonia o gli individui non fossero presenti è importante identificare tracce di presenza quali: guano, resti di pasto, ecc. al fine di dedurre la frequentazione del sito durante l'anno.
- 2. Monitoraggio bioacustico: Indagini sulla chirotterofauna migratrice e stanziale mediante bat-detector in modalità eterodyne e time-expansion, o campionamento diretto, con successiva analisi dei sonogrammi (al fine di valutare frequentazione dell'area ed individuare eventuali corridoi preferenziali di volo). I punti d'ascolto devono avere una durata di almeno 15 minuti attorno ad ogni ipotetica posizione delle turbine.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.29

Inoltre, quando possibili, sarebbe auspicabile la realizzazione di zone di saggio in ambienti simili a quelli dell'impianto e posti al di fuori della zona di monitoraggio per la comparazione dei dati. Nei risultati dovrà essere indicata la percentuale di sequenze di cattura delle prede (*feeding buzz*).

Considerando le tempistiche, la ricerca dei rifugi (*roost*) deve essere effettuata sia nel periodo estivo che invernale con una cadenza di almeno 10, ma sono consigliati 24-30 momenti di indagine. Il numero e la cadenza temporale dei rilievi bioacustici variano in funzione della tipologia dell'impianto (numero di turbine e distribuzione delle stesse sul territorio) e della localizzazione geografica del sito. In generale si dovranno effettuare uscite dal tramonto per almeno 4 ore e per tutta la notte nei periodi di consistente attività dei chirotteri.

Possibili finestre temporali di rilievo:

<u>15 Marzo – 15 Maggio:</u> 1 uscita alla settimana nella prima metà della notte per 4 ore a partire dal tramonto includendo una notte intera nel mese di maggio. (8 Uscite).

1 Giugno – 15 Luglio: 4 uscite della durata dell'intera notte partendo dal tramonto. (4 Uscite).

1-31 Agosto: 1 uscita alla settimana nella prima metà della notte per 4 ore a partire dal tramonto includendo 2 notti intere. (4 Uscite)

<u>1 Settembre – 31 Ottobre:</u> 1 uscita alla settimana nella prima metà della notte per 4 ore a partire dal tramonto includendo una notte intera nel mese di settembre. (8 Uscite)

7. Conclusioni

Dalla ricerca bibliografica effettuata, risulta che l'area, se analizzata nella sua interezza, è popolata (o, nel caso dei voltatili, anche *frequentata*) da un discreto numero di specie animali e vegetali.

La stessa area è al tempo stesso caratterizzata da una certa omogeneità di ambienti e di paesaggi, su superfici relativamente ampie e a notevoli distanze tra loro. Nello specifico, la zona in cui ricade l'intervento in progetto (Altopiano di Buddusò) si presenta particolarmente arida e con frequenti (e, in alcuni casi, severi) fenomeni di erosione, causati anche dall'elevata ventosità. Per tali ragioni, quest'area non è di fatto in grado di ospitare un'ampia varietà di specie vegetali e animali stanziali. Per quanto concerne l'avifauna, si ritiene che le opere in programma, per le loro stesse caratteristiche, non possano generare disturbi (né all'avifauna migratrice né su quella stanziale), e che l'elevata distanza tra le torri potrà ridurre al minimo gli eventuali impatti negativi. Pertanto, si può affermare che la realizzazione del progetto possa produrre interferenze inesistenti o al più molto basse per un numero limitato di specie legate all'ambiente. Inoltre, i programmi di monitoraggio previsti potranno comunque rilevare eventuali problematiche che potrebbero sorgere a seguito della nuova installazione, ed agire di conseguenza con interventi che possano favorire il popolamento dell'area da parte di determinate specie, ad esempio con il posizionamento di cassette-nido per uccelli. Per quanto concerne le

RELAZIONE FLORO-FAUNISTICA

specie non volatili, date le limitatissime superfici occupate dall'opera in fase di esercizio, si ritiene che l'intervento non possa produrre alcun impatto.

L'intervento proposto tende a valorizzare il più possibile una risorsa che sta dando ormai da due decenni risultati eccellenti, su una regione già parzialmente sfruttata sotto questo aspetto, quindi con previsioni attendibili in termini di produttività.

RELAZIONE FLORO-FAUNISTICA

30/06/2023

REV: 1

Pag.31

Bibliografia:

- Bacchetta G. & Pontecorvo C., 2005. Contribution to the knowledge of the endemic vascular flora of Iglesiente (SW Sardinia-Italy). Candollea 60 (2): 481-501.
- Médail, F. and Quézel, P. (1997) *Hot-Spots Analysis for conservation of Plant Biodiversity in the Mediterranean Basin*. Annals of the Missouri Botanical Garden, 84, 112-127.
- Rivas-Martinez S., Sànchez-Mata D. & Costa M., 1999. North American boreal and western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobot. 12: 5-316.
- Arrigoni P.V., 1983. *Aspetti corologici della flora sarda*. Lavori della Società Italiana di Biogeografia n.s. 8: 83-109.
- Arrigoni P.V. & Di Tommaso P.L., 1991. *La vegetazione delle montagne calcaree della Sardegna centro-orientale*. Boll. Soc. Sarda Sci. Nat. 28: 201-310.
- Mossa L. & Bacchetta G., 1999. Nuovi dati morfologici, ecologici, distributivi e comportamento fitosociologico di Linaria arcusangeli Atzei et Camarda. Doc. Phytosoc. 19: 455-466.
- Braun-Blanquet J., 1926 *Histoire de peuplement de la Corse : les Phanérogames*. Bull. Soc. Sci. Hist. Nat. Corse, 45: 237-245.
- Contandriopoulos J., 1962 *Recherche sur la flore endémique de la Corse et sur ses origines*. Ann. Fac. Sci. Marseille, 32: 1-354.
- Faverger C., 1975. Cytotaxonomie et histoire de la flore orophile des Alpes et de quelques autres massifs montagneux d'Europe. Lejeunia, 77: 1-45.
- Iapichino, 1996. *L'avifauna degli Iblei*. Atti del Convegno su *La Fauna degli Iblei* tenuto dall'Ente Fauna Siciliana a Noto il 13-14 maggio 1995. Ed. Ente Fauna Siciliana.
- Caredda S., Isoni T., 2005. Gli animali della Sardegna. Ed. Il Maestrale;
- Caredda S., Isoni T., 2005. Gli uccelli della Sardegna. Ed. Il Maestrale;
- Ente Forte Sardo, 2014. Piano Forestale particolareggiato del complesso forestale "Altopiano di Buddusò";
- Johnson, G. D., W. P. Erickson, M. D. Strickland, M. F. Shepherd, D. A. Shepherd, and S. A. Sarappo. 2002. *Collision mortality of local and migrant birds at a largescale wind power development on Buffalo Ridge, Minnesota*. Wildlife Society Bulletin 30: 879-887;
- NYSERDA. 2009. Comparison of Reported Effects and Risks to Vertebrate Wildlife from Six Electricity Generation Types in the New York/New England Region.

 http://www.nyserda.org/publications/Report%2009-02%20Wildlife%20report%20-%20web.pdf
- Miguel Ferrer, Manuela de Lucas, Guyonne F. E. Janss, Eva Casado, Antonio R. Munoz, Marc J. Bechard and Cecilia P. Calabuig, 2012. *Weak relationship between risk assessment studies and recorded mortality in wind farms*. Journal of Applied Ecology: 2012, 49, 38–46.
- Sovacool, Benjamin K., 2009. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity. Energy Policy, Elsevier, vol. 37(6), pages 2241-2248, June.
- Calvert, A. M., C. A. Bishop, R. D. Elliot, E. A. Krebs, T. M. Kydd, C. S. Machtans, and G. J. Robertson. 2013. *A synthesis of human-related avian mortality in Canada*. Avian Conservation and Ecology 8(2): 11. http://dx.doi.org/10.5751/ACE-00581-080211

Siti internet consultati:

IUCN (International Union for Conservation of Nature) Red List: https://www.iucnredlist.org/

