

REGIONE SICILIANA

Libero Consorzio Comunale di Trapani Comuni di Marsala, Salemi, Santa Ninfa, Castelvetrano e Partanna

IMPIANTO DI PRODUZIONE DI ENERGIA ELETTRICA DA FONTE EOLICA DA 48,0 MW "MAZARA CALAMITA"

ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

PIANO TECNICO DELLE OPERE

Sezione 2

ELETTRODOTTI AT

CARATTERISTICHE COMPONENTI ELETTRODOTTI AEREI 220 kV

N. Tavola
02.01.03

Formato Scala

Formato	Scala
A4	

REVISIONI				
DATA	MODIFICA	ESEGUITO	VERIFICATO	APPROVATO
Giugno 2019	Giugno 2019 Prima emissione Ing		Arch. S. Tarantino	Ing. F. D'Alessandro
01 Dicembre 2021 Recepimento osservazioni Terna Ing. F. Chiri Arct			Arch. S. Tarantino	Ing. F. D'Alessandro
Maggio 2022	ggio 2022 Dettaglio interferenze con altri elettrodotti aerei		Arch. S. Tarantino	Ing. F. D'Alessandro
Aprile 2023 Variante sostegni 31N-36N		Ing. F. Chiri	Arch. S. Tarantino	Ing. F. D'Alessandro
	Giugno 2019 Dicembre 2021 Maggio 2022	DATA MODIFICA Giugno 2019 Prima emissione Dicembre 2021 Recepimento osservazioni Terna Maggio 2022 Dettaglio interferenze con altri elettrodotti aerei	DATA MODIFICA ESEGUITO Giugno 2019 Prima emissione Ing. F. Chiri Dicembre 2021 Recepimento osservazioni Terna Ing. F. Chiri Maggio 2022 Dettaglio interferenze con altri elettrodotti aerei Ing. F. Chiri	DATA MODIFICA ESEGUITO VERIFICATO Giugno 2019 Prima emissione Ing. F. Chiri Arch. S. Tarantino Dicembre 2021 Recepimento osservazioni Terna Ing. F. Chiri Arch. S. Tarantino Maggio 2022 Dettaglio interferenze con altri elettrodotti aerei Ing. F. Chiri Arch. S. Tarantino

PROFESSIONISTA INCARICATO:

Ing. Francesco Chiri

COMMITTENTE:

Edison Rinnovabili S.p.A. Foro Buonaparte, 31 20121 Milano

GESTORE RETE:

TERNA S.p.A.

Impianto fotovoltaico da 48,0 MW "Mazara Calamita" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

Codifica	
	02.01.03

Pag. **1** di 14

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

SOMMARIO

1	ISOLATORI	2
	ARMAMENTO DI SOSPENSIONE	
3	ARMAMENTO DI AMARRO	4
4	CONDUTTORE	5
5	FUNE DI GUARDIA	6
6	SFERE DI SEGNALAZIONE	8
7	SOSTEGNO TIPO	13
8	FONDAZIONE TIPO	14

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

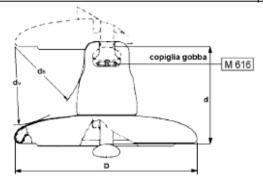
ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

Codifica 02.01.03

Rev. 03 Aprile 2023

Pag. **2** di 14


1 ISOLATORI

Specifica di componente

ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

00000J2
Pag. 1 di 1

TIPO		2/1	2/2	2/3	2/4
Carico di Rottura (kN)		70	120	160	210
Diametro Nominale Parte Isolante (mm)		280	280	320	320
Passo (mm)		146	146	170	170
Accoppiamento CEI 36-10 (grandezza)		16A	16A	20	20
Linea di Fuga Nominale Minima (mm)		430	425	525	520
dh Nominale Minimo (mm)		75	75	90	90
dv Nominale Minimo (mm)		85	85	100	100
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	18	18
Nebbia Salina	Tensione (kV)	98	142	243	243
Salinità di Tenuta (*) (kg/ m³)		56	56	56	56

(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- Materiali: parte isolante in vetro sodocalcico temprato cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005.
- Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 38-20 (1998) par. 17.
- Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fomitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica f.i.: in olio, 80 kV eff. (Tipo 2/1 e 2/2); 100 kV eff. (Tipo 2/3 e 2/4).
- Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,5 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 7. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).
- 8. Per la nomenclatura dei componenti elementari in figura si rimanda al documento LIN_00000000.

Storia del	le revisioni	
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LJ2 Ed. 6 del Luglio 1989

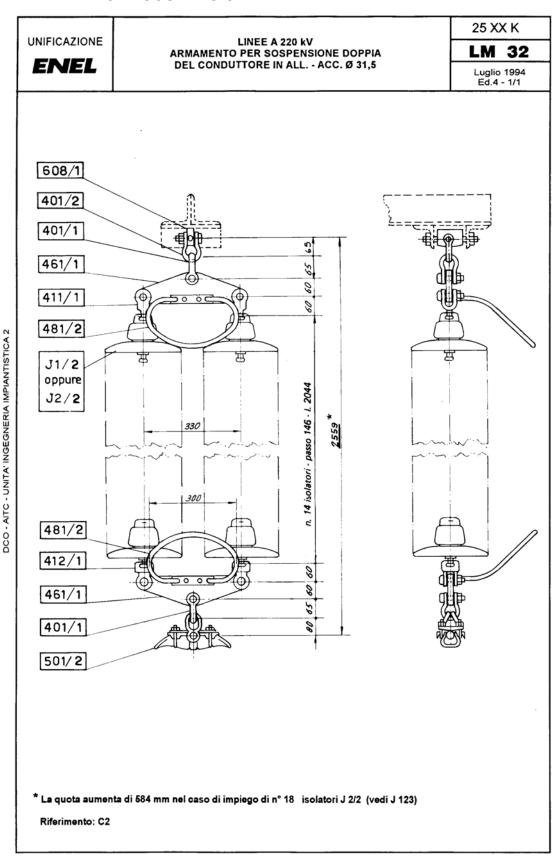
ISC - Uso INTERNO	

ı	Elaborato	Verificato		Approvato
	ITI S.r.l.	M. Forteleoni SRI-SVT-LAE	A. Guameri SRI-SVT-LAE	A. Posati SRI-SVT-LAE

Impianto fotovoltaico da 48,0 MW "Mazara Calamita"

ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

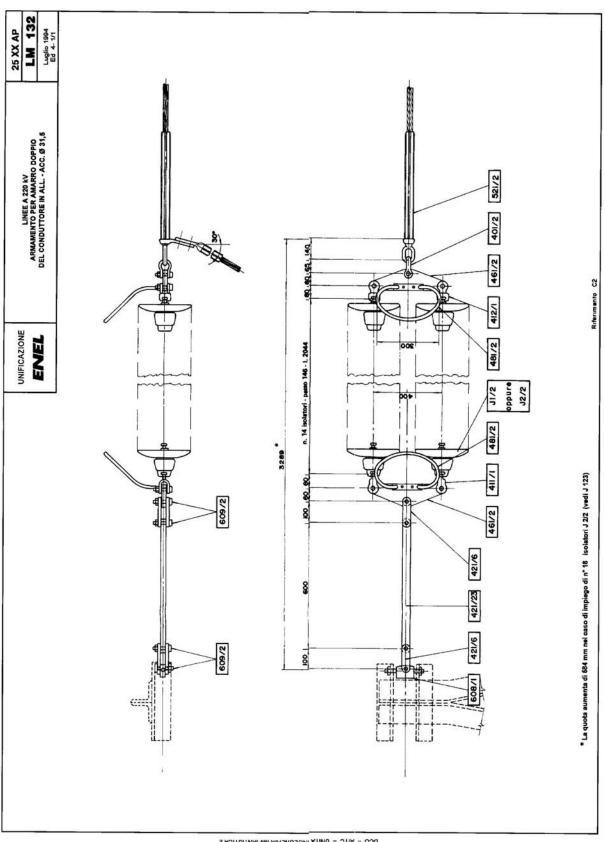

Codifica **02.01.03**

Pag. **3** di 14

Rev. 03

Aprile 2023

2 ARMAMENTO DI SOSPENSIONE


IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

Codifica 02.01.03

Rev. 03 Aprile 2023

Pag. **4** di 14

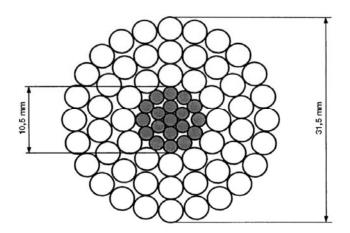
ARMAMENTO DI AMARRO 3

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

Codifica 02.01.03 Rev. 03 Pag. **5** di 14

Aprile 2023

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV


CONDUTTORE

Specifica di componente

CONDUTTORE A CORDA DI ALLUMINIO-ACCIAIO Ø 31,5 mm

Codifica	00000C2
LIN_C	7······
Rev. 00 del 02/07/2012	Pag. 1 di 2

			2/1	2/2 (*)
TIPO CONDUTTORE			NORMALE	INGRASSATO
		Alluminio	54 x 3,50	54 x 3,50
FORMAZIONE		Acciaio	19 x 2,10	19 x 2,10
		Alluminio	519,5	519,5
SEZIONI TEORICHE	(mm ²)	Acciaio	65,80	65,80
		Totale	585,30	585,30
TIPO DI ZINCATURA DELL'ACCIAIO			Normale	Maggiorata
MASSA TEORICA (Kg/m)			1,953	2,071(**)
RESISTENZA ELETTR. TEORICA A 20°C	A ELETTR. TEORICA A 20°C (Ω/km)		0,05564	0,05564
CARICO DI ROTTURA (daN)			16852	16516
MODULO ELASTICO FINALE	(daN/mm²	3)	6800	6800
COEFFICIENTE DI DILATAZIONE (K¹)		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶	

Storia delle revisioni		
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna RQUT0000C2 rev. 01 del 25/07/2002 (C.D'Ambrosa, A.Posati, R.Rendina)

ISC - Uso INTERNO

Elaborato		Verificato		Approvato	
ITI s.r.l.		A. Piccinin SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE]

^(*) Per zone ad alto inquinamento salino (**) Compresa massa grasso pari a 103,39 gr/m.

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

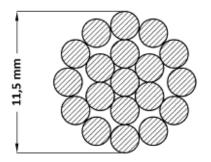
ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

O2.01.03

Rev. 03
Aprile 2023

Aprile 2023


Pag. 6 di 14

5 FUNE DI GUARDIA

Specifica di componente FUNE DI GUARDIA DI ACCIAIO Ø 11,5 mm

	0000C23	
	Rev. 00 del 02/07/2012	Pag. 1 di 1

	23/1	23/2 (*)
	NORMALE	MAGGIORATA
(g/m²)	214	640
	19 x 2,3	19 x 2,3
(mm²)	78,94	78,94
(kg/m)	0,621	0,638
(Ω/km)	2,014	2,014
(daN)	12231	10645
(daN/mm²)	17500	17500
(K ⁻¹)	11,5 x 10 ⁻⁶	11,5 x 10 ⁻⁶
	(mm²) (kg/m) (Ω/km) (daN) (daN/mm²)	NORMALE

^(*) Per zone ad alto inquinamento salino.

NOTE

- Materiale: acciaio tipo 170 (CEI 7-2:1997) zincato a caldo per fili a "zincatura normale"; acciaio tipo 1 (LIN_000C3905 appendice A) zincato a caldo per fili a "zincatura maggiorata".
- Prescrizioni per la costruzione, il collaudo e la fornitura: LIN_000C3905.
- 3. Imballo e pezzature: bobine da 2000 m (salvo diversa prescrizione in sede di ordinazione).
- Unità di misura: l'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg).

Storia delle revisioni		
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LC23 ed. 6 del Gennaio 1995.

ISC - Uso INTERNO

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Piccinin SRI-SVT-LAE	A. Guameri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

Codifica 02.01.03

Pag. **7** di 14

Rev. 03

Aprile 2023

×		

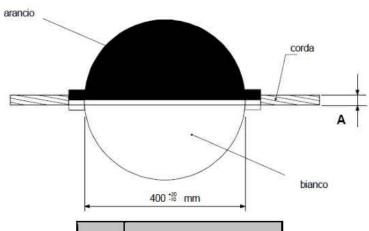
IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

02.01.03

Rev. 03
Aprile 2023

Pag. 8 di 14

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV


6 SFERE DI SEGNALAZIONE

Specifica di componente SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN	_0000M805
Rev. 00	Pag. 3 di 7

1. SFERE DI SEGNALAZIONE DIAMETRO 40 cm CON DISPOSITIVO DI MONTAGGIO ROBOTIZZATO O MANUALE A MEZZO ELICOTTERO

TIPO	DIMENSIONE A (mm)
805/1	10,5 ÷ 15,85
805/2	16,2 ÷ 20,3
805/3	22,8 + 29,4
805/4	31,5 ÷ 36

- La sfera deve essere costituita da due semigusci, uno di colore bianco, l'altro di colore arancio scuro per costituire assemblati sfere Arancio/Bianco. I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 2,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u≥ 100 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 20 mm.
- 5) La sfera, con i relativi morsetti deve essere tale da permettere un suo agevole e rapido montaggio e smontaggio da parte di un operatore situato su un elicottero, o da parte di sistemi robotizzati portati o no da elicottero.

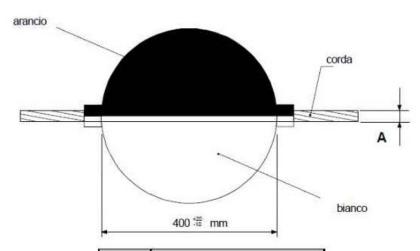
IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

02.01.03

Rev. 03
Aprile 2023

Pag. 9 di 14

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV



Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN	I_0000M805
Rev. 00	Pag. 4 di 7

2. SFERE DI SEGNALAZIONE DIAMETRO 40 cm CON DISPOSITIVO DI MONTAGGIO MANUALE

тіро	DIMENSIONE A (mm)
805/5	10,5 ÷ 15,85
805/6	16,2 ÷ 20,3
805/7	22,8 ÷ 29,4
805/8	31,5 ÷ 36

- La sfera deve essere costituita da due semigusci, uno di colore bianco, l'altro di colore arancio scuro per costituire assemblati sfere Arancio/Bianco. I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 2,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 100 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 20 mm.

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

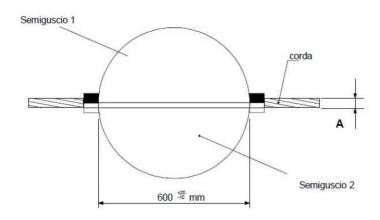
ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

O2.01.03

Rev. 03
Aprile 2023

Pag. 10 di 14



Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN	_0000M805
Rev. 00	Pag. 5 di 7

3. SFERE DI SEGNALAZIONE DIAMETRO 60 cm CON DISPOSITIVO DI MONTAGGIO ROBOTIZZATO O MANUALE A MEZZO ELICOTTERO

TIPO	COLORE SEMIGUSCI 1 e 2	DIMENSIONE A (mm)
805/11	Arancio/Arancio	11,5 ÷ 15,85
805/12	Arancio/Arancio	16,2 ÷ 20,3
805/13	Arancio/Arancio	22,8 ÷ 29,4
805/14	Bianco/Bianco	11,5 ÷ 15,85
805/15 Bianco/Bianco		16,2 ÷ 20,3
805/16 Bianco/Bianco		22,8 ÷ 29,4

- La sfera deve essere costituita da due semigusci, di colore bianco o di colore arancio scuro, per costituire assemblati sfere Arancio/Arancio (Tipi 805/11÷13) o sfere totalmente Bianche (Tipi 805/14÷16). I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 5,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 120 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 30 mm.
- 5) La sfera, con i relativi morsetti deve essere tale da permettere un suo agevole e rapido montaggio e smontaggio da parte di un operatore situato su un elicottero, o da parte di sistemi robotizzati portati o no da elicottero.

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

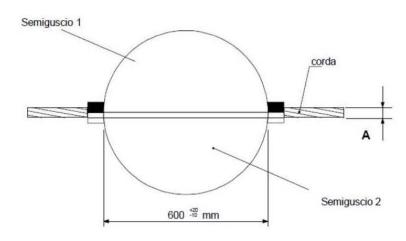
ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

O2.01.03

Rev. 03
Aprile 2023

Pag. 11 di 14



Specifica di componente SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN_0000M805

Rev. 00 Pag. 6 di 7

4. SFERE DI SEGNALAZIONE DIAMETRO 60 cm CON DISPOSITIVO DI MONTAGGIO MANUALE

TIPO	COLORE SEMIGUSCI 1 e 2	DIMENSIONE A (mm)
805/21	Arancio/Arancio	11,5 ÷ 15,85
805/22	Arancio/Arancio	16,2 ÷ 20,3
805/23	Arancio/Arancio	22,8 ÷ 29,4
805/24	Bianco/Bianco	11,5 ÷ 15,85
805/25	Bianco/Bianco	16,2 ÷ 20,3
805/26	Bianco/Bianco	22,8 ÷ 29,4

- La sfera deve essere costituita da due semigusci, di colore bianco o di colore arancio scuro, per costituire assemblati sfere Arancio/Arancio (Tipi 805/21÷23) o sfere totalmente Bianche (Tipi 805/24÷26). I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- Massa complessiva della sfera ≤ 5,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 120 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 30 mm.

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

Rev. 03 Aprile 2023

02.01.03

Codifica

Pag. **12** di 14

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN_	0000M805
Rev. 00	Pag. 7 di 7

5. CARATTERISTICHE COSTRUTTIVE

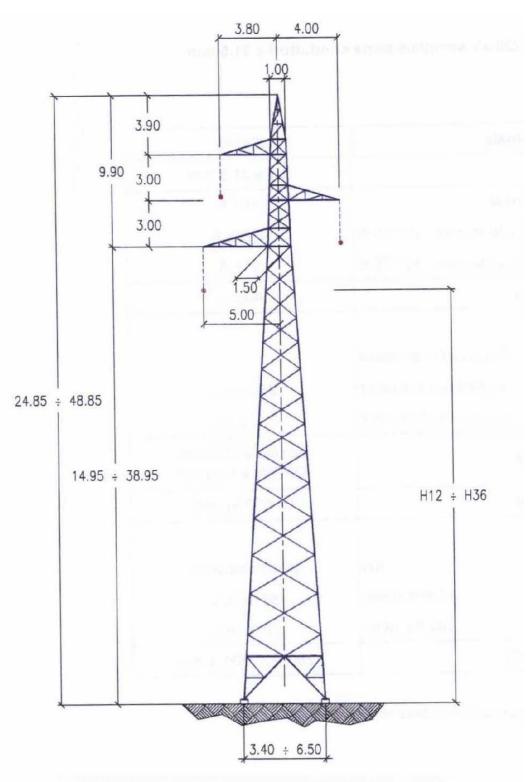
1. Materiale:

- a) gusci della sfera: in materiale plastico rinforzato o no con fibra di vetro;
- b) eventuali elementi elastici: in gomma naturale o sintetica, oppure in acciaio inox o zincato a caldo:
- c) materiali dei morsetti a contatto con la corda: in alluminio o sua lega, in gomma naturale o sintetica, in materiale plastico non rinforzato con elementi abrasivi;
- d) eventuali bulloni: in acciaio inox o lega di alluminio, rosette piane ed elastiche in acciaio inox.
- 2. Prescrizioni per la costruzione ed il collaudo: LIN_0000M830.
- 3. Criteri per l'installazione delle sfere di segnalazione per linee elettriche aeree: LIN 0000M806
- 4. Su ciascun esemplare dovranno essere marcati in rilievo o in incavo i seguenti dati:
 - sigla di identificazione della sfera scelta dal Costruttore;
 - sigla o marchio del Costruttore;
 - anno di costruzione;
 - coppia di serraggio degli eventuali bulloni seguita dalle lettere Nm o forza di serraggio seguita dalla lettera N per morsetti senza bullone.
- 5. L'unità di misura con la quale deve essere espressa la quantità del materiale è il numero di esemplari (n).

IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA"

ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN

CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV


Codifica **02.01.03**

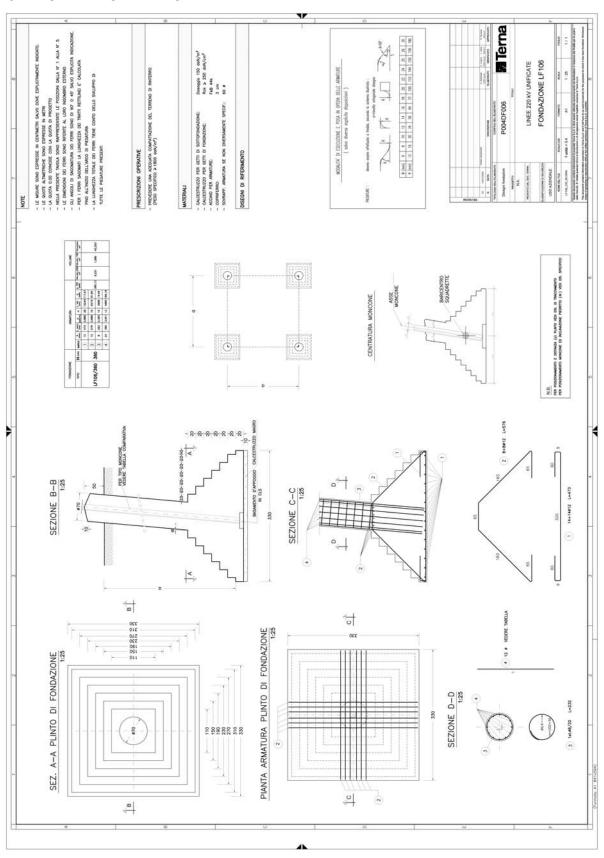
Pag. **13** di 14

Rev. 03

Aprile 2023

7 SOSTEGNO TIPO

Linee 220 kV semplice terna conduttori Ø 31.5 Ø 22.8 sostegno tipo N mensole con alternativa "O"


IMPIANTO FOTOVOLTAICO DA 48,0 MW "MAZARA CALAMITA" ADEGUAMENTO DELLE INFRASTRUTTURE DELLA RTN CARATTERISTICHE COMPONENTI ELETTRODOTTI 220 KV

Codifica **02.01.03**

Rev. 03 Aprile 2023

Pag. **14** di 14

8 FONDAZIONE TIPO

