

Regione Sardegna Provincia del Sud Sardegna Comuni di Pimentel, Samatzai, Guasila, Segariu, Furtei, Sanluri e Serrenti

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Titolo:			

RELAZIONE TECNICA

Numero documento:

Commessa 2 1 4 7 0 1

Tipo doc.

D

R

Prog. doc.

Rev.

2

0 1 0

0 1

Proponente:

GREENENERGYSARDEGNA2

Green Energy Sardegna 2 SrlPiazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

PROGETTO DEFINITIVO

	Sul presente documento sussiste il DIRITTO di PROPRIETA'. Qualsiasi utilizzo non preventivamente autorizzato sarà perseguito ai sensi della normativa vigente													
=	N.	Data	Descrizione revisione	Redatto	Controllato	Approvato								
SION	00	23.11.2021	EMISSIONE PER AUTORIZZAZIONE	E. FICETOLA	D. LO RUSSO	M. LO RUSSO								
	01	18.09.2023	REVISIONE PER MODIFICA CONNESSIONE	S. SCOPPETTUOLO	D. LO RUSSO	M. LO RUSSO								
<u>~</u>														

RELAZIONE TECNICA

GREENENERGYSARDEGNA2

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217 Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: **214701_D_R_0102** Rev. **01**

INDICE

1. PREMESSA	4
2. SCOPO	4
3. PROPONENTE	4
4. DESCRIZIONE DEL PROGETTO	5
4.1. CARATTERISTICHE ANEMOMETRICHE DEL SITO E PRODUCIBILITÁ ATTESA	5
4.2. STIMA DELLA PRODUCIBILITÁ ATTESA	6
4.3. MOTIVAZIONE SCELTA PROGETTUALE	6
4.4. OBIETTIVI DEL PROGETTO	7
4.5. LAYOUT DI PROGETTO	7
4.6. NORME TECNICHE DI RIFERIMENTO	g
4.7. CRITERI GENERALI DI PROGETTAZIONE	12
5. DESCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MODALITÀ DI ESECUZION	E DEI
COMPLESSIVI LAVORI PREVISTI, DEL PIANO DI DISMISSIONE DEGLI IMPIANTI E DI RIPRISTINO I	ELLO
STATO DEI LUOGHI	13
5.1. DESCRIZIONE DELL'INTERVENTO E MODALITA' DI ESECUZIONE	13
5.1.1. DATI GENERALI D'IMPIANTO	13
5.1.2. UBICAZIONE DEL PROGETTO	13
5.1.3. CARATTERISTICHE TECNICHE DEL PROGETTO	16
5.1.3.1. AEROGENERATORI	16
5.1.3.2. VIABILITÀ E PIAZZOLE	21
5.1.3.3. CAVIDOTTI MAX 36kV	23
5.1.3.4. STAZIONE ELETTRICA DI UTENZA, IMPIANTO DI UTENZA	26
5.1.3.4.1. CONNESSIONE DEFINITIVA	26
5.1.3.4.2. CONNESSIONE TEMPORANEA	28
5.1.3.5. STAZIONE ELETTRICA 150/380 kV "SE SANLURI"	29
5.1.3.6. RACCORDI AEREI	29
5.1.4. PRODUZIONE DI RIFIUTI	30
5.2. DESCRIZIONE FASI	30
5.2.1. FASE DI CANTIERE	30
5.2.2. FASE DI GESTIONE E DI ESERCIZIO	30
5.3. TEMPI DI ESECUZIONE DEI LAVORI	31
5.4. DISMISSIONE D'IMPIANTO	
5.4.1. MEZZI D'OPERA RICHIESTI DALLE OPERAZIONI	32
5.4.2. RIPRISTINO DELLO STATO DEI LUOGHI	
5.4.3. STIMA DEI COSTI DI DISMISSIONE	
5.4.4. CRONOPROGRAMMA DELLE FASI ATTUATIVE DI DISMISSIONE	
6. IMPEGNO ALLA DISMISSIONE DELL'IMPIANTO	35
7. CALCOLO DEI PROVENTI ANNUI DERIVANTI DALLA VALORIZZAZIONE DELL'ENERGIA PRODOTTA	35

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: **214701_D_R_0102** Rev. **01**

8. AI	NALISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE	36
8.1.	SVILUPPO SOCIO-ECONOMICO	36
8.2.	GENERAZIONE DI POSTI DI LAVORO	36
8.3.	PROMOZIONE TURISTICA	36

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

PREMESSA

La revisione del Progetto riguarda la modifica della SE "Sanluri" della RTN e della Stazione elettrica di Utenza, in seguito ad una specifica richiesta di Terna al fine di contenere il più possibile i movimenti scavo-riporti necessari alla costruzione della Stazione Elettrica. La Stazione Elettrica, rispetto alla prima versione, sarà ruotata e ridimensionata in seguito allo spostamento in un'altra area della Stazione Elettrica di Utenza.

Inoltre, nel caso in cui sopravvengano criticità in merito ai tempi di realizzazione della SE "Sanluri", si è ipotizzata una soluzione temporanea di connessione, la quale prevede un collegamento in cavo interrato AT dalla sbarra del condominio della futura Stazione Elettrica di Utenza "Furtei" fino ad intercettare, con una calata, la linea AT 150 kV esistente "Tuili – Villasor" in adiacenza alla futura SU "Furtei".

Pertanto, con il termine "Progetto" si fa riferimento all'insieme di: Impianto Eolico, costituito da n°9 aerogeneratori, Cavidotto max 36 kV, Stazione Elettrica di Utenza, Cavidotto AT, Stazione Elettrica "Sanluri" 150/380 kV con relativi raccordi entra-esce alla linea esistente 380 kV "Ittiri – Selargius" e la Soluzione temporanea di connessione.

Gli approfondimenti in merito alle modifiche tecniche sopra descritte, saranno presentate con maggior dettaglio nel proseguo.

2. SCOPO

Scopo del presente documento è la redazione della relazione tecnica finalizzato all'ottenimento dei permessi necessari alla costruzione ed esercizio dell'impianto di produzione di energia rinnovabile da fonte eolica costituito da n° 9 aerogeneratori per una potenza complessiva massima di 50,4 MW, nei comuni di Samatzai e Guasila (SU), e relative opere connesse ed infrastrutture indispensabili nei comuni di Samatzai, Guasila, Serrenti, Segariu, Furtei, Sanluri, Nuraminis e Pimentel (SU), collegato alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV in antenna su una futura Stazione Elettrica (SE) di trasformazione della RTN 380/150 kV da inserire in entra-esce alla linea RTN 380 kV "Ittiri – Selargius" ubicata nel comune di Sanluri, che descrive:

- Dati generali del proponente;
- La descrizione delle caratteristiche della fonte utilizzata, con l'analisi della producibilità attesa;
- La descrizione dell'intervento, delle fasi, dei tempi e delle modalità di esecuzione dei complessivi lavori previsti, del piano di dismissione degli impianti e di ripristino dello stato dei luoghi;
- Una stima dei costi di dimissione dell'impianto e di ripristino dei stati dei luoghi;
- Un'analisi delle possibili ricadute sociali, occupazionali ed economiche dell'intervento.

3. PROPONENTE

La Green Energy Sardegna 2 S.r.I. è una società del Gruppo Fri-El Green Power finalizzata allo sviluppo in Sardegna di progetti nel campo delle energie rinnovabili, con sede a Bolzano in piazza del Grano n°3, partita iva N. 02993950217 e numero REA 222872. Il maggiore azionista e referente per l'iniziativa è, pertanto, Fri-El Green Power S.p.A. che gestisce, direttamente o tramite le proprie collegate e controllate, un portfolio di n. 34 impianti eolici per una potenza totale di ca. 901 MW, di cui 155,2 MW realizzati in Sardegna.

Oltre agli impianti eolici la società possiede n. 1 impianto a biomassa liquida della potenza di 74,8 MW detenuto al 50% e n. 1 impianto a biomassa solida della potenza di 18,7 MW detenuto al 100%.

Secondo i dati consolidati al 2018 il Gruppo Fri-El Green Power possiede un patrimonio netto di circa 406 m€ con investimenti effettuati nell'anno 2018 pari a 118 m€ ed un cash flow da attività operative realizzato nel 2018 pari a circa 104 m€.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Si ritiene pertanto che il proponente, in base ai dati sopra esposti, disponga delle richieste capacità economiche, gestionali ed imprenditoriali necessarie per la costruzione e per la gestione dell'impianto eolico di cui trattasi.

4. DESCRIZIONE DEL PROGETTO

4.1. CARATTERISTICHE ANEMOMETRICHE DEL SITO E PRODUCIBILITÁ ATTESA

Il parametro fondamentale, relativamente all'impianto di produzione di energia elettrica da fonte rinnovabile eolica è costituito dal regime anemometrico dell'area in cui esso si inserisce.

È infatti su di quest'ultimo che si basano i criteri stessi di individuazione del sito e la progettazione del parco eolico nella sua interezza. La caratteristica di un sito di essere capace di ospitare un impianto eolico è intrinsecamente legata a due fattori distinti:

- Ventosità del sito di installazione;
- Corretta ubicazione degli aerogeneratori e delle turbine più performanti per il tipo di zona.

In particolare si riporta di seguito il grafico che riassume i principali parametri anemologici:

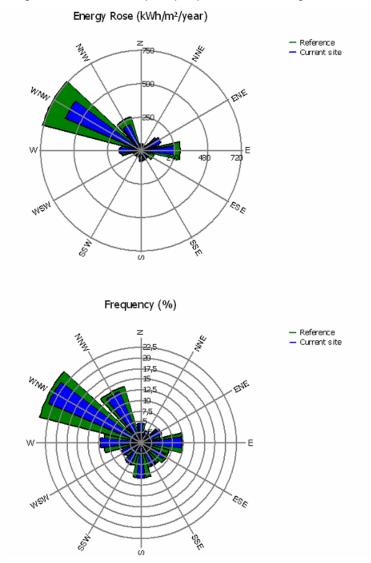


Figura 1 - Rosa dei venti espressa sia in termini di frequenza che in termini di energia percentuale

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

4.2. STIMA DELLA PRODUCIBILITÁ ATTESA

Nella tabella seguente viene riportata la stima della produzione energetica annuale del parco. La produzione seguente rappresenta la stima centrale annuale (P50):

N° turbine	9
Potenza nominale	50,4 MW
Produzione netta	116,00 GWh/a
Ore equivalenti	2302 h

Tabella 1- Stima della produzione energetica annuale del parco eolico.

4.3. MOTIVAZIONE SCELTA PROGETTUALE

Il progetto proposto è relativo alla realizzazione di un impianto per la produzione di energia elettrica da fonte rinnovabile, nella fattispecie eolico.

Gli impianti eolici, alla luce del continuo sviluppo di nuove tecnologie per la produzione di energia da fonti rinnovabili, rappresentano oggi una realtà concreta in termini di disponibilità di energia elettrica soprattutto in aree geografiche come quella interessata dal progetto in trattazione che, grazie alla loro particolare vocazione, sono in grado di garantire una sensibile diminuzione del regime di produzione delle centrali termoelettriche tradizionali, il cui funzionamento prevede l'utilizzo di combustibile di tipo tradizionale (gasolio o combustibili fossili).

Pertanto, il servizio offerto dall'impianto proposto nel progetto in esame consiste nell'aumento della quota di energia elettrica prodotta da fonte rinnovabile e nella conseguente diminuzione delle emissioni in atmosfera di anidride carbonica dovute ai processi delle centrali termoelettriche tradizionali.

Per valutare quantitativamente la natura del servizio offerto, possono essere considerati i valori specifici delle principali emissioni associate alla generazione elettrica tradizionale (fonte IEA):

CO2 (anidride carbonica)	496 g/kWh
S02 (anidride solforosa)	0,93 g/kWh
NO2 (ossidi di azoto)	0,58 g/kWh
Polveri	0.029 g/kWh

Tabella 2 - Valori specifici delle emissioni associate alla generazione elettrica tradizionale - Fonte IEA

Sulla scorta di tali valori ed alla luce della producibilità prevista per l'impianto proposto, è possibile riassumere come di seguito le prestazioni associabili al parco eolico in progetto:

- Produzione totale annua 116.000.000 kWh/anno;
- Riduzione emissioni CO2 57.536 t/anno circa:
- Riduzione emissioni SO2 108 t/anno circa;
- Riduzione emissioni NO2 67 t/anno circa;
- Riduzioni Polveri 3,36 t/anno circa.

Data la previsione di immettere in rete l'energia generata dall'impianto in progetto, risulta significativo quantificare la copertura offerta della domanda energetica in termini di utenze familiari servibili, considerando per quest'ultime un consumo medio annuo di 1.800 kWh.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Quindi, essendo la producibilità stimata per l'impianto in progetto, pari a 116.000.000 kWh/anno, è possibile prevedere il soddisfacimento del fabbisogno energetico di circa 64.450 famiglie circa. Tale grado di copertura della domanda acquista ulteriore valenza alla luce degli sforzi che al nostro Paese sono stati chiesti dal collegio dei commissari della Commissione Europea al pacchetto di proposte legislative per la lotta al cambiamento climatico.

Alla base di alcune scelte caratterizzanti l'iniziativa proposta è possibile riconoscere considerazioni estese all'intero ambito territoriale interessato, tanto a breve quanto a lungo termine.

Innanzitutto, sia breve che a lungo termine, appare innegabilmente importante e positivo il riflesso sull'occupazione che la realizzazione del progetto avrebbe a scala locale. Infatti, nella fase di costruzione, per un efficiente gestione dei costi, sarebbe opportuno reclutare in loco buona parte della manodopera e mezzi necessari alla realizzazione delle opere civili previste. Analogamente, anche in fase di esercizio, risulterebbe efficiente organizzare e formare sul territorio professionalità e maestranze idonee al corretto espletamento delle necessarie operazioni di manutenzione.

Per quanto riguarda le infrastrutture di servizio considerate in progetto, quella eventualmente oggetto degli interventi migliorativi più significativi, e quindi fin da ora inserita in un'ottica di pubblico interesse, è rappresentata dall'infrastruttura viaria. Infatti, si prende atto del fatto che gli eventuali miglioramenti della viabilità di accesso al sito (ad esempio il rifacimento dello strato intermedio e di usura di viabilità esistenti bitumate) risultano percepibili come utili forme di adeguamento permanente della viabilità pubblica, a tutto vantaggio della sicurezza della circolazione stradale e dell'accessibilità di luoghi adiacenti al sito di impianto più efficacemente valorizzabili nell'ambito delle attività agricole attualmente in essere.

4.4. OBIETTIVI DEL PROGETTO

Una volta realizzato, l'impianto consentirà di conseguire i seguenti risultati:

- immissione nella rete dell'energia prodotta tramite fonti rinnovabili quali l'energia del vento;
- impatto ambientale relativo all'emissioni atmosferiche locale nullo, in relazione alla totale assenza di emissioni inquinanti, contribuendo così alla riduzione delle emissioni di gas climalteranti in accordo con quanto ratificato a livello nazionale all'interno del Protocollo di Kyoto;
- sensibilità della committenza sia ai problemi ambientali che all'utilizzo di nuove tecnologie ecocompatibili.
- miglioramento della qualità ambientale e paesaggistica del contesto territoriale su cui ricade il progetto.

4.5. LAYOUT DI PROGETTO

L'ottimizzazione del layout di progetto, circa gli aspetti attinenti all'impatto ambientale, paesaggistico, la trasformazione antropica del suolo, la producibilità e l'affidabilità è stato ottenuto partendo dall'analisi dei seguenti fattori:

- percezione della presenza dell'impianto rispetto al paesaggio circostante;
- orografia dell'area;
- condizioni geologiche dell'area;
- presenza di vincoli ambientali;
- ottimizzazione della configurazione d'impianto (conformazione delle piazzole, morfologia dei percorsi stradali e dei cavidotti);
- presenza di strade, linee elettriche ed altre infrastrutture;
- producibilità;
- micrositing, verifiche turbolenze indotte sugli aerogeneratori.

RELAZIONE TECNICA

GREENENERGYSARDEGNA2

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217 Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

In generale, si può dunque affermare che la disposizione del Progetto sul terreno dipende oltre che da considerazioni basate su criteri di massimo rendimento dei singoli aerogeneratori, anche da fattori legati alla presenza di vincoli ostativi, alla natura del sito, all'orografia, all'esistenza o meno delle strade, piste, sentieri, alla presenza di fabbricati e, non meno importante, da considerazioni relative all'impatto paesaggistico dell'impianto nel suo insieme.

Con riferimento ai fattori suddetti si richiamano alcuni criteri di base utilizzati nella scelta delle diverse soluzioni individuate, al fine di migliorare l'inserimento del Progetto nel territorio:

- analisi dalla pianificazione territoriale ed urbanistica, avendo avuto cura di evitare di localizzare gli aerogeneratori all'interno e in prossimità delle aree soggette a tutela ambientale e paesaggistica;
- limitazione delle opere di scavo/riporto;
- massimo utilizzo della viabilità esistente; realizzazione della nuova viabilità rispettando l'orografia del terreno e secondo la tipologia esistente in zona o attraverso modalità di realizzazione che tengono conto delle caratteristiche percettive generali del sito;
- impiego di materiali che favoriscano l'integrazione con il paesaggio dell'area per tutti gli interventi che riguardino manufatti (strade, cabine, muri di contenimento, ecc.);
- attenzione alle condizioni determinate dai cantieri e ripristino della situazione "ante operam" delle aree occupate. Particolare riguardo alla reversibilità e rinaturalizzazione o rimboschimento sia delle aree occupate dalle opere da dismettere che dalle aree occupate temporaneamente da camion e autogru nella fase di montaggio degli aerogeneratori.

A tal proposito si richiama l'Allegato e) "Indicazioni per la realizzazione di impianti eolici in Sardegna" alla Deliberazione G.R. n. 59/90 del 21.11.2020. Il pieno rispetto delle buone pratiche di progettazione, costituisce un elemento di valutazione favorevole del Progetto.

Di seguito vengono elencati i vincoli e distanze da considerare nell'installazione di impianti eolici.

Con riferimento al punto 3.2:

- la distanza da strade provinciali, statali e da linee ferroviarie deve essere superiore alla somma dell'altezza dell'aerogeneratore al mozzo e del raggio del rotore, più un ulteriore 10%;
- la distanza dal perimetro dell'area urbana deve essere di almeno 500 m;
- la distanza dell'elettrodotto AT dall'area urbana deve essere di almeno 1000 m;
- la distanza dal confine della tanca deve essere pari alla lunghezza del diametro del rotore, a meno che non risulti l'assenso scritto ad una distanza inferiore da parte del proprietario confinante.

Con riferimento al punto 4.3.2:

- distanza minima fra gli aerogeneratori 5 volte il diametro del rotore nel caso di turbine posizionate lungo la direzione predominante del vento;
- distanza minima fra gli aerogeneratori 3 volte il diametro del rotore nel caso di turbine posizione lungo la direzione perpendicolare a quello prevalente del vento;
- distanza minima fra gli aerogeneratori da 3 a 5 volte il diametro del rotore nel caso di tutte le altre direzioni.

Con riferimento al punto 4.3.3:

- distanza di 300 m da insediamenti rurali con presenza continuativa di personale in orario diurno (h. 6.00 – h. 22.00);

RELAZIONE TECNICA

GREENENERGYSARDEGNA2

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217 Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

- distanza di 500 m da insediamenti rurali con presenza continuativa di perdonale in orario notturno (h. 22.00 h. 6.00) o da case rurali ad uso residenziale stagionale;
- distanza di 700 m da nuclei urbani e case sparse ad uso residenziale nell'agro, destinati ad uso residenziale.

Sono state introdotte modeste variazioni sulla distanza tra gli aerogeneratori di progetto WTG SA03 e WTG SA04 per quanto riguarda il *punto 4.3.2*. Tale modifica è stata effettuata per evitare le aree interessate da vincoli ostativi, sia per contenere, nella definizione dei percorsi viari interni all'impianto, gli interventi di modificazione del suolo cercando di sfruttare, nel posizionamento delle macchine, ove possibile la viabilità esistente.

Con riferimento al *punto 4.3.3*, nel raggio di 700 m dall'aerogeneratore WTG GU08 si segnala la presenza di un edificio con destinazione d'uso catastale "A/4" per il quale è in corso una variazione di destinazione d'uso da edificio residenziale ad altro tipo di fabbricato in cui non è prevista la presenza continuativa di persone.

Per quanto riguarda la distanza dal confine della tanca (punto 3.2), si evidenzia che questo è un aspetto legato alla normativa regionale che ha voluto tutelare i proprietari confinanti nei confronti delle proprietà ospitanti la turbina. Il principio è quello di assicurare al confinante un certo ristoro per distanze, tra asse turbina e confine, che non rispettino il minimo stabilito pari ad un diametro del rotore. Il sorvolo effettivo, per uno sviluppo pari al raggio del rotore, avviene ad un'altezze superiori ai 30 m dal suolo, mentre nel caso del rispetto della distanza di un diametro, l'ulteriore distanza di un raggio, produce quello che viene definito un "sorvolo immateriale". Pertanto in entrambe le due situazioni, sorvolo effettivo e sorvolo immateriale, non si ha nessun tipo di interferenza con il fondo interessato, per cui di fatto si genera una servitù priva di effetti limitativi.

4.6. NORME TECNICHE DI RIFERIMENTO

La realizzazione dell'opera è subordinata alla propria autorizzazione e pertanto la documentazione di progetto è stata redatta, innanzitutto, in funzione della procedura autorizzativa prevista per il tipo di impianto in trattazione, regolamentata dalla seguente normativa:

- Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" e ss.mm.ii.;
- Decreto Legislativo 29 dicembre 2003, n. 387 Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità.
- D.M del 10 settembre 2010 "Linee guida nazionali per l'autorizzazione degli impianti alimentati da fonti rinnovabili".

Le soluzioni tecniche previste nell'ambito del progetto definitivo proposto sono state valutate sulla base della seguente normativa tecnica:

- T.U. 17 gennaio 2018 "Norme tecniche per le costruzioni";
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";
- DPCM 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti";
- Decreto 29 maggio 2008, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti";
- Decreto Interministeriale 21 marzo 1988, n. 449, "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne";

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

- Decreto Interministeriale 16 gennaio 1991, n. 1260, "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- Decreto Interministeriale del 05/08/1998, "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche aeree esterne";

Vengono, infine, elencati, i principali riferimenti normativi relativi ad apparecchiature e componenti d'impianto:

- IEC 61400-1 "Design requirements"
- IEC 61400-2 "Design requirements for small wind turbines"
- IEC 61400-3 "Design requirements for offshore wind turbines"
- IEC 61400-4 "Gears"
- IEC 61400-5 "Wind turbine rotor blades"
- IEC 61400-11 "Acoustic noise measurement techniques"
- IEC 61400-12 "Wind turbine power performance testing"
- IEC 61400-13 "Measurement of mechanical loads"
- IEC 61400-14 "Declaration of apparent sound power level and tonality values"
- IEC 61400-21 "Measurement and assessment of power quality characteristics of grid connected wind turbines"
- IEC 61400-22 "Conformity testing and certification"
- IEC 61400-23 "Full-scale structural testing of rotor blades"
- IEC 61400-24 "Lightning protection"
- IEC 61400-25 "Communication protocol"
- IEC 61400-27 "Electrical simulation models for wind power generation (Committee Draft)"
- CNR 10011/86 "Costruzioni in acciaio" Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;
- Eurocodice 1 Parte 1 "Basi di calcolo ed azioni sulle strutture Basi di calcolo";
- Eurocodice 8 Parte 5 "Indicazioni progettuali per la resistenza sismica delle strutture".
- Eurocodice 3 UNI EN 1993-1-1:2005- "Progettazione delle strutture in acciaio" Parte 1-1.
- Eurocodice 3 UNI EN 1993-1-5:2007- "Progettazione delle strutture in acciaio" Parte 1-5.
- Eurocodice 3 UNI EN 1993-1-6:2002- "Progettazione delle strutture in acciaio" Parte 1-6.
- Eurocodice 3 UNI EN 1993-1-9:2002- "Progettazione delle strutture in acciaio" Parte 1-9.
- CEI 0-2 "Guida per la definizione della documentazione di progetto degli impianti elettrici"
- CEI 11-4, "Esecuzione delle linee elettriche esterne", quinta edizione, 1998-09;
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", seconda edizione, · 2002- 06;
- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", seconda edizione, 2008-09:
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01;
- CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto", terza edizione, 1997:12;
- CEI 106-11, "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo", prima edizione, 2006:02;
- CEI EN 61936-1, "Impianti elettrici con tensione superiore a 1 kV in c.a. Parte 1: Prescrizioni comuni", prima edizione, 2011-07;

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

- CEI EN 50522, "Messa a terra degli impianti elettrici con tensione superiore a 1 kV in c.a.", prima edizione, 2011-07;
- CEI 33-2, "Condensatori di accoppiamento e divisori capacitivi", terza edizione, 1997;
- CEI 36-12, "Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V", prima edizione, 1998;
- CEI 57-2, "Bobine di sbarramento per sistemi a corrente alternata", seconda edizione, 1997;
- CEI 57-3, "Dispositivi di accoppiamento per impianti ad onde convogliate", prima edizione, 1998;
- CEI 64-2, "Impianti elettrici in luoghi con pericolo di esplosione" quarta edizione", 2001;
- CEI 64-8/1, "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e 1500 V in corrente continua", sesta edizione, 2007;
- CEI EN 50110-1-2, "Esercizio degli impianti elettrici", prima edizione, 1998-01;
- CEI EN 60076-1, "Trasformatori di potenza", Parte 1: Generalità, terza edizione, 1998;
- CEI EN 60076-2, "Trasformatori di potenza Riscaldamento", Parte 2: Riscaldamento, terza edizione, 1998;
- CEI EN 60137, "Isolatori passanti per tensioni alternate superiori a 1000 V", quinta edizione, 2004;
- CEI EN 60721-3-4, "Classificazioni delle condizioni ambientali", Parte 3: Classificazione dei gruppi di parametri ambientali e loro severità, Sezione 4: Uso in posizione fissa in luoghi non protetti dalle intemperie, seconda edizione, 1996;
- CEI EN 60721-3-3, "Classificazioni delle condizioni ambientali e loro severità", Parte 3: Classificazione dei gruppi di parametri ambientali e loro severità, Sezione 3: Uso in posizione fissa in luoghi protetti dalle intemperie, terza edizione, 1996;
- CEI EN 60068-3-3, "Prove climatiche e meccaniche fondamentali", Parte 3: Guida Metodi di prova sismica per apparecchiature, prima edizione, 1998;
- CEI EN 60099-4, "Scaricatori ad ossido di zinco senza spinterometri per reti a corrente alternata", Parte 4: Scaricatori ad ossido metallico senza spinterometri per reti elettriche a corrente alternata, seconda edizione, 2005;
- CEI EN 60129, "Sezionatori e sezionatori di terra a corrente alternata a tensione superiore a 1000 V", 1998;
- CEI EN 60529, "Gradi di protezione degli involucri", seconda edizione, 1997;
- CEI EN 62271-100, "Apparecchiatura ad alta tensione", Parte 100: Interruttori a corrente alternata ad alta tensione, sesta edizione, 2005;
- CEI EN 62271-102, "Apparecchiatura ad alta tensione", Parte 102 : Sezionatori e sezionatori di terra a corrente alternata per alta tensione, prima edizione, 2003;
- CEI EN 60044-1, "Trasformatori di misura", Parte 1: Trasformatori di corrente, edizione quarta, 2000;
- CEI EN 60044-2, "Trasformatori di misura", Parte 2: Trasformatori di tensione induttivi, edizione quarta, 2001;
- CEI EN 60044-5, "Trasformatori di misura", Parte 5: Trasformatori di tensione capacitivi, edizione prima, 2001;
- CEI EN 60694, "Prescrizioni comuni per l'apparecchiatura di manovra e di comando ad alta tensione", seconda edizione 1997;
- CEI EN 61000-6-2, "Compatibilità elettromagnetica (EMC)", Parte 6-2: Norme generiche Immunità per gli ambienti industriali, terza edizione, 2006;
- CEI EN 61000-6-4, "Compatibilità elettromagnetica (EMC)", Parte 6-4: Norme generiche Emissione per gli ambienti industriali, seconda edizione, 2007;
- UNI EN 54, "Sistemi di rivelazione e di segnalazione d'incendio", 1998;
- UNI 9795, "Sistemi automatici di rilevazione e di segnalazione manuale d'incendio", 2005.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

4.7. CRITERI GENERALI DI PROGETTAZIONE

È prassi consolidata far riferimento alla normativa internazionale IEC 61400-1 "Design requirements". Questa norma fornisce prescrizioni per la progettazione degli aerogeneratori col fine di assicurarne l'integrità tecnica e, quindi, un adeguato livello di protezione di persone, animali e cose contro tutti i pericoli di danneggiamento che possono accorrere nel corso del ciclo di vita degli stessi. Si deve sottolineare che tutte le prescrizioni della serie di norme IEC 61400 non sono obbligatorie; è chiaro, d'altro canto, che i modelli di aerogeneratori che vengono prodotti secondo gli standard in essa contenuti possono ben definirsi come quelli più sicuri sul mercato.

Si precisa che la progettazione e le verifiche di una struttura in Italia sono effettuate, ai sensi del D.M. 17 gennaio 2018 del Ministero delle Infrastrutture e dei Trasporti (G.U. 20 febbraio 2018 n. 8 - Suppl. Ord.) "Norme tecniche per le Costruzioni" (di seguito NTC2018) e della Circolare 21 gennaio 2019 n. 7 del Ministero delle Infrastrutture e dei Trasporti (G.U. 11 febbraio 2019 n.5–Suppl.Ord.) "Istruzioni per l'applicazione dell' Aggiornamento delle Norme Tecniche delle Costruzioni" di cui al D.M. 17 gennaio 2018".

Per quanto non diversamente specificato nella suddetta norma, per quanto riportato al capitolo 12 delle NTC 2018, si intendono coerenti con i principi alla base della stessa, le indicazioni riportate nei seguenti documenti:

- Eurocodici strutturali pubblicati dal CEN, con le precisazioni riportate nelle Appendici Nazionali;
- Norme UNI EN armonizzate i cui riferimenti siano pubblicati su Gazzetta Ufficiale dell'Unione Europea;
- Norme per prove su materiali e prodotti pubblicate da UNI.

Inoltre, a integrazione delle presenti norme e per quanto con esse non in contrasto, possono essere utilizzati i documenti di seguito indicati che costituiscono riferimenti di comprovata validità:

- Istruzioni del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale e successive modificazioni del Ministero per i Beni e le Attività Culturali, previo parere del Consiglio Superiore dei Lavori Pubblici sul documento stesso;
- Istruzioni e documenti tecnici del Consiglio Nazionale delle Ricerche (C.N.R.).

Per quanto non trattato nella presente norma o nei documenti di comprovata validità sopra elencati, possono essere utilizzati anche altri codici internazionali; è responsabilità del progettista garantire espressamente livelli di sicurezza coerenti con quelli delle presenti Norme tecniche.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5. DESCRIZIONE DELL'INTERVENTO, DELLE FASI, DEI TEMPI E DELLE MODALITÀ DI ESECUZIONE DEI COMPLESSIVI LAVORI PREVISTI, DEL PIANO DI DISMISSIONE DEGLI IMPIANTI E DI RIPRISTINO DELLO STATO DEI LUOGHI

5.1. DESCRIZIONE DELL'INTERVENTO E MODALITA' DI ESECUZIONE

5.1.1. DATI GENERALI D'IMPIANTO

Nello specifico, il progetto prevede:

- nº 9 aerogeneratori e una potenza massima di 6,2 MW (limitata a 5,6 MW), tipo tripala diametro massimo paro a 170 m altezza complessiva massima 200 m;
- viabilità di accesso, con carreggiata di larghezza pari a 5,00 mt;
- nº 09 piazzole di costruzione, necessarie per accogliere temporaneamente sia i componenti delle macchine che i mezzi necessari al sollevamento dei vari elementi, di dimensioni di circa 40x70m. Tali piazzole, a valle del montaggio dell'aerogeneratore, vengono ridotte ad una superficie di 1.500 mq, in aderenza alla fondazione, necessarie per le operazioni di manutenzione dell'impianto;
- una rete di elettrodotto interrato a max 36 kV di collegamento interno fra gli aerogeneratori;
- una rete di elettrodotto interrato costituito da dorsali a max 36 kV di collegamento tra gli aerogeneratori e la stazione di trasformazione max36/150 kV;
- una stazione elettrica di utenza di trasformazione max36/150 kV completa di relative apparecchiature ausiliarie (quadri, sistemi di controllo e protezione, trasformatore ausiliario);
- Cavidotto AT di collegamento tra la Stazione elettrica di Utenza e la SE "Sanluri";
- Stazione elettrica RTN (SE "Sanluri");
- Raccordi aerei.

Inoltre, nel caso in cui sopravvengano criticità in merito ai tempi di realizzazione della SE "Sanluri", si è ipotizzata una soluzione temporanea di connessione, la quale prevede un collegamento in cavo interrato AT dalla sbarra del condominio della futura Stazione Elettrica di Utenza fino ad intercettare, con una calata, la linea AT 150 kV esistente "Tuili – Villasor" in adiacenza alla futura Stazione elettrica di Utenza.

5.1.2. UBICAZIONE DEL PROGETTO

Il progetto prevede la realizzazione di un impianto di produzione energia rinnovabile da fonte eolica, costituito da nº 9 aerogeneratori per una potenza complessiva massima di 50,4 MW, nei comuni di Samatzai e Guasila (SU), e relative opere connesse ed infrastrutture indispensabili nei comuni di Samatzai, Guasila, Serrenti, Segariu, Furtei, Sanluri, Nuraminis e Pimentel (SU), collegato alla Rete Elettrica Nazionale mediante connessione con uno stallo a 150 kV in antenna su una futura Stazione Elettrica (SE) di trasformazione della RTN 380/150 kV da inserire in entra-esce alla linea RTN 380 kV "Ittiri – Selargius" ubicata nel comune di Sanluri. Si riporta di seguito stralcio della corografia di inquadramento:

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

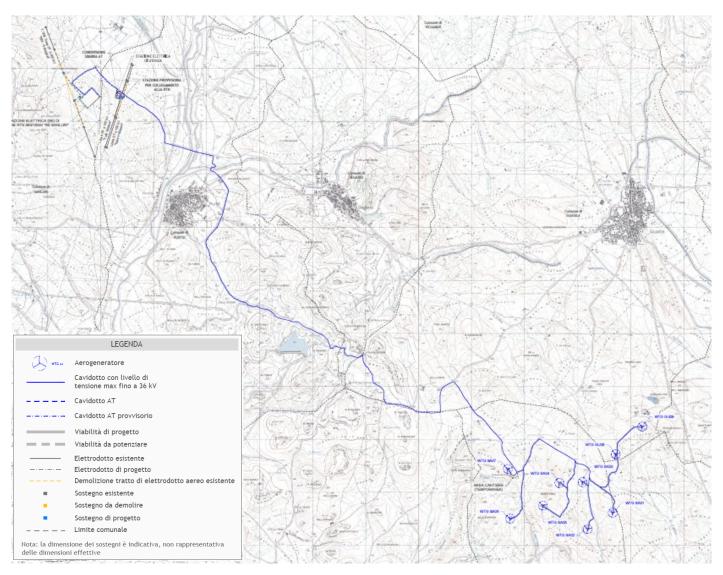


Figura 2 - Corografia d'inquadramento

Il tipo di aerogeneratore previsto per l'impianto in oggetto (aerogeneratore di progetto) è un aerogeneratore ad asse orizzontale con rotore tripala e una potenza massima di 6,2 MW (limitata a 5,6 MW), le cui caratteristiche principali sono di seguito riportate:

- rotore tripala a passo variabile, di diametro massimo pari a 170 m, posto sopravvento alla torre di sostengo, costituito da 3 pale generalmente in resina epossidica rinforzata con fibra di vetro e da mozzo rigido in acciaio;
- navicella in carpenteria metallica con carenatura in vetroresina e lamiera, in cui sono collocati il generatore elettrico, il
 moltiplicatore di giri, il trasformatore BT/MT e le apparecchiature idrauliche ed elettriche di comando e controllo;
- torre di sostegno tubolare troncoconica in acciaio, avente altezza fino all'asse del rotore pari a massimi 121 m;
- altezza complessiva massima fuori terra dell'aerogeneratore pari a 200,0 m;
- diametro massimo alla base del sostegno tubolare: 5,3 m;
- area spazzata massima: 22.698 mq.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Ai fini degli approfondimenti progettuali e dei relativi studi specialistici, si sono individuati alcuni specifici modelli commerciali di aerogeneratore ad oggi esistenti sul mercato, idonei ad essere conformi all'aerogeneratore di progetto:

- 1. Vestas V162-119 m HH-5.6 MW
- 2. Siemens-Gamesa SG170-115 m HH-6.2 MW
- General Electric GE158-120.9m HH-5.8MW

L'Impianto (aerogeneratori, piazzole e viabilità d'accesso), il cavidotto max 36kV, la Stazione elettrica di utenza, l'Impianto di Utenza per la Connessione e l'Impianto di Rete per la Connessione ricadono all'interno dei comuni di Samatzai (SU) e Guasila (SU e Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU) sulle seguenti particelle catastali:

- Comune di Samatzai (SU): Foglio 2, particelle 26-94-56-60-49-67-57-58-55-66-41-37-38-48-36-89-39-40-92-59; Foglio 1, particelle 173-155-139-140-140-168-164-149-148-147-146-236-145-123-122-103-100-99-83-98-224-82-77-78-76-79-75-59-74-56-38-196-193-37-55-36-34-191-35-156-1-189; Foglio 3, particelle 58-179-195-93-92-91-89-88-72-57-90-71-190-87-110-124-140-141-142-181-180-113-111-125-126-127-114-196-128-185-186-42-24-31-30-22-21-20-10-9-7-19-123-172-29-165-166-11-23; Foglio 4, particelle 61-27-26-62-68-67-107-108-48-47-46-64-45-57-58-50-106-63-55-42-104-105-33-41-28-96-95-16-17-18-12-13-11-10-5-117-7-1-2-3; Foglio 5, particelle 18-97-147-115-127-133-128-98-99-100-101-116-64-77-76-75-74-62-61-52-42-60-41-40-59-140-57-69-67-49-50-56-39-58-72-83-84-82-85-94-95-96-107-131-125-112-124-106-108-123-122-121-136-138-137-132-34-33-25-24-22-23-32-7-5-21-20-27-30-28-29-53-65-78-105-89-88-46-63; Foglio 7, particelle 17-68-20-21-18. Foglio 9, particelle 154-182; Foglio 11, particelle1492-2184-493-1500-1502-1195-151-616-615-1505:
- Comune di Furtei (SU): Foglio 20, particelle 165-166-162-161-160-267-131-130-285-129-167-128-127-126-125-106-273-122-105-276-10-283-102-101-100-99-98-97-96-95-94; Foglio 19, particelle 287-134-70-69-133--68-51-50-49-48-47-197-46-45-208-207-206-205-19-18-16-17-42-41-14; Foglio 16, particelle 124-123-122-73-117-116-98-721; Foglio 15, particelle 275-239-238-414-549-412-411-408-407-410-409-418-406-405-479-404-403-430-429-428-427-426-425-424-422-421-420-50-423-7-419; Foglio 11, particelle 363-171-361-362-359-230-357-161-356-272-355-351-353-352-350-349-347-348-345-1417-342-340-341-339-75-337-335-333-332-331-329-330; Foglio 10, particelle 1578-1579-1581-1603-365-1584; Foglio 8, particelle 236-318-317-320-319-163-89-97-122-227-91-90-257-84-205-207-120-155-218-74-171-164-208-184-197-69-68; Foglio 6, particelle 265-278-156-248-319-305-150-252-92-217-89-212-211-88-210-208-207-205-53-204-203-202-76-193-192-31-191-190-189-299-302-301-236-186-185-73-315-72-313-67-312-43-174-42-25; Foglio 5, particelle 26-27-28-31-32-35-36-37-38; Foglio 1, particelle 24;
- Comune di Guasila (SU): Foglio 48, particelle 76-73-77-72-71-75-74-53-55-50-56-60-49; Foglio 43, particelle 54-5-89-88-20-49-19-48-18-47-17-46-16-45-15-44-2-11-71-13-70; Foglio 44, particelle 77-140-139-43-66-56-92-63-91-90-85-89-88-87-86-117-53-52-51-74-72-71-73-69-75-128-76-78-79-112-129-111-110-109-135-131-107-28;
- Comune di Pimental (SU): Foglio 1, particelle 187-188-175-2-3-4-180-189; Foglio 2, particelle 49-110-143-142-28-23-149-10-1;
- Comune di Serrenti (SU): Foglio 7, particelle 1-36-39-40-41-167; Foglio 8, particelle 3-29;
- Comune di Sanluri (SU): Foglio 11, particelle 98-104-105-106-107-154-155-156-177-97-178; Foglio 12, particelle 142-143-145-146-147-149; Foglio 17, particelle 19-20-23-24-25-26-27-28-30-31-33-35-36-37-47-50-51-52-53-54-55-56-57-60-61-91-95-100-101-102-103-104-105-106-107-114-115-116-117-140-141-142-143-145-146-140-149-150-151-152-153-154-155-156-157-158-159-178-186-187-188-194-195-196-197-198-199-200-201-202-203-204-218-221-224-225-228-229-230-235; Foglio 22, particelle 42-45-46-268-233-37-38-39-40-97-98-99-185-187-.
- Comune di Segariu (SU): Foglio 15, particelle 86-102-95-96-94-92-88.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Inoltre, per la realizzazione delle opere di cui innanzi, si necessita dell'occupazione temporanea, per la durata del cantiere, delle seguenti aree:

- Comune di Samatzai (SU): Foglio 2, particelle 89-39-92-59; Foglio 1, particelle 173-155-139-140-164-145-77-78-79-59-56-196-193-55-36-191-35-189-123-122-99-98-224; Foglio 4, particelle 67-55-96-95-17-18; Foglio 5, particelle 52-82-23-105-89; Foglio 11 particelle 615,1505,616;
- Comune di Furtei (SU): Foglio 20, particelle 160; Foglio 19, particelle18-16-17-42-41-14; Foglio 16, particelle 124-123-73-721; Foglio 15, particelle 275-238-239-423-7; Foglio 11, particelle 362-230-161-272-352-350-348-1417-341-75-330; Foglio 8, particelle 227-90; Foglio 6, particelle 319-305-150-252-92-217-89-212-211-210-208-207-205-53-204-203-202-76-193-191-190-189-299-302-301-236-186-185-315-313-312-43-174; Foglio 5, particelle 39;
- Comune di Guasila (SU): Foglio 43, particelle49-48-47-46-45-44-2-11-71-13; Foglio 44, particelle140-139-43-66-63-85-117-53-52-51-74-72-69-128-129-131;
- Comune di Serrenti (SU): Foglio 7, particelle 1-39; Foglio 8, particelle 3-29;
- Comune di Sanluri (SU):Foglio 17, particelle 30-31-102-187-195.
- Comune di Segariu (SU): Foglio 15, particelle 96.

Di seguito, infine, le aree interessate dai trasporti e le attività di movimentazione delle macchine:

Comune di Samatzai (SU): Foglio 9, particelle 154-182; Foglio 11, particelle 1492-2184-493-1500-1502-1195-151.

Si riportano di seguito le coordinate in formato UTM (WGS84), con i fogli e le particelle in cui ricade la fondazione degli aerogeneratori:

AEROGENERATORE	AEROGENEF	DINATE RATORE UTM - FUSO 32	AEROGEN	DINATE IERATORE AGA - WEST	lder	ntificativo catastale							
	Long. E [m]	Lat. N [m]	Long. E [m]	Lat. N [m]	Comune	Foglio	Particella						
WTG SA01	503.568,0	4.373.440,0	1.503.598,9	4.373.445,8	SAMATZAI	5	18, 101, 116						
WTG SA02	503.096,0	4.373.132,0	1.503.126,9	4.373.137,8	SAMATZAI	5	132, 137						
WTG SA03	503.000,0	4.374.018,0	1.503.030,9	4.374.023,8	SAMATZAI	5	39						
WTG SA04	502.563,0	4.374.003,0	1.502.593,9	4.374.008,8	SAMATZAI	2	49, 67						
WTG SA05	502.252,0	4.373.576,0	1.502.282,9	4.373.581,8	SAMATZAI	4	48						
WTG SA06	501.634,0	4.373.330,0	1.501.664,9	4.373.335,8	SAMATZAI	3	113, 114						
WTG SA07	501.590,0	4.374.268,0	1.501.620,9	4.374.273,8	SAMATZAI	3	22						
WTG GU08	503.626,0	4.374.546,0	1.503.656,9	4.374.551,8	GUASILA	48	72						
WTG GU09	504.126,0	4.375.066,0	1.504.156,9	4.375.071,8	GUASILA	48	55						

5.1.3. CARATTERISTICHE TECNICHE DEL PROGETTO

5.1.3.1. AEROGENERATORI

Un aerogeneratore o una turbina eolica trasforma l'energia cinetica posseduta dal vento in energia elettrica senza l'utilizzo di alcun combustibile e passando attraverso lo stadio di conversione in energia meccanica di rotazione effettuato dalle pale. Come illustrato meglio di seguito, al fine di sfruttare l'energia cinetica contenuta nel vento, convertendola in energia elettrica una turbina eolica utilizza diversi componenti sia meccanici che elettrici. In particolare, il rotore (pale e mozzo) estrae l'energia dal vento convertendola

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

in energia meccanica di rotazione e costituisce il "motore primo" dell'aerogeneratore, mentre la conversione dell'energia meccanica in elettrica è effettuata grazie alla presenza di un generatore elettrico.

Un aerogeneratore richiede una velocità minima del vento (cut-in) di 2-4 m/s ed eroga la potenza di progetto ad una velocità del vento di 10-14 m/s. A velocità elevate, generalmente di 20-25 m/s (cut-off) la turbina viene arrestata dal sistema frenante per ragioni di sicurezza. Il blocco può avvenire con veri e propri freni meccanici che arrestano il rotore o, per le pale ad inclinazione variabile "nascondendo" le stesse al vento mettendole nella cosiddetta posizione a "bandiera".

Le turbine eoliche possono essere suddivise in base alla tecnologia costruttiva in due macro-famiglie:

- turbine ad asse verticale VAWT (Vertical Axis Wind Turbine),
- turbine ad asse orizzontale HAWT (Horizontal Axis Wind Turbine).

Le turbine VAWT costituiscono l'1% delle turbine attualmente in uso, mentre il restante 99% è costituito dalle HAWT. Delle turbine ad asse orizzontale, circa il 99% di quelle installate è a tre pale mentre l'1% a due pale.

L'aerogeneratore eolico ad asse orizzontale è costituito da una torre tubolare in acciaio che porta alla sua sommità la navicella, all'interno della quale sono alloggiati l'albero di trasmissione lento, il moltiplicatore di giri, l'albero veloce, il generatore elettrico ed i dispositivi ausiliari. All'estremità dell'albero lento, corrispondente all'estremo anteriore della navicella, è fissato il rotore costituito da un mozzo sul quale sono montate le pale. La navicella può ruotare rispetto al sostegno in modo tale da tenere l'asse della macchina sempre parallela alla direzione del vento (movimento di imbardata); inoltre è dotata di un sistema di controllo del passo che, in corrispondenza di alta velocità del vento, mantiene la produzione di energia al suo valore nominale indipendentemente dalla temperatura e dalla densità dell'aria; in corrispondenza invece di bassa velocità del vento, il sistema a passo variabile e quello di controllo ottimizzano la produzione di energia scegliendo la combinazione ottimale tra velocità del rotore e angolo di orientamento delle pale in modo da avere massimo rendimento.

Torre di sostegno

La torre è caratterizzata da quattro moduli tronco conici in acciaio ad innesto. I tronconi saranno realizzati in officina quindi trasportati e montati in cantiere. Alla base della torre ci sarà una porta che permetterà l'accesso ad una scala montata all'interno, dotata ovviamente di opportuni sistemi di protezione (parapetti). La torre sarà protetta contro la corrosione da un sistema di verniciatura multistrato. Allo scopo di ridurre al minimo la necessità di raggiungere la navicella tramite le scale, il sistema di controllo del convertitore e di comando dell'aerogeneratore saranno sistemati in quadri montati su una piattaforma separata alla base della torre. L'energia elettrica prodotta verrà trasmessa alla base della torre tramite cavi installati su una passerella verticale ed opportunamente schermati. Per la trasmissione dei segnali di controllo alla navicella saranno installati cavi a fibre ottiche. Torri, navicelle e pali saranno realizzati con colori che si inseriscono armonicamente nell'ambiente circostante, fatte salve altre tonalità derivanti da disposizioni di sicurezza.

Pale

Le pale sono in fibra di vetro rinforzata con resina epossidica e fibra di carbonio. Esse sono realizzate con due gusci ancorati ad una trave portante e sono collegate al mozzo per mezzo di cuscinetti che consentono la rotazione della pala attorno al proprio asse (pitch system). I cuscinetti sono sferici a 4 punte e vengono collegati al mozzo tramite bulloni.

Navicella

La navicella ospita al proprio interno la catena cinematica che trasmette il moto dalle pale al generatore elettrico. Una copertura in fibra di vetro protegge i componenti della macchina dagli agenti atmosferici e riduce il rumore prodotto a livelli accettabili. Sul retro

RELAZIONE TECNICA

GREENENGRYSARDEGNA2Piazza del Grano 3, Bolzano,
P.IVA e Cod. Fisc. 02993950217

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

della navicella è posta una porta attraverso la quale, mediante l'utilizzo di un palanco, possono essere rimossi attrezzature e componenti della navicella. L'accesso al tetto avviene attraverso un lucernario. La navicella, inoltre, è provvista di illuminazione.

Il sistema frenante

Il sistema frenante, attraverso la "messa in bandiera" delle pale e l'azionamento del freno di stazionamento dotato di sistema idraulico, permette di arrestare all'occorrenza la rotazione dell'aerogeneratore. E' presente anche un sistema di frenata d'emergenza a ganasce che, tramite attuatori idraulici veloci, ferma le pale in brevissimo tempo. Tale frenata, essendo causa di importante fatica meccanica per tutta la struttura della torre, avviene solo in caso di avaria grave, di black-out della rete o di intervento del personale attraverso l'azionamento degli appositi pulsanti di emergenza.

Rotore

Il rotore avrà una velocità di rotazione variabile. Combinato con un sistema di regolazione del passo delle pale, fornisce la migliore resa possibile adattandosi nel contempo alle specifiche della rete elettrica (accoppiamento con generatore) e minimizzando le emissioni acustiche. Le pale, a profilo alare, sono ottimizzate per operare a velocità variabile e saranno protette dalle scariche atmosferiche da un sistema parafulmine integrato. L'interfaccia tra il rotore ed il sistema di trasmissione del moto è il mozzo. I cuscinetti delle pale sono imbullonati direttamente sul mozzo, che sostiene anche le flange per gli attuatori di passo e le corrispondenti unità di controllo. Il gruppo mozzo è schermato secondo il principio della gabbia di Faraday, in modo da fornire la protezione ottimale ai componenti elettronici installati al suo interno. Il mozzo sarà realizzato in ghisa fusa a forma combinata di stella e sfera, in modo tale da ottenere un flusso di carico ottimale con un peso dei componenti ridotto e con dimensioni esterne contenute

Durante il funzionamento sistemi di controllo della velocità e del passo interagiscono per ottenere il rapporto ottimale tra massima resa e minimo carico. Con bassa velocità del vento e a carico parziale il generatore eolico opera a passo delle pale costante e velocità del rotore variabile, sfruttando costantemente la miglior aerodinamica possibile al fine di ottenere un'efficienza ottimale. La bassa velocità del rotore alle basse velocità è piacevole e mantiene bassi i livelli di emissione acustica. A potenza nominale e ad alte velocità del vento il sistema di controllo del rotore agisce sull'attuatore del passo delle pale per mantenere una generazione di potenza costante; le raffiche di vento fanno accelerare il rotore che viene gradualmente rallentato dal controllo del passo. Questo sistema di controllo permette una riduzione significativa del carico sul generatore eolico fornendo contemporaneamente alla rete energia ad alto livello di compatibilità. Le pale sono collegate al mozzo mediante cuscinetti a doppia corona di rulli a quattro contatti ed il passo è regolato autonomamente per ogni pala. Gli attuatori del passo, che ruotano con le pale, sono motori a corrente continua ed agiscono sulla dentatura interna dei cuscinetti a quattro contatti tramite un ingranaggio epicicloidale a bassa velocità. Per sincronizzare le regolazioni delle singole pale viene utilizzato un controller sincrono molto rapido e preciso. Per mantenere operativi gli attuatori del passo in caso di guasti alla rete o all'aerogeneratore ogni pala del rotore ha un proprio set di batterie che ruotano con la pala. Gli attuatori del passo, il carica batteria ed il sistema di controllo sono posizionati nel mozzo del rotore in modo da essere completamente schermati e quindi protetti in modo ottimale contro gli agenti atmosferici o i fulmini. Oltre a controllare la potenza in uscita il controllo del passo serve da sistema di sicurezza primario.

Durante la normale azione di frenaggio i bordi d'attacco delle pale vengono ruotati in direzione del vento. Il meccanismo di controllo del passo agisce in modo indipendente su ogni pala. Pertanto, nel caso in cui l'attuatore del passo dovesse venire a mancare su due pale, la terza può ancora riportare il rotore sotto controllo ad una velocità di rotazione sicura nel giro di pochi secondi. In tal modo si ha un sistema di sicurezza a tripla ridondanza. Quando l'aerogeneratore è in posizione di parcheggio, le pale del rotore vengono messe a bandiera. Ciò riduce nettamente il carico sull'aerogeneratore, e quindi sulla torre. Tale posizione, viene pertanto attuata in condizioni climatiche di bufera.

Sistema di controllo

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Tutto il funzionamento dell'aerogeneratore è controllato da un sistema a microprocessori che attua un'architettura multiprocessore in tempo reale. Tale sistema è collegato a un gran numero di sensori medianti cavi a fibre ottiche. In tal modo si garantisce la più alta rapidità di trasferimento del segnale e la maggior sicurezza contro le correnti vaganti o i colpi di fulmine. Il computer installato nell'impianto definisce i valori di velocità del rotore e del passo delle pale e funge quindi anche da sistema di supervisione dell'unità di controllo distribuite dell'impianto elettrico e del meccanismo di controllo del passo alloggiato nel mozzo.

La tensione di rete, la fase, la frequenza, la velocità del rotore e del generatore, varie temperature, livelli di vibrazione, la pressione dell'olio, l'usura delle pastiglie dei freni, l'avvolgimento dei cavi, nonché le condizioni meteorologiche vengono monitorate continuamente. Le funzioni più critiche e sensibili ai guasti vengono monitorate con ridondanza. In caso di emergenza si può far scattare un rapido arresto mediante un circuito cablato in emergenza, persino in assenza del computer e dell'alimentazione esterna. Tutti i dati possono essere monitorati a distanza in modo fa consentirne il telecontrollo e la tele gestione di ogni singolo aerogeneratore.

Impianto elettrico del generatore eolico

L'impianto elettrico è un componente fondamentale per un rendimento ottimale ed una fornitura alla rete di energia di prima qualità. Il generatore asincrono a doppio avvolgimento consente il funzionamento a velocità variabile con limitazione della potenza da inviare al circuito del convertitore, ed in tal modo garantisce le condizioni di maggior efficienza dell'aerogeneratore. Con vento debole la bassa velocità di inserimento va a tutto vantaggio dell'efficienza, riduce le emissioni acustiche, migliora le caratteristiche di fornitura alla rete. Il generatore a velocità variabile livella le fluttuazioni di potenza in condizioni di carico parziale ed offre un livellamento quasi totale in condizioni di potenza nominale. Ciò porta a condizioni di funzionamento più regolari dell'aerogeneratore e riduce nettamente i carichi dinamici strutturali. Le raffiche di vento sono "immagazzinate" dall'accelerazione del rotore e sono convogliate gradatamente alla rete. La tensione e la frequenza fornite alla rete restano assolutamente costanti. Inoltre, il sistema di controllo del convertitore può venire adattato ad una grande varietà di condizioni di rete e può persino servire reti deboli. Il convertitore è controllato attraverso circuiti di elettronica di potenza da un microprocessore a modulazione di ampiezza d'impulso. La fornitura di corrente è quasi completamente priva di flicker, la gestione regolabile della potenza reattiva, la bassa distorsione, ed il minimo contenuto di armoniche definiscono una fornitura di energia eolica di alta qualità.

La bassa potenza di cortocircuito permette una migliore utilizzazione della capacità di rete disponibile e può evitare costosi interventi di potenziamento della rete. Grazie alla particolare tecnologia delle turbine previste, non sarà necessaria la realizzazione di una cabina di trasformazione BT/ max 36kV, alla base di ogni palo in quanto questa è già alloggiata all'interno della torre d'acciaio; il trasformatore BT/ max 36kV, con la relativa quadristica fa parte dell'aerogeneratore ed è interamente installato all'interno dell'aerogeneratore stesso, a base torre. Per la Rete è stato individuato un trasformatore; il gruppo sarà collegato alla rete attraverso pozzetti di linea per mezzo di cavi posati direttamente in cavidotti interrati convenientemente segnalati.

Fondazioni

Trattasi di un plinto in cls armato di grandi dimensioni, di forma in pianta circolare di diametro massimo pari a 30,00 mt, con un nocciolo centrale cilindrico con diametro massimo pari a 8,00 mt, con altezza complessiva pari a 3,50 mt.

Tale fondazione è di tipo indiretto su 18 pali di diametro 1200 mm, posizionati su una corona di raggio 13,50 mt e lunghezza variabile da 20 a 30 mt.

La sezione è rastremata a partire dal perimetro esterno, spessore 110 cm, fino al contatto con il nocciolo centrale citato dove lo spessore della sezione è di 350 cm. Le dimensioni *potranno subire modifiche* nel corso dei successivi livelli di progettazione. Per le opere oggetto della presente relazione si prevede l'utilizzo dei seguenti materiali:

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

 $f_{cfd} = 1,68 \text{ N/mm}^2$

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Calcestruzzo per opere di fondazione

Resist, di calcolo a trazione per flessione

Classe di esposizione XC4
Classe di resistenza C32/40

Resist, caratteristica a compressione cilindrica $f_{ck} = 32 \text{ N/mm}^2$ Resist, caratteristica a compressione cubica $R_{ck} = 40 \text{ N/mm}^2$ Modulo elastico $E_c = 33350 \text{ N/mm}^2$ Resist, di calcolo a compressione $f_{cd} = 18,13 \text{ N/mm}^2$ Resist, caratteristica a trazione $f_{ctk} = 2,11 \text{ N/mm}^2$ Resist, di calcolo a trazione $f_{ctd} = 1,41 \text{ N/mm}^2$ Resist, caratteristica a trazione per flessione $f_{cfk} = 2,53 \text{ N/mm}^2$

Rapporto acqua/cemento max 0,50

Contenuto cemento min 340 kg/m³

Diametro inerte max 25 mm

Classe di consistenza S4

Acciaio per armature c,a,

Acciaio per armatura tipo B450C

Tensione caratteristica di snervamento $f_{yk} = 450 \text{ N/mm}^2$ Tensione caratteristica di rottura $f_{tk} = 540 \text{ N/mm}^2$ Modulo elastico $E_s = 210000 \text{ N/mm}^2$

Dati caratteristici

Posizione rotore: sopravento

Regolazione di potenza: a passo variabile

Diametro rotore: max 170 m

Area spazzata: max 22.698 mq

Direzione di rotazione: senso orario

Temperatura di esercizio: -20°C / +40°C

Velocità del vento all'avviamento: min 3 m/s

Arresto per eccesso di velocità del vento: 25 m/s

Freni aerodinamici: messa in bandiera totale

Numero di pale: 3

Modalità di trasporto di tutti i componenti da porto navale a sito: mezzi di trasporto eccezionale standard/speciali aventi uno snodo ed il componente fissato al rimorchio in senso orizzontale.

Modalità trasporto singola pala da area di trasbordo al sito di installazione: mezzo speciale "blade lifter" per il sollevamento della pala fino ad un'inclinazione di 60° rispetto al suolo.

Curva di potenza (alla densità atmosferica del livello del mare):

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Wind speed [m/s]	Power [kW]
3	89
4	328
5	758
6	1376
7	2230
8	3344
9	4512
10	5249
11	5518
12	5584
13	5597
14	5599
15	5600
16	5600
17	5600
18	5600
19	5600
20	5600
21	5600
22	5600
23	5460
24	5212
25	4964

5.1.3.2. VIABILITÀ E PIAZZOLE

Piazzole di costruzione

Il montaggio dell'aerogeneratore richiede la predisposizione di aree di dimensioni e caratteristiche opportune, necessarie per accogliere temporaneamente sia i componenti delle macchine (elementi della torre, pale, navicella, mozzo, etc.) che i mezzi necessari al sollevamento dei vari elementi. In corrispondenza della zona di collocazione della turbina si realizza una piazzola provvisoria delle dimensioni, come di seguito riportate, diverse in base all'orografia del suolo e alle modalità di deposito e montaggio della componentistica delle turbine, disposta in piano e con superficie in misto granulare, quale base di appoggio per le sezioni della torre, la navicella, il mozzo e l'ogiva. Lungo un lato della piazzola, su un'area idonea, si prevede area stoccaggio blade, in seguito calettate sul mozzo mediante una idonea gru, con cui si prevede anche al montaggio dell'ogiva, Il montaggio dell'aerogeneratore (cioè, in successione, degli elementi della torre, della navicella e del rotore) avviene per mezzo di una gru tralicciata, posizionata a circa 25-30 m dal centro della torre e precedentemente assemblata sul posto; si ritiene pertanto necessario realizzare uno spazio idoneo per il deposito degli elementi del braccio della gru tralicciata. Parallelamente a questo spazio si prevede una pista per il transito dei mezzi ausiliari al deposito e montaggio della gru, che si prevede coincidente per quanto possibile con la parte terminale

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

della strada di accesso alla piazzola al fine di limitare al massimo le aree occupate durante i lavori. Le dimensioni planimetriche massime delle singole piazzole sono circa 40 x 70 m.

Figura 3 - Piazzola per il montaggio dell'aerogeneratore

Viabilità di costruzione

La viabilità interna sarà costituita da una serie di strade e di piste di accesso che consentiranno di raggiungere agevolmente tutte le postazioni in cui verranno collocati gli aerogeneratori.

Tale viabilità interna sarà costituita sia da strade già esistenti che da nuove strade appositamente realizzate.

Le strade esistenti verranno adeguate in alcuni tratti per rispettare i raggi di curvatura e l'ingombro trasversale dei mezzi di trasporto dei componenti dell'aerogeneratore. Tali adeguamenti consisteranno quindi essenzialmente in raccordi agli incroci di strade e ampliamenti della sede stradale nei tratti di minore larghezza, per la cui esecuzione sarà richiesta l'asportazione, lateralmente alle strade, dello strato superficiale di terreno vegetale e la sua sostituzione con uno strato di misto granulare stabilizzato. Le piste di nuova costruzione avranno una larghezza di 5 m e su di esse, dopo l'esecuzione della necessaria compattazione, verrà steso uno strato di geotessile, quindi verrà realizzata una fondazione in misto granulare dello spessore di 50 cm e infine uno strato superficiale di massicciata dello spessore di 10 cm. Verranno eseguite opere di scavo, compattazione e stabilizzazione nonché riempimento con inerti costipati e rullati così da avere un sottofondo atto a sostenere i carichi dei mezzi eccezionali nelle fasi di accesso e manovra. La costruzione delle strade di accesso in fase di cantiere e di quelle definitive dovrà rispettare adeguate pendenze sia trasversali che longitudinali allo scopo di consentire il drenaggio delle acque impedendo gli accumuli in prossimità delle piazzole di lavoro degli aerogeneratori. A tal fine le strade dovranno essere realizzate con sezione a pendenza con inclinazione di circa il 2%.

Piazzole e viabilità in fase di ripristino

A valle del montaggio dell'aerogeneratore, tutte le aree adoperate per le operazioni verranno ripristinate, tornando così all'uso originario, e la piazzola verrà ridotta per la fase di esercizio dell'impianto ad una superficie di circa 400 mq oltre l'area occupata dalla fondazione, atte a consentire lo stazionamento di una eventuale autogru da utilizzarsi per lavori di manutenzione. Le aree esterne alla piazzola definitiva, occupate temporaneamente per la fase di cantiere, verranno ripristinate alle condizioni iniziali.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.1.3.3. CAVIDOTTI MAX 36kV

Si specifica che il valore di tensione di esercizio 30 kV riportato negli elaborati è puramente indicativo: la società proponente si riserva la possibilità di aumentare tale livello di tensione fino ad un massimo di 36 kV, in funzione di aspetti successivi inerenti eventuali opportunità legate alla connessione.

Al di sotto della viabilità interna al parco o al di sotto delle proprietà private, correranno i cavi che trasmetteranno l'energia elettrica prodotta dagli aerogeneratori alla stazione elettrica di utenza max36kV/150kV e quindi alla rete elettrica nazionale.

Caratteristiche Elettriche del Sistema max 36kV

Tensione massima (Um)	36 Kv	
Frequenza nominale del sistema	50 Hz	
stato del neutro	isolato	
Massima corrente di corto circuito trifase		(1)
Massima corrente di guasto a terra monofase e durata		(1)

Note:

(1) da determinare durante la progettazione esecutiva dei sistemi elettrici.

Cavo max 36 KV: Caratteristiche Tecniche e Requisiti

Tensione di esercizio (Ue) max 36 kV

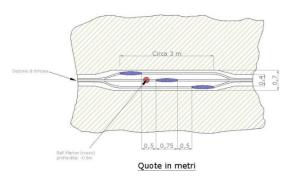
Tipo di cavo: Cavo max 36kV unipolare schermato con isolamento estruso, riunito ad elica visibile Note:

Sigla di identificazione	ARG7H1(AR)E (x)
Conduttori	Alluminio
Isolamento	Mescola di polietilene reticolato (qualità DIX 8)
Schermo	filo di rame
Guaina esterna	Da definire durante la progettazione esecutiva dei sistemi elettrici
Potenza da trasmettere	Da definire durante la progettazione esecutiva dei sistemi elettrici
Sezione conduttore	Da definire durante la progettazione esecutiva dei sistemi elettrici
Messa a terra della guaina	Da definire durante la progettazione esecutiva dei sistemi elettrici
Tipo di posa	Direttamente interrato

Buche e Giunti

Nelle buche giunti si prescrive di realizzare una scorta sufficiente a poter effettuare un eventuale nuovo giunto (le dimensioni della buca giunti devono essere determinate dal fornitore in funzione del tipo di cavo max 36kV utilizzato ed in funzione delle sue scelte operative).

Nella seguente figura si propone un tipico in cui si evidenza il richiesto sfasamento dei giunti di ogni singola fase.


Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Sono prescritte le seguenti ulteriori indicazioni:

- Il fondo della buca giunti deve garantire che non vi sia ristagno di acqua piovana o di corrivazione; se necessario, le buche giunti si devono posizionare in luoghi appositamente studiati per evitare i ristagni d'acqua. Gli strati di ricoprimento sino alla quota di posa della protezione saranno eseguiti come nella sezione di scavo;
- La protezione, che nella trincea corrente può essere in PVC, nelle buche giunti deve essere sostituita da lastre in cls armato delle dimensioni 50 X 50 cm e spessore minimo pari a cm 4, dotate di golfari o maniglie per la movimentazione, Tutta la superficie della buca giunti deve essere "ricoperta" con dette lastre, gli strati superiori di ricoprimento saranno gli stessi descritti per la sezione corrente in trincea:
- Segnalamento della buca giunti con le "ball marker".

Posa dei cavi

La posa dei cavi di potenza sarà preceduta dal livellamento del fondo dello scavo e la posa di un cavidotto in tritubo DN50, per la posa dei cavi di comunicazione in fibra ottica. Tale tubo protettivo dovrà essere posato nella trincea in modo da consentire l'accesso ai cavi di potenza (apertura di scavo) per eventuali interventi di riparazione ed esecuzione giunti senza danneggiare il cavo di comunicazione.

La posa dei tubi dovrà avvenire in maniera tale da evitare ristagni di acqua (pendenza) e avendo cura nell'esecuzione delle giunzioni. Durante la posa delle tubazioni sarà inserito in queste un filo guida in acciaio.

La posa dovrà essere eseguita secondo le prescrizioni della Norma CEI 11-17, in particolare per quanto riguarda le temperature minime consentite per la posa e i raggi di curvatura minimi.

La bobina deve essere posizionata con l'asse di rotazione perpendicolare al tracciato di posa ed in modo che lo svolgimento del cavo avvenga dall'alto evitando di invertire la naturale curvatura del cavo nella bobina.

Scavi e Rinterri

Lo scavo sarà a sezione ristretta, con una larghezza variabile da cm 50 a 120 al fondo dello scavo; la sezione di scavo sarà parallelepipeda con le dimensioni come da particolare costruttivo relativo al tratto specifico.

Dove previsto, sul fondo dello scavo, verrà realizzato un letto di sabbia lavata e vagliata, priva di elementi organici, a bassa resistività e del diametro massimo pari 2 mm su cui saranno posizionati i cavi direttamente interrati, a loro volta ricoperti da un ulteriore strato di sabbia dello spessore minimo, misurato rispetto all'estradosso dei cavi di cm 10, sul quale posare il tritubo. Anche il tritubo deve essere rinfiancato, per tutta la larghezza dello scavo, con sabbia fine sino alla quota minima di cm 20 rispetto all'estradosso dello stesso tritubo.

Sopra la lastra di protezione in PVC l'appaltatrice dovrà riempire la sezione di scavo con misto granulometrico stabilizzato della granulometria massima degli inerti di cm 6, provvedendo ad una adeguata costipazione per strati non superiori a cm 20 e bagnando

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

quando necessario.

Alla quota di meno 35 cm rispetto alla strada, si dovrà infine posizionare il nastro monitore bianco e rosso con la dicitura "cavi in tensione max 36kV" così come previsto dalle norme di sicurezza.

Le sezioni di scavo devono essere ripristinate in accordo alle sezioni tipiche sopracitate.

Nei tratti dove il cavidotto viene posato in terreni coltivati il riempimento della sezione di scavo sopra la lastra di protezione sarà riempito con lo stesso materiale precedentemente scavato, previa caratterizzazione ambientale che ne evidenzi la non contaminazione; l'appaltatore deve provvedere, durante la fase di scavo ad accantonare lungo lo scavo il terreno vegetale in modo che, a chiusura dello scavo, il vegetale stesso potrà essere riposizionato sulla parte superiore dello scavo.

Lo scavo sarà a sezione obbligata sarà eseguito dall'Appaltatore con le caratteristiche riportate nella sezione tipica di progetto. In funzione del tipo di strada su cui si deve posare, in particolare in terreni a coltivo o similari, si prescrive una quota di scavo non inferiore a 1,30 metri.

Nei tratti in attraversamento o con presenza di manufatti interrati che non consentano il rispetto delle modalità di posa indicate, sarà necessario provvedere alla posa ad una profondità maggiore rispetto a quella tipica; sia nel caso che il sotto servizio debba essere evitato posando il cavidotto al di sotto o al di sopra dello stesso, l'appaltatore dovrà predisporre idonee soluzioni progettuali che permettano di garantire la sicurezza del cavidotto, il tutto in accordo con le normative. In particolare, si prescrive l'utilizzo di calcestruzzo o lamiere metalliche a protezione del cavidotto, previo intubamento dello stesso, oppure l'intubamento all'interno di tubazioni in acciaio. Deve essere garantita l'integrità del cavidotto nel caso di scavo accidentale da parte di terzi. In tali casi dovranno essere resi contestualmente disponibili i calcoli di portata del cavo nelle nuove condizioni di installazione puntuali proposte.

Negli attraversamenti gli scavi dovranno essere eseguiti sotto la sorveglianza del personale dell'ente gestore del servizio attraversato. Nei tratti particolarmente pendenti, o in condizioni di posa non ottimali per diversi motivi, l'appaltatore deve predisporre delle soluzioni da presentare al Committente con l'individuazione della soluzione proposta per poter eseguire la posa del cavidotto in quei punti singolari.

Dove previsto il rinterro con terreno proveniente dagli scavi, tale terreno dovrà essere opportunamente vagliato al fine di evitare ogni rischio di azione meccanica di rocce e sassi sui cavi.

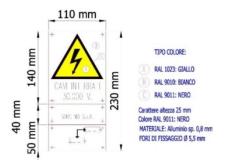
Segnalazione del Cavidotto

Tutto il percorso del cavidotto, una volta posato, dovrà essere segnalato con apposite paline di segnalazione installate almeno ogni 250 m. La palina dovrà contenere un cartello come quello sotto riportato e con le seguenti informazioni:

- Cavi interrati max 36 kV con simbolo di folgorazione;
- Il nome della proprietà del cavidotto;
- La profondità e la distanza del cavidotto dalla palina,

La posizione delle paline sarà individuata dopo l'ultimazione dei lavori ma si può ipotizzare l'installazione di una palina ogni 250 metri. Il palo su cui istallare il cartello sarà un palo di diametro Φ50 mm, zincato a caldo dell'altezza fuori terra di minimo 1,50 m, installato con una fondazione in cls delle dimensioni 50X50X50 cm.

Di seguito si riporta una targa tipica di segnalazione utilizzata (ovviamente da personalizzare al progetto).


Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.1.3.4. STAZIONE ELETTRICA DI UTENZA, IMPIANTO DI UTENZA

5.1.3.4.1. CONNESSIONE DEFINITIVA

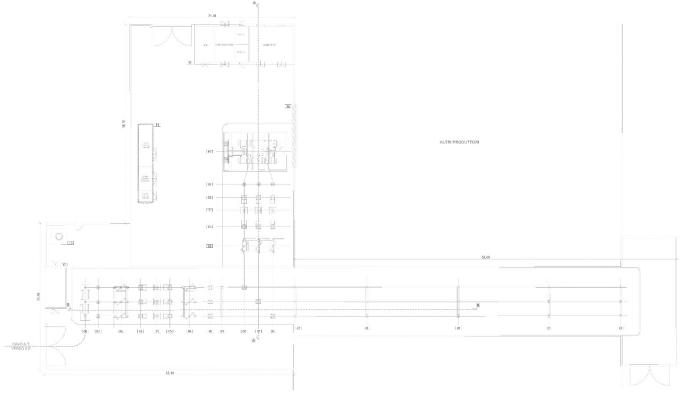
Le opere di utenza e di rete per la connessione (Stazione Elettrica di Utenza Impianto di Utenza e Impianto di rete per la Connessione) consistono nella realizzazione delle seguenti opere:

- Stazione utente di trasformazione 150/max36 kV, comprendente un montante TR equipaggiato con scaricatori di sovratensione ad ossido di zinco, TV e TA per protezioni e misure fiscali, sezionatore orizzontale tripolare ed interruttore; inoltre saranno realizzati due edifici che ospiterà le apparecchiature di media e bassa tensione e comando e controllo;
- n. 1 sbarre di condivisione con altri produttori;
- n. 1 stallo destinato alla connessione verso la RTN con cavo interrato; il montante di uscita sarà equipaggiato con interruttore, sezionatore orizzontale tripolare, TV induttivo, TA, scaricatori e terminali AT, mentre ciascuno dei montanti per produttori sarà dotato di colonnini porta sbarre e sezionatore verticale di sbarra.

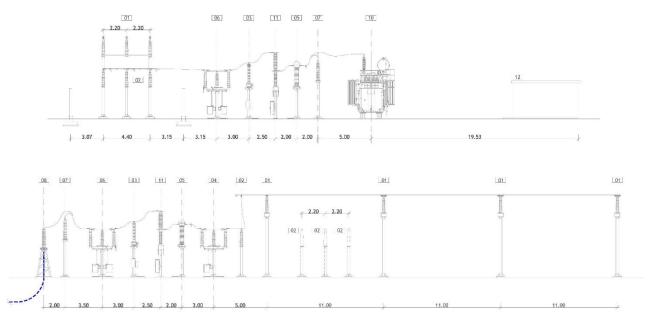
La connessione tra la stazione elettrica di utenza e la sbarra di condivisione avverrà in tubo rigido in alluminio, mentre la connessione tra le due stazione di raccolta e la SE RTN avverrà per mezzo di un conduttore costituito da una corda rotonda compatta e tamponata composta da fili di alluminio, conforme alla Norma IEC 60228 per conduttori di Classe 2; l'isolamento sarà composto da uno strato di polietilene reticolato (XLPE) adatto ad una temperatura di esercizio massima continuativa del conduttore pari a 90° (tipo ARE4H1H5E). I cavi saranno installati con configurazione in piano, come riportato nel disegno allegato, all'interno di tubi diametro Ø250. Lungo il circuito si prevede la posa di un ulteriore tubo Ø 250 per la eventuale posa di cavi a fibre ottiche.

La lunghezza del cavo AT è pari a mt. 1980 circa. Per quanto concerne le modalità di posa del cavo AT, al momento si prevede una posa completamente in trincea; ad ogni modo saranno svolte ulteriori indagini (anche tramite utilizzo di georadar) per valutare la presenza di eventuali sotto-servizi esistenti (cavi di potenza, condotte metalliche, gasdotti, ecc.) e, qualora se ne dovesse riscontrare la presenza, il tratto di cavidotto interessato sarà realizzato mediante trivellazione orizzontale controllata (T.O.C.).

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217


RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)



Codifica Elaborato: 214701_D_R_0102 Rev. 01

Si riportano di seguito la planimetria elettromeccanica con relative sezioni della soluzione tecnica innanzi generalizzata:

Planimetria Elettromeccanica

Sezioni Elettromeccaniche

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

Legenda

5.1.3.4.2. CONNESSIONE TEMPORANEA

Le opere di utenza e di rete per la connessione (Stazione Elettrica di Utenza Impianto di Utenza) consistono nella realizzazione delle sequenti opere:

- Stazione utente di trasformazione 150/max36 kV, comprendente un montante TR equipaggiato con scaricatori di sovratensione ad ossido di zinco, TV e TA per protezioni e misure fiscali, sezionatore orizzontale tripolare ed interruttore; inoltre saranno realizzati due edifici che ospiterà le apparecchiature di media e bassa tensione e comando e controllo;
- n. 1 sbarre di condivisione con altri produttori;
- n. 1 stallo temporaneo destinato alla connessione verso la RTN con cavo interrato; il montante di uscita sarà equipaggiato con sezionatore orizzontale tripolare, scaricatori e terminali AT.

La connessione tra la stazione elettrica di utenza e la sbarra di condivisione avverrà in tubo rigido in alluminio, mentre la connessione tra le due stazione di raccolta e la SE RTN avverrà per mezzo di un conduttore costituito da una corda rotonda compatta e tamponata composta da fili di alluminio, conforme alla Norma IEC 60228 per conduttori di Classe 2; l'isolamento sarà composto da uno strato di polietilene reticolato (XLPE) adatto ad una temperatura di esercizio massima continuativa del conduttore pari a 90° (tipo ARE4H1H5E). I cavi saranno installati con configurazione in piano, come riportato nel disegno allegato, all'interno di tubi diametro Ø250. Lungo il circuito si prevede la posa di un ulteriore tubo Ø 250 per la eventuale posa di cavi a fibre ottiche.

La lunghezza del cavo AT è pari a mt. 275 circa. Per quanto concerne le modalità di posa del cavo AT, al momento si prevede una posa completamente in trincea; ad ogni modo saranno svolte ulteriori indagini (anche tramite utilizzo di georadar) per valutare la presenza di eventuali sotto-servizi esistenti (cavi di potenza, condotte metalliche, gasdotti, ecc.) e, qualora se ne dovesse riscontrare la presenza, il tratto di cavidotto interessato sarà realizzato mediante trivellazione orizzontale controllata (T.O.C.).

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.1.3.5. STAZIONE ELETTRICA 150/380 kV "SE SANLURI"

La nuova Stazione Elettrica "SE Sanluri" sarà del tipo unificato TERNA con isolamento in aria e stalli tradizionali: essa sarà pertanto del tipo AIS (Air Insulated Substation) con isolamento sbarre e sezionamenti in aria, unita funzionali in SF6. Essa sarà dotata di 3 sezioni, due a 150 kV e una a 380 kV, con isolamento in aria e stalli tradizionali.

Nella sezione 380 kV sono previsti 12 stalli:

- 2 per il parallelo sbarre;
- 4 per i trasformatori 380/150 kV
- 1 per il reattore;
- 5 per l'arrivo di linee in aereo o cavo interrato.

Nelle due sezioni 150 kV sono previsti in totale 25 stalli cosi suddivisi:

- Sezione dx (12 stalli totali) anche denominata sezione 1:
- 1 stallo per il parallelo sbarre tra le due sezioni 150 kV;
- 2 stalli per i trasformatori;
- 6 stalli per l'arrivo di linee in aereo o cavo interrato;
- 1 stallo aereo per il parallelo sbarre;
- 1 stallo per il trasformatore induttivo di potenza (TIP);
- Sezione sx (13 stalli totali) anche denominata sezione 2:
- 1 stallo per il parallelo sbarre tra le due sezioni 150 kV;
- 2 stalli per il parallelo sbarre;
- 2 stalli per i trasformati;
- 7 stalli per l'arrivo di linee in aereo o cavo interrato;
- 1 stallo per i condensatori;
- 1 stallo per il trasformatore induttivo di potenza (TIP).

Nella stessa sarà presente un edificio comandi e servizi ausiliari oltre che opere accessorie e alla viabilità esistente.

5.1.3.6. RACCORDI AEREI

L'intervento consiste nella realizzazione dei nuovi elettrodotti aerei a 380 kV di raccordo tra la linea esistente "Ittiri - Selargius" e la futura stazione elettrica di trasformazione 150/380 kV "SE Sanluri".

Gli elettrodotti di raccordo saranno due, entrambi in singola terna, uno per ciascuno dei due rami in cui verrà aperta la "Ittiri - Selargius":

- "Ittiri SE Sanluri": ha una lunghezza di 618 m con 3 nuovi sostegni di cui uno (324/1) a sostituzione dell'esistente p.324 della "Ittiri Selargius";
- "SE Sanluri Selargius": ha una lunghezza di 180 m con 2 nuovi sostegni di cui uno (325/1) a sostituzione dell'esistente p.325 della "Ittiri – Selargius";

Il tratto di conduttura esistente tra i sostegni p.323 e p.324 e tra i p. 325 e p.326 della "Ittiri - Selargius" e verrà dismesso e successivamente sostituito con i nuovi conduttori: tale operazione viene definita ritesatura.

L'elettrodotto aereo sarà realizzato in semplice terna con sostegni del tipo a traliccio.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.1.4. PRODUZIONE DI RIFIUTI

Il processo di generazione di energia elettrica mediante impianti eolici non comporta la produzione di rifiuti. In fase di cantiere, trattandosi di materiali pre-assemblati, si avrà una quantità minima di scarti (metalli di scarto, piccole quantità di inerti, materiale di imballaggio quali carta e cartone, plastica) che saranno conferiti a discariche autorizzate secondo la normativa vigente. L'impianto eolico, in fase di esercizio, non determina alcuna produzione di rifiuti (salvo quelli di entità trascurabile legati alle attività di manutenzione). Una volta concluso il ciclo di vita dell'impianto, gli aerogeneratori saranno smaltiti secondo le procedure stabilite dalle normative vigenti al momento. In fase di dismissione si prevede di produrre una quota limitata di rifiuti, legata allo smantellamento degli aerogeneratori e dei manufatti (recinzione, strutture di sostegno), che in gran parte potranno essere riciclati e per la quota rimanente saranno conferiti in idonei impianti.

5.2. DESCRIZIONE FASI

5.2.1. FASE DI CANTIERE

Nel corso di tale fase, si effettua: l'allestimento cantiere, l'adeguamento delle strade esistenti e la realizzazione di nuove strade, la realizzazione delle piazzole di montaggio degli aerogeneratori, la realizzazione delle fondazioni, il trasporto degli aerogeneratori ed il successivo montaggio, la realizzazione dei cavidotti interrati per la posa dei cavi elettrici, la realizzazione della stazione elettrica d'utenza e l'installazione di diversi manufatti (recinzione e cancello, pali di illuminazione e videosorveglianza).

La sistemazione dell'area è finalizzata a rendere praticabili le diverse zone di installazione degli aerogeneratori ovvero ad effettuare una pulizia propedeutica del terreno dalle piante selvatiche infestanti e dai cumuli erbosi.

Oltre ai veicoli per il normale trasporto giornaliero del personale di cantiere, saranno presenti in cantiere autogru per la posa dei componenti degli aerogeneratori, macchinari battipalo e/o macchine perforatrici per i pali di fondazione aerogeneratori, mezzi pesanti per il trasporto dei materiali da costruzione e dei rifiuti, muletti per lo scarico e il trasporto interno del materiale, escavatori a benna per la realizzazione dei cavidotti, Al termine dell'installazione e, più in generale, della fase di cantiere, saranno raccolti tutti gli imballaggi dei materiali utilizzati, applicando criteri di separazione tipologica delle merci, con riferimento al D. Lgs 152 del 3/04/2006, in modo da garantire il corretto recupero o smaltimento in idonei impianti.

5.2.2. FASE DI GESTIONE E DI ESERCIZIO

L'impianto eolico non richiederà, di per sé, il presidio da parte di personale preposto.

L'impianto, infatti, verrà esercito, a regime, mediante il sistema di supervisione che consentirà di rilevare le condizioni di funzionamento e di effettuare comandi sulle macchine ed apparecchiature da remoto o, in caso di necessità, di rilevare eventi che richiedano l'intervento di squadre specialistiche.

Nel periodo di esercizio dell'impianto, la cui durata è indicativamente di almeno 30 anni, non sono previsti ulteriori interventi, fatta eccezione per quelli di controllo e manutenzione, riconducibili alla verifica periodica del corretto funzionamento, con visite preventive od interventi di sostituzione delle eventuali parti danneggiate e con verifica dei dati registrati.

Le visite di manutenzione preventiva sono finalizzate a verificare le impostazioni e prestazioni standard dei dispositivi e si provvederà, nel caso di eventuali guasti, a riparare gli stessi nel corso della visita od in un momento successivo quando è necessario reperire le componenti da sostituire.

Durante la fase di esercizio dell'impianto la produzione di rifiuti sarà limitata ai rifiuti derivanti dalle attività di manutenzione.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.3. TEMPI DI ESECUZIONE DEI LAVORI

DIAGRAMMA DI GANTT (FASI ATTUATIVE IMPIANTO EOLICO)																																									
ATTIVITA FASI LAVORATIVE		nes	e 1	r	nes	se :	2	me	ese	3	m	es	е 4	n	nes	ю (5	me	se (6	me	se	7	m	ese	8 פ	m	105	se 9	9	me	se	10	m	es	e 1	1	me	iese 12		
	1	2	3 4	1	2	3	4	1 2	2 3	4	1	2	3 4	1	2	3	4	1 2	3	4	1 2	3	4	1	2 3	4	1	2	3	4	1	2 3	3 4	1	2	3	4	1	2	3 4	
Redazione progetto esecutivo																																									
Deposito opere civili																																									
Picchettamento delle aree																																									
Realizzazione area di cantiere e recinzione provissionale																																									
Realizzazione della viabilità																																									
Realizzazione fondazioni c.a. aereogeneratori																																									
Posa in opera di cavidotti max 36kV																																									
Trasporto e montaggio aereogeneratori																																									
Costruzione SSE – Opere elettriche e di connessione alla RTN																																									
Regolazione e Collaudo finale																																									
Pulizia e sistemazione finale del sito																																									

5.4. DISMISSIONE D'IMPIANTO

L'impianto eolico è costituito da una serie di manufatti necessari all'espletamento di tutte le attività ad esso connesse. Le componenti dell'impianto che costituiscono una modificazione rispetto alle condizioni in cui si trova attualmente il sito oggetto dell'intervento sono prevalentemente costituite da: aerogeneratori; fondazioni aerogeneratori; piazzole; viabilità; cavidotto max 36kV; cabina di impianto; sottostazione elettrica.

Il ciclo di produzione e la vita utile attesa del parco eolico è pari ad almeno 29 anni, trascorsi i quali è comunque possibile, dopo una attenta revisione di tutti i componenti dell'impianto, prolungare ulteriormente l'attività dell'impianto e conseguentemente la produzione di energia. In ogni caso, una delle caratteristiche dell'energia eolica che contribuiscono a caratterizzare questa fonte come effettivamente "sostenibile" è la quasi totale reversibilità degli interventi di modifica del territorio necessari a realizzare gli impianti di produzione. Una volta esaurita la vita utile del parco eolico, è cioè possibile programmare lo smantellamento dell'intero impianto e la riqualificazione del sito di progetto, che può essere ricondotto alle condizioni ante operam.

Fondamentalmente le operazioni necessarie alla dismissione del parco sono:

- Smontaggio degli aerogeneratori e delle apparecchiature tecnologiche elettromeccaniche in tutte le loro componenti conferendo il materiale di risulta agli impianti all'uopo deputati dalla normativa di settore;
- Dismissione delle fondazioni degli aerogeneratori;
- Dismissione delle piazzole degli aerogeneratori;
- Dismissione della viabilità di servizio;
- Dismissione dei cavidotti max 36kV

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

- Dismissione della stazione elettrica di utenza; in alternativa si potrebbero convertire gli edifici dei punti di raccolta delle reti elettriche e della sottostazione ad altra destinazione d'uso, compatibile con le norme urbanistiche vigenti per l'area e conservando gli elementi architettonici tipici del territorio di riferimento;
- Riciclo e smaltimento dei materiali;
- Ripristino dello stato dei luoghi mediante la rimozione delle opere, il rimodellamento del terreno allo stato originario ed il ripristino della vegetazione, avendo cura di:
 - a) ripristinare la coltre vegetale assicurando il ricarico con almeno un metro di terreno vegetale;
 - b) rimuovere i tratti stradali della viabilità di servizio rimuovendo la fondazione stradale e tutte le relative opere d'arte;
 - c) utilizzare per i ripristini della vegetazione essenze erbacee, arbustive ed arboree autoctone di ecotipi locali di provenienza regionale;
 - d) utilizzare tecniche di ingegneria naturalistica per i ripristini geomorfologici;
 - e) Comunicare agli Uffici regionali competenti la conclusione delle operazioni di dismissione dell'impianto.

Relativamente alle esigenze di bonifica dell'area, si sottolinea che l'impianto, in tutte le sue strutture che lo compongono, non prevede l'uso di prodotti inquinanti o di scorie, che possano danneggiare suolo e sottosuolo.

L'organizzazione funzionale dell'impianto, quindi, fa sì che l'impianto in oggetto non presenti necessità di bonifica o di altri particolari trattamenti di risanamento. Inoltre, tutti i materiali ottenuti sono riutilizzabili e riciclabili in larga misura. Si calcola che oltre il 90% dei materiali dismessi possa essere riutilizzato in altre comuni applicazioni industriali. Durante la fase di dismissione, così come durante la fase di costruzione, si dovrà porre particolare attenzione alla produzione di polveri derivanti dalla movimentazione delle terre, dalla circolazione dei mezzi e dalla manipolazione di materiali polverulenti o friabili. Durante le varie fasi lavorative a tal fine, si dovranno prendere in considerazione tutte le misure di prevenzione, sia nei confronti degli operatori sia dell'ambiente circostante; tali misure consisteranno principalmente nell'utilizzo di utensili a bassa velocità, nella bagnatura dei materiali, e nell'adozione di dispositivi di protezione individuale. Si precisa che, alla fine del ciclo produttivo dell'impianto, il parco eolico potrà essere dismesso secondo il progetto approvato o, in alternativa, potrebbe prevedersi l'adeguamento produttivo dello stesso.

In generale si stima di realizzare la dismissione dell'impianto e di ripristinare lo stato dei luoghi anche con la messa a dimora di nuove essenze vegetali ed arboree autoctone in circa 6 mesi.

5.4.1. MEZZI D'OPERA RICHIESTI DALLE OPERAZIONI

Le lavorazioni sopra indicate, nelle aree precedentemente localizzate, richiederanno l'impiego di mezzi d'opera differenti:

- 1. automezzo dotato di gru;
- 2. pale escavatrici, per l'esecuzione di scavi a sezione obbligata;
- 3. pale meccaniche, per movimenti terra ed operazioni di carico/scarico di materiali dismessi;
- 4. autocarri, per l'allontanamento dei materiali di risulta.

5.4.2. RIPRISTINO DELLO STATO DEI LUOGHI

Concluse le operazioni relative alla dismissione dei componenti dell'impianto eolico si dovrà procedere alla restituzione dei suoli alle condizioni ante-operam. Le operazioni per il completo ripristino morfologico e vegetazionale dell'area saranno di fondamentale importanza perché ciò farà in modo che l'area sulla quale sorgeva l'impianto possa essere restituita agli originari usi agricoli.

La sistemazione delle aree per l'uso agricolo costituisce un importante elemento di completamento della dismissione dell'impianto e consente nuovamente il raccordo con il paesaggio circostante. La scelta delle essenze arboree ed arbustive autoctone, nel rispetto delle formazioni presenti sul territorio, è dettata da una serie di fattori quali la consistenza vegetativa ed il loro consolidato uso in

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

interventi di valorizzazione paesaggistica. Successivamente alla rimozione delle parti costitutive l'impianto eolico è previsto il reinterro delle superfici oramai prive delle opere che le occupavano. In particolare, laddove erano presenti gli aerogeneratori verrà riempito il volume precedentemente occupato dalla platea di fondazione mediante l'immissione di materiale compatibile con la stratigrafia del sito. Tale materiale costituirà la struttura portante del terreno vegetale che sarà distribuito sull'area con lo stesso spessore che aveva originariamente e che sarà individuato dai sondaggi geognostici che verranno effettuati in maniera puntuale sotto ogni aerogeneratore prima di procedere alla fase esecutiva. È indispensabile garantire un idoneo strato di terreno vegetale per assicurare l'attecchimento delle specie vegetali. In tal modo, anche lasciando i pali di fondazione negli strati più profondi sarà possibile il recupero delle condizioni naturali originali. Per quanto riguarda il ripristino delle aree che sono state interessate dalle piazzole, dalla viabilità dell'impianto e dalle cabine, i riempimenti da effettuare saranno di minore entità rispetto a quelli relativi alle aree occupate dagli aerogeneratori. Le aree dalle quali verranno rimosse le cabine e la viabilità verranno ricoperte di terreno vegetale ripristinando la morfologia originaria del terreno. La sistemazione finale del sito verrà ottenuta mediante piantumazione di vegetazione in analogia a quanto presente ai margini dell'area. Per garantire una maggiore attenzione progettuale al ripristino dello stato dei luoghi originario si potranno utilizzare anche tecniche di ingegneria naturalistica per la rinaturalizzazione degli ambienti modificati dalla presenza dell'impianto eolico. Tale rinaturalizzazione verrà effettuata con l'ausilio di idonee specie vegetali autoctone.

Le tecniche di Ingegneria Naturalistica, infatti, possono qualificarsi come uno strumento idoneo per interventi destinati alla creazione (neoecosistemi) o all'ampliamento di habitat preesistenti all'intervento dell'uomo, o in ogni caso alla salvaguardia di habitat di notevole interesse floristico e/o faunistico. La realizzazione di neo-ecosistemi ha oggi un ruolo fondamentale legato non solo ad aspetti di conservazione naturalistica (habitat di specie rare o minacciate, unità di flusso per materia ed energia, corridoi ecologici, ecc.) ma anche al loro potenziale valore economico-sociale.

I principali interventi di recupero ambientale con tecniche di Ingegneria Naturalistica che verranno effettuati sul sito che ha ospitato l'impianto eolico sono costituiti prevalentemente da:

- ✓ semine (a spaglio, idrosemina o con coltre protettiva);
- ✓ semina di leguminose;
- ✓ scelta delle colture in successione;
- ✓ sovesci adeguati;
- √ incorporazione al terreno di materiale organico, preferibilmente compostato, anche in superficie;
- ✓ piantumazione di specie arboree/arbustive autoctone;
- ✓ concimazione organica finalizzata all'incremento di humus ed all'attività biologica.

Gli interventi di riqualificazione di aree che hanno subito delle trasformazioni, mediante l'utilizzo delle tecniche di Ingegneria Naturalistica, possono quindi raggiungere l'obiettivo di ricostituire habitat e di creare o ampliare i corridoi ecologici, unendo quindi l'Ingegneria Naturalistica all'Ecologia del Paesaggio.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.4.3. STIMA DEI COSTI DI DISMISSIONE

Si riporta di seguito tabella riepilogativa dei costi di dismissione:

INTERVENTO/DESCRIZIONE	PREZZO TOTALE
1 - SMONTAGGIO AEROGENERATORI	€ 414.900,00
2 - SMALTIMENTO MATERIALE ARIDO PIAZZOLE	€ 250.236,00
3 - SMALTIMENTO MATERIALE ARIDO VIABILITA'	€ 231.143,92
4 - DEMOLIZIONE E SMALTIMENTO FONDAZIONE AEROGENERATORE	€ 55.747,04
5 - RIPRISTINO STATO DEI LUOGHI AEROGENERATORI PIAZZOLE E STRADE	€ 374.684,77
6 - DISMISSIONE CAVIDOTTO 36 E 150kV SOTTO STRADE E PIAZZOLE DISMESSE	€ 793.700,62
7 - DEMOLIZIONE E SMALTIMENTO OPERE IN CLS STAZIONE ELETTRICA DI UTENZA	€ 38.164,71
8 - SMALTIMENTO STRADE E PIAZZALI STAZIONE ELETTRICA DI UTENZA	€ 165.516,09
9 - DISMISSIONE OPERE ELETTROMECCANICHE	€ 55.000,00
10 - RIPRISTINO STATO DEI LUOGHI STAZIONE ELETTRICA DI UTENZA	€ 145.179,74

€ 2.524.272,89

È' stata prodotta una stima dei costi di dismissione e ripristino dell'area interessata dal progetto dell'impianto. Detti costi, valutati in base al computo metrico mostrato, ammonteranno a circa € 85.859,62 per ciascun MW installato, per un totale di circa € 2.524.272,89.

Si rimanda all'allegato per l'elenco prezzi con analisi nuovi prezzi dismissione il computo metrico estimativo dismissione.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

5.4.4. CRONOPROGRAMMA DELLE FASI ATTUATIVE DI DISMISSIONE

Si riporta di seguito il cronoprogramma delle fasi attuative di dismissione:

ATTIVITA' LAVORATIVE	1mese		2mese		3mese		4mese		5mese		6mese		7mese		8mese	
Smontaggio aerogeneratori																
Demolizione fondazioni aerogeneratori																
Smaltimento materiale arido piazzole																
Smaltimento materiale arido viabilità																
Dismissione cavidotto max36kV e 150kV																
Dismissione edifici stazione elettrica di utenza																
Demolizione e smaltimento opere in cls stazione elettrica di utenza																
Smaltimento strade e piazzali stazione elettrica di utenza																
Ripristino stato dei luoghi																

6. IMPEGNO ALLA DISMISSIONE DELL'IMPIANTO

Il Proponente si impegna alla dismissione dell'impianto, allo smaltimento del materiale di risulta dell'impianto ed al ripristino dello stato dei luoghi nel rispetto della vocazione propria del territorio, attraverso il versamento di una cauzione, a garanzia degli interventi di dismissione dell'impianto e delle opere di connessione.

L'importo di tale cauzione è parametrato ai costi di dismissione dell'impianto e delle opere di rispristino dei luoghi, quest'ultimi riportati nel documento tecnico:

214701_D_R_0258 Piano di dismissione con relativo computo metrico estimativo ed elenco prezzo.

7. CALCOLO DEI PROVENTI ANNUI DERIVANTI DALLA VALORIZZAZIONE DELL'ENERGIA PRODOTTA

La producibilità stimata per l'impianto in progetto è pari a 116.000.000 kWh/anno, così come analizzato al paragrafo 3.2.

Il prezzo medio di acquisto dell'energia in Italia, considerando una media del valor medio dei mesi dell'anno 2021, è di 58,89 euro/MWh, ovvero 0,05889 €/kWh (Fonte GME).

Pertanto i proventi annuali derivanti dalla produzione di energia elettrica si stimano essere intorno a 6.831.240€.

Piazza del Grano 3, Bolzano, P.IVA e Cod. Fisc. 02993950217

RELAZIONE TECNICA

Impianto per la produzione di energia elettrica da fonte eolica denominato "NURRADEI", avente potenza nominale pari a 50,4 MW, da realizzarsi nei Comuni di Samatzai (SU) e Guasila (SU) e relative opere connesse ed infrastrutture indispensabili nei Comuni di Segariu (SU), Pimentel (SU), Furtei (SU), Sanluri (SU) e Serrenti (SU)

Codifica Elaborato: 214701_D_R_0102 Rev. 01

8. ANALISI DELLE POSSIBILI RICADUTE SOCIALI, OCCUPAZIONALI ED ECONOMICHE

L'immediato vantaggio offerto dall'esercizio dell'impianto di produzione di energia proposto è quello di non produrre inquinamento locale, dando un contributo al rispetto degli impegni nazionali per la riduzione delle emissioni di gas climalteranti.

La produzione di energia elettrica da fonte rinnovabile avrà anche effetti economici più direttamente percepibili dal territorio e dalla comunità locale:

- aumento dell'occupazione nelle attività connesse all'installazione e manutenzione degli impianti;
- azioni compensative da concordare tra proponente e amministrazione locale;

Per quanto riguarda i risvolti occupazionali dell'iniziativa, la realizzazione dell'impianto e la sua gestione, coinvolgeranno operatori di svariati settori: costruzioni, movimenti terra, impiantistica industriale, elettronica, trasporti. L'impianto a regime garantirà occupazione ad operai non specializzati per la sorveglianza e la manutenzione ordinaria dell'impianto, ed a personale qualificato per quanto riguarda le operazioni di manutenzione straordinaria sulla rete interna all'area di impianto ed alle apparecchiature legate alla conversione e trasformazione dell'energia elettrica.

8.1. SVILUPPO SOCIO-ECONOMICO

Gli impatti in questo ambito sono principalmente positivi, cosa che comunque non impedisce di adottare una serie di misure che li incrementino, come ad esempio lo sfruttamento di subappalti nelle zone interessate dal progetto, tanto nella fase di costruzione quanto in quella di gestione.

8.2. GENERAZIONE DI POSTI DI LAVORO

Nell'ambito delle attività lavorative indotte dall'inserimento dell'impianto eolico si sottolinea il prevalente coinvolgimento di personale e ditte del posto nelle fasi costruttive dell'impianto.

8.3. PROMOZIONE TURISTICA

La presenza dell'impianto potrà diventare un'attrattiva turistica se potenziata con accorgimenti opportuni, come l'organizzazione di visite guidate per scolaresche o gruppi, ai quali si mostrerà l'importanza delle energie rinnovabili ai fini di uno sviluppo sostenibile. Ad esempio, in Danimarca, la piccola patria dell'energia del vento, hotel, camping e comuni danesi utilizzano le pale eoliche come immagine di promozione turistica "verde", per dare l'idea di un ambiente bucolico sano, silenzioso e pulito.