22_33_EO_FRA_AU_RE_35_00	MAGGIO 2023	RELAZIONE TECNICA	Dott. Alessandra Massaro	Ing. Pietro Rodia	Ing. Leonardo Filotico
N. ELABORATO	DATA EMISSIONE	DESCRIZIONE	ESEGUITO	CONTROLLATO	APPROVATO

OGGETTO:

Progetto dell'impianto eolico con storage denominato "Capece" della potenza complessiva di 66 MW con storage da 20 MW da realizzare nei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR).

TITOLO:

R3UEQM4_RelazioneTecnica

Relazione tecnica

PROJETTO engineering s.r.l.

società d'ingegneria

direttore tecnico Ph.D. Ing. LEONARDO FILOTICO

ORDINE DEGLI INGEGNERI della Provincia di TABANTO Dott. Ing. FILOTICO Leonardo N. 1812

CARTA: **A4**

SCALA:

ELAB. **RE.35**

Sede Legale: Via dei Mille, 5 74024 Manduria Sede Operativa: Z.I. Lotto 31 74020 San Marzano di S.G. (TA) tel. 099 9574694 Fax 099 2222834 cell. 349.1735914

studio@projetto.eu

web site: <u>www.projetto.eu</u> P.IVA: 02658050733

Tutti i diritti di autore sono riservati a termine di legge. E' vietata la riproduzione senza autorizzazione.

R3UEQM4_RelazioneTecnica

COMMITTENTE:

BROWN ENERGY S.r.I. Z.I. Lotto n.31 74020 San Marzano di S.G. (TA)

SOSTITUISCE:

SOSTITUITO DA:

INDICE

1	PRE	MESSA	3
	1.1	LE ENERGIE RINNOVABILI	4
	1.2	LE ENERGIE RINNOVABILI IN EUROPA	5
	1.3	L'ENERGIA EOLICA IN ITALIA	6
2	NOF	RMATIVA DI RIFERIMENTO	7
	2.1	RIFERIMENTI NORMATIVI	7
	2.2	ITER AUTORIZZATIVO	11
	2.2.1 2.2.2	Provvedimento Unico in materia Ambientale (art. 27 del D. Lgs. 152/06) Decreto del Ministero dello Sviluppo Economico del 10/09/10	
3	DES	CRIZIONE GENERALE DEL PROGETTO	14
	3.1	DATI GENERALI IDENTIFICATIVI DELLA SOCIETÀ PROPONENTE	14
	3.2	DATI GENERALI DEL PROGETTO	14
	3.3	UBICAZIONE DELL'INTERVENTO	15
	3.4	INQUADRAMENTO URBANISTICO DELL'OPERA	18
	3.4.1	PUG di Francavilla Fontana	18
	3.4.2	PRG San Vito dei Normanni	19
	3.4.3	Piano di fabbricazione del Comune di Latiano (BR)	
	3.4.4	PRG del comune di San Michele Salentino (BR)	21
	3.5	AEROGENERATORI	22
	3.6	DESCRIZIONE DELLA VIABILITÀ DI ACCESSO AL PARCO	24
	3.6.1	Ampiezza della carreggiata	24
	3.6.2	Area di spazzata	24
	3.6.3	Drenaggi	25
	3.6.4	Viabilità di accesso al parco eolico	25
	3.7	FASCE DI RISPETTO DA INFRASTRUTTURE ESISTENTI	26
	3.7.1	Fascia di rispetto dalla rete ferroviaria	27
	3.7.2	Fascia di rispetto dalla rete viaria	27
	3.7.3	Metanodotto	27
	3.7.4	Elettrodotti	27
	3.8	INTERFERENZE DEL CAVIDOTTO MT CON SOTTOSERVIZI ESISTENTI	29

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400

SR EN ISO 45001:

	2
_ \	

4	DES	CRIZIONE TECNICA DEL PROGETTO	32
4	4.1	OPERE PROVVISIONALI	32
4	1.2	OPERE CIVILI DI FONDAZIONE	32
	4.2.1	Piazzole di montaggio	33
	4.2.2	Fondazione sistema di accumulo di energia elettrica (storage)	33
4	4.3	ATTIVITÀ DI MONTAGGIO	34
4	1.4	CAVIDOTTI E RETE ELETTRICA INTERNA AL PARCO	36
4	4.5	STAZIONE DI UTENZA	37
4	4.6	RETE DI TERRA	37
5	PRC	DUCIBILITÀ DELL'IMPIANTO	38
6	ESE	CUZIONE DEI LAVORI – CANTIERIZZAZIONE	43
(6.1	FASI DI LAVORAZIONE	43
(5.2	CRONOPROGRAMMA	45
7	PIA	NO DI SICUREZZA E COORDINAMENTO	46
-	7.1	PROCEDURA DI SICUREZZA PER EMERGENZA ANTINCENDIO	47
-	7.2	EVACUAZIONE DELL'AEROGENERATORE	48
8	DES	CRIZIONE DELLE OPERE DI DISMISSIONE	50
8	3.1	RICICLAGGIO DEI MATERIALI	50
8	3.2	SMANTELLAMENTO DEGLI AEROGENERATORI	51
9	ASP	ETTI OCCUPAZIONALI E ANALISI SOCIO ECONOMICA	54
ę	9.1	BENEFICI SOCIALI ED OCCUPAZIONALI	54
	9.1.1	Fase di cantiere (impatto di breve periodo)	54
	9.1.2	Fase di regime (impatto di lungo periodo)	55
	9.1.3	Destinazione d'uso dei suoli invariata	55
ę	9.2	OPERE DI MITIGAZIONE DI EVENTUALI IMPATTI SOCIOECONOMICI NEGATIVI	55
10	STIN	IA DEI COSTI	56
11	ELE	NCO DELLE AUTORIZZAZIONI	57
12	CON	ICLUSIONI	59

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

1 **PREMESSA**

Oggetto del presente documento è la descrizione delle principali caratteristiche del parco eolico che sarà realizzato nei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR),

proposto dalla società Brown Energy s.r.l..

Saranno pertanto realizzate le infrastrutture necessarie alla realizzazione del parco stesso e per lo sfruttamento dell'energia elettrica prodotta, che permetterà di risparmiare sulle altre fonti energetiche e di

perseguire nello stesso tempo l'acquisizione di tecnologie energetiche avanzate.

Questa iniziativa di sfruttamento dell'energia eolica in Puglia, si ripercuoterà direttamente sulla struttura produttiva della zona e produrrà introiti per canoni di cessione di terreni, concessioni edilizie, assunzione di personale oltre che interessanti introiti di carattere fiscale e amministrativo. Inoltre, queste installazioni migliorano l'infrastruttura energetica regionale vista l'utilizzazione di tecnologie di alto livello. L'energia generata in questo parco sarà consegnata alla rete di trasmissione di proprietà del Gestore della Rete di

Trasmissione Nazionale in antenna Dalla Stazione di Utenza 36-30kV alla stazione TERNA.

Uno degli effetti positivi dei parchi eolici è la grande riduzione di impatto ambientale rispetto ai metodi tradizionali di produzione energetica. L'energia eolica è inesauribile e la sua utilizzazione è indipendente dagli effetti di mercato poiché l'attuazione di questa infrastruttura ci offre l'approvvigionamento in forma

ottimale di una delle risorse naturali proprie del territorio pugliese, quale è il vento.

È prevista l'installazione di 10 aerogeneratori di tipo SIEMENS GAMESA "SG6.0MW @ 170m HH" e un sistema di accumulo di 20 MW, con una potenza complessiva di 86 MW, contestualmente alla posa in opera di cavidotti sotterranei per collegare gli aerogeneratori con cavi a 30 kV alla Stazione Utente 36/30 kV di nuova realizzazione e cavidotti a 36 kV per collegare la Stazione di utenza su una nuova Stazione Elettrica (SE) di Trasformazione della RTN a 380/150 kV da inserire in entra-esce alla linea RTN a 380 kV "Brindisi –

Taranto N2".

Brown Energy S.r.I. garantisce che le macchine da installare, la cui descrizione è riportata nei paragrafi

successivi, corrispondono alla più avanzata tecnologia esistente attualmente.

Questo progetto presenta una soluzione per l'approvvigionamento di energia eolica mediante l'utilizzazione di tecnologie avanzate che consentono di ottimizzare i processi di produzione. Essa si ottiene in forma meccanica, pertanto, è direttamente utilizzabile e la sua trasformazione in elettricità si realizza mediante

meccanismi con un eccellente rendimento.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

3

Tutte le caratteristiche costruttive e le specifiche dell'infrastruttura vengono dettagliatamente descritte nei paragrafi successivi.

Saranno realizzate piste per raggiungere le diverse localizzazioni degli aerogeneratori adeguando la viabilità esistente al fine di permettere l'accesso al parco e, se necessario, altri servizi relativi all'impianto.

I movimenti terra da realizzare nella zona del parco consistono nella costruzione o nell'adeguamento della viabilità di accesso, nella realizzazione di scavi per la posa dei cavi elettrici, delle fondazioni e delle piattaforme per gli aerogeneratori. Le dimensioni e le caratteristiche di ognuno di essi è illustrato nelle tavole grafiche del presente progetto definitivo. Per la connessione del parco con la Stazione di Utenza 36/30kV saranno realizzazioni sotterranee.

A fronte degli enormi benefici dal punto di vista ambientale, l'impatto sarà minimo e totalmente eliminabile alla fine del ciclo di vita dell'impianto.

Si sottolinea che prima di finalizzare il progetto esecutivo, saranno valutate le migliori tecnologie disponibili al fine di ridurre ulteriormente l'impatto ambientale dell'opera.

1.1 LE ENERGIE RINNOVABILI

Lo sviluppo della società moderna è indissolubilmente legato alla produzione energetica. L'evoluzione incalzante della tecnologia negli ultimi duecento anni ed il conseguente benessere è in stretta relazione con l'invenzione di macchine industriali alimentate con combustibili presenti in natura. Da studi effettuati, relativamente ai paesi dell'OCSE e ad alcuni paesi dell'Asia e dell'Africa, si dimostra come il consumo energetico ha un andamento di crescita del tutto paragonabile al prodotto interno lordo.

Considerando pertanto la crescita dei consumi nei paesi in via di sviluppo, la loro tendenza ad allinearsi a quelli dei paesi sviluppati e l'aumento considerevole della popolazione mondiale, appare evidente la necessità dello studio di fonti energetiche rinnovabili al fine di assicurare nei prossimi anni uno sviluppo sostenibile per il pianeta.

L'incremento dell'utilizzazione delle risorse rinnovabili presenta peraltro i seguenti vantaggi:

- limita il consumo dei combustibili fossili che vengono consumati a velocità infinitamente superiore a
 quella con la quale si sono accumulati durante i processi naturali e che pertanto sono destinati ad
 una progressiva rarefazione;
- contribuisce a limitare le crisi energetiche dovute spesso al posizionamento dei giacimenti più interessanti in piccole aree geografiche non sempre stabili politicamente;

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No.

 contribuisce sensibilmente a limitare il degrado ambientale di cui il consumo dei combustibili fossili si sta rivelando il principale responsabile;

 limita le importazioni di energia, migliorando la bilancia dei pagamenti, evitando le esposizioni ad eventi internazionali imprevedibili e dando luogo ad una maggiore stabilità economica;

• contribuisce ad una crescita economica dei territori, molte volte zone depresse, nei quali sono posizionate le installazioni per la produzione di energia rinnovabile.

La necessità di passare da uno sviluppo senza limiti ad uno sviluppo sostenibile e ad un utilizzo sempre più intenso delle fonti rinnovabili di energia è richiesto dal protocollo internazionale di Kyoto redatto nel 1997, dalle direttive comunitarie e dalle normative nazionali di attuazione con particolare riferimento al D. Lgs. n.79/99 ("Decreto Bersani"). Allo scopo di rispettare gli impegni internazionali dell'Italia previsti dal protocollo di Kyoto, l'Italia, a decorrere dall'anno 2001, ha obbligato gli importatori e i produttori di energia elettrica da fonti convenzionali (olio, carbone, ecc.) a produrre, con impianti da fonte rinnovabile, una quota pari al 2% dell'energia. Tale quota percentuale sarà aumentata negli anni successivi.

Tra le fonti rinnovabili l'energia eolica è ormai una realtà consolidata e rappresenta senz'altro un caso di successo tra le nuove fonti rinnovabili.

1.2 LE ENERGIE RINNOVABILI IN EUROPA

Esistono numerosi studi e programmi della Comunità Europea tendenti a favorire lo sviluppo delle energie rinnovabili.

L'importante aumento di produzione pianificata si basa sullo sviluppo dell'energia eolica, fotovoltaica e idroelettrica con particolare attenzione per la prima i cui costi sono competitivi con le altre fonti di energia. Di fatto, la potenza elettrica di origine eolica nella Comunità Europea è passata da pochi MW nel 1983, a 1.000 MW installati nel 1993 ed agli oltre 200 GW nel 2019.

La Comunità Europea favorisce lo sviluppo di queste energie in varie forme, così per esempio attraverso il programma THERMIE sono stati finanziati generatori da 1.000 KW di potenza e ciò ha permesso importanti miglioramenti tecnologici.

Negli studi realizzati dalla Direzione Generale per le Energie della Commissione, si pone l'accento sul fatto che l'utilizzazione delle energie rinnovabili richiede la valutazione dei costi ambientali e sociali della generazione di energia.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

ISO 9001:2015 SR EN ISO 1400

SR EN ISO 45001:201 Certificate No. OHS9

1.3 L'ENERGIA EOLICA IN ITALIA

Il principale strumento utilizzato per lo sviluppo delle fonti rinnovabili in Italia è stato il provvedimento CIP 6/92. Sulla base degli impegni internazionali che scaturiscono dal protocollo di Kyoto il CIPE ha approvato il 19/11/1998 la delibera sulle "Linee guida per le politiche e le misure nazionali di riduzione delle emissioni di gas serra" che prevede fra l'altro un'azione riguardante la produzione di energia da fonti rinnovabili. Il CIPE prevede di ottenere al 2008-2012 una riduzione delle emissioni di 95-112 Mt di CO₂, di cui 18-20 Mt per mezzo del contributo delle fonti rinnovabili. Il decreto legislativo n.79 del 16.03.99 "Attuazione della direttiva 06/92CE recante norme comuni per il mercato interno dell'energia elettrica", ha definito le linee generali per il riassetto del settore elettrico in Italia, riconoscendo l'importanza delle fonti rinnovabili per il soddisfacimento del fabbisogno elettrico del paese nel rispetto dell'ambiente.

In particolare, l'art.11 prescrive l'immissione nella rete elettrica nazionale di una quota pari al 2% di energia da fonti rinnovabili ed il successivo decreto del Ministro dell'Industria del Commercio e dell'Artigianato dell'11 novembre 1999 introduce il meccanismo dei "certificati verdi". La nuova attenzione del governo per le fonti rinnovabili è d'altra parte testimoniata dal libro bianco per la valorizzazione energetica delle fonti rinnovabili approvato dal CIPE il 6 agosto 1999. Il libro bianco individua, per ciascuna fonte rinnovabile, gli obiettivi che devono essere conseguiti per ottenere le riduzioni di gas serra attribuite dal CIPE alle fonti rinnovabili, indicando le strategie e gli strumenti necessari allo scopo. Per l'eolico l'obiettivo che venne fissato al 2008-2012 fu di 2500 MW che è stato ampiamente raggiunto.

La velocità media annuale di 6 m/s costituisce per le attuali condizioni di sviluppo tecnologico il limite economico per la sfruttabilità dell'energia eolica. Inoltre, bisogna tener presente che i venti non sono, di solito, molto violenti e ciò significa che i valori medi provocano ridotte dispersioni e di conseguenza un'alta affidabilità.

Il risultato ottenuto dalle ricerche pone in evidenza che si può disporre di un potenziale eolico affidabile soprattutto nella dorsale appenninica e nelle isole che permette di realizzare impianti con una potenza installata importante.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO

SR EN ISO 14001:201

SR EN ISO 45001:2018

2 NORMATIVA DI RIFERIMENTO

2.1 RIFERIMENTI NORMATIVI

Per la stesura del presente progetto, si è fatto riferimento al seguente quadro normativo

Energie rinnovabili

- Decreto Legislativo 29 dicembre 2003, n.387: Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità;
- D.M. 10-9-2010: Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili;
- Decreto legislativo 3 marzo 2011, n.28: Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE;
- Regolamento regionale n.24 del 30 dicembre 2010 "Linee Guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili".
- Norme CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", 2° edizione, 2002-06;
- Norme CEI 11-17 e CEI 64-7 Linee elettriche interrate;
- Norme CEI 11-17, Impianti di produzione, trasmissione, e distribuzione pubblica di energia elettrica
 Linee in cavo;
- Norme CEI 11-32, Impianti di produzione di energia elettrica connessi a sistemi di III categoria;
- Norme CEI 64-8, Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua;
- Norme CEI 103-6, Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto;
- CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche";
- Decreto Legislativo 19 novembre 2007, n. 257 G.U. n. 9 dell' 11 gennaio 2008;
- Delibera Autorità per l'Energia elettrica ed il gas 34/05, Disposizioni in merito alla vendita di energia prodotta da impianti alimentati da fonti rinnovabili;
- Delibera Autorità per l'Energia elettrica ed il gas 281/05, Disposizioni in merito alle modalità di connessioni alle reti con obbligo di connessione di terzi;
- Delibera Autorità per l'Energia elettrica ed il gas 182/06, Modificazioni della delibera 04/05 in merito ai metodi di rilevazione delle misure di energia per i punti di immissione e prelievo;

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400

SR EN ISO 45001:20

- DM 21/03/88, "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni;
- Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04, in merito ai criteri per la determinazione della fascia di rispetto;
- DM 29/05/08 "Approvazione della metodologia di calcolo per la determinazione delle fasce di
- rispetto per gli elettrodotti";
- D.M.LL.PP 21/03/88 n° 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne";
- **D.M.LL.PP 16/01/91 n° 1260** "Aggiornamento delle norme tecniche per la disciplina della costruzione e l'esercizio delle linee elettriche aeree esterne";
- D.M.LL.PP. 05/08/98 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche esterne";
- Artt. 95 e 97 del D. Lgs n. 259 del 01/08/03;
- Circola Ministeriale n. DCST/3/2/7900/42285/2940 del 18/02/82 "Protezione delle linee di telecomunicazione per perturbazioni esterne di natura elettrica – Aggiornamento delle Circolare del Mini. P.T. LCI/43505/3200 del 08/01/68;
- Circolare "Prescrizione per gli impianti di telecomunicazione allacciati alla rete pubblica, installati nelle cabine, stazioni e centrali elettriche AT", trasmessa con nota Ministeriale n. LCI/U2/2/71571/SI del 13/03/73;
- **CEI 7-6** Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici;
- **CEI 11-4** Esecuzione delle linee elettriche aeree esterne;
- CEI 11-25 Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata;
- CEI 11-27 Lavori su impianti elettrici;
- CEI EN 50110-1-2 esercizio degli impianti elettrici;
- CEI 33-2 Condensatori di accoppiamento e divisori capacitivi;
- **CEI 36-12** Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V;
- CEI 57-2 Bobine di sbarramento per sistemi a corrente alternata;
- CEI 57-3 Dispositivi di accoppiamento per impianti ad onde convogliate;
- CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione;
- **CEI 11-32 V1,** Impianti di produzione eolica, telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto;

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. SR EN ISO 45001:201 Certificate No. OHS9

- **CEI 211-6,** "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz 10 kHz, con riferimento all'esposizione umana", 1° Ed.;
- CEI 106-11, "Guida per la determinazione della fascia di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art.6)", 1a Ed;
- **Delibera AEEG 168/03** Condizioni per l'erogazione del pubblico servizio di dispacciamento dell'energia elettrica sul territorio nazionale e per l'approvvigionamento delle relative risorse su base di merito economico, ai sensi degli articoli 3 e 5 del decreto legislativo 16 marzo 1999, n. 79;
- Delibera AEEG 05/04 Intimazione alle imprese distributrici ad adempiere alle disposizioni in materia di servizio di misura dell'energia elettrica in corrispondenza dei punti di immissione di cui all'Allegato A alla deliberazione dell'Autorità per l'energia elettrica e il gas 30 gennaio 2004, n. 5/04;
- Delibera AEEG ARG/elt 98/08 Verifica del Codice di trasmissione e di dispacciamento in materia di condizioni per la gestione della produzione di energia elettrica da fonte eolica;
- Delibera AEEG ARG/elt 99/08 Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica (Testo integrato delle connessioni attive – TICA);
- Delibera AEEG ARG/elt 04/10 Procedura per il miglioramento della prevedibilità delle immissioni dell'energia elettrica prodotta da impianti alimentati da fonti rinnovabili non programmabili relativamente alle unità di produzione non rilevanti;
- Delibera AEEG ARG/elt 05/10 "Condizioni per il dispacciamento dell'energia elettrica prodotta da fonti rinnovabili non programmabili";
- Codice di Rete TERNA.

Normativa in materia ambientale e paesaggistica

- Decreto legislativo 3 aprile 2006, n. 152: Norme in materia ambientale.
- **Decreto Legislativo 22 gennaio 2004, n. 42**: Codice dei beni culturali e del paesaggio, ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137.

Normativa generale in tema Elettrodotti, linee elettriche, sottostazione e cabina di trasformazione

- Regio Decreto 11 dicembre 1933, n. 1775 "Testo unico delle disposizioni di legge sulle acque e impianti elettrici;
- D.P.R. 18 marzo 1965, n. 342 "Norme integrative della legge 6 dicembre 1962, n. 1643e norme relative al coordinamento e all'esercizio delle attività elettriche esercitate da enti ed imprese diversi dall'Ente Nazionale per l'Energia Elettrica";

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 140 tificate No. Q204 Certificate No.

- Legge 28 giugno 1986, n. 339 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne":
- Norma CEI 211-4/1996 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche";
- Norma CEI 211-6/2001 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo"
- Norma CEI 11-17/2006 "Impianti di produzione, trasmissione e distribuzione di energia elettrica Linee in cavo";
- Norma CEI 0-16/2019 "Regola tecnica di riferimento per la connessione di utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica"
- Norma CEI 0-2/2019 "Guida per la definizione della documentazione degli impianti elettrici"
- DM 29/05/2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti".
- Legge 22 febbraio 2001, n. 36 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetiche.

Normativa generale opere civili

- Legge 5 novembre 1971, n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- Legge 2 febbraio 1974, n. 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"; D.M. LL.PP. 16 gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- **D.M. LL.PP. 14.01.2008** "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche";
- Circolare Consiglio Superiore Lavori Pubblici del 02/02/2009 contenente istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al DM 14gennaio 2008;
- Decreto 17 gennaio 2018 "Aggiornamento delle Norme tecniche per le costruzioni";
- Circolare 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018".

Normativa Sicurezza

D. Lgs. 9 Aprile 2008 "Testo unico sulla sicurezza".

Normativa Regione Puglia

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

O 9001:2015 SR EN ISO 14001 te No. Q204 Certificate No. E

N ISO 14001:2015

 Deliberazione della Giunta Regionale 13/10/2006, n.1550 "Funzioni amministrative attribuite agli enti locali e delegate ai sensi della Legge regionale n. 19/2000";

Adeguamento del PRG alla Legge n.56/80, atto ricognitivo deliberazione C.C. n.94 del24/07/2001;

• **Deliberazione CC.** nº43 del 08 aprile 2002 - Adozione con le procedure dell'art. 16 della LR.56/80 dell'adeguamento del PRG al PUTT/P regionale adottato con deliberazione GR.Nº6946/94 e

approvato con deliberazione GR. Nº1748/2000;

B.U.R.P. n. 195 del 31/12/2010 della Regione Puglia – D.G.R. n.3029

 Determinazione nº1 del 03 gennaio 2011 – Autorizzazione unica ai sensi dell'art. 12 del D.Lgs 387/2003 – DGR 3029 del 30/12/2010 – Approvazione delle "Istruzioni tecniche per la informatizzazione della documentazione a corredo dell'Autorizzazione Unica" e delle "Linee Guida

Procedura Telematica".

2.2 ITER AUTORIZZATIVO

2.2.1 Provvedimento Unico in materia Ambientale (art. 27 del D. Lgs. 152/06)

In relazione alla tipologia di intervento, il progetto segue le procedure di Provvedimento Unico in materia Ambientale di competenza statale, ai sensi del D. Lgs. 152/2006 e recenti aggiornamenti introdotti dal D. Lgs 104/2017. Secondo l'Allegato II alla Parte seconda del D. Lgs 152/2006 e ss.mm.ii, per tipologia, l'intervento rientra tra i Progetti di Competenza Statale: "Impianti eolici per la produzione di energia elettrica con potenza

complessiva superiore a 30 MW".

Il Provvedimento Unico in materia ambientale (PUA), regolamentato dall'art.27 del D.Lgs.152/2006 e sostituito dall'art. 16, comma 1, del D. Lgs. n. 104 del 2017, ha la finalità di riunire in un unico provvedimento il provvedimento di VIA e il rilascio di ogni altra autorizzazione, intesa, parere, concerto, nulla osta, o atto di assenso in materia ambientale richiesto dalla normativa vigente per la realizzazione e l'esercizio di un

progetto.

In relazione alla partecipazione del MIBACT al procedimento, l'art. 7 bis comma 4 del D. Lgs. 152/2006, per i

progetti a VIA di competenza statale prevede che:

"In sede statale, l'autorità competente è il Ministero dell'ambiente e della tutela del territorio e del mare, che esercita le proprie competenze in collaborazione con il Ministero dei beni e delle attività culturali e del turismo per le attività istruttorie relative al procedimento di VIA [...] Il provvedimento di VIA è adottato nelle

forme e con le modalità di cui all'articolo 25, comma 2, e all'articolo 27, comma 8."

"La determinazione motivata di conclusione della conferenza di servizi (indetta in sede statale dalle autorità competenti), che costituisce il provvedimento unico in materia ambientale, reca l'indicazione espressa del

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

N ISO 9001:2015 SR EN ISO 14

SR EN ISO 45001:2018

provvedimento di VIA ed elenca, altresì, i titoli abilitativi compresi nel provvedimento unico", ai sensi dell'art. 27, comma 8 del D. Lgs. n. 152/2006.

In definitiva la Società Proponente, ai sensi dell'art. 27 comma 1 del D.Lgs 152/06, presenterà al Ministero dell'Ambiente e della Sicurezza Energetica (Mase) – Direzione Generale per la Crescita Sostenibile e la qualità dello Sviluppo (CreSS), l'Istanza per il rilascio del provvedimento di Provvedimento Unico in materia Ambientale ai sensi dell'art. 27 comma 8 del D. Lgs 152/06, allegando la documentazione e gli elaborati progettuali previsti dalle normative di settore per consentire il rilascio di tutte le autorizzazioni, intese, concessioni, licenze, pareri, concerti, nulla osta e assensi comunque denominati, necessari alla realizzazione e all'esercizio del medesimo progetto e indicati puntualmente in apposito elenco predisposto dal proponente stesso.

2.2.2 Decreto del Ministero dello Sviluppo Economico del 10/09/10

Il decreto in questione, pubblicato sulla Gazzetta Ufficiale n.219 del 18 settembre 2010, espone le "Linee guida nazionali per l'autorizzazione degli impianti alimentati da fonti rinnovabili" in attuazione a quanto previsto dall'art.12 del decreto legislativo dicembre 2003, n.387.

Le Linee Guida, approvate dalla Conferenza Unificata insieme con il Conto Energia 2011-2013, erano molto attese perché costituiscono una disciplina unica, valida su tutto il territorio nazionale, che consente finalmente di superare la frammentazione normativa del settore delle fonti rinnovabili.

Il decreto disciplina il procedimento di autorizzazione degli impianti alimentati da fonti rinnovabili, per assicurarne un corretto inserimento nel paesaggio.

Il Decreto fornisce, in sintesi, la disciplina dei seguenti aspetti:

- regole per la trasparenza amministrativa dell'iter di autorizzazione;
- modalità per il monitoraggio delle realizzazioni e l'informazione ai cittadini;
- regole per l'autorizzazione delle infrastrutture connesse e in particolare delle reti elettriche;
- l'individuazione delle tipologie di impianto e modalità di installazione, per ciascuna fonte, che godono delle procedure semplificate (D.I.A. e attività edilizia libera);
- l'individuazione dei contenuti delle istanze, le modalità di avvio e di svolgimento del procedimento unico di autorizzazione;
- criteri e modalità di inserimento degli impianti nel paesaggio e sul territorio;
- modalità per coniugare esigenze di sviluppo del settore e tutela del territorio.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

V ISO 9001:2015 SR EN ISO 1400: ficate No. Q204 Certificate No. E

Le Regioni e Province autonome possono individuare aree e siti non idonei all'installazione di specifiche tipologie di impianti. Per ciascuna aree dovranno però essere spiegati i motivi dell'esclusione, che dovranno essere relativi ad esigenze di tutela dell'ambiente, del paesaggio e del patrimonio culturale.

13

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

1:2015 SR EN ISO 14001

SR EN ISO 45001:2018 Certificate No. OHS97

3 DESCRIZIONE GENERALE DEL PROGETTO

3.1 DATI GENERALI IDENTIFICATIVI DELLA SOCIETÀ PROPONENTE

Brown Energy S.r.I., con sede legale in nella Zona Industriale lotto n. 31 di San Marzano di San Giuseppe (TA), iscritta alla CCIAA di Commercio Industria Artigianato e Agricoltura di Taranto dal 19/09/2022 con P. IVA 03350050732 e al numero R.E.A. TA - 210230 con capitale sociale di 10.000€.

14

La società ha per oggetto le seguenti attività:

- la produzione di energia elettrica a mezzo di impianti di generazione da fonti rinnovabili allo scopo della cessione a terzi utilizzatori, nel rispetto della normativa vigente in materia. A tal fine, la [...].

L'Amministratore Unico è MARCHITELLI VANNI nato a CASTELLANETA (TA) IL 16/09/1993, CF. MRCVNN93P16C136B, con domicilio a CASTELLANETA (TA) CONTRADA FONTANELLE S.N. CAP 74011.

3.2 DATI GENERALI DEL PROGETTO

INQUADRAMENTO

Il sito di installazione ricade nel territorio amministrativo dei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR), a circa 3,5 km a sud ovest dal centro abitato di San Vito dei Normanni, a circa 8,0 km a sud-est dal centro abitato del Comune di Ceglie Messapica, a circa 5,8 km a est dal centro abitato di Villa Castelli, a circa 5 km a nord dal centro abitato di Francavilla Fontana e a circa 7,6 km a nord-ovest dal centro abitato di Mesagne.

PROPONENTE Brown Energy Srl

Zona Industriale lotto n. 31 di San Marzano di San Giuseppe

(TA)

DISPONIBILITÀ DEL SITO Esproprio per pubblica utilità

POTENZA MASSIMA IMPIANTO 66 MW

POTENZA MASSIMA DELLO STORAGE 20 MW

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

3.3 UBICAZIONE DELL'INTERVENTO

Il Parco Eolico "Capece" descritto nel presente progetto è ubicato nei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR).

Nel sito è prevista l'installazione di 10 aerogeneratori di tipo SIEMENS GAMESA "SG6.0MW @ 115m HH" per una potenza totale pari a 66 MW e storage di 20 MW.

15

Gli aerogeneratori in progetto sono così suddivisi e ubicati nel territorio di:

- n.6 aerogeneratori nel Comune di Francavilla Fontana;
- n.2 aerogeneratori nel Comune di San Vito dei Normanni;
- n.2 aerogeneratori nel Comune di Latiano.

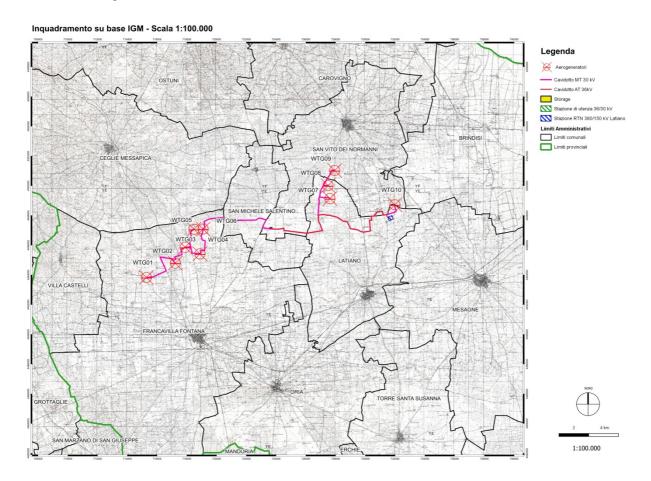


Figura 1 | Inquadramento su base IGM

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

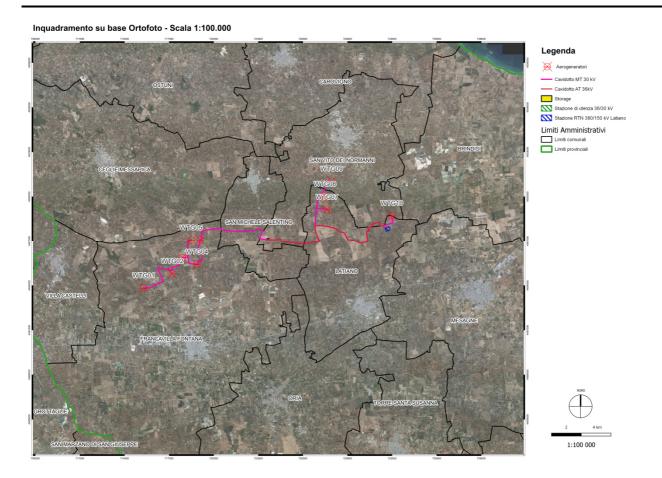


Figura 2 | Inquadramento su base Ortofoto Regione Puglia

È previsto che la connessione alla Rete di Trasmissione Nazionale avvenga in corrispondenza della Stazione Elettrica 380/150/36 kV di nuova realizzazione nel Comune di Latiano, da inserire in entra-esce alla linea RTN a 380 kV "Brindisi - Taranto N2".

L'esatta posizione degli aerogeneratori è diretta conseguenza dello studio del regime eolico effettuato con l'installazione di una torre di misura anemometrica e l'elaborazione dei dati ottenuti tramite un programma di simulazione.

Adottando il sistema cartesiano di riferimento WGS 84 UTM Zona 33 N, le coordinate degli aerogeneratori sono le seguenti:

Denominazione	X (m)	Y (m)
WTG01	715281	4493828
WTG02	717162	4494782
WTG03	717884	4495861

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

N ISO 9001:2015 SR EN ISO 14001 ificate No. Q204 Certificate No. E

WTG04	718879	4495420
WTG05	718362	4497007
WTG06	719092	4497086
WTG07	727592	4499291
WTG08	727490	4500006
WTG09	727932	4501026
WTG10	731880	4498510

17

L'area interessata dal presente progetto è delimitata a ovest dalla Strada Provinciale 50, denominata "Via Forleo", che collega Francavilla Fontana a Villa Castelli e a nord - est dalla SP 96, che collega San Vito dei Normanni a Brindisi.

Gli aerogeneratori sono posizionati lungo strade comunali esistenti che dovranno essere soggette ad interventi di adeguamento delle caratteristiche dimensionali laddove necessario, e saranno utilizzate per accedere ad ognuna delle piattaforme degli aerogeneratori alla sottostazione di trasformazione, sia durante la fase di esecuzione delle opere che nella successiva manutenzione del parco eolico.

I cavidotti di interconnessione fra gli aerogeneratori e quelli di collegamento alla Stazione Utente saranno costituiti da cavo sotterraneo dimensionato opportunamente secondo i criteri ingegneristici previsti da legge.

Al fine di alterare il meno possibile la zona di impianto degli aerogeneratori sono state progettate le opere minime necessarie per l'installazione dei macchinari.

Esse consistono in:

- pista di accesso di raccordo tra la viabilità principale e tutte le piazzole a servizio degli aerogeneratori di larghezza pari a 5 m necessaria per il passaggio delle gru e dei trasporti eccezionali;
- platee di fondazioni dirette su pali per l'installazione delle torri: previste in calcestruzzo armato dimensionati per resistere agli sforzi di ribaltamento e scivolamento prodotti dalle forze agenti sulla torre. Essendo condizionante l'azione di ribaltamento essi saranno del tipo snello di grande dimensione in pianta ed altezza ridotta. Sulla platea saranno disposte le piastre di ancoraggio al quale verranno imbullonate le basi delle torri;
- piazzole orizzontali di dimensioni specifiche per ogni aerogeneratore;
- trincee ed i pozzetti necessari per posizionare le canalizzazioni elettriche. I pozzetti saranno in calcestruzzo armato con coperchi, anch'essi realizzati in calcestruzzo;

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

opere civili della sottostazione ed in particolare: platea di fondazione, la recinzione perimetrale, l'alloggiamento per le strumentazioni e inghiaiatura superficiale.

3.4 INQUADRAMENTO URBANISTICO DELL'OPERA

PUG di Francavilla Fontana

Lo strumento urbanistico vigente nel comune di Francavilla Fontana è il Piano Urbanistico Generale (PUG), aggiornato con Delibera della Giunta Comunale n. 162 del 06/06/2016.

Il suolo su cui si intende realizzare il parco eolico, ricade in aree a destinazione agricola ai sensi del citato PUG vigente. Nello specifico, la denominazione delle zone in cui ricade parte del progetto in oggetto sono denominate "CR1.1 Contesto Rurale agricolo di pregio ambientale e paesaggistico" e "CR1.2 Contesto Rurale agricolo degli uliveti". Per le caratteristiche ambientali, produttive ed economiche l'intervento di installazione di un parco eolico in un'area agricola non utilizzata a tale scopo per note problematiche ambientali è ritenuto appropriato, in quanto coniuga una elevata produttività energetica con l'occupazione di una piccola parte del territorio. Il suolo non subisce modifiche rilevanti. Inoltre è sempre da tenere in considerazione il carattere temporaneo delle opere in questione che non modificano la potenzialità produttiva, ma non possibile, del terreno in cui insistono. Una volta dismesso l'impianto il terreno torna ad avere le sue caratteristiche precedenti all'intervento e può pertanto essere riutilizzato per gli scopi a cui è vocato.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

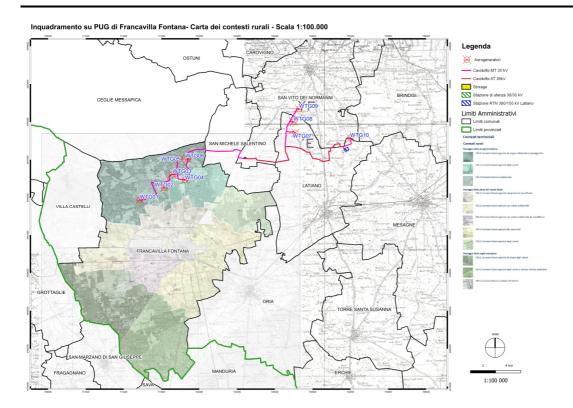


Figura 3 | Inquadramento area di intervento su base PUG di Francavilla Fontana - Carta dei contesti rurali

3.4.2 PRG San Vito dei Normanni

Lo strumento urbanistico vigente nel comune di **San Vito dei Normanni** è il Piano Regolatore Generale (PRG), il cui ultimo aggiornamento risale al 9 luglio 2002 con Deliberazione della Giunta Regionale n. 990, data in cui vengono definitivamente approvate le modifiche effettuate sul PRG adottato con delibera di CC. N. 91 del 30/11/96.

Il suolo su cui si intende realizzare il parco eolico ricade in "Zona E – agricola produttiva" ai sensi del citati PRG approvato. Per le caratteristiche ambientali, produttive ed economiche l'intervento di installazione di un parco eolico in un'area agricola non utilizzata a tale scopo per note problematiche ambientali è ritenuto appropriato, in quanto coniuga una elevata produttività energetica con l'occupazione di una piccola parte del territorio. Il suolo non subisce modifiche rilevanti. Inoltre è sempre da tenere in considerazione il carattere temporaneo delle opere in questione che non modificano la potenzialità produttiva, ma non possibile, del terreno in cui insistono. Una volta dismesso l'impianto il terreno torna ad avere le sue caratteristiche precedenti all'intervento e può pertanto essere riutilizzato per gli scopi a cui è vocato.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

9001:2015 SR EN ISO 1400 No. Q204 Certificate No.

SR EN ISO 4500 Certificate No.

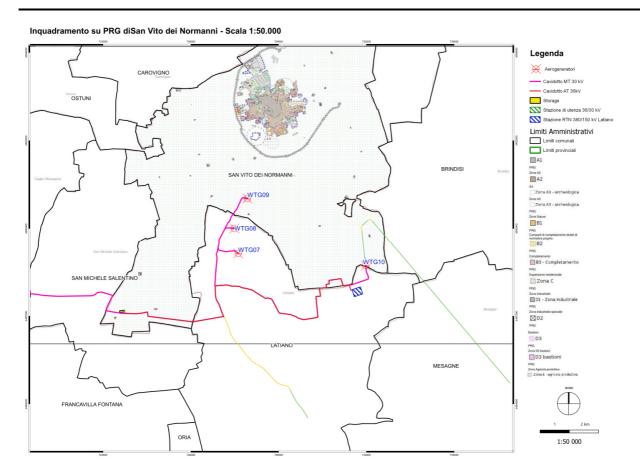


Figura 4 | Inquadramento area di intervento su base PRG di San Vito dei Normanni

3.4.3 Piano di fabbricazione del Comune di Latiano (BR)

Lo strumento urbanistico vigente nel comune di **Latiano** è il Piano di Fabbricazione (PdF), il cui ultimo aggiornamento risale approvato con deliberazione della Giunta Comunale n. 18 del 16.05.2011.

Il suolo su cui si intende realizzare il parco eolico, ricade in aree a destinazione agricola ai sensi del citato PRG vigente. Per le caratteristiche ambientali, produttive ed economiche l'intervento di installazione di un parco eolico in un'area agricola non utilizzata a tale scopo per note problematiche ambientali è ritenuto appropriato, in quanto coniuga una elevata produttività energetica con l'occupazione di una piccola parte del territorio. Il suolo non subisce modifiche rilevanti. Inoltre è sempre da tenere in considerazione il carattere temporaneo delle opere in questione che non modificano la potenzialità produttiva, ma non possibile, del terreno in cui insistono. Una volta dismesso l'impianto il terreno torna ad avere le sue caratteristiche precedenti all'intervento e può pertanto essere riutilizzato per gli scopi a cui è vocato.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

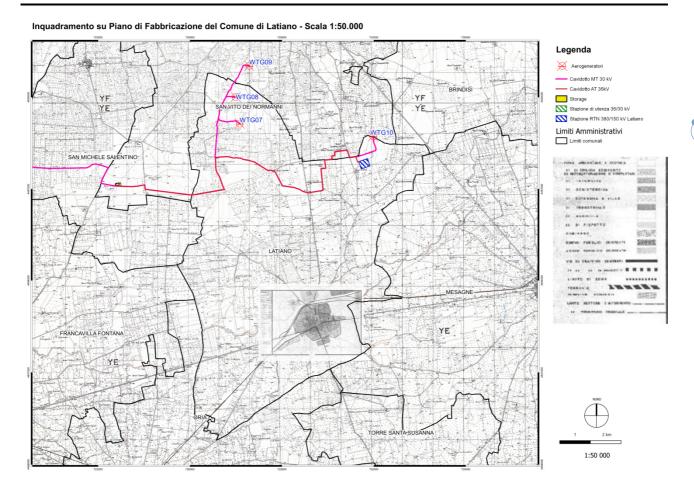


Figura 5 | Inquadramento intervento su base PdF del Comune di Latiano

3.4.4 PRG del comune di San Michele Salentino (BR)

Lo strumento urbanistico vigente nel comune di **San Michele Salentino** è il Piano Regolatore Generale (PRG), aggiornato in osservanza alle deliberazione della Giunta Regionale Pugliese n. 320 del 25.03.2003 (approvazione PRGC) e n. 336 del 24.03.2004 (approvazione definitiva PRGC).

Il suolo su cui si intende realizzare il parco eolico, ricade in aree a destinazione agricola ai sensi del citato PRG vigente. Per le caratteristiche ambientali, produttive ed economiche l'intervento di installazione di un parco eolico in un'area agricola non utilizzata a tale scopo per note problematiche ambientali è ritenuto appropriato, in quanto coniuga una elevata produttività energetica con l'occupazione di una piccola parte del territorio. Il suolo non subisce modifiche rilevanti. Inoltre è sempre da tenere in considerazione il carattere temporaneo delle opere in questione che non modificano la potenzialità produttiva, ma non possibile, del terreno in cui insistono. Una volta dismesso l'impianto il terreno torna ad avere le sue caratteristiche precedenti all'intervento e può pertanto essere riutilizzato per gli scopi a cui è vocato.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

N ISO 9001:2015 SR EN ISO 14001 ificate No. Q204 Certificate No. E

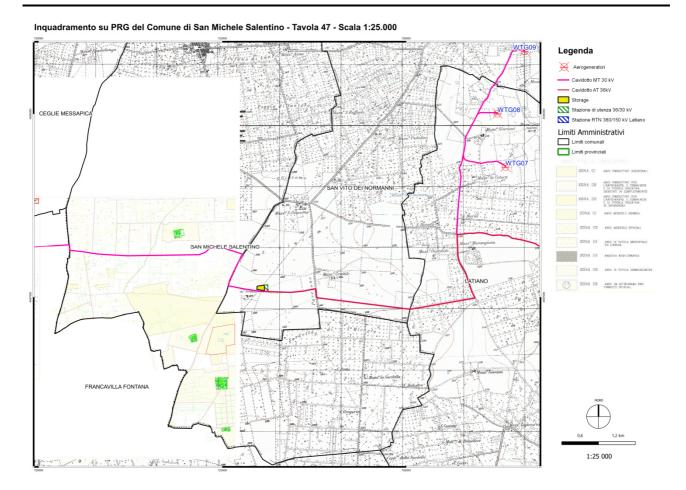


Figura 6 | Inquadramento area di intervento su base PRG del Comune di San Michele Saalentino

3.5 AEROGENERATORI

Nel sito è prevista l'installazione di 10 aerogeneratori di tipo SIEMENS GAMESA "SG170 6.0MW @ 115m HH" con una potenza complessiva di 66 MW. Il rotore è costituito da 3 pale disposte in maniera aerodinamica e costruite in resine di poliestere rinforzate con fibra di vetro fissate ad un nucleo metallico. Le caratteristiche principali del rotore sono:

Tabella 1 | Tabella caratteristiche aerogeneratori Siemens GAMESA SG170 6.0MW @ 115m HH

Diametro massimo	170 m	
Area spazzata	22,698 m ²	
Senso di rotazione	Senso orario (vista frontale)	
Orientamento rotore	Sopravvento	
Angolo di inclinazione	6°	
Inclinazione pala	2°	
Numero di pale	3	

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Freno aerodinamico Pale in bandiera

Il rotore avrà una velocità variabile tra 9,0 e 19,8 giri/min, combinato con un sistema di regolazione del passo delle pale, fornirà la migliore resa possibile adattandosi nel contempo alle specifiche delle rete elettrica (accoppiamento con generatore) e minimizzando le emissioni acustiche.

Le pale avranno una lunghezza massima di 85 m, pertanto, data la quota del rotore posto a 115 m dal piano campagna, il massimo sviluppo verticale del sistema torre-pale sarà di 200 m. Le pale, a profilo alare, sono ottimizzate per operare a velocità variabile e saranno protette dalla scariche atmosferiche da un sistema parafulmine integrato secondo lo standard IEC 1024-1. Questo sistema conduce la scarica attraverso i lati della pala, dalla punta sino alla giunzione del rotore e da qui sino al sistema di protezione di terra e consente di proteggere ogni componente dell'aerogeneratore.

L'interfaccia tra il rotore ed il sistema di trasmissione del moto è il mozzo. I cuscinetti delle pale sono imbullonati direttamente sul mozzo, che sostiene le flange per gli attuatori di passo e le corrispondenti unità di controllo. Durante il funzionamento i sistemi di controllo della velocità e del passo interagiscono per ottenere il rapporto ottimale tra massima resa e minimo carico. Con bassa velocità del vento e a carico parziale, il generatore opera a passo delle pale costante e velocità del rotore variabile, sfruttando costantemente la migliore aerodinamica possibile al fine di ottenere un'efficienza ottimale.

La bassa velocità del rotore alle basse velocità mantiene bassi i livelli di emissione acustica. A potenza nominale ed ad alte velocità del vento il sistema di controllo del rotore agisce sull'attuatore del passo delle pale per mantenere una generazione di potenza costante. Le raffiche di vento fanno accelerare il rotore che viene gradualmente rallentato dal controllo del passo. Questo sistema di controllo permette una riduzione significativa del carico sul generatore eolico fornendo contemporaneamente alla rete energia ad alto livello di compatibilità. Oltre a controllare lo potenza in uscita il controllo del passo serve da sistema di sicurezza primario. Durante la normale azione di frenaggio i bordi d'attacco delle pale vengono ruotati in direzione del vento. Il meccanismo di controllo del passo agisce in modo indipendente su ogni pala. Pertanto, nel caso in cui l'attuatore del passo dovesse venire a mancare su due pale, la terza può ancora riportare il rotore sotto controllo ad una velocità di rotazione sicura nel giro di pochi secondi. In tal modo si ha un sistema di sicurezza a tripla ridondanza.

Quando l'aerogeneratore è in posizione di parcheggio le pale del rotore vengono messe a bandiera. Ciò riduce nettamente il carico sull'aerogeneratore, e quindi sulla torre. Tale posizione, viene pertanto attuata in condizioni climatiche di bufera.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

3.6 DESCRIZIONE DELLA VIABILITÀ DI ACCESSO AL PARCO

3.6.1 Ampiezza della carreggiata

Tutte le strade dovranno possedere un'ampiezza minima di circa 5 metri nei tratti rettilinei, mentre in curva si realizzerà un ampliamento della carreggiata, definito area di manovra, dimensionato in funzione del raggio di curvatura del tratto considerato.

(24)

3.6.2 Area di spazzata

Per il passaggio dei convogli speciali per il trasporto delle pale dell'aerogeneratore, in prossimità di alcune curve sarà necessario rendere libera da ostacoli artificiali e/o naturali un'area per il passaggio aereo della porzione di pala caricata a sbalzo sul convoglio stesso, ovvero della parte fra l'asse della ruota e la parte più esterna del veicolo.

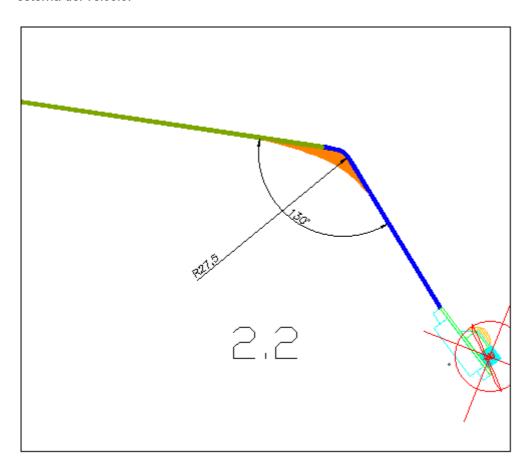


Figura 7 | Esempio di allargamenti in curva

Per maggior dettaglio, far riferimento all'elaborato "R3UEQM4_ElaboratoGrafico_03_02_01".

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

SR EN ISO 14001:20 Certificate No. E145

3.6.3 Drenaggi

Tutte le strade saranno realizzate a perfetta regola d'arte e, pertanto, ove necessario, prevedranno la realizzazione di adeguate opere di regimazione delle acque meteoriche per il convogliamento delle stesse verso l'impluvio naturale esistente.

Detto accorgimento tecnico permette di evitare sovrappressioni idrostatiche nelle opere con consequente danneggiamento delle stesse. Il drenaggio che verrà effettuato per mezzo di pozzetti e/o trincee drenanti consente di abbassare la quota piezometrica e conferisce maggiore consolidamento ai pendii e alle scarpate anche se tendenzialmente soggetti a frane superficiali.

3.6.4 Viabilità di accesso al parco eolico

L'accesso al sito è previsto percorrendo le strade pubbliche di seguito elencate:

Brindisi:

Porto commerciale di Brindisi in direzione Viale Ettore Majorana.

Viale Ettore Majorana in direzione Via Enrico Fermi.

Via Enrico Fermi in direzione Via Giulio Natta

Via Giulio Natta in direzione E90.

E90 in direzione SS 613 dir Taranto-Bari.

SS 613 dir Taranto-Bari in direzione Strada Statale SS16.

Prendere SS7 Direzione Mesagne.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

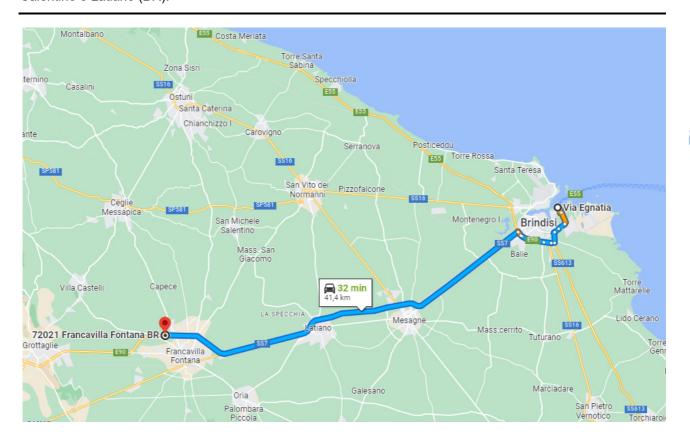


Figura 8 | Viabilità per l'ingresso al parco dir. Brindisi

La maggior parte degli adeguamenti previsti lungo tali strade per consentire il passaggio dei trasporti con i vari componenti necessari alla realizzazione del parco eolico riguarda la momentanea rimozione di guardrail, segnali stradali e pali della luce.

3.7 FASCE DI RISPETTO DA INFRASTRUTTURE ESISTENTI

La superficie dell'intero impianto è stata modulata tendo conto dei buffer dalle "Red Flags", ossia dalle interferenze presenti sul territorio.

Sono state considerate, quindi, delle fasce di rispetto dalle infrastrutture esistenti ed in particolare da:

- Fabbricati esistenti;
- Rete ferroviaria;
- · Rete viaria;
- Metanodotto;
- Elettrodotti.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

3.7.1 Fascia di rispetto dalla rete ferroviaria

Nel caso ferroviario, come previsto dal D.P.R. 11 luglio 1980, n.753, il posizionamento delle opere di impianto è previsto ad una distanza superiore a 30 metri dal limite della zona di occupazione della più vicina rotaia (art. 49 del D.P.R.).

3.7.2 Fascia di rispetto dalla rete viaria

Nel caso stradale, come previsto dal D.P.R. 16 dicembre 1992, n.495 - Regolamento di esecuzione e di attuazione del nuovo Codice della Strada le opere di impianto sono state posizionate ad una distanza superiore a 200 m dal confine delle strade Comunali e ad un distanza superiore a 300 m dal confine delle strade Provinciali.

3.7.3 Metanodotto

Secondo le disposizioni del D.M. 24/11/1984 è stata considerata una fascia di rispetto pari a 5 m dal metanodotto con una pressione di esercizio compresa tra i 5<P<21 bar e posato in un terreno sprovvisto di manto superficiale impermeabile.

3.7.4 Elettrodotti

Secondo le disposizioni del DM nº 449 del 21/03/1988, DPCM del 23/04/1992, DPCM 8 luglio 2003 e DM del 28/05/08 sono state considerate delle fasce di rispetto pari a 25 m dall'asse della linea AT e 16 m da quella della linea MT.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

Tipologia sostegno	Formazione	Armamento	Corrente	DPA (m)	Rif.
	22.8 mm 307.75 mm ²		576	18	A1a
Semplice Terna con mensole normali (serie 132/150 kV)			444	16	A1b
Scheda A1	31.5 mm 585.35 mm²		870	22	A1c
			675	20	A1d
Semplice Terna con	22.8 mm 307.75 mm²	A	576	16	A2a
mensole isolanti (serie 132/150 kV)			444	14	A2b
Scheda A2	31.5 mm	4	870	19	A2c
	585.35 mm²	×	675	17	A2d
Semplice Terna a	22.8 mm		576	21sx 14dx	A3a
bandiera con mensole normali	307.75 mm²		444	19 sx 12dx	А36
(serie 132/150 kV) Scheda A3	31.5 mm 585.35 mm²		870	25sx 18dx	A3c
			675	23sx 16dx	A3d
Samplica Tarna a	22.8 mm 307.75 mm² 31.5 mm 585.35 mm²		576	17 sx 13dx	A4a
Semplice Terna a bandiera con mensole isolanti (serie 132/150 kV) Scheda A4			444	15sx 11dx	A4b
			870	20sx 16dx	A4c
			675	18sx 14dx	A4d
Tubolare Semplice Terna	22.8 mm 307.75 mm²		576	15sx 14dx	A5a
con mensole isolanti a triangolo			444	13sx 12dx	A5b
(serie 132/150 kV) <u>Scheda A5</u>	31.5 mm		870	18 sx 17 dx	A5c
	585.35 mm²		675	17 sx 15dx	A5d
Semplice Terna a Delta	22.8 mm 307.75 mm ³		576	24	A6a
(serie 132/150 kV)			444	21	A6b
Scheda A6			870	28	A6c
	585.35 mm²	\bowtie	675	25	A6d

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

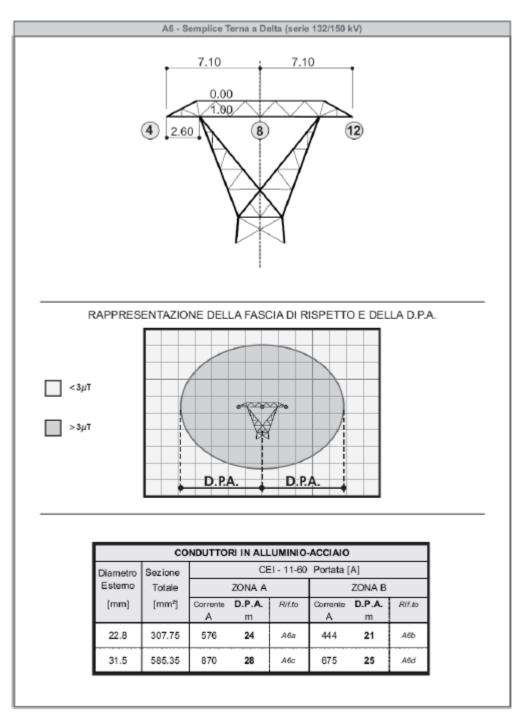


Figura 9 | Linea Guida per l'applicazione dell'Allegato al DM 29.05.08 per linea AT

3.8 INTERFERENZE DEL CAVIDOTTO MT CON SOTTOSERVIZI ESISTENTI

I tracciati del cavidotto M.T. di connessione alla Stazione Utente 36/30 kV e del cavidotto AT di connessione alla Stazione RTN 380/150 kV di Latiano è stato definito considerando criteri tecnici progettuali finalizzati:

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

SO 9001:2015 SR EN ISO 14001: ate No. Q204 Certificate No. E1-

SR EN ISO 45001:201

- al contenimento della lunghezza complessiva delle opere, sia per limitare la quantità di territorio complessivamente interessata dalla esecuzione dei lavori, sia per contenere le perdite di energia ed i costi di realizzazione dell'intervento;
- alla permanenza delle opere previste il più possibile entro l'assetto viario esistente, con l'obiettivo di limitare le trasformazioni sul territorio in terreni agricoli privati;
- alla limitazione di interferenze con zone sottoposte a vincoli di natura paesaggistica, archeologica, naturalistica, idrogeologica.

Il percorso di posa interesserà rami di viabilità esistente, di competenza comunale, provinciale e statale, o strade interpoderali (sterrate o bianche). Allo scopo di non interferire con la sede stradale esistente, purché tecnicamente consentito, sarà data priorità ad una posa del cavidotto in banchina stradale. Nei tratti iniziali del percorso di posa, come anche nel tratto intermedio dello stesso, la posa impegnerà terreni agricoli privati.

Lungo il suo percorso le tre terne di cavi M.T. e AT intersecheranno infrastrutture interrate esistenti (canalizzazioni). Il superamento delle condizioni di interferenza sarà tecnicamente consentito ricorrendo a tecnologie di *posa no-dig*.

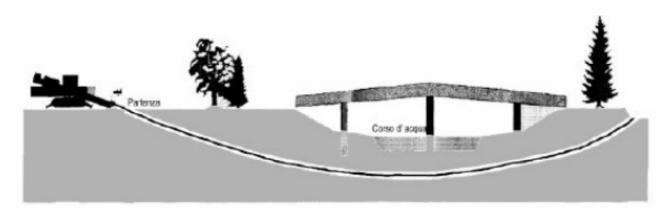


Figura 10 | Modalità di posa in opera di tipo NO-DIG

Le interferenze rilevate a seguito di sopralluoghi tecnici lungo l'intero percorso delle opere di connessione interrate, sono state così si seguito classificate:

- tipo 1: Incrocio tra linee MT AT di progetto e tubazioni metalliche interrate;
- tipo 2: Intersezione tra linee MT AT di progetto con gasdotti;
- tipo 3: Parallelismo tra linee MT AT di progetto con gasdotti.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

30

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No.

N ISO 14001:2015

SR EN ISO 45001:2018

Per una trattazione più dettagliata si rimanda all'elaborato denominato "R3UEQM4_DocumentazioneSpecialistica_29 -Report fotografico del cavidotto con interferenze".

31

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

iO 9001:2015 SR EN ISO 14001 ite No. Q204 Certificate No. E

4 DESCRIZIONE TECNICA DEL PROGETTO

Il progetto consiste nell'installazione di 10 aerogeneratori di tipo SIEMENS GAMESA "SG1 6.0MW @ 170m" per una potenza di 66 MW e uno storage di 20 MW .

Il rotore è costituito da 3 pale disposte in maniera aerodinamica e costruite in resine di poliestere rinforzate con fibra di vetro fissate ad un nucleo metallico.

Per la realizzazione dell'impianto eolico sono da prevedersi le seguenti opere ed infrastrutture:

- Opere provvisionali;
- Opere civili di fondazione;
- Attività di montaggio;
- · Cavidotti e rete elettrica;
- Opere di viabilità stradale e piazzole;
- Stazione di utenza 36/30 kV;
- Rete di terra.

4.1 OPERE PROVVISIONALI

Le opere provvisionali riguardano la predisposizione delle aree da utilizzare durante la fase di cantiere come piazzole per i montaggi delle torri e degli aerogeneratori e il conseguente carico e trasporto del materiale di risulta. Tali opere sono di natura provvisoria ossia limitate alla sola fase di cantiere.

Questa fase sarà caratterizzata dalla realizzazione di piazzole a servizio del montaggio di ciascuna torre, di dimensione diversa a seconda della conformazione stradale.

Montate le torri e installate su ciascuna delle loro sommità la navicella con il rotore e le pale, si procederà a rinverdire i collegamenti ed i piazzali di servizio (opere provvisionali) in quanto l'utilizzazione risulta temporanea e strumentale alla esecuzione delle opere, ripristinando così lo status quo ante.

4.2 OPERE CIVILI DI FONDAZIONE

Si tratta di fondazioni costituite da platea in calcestruzzo armato di idonee dimensioni, su cui ogni singola torre dovrà sorgere, poggianti, eventualmente, a seconda della natura del terreno, sopra una serie di pali in c.a. la cui profondità varierà in funzione delle caratteristiche geotecniche del sito (comunque ca. 20 m). A tale platea verrà collegato il concio di fondazione in acciaio delle torri.

Saranno dimensionati per resistere agli sforzi di ribaltamento e slittamento prodotti dalle forze agenti sulla torre. Essendo condizionante l'azione di ribaltamento essi saranno del tipo snello di grande dimensione in

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. SR EN ISO 45001:20: Certificate No. OHSS

pianta ed altezza ridotta. Sui plinti saranno disposte le piastre di ancoraggio al quale verranno imbullonate le basi delle torri.

A tal proposito si rimanda alla consultazione delle seguenti tavole "R3UEQM4_ElaboratoGrafico_31_02" (Fondazione aerogeneratore-armatura e carpenteria) e "R3UEQM4_ElaboratoGrafico_27" (Fondazione Storage) e alla relazione "R3UEQM4_CalcoliPrelStrutture".

4.2.1 Piazzole di montaggio

In corrispondenza di ogni aerogeneratore saranno realizzate delle piazzole di montaggio atte all'adeguato posizionamento della gru di sollevamento e di quella ausiliaria per l'installazione degli aerogeneratori.

Le piazzole di montaggio saranno realizzate con la tipica forma rettangolare esemplificata nella figura 4. La realizzazione prevedrà una opportuna sagomatura orografica mediante scavo e/o riporto di terre e rocce provenienti da scavo e la posa in opera di misto stabilizzato da cava, con compattazione del 95%, in una sede opportunamente preparata attraverso scoticamento di 20-40 cm di terreno di coltivo e posa in opera di geotessuto.

Dette opere conferiranno alla piazzola di montaggio una pendenza longitudinale e trasversale massima di circa 1°, corrispondente al 1,7% ed una portanza geotecnica adeguata alla sicura stabilizzazione dei mezzi di sollevamento durante le fasi di installazione degli aerogeneratori e di eventuale sostituzione di parti di ricambio degli stessi durante l'esercizio dell'impianto.

Cosi come indicato nella Figura 7, in corrispondenza di ogni piazzola dovrà essere resa disponibile un'area per il montaggio della gru di sollevamento (gru principale) e per le manovre che essa dovrà eseguire, e che sia sgombera da ostacoli. L'eventuale adeguamento di dette aree prevede operazioni di scavo e/o riporto di terre e rocce provenienti da scavo e, laddove necessario, la rimozione anche temporanea di ostacoli naturali o artificiali.

La localizzazione delle aree sopraccitate e le relative caratteristiche progettuali sono dettagliate nel elaborato "R3UEQM4_ElaboratoGrafico_02".

4.2.2 Fondazione sistema di accumulo di energia elettrica (storage)

La fondazione del sistema di accumulo di energia elettrica (storage) sarà realizzata attraverso n. 38 platee di fondazione aventi dimensioni pari a 13,70 m di lunghezza e 3,70 m di larghezza.

Per una descrizione di maggior dettaglio si rimanda all'elaborato "R3UEQM4_ElaboratoGrafico_27".

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No.

O 14001:2015 te No. E145

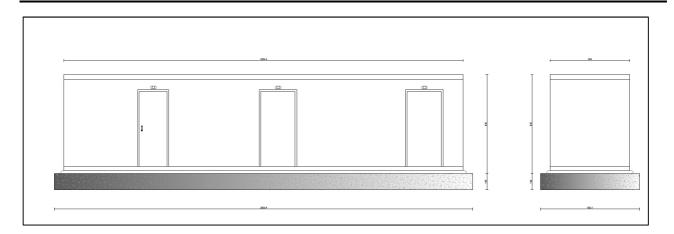


Figura 11 | Fondazione tipo per cabinet storage

4.3 ATTIVITÀ DI MONTAGGIO

Ultimate le fondazioni, il lavoro d'installazione delle turbine in cantiere consiste essenzialmente nelle seguenti fasi:

- Trasporto e scarico dei materiali relativi agli aerogeneratori;
- Controllo delle torri e del loro posizionamento;
- · Montaggio torre;
- Sollevamento della navicella e relativo posizionamento;
- Montaggio delle pale sul mozzo;
- Sollevamento del rotore e dei cavi in navicella;
- Messa in esercizio della macchina.

L'aerogeneratore viene trasportato a piè d'opera in pezzi separati per il suo assemblaggio come di seguito descritto:

- tronchi della torre tubolare, montati sequenzialmente secondo il maggior diametro;
- gondola completa con cavi di connessione all'unità di controllo ai piedi della torre;
- 3 pale;
- mozzo del rotore e le sue protezioni;
- unità di controllo;
- accessori (scala interna, linea di sicurezza, bulloni di assemblaggio, ecc.).

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

9001:2015 SR EN ISO 14001: No. Q204 Certificate No. E1SR EN ISO 4500 Certificate No.

La torre viene assemblata a terra in posizione orizzontale, mediante bulloni che uniscono le flange collocate agli estremi dei tronchi. A seguire vengono posizionati i diversi accessori della torre (scale, piattaforme, cavi di sicurezza anticaduta, ecc.).

Si procede all'assemblaggio del rotore, sempre a piè d'opera, unendo le pale al nucleo e collocando la protezione frontale.

Una volta terminate le suddette operazioni si procede al sollevamento della torre con una gru da 300 tonnellate, operando nel modo seguente:

- si solleva la torre completa e la si colloca sopra la fondazione fissando i bulloni ai tirafondi;
- si issa la gondola e quando essa è posizionata sul collare superiore della torre si fermano i bulloni di fissaggio;
- si innalza il rotore completo in posizione verticale;
- si fissa il mozzo del rotore al piatto di connessione situato all'estremo anteriore dell'asse principale della gondola;
- si collega al meccanismo di connessione del passo delle pale;
- si procede alla posa dei cavi della gondola all'interno della torre per la successiva connessione all'unità di controllo;
- si colloca l'unità di controllo sugli appoggi predisposti nella base di fondazione e si collegano i cavi di potenza e di controllo della gondola predisponendo l'aerogeneratore per la sua connessione alla rete.

Le strutture in elevazione sono limitate alla torre che rappresenta il sostegno dell'aerogeneratore, ossia del rotore e della navicella: la torre è costituita da un elemento in acciaio a sezione circolare, finita in superficie con vernici protettive in modo da evitare in particolare il fenomeno della corrosione.

Le pale sono costituite in fibra di vetro rinforzata ottenuta mediante tecnologia di prefusione. Tutte le turbine utilizzate sono equipaggiate con uno speciale sistema di regolazione per cui l'angolo delle pale è costantemente regolato e orientato nella posizione ottimale a seconda delle diverse condizioni del vento. Ciò ottimizza la potenza prodotta e riduce al minimo il livello di rumore. La torre è accessibile dall'interno, ed è verniciata per proteggerla dalla corrosione.

La stessa è rastremata all'estremità superiore per permettere alle pale, flesse per la spinta del vento, di ruotare liberamente. Sempre all'interno della torre, trovano adeguata collocazione i cavi per il convogliamento e trasporto dell'energia prodotta alla cabina di trasformazione posta alla base della torre, dalla quale è poi convogliata nella rete di interconnessione interna al parco eolico, la stazione utenza 36/30

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No.

kV, per essere convogliata tramite elettrodotto interrato a 36 kV alla RTN 380/150 kV di nuova realizzazione presso il Comune di Latiano e di proprietà di "Terna s.p.a.".

4.4 CAVIDOTTI E RETE ELETTRICA INTERNA AL PARCO

Le opere relative alla rete elettrica interna al parco eolico, oggetto del presente lavoro, possono essere schematicamente suddivise in due sezioni:

• Opere elettriche di trasformazione e di collegamento fra aerogeneratori;

- Opere di collegamento dagli aerogeneratori alla Stazione di Utenza con cavo MT 30 kV;
- Opere di collegamento alla Rete di Gestore Nazionale con cavidotto AT 36 kV.

L'energia prodotta da ciascun aerogeneratore è trasformata da bassa a media tensione per mezzo del trasformatore BT/MT e quindi trasferita al quadro MT posto a base torre all'interno della struttura di sostegno tubolare.

La rete elettrica in MT sarà realizzata con cavi unipolari disposti a trifoglio con conduttori in alluminio per il collegamento degli aerogeneratori ai relativi scomparti di smistamento e da questi alla stazione di utenza 36/30 kV, collocata vicino allo storage. La rete elettrica sarà interrata, protetta e accessibile nei punti di giunzione ed opportunamente segnalata.

Saranno infine posizionati pozzetti prefabbricati di ispezione in cls, per la manutenzione della rete elettrica in cui collocare le giunzioni dei cavi e i picchetti di terra.

Ogni aerogeneratore dispone di una stazione di trasformazione BT/MT.

Le stazioni di trasformazione sono ubicate all'interno delle torri degli aerogeneratori collegandosi alla rete di media tensione attraverso pozzetti di linea per mezzo di cavi 36 kV posati direttamente in cavidotti interrati.

La connessione dell'impianto alla nuova stazione 380/150 kV di proprietà TERNA, avverrà attraverso il collegamento in antenna sulla sezione a 36 kV.

Le apparecchiature elettriche della stazione di utenza saranno ubicate all'interno di un'area opportunamente recintata, nella quale sarà posizionato un edificio in muratura dotato degli apparati di controllo e protezione della sottostazione stessa. Inoltre saranno presenti le celle di media tensione e i quadri di misura, controllo e protezione della sottostazione.

Maggiori informazioni tecniche sui componenti che costituiscono la sottostazione sono contenute nelle specifiche tecniche dell'impianto elettrico.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No.

4.5 STAZIONE DI UTENZA

La stazione elettrica 36/30 kV è ubicata nel Comune di San Vito dei Normanni (BR) al Foglio 87, P.lle 1 e 44 ed riceve i cavi in media tensione a 30 kV dagli aerogeneratori. La suddetta Stazione sarà collegata mediante cavo in alta tensione a 36 kV alla Stazione RTN di nuova costruzione ubicata nel Comune di Latiano, Foglio 10, P.lle 24 e 36, da inserire in entra-esce sulla linea ad alta tensione RTN 380 kV "Brindisi-Taranto N2".

La stazione elettrica è equipaggiata con un trasformatore della potenza di 100 MVA e rapporto di trasformazione 36/30 kV, un edificio di stazione ospitante i quadri elettrici di arrivo dal parco eolico e partenza verso il trasformatore di potenza, nonchè i quadri elettrici di alta tensione (AT) a 36 kV per l'attestazione dei cavi di connessione alla stazione elettrica RTN. Inoltre nell'edificio della stazione utente saranno ubicati i locali delle apparecchiature di controllo, misura, alimentazione dei servizi ausiliari, locali ufficio e magazzino.

4.6 RETE DI TERRA

L'installazione della rete di messa a terra sarà conforme alla normativa vigente. La rete di terra sarà interrata e verrà realizzata secondo le seguenti considerazioni:

- i conduttori di terra dovranno restare ad un profondità di circa 80 cm dalla superficie del terreno;
- le diramazioni della maglia interrata per le connessioni con la superficie resteranno a circa 1 m sopra il pavimento;
- tutte le connessioni dei conduttori interrati saranno realizzate con saldatura del tipo CADWELL;
- saranno realizzati pozzetti ispezionabili, lì dove necessario, per misurare la resistenza di messa a terra;
- i conduttori della maglia interrata e delle diramazioni dovranno essere costituiti da cavi di rame elettrolitico nudo;
- tutti i conduttori interrati dovranno essere ricoperti da terra naturale;
- saranno utilizzati puntazze di acciaio ramato;
- le connessioni del cavo ai dispersori verticali e le derivazioni si avranno mediante saldature alluminotermiche o grappe adeguate;
- le connessioni di messa a terra dei quadri e degli equipaggiamenti saranno effettuati mediante grappe e terminali.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO 14 ertificate No. Q204 Certificate N R EN ISO 45001:2018

5 PRODUCIBILITÀ DELL'IMPIANTO

Lo studio anemologico è stato condotto elaborando i dati rilevati in prossimità del sito con l'ausilio delle tecniche di analisi e di calcolo più innovative attualmente presenti sul mercato nel settore dell'energia eolica; in particolare sono stati utilizzati i seguenti software:

• ESRI Arcgis for Desktop (ArcMAP): generazione del modello digitale del terreno per la determinazione della rugosità del terreno e l'elevazione degli aerogeneratori;

• EMD WindPRO 3.6: analisi e elaborazione delle condizioni di vento, e stima di producibilità degli aerogeneratori.

La procedura di analisi è stata condotta secondo le seguenti fasi successive:

 Preparazione del layout di progetto, posizionamento degli aerogeneratori e definizione delle sue caratteristiche tecniche;

 Analisi preliminare dei dati vento, filtraggio dei dati, preparazione dei dati di input per i software di calcolo della ventosità;

 Preparazione del modello digitale del terreno, da dare in input, nel formato e nelle dimensioni opportune, al software di calcolo della ventosità;

Definizione della rugosità del terreno a mezzo software;

 Calcolo della produttività dell'Impianto considerando anche eventuali perdite di scia, con l'uso di WindPRO 3.6.

• I dati vento utilizzati e analizzati per lo studio e la definizione della producibilità dell'impianto in oggetto sono presenti all'interno del database del software WindPro 3.6. Nella fattispecie, sono stati utilizzati i dati meteorologici WRF della stazione meteo New European Wind Atlas (NEWA).

• Il New European Wind Atlas (NEWA) si basa principalmente su simulazioni a mesoscala con il modello meteorologico WRF. Dopo un periodo di approfonditi test e analisi preliminari, il team di mesoscala in NEWA ha deciso una configurazione finale per i cicli di produzione su mesoscala e ha lanciato i primi cicli di produzione sul supercomputer MareNostrum a Barcellona. Le condizioni del vento degli ultimi 30 anni sono simulate in tutta Europa, inclusi tutti i paesi dell'UE, la Turchia, l'intero Mare del Nord e il Mar Baltico e altre aree offshore (100 km al largo della costa). Con una risoluzione di 3 km nello spazio e 30 minuti nel tempo.

 WRF (Weather Research and Forecasting) è un sistema di previsione meteorologica numerica su mesoscala all'avanguardia progettato sia per la ricerca atmosferica che per le applicazioni di previsione operativa. Presenta due core dinamici, un sistema di assimilazione dei dati e

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

38

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. SR EN ISO 45001: Certificate No. O

un'architettura software che supporta il calcolo parallelo e l'estensibilità del sistema. Il modello serve una vasta gamma di applicazioni meteorologiche su scale da decine di metri a migliaia di chilometri.

Stazione meteorologica	WGS84 UTM33N x (m)	WGS84 UTM33N y (m)
New European Wind Atlas(NEWA)	717.162	4.490.531

•

• Di seguito si riportano le distanze da ogni singola turbina rispetto alla stazione meteo individuata.

Tabella 2 | Distanze WTG dalla stazione meteorologica

WTG	WGS84 UTM33N x (m)	WGS84 UTM33N y (m)	Distanza da stazione meteo (m)
WTG01	715.281	4.495.861	3808
WTG02	718.879	4.497.086	5370
WTG03	717.220	4.500.006	5138
WTG04	715.281	4.495.861	6799
WTG05	718.879	4.497.086	4247
WTG06	717.220	4.500.006	13993
WTG07	727.932	4.498.723	14942
WTG08	718.482	4.499.136	16881
WTG09	727.932	4.498.723	6550
WTG10	718.482	4.499.136	13526

PROJETTO engineering s.r.l. società d'ingegneria

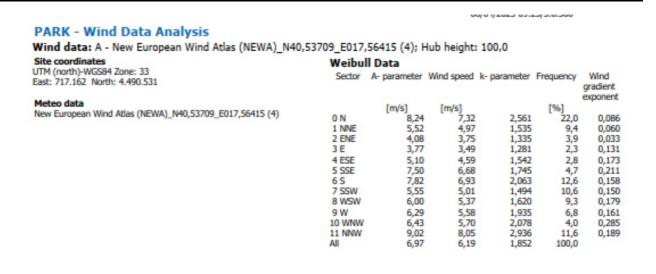
RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto


Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

9001:2015 SR EN ISO 1400 No. Q204 Certificate No.

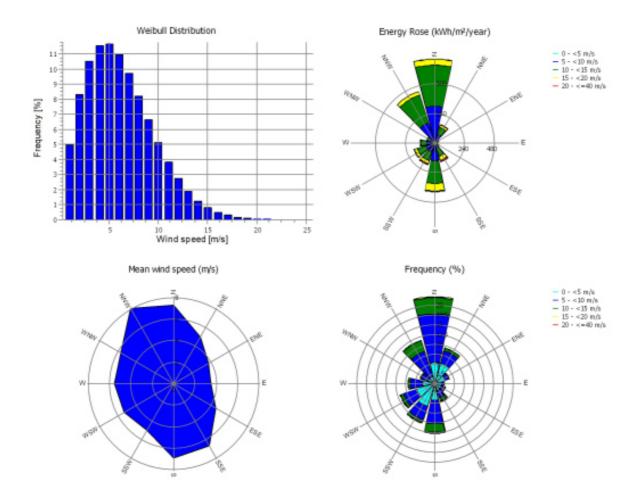


Figura 12 | Dati vento processati

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

40

EN ISO 9001:2015 SR EN ISO 140 tificate No. Q204 Certificate No

SR EN ISO 4500

Tabella 3 | Risultati di producibilità dell'impianto

	Calculated Annual Energy For Wind Farm											
WTG Combinat ion	Result Park (MWh/y)	Result-10, (Mwh/y)	0%	No loss (MWh/y)	Wake loss (%)	Capacity Factor (%)	Mean WTG Result (Mwh/y)	Full Load Hours (Hours/y ear)	Mean Wi height (r	nd Speed@hub n/s)		
Wind farm	186.383,3	167.745,0		190.861,1	2,3	30,9	16.774,5	2.706	6,3			
		Calcu	lated Annua	al Energy for ea	ach of 4 ne	w WTGs with total	24,8 MW rate					
WTG	type	Model	Power rated (kW)	Rotor Diameter (m)	Hub Height	Power curve	Result (MWh/y)	Result- 10% (MWh/y	lal Energy Wake loss (%)	Free mean wind speed (m/s)		
WTG_01	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.988,7	17.090	0,2	6,32		
WTG_02	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.682,9	16.815	2,0	6,32		
WTG_03	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.290,4	16.461	4,1	6,32		
WTG_04	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.444,7	16.600	3,3	6,32		
WTG_05	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.777,1	16.899	1,4	6,32		
WTG_06	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.534,0	16.681	3,1	6,32		
WTG_07	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.793,3	16.914	1,7	6,32		
WTG_08	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	19.111,4	17.200	0,2	6,32		
WTG_09	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.700,7	16.831	1,9	6,32		
WTG_10	Siemens Gamesa	SG 6.6- 170- 6.600	6600	170	115	(AM 0, 6.6MW) - 1.225 kg/m3	18.060,2	16.254	5,6	6,32		

La produzione dell'energia elettrica mediante combustibili fossili comporta l'emissione di gas inquinanti e di gas serra. In particolare è stato dimostrato che a partire dagli anni '50, l'inizio del boom petrolifero, gli andamenti della curva della popolazione, del consumo dei combustibili e dell'aumento di CO2 tendono a coincidere.

Il progressivo aumento del consumo energetico con la conseguente sempre crescente combustione di idrocarburi sta pertanto producendo un aumento della concentrazione di CO2nell'atmosfera, con un tasso di crescita stimato dello 0.3% annuo, assieme all'emissione di altri agenti inquinanti che contribuiscono in modo sinergico a produrre effetti naturali devastanti: effetto serra, desertificazione, piogge acide, diminuzione dello spessore della fascia di ozono.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Il livello delle emissioni dipende ovviamente dal combustibile, dalla tecnologia di combustione ed al controllo dei fumi. In ogni caso di seguito sono riportati i valori specifici delle principali emissioni associate alla generazione elettrica (fonte ISPRA):

• CO₂ (anidride carbonica): 0,4004 kg/kWh

La produzione stimata di energia eolica del Parco Eolico "Capece" è pari a 186.383,3 MWh/anno e ciò eviterà l'emissione di una centrale termica equivalente a combustibili fossili di:

• 74.627,87 t/anno di CO₂ (anidride carbonica)

La realizzazione del Parco Eolico si inquadra quindi perfettamente nel programma di più ampio sforzo nazionale di incrementare il ricorso a fonti energetiche alternative, contribuendo nel contempo ad acquisire una diversificazione del mix di approvvigionamento energetico ed a diminuire la vulnerabilità del sistema energetico nazionale. La diminuzione delle emissioni e la copertura di una parte del fabbisogno energetico da fonti rinnovabili e non inquinanti sono tanto più importanti per una Regione come la Puglia che vede nella difesa dell'ambiente dall'inquinamento il punto di forza per la futura capacità di sviluppo.

Per una trattazione più dettagliata, si rimanda all'elaborato "R3UEQM4_DocumentazioneSpecialistica_19_01".

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

42

6 ESECUZIONE DEI LAVORI – CANTIERIZZAZIONE

L'organizzazione del sistema di cantierizzazione ha tre obiettivi fondamentali:

garantire la realizzabilità delle opere nei tempi previsti;

minimizzare gli impatti sul territorio circostante;

• migliorare le condizioni di sicurezza nell'esecuzione delle opere.

Il cantiere eolico presenta delle specificità, poiché è un cantiere "diffuso" seppure non itinerante. È prevista pertanto la realizzazione di un'area principale di cantiere (area di stoccaggio) e di altre aree in corrispondenza della ubicazione delle torri, che di fatto coincideranno con le aree di lavoro delle gru.

L'area di cantiere principale sarà per quanto più possibile centrale rispetto alla posizione degli aerogeneratori.

6.1 FASI DI LAVORAZIONE

La realizzazione dell'impianto prevede una serie articolata di lavorazioni, complementari tra di loro, che possono essere sintetizzate mediante una sequenza di otto fasi, determinata dall'evoluzione logica, ma non necessariamente temporale.

• 1º fase - Riguarda la "predisposizione" del cantiere attraverso i rilievi sull'area e la realizzazione delle piste d'accesso alle aree del campo eolico. Segue a breve l'allestimento dell'area di cantiere recintata, ed il posizionamento dei moduli di cantiere. In detta area sarà garantita una fornitura di energia elettrica e di acqua.

• 2° fase – Realizzazione di nuove piste e piazzole ed adeguamento delle strade esistenti, per consentire ai mezzi speciali di poter raggiungere, e quindi accedere, alle singole aree di lavoro gru (piazzole) in prossimità delle torri, nonché la realizzazione delle stesse aree di lavoro gru.

• 3° fase – Scavi per i plinti ed i pali di fondazione, montaggio dell'armatura dei pali e dei plinti, posa dei conci di fondazione e verifiche di planarità, getto del calcestruzzo.

• 4° fase – Realizzazione dei cavidotti interrati (per quanto possibile lungo la rete viaria esistente o su quella di nuova realizzazione) per la posa in opera dei cavi dell'elettrodotto.

• **5° fase** – Trasporto dei componenti di impianto (tronchi di torri tubolari, navicelle, hub, pale) montaggio e sistemazione delle torri, delle pale e degli aerogeneratori.

• 6° fase - Cantiere per la Stazione di utenza, con realizzazione di opere civili, montaggi elettromeccanici, cablaggi, connessioni elettriche lato utente e lato Rete di Trasmissione Nazionale.

7º fase – Collaudi elettrici e start up degli aerogeneratori.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. R EN ISO 45001:2018

• 8° fase – Opere di ripristino e mitigazione ambientale: il trasporto a rifiuto degli inerti utilizzati per la realizzazione del fondo delle aree di lavoro gru e posa di terreno vegetale allo scopo di favorire l'inerbimento e comunque il ripristino delle condizioni ex ante.

44

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

15 SR EN ISO 14001:

SR EN ISO 45001:2018

CRONOPROGRAMMA

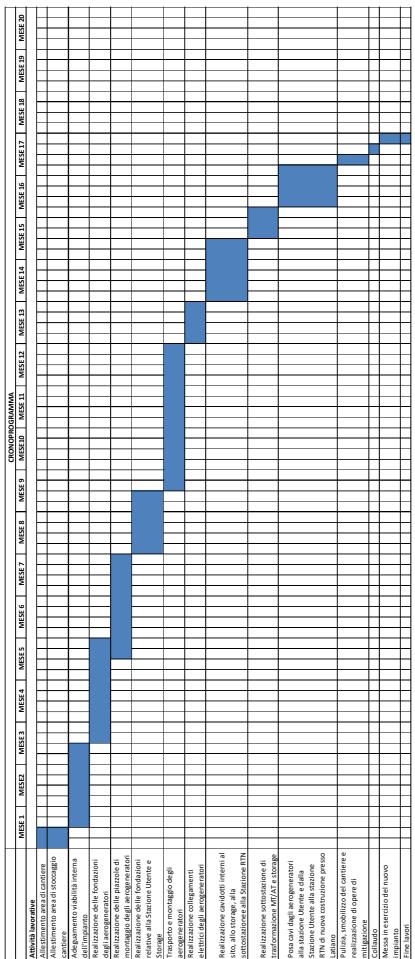


Figura 13 | Cronoprogramma dei lavori

PROJETTO engineering s.r.l.

RELAZIONE TECNICA

società d'ingegneria

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733 Direttore Tecnico: Ing. Leonardo FILOTICO

Partita Iva: 02658050733

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

7 PIANO DI SICUREZZA E COORDINAMENTO

Il piano di sicurezza e coordinamento ha lo scopo di individuare e valutare i rischi presenti nello svolgimento delle singole lavorazioni previste da progetto e conseguentemente di indicare le misure di sicurezza da adottare. Il piano analizza pertanto nel dettaglio il progetto considerando le modalità di esecuzione, le interazioni fra le diverse lavorazioni al fine di identificare i rischi e, laddove possibile, eliminarli o ridurli al minimo attraverso l'attuazione di opportune misure di sicurezza e salvaguardia e mediante un'opportuna organizzazione del cantiere. Tale organizzazione dovrà tenere conto dell'interazione delle diverse imprese

presenti contemporaneamente sul cantiere per lo svolgimento di diverse lavorazioni.

Il piano stabilisce altresì i costi della sicurezza e cioè l'incidenza su ogni singola lavorazione e quindi

complessivamente dell'applicazione delle misure e dei dispositivi necessari per la prevenzione degli infortuni.

L'impresa appaltatrice avrà l'obbligo di redigere un Piano operativo di sicurezza complementare e di dettaglio al piano di progetto e di consegnare alla stazione appaltante le proposte di integrazione al piano. Tutta la documentazione inerente la sicurezza è da considerarsi parte integrante del contratto con la conseguente possibilità di risoluzione dello stesso in caso di perduranti e gravi violazioni. Spetta al direttore

di cantiere l'onere della vigilanza sul rispetto delle prescrizioni previste dal piano.

Elementi del Piano di Sicurezza e Coordinamento sono:

 Dati Generali: Oggetto dell'appalto, indirizzo del cantiere, il committente, il responsabile dei lavori, il coordinatore della sicurezza, la data di inizio lavori, la durata dei lavori, l'importo dell'appalto, il

numero di uomini/giorno previsti.

Descrizione dell'opera.

Rischi presenti in cantiere o trasmessi all'esterno: con riferimento alla morfologia del terreno, la
presenza di linee elettriche nelle immediate vicinanze del cantiere, la presenza di falde superficiali,
la presenza di reti di servizio (linee telefoniche e elettriche, acquedotti, fognature, gasdotti etc.),

presenza di altri cantieri con possibilità di interazione.

 Prescrizioni operative sull'organizzazione e gestione del cantiere: specificando opere di protezione e salvaguardia che impediscano l'accesso al cantiere, gli accessi, la viabilità interna, la dotazione di servizi assistenziali e sanitari, l'impianto elettrico di cantiere, l'impianto di terra, la segnaletica di sicurezza, depositi, baraccamenti di servizio per uffici, mensa, spogliatoi etc., posizionamento dei principali impianti con riferimento all'eventuale centrale di betonaggio, macchina piega ferri,

macchine per la produzione di energia elettrica etc.

• Pianificazione dei lavori: sono indicate in successione le varie fasi di lavoro, indicando il numero di

operai impegnati, la data di inizio presumibile delle lavorazioni e la durata delle stesse.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO 14 ertificate No. Q204 Certificate N SR EN ISO 45001:2018 Certificate No. OHS97

 Cronoprogramma: con riferimento al punto precedente di realizzare un diagramma di Gantt con la schematizzazione delle fasi lavorative e la visualizzazione dello svolgimento temporale dei lavori.

 Prescrizioni operative sulle fasi lavorative: si individuano in questa parte le modalità di esecuzione dei lavori, le attrezzature utilizzate, i rischi connessi, i dispositivi di prevenzione e protezione, gli adempimenti verso gli organi di controllo e vigilanza;

adempinienti verso gii organi di controllo e vigilanza,

• Costi correlati alla prevenzione e protezione: individuati sommando i costi previsti per ogni singola lavorazione dovuti all'utilizzo di dispositivi di prevenzione e protezione e tempi di esecuzione

maggiori per l'adempimento delle disposizioni di sicurezza.

 Gestione delle emergenze: la gestione è a carico delle ditte esecutrici dell'opera che dovranno designare preventivamente gli addetti al pronto soccorso, alla prevenzione incendi e all'evacuazione; le imprese dovranno altresì individuare e adottare le misure necessarie alla prevenzione incendi,

all'evacuazione dei lavoratori nonché per il caso di pericolo grave ed immediato;

Valutazione del rischio da rumore.

7.1 PROCEDURA DI SICUREZZA PER EMERGENZA ANTINCENDIO

L'area del cantiere è coperta dal numero telefonico 115 per il Servizio dei Vigili del Fuoco. Si è garantita idonei apprestamenti di risposta all'incendio predisponendo nelle immediate vicinanze al luogo di lavoro degli estintori portatili specifici per le attività in corso/previsione ad uso dei propri lavoratori incaricati alle

emergenze, i quali vengono dotati di un telefono cellulare di cantiere per comunicare con il 115.

Predisposizione degli estintori in parco:

estintori a polvere da 2 Kg 13A 89 B-C saranno presenti in ogni veicolo che lavora sul sito;

• un estintore idoneo sarà situato presso il gruppo generatore nel lavoro di assemblaggio a cura

dell'impresa esecutrice;

• la squadra responsabile dell'avviamento delle turbine avrà un estintore a CO2 da 5 kg adatto all'uso

in incendi d'origine elettrica;

• un estintore sarà disponibile in ciascuna torre durante il funzionamento, a CO2 tipo 113 B, da 5kg.

L'acqua o la schiuma non devono essere usate per combattere gli incendi nei generatori o negli impianti elettrici in generale. La procedura seguente sarà integrata con le informazioni eventualmente ricevute dalla Committenza. Se viene rilevata una situazione di pericolo all'interno del cantiere il responsabile che decide e

stabilisce se attivare l'emergenza è il **Project Manager** che ha il compito di avvertire la committenza.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. SR EN ISO 451 Certificate No

7.2 EVACUAZIONE DELL'AEROGENERATORE

Lo strumento utilizzato per procedere all'evacuazione dell'aerogeneratore nel caso in cui il percorso tradizionale (scala o ascensore) non si possa usare, sia per rottura degli stessi sia perché si deve evacuare un infortunato o perché si è prodotto un incendio a livelli inferiori alla navicella, sarà il discensore ...

d'emergenza.

Questo dispositivo può essere presente nella navicella o, in caso contrario, la prima cosa da fare prima di salire in navicella (almeno che no si sia saliti unicamente per operazioni tipo riarmo di termici, differenziali, etc.), dovrà essere quello di sollevare con il paranco il discensore d'emergenza, assicurandosi sempre che la lunghezza della corda dello stesso corrisponde all'altezza della torre. Per tale ragione, prima di salire in navicella bisogna sempre chiedere ad un responsabile del parco sull'effettiva presenza di un discensore adeguato in navicella, altrimenti premunirsi dello stesso prima di iniziare la risalita.

Le attrezzature contenute nello zaino del discensore di emergenza sono le seguenti:

zaino di trasporto dell'attrezzatura;

• puleggia di discesa con corde;

corda di sicurezza con moschettoni (circa 1 m);

istruzioni d'uso.

Per utilizzare l'impianto si deve osservare la seguente procedura:

1) Posizionare il discensore sul golfare della porta posteriore, bloccare la chiusura di sicurezza del moschettone e far cadere il sacco con la corda della puleggia nel vuoto(assicurarsi che la corda sia

completamente estesa e senza nodi).

2) Assicurare il discensore con la corda di sicurezza alla barra del paranco al di sopra del supporto del

paranco stesso.

3) Legare il moschettone ubicato sull'estremità della corda all'imbracatura dal davanti e bloccare la

chiusura di sicurezza.

4) Uscire all'esterno e lasciarsi calare, il discensore manterrà una velocità costante di 0.8m/sec.

5) Una volta a terra, slegare il moschettone e una seconda persona potrà cominciare la discesa.

6) A seconda dell'altezza della torre, la persona che rimane in quota, dovrà recuperare alcuni metri di

corda in modo tale che il moschettone rimanga nella parte superiore e così poter cominciare la

discesa.

7) Ogni volta che l'impianto viene utilizzato per un'emergenza dovrà essere sottoposto aduna revisione da parte del costruttore. Inoltre, l'impianto dovrà essere revisionato annualmente dal costruttore

anche se non è stato utilizzato. Pertanto quando si verificano tali situazioni l'impianto verrà

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

ISO 9001:2015 SR EN ISO 1400 cate No. Q204 Certificate No. SR EN ISO 45001:2018

consegnato al dipartimento corrispondente per essere visionato dal costruttore o dalla società autorizzata. Nel caso in cui si verificasse un'emergenza fuori controllo e fosse necessario l'intervento di Vigili del Fuoco, Guardia Civile o Ambulanze, si procederà chiamando il numero di telefono S.O.S 112 e si seguiranno le istruzioni che verranno fornite.

Per utilizzare l'impianto si deve osservare il seguente procedimento:

- 1. Negli aerogeneratori che installano il sistema a guide metalliche fisse (foto 1)posizionare il discensore nella guida o nei moschettoni della corda, chiudere e fissare la chiusura di sicurezza del moschettone e lasciare cadere il sacco con la corda della puleggio verso il vuoto (assicurandosi che la corda sia completamente estesa e senza nessun nodo). Negli aerogeneratori che non montano la guida, passare sopra la trave del carro del paranco la corda di sicurezza con moschettone e collocare il discensore nello stesso, fissare la chiusura di sicurezza del moschettone del discensore e lasciare cadere il sacco con la corda della puleggia verso il vuoto. In entrambe i casi assicurarsi che la corda sia completamente distesa senza nessun nodo.
- 2. Assicurare il discensore con la corda di sicurezza al generatore.
- 3. Legare il moschettone ubicato sull'estremità della corda all'imbracatura dal davanti e bloccare la chiusura di sicurezza.
- 4. Uscire all'esterno e lasciarsi calare, il discensore manterrà una velocità costante di0,8m/sec.
- 5. Una volta a terra, slegare il moschettone e una seconda persona potrà cominciare la discesa.
- 6. Ogni volta che l'impianto viene utilizzato per un'emergenza dovrà essere sottoposto aduna revisione da parte del costruttore. Inoltre, l'impianto dovrà essere revisionato annualmente dal costruttore anche se non è stato utilizzato. Pertanto quando si verificano tali situazioni l'impianto verrà consegnato al dipartimento corrispondente per essere revisionato dal costruttore o dalla società autorizzata.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

8 DESCRIZIONE DELLE OPERE DI DISMISSIONE

Le azioni che verranno intraprese sono le seguenti:

- Rimozione degli aerogeneratori. Questa operazione verrà eseguita da ditte specializzate, preposte anche al recupero dei materiali. Infatti un vantaggio degli impianti eolici è rappresentato dalla natura delle opere principali che li compongono, essendo in prevalenza costituite da elementi in materiale metallico facilmente riciclabile o riutilizzabile. Le torri degli aerogeneratori, comprese le parti elettriche, saranno smontate e ridotte in pezzi per consentirne il trasporto e lo smaltimento presso specifiche aziende di riciclaggio.
- Demolizione di porzioni di platee di fondazioni degli aerogeneratori emergenti rispetto alla quota del piano di campagna, con trasporto a discarica del materiale in calcestruzzo di risulta.
- Sistemazione piazzole a servizio degli aerogeneratori. Per le piazzole sono previsti i seguenti interventi:
- rimozione di parte del terreno di riporto per le piazzole in rilevato. Il materiale di risulta sarà utilizzato per riprofilature e ripristini fondiari;
- disfacimento della pavimentazione, costituita da uno strato di fondazione con misto granulare naturale di 30 cm e dal soprastante strato di misto artificiale di cm 20, per le piazzole in sterro. Trasporto a discarica del materiale;
- rinverdimento con formazione di un tappeto erboso con preparazione meccanica del terreno erboso, concimazione di fondo, semina manuale o meccanica di specie vegetali autoctone.
- Rimozione della sottostazione elettrica. La stazione di consegna del parco eolico sarà dismessa.
 Verranno pertanto smontati e smaltiti tutti gli apparati elettromeccanici e demolite le parti superiori delle fondazioni con successivo invio a discarica autorizzata. Infine verrà intrapresa un'azione di rinverdimento dell'area.

8.1 RICICLAGGIO DEI MATERIALI

Le plastiche rinforzate con fibre minerali (compositi) possono essere introdotte nel processo di produzione del cemento Clinker. La ragione dell'introduzione dei compositi in questo processo è dovuta alla loro composizione. Da una parte, quando il materiale utilizzato come rinforzo è la fibra di vetro, questa parte inorganica formata fondamentalmente da composti di silicio sostituisce le materie prime naturali di silicio, alluminio e calcio.

I restanti elementi che costituiscono il composito sono costituiti esclusivamente da composti organici, che contribuiscono come combustibili, agendo da forma di energia necessaria per parte del processo di produzione del Clinker.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

R EN ISO 9001:2015 SR EN ISO 14 Pertificate No. Q204 Certificate No. SR EN ISO

La parte organica dei composti varia dal 10% al 70%. L'utilizzo dei compositi come fonte di energia o come materia prima minerale dipenderà da aspetti puramente quantitativi e da parametri fisici e chimici che controllano il processo.

Dal punto di vista ambientale e del recupero dei rifiuti, la via di valorizzazione attraverso il processo del Clinker sembra essere la forma più positiva. In tal senso, al completamento della gestione attraverso la via del Clinker, si produrranno unicamente emissioni in atmosfera provenienti dalla combustione dei componenti organici. Il resto del materiale non sottoposto a combustione si incorpora nel materiale del Clinker. D'altronde, l'invio a discarica richiede la costruzione di infrastrutture di grandi dimensioni e con elevati impatti sul suolo dove si impianta.

Il materiale e i componenti elettrici, anche se in minore proporzione, rivestono una grande importanza nel bilancio economico finale della gestione dell'intero aerogeneratore. Da un lato, la maggior quantità si trova nel cavidotto di potenza e di connessione dei diversi strumenti, realizzato in rame e alluminio. La via di gestione per questi componenti è il riciclaggio attraverso i processi di rifusione dei metalli, dopo aver separato il materiale plastico che forma l'isolante. Il processo di riciclaggio di questi componenti ha un alto rendimento e il prodotto finale ottenuto è di alta qualità ed è utilizzabile in tutte le applicazioni.

Dall'altro lato, all'interno dei componenti elettrici si trovano i pannelli di controllo, gli schermi, la circuiteria e uno svariato numero di componenti specifici. Il riciclo di questi componenti si realizza sia a partire dal componente completo, sia a partire dal triturato. Il valore di questo materiale si trova in metalli come il rame, lo stagno, il piombo, l'oro, il platino, che si trovano in diverse proporzioni e che apportano un alto valore aggiunto alla gestione. Il processo per il riciclaggio di questi componenti elettrici consiste nella rifusione del materiale bruto utilizzando il materiale plastico come combustibile per raggiungere una maggiore temperatura e come agente riduttore, così come da composto organico viene distrutto nella combustione.

A causa della differente composizione dei metalli, il materiale fuso viene sottoposto ad una serie di diversi processi nei quali si separeranno tutti i metalli. Alla fine ogni metallo ottenuto dalla forma bruta viene sottoposto ad un processo di raffinazione attraverso il quale si possono raggiungere elevati gradi di purezza fino al 98%.

SMANTELLAMENTO DEGLI AEROGENERATORI

Una volta conclusa la vita utile del parco si procede a ritirare tutti i componenti dell'aerogeneratore partendo dalle pale fino ad arrivare alle torri. La tecnica di smantellamento dei componenti è simile alle operazioni di montaggio, ma con una sequenza inversa.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Nel caso in cui venga richiesta la rigenerazione completa dello spazio dove era installato il parco si procederà al ritiro della parte superficiale della base dell'aerogeneratore.

Si rimanda all'elaborato denominato "R3UEQM4_DocumentazioneSpecialistica_14 - piano di dismissione (con costi e cronoprogramma dismissione)" per una trattazione più approfondita dell'argomento.

52

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

V ISO 9001:2015 SR EN ISO 1400: ficate No. Q204 Certificate No. E

53

Progetto dell'impianto eolico con storage denominato "Capece" della potenza complessiva di 66 MW con storage da 20 MW da realizzare nei Comuni di Francavilla Fontana, San Vito dei Normanni, San Michele Salentino e Latiano (BR).

CRONOPROGRAMMA DI DISMISSIONE	GENNAIO	FEBBRAIO	SAIO		MARZO	ZO		Ą	APRILE	111		MAGGIO	GIO		Ō	GIUGNO	0		LUGLIO	OIT		ă	AGOSTO	0T0	· ·	SETTEMBRE	EME	3RE
ATTIVITÀ LAVORATIVE / SETTIMANE	S S S 1 2 3 4 4 4	S 1 2	S 8 8	S –	S 2	လ လ	S 4	S 2	လ လ	S 4	S –	S 2	လ လ	S 4	S S	S S	S 4	o ←	S 2	လ လ	S 4	S -	S 2	S 8	S –	S 2	လ က	Q 4
APPRESTAMENTI DI CANTIERE																												
SMONTAGGIO DELLE TORRI																												
DEMOLIZIONE DELLE FONDAZIONI DELLE TORRI																												
TRASPORTO A DISCARICA DEL MATERIALE DI RISULTA DELLE FONDAZIONI																												
DEMOLIZIONE DELLA SOTTOSTAZIONE E RIMOZIONE DELLE APPARECCHIATURE ELETTROMECCANICHE																												
TRASPORTO A DISCARICA DEL MATERIALE DI RISULTA DELLA SOTTOSTAZIONE E STORAGE																												
SFILAGGIO CAVI																												
RIPRISTINI VEGETAZIONALI																												

PROJETTO engineering s.r.l.

RELAZIONE TECNICA

società d'ingegneria

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733 Direttore Tecnico: Ing. LEONARDO FILOTICO

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto Te1099 9574694 fax 099 2222834 mob. 3491735914

9 ASPETTI OCCUPAZIONALI E ANALISI SOCIO ECONOMICA

L'inserimento di un impianto eolico all'interno di un territorio genera in esso numerosi effetti, tra questi, rilevanti sono le conseguenze sullo sviluppo socio-economico delle comunità che vivono nelle aree interessate. In particolare l'impatto sociale ed economico ha risvolti positivi a livello occupazionale diretto,

indiretto ed indotto.

Per poter definire e contestualizzare l'influenza che l'impianto ha sugli aspetti socio-economici è necessario conoscere dati demografici ed economici del territorio, ciò in ragione del fatto che tale impatto è influenzato da molteplici fattori specifici di un territorio: la grandezza del territorio, il bilancio demografico, la sua

posizione, l'economia principale, la presenza o meno di attività industriali e la tipologia delle stesse.

9.1 BENEFICI SOCIALI ED OCCUPAZIONALI

La realizzazione di un parco eolico, a fronte di modesti inconvenienti, presenta concreti vantaggi socioeconomici che direttamente ed immediatamente riguardano la popolazione locale e, con visione più ampia, si riflettono sul risparmio della bolletta energetica nazionale e sullo sviluppo di una tecnologia nazionale, in

un settore che lascia prevedere un forte incremento per i prossimi cinquant'anni.

Il D. Lgs 79/99 (Decreto Bersani), ad attuazione della direttiva CEE 96/92/CE che indica e regolamenta attualmente il mercato interno dell'energia elettrica, è in effetti una legge che prevede la riduzione

dell'impatto ambientale.

Il decreto infatti obbliga "i venditori di energia" sul mercato italiano a produrre il 2% di detta energia mediante nuovi impianti di produzione di energia elettrica da fonti rinnovabili. Fra le fonti di energia rinnovabili la meno sfruttata, la più promettente in Italia e, al contempo, la meno inquinante in assoluto è proprio la fonte eolica.

Gli effetti occupazionali correlati alla realizzazione dell'impianto, sono stati stimati in relazione alle fasi

rappresentative dell'intero progetto, definite come segue.

9.1.1 Fase di cantiere (impatto di breve periodo)

La stima sull'occupazione in fase di cantiere si riferisce esclusivamente all'occupazione diretta, ovvero relativa al settore produttivo direttamente "attivato" dall'intervento. Si prevede che le attività di cantiere necessitino mediamente di circa 50 unità; le attività dureranno 17 mesi circa e il personale presente in sito varierà da alcune decine nelle prime fasi costruttive (primi mesi) ad un massimo di 100 unità nel periodo di

punta.

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

EN ISO 9001:2015 SR EN ISO 1400 rtificate No. Q204 Certificate No. SR EN ISO 45001:20 Certificate No. OHS

9.1.2 Fase di regime (impatto di lungo periodo)

La stima sull'occupazione in fase di regime si riferisce esclusivamente all'occupazione diretta, ovvero relativa al settore produttivo direttamente "attivato" dall'intervento; non tiene conto dell'occupazione indiretta e/o indotta; attività di esercizio: sono previsti circa 2 addetti diretti per attività direttamente legate al processo produttivo e tecnologico a cui andrà ad aggiungersi la manodopera coinvolta nell'indotto.

55

9.1.3 Destinazione d'uso dei suoli invariata

Il territorio ricadente all'interno dell'area di impatto locale ha una destinazione d'uso agricola (seminativo, prati aridi) compatibile con l'attività del progetto. Essa rimane invariata, tranne per le aree occupate dalle fondazioni dell'aerogeneratore, le piazzole di servizio e per le aree occupate dalle nuove, poche, strade: l'ammontare di tale aree è dell'ordine del 2-3% dell'intera area d'intervento.

L'opera interessata incide positivamente sul contesto sociale ed economico del territorio, poiché consente di svolgere in loco una attività industriale altrimenti condotta in altra località, per la nuova occupazione che l'attività garantirà e per i benefici effetti per l'indotto economico e industriale.

9.2 OPERE DI MITIGAZIONE DI EVENTUALI IMPATTI SOCIOECONOMICI NEGATIVI

La valutazione degli impatti socio-economici è difficile da quantificare propriamente poiché questi possono variare in maniera significativa a seconda delle comunità locali e dalle aree geografiche interessate.

In ogni caso, per la mitigazione di eventuali impatti, è fondamentale il coinvolgimento delle amministrazioni locali per la definizione di misure di compensazione che, in base alle esigenze, possono essere considerate strategiche per la comunità.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

10 STIMA DEI COSTI

La stima dell'incidenza dei costi di costruzione è di 80.909.689,22 €. Si precisa che tale stima è stata effettuata con un approccio teso a minimizzare i costi di fornitura e di realizzazione, in conformità con gli attuali standard di mercato del settore.

La valutazione previsionale dei costi di realizzazione degli Impianti è riportata in dettaglio nell'elaborato "R3UEQM4_ComputoMetrico".

Gli oneri per la sicurezza sono stati stimati in 380.000 €.

Altri costi di progetto (costi di sviluppo, progettazione autorizzativa, direzione lavori, collaudi, consulenze, etc.) sono stimati per un importo totale di 2.041.460,00 €.

Si rimanda al documento "R3UEQM4_QuadroEconomico" per un esploso delle voci di costo.

Per i costi di dismissione, invece, si stima un importo complessivo di 5.107.849,31 €. Si rimanda al documento "R3UEQM4_DocumentazioneSpecialistica_14" (Piano di dismissione con relativi costi) per un esploso delle voci di costo.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

56

11 ELENCO DELLE AUTORIZZAZIONI

Le autorizzazioni che si dovranno ottenere per la realizzazione del presente progetto sono:

- Autorizzazione Unica, ai sensi dell'art. 12 c.3 del D.Lgs.387/03
- Valutazione di Impatto Ambientale, ai sensi del Dlgs. 152/2006 così come modificato dal D.lgs 104 del 16 giugno2017

57

Di seguito si riporta l'elenco (non esaustivo) degli Enti e Società che dovranno rilasciare il proprio parere / nulla osta / assenso / concessione e con i quali, eventualmente, si dovranno stipulare apposite convenzioni:

- Comune di Francavilla Fontana
- Comune di San Vito dei Normanni
- Comune di San michele Salentino
- Comune di Latiano
- Provincia di Brindisi Settore Viabilità
- Ufficio Provinciale Agricoltura di Brindisi
- Ufficio Struttura Tecnica provinciale di Brindisi (ex Genio Civile)
- Comando Provinciale dei Vigili del Fuoco di Brindisi
- Regione Puglia Assessorato allo Sviluppo Economico, Settore Industria ed Energia
- Regione Puglia Assessorato Regionale all'assetto del territorio ed urbanistica
- Regione Puglia Assessorato Regionale all'Ecologia, Ufficio Attività Estrattive
- Regione Puglia Assessorato Regionale, Ispettorato Ripartimentale delle Foreste
- Soprintendenza per i Beni Archeologici della Puglia
- Soprintendenza per i beni architettonici per il paesaggio e per il patrimonio storico artistico ed etnoantropologico per le province di Lecce, Brindisi e Taranto
- Ministero dell'Ambiente e della Tutela del territorio e del Mare Direzione Generale per le Valutazioni Ambientali
- ARPA Puglia
- ASL Brindisi
- Autorità di Bacino della Puglia
- Comando Reclutamento e Forze di Completamento "Puglia"
- Ministero delle Comunicazioni
- Ministero dello Sviluppo Economico
- Agenzia del Territorio (Demanio Statale)

PROJETTO engineering s.r.l. società d'ingegneria

RELAZIONE TECNICA

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

- ENAC
- ENAV
- Aeronautica Militare C.I.G.A.
- Aeronautica Militare Comando III Regione Aerea Reparto Territorio e Patrimonio
- Acquedotto Pugliese
- Telecom S.p.a
- Enel S.p.A.
- Terna S.p.A
- Snam Rete Gas
- Eventuali altri Enti e Società gestori di sottoservizi interferenti con le opere da realizzare

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: ING. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

12 CONCLUSIONI

I benefici derivanti dall'applicazione della tecnologia eolica sono molteplici. Oltre ai benefici strettamente legati all'utilizzo di una fonte rinnovabile è importante citare le ricadute positive sul tessuto produttivo dell'area interessata: la tecnologia dell'impianto proposto prevede nella realizzazione dell'impianto un largo coinvolgimento delle maestranze locali permettendo la valorizzazione delle attività locali ed offrendo una prospettiva di crescita tecnologica e economica, occupazione e sviluppo.

59

Inoltre eseguendo un confronto con altre tecnologie di fonti rinnovabili (solare, fotovoltaico, idroelettrico etc..) si evidenzia che la tecnologia scelta per il presente progetto risulta rispettosa dell'ambiente, del territorio e del sistema elettrico nazionale, permettendo elevate efficienze di conversione, ridotta superficie occupata a parità di energia resa. Ciò garantisce una prospettiva di impatto ambientale minimo, coerente con un concetto di "generazione sostenibile" e con il desiderio della comunità e delle amministrazioni locali.

Dalla lettura della normativa e della bibliografia settoriale, appare evidente l'importanza di una diversificazione nei metodi di produzione dell'energia elettrica. I crescenti consumi energetici ed il contestuale aumento del costo di produzione dell'energia, specialmente legato all'aumento del prezzo d'acquisto del petrolio, e, cosa importante, l'accresciuta sensibilità ambientale dei cittadini e delle istituzioni, spingono all'introduzione di sistemi di generazione come quello in oggetto, in grado sia di limitare la dipendenza della Nazione dagli stati produttori di combustibili fossili sia di tutelare l'ambiente in cui viviamo, sistemi che ci avvicineranno, non solo a parole, a quello sviluppo sostenibile da più parti auspicato.

PROJETTO engineering s.r.l. società d'ingegneria

Direttore Tecnico: Ing. LEONARDO FILOTICO

Cap. Soc. 119.000,00 € Codice Fiscale: 02658050733

Partita Iva: 02658050733

Sede Legale: Via dei Mille 5, 74024 Manduria - Taranto

Sede Operativa: Z.I. Lotto 31, 74020 San Marzano di San Giuseppe - Taranto

Tel099 9574694 fax 099 2222834 mob. 3491735914

RELAZIONE TECNICA

Camera di Commercio Industria Artigianato e Agricoltura di TARANTO

Registro Imprese - Archivio ufficiale della CCIAA

In questa pagina e nei riquadri riassuntivi posti all'inizio di ciascun paragrafo, viene esposto un estratto delle informazioni presenti in visura che non può essere considerato esaustivo, ma che ha puramente uno scopo di sintesi

VISURA ORDINARIA SOCIETA' DI CAPITALE

BROWN ENERGY S.R.L.

D4CTYR

Il QR Code consente di verificare la corrispondenza tra questo documento e quello archiviato al momento dell'estrazione. Per la verifica utilizzare l'App RI QR Code o visitare il sito ufficiale del Registro Imprese.

DATI ANAGRAFICI

Indirizzo Sede legale

SAN MARZANO DI SAN
GIUSEPPE (TA) ZONA
INDUSTRIALE LOTTO N. 31
SNC CAP 74020 C/O
PROJETTO ENGINEERING

S.R.L

19/09/2022

Domicilio digitale/PEC brownenergysrl@pec.it

Numero REA TA - 210230 Codice fiscale e n.iscr. al 03350050732

Registro Imprese
Partita IVA 03350050732

Forma giuridica societa' a responsabilita' limitata

Data atto di costituzione 12/09/2022 Data iscrizione 19/09/2022

Amministratore Unico MARCHITELLI VANNI Rappresentante dell'Impresa

ATTIVITA'

Stato attività inattiva
Attività import export Contratto di rete Albi ruoli e licenze Albi e registri ambientali -

L'IMPRESA IN CIFRE

Data ultimo protocollo

Capitale sociale 10.000,00 Soci e titolari di diritti su azioni e quote Amministratori 1 Titolari di cariche 1 Sindaci, organi di 0 controllo 0 Unità locali Pratiche inviate negli 2 ultimi 12 mesi 0 Trasferimenti di quote Trasferimenti di sede 0 Partecipazioni (1)

CERTIFICAZIONE D'IMPRESA

Attestazioni SOA Certificazioni di QUALITA'

DOCUMENTI CONSULTABILI

Bilanci Fascicolo sì
Statuto Altri atti 3

(1) Indica se l'impresa detiene partecipazioni in altre società, desunte da elenchi soci o trasferimenti di quote

Registro Imprese Archivio ufficiale della CCIAA Documento n . L ZG0RZN1VZ2M18DXF4G estratto dal Registro Imprese in data 20/09/2022

BROWN ENERGY S.R.L. Codice Fiscale 03350050732

Indice

1	Sede	2
2	Informazioni da statuto/atto costitutivo	2
3	Capitale e strumenti finanziari	4
4	Soci e titolari di diritti su azioni e quote	4
5	Amministratori	5
6	Titolari di altre cariche o qualifiche	5
7	Attività, albi ruoli e licenze	6
8	Aggiornamento impresa	6

1 Sede

Indirizzo Sede legale SAN MARZANO DI SAN GIUSEPPE (TA)

ZONA INDUSTRIALE LOTTO N. 31 SNC CAP 74020

C/O PROJETTO ENGINEERING S.R.L

Domicilio digitale/PEC

Partita IVA Numero repertorio economico amministrativo (REA) 03350050732 TA - 210230

brownenergysrl@pec.it

2 Informazioni da statuto/atto costitutivo

Registro Imprese Codice fiscale e numero di iscrizione: 03350050732

Data di iscrizione: 19/09/2022

Sezioni: Iscritta nella sezione ORDINARIA

Data atto di costituzione: 12/09/2022

Estremi di costituzione

Sistema di amministrazione

amministratore unico (in carica)

Oggetto sociale LA SOCIETA' HA PER OGGETTO: (A) LA PRODUZIONE DI ENERGIA ELETTRICA A

MEZZO DI

IMPIANTI DI GENERAZIONE DA FONTI RINNOVABILI ALLO SCOPO DELLA CESSIONE A

TERZI

UTILIZZATORI, NEL RISPETTO DELLA NORMATIVA VIGENTE IN MATERIA. A TAL

FINE, LA

. . .

Estremi di costituzione

iscrizione Registro Imprese Codice fiscale e numero d'iscrizione: 03350050732

del Registro delle Imprese di TARANTO

Data iscrizione: 19/09/2022

sezioni Iscritta nella sezione ORDINARIA il 19/09/2022

di 6

informazioni costitutive Denominazione: BROWN ENERGY S.R.L.

Data atto di costituzione: 12/09/2022

BROWN ENERGY S.R.L. Codice Fiscale 03350050732

Sistema di amministrazione e controllo

durata della società

scadenza esercizi

sistema di amministrazione e controllo contabile

organi amministrativi

Oggetto sociale

Data termine: 31/12/2050

Scadenza primo esercizio: 31/12/2022 Scadenza esercizi successivi: 31/12

Sistema di amministrazione adottato: amministratore unico

amministratore unico (in carica)

LA SOCIETA' HA PER OGGETTO: (A) LA PRODUZIONE DI ENERGIA ELETTRICA A MEZZO DI IMPIANTI DI GENERAZIONE DA FONTI RINNOVABILI ALLO SCOPO DELLA CESSIONE A TERZI UTILIZZATORI, NEL RISPETTO DELLA NORMATIVA VIGENTE IN MATERIA. A TAL FINE, LA SOCIETA' POTRA' DOTARSI DEGLI IMPIANTI DI GENERAZIONE E TRASPORTO DELL'ENERGIA NECESSARI AL RAGGIUNGIMENTO DELLO SCOPO SOCIALE, SIA MEDIANTE REALIZZO IN PRO-PRIO DEGLI STESSI, SIA ACQUISENDONE LA PROPRIETA', SIA ASSUMENDO IN GESTIONE IM-PIANTI DI SOCIETA' COLLEGATE O DI TERZI; (B) LO STUDIO, LA PROGETTAZIONE, LA REA-LIZZAZIONE DI IMPIANTI, NONCHE', AVVALENDOSI DI PROFESSIONISTI ISCRITTI AGLI AL-BI PREVISTI DALLA LEGGE, LA PROGETTAZIONE DI OPERE DI INGEGNERIA CIVILE E DI SI-STEMAZIONE FONDIARIA, NONCHE' LE ATTIVITA' E OPERE AUSILIARIE DELLE PRECEDENTI E L'ESECUZIONE DI STUDI DI FATTIBILITA', DI RICERCHE, CONSULENZE, PROGETTAZIONE, DIREZIONE DEI LAVORI, VALUTAZIONE DI CONGRUITA' TECNICO-ECONOMICA E STUDI DI IM-PATTO AMBIENTALE; (C) OGNI ATTIVITA' DIRETTAMENTE O INDIRETTAMENTE CONNESSA O FUNZIONALE E/O COMPLEMENTARE A QUELLE SOPRA INDICATE, IVI INCLUSE: - L'ESECUZIO-NE DI LAVORI, FORNITURE E PRESTAZIONE DI SERVIZI DI NATURA TECNICA, INGEGNERISTI-CA, INFORMATICA O AMMINISTRATIVA, QUALI AD ESEMPIO LA REDAZIONE DI STUDI E PRO-GETTI DI QUALSIVOGLIA NATURA O GENERE; - L'ASSISTENZA TECNICA E COMMERCIALE FI-NALIZZATA ALLA RICHIESTA E ALL'OTTENIMENTO DI FINANZIAMENTI PER LE ATTIVITA' SOPRA ELENCATE, ANCHE ATTRAVERSO OPERAZIONI DI PROJECT FINANCING PRESSO ISTITU-TI DI CREDITO; -LO STUDIO, LA REALIZZAZIONE, L'ACQUISIZIONE E LA CONCESSIONE DI TECNOLOGIE.LA SOCIETA', AI SOLI FINI DEL CONSEGUIMENTO DELL'OGGETTO SOCIALE, E, COMUNOUE, OUALE ATTIVITA' NON PREVALENTE E NON NEI CONFRONTI DEL PUBBLICO:-PUO' COMPIERE TUTTE LE OPERAZIONI MOBILIARI, IMMOBILIARI, COMMERCIALI, INDUSTRIALI E FINANZIARIE AVENTI PERTINENZA CON L'OGGETTO SOCIALE, CON PARTICOLARE RIFERIMEN-TO AD OPERAZIONI DI FINANZIAMENTO DI LOCAZIONE FINANZIARIA E FACTORING, NONCHE' LA GESTIONE SIA DIRETTA CHE INDIRETTA DELLE ATTIVITA' PREVISTE MEDIANTE L'AS-SUNZIONE DI APPALTI; - PUO' ASSUMERE, SIA IN ITALIA CHE ALL'ESTERO, INTERESSEN-ZE, QUOTE, PARTECIPAZIONI ANCHE AZIONARIE IN ALTRE SOCIETA', ANCHE DI TIPO CON-SORTILE, IN JOINT VENTURE, IN ASSOCIAZIONI TEMPORANEE DI IMPRESE E CONSORZI ED IMPRESE AVENTI SCOPI AFFINI E/O ANALOGHI A SCOPO DI STABILE INVESTIMENTO, E NON DEL COLLOCAMENTO, A CONDIZIONE CHE LA MISURA E L'OGGETTO DELLA PARTECIPAZIONE NON MODIFICHINO SOSTANZIALMENTE L'OGGETTO DETERMINATO DALLO STATUTO; -PUO' CON-TRARRE MUTUI ED IN GENERE RICORRERE A QUALSIASI FORMA DI FINANZIAMENTO CON I-STITUTI DI CREDITO, CON BANCHE, CON SOCIETA' O PRIVATI CONCEDENDO LE OPPORTUNE GARANZIE MOBILIARI ED IMMOBILIARI, REALI E PERSONALI; - PUO' PRESTARE FIDEIUS-SIONI, AVALLI, CAUZIONI E GARANZIE IN GENERE. PER IL RAGGIUNGIMENTO DELL'OGGET-TO SOCIALE LA SOCIETA' POTRA' PARTECIPARE AD APPALTI INDETTI DA QUALSIASI ENTE STA PUBBLICO CHE PRIVATO, RICHIEDERE AGEVOLAZIONI DI QUALSIASI GENERE E PREVI-STE DA LEGGI REGIONALI, NAZIONALI E COMUNITARIE. SONO COMUNOUE ESCLUSE TASSATI-VAMENTE LE ATTIVITA' RISERVATE AGLI INTERMEDIARI FINANZIARI DI CUI AI DECRETI LEGISLATIVI 1 SETTEMBRE 1993 N.385 E 24 FEBBRAIO 1998 N.58. LE ATTIVITA' CHE, FRA LE PREDETTE, SIANO SOGGETTE AD AUTORIZZAZIONE AMMINISTRATIVA O AD ISCRIZIO-NE IN ALBI, RUOLI, PUBBLICI REGISTRI, SARANNO EFFETTIVAMENTE SVOLTE PREVIO OTTE-NIMENTO DI DETTE AUTORIZZAZIONI ED ISCRIZIONI DA PARTE DELLA SOCIETA' MEDESIMA, OVVERO DA PARTE DELLE PERSONE FISICHE CHE OPERANO IN NOME E PER CONTO DI ESSA.

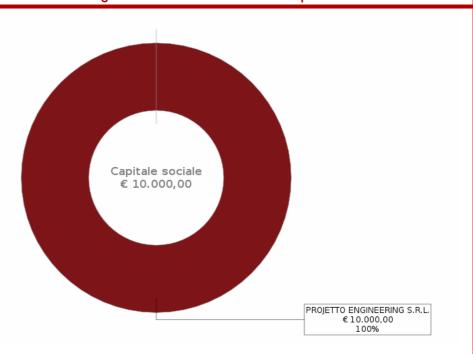
Poteri

Registro Imprese Archivio ufficiale della CCIAA Documento n . L ZG0RZN1VZ2M18DXF4G estratto dal Registro Imprese in data 20/09/2022

BROWN ENERGY S.R.L. Codice Fiscale 03350050732

poteri associati alla carica di Amministratore Unico

LA GESTIONE DELL'IMPRESA SPETTA AGLI AMMINISTRATORI, I QUALI COMPIONO LE OPERA-ZIONI NECESSARIE PER L'ATTUAZIONE DELL'OGGETTO SOCIALE, ESCLUSI GLI ATTI CHE LA LEGGE E IL PRESENTE STATUTO RISERVANO AI SOCI. IL CONSIGLIO DI AMINISTRAZIONE PUO'DELEGARE PROPRIE ATTRIBUZIONI A UN COMITATO ESECUTIVO E/O A UNO O PIU' DEI SUOI COMPONENTI, DETERMINANDO IL CONTENUTO, I LIMITI E LE EVENTUALI MODALITA' DI ESERCIZIO DELLA DELEGA.NON POSSONO COMUNQUE ESSERE DELEGATE LE ATTRIBUZIONI RELATIVE ALLA REDAZIONE:- DEL PROGETTO DI BILANCIO;- DEI PROGETTI DI FUSIONE E DI SCISSIONE; - DELLA SITUAZIONE PATRIMONIALE DELLA SOCIETA' NEI CASI PREVISTI DALLA LEGGE.NON POSSONO INOLTRE ESSERE DELEGATE LE DECISIONI DI RIDUZIONE DEL CAPITALE SOCIALE, NEI CASI PREVISTI DALL'ART.5.4.IL CONSIGLIO DI AMMINISTRAZIO-NE PUO' SEMPRE IMPARTIRE DIRETTIVE AGLI ORGANI DELEGATI E AVOCARE A SE' OPERA-ZIONI RIENTRANTI NELLA DELEGA.GLI ORGANI DELEGATI CURANO CHE L'ASSETTO ORGANIZ-ZATIVO, AMMINISTRATIVO E CONTABILE SIA ADEGUATO ALLA NATURA E ALLE DIMENSIONI DELL'IMPRESA RIENTRA NEI POTERI DEGLI ORGANI DELEGATI CONFERIRE, NELL'AMBITO DELLE ATTRIBUZIONI RICEVUTE, DELEGHE PER SINGOLI ATTI O CATEGORIE DI ATTI A DI-PENDENTI DELLA SOCIETA' E A TERZI, CON FACOLTA' DI SUBDELEGA. GLI AMMINISTRATO-RI SONO TENUTI AD AGIRE IN MODO INFORMATO; CIASCUN AMMINISTRATORE PUO' CHIEDERE AGLI ORGANI DELEGATI CHE SIANO FORNITE INFORMAZIONI RELATIVE ALLA GESTIONE DEL-LA SOCIETA'. LA RAPPRESENTANZA LEGALE DELLA SOCIETA' E LA FIRMA SOCIALE SPETTA-NO: A) ALL'AMMINISTRATORE UNICO; OVVEROB) IN CASO DI NOMINA DI UN CONSIGLIO DI AMMINISTRAZIONE, SIA AL PRESIDENTE SIA A CHI RICOPRE L'INCARICO DI AMMINISTRATO-RE DELEGATO E, IN CASO DI ASSENZA O IMPEDIMENTO DEL PRESIDENTE, AL VICE PRESI-DENTE SE NOMINATO. LA FIRMA DEL VICE PRESIDENTE FA FEDE DI FRONTE AI TERZI DEL-L'ASSENZA O DELL'IMPEDIMENTO DEL PRESIDENTE. I PREDETTI LEGALI RAPPRESENTANTI POSSONO CONFERIRE POTERI DI RAPPRESENTANZA LEGALE DELLA SOCIETA'. PURE IN SEDE PROCESSUALE, ANCHE CON FACOLTA' DI SUBDELEGA.


3 Capitale e strumenti finanziari

Capitale sociale in Euro Deliberato: 10.000,00

Sottoscritto: 10.000,00 Versato: 10.000,00 Conferimenti in denaro

4 Soci e titolari di diritti su azioni e quote

Sintesi della composizione societaria e degli altri titolari di diritti su azioni o quote sociali al 16/09/2022

Il grafico e la sottostante tabella sono una sintesi degli assetti proprietari dell'impresa relativa ai soli diritti di proprietà, che non sostituisce l'effettiva pubblicità legale fornita dall'elenco soci a seguire, dove sono riportati anche eventuali vincoli sulle quote.

BROWN ENERGY S.R.L. Codice Fiscale 03350050732

Socio	Valore	%	Tipo diritto
PROJETTO ENGINEERING S.R.L. 02658050733	10.000,00	100 %	proprieta'

Elenco dei soci e degli altri titolari di diritti su azioni o quote sociali al 16/09/2022

PROJETTO ENGINEERING S.R.L.

pratica con atto del 12/09/2022 Data deposito: 16/09/2022

Data protocollo: 16/09/2022

Numero protocollo: TA-2022-46664

capitale sociale Capitale sociale dichiarato sul modello con cui è stato depositato l'elenco dei soci:

10.000,00 Euro

Quota di nominali: 10.000,00 Euro Proprieta'

Di cui versati: 10.000.00 Codice fiscale: 02658050733 Tipo di diritto: proprieta'

Domicilio del titolare o rappresentante comune MANDURIA (TA) VIA DEI MILLE 5 CAP 74024

Indirizzo di posta certificata: projettoengineeringsrl@cgn.legalmail.it

5 Amministratori

Amministratore Unico MARCHITELLI VANNI Rappresentante dell'impresa

Organi amministrativi in carica

amministratore unico Numero componenti: 1

Elenco amministratori

Amministratore Unico

MARCHITELLI VANNI Rappresentante dell'impresa

> Nato a CASTELLANETA (TA) il 16/09/1993 Codice fiscale: MRCVNN93P16C136B

CASTELLANETA (TA) domicilio

CONTRADA FONTANELLE S.N. CAP 74011

amministratore unico carica

> Data atto di nomina 12/09/2022 Data iscrizione: 19/09/2022 Durata in carica: 3 esercizi

Data presentazione carica: 16/09/2022

6 Titolari di altre cariche o qualifiche

PROJETTO ENGINEERING Socio Unico

S.R.L.

Socio Unico

Registro Imprese Archivio ufficiale della CCIAA Documento n . L ZG0RZN1VZ2M18DXF4G estratto dal Registro Imprese in data 20/09/2022

BROWN ENERGY S.R.L.

Codice Fiscale 03350050732

PROJETTO ENGINEERING S.R.L.

Codice fiscale 02658050733

sede

MANDURIA (TA)

VIA DEI MILLE 5 CAP 74024

Indirizzo di posta elettronica certificata: projettoengineeringsrl@cgn.legalmail.it

carica

socio unico dal 12/09/2022

Data iscrizione: 19/09/2022

7 Attività, albi ruoli e licenze

Stato attività Impresa INATTIVA

Attività

stato attività Impresa INATTIVA

8 Aggiornamento impresa

Data ultimo protocollo

19/09/2022