AREA DI RILEVANTE INTERESSE NAZIONALE **DI BAGNOLI - COROGLIO (NA)**

D.P.C.M. 15.10.2015

Interventi per la bonifica ambientale e rigenerazione urbana dell'area di Bagnoli - Coroglio

Infrastrutture, reti idriche, trasportistiche ed energetiche dell'area del Sito di Interesse Nazionale di Bagnoli - Coroglio

Presidenza del Consiglio dei Ministri IL COMMISSARIO STRAORDINARIO DEL GOVERNO PER LA BONIFICA AMBIENTALE E RIGENERAZIONE URBANA DELL'AREA DI RILEVANTE INTERESSE NAZIONALE BAGNOLI - COROGLIO

STAZIONE APPALTANTE

INVITALIA S.p.a.: Soggetto Attuatore, in ottemperanza all'art. 33 del D.L. n. 133/2014, convertito con legge n. 164/2014, e del D.P.C.M. 15 ottobre 2015, ai fini de predisposizione ed esecuzione del Programma di Risanamento Ambientale e la Rigenerazione Urbana per il Sito di Rilevante Interesse Nazionale di Bagnoli-Coroglio RESPONSABILE UNICO DEL PROCEDIMENTO: Ing. Daniele BENOTTI

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

PROGETTAZIONE GEOTECNICA, STRUTTURALE e STRADALE Ing. Letterio SONNESSA

PROGETTAZIONE ENERGETICA e TELECOMUNICAZIONI Ing. Claudio DONNALOIA

RELAZIONE GEOLOGICA Dott. Geol. Vincenzo GUIDO

PROGETTAZIONE DELLA SICUREZZA Ing. Michele PIZZA

COMPUTI E STIME ro DI MARTINO

GRUPPO DI LAVORO INTERNO

Collaboratori:
Geom. Gennaro DI MARTINO
Geom. Alessandro FABBRI
Ing. Davide GRESIA
Ing. Nunzio LAURO
Ing. Alessio MAFFEI Ing. Angelo TERRACCIANO Ing. Massimiliano ZAGNI

Supporto operativo: Ing. Irene CIANCI Arch. Alessio FINIZIO Ing. Carmen FIORE Ing. Federica Jasmeer en GIURA Ing. Leonardo GUALCO

SUPPORTO TECNICO-SCIENTIFICO Prof. Ing. Alessandro PAOLETTI Ing. Domenico CERAUDO Ing. Cristina PASSONI

INVITALIA

Agenzia nazionale per l'attrazione degli investimenti e lo sviluppo d'impresa SpA

RAGGRUPPAMENTO TEMPORANEO DI PROFESSIONISTI

VIA INGEGNERIA Srl Via Flaminia, 999 00189 Roma (RM)

QUANTICA INGEGNERIA Srl Piazza Bovio, 22 80133 Napoli (NA)

Piazza Bovio, 22 30133 Napoli (NA) AMBIENTE SPA

Via Frassina, 21 54033 Carrara (MS) HYSOMAR SOCIETA'

COOPERATIVA Corso Umberto I, 154 80138 Napoli (NA)

ING. GIUSEPPE RUBINO

PROGETTAZIONE OPERE STRUTTURALI Ing. Giovanni PIAZZA

PROGETTAZIONE OPERE STRUTTURALI SPECIALI Ing. Francesco NICCHIARELLI

PROGETTAZIONE OPERE IMPIANTISTICHE ELETTRICHE Ing. Paolo VIPARELLI

PROGETTAZIONE OPERE DI VIABILITA' ORDINARIA Ing. Giuseppe RUBINO

PROGETTAZIONE ARENA SANT'ANTONIO-HUB DI COROGLIO Ing. Giuseppe VACCA

PROGETTAZIONE OPERE IDRAULICHE A RETE Ing. Giulio VIPARELLI

CODICE FILE

2021INV-D-S-RC.05.08.03.01.doi

COORDINAMENTO SICUREZZA IN FASE DI PROGETTAZIONE ai sensi D.Lgs. 81/08 Ing. Massimo FONTANA

RELAZIONE GEOLOGICA Geol. Maurizio LANZINI

RELAZIONE ARCHEOLOGICA Arch. Luca DI BIANCO

RELAZIONE ACUSTICA Ing. Tiziano BARUZZO

GIOVANE PROFESSIONISTA Ing. Veronica NASUTI Ing. Andrea ESPOSITO Ing. Raffaele VASSALLO Ing. Serena ONERO

Geom. Salvatore DONATIELLO Geom. Paolo COSIMELLI P.I. Ugo NAPPI Ing. Daniele CERULLO

COMPUTI E STIME Per. Ind. Giuseppe CORATELLA Geom. Luigi MARTINELLI

Direzione Area Tecnica Opere civili:

Funzione Servizi di Ingegneria

Arch. Giulia LEONI

PROGETTO DEFINITIVO

DATA NOME FIRMA **INFRASTRUTTURE** REDATTO GIU 2023 **RETE FOGNARIA** VERIFICATO GIU 2023 GV Impianto di sollevamento - Relazione preliminare di calcolo APPROVATO GIU 2023 CODICE ELABORATO DATA REVISIONE DATA AGGIORNAMENTI SCALA RC.05.08.03.01 GIU 2023 Emissione

RELAZIONE PRELIMINARE DI CALCOLO

Sommario

1	1. PREMESSA	3
2	2. INQUADRAMENTO	4
	2.1. GEOMETRIA DELLE VASCHE	4
3	3. DOCUMENTAZIONE DI RIFERIMENTO	7
	3.1. NORMATIVA DI RIFERIMENTO	7
4	4. ANALISI STRUTTURALE	9
	4.1. DESCRIZIONE DEL CODICE DI CALCOLO	9
	4.2. MODELLAZIONE DEI MATERIALI	10
	4.3. TIPO DI ANALISI	10
	4.4. CONVENZIONI ADOTTATE	11
5	5. VASCA TIPO	12
	5.1. SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	12
6	6. ANALISI DEI CARICHI	13
	6.1. CONDIZIONI DI CARICO	15
	6.1.1. Condizione 1	15
	6.1.2. Condizione 2	16
	6.2. COMBINAZIONI DI CARICO	17
	6.3. SOLLECITAZIONI	18
	6.3.1. Combinazione 1	18
	6.3.2. Combinazione 2	19
7	7. VERIFICHE	20

Pagina 2 / 20

1. PREMESSA

Per la realizzazione delle infrastrutture nell'area del Sito di Interesse Nazionale di Bagnoli Coroglio (di seguito SIN Bagnoli Coroglio) è stato predisposto da INVITALIA il Progetto di Fattibilità Tecnico ed Economica (di seguito PFTE) al fine di consentire di realizzare tutte le opere necessarie ad una piena rigenerazione urbana.

Il progetto definitivo prevede la realizzazione di due manufatti, ciascuno per alloggiare le pompe dell'impianto di sollevamento acque bianche "S1" e le pompe dell'impianto di sollevamento acque nere "S2".

Le vasche vengono realizzate in opera.

Nel presente elaborato vengono riportate le verifiche da ritenersi valide per tutte le tipologie, in quanto ottenute estrapolando le sollecitazioni massime.

2. INQUADRAMENTO

La planimetria di seguito riportata individua lo sviluppo delle vasche nell'area di intervento.

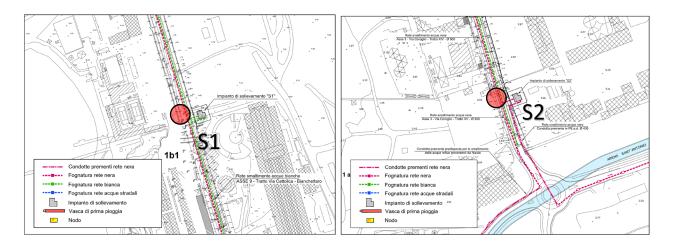


Figura 2-1 - Inquadramento delle opere

2.1. GEOMETRIA DELLE VASCHE

La dimensione delle sezioni delle vasche è variabile tra l'impianto di sollevamento S1 ed S2. Ai fini del dimensionamento delle sezioni si prende in considerazione il caso più gravoso coincidente con l'impianto S2.

La geometria delle vasche viene di seguito riportata.

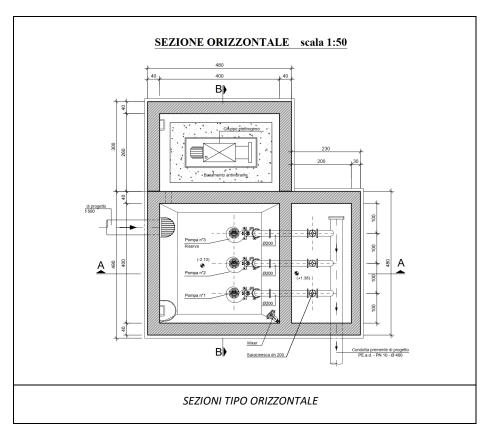


Figura 2-2 – Sezione Tipo Orizzontale

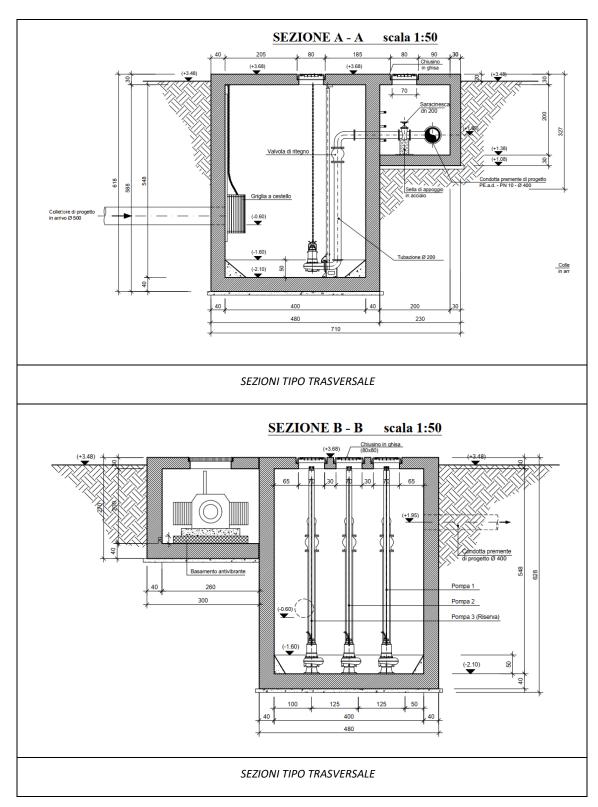


Figura 2-3 – Sezione Tipo Trasversale

3. DOCUMENTAZIONE DI RIFERIMENTO

3.1. NORMATIVA DI RIFERIMENTO

La normativa italiana cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Circolare del 21 Gennaio 2019, n. 7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018"
- D.M. del 17 Gennaio 2018 "Aggiornamento delle «Norme tecniche per le costruzioni»"
- Circolare del 2 Febbraio 2009, n. 617 "Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008"
- D.M. del 14 Gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni"
- Ordinanza n. 3274 del 20 Marzo 2003. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica"
- Ordinanza n. 3316. "Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n.
 3274 del 20 Marzo 2003"D.M. del 16 Gennaio 1996. "Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi»".
- D.M del 16 Gennaio 1996. "Norme tecniche per le costruzioni in zone sismiche"
- D.M. del 9 Gennaio 1996. "Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- D.M. del 14 Febbraio 1992. "Norme Tecniche per l'esecuzione delle opere in C.A. normale e precompresso e per le strutture metalliche".
- D.M. del 3 Ottobre 1978. "Criteri generali per la verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi".
- D.M. del 3 Marzo 1975. "Disposizioni concernenti l'applicazione delle norme tecniche per le costruzioni in zone sismiche".
- D.M. del 3 Marzo 1975. "Approvazione delle norme tecniche per le costruzioni in zone sismiche".

- Legge n. 64 del 2 Febbraio 1974. "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- Legge n. 1086 del 5 Novembre 1971. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Istruzioni per la valutazione delle: Azioni sulle Costruzioni. (C.N.R. 10012/85)

4. ANALISI STRUTTURALE

L'analisi dello stato tensionale e deformativo è stata condotta con l'ausilio del programma di calcolo Winstrand (STRuctural ANalysis & Design) di Enexsys.

4.1. DESCRIZIONE DEL CODICE DI CALCOLO

Il codice di calcolo usato è WinStrand 2022 prodotto da En.Ex.Sys s.r.l., Casalecchio di Reno (BO).

I tipi di analisi implementati nel sistema WinStrand sono diversi: uno statico e quattro di natura dinamica. In particolare, si ha:

- 1. Analisi statica
- 2. Analisi dinamica via statica equivalente
- 3. Analisi dinamica modale con condensazione degli spostamenti
- 4. Analisi dinamica modale senza condensazione degli spostamenti
- 5. Analisi dinamica per strutture prefabbricate

Nel calcolo è stato utilizzato solo il metodo di analisi statica.

Il Sistema WinStrand è costituito da un insieme di programmi tra loro correlati ed integrati.

L'insieme di tali programmi è organizzato in tre moduli, ognuno dei quali in grado di assolvere ad uno sp ecifico segmento dell'iter progettuale, più una serie di operazioni opzionali a corredo:

- 1. Analisi Strutturale
- 2. Progetto-verifica degli Elementi in C.A.
- 3. Disegno esecutivo Armatura degli Elementi in C.A.

MODULO 1: Analisi Strutturale, attraverso una fase di Input e output interattiva grafica, esegue l'analisi strutturale ad elementi finiti, sia statica che dinamica, di strutture con geometria piana o spaziale, in C.A. e/o Acciaio, determinandone lo stato di deformazione, di sollecitazione e tensionale.

MODULO 2: Verifica Elementi in C.A., determina le armature e il tasso di lavoro dei materiali nei vari elementi strutturali in c.a. di cui si compone il modello strutturale attenendosi ai criteri di progetto definiti dal progettista prima dell'esecuzione del modulo. Tale modulo elabora i files di dati prodotti con il modulo 1 e produce quelli di output da allegare alla relazione tecnica.

MODULO 3: Disegno Esecutivo Elementi in C.A., consente di realizzare le tavole dei disegni esecutivi di cantiere relativamente agli elementi in c.a. tenendo conto delle aree di ferro precedentemente computate con il modulo 2. Le tipologie di armature utilizzate rispecchiano criteri di progetto definiti dal progettista ma sono ulteriormente personalizzabili grazie all'alto livello di interattività grafica del programma.

Nel caso in oggetto è stato utilizzato il modulo 1 per la determinazione degli stati tensionali e deformativi della struttura; i risultati ottenuti sono stati utilizzati per le verifiche locali e per il dimensionamento delle armature delle sezioni maggiormente sollecitate.

4.2. MODELLAZIONE DEI MATERIALI

I materiali sono considerati con comportamento elastico lineare in particolare:

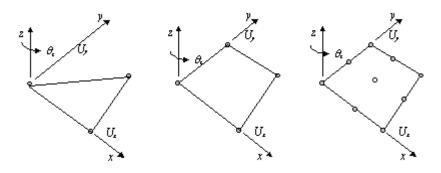
Cls armato Ec= 300 000 daN/cm2 per Rck ≥ 300 daN/cm2

Acciaio Ea= 2 100 000 daN/cm2

4.3. TIPO DI ANALISI

Vengono effettuate secondo il metodo semiprobabilistico agli stati limite.

Per tenere conto delle incertezze sui dati disponibili il metodo semiprobabilistico comporta l'assunzione di valori caratteristici sia per l'entità delle azioni, sia per le resistenze dei materiali; tali valori caratteristici vengono poi trasformati in valori di calcolo mediante l'applicazione di opportuni coefficienti.



4.4. CONVENZIONI ADOTTATE

Ogni **elemento tipo lastra** è inteso come elemento bidimensionale sottoposto a carichi agenti nel proprio piano, come ad esempio le travi parete, mentre con la dizione *Piastra* si intenderanno gli elementi bidimensionali sottoposti a carichi agenti normalmente al proprio piano, come ad esempio le platee di fondazione; gli elementi a 3, 4 ed 8 nodi a disposizione sviluppano sia un comportamento a piastra che a lastra.

Gli elementi a tre e a quattro nodi sono elementi agli spostamenti che considerano per ogni nodo come componenti di spostamento nodale le due traslazioni secondo gli assi x, y nonché la rotazione con asse normale al piano dell'elemento. L'elemento isoparametrico a 8 nodi è ottenuto per condensazione statica di quattro elementi con quattro nodi.

5. VASCA TIPO

Ai fini del dimensionamento si prenderà in considerazione la vasca competente all'impianto S1 (vasca S1), la scelta è giustificata dalle maggiori dimensioni delle sezioni e dalla maggiore spinta idrostatica a cui è sottoposta l'opera, così da poter definire le condizioni più gravose.

5.1. SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La struttura è costituita da un insieme di elementi tipo lastra incastrati ai quattro spigoli della base per mezzo di elementi tipo trave in modo da limitare gli effetti di bordo dovuti al vincolamento. Le lastre sono soggette a carichi disposti sia ortogonalmente che parallelamente al proprio piano e disposti in modo da realizzare un unico modello spaziale.

6. ANALISI DEI CARICHI

Peso proprio (P1): Il programma provvede al calcolo automatico delle masse considerando un peso per unità di volume pari a 2500 kg/m³ per il calcestruzzo armato e di 7850 kg/m³ per la carpenteria metallica in acciaio.

Spinta del terreno (P2):

Attiva

Assumendo per il terreno γ =1800 daN/m³; ϕ =30° ed in ipotesi di spinta con coefficiente di spinta ricavato in base alla relazione di Muller-Breslau:

$$K_{a} = \frac{\cos^{2}(\phi - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left(1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right)^{2}} = 0.333$$

i = Angolo formato dalla superficie esterna del terreno con l'orizzontale (=0°);

 δ = Angolo di attrito tra il muro e il terreno (0°);

 φ = Angolo di attrito statico del terreno (0°).

 β = Angolo formato dall'intradosso del muro con la verticale (0°).

si ricava un carico *lineare* con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: $\sigma = \gamma *h^*k_a$;

Spinta idrostatica (P3): Spinta dell'acqua.

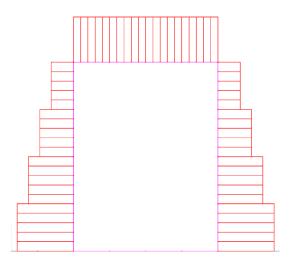
 $\sigma = \gamma * z_w$

Sovraccarico accidentale (P4): Si considera un carico verticale uniformemente distribuito $q = 20 \text{ kN/m}^2$ disposto

sul terreno ai lati dell'opera su una fascia di un metro che genera una spinta orizzontale valutabile secondo l'ipotesi di spinta attiva:

 $P_3 = q \times k_a = 2000 \times 0.333 \approx 667 \text{ kg/m}^2$.

PARAMETRI TERRENO		
Ka	/	0,333
γτ	kg/m3	1800



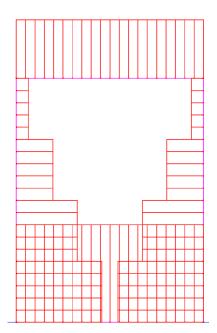
6.1. CONDIZIONI DI CARICO

Ai fini del dimensionamento preliminare vengono considerati due possibili scenari in modo da individuare la condizione più gravosa.

6.1.1. Condizione 1

Per questa condizione di carico si considera l'azione del terreno di rinterro, della spinta idrostatica e del sovraccarico accidentale.

AZIONI SUL MURO Hmax=6.18 m		
Sa,T _{laterale}	[kg/m2]	3708,00
Sa,q	[kg/m2]	666,67
Sa,w	[kg/m2]	4500,00



AZIONI SUL MURO Hmin =2.6m		
Sa,T _{laterale}	[kg/m2]	1560,00
Sa,q	[kg/m2]	666,67
Sa, w	[kg/m2]	1120,00

6.1.2. Condizione 2

Per questa condizione di carico si considera l'ipotesi di condotta completamente riempita d'acqua sottoposta alla spinta dell'acqua al suo interno.

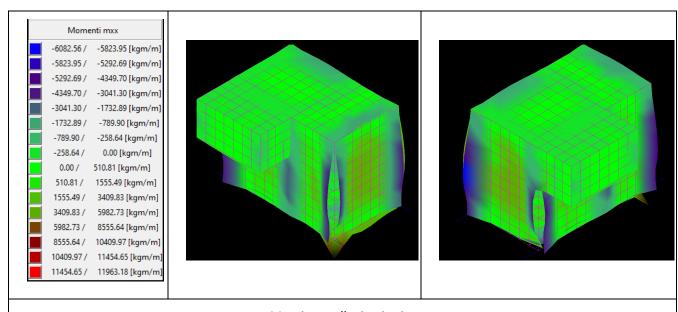
AZIONI S	UL MURO Hm	ax=6.18 m
Sa,w	[kg/m2]	6180,00

AZIONI S	SUL MURO Hm	in =2.6m
Sa,w	[kg/m2]	2600,00

6.2. COMBINAZIONI DI CARICO

Si distinguono due combinazioni di carico in cui vengono applicati i coefficienti come riportato:

COMBINAZIONE	Peso Proprio	Spinta	Accidentale	Spinta	Spinta
		Terreno		idrostatica ext.	idrostatica
					int.
Condizione 1	1.3	1.3	1.5	1.3	0
Condizione 2	1	0	0	1.3	1



6.3. SOLLECITAZIONI

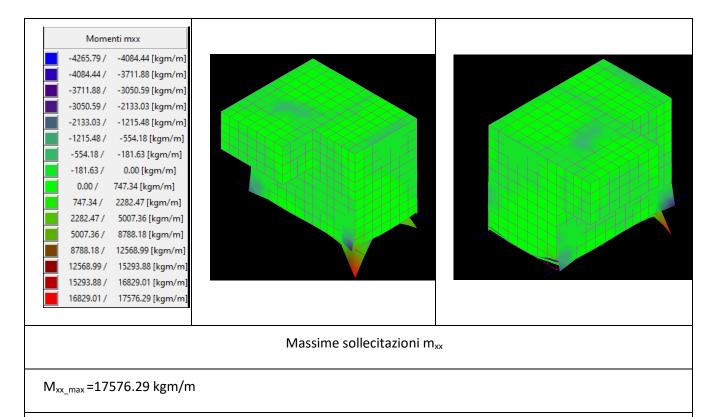
Per ciascuna combinazione vengono analizzate le sollecitazioni al fine di individuarne le massime.

6.3.1. Combinazione 1

Massime sollecitazioni m_{xx}

 $M_{xx max} = 11963.18 \text{ kgm/m}$

 $M_{xx min} = -6082.56 \text{ kgm/m}$



6.3.2. Combinazione 2

 $M_{xx_{min}} = -4265.79 \text{ kgm/m}$

7. VERIFICHE

La condizione dominante ai fini del dimensionamento e per la quale vengono condotte le verifiche è la **condizione 2**, in cui si ipotizza l'accidentale riempimento del cunicolo di acqua fino all'altezza massima.

Di seguito si riportano le verifiche per gli elementi analizzati.

\\Nas-arkinglab\ArkingLab\04_PROGETTI\2022 \2022_10_BAGNOLI_HYSOMAR\04_ELABORAZIONE\STRUTTURALE_PROGETTO\2023_05_04 \MODELLI\Vasca grande.dt - 08 May 2023 - WinStrand (Service Pack 065)

▲En.Ex.Sys. WinStrand

▲Structural Analisys & Design

Ditta produttrice:

En.Ex.Sys. s.r.l. - Via Tizzano 46/2 - Casalecchio di Reno (Bologna)

Sigla:

WinStrand

Piattaforma software:

Microsoft Windows XP Home, Microsoft Windows XP Home Professional

Documentazione in uso:

Manuale teorico - Manuale d'uso

Campo di applicazione:

Analisi statica e dinamica di strutture in campo elastico lineare.

▲Elementi finiti implementati

- Truss.
- Beam (Modellazione di Travi e Pilastri).
- Travi su suolo elastico alla Winckler.
- Plinti su suolo elastico alla Winckler.
- Elementi Shear Wall per la modellazione di pareti di taglio.
- Elementi shell (lastra/piastra) equivalenti.
- Elementi Isoparametrici a 8 Nodi Shell (lastra/piastra).

▲Schemi di Carico

- Carichi nodali concentrati.
- Carichi applicati direttamente agli elementi.
- · Carichi Superficiali.

▲Tipo di Risoluzione

- Analisi statica e/o dinamica in campo lineare con il metodo dell'equilibrio.
- Fattorizazione LDL^T.
- Analisi Statica:
 - o modellazione generale 6 gradi di libertà per nodo.
 - ipotesi di solai infinitamente rigidi nel proprio piano (3 gradi di libertà per nodo + 3 per impalcato).
- Analisi dinamica. (Nel caso di analisi modale gli autovettori ed autovalori possono essere calcolati mediante subspace iteration oppure tramite il metodo dei vettori di Ritz):
 - · Via statica equivalente.
 - Modale con il metodo dello spettro di risposta.

▲Normativa di riferimento

La normativa italiana cui viene fatto riferimento nelle fasi di calcolo e progettazione è la sequente:

- Circolare del 21 Gennaio 2019, n. 7 "Istruzioni per l\(\phi\) applicazione dell\(\phi\) Aggiornamento delle\(\phi\) Norme tecniche per le costruzioni\(\phi\) di cui al decreto ministeriale 17 gennaio 2018"
- D.M. del 17 Gennaio 2018 "Aggiornamento delle Norme tecniche per le costruzioni "
- Circolare del 2 Febbraio 2009, n. 617 "Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008"
- D.M. del 14 Gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni"
- Ordinanza n. 3274 del 20 Marzo 2003. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica"

- Ordinanza n. 3316. "Modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 Marzo 2003"
- D.M. del 16 Gennaio 1996. "Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi»".
- D.M del 16 Gennaio 1996. "Norme tecniche per le costruzioni in zone sismiche"
- D.M. del 9 Gennaio 1996. "Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- D.M. del 14 Febbraio 1992. "Norme Tecniche per l'esecuzione delle opere in C.A. normale e precompresso e per le strutture metalliche".
- D.M. del 3 Ottobre 1978. "Criteri generali per la verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi".
- D.M. del 3 Marzo 1975. "Disposizioni concernenti l'applicazione delle norme tecniche per le costruzioni in zone sismiche".
- D.M. del 3 Marzo 1975. "Approvazione delle norme tecniche per le costruzioni in zone sismiche".
- Legge n. 64 del 2 Febbraio 1974. "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- Legge n. 1086 del 5 Novembre 1971. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Istruzioni per la valutazione delle: Azioni sulle Costruzioni. (C.N.R. 10012/85)

▲Verifiche lastre/piastre

▲Modalità di verifica

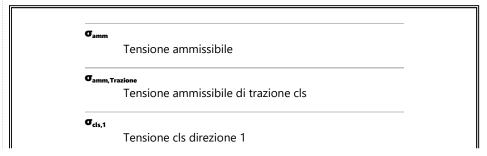
Gli elementi lastra/piastra possono essere distinti in due categorie in funzione dello stato di sollecitazione:

- elementi soggetti ad uno stato di sollecitazione semplice (flessione o tensionale a membrana);
- elementi soggetti ad uno stato di sollecitazione misto (flessionale e tensionale a membrana).

Le verifiche per stato di sollecitazione semplice sono svolte proiettando le armature lungo le direzioni principali e effettuando la verifica a flessione retta/membrana lungo tali direzioni.

Per gli elementi soggetti ad uno stato di sollecitazione misto, le direzioni principali variano, lungo lo sviluppo z dell'elemento, in modo continuo. Il codice di verifica procede a:

- suddivisione dell'elemento in strati di 1 cm di spessore;
- valutazione, per ogni strato, del corrispondente stato di deformazione e tensione membranale;
- ricostruzione, per sovrapposizione dei vari strati membranali, del comportamento globale dell'elemento soggetto allo stato misto di presso-flessione.


L'Utente pu� definire delle sezioni trasversali, per le quali le sollecitazioni sono valutate mediando integrazione sulla lunghezza della sezione

Nella determinazione della matrice di rigidezza degli strati di cls, si assume:

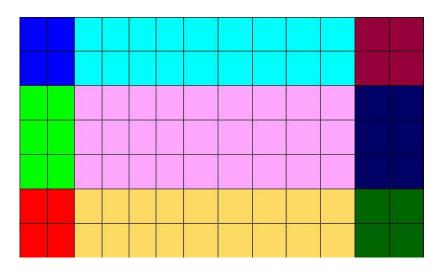
- Metodo T.A.: il calcestruzzo in compressione assunto indefinitamente elastico lineare mentre, in trazione, si pu assumere (opzionalmente) che sia in grado di assumere una trazione compresa fra 0 e f_{ct}, essendo f_{ct} la resstenza a trazione del calcestruzzo definita dall'EC2;
- Metodo S.L.U.: il metodo impiegato quello noto come MCFT acronimo di "Modified Compression Field Method", sviluppato presso l'Universit di Toronto da Collins e Del Vecchio a partire dagli anni '80. Il metodo, nella forma implementata, assume per la curva monoassiale tensione-deformazioni del cls quanto previsto dall'EC2;

La verifica a punzonamento pu� essere condotta considerando o non considerando autoequilibrate le tensioni nel terreno sotto il cono di punzonamento. L'angolo di diffusione � fissato dall'utente.

I copriferri indicati sono da intendersi riferiti al centro delle barre resistenti. Simbologia utilizzata T.A.:

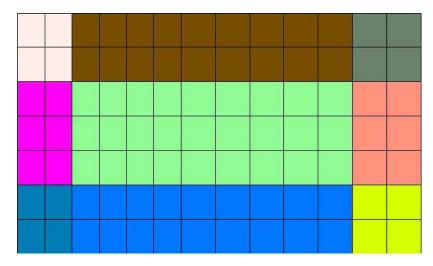
σ _{cls,2}	Tensione cls direzione 2
σ _{acciaio} ,	Tensione acciaio direzione 1
σ _{acciaio} ,	Tensione acciaio direzione 2
$cf_{x,Eq}$	Copriferro in direzione x
Af _x	Armatura in direzione x
cf _{y,Eq}	Copriferro in direzione y
Af _y	Armatura in direzione y
N _x , N	y, N _{xy} , M _{xx} , M _{yy} , M _{xy} Componenti di sollecitazione esterna
N ₁₁ , N	22, M ₁₁ , M ₂₂ , M ₁₂ Componenti di sollecitazione principali
α	Angolo direzioni principali
d	Distanza a cui � calcolato il perimetro critico
τ _{b,0}	Tensione ammissibile a taglio elementi privi di armatura a taglio
τ _{b,1}	Tensione ammissibile a taglio elementi con armatura a taglio
N, M	k, My Sollecitazione esterna verifica a punzonamento

Tensione tangenziale massima Simbologia utilizzata S.L.: \mathbf{f}_{yd} Tensione di snervamento di progetto barre armatura Deformazione uniforme ultima \mathbf{E}_{yd} Deformazione al limite di snervamento \mathbf{f}_{ck} Resistenza cilindrica caratteristica \boldsymbol{f}_{cd} Tensione di calcolo a compressione di base **E**c2 Deformazione limite elastico $\pmb{\epsilon}_{\textbf{y}}$ Deformazione limite ultimo Tensione di calcolo a trazione di progetto \mathbf{E}_{ctd} Deformazione al limite di trazione \mathbf{E}_{cm} Modulo elastico $\textbf{cf}_{\textbf{x},\textbf{Eq}}$ Copriferro in direzione x Af_x


Armatura in direzione x

$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	Copriferro in direzione y
Af _y	Armatura in direzione y
N _x , N _y	, N _{xy} , M _{xx} , M _{yy} , M _{xy} Componenti di sollecitazione esterna
N ₁₁ , N	22, M ₁₁ , M ₂₂ , M ₁₂ Componenti di sollecitazione principali
α	Angolo direzioni principali
Cr	Coefficiente rottura S _D /S _R
ε _x	Deformazione acciaio direzione x
ε _y	Deformazione acciaio direzione y
E _{min}	Deformazione minima cls
ε _{max}	Deformazione massima cls
O _{max}	Angolo direzioni principali di deformazione
σ _{amm}	Tensione ammissibile S.L.E. di riferimento
σ _x	Tensione nelle barre nello S.L.E. di riferimento in direzione x
σ,	Tensione nelle barre nello S.L.E. di riferimento in direzione y

σ _{c,Max}	Tensione massima nel cls nello S.L.E. di riferimento
d	Distanza a cui � calcolato il perimetro critico
C _{Rd,c}	Coefficiente taglio resistente elementi privi di armatura a taglio
V _{Ed} , N	Ix _{Ed} , My _{Ed}
	Sollecitazione esterna verifica a punzonamento
B _x , B _y	Dimensioni perimetro critico
β	Angolo diffusione tensioni
V _{Ed}	Tensione tangenziale sull'area critica
ρ	Rapporto meccanico di armatura
V _{Rd,c}	


▲Lastra_114-10-3-107

▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm]
	top ø 16/20' Y c=3.50 [cm] top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20 X + Ø 14/20 Y C=3.30 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ st})$ (Hognestad)

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c1/\varepsilon c2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 105 114

▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	$\epsilon_{yd}\%$ o	ε _{ud} ‰
3913.0	1.86	67.00

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

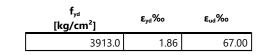
▲Sezione

• sezione 2 H=40.00 [cm]

	dosso		Intradosso				
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
17.75	3.50	17.75	3.50	17.75	3.50	17.75	3.50

▲Azioni di verifica combinazione 2 (0.25 0.31 [m])

M _{xx}	17576.29	76.29 [kgm/m]		21558.54	[kgm/m]
M _y	4661.56	1661.56 [kgm/m]		679.31	[kgm/m]
M _{xy}	8202.93	[kgm/m]	α	25.90	[°]


▲Verifiche

C C /D	Dii	Acci	aio	Ca	lcestruz	zo
Cr=5/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.98	Estradosso	9.712	1.807	14.258	-1.365	27.57
	Intradosso	-0.537	0.322	1.911	-3.500	-55.19

▲Verifiche SLU *Flessione* elemento nodi 103 112

▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

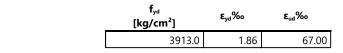
▲Sezione

• sezione 2 H=40.00 [cm]

	Estra	dosso		Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
17.75	3.50	7.70	3.50	17.75	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.25 1.57 [m])

M _{xx}	4373.08	[kgm/m]	M ₁₁	4401.02	[kgm/m]
M_{y}	699.33	[kgm/m]	M ₂₂	671.38	[kgm/m]
M _{xy}	321.65	[kgm/m]	α	4.97	[°]


▲Verifiche

C C /D	D!-!	ACC	iaio	Ca	Caicestruzzo		
CI – 3/ K	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{max} ‰	θ [°]	
0.20	Estradosso	23.552	1.364	27.948	-0.050	13.72	
	Intradosso	-0.530	-0.019	-0.030	-3.500	-77.97	

▲Propietà dei materiali

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione

• sezione 2 H=40.00 [cm]

Estradosso	Intradosso

	,	,	J,1	Af _x [cm ²] / m	,	,	J/-4
				7.70			

▲Azioni di verifica combinazione 1 (5.20 4.09 [m])

M _{xx}	317.60	[kgm/m]	M ₁₁	-3951.55	[kgm/m]
M _y	3945.15	[kgm/m]	M ₂₂	-311.20	[kgm/m]
M_{xy}	152.48	[kgm/m]	α	2.40	[°]

▲Verifiche

	C C /D	Dii	Acciaio		Calcestruzzo		
Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{min}\%_{o}$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.17	Estradosso	0.515	24.237	27.721	-0.006	81.66
I		Intradosso	-0.012	-0.548	-0.023	-3.500	-6.92

▲Verifiche SLU *Flessione* elemento nodi 30 39

▲Propietà dei materiali

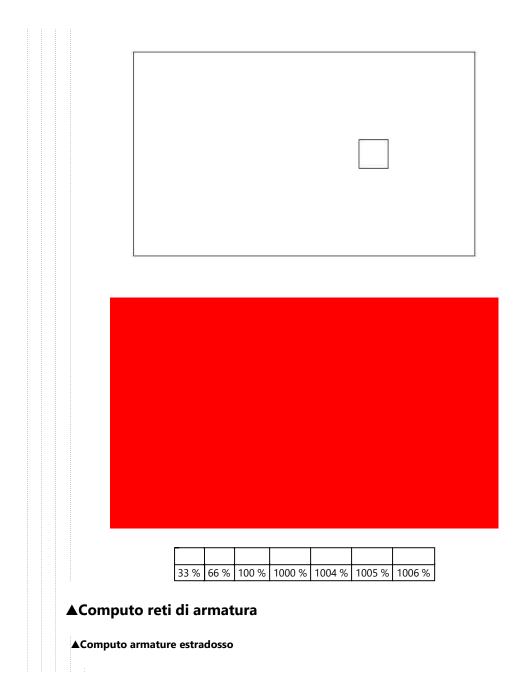
▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰	
3913.0	1.86	67.00	

▲Calcestruzzo C25/30

\mathbf{f}_{cd}	c %	c %	\mathbf{f}_{ctd}	c %.	E_{cm}
ı₀ [kg/cm²]	E _{c2} 700	E _{cu} 700	[kg/cm²]	Ectd 700	[kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

	dosso	Intradosso					
Af _x		,	,,	Af _x		,	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (5.20 2.20 [m])

	M_{xx}	-1210.65	[kgm/m]	M ₁₁	1438.71	[kgm/m]
ſ	Му	-1433.14	[kgm/m]	M ₂₂	1205.08	[kgm/m]
ſ	M _{xy}	35.63	[kgm/m]	α	-8.88	[°]

Cr=S/R Posizione		Acciaio		Calcestruzzo		
		ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.14	Estradosso	-0.087	0.534	-0.162	-3.500	11.12
	Intradosso	1.615	33.930	39.585	0.070	-77.87

Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	32.6	393.4
top ø 16/20' X c=3.50 [cm]	4.4	34.7
top ø 16/20' X c=3.50 [cm]	5.5	43.6
top ø 16/20' Y c=3.50 [cm]	9.3	73.3
top ø 16/20' Y c=3.50 [cm]	9.3	73.3
Totali	61.1	618.3

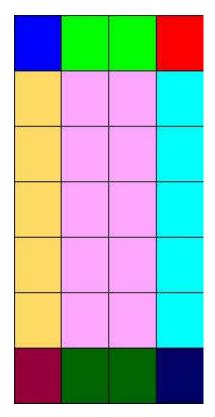
▲Computo armature intradosso

Rete	Area [m²]	Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	32.6	393.4
bottom ø 16/20' X c=3.50 [cm]	4.4	34.7
bottom ø 16/20' X c=3.50 [cm]	5.5	43.6
bottom ø 16/20' Y c=3.50 [cm]	9.3	73.3
bottom ø 16/20' Y c=3.50 [cm]	9.3	73.3
Totali	61.1	618.3

▲Area, Volume, incidenze

Superficie 32.6 [m²]

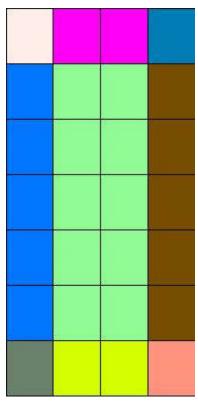
Volume 13.0 [m³]


Peso totale armature 1236.6 [kg]

Incidenza armature per unità di superficie 38.0 [kg/m²]

Incidenza armature per unità di volume 94.9 [kg/m³]

▲Lastra_389-385-420-424


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

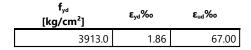
▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \epsilon t)$ (Hognestad)

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \epsilon c1/\epsilon c2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:


• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 420 416

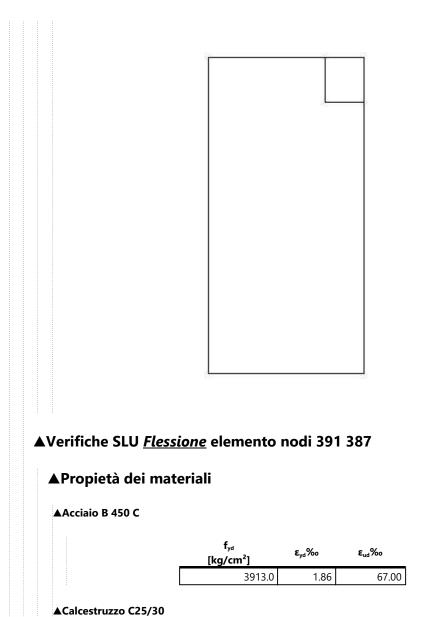
▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

Estradosso				Intradosso					
Af _x		Af _y	, ,			,	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$		
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]		
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50		

▲Azioni di verifica combinazione 2 (1.88 4.09 [m])

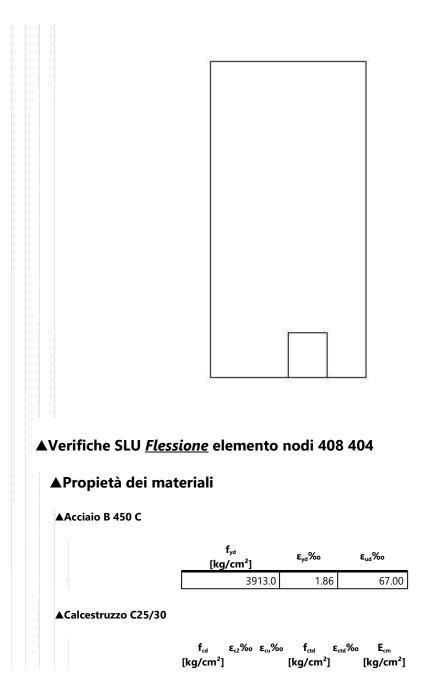
M_{xx}	-678.87	[kgm/m]	M ₁₁	-704.07	[kgm/m]
M_{y}	-33.57	[kgm/m]	M ₂₂	-8.38	[kgm/m]
M _{xy}	-129.97	[kgm/m]	α	10.97	[°]

6 6 (D. D		Acci	Acciaio		Calcestruzzo		
Cr=5/K	r=S/R Posizione		ε _y ‰	ε _{min} ‰	ε _{max} ‰	θ [°]	
0.04	Estradosso	-0.558	0.049	0.150	-3.500	-74.63	
	Intradosso	22.375	1.374	26.932	-0.343	15.19	

 f_{cd} ϵ_{c2} % ϵ_{cu} % f_{ctd} ϵ_{ctd} % g/cm²] [kg/cm²]

[kg/cm²]

141.7 -2.00 -3.50 12.0 0.08 141666.7
--


• sezione 2 H=40.00 [cm]

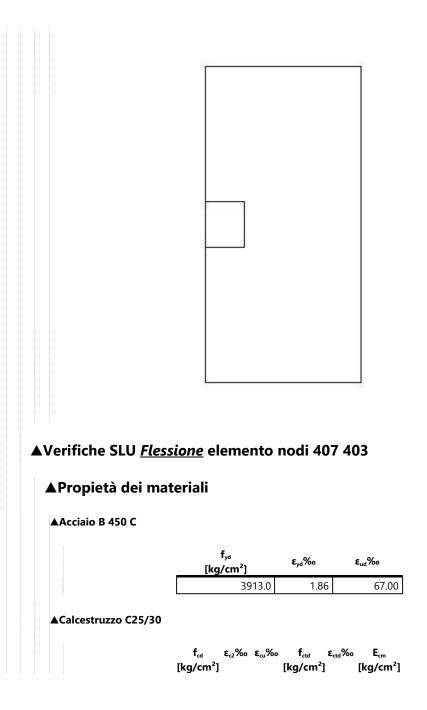
Estradosso				Intradosso					
	,	,	J,1		,	Af _y	J/-4		
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]		
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50		

▲Azioni di verifica combinazione 2 (1.34 0.31 [m])

M _{xx}	134.79	[kgm/m]	M ₁₁	224.34	[kgm/m]
M_{y}	-167.73	[kgm/m]	M ₂₂	-257.28	[kgm/m]
M _{xy}	187.37	[kgm/m]	α	25.54	[°]

C C /D	D :- :	Acc	Acciaio		Calcestruzzo		
Cr=5/K	Posizione	ε _x ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
0.02	Estradosso	7.895	0.855	12.074	-2.563	28.53	
	Intradosso	0.733	1.525	4.998	-3.500	-50.80	

141.7 -2.00 -3.50	12.0 0.08	141666.7
-------------------	-----------	----------


• sezione 2 H=40.00 [cm]

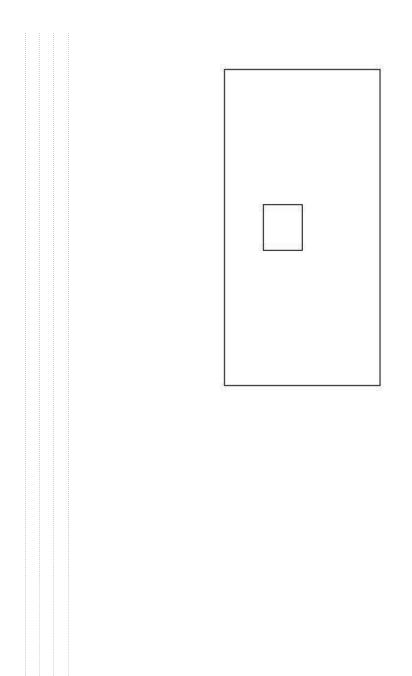
Estradosso				Intradosso					
	,	,	,,-4		,	Af _y	J/-4		
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]		
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50		

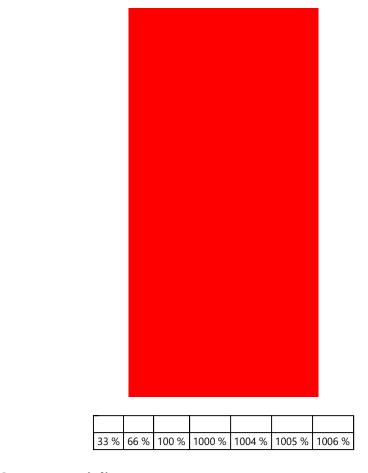
▲Azioni di verifica combinazione 1 (0.27 2.20 [m])

Μ	1 _{xx}	901.63	[kgm/m]	M ₁₁	904.08	[kgm/m]
Ν	Л _y	202.04	[kgm/m]	M ₂₂	199.59	[kgm/m]
М	1 _{xy}	-41.48	[kgm/m]	α	-3.38	[°]

Cr=S/R Posizione		Acc	iaio	Calcestruzzo		
		ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%$	θ [°]
0.05	Estradosso	25.470	0.956	29.553	0.017	-10.90
	Intradosso	-0.379	-0.048	-0.072	-3.500	80.45

141.7 -2.00 -3.50 12.0	0.08 141666.7
------------------------	---------------


• sezione 2 H=40.00 [cm]


	Estradosso				Intradosso			
,	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
	[cm²] / m	[cm]						
	7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.81 2.20 [m])

	$M_{xx} \\$	465.83	[kgm/m]	M ₁₁	476.75	[kgm/m]
	M_{y}	212.85	[kgm/m]	M ₂₂	201.93	[kgm/m]
ſ	M_{xy}	-53.68	[kgm/m]	α	-11.50	[°]

C C /D	D!-!	Acci	aio	Ca	lcestruz	zo
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%$	θ [º]
0.05	Estradosso	32.519	2.122	38.708	-0.064	-14.51
	Intradosso		0.023	-0.047	-3.500	76.95

▲Computo reti di armatura

▲Computo armature estradosso

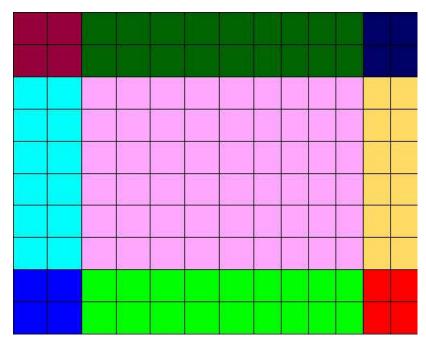
Rete		Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	9.5	114.5
top ø 14/20' X c=3.50 [cm]	2.4	14.3
top ø 14/20' X c=3.50 [cm]	2.4	14.3
top ø 14/20' Y c=3.50 [cm]	1.4	8.2
top ø 14/20' Y c=3.50 [cm]	1.3	8.1

	Totali 1	6.9 1	59.4
▲ Computo armatu	re intradosso		
	Rete	Area [m²]	Peso [kg]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	9.5	114.5
	bottom ø 14/20' X c=3.50 [cm]	2.4	14.3
	bottom ø 14/20' X c=3.50 [cm]	2.4	14.3
	bottom ø 14/20' Y c=3.50 [cm]	1.4	8.2
	bottom ø 14/20' Y c=3.50 [cm]	1.3	8.1
	Totali	16.9	159.4

▲Area, Volume, incidenze

Superficie 9.5 [m²]

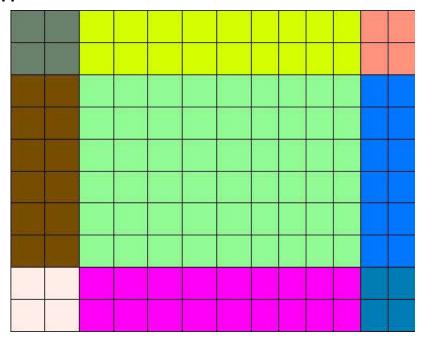
Volume 3.8 [m³]


Peso totale armature 318.9 [kg]

Incidenza armature per unità di superficie 33.7 [kg/m²]

Incidenza armature per unità di volume 84.3 [kg/m³]

▲Lastra_605-741-107-3


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm] top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c 1/\varepsilon c 2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 163 118

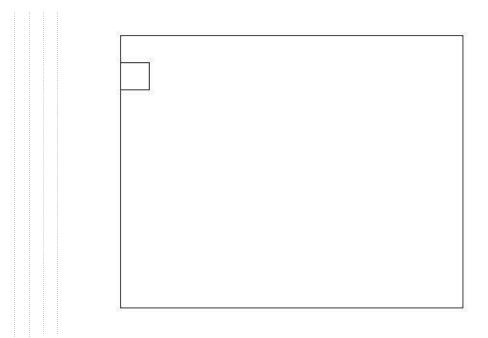
▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	$\epsilon_{yd}\%$ o	ε _{ud} ‰	
3913.0	1.86	67.00	

▲Calcestruzzo C25/30

▲Sezione


• sezione 2 H=40.00 [cm]

Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]						
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50

▲Azioni di verifica combinazione 1 (0.31 5.00 [m])

M_{xx}	3355.58	[kgm/m]	M ₁₁	3649.06	[kgm/m]
M_{y}	-150.88	[kgm/m]	M ₂₂	-444.36	[kgm/m]
M _{xy}	-1056.03	[kgm/m]	α	-15.53	[°]

Cr=S/R Po		Daniniana	Acciaio		Ca	lcestruzzo		
		Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.19	Estradosso	17.268	1.461	21.922	-0.984	-19.53	
		Intradosso	-0.614	0.487	1.166	-3.500	65.66	

▲Verifiche SLU *Flessione* elemento nodi 169 124

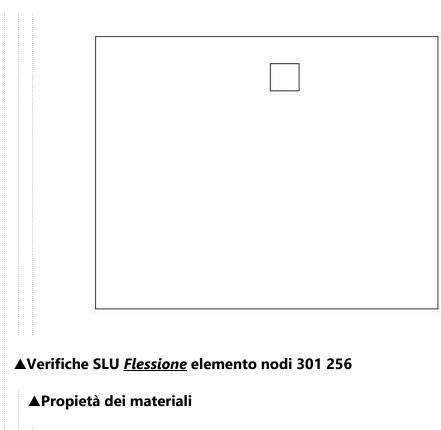
▲Propietà dei materiali

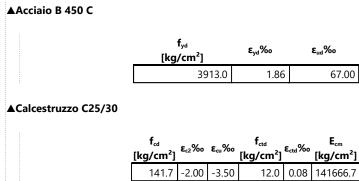
Acciaio B 450 C

| f_{yd} | ε_{yd}% | ε_{ud}% |
| 3913.0 | 1.86 | 67.00 |
| ΔCalcestruzzo C25/30

| f_{cd} | ε_{c2}% | ε_{cu}% | f_{ctd} | ε_{ctd} | Ε_{cm} |
| [kg/cm²] ε_{c2}% | ε_{cu}% | [kg/cm²] ε_{ctd} | [kg/cm²]

▲Sezione

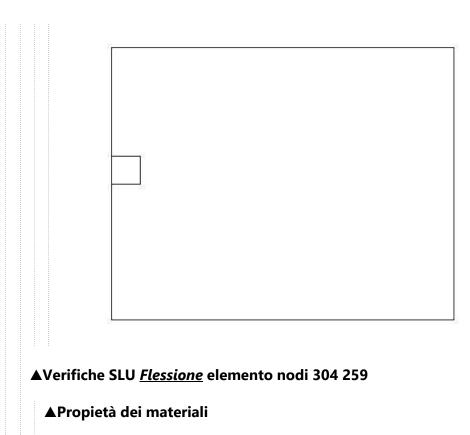

• sezione 2 H=40.00 [cm]

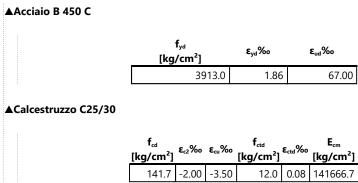

Estradosso				Intradosso				
		,	J,1	cf _{y,Eq} Af _x		,	J/-4	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50	

▲Azioni di verifica combinazione 1 (4.09 5.00 [m])

	M _{xx} 2222.74 [kgm/m] M _y -112.76 [kgm/m]		M ₁₁	2855.50	[kgm/m]	
			M ₂₂	-745.52	[kgm/m]	
	M_{xy}	1370.47	[kgm/m]	α	24.78	[°]

C C/D D			Acci	aio	Calcestruzzo			
	Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.26	Estradosso	20.045	1.529	25.382	-1.356	19.55	
		Intradosso	0.039	0.600	1.688	-3.500	-61.30	


• sezione 2 H=40.00 [cm]


	dosso	Intradosso					
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.31 3.23 [m])

M _{xx} 6045.96 [kgm/m]		M ₁₁	6049.36	[kgm/m]	
M _y 451.61 [kgm/m]		M ₂₂	448.21	[kgm/m]	
M_{xy}	137.93	[kgm/m]	α	1.41	[°]

C: C/D			Acc	iaio	Calcestruzzo			
	Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.30	Estradosso	25.713	0.223	29.010	0.015	5.18	
		Intradosso	-0.420	-0.019	-0.027	-3.500	-85.68	

• sezione 2 H=40.00 [cm]


	dosso	Intradosso					
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (2.20 3.23 [m])

	M _{xx}	-4553.62	4553.62 [kgm/m]		-4553.84	[kgm/m]
	M_{y}	-2364.69	[kgm/m]	M ₂₂	-2364.47	[kgm/m]
ı			[kgm/m]	α	0.57	[°]

c c/D		Acc	iaio	Calcestruzzo			
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
0.43	Estradosso	0.580	-0.159	-0.260	-3.500	-89.07	
	Intradosso	35.417	0.713	39.509	0.802	1.08	

T			
	20		

▲Computo reti di armatura

▲Computo armature estradosso

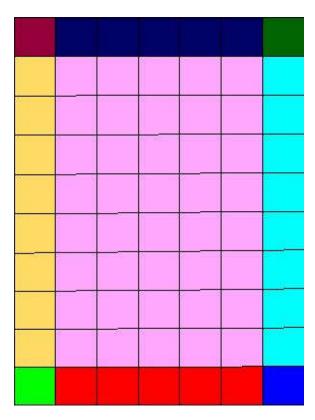
Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	43.5	525.9
top ø 14/20' X c=3.50 [cm]	7.4	44.6
top ø 14/20' X c=3.50 [cm]	5.9	35.5
top ø 14/20' Y c=3.50 [cm]	8.7	52.4
top ø 14/20' Y c=3.50 [cm]	8.7	52.4
Totali	74.1	710.9

▲Computo armature intradosso

Rete	Area [m²]	Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	43.5	525.9
bottom ø 14/20' X c=3.50 [cm]	7.4	44.6
bottom ø 14/20' X c=3.50 [cm]	5.9	35.5
bottom ø 14/20' Y c=3.50 [cm]	8.7	52.4
bottom ø 14/20' Y c=3.50 [cm]	8.7	52.4
Totali	74.1	710.9

▲Area, Volume, incidenze

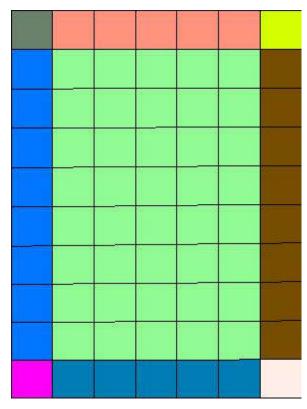
Superficie 43.5 [m²] Volume 17.4 [m³]


Peso totale armature 1421.8 [kg]

Incidenza armature per unità di superficie 32.7 [kg/m²]

Incidenza armature per unità di volume 81.7 [kg/m³]

▲Lastra_612-605-3-10


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 16/20' X c=3.50 [cm] bottom ø 16/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

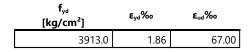
▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \epsilon t)$ (Hognestad)

▲Modellazione compressione biassiale

- fc_d,biaxial= fc_d (1 + 3.8 α) / (1.0+ α) 2 / α = ϵ c1/ ϵ c2 (EC2 Ponti 6.110)

▲Curva σ/ε Acciaio secondo:


• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 138 5

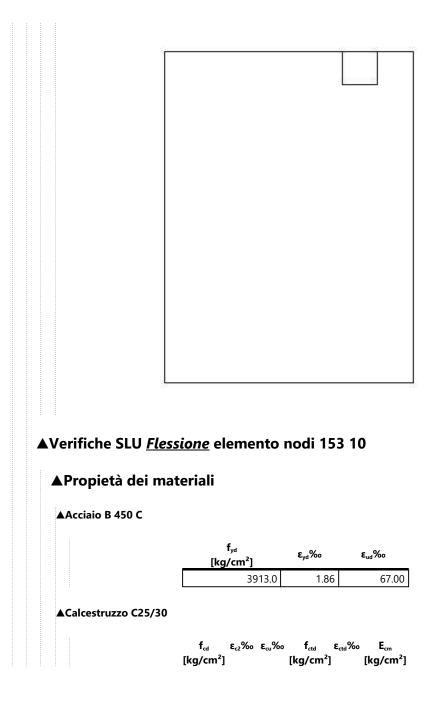
▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

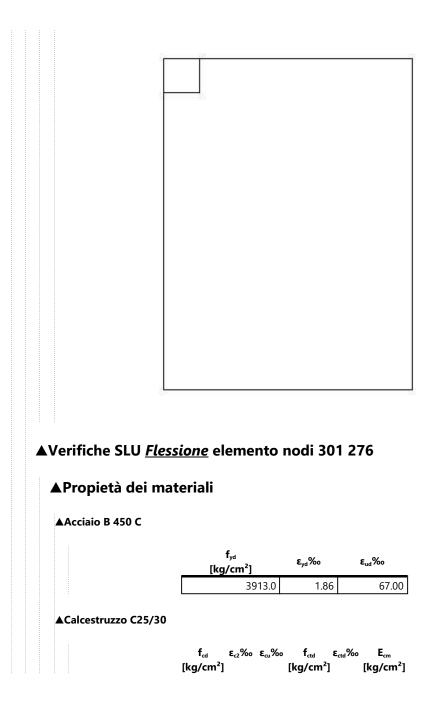
	dosso	Intradosso					
		Af _y	,, ,			,	,, ,
[cm-] / m	[cm]	[cm²] / m	[cm]	[cm-] / m	[cm]	[cm] / m	[cm]
7.70	3.50	17.75	3.50	7.70	3.50	17.75	3.50

▲Azioni di verifica combinazione 1 (3.46 5.59 [m])

	$M_{\scriptscriptstyle XX}$	164.24	[kgm/m]	M ₁₁	859.31	[kgm/m]
I	M _y	1568.71	[kgm/m]	M ₂₂	-2592.27	[kgm/m]
I	M _{xy}	1576.45	[kgm/m]	α	33.11	[°]

	C C /D	D!-!	Acc	iaio	Calcestruzzo		
	Cr=5/K	Posizione	ε _× ‰	ε _y ‰	ε _{min} ‰	ε _{max} ‰	θ [°]
Ī	0.17	Estradosso	3.920	2.411	8.981	-2.104	40.96
		Intradosso	1.390	0.284	4.629	-3.500	-41.26

I	141.7	-2.00	-3.50	12.0	0.08	141666.7
ı		2.00	3.30	10	0.00	1 1 1 0 0 0 . 7


• sezione 2 H=40.00 [cm]

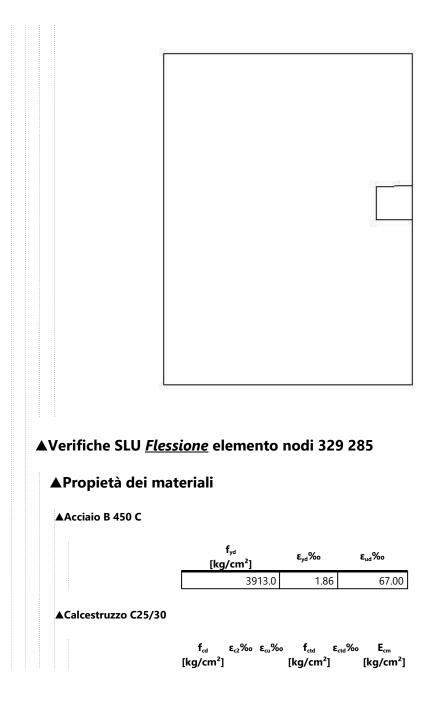
Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$
[cm ²] / m [cm] [cm ²] / m [cm] [cm ²] / m [cm] [cm ²] / m [c						[cm]	
17.75	3.50	17.75	3.50	17.75	3.50	17.75	3.50

▲Azioni di verifica combinazione 2 (0.31 5.58 [m])

$M_{xx} \\$	-3489.99	[kgm/m]	M ₁₁	609.89	[kgm/m]
Му	-17193.89	[kgm/m]	M ₂₂	20073.99	[kgm/m]
M_{xy}	6911.12	[kgm/m]	α	-22.51	[°]

C C /D	D :- :	Ace	ciaio	Calcestruzzo		
Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%$	θ [º]
0.91	Estradosso	0.301	-0.632	1.524	-3.500	31.76
	Intradosso	1.748	11.976	16.576	-1.206	-65.22

141.7 -2.00 -3.50 12.0 0.08 141666.7
--


• sezione 2 H=40.00 [cm]

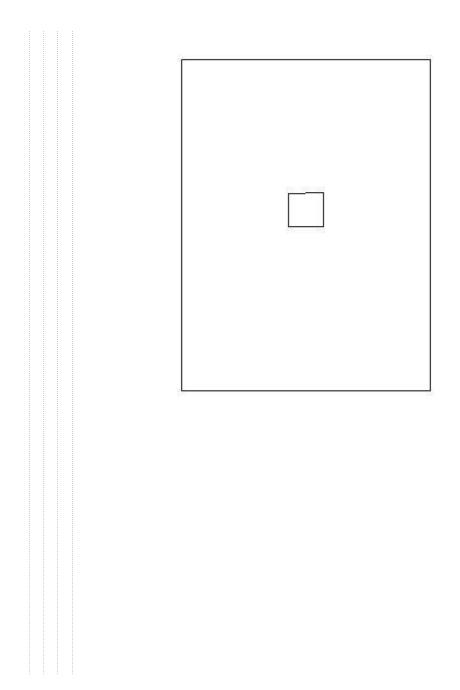
Estradosso			Intradosso				
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
17.75	3.50	7.70	3.50	17.75	3.50	7.70	3.50

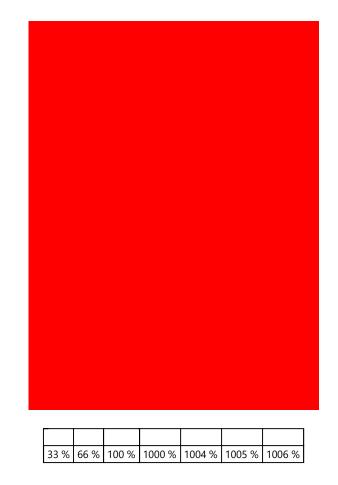
▲Azioni di verifica combinazione 1 (4.09 3.23 [m])

M_{xx}	6085.88	[kgm/m]	M ₁₁	-6089.35	[kgm/m]
M _y	397.15	[kgm/m]	M ₂₂	-393.68	[kgm/m]
M _{xy}	-140.57	[kgm/m]	α	1.98	[°]

Cr=S/R Posizione		Acc	iaio	Calcestruzzo		
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\scriptscriptstyle min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.27	Estradosso	24.312	0.261	27.506	0.012	-5.81
	Intradosso	-0.564	-0.017	-0.026	-3.500	85.26

141.7 -2.00 -3.50 12.0 0.08 141666.7
--


• sezione 2 H=40.00 [cm]


		Estra	dosso			Intra	dosso	
,	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
	[cm²] / m	[cm]						
	7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (2.20 3.21 [m])

M_{xx}	-4558.12	[kgm/m]	M ₁₁	4560.42	[kgm/m]
M _y	-2408.64	[kgm/m]	M ₂₂	2406.34	[kgm/m]
M _{xy}	-70.32	[kgm/m]	α	-1.31	[°]

Cr=S/R Posizione		Acc	iaio	Calcestruzzo			
Cr=5/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%$	θ [º]	
0.44	Estradosso	0.573	-0.152	-0.239	-3.500	-86.91	
	Intradosso	35.281	0.668	39.494	0.615	3.55	

▲Computo reti di armatura

▲Computo armature estradosso

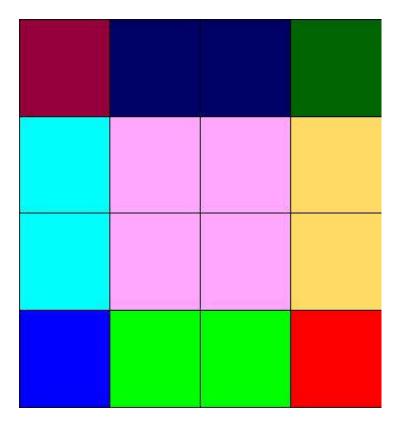
Rete		Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	25.9	313.1
top ø 16/20' X c=3.50 [cm]	3.7	29.4
top ø 16/20' X c=3.50 [cm]	3.7	29.0
top ø 16/20' Y c=3.50 [cm]	2.6	20.5
top ø 16/20' Y c=3.50 [cm]	2.5	19.9

		Totali	38.4	411.7
▲Con	nputo armature in	tradosso		
	_	Rete	Area [m²]	Peso [kg]
	bo	ottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	25.9	313.1
		bottom ø 16/20' X c=3.50 [cm]	3.7	29.4
		bottom ø 16/20' X c=3.50 [cm]	3.7	29.0
		bottom ø 16/20' Y c=3.50 [cm]	2.6	20.5
		bottom ø 16/20' Y c=3.50 [cm]	2.5	19.9
		Total	i 384	4117

▲Area, Volume, incidenze

Superficie 25.9 [m²]

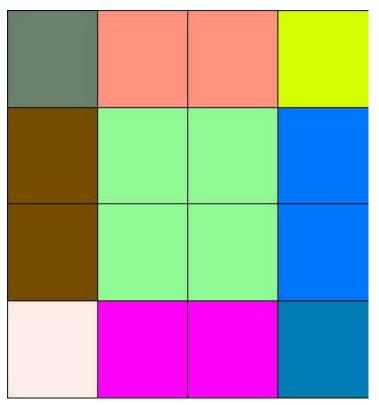
Volume 10.3 [m³]


Peso totale armature 823.4 [kg]

Incidenza armature per unità di superficie 31.8 [kg/m²]

Incidenza armature per unità di volume 79.6 [kg/m³]

▲Lastra_616-612-385-389


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon 1/\varepsilon c^2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 464 385

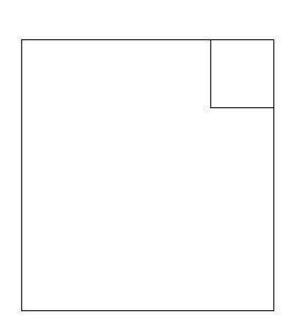
▲Propietà dei materiali

▲Acciaio B 450 C

_	f _{yd} [kg/cm²]	$\epsilon_{yd}\%$ o	ε _{ud} ‰
	3913.0	1.86	67.00

▲Calcestruzzo C25/30

▲Sezione


• sezione 2 H=40.00 [cm]

	dosso	Intradosso					
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50

▲Azioni di verifica combinazione 1 (1.88 2.01 [m])

_						
	M_{xx}	1434.14	[kgm/m]	M ₁₁	1453.93	[kgm/m]
	M _y	177.66	[kgm/m]	M ₂₂	157.88	[kgm/m]
Γ	M _{xy}	158.91	[kgm/m]	α	7.10	[°]

C . C /D	D!-!	Acci	ciaio Calcestruzzo			zo		
Cr=5/K	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{min} ‰ ε _{max} ‰ θ[
0.07	Estradosso	23.434	1.072	27.610	-0.172	12.83		
	Intradosso	-0.539	0.006	0.035	-3.500	-77.96		

▲Verifiche SLU *Flessione* elemento nodi 465 386

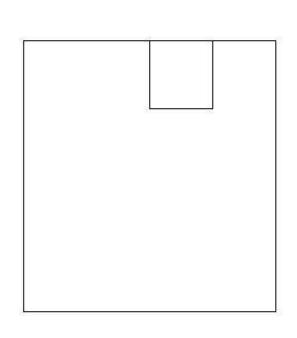
▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰
3913.0	1.86	67.00

▲Calcestruzzo C25/30

	141.7	-2.00	-3.50	12.0	0.08	141666.7
--	-------	-------	-------	------	------	----------


• sezione 2 H=40.00 [cm]

Estradosso				Intradosso					
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}		
[cm²] / m	[cm]								
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50		

▲Azioni di verifica combinazione 1 (1.34 2.01 [m])

	M _{xx}	68.35	[kgm/m]	M ₁₁	180.93	[kgm/m]
Ī	M_{y}	-21.20	[kgm/m]	M ₂₂	-133.78	[kgm/m]
	M_{xy}	150.85	[kgm/m]	α	36.73	[°]

C=- C /D	Daniminum	Acciaio Calcestruz			zo	
Cr=5/K	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{max} ‰	θ [°]
0.02	Estradosso	5.965	1.335	10.327	-2.422	33.00
	Intradosso	1.018	1.119	5.032	-3.500	-47.20

▲Verifiche SLU *Flessione* elemento nodi 524 463

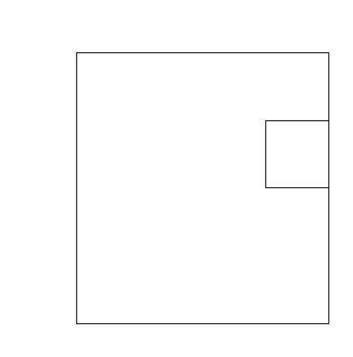
▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰
3913.0	1.86	67.00

▲Calcestruzzo C25/30

141.7	-2.00	-3.50	12.0	0.08	141666.7
		3.30	,	0.00	1 1 1 0 0 0 0 . 7


• sezione 2 H=40.00 [cm]

	Estra	dosso			Intra	dosso	
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$
[cm²] / m	[cm]						
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (1.88 1.44 [m])

M _{xx}	1253.69	[kgm/m]	M ₁₁	1299.90	[kgm/m]
M_{y}	56.28	[kgm/m]	M ₂₂	10.07	[kgm/m]
M_{xy}	239.72	[kgm/m]	α	10.91	[°]

C . C /D	D::	Acci	aio	Ca	lcestruz	zo
Cr=5/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.07	Estradosso	22.120	2.356	27.613	-0.214	18.64
	Intradosso	-0.525	0.032	0.083	-3.500	-72.51

▲Verifiche SLU *Flessione* elemento nodi 526 465

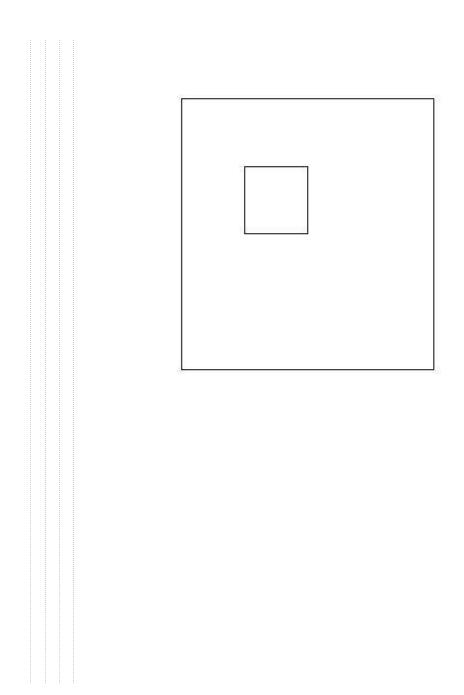
▲Propietà dei materiali

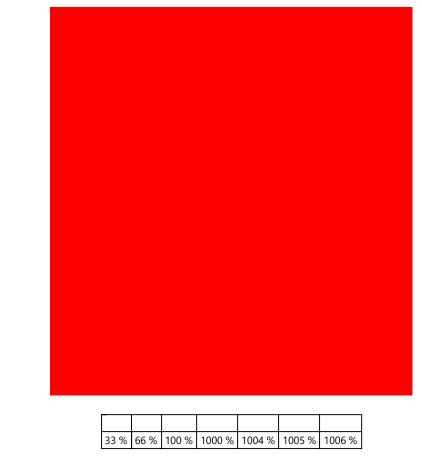
▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰
3913.0	1.86	67.00

▲Calcestruzzo C25/30

	141.7	-2.00	-3.50	12.0	0.08	141666.7
--	-------	-------	-------	------	------	----------


• sezione 2 H=40.00 [cm]


	Estra	dosso			Intra	dosso	
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$
[cm²] / m	[cm]						
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.81 1.44 [m])

M,	x	-218.99	[kgm/m]	M ₁₁	-239.77	[kgm/m]
М	у	-164.84	[kgm/m]	M ₂₂	-144.06	[kgm/m]
M,	y	39.46	[kgm/m]	α	-27.77	[°]

c c/D		Acci	aio	Ca	icestruz	zo
	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.02	Estradosso	0.424	0.162	-0.116	-3.500	60.67
	Intradosso	26.999	9.466	40.672	-0.006	-30.63

▲Computo reti di armatura

▲Computo armature estradosso

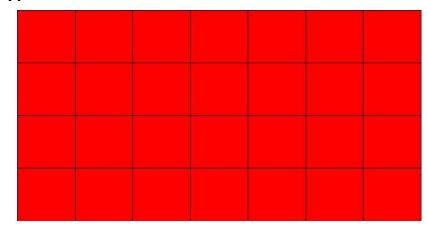
Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	4.9	59.7
top ø 14/20' X c=3.50 [cm]	1.2	7.5
top ø 14/20' X c=3.50 [cm]	1.2	7.4
top ø 14/20' Y c=3.50 [cm]	1.2	7.5
top ø 14/20' Y c=3.50 [cm]	1.2	7.5

	Totali	9.9 8	9.6
▲ Computo armature i	ntradosso		
	Rete		Peso [kg]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	4.9	59.7
	bottom ø 14/20' X c=3.50 [cm]	1.2	7.5
	bottom ø 14/20' X c=3.50 [cm]	1.2	7.4
	bottom ø 14/20' Y c=3.50 [cm]	1.2	7.5
	bottom ø 14/20' Y c=3.50 [cm]	1.2	7.5
	Totali	9.9	89.6

▲Area, Volume, incidenze

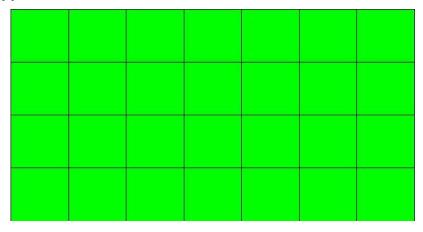
Superficie 4.9 [m²]

Volume 2.0 [m³]


Peso totale armature 179.1 [kg]

Incidenza armature per unità di superficie 36.2 [kg/m²]

Incidenza armature per unità di volume 90.6 [kg/m³]


▲Lastra_696-612-385-420

▲Mappa armature di Estradosso

Cold	ore	Armature
		top ø 14/20' X + ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore		Armature					
		bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]					

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t)$ (Hognestad)

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c 1/\varepsilon c 2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 463 390

▲Propietà dei materiali

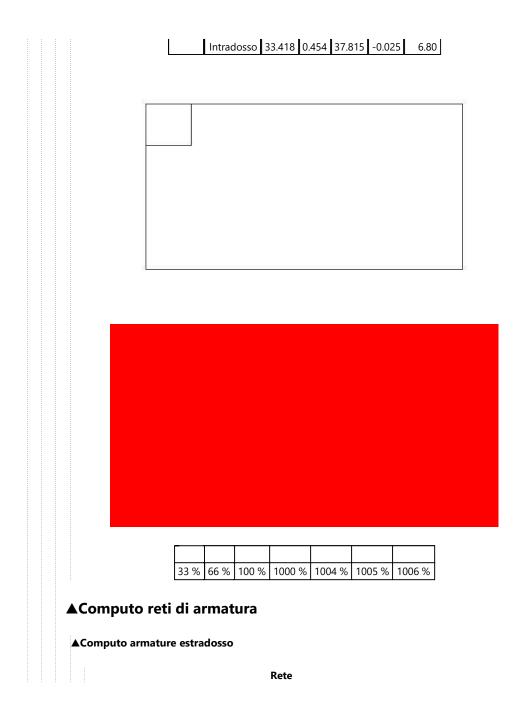
▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰	
3913.0	1.86	67.00	

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	$\mathbf{\epsilon}_{ctd}$ ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

	dosso		Intradosso				
Af_{x}	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.31 2.01 [m])

M _{xx}	-1564.13	[kgm/m]	M ₁₁	-1571.19	[kgm/m]
M _y	-118.79	[kgm/m]	M ₂₂	-111.73	[kgm/m]
M _{xy}	-101.27	[kgm/m]	α	3.99	[°]

Cu_C/D Dosi-ious			Acciaio Calcesti			lcestruz	uzzo	
Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{min}\%_{o}$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]		
	0.15	Estradosso	0.402	0.014	-0.002	-3.500	-84.18	

		Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	10.1	122.3
Totali	10.1	122.3

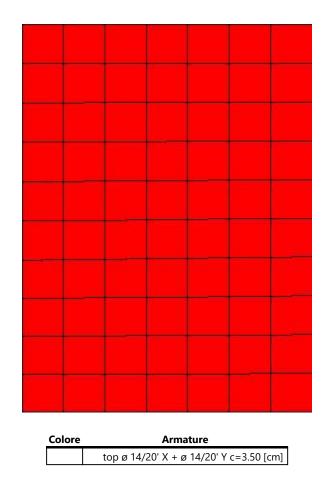
▲Computo armature intradosso

Rete		Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	10.1	122.3
Totali	10.1	122.3

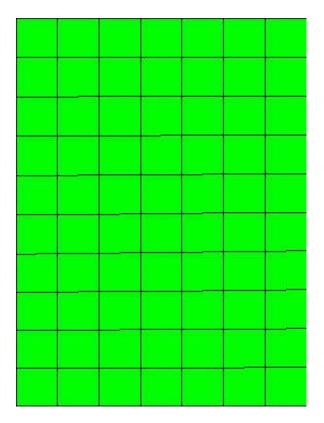
▲Area, Volume, incidenze

Superficie 10.1 [m²]

Volume 4.0 [m³]


Peso totale armature 244.7 [kg]

Incidenza armature per unità di superficie 24.2 [kg/m²]


Incidenza armature per unità di volume 60.4 [kg/m³]

▲Lastra_696-689-59-66

▲Mappa armature di Estradosso

▲Mappa armature di Intradosso

Colore		Armature
		bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ } \epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c 1/\varepsilon c 2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 323 262

▲Propietà dei materiali

▲Acciaio B 450 C

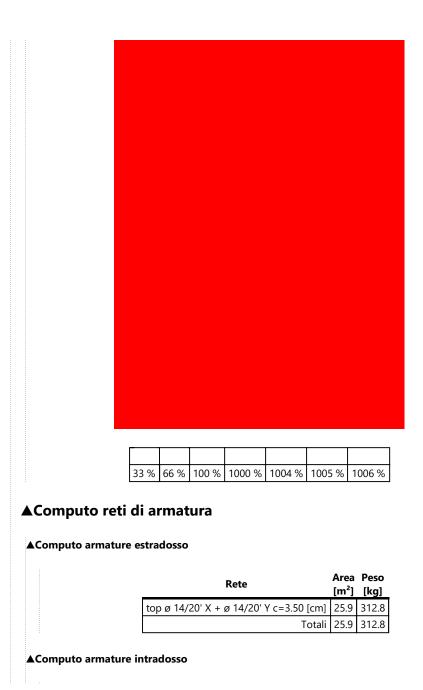
f _{yd} [kg/cm²]	$\epsilon_{yd}\%$ o	ε _{ud} ‰	
3913.0	1.86	67.00	

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione

• sezione 2 H=40.00 [cm]


	dosso	Intradosso					
	,	,	J,1		,	Af _y [cm²] / m	J/-4
[CIII] / III	[CIII]	[CIII] / III	[CIII]	iciii 17 iii	[CIII]	iciii 17 iii	[CIII]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (4.09 3.23 [m])

M _{xx} -1398.61		[kgm/m]	M ₁₁	-1400.24	[kgm/m]

M_{y}	-261.39	[kgm/m]	M ₂₂	-259.77	[kgm/m]
M_{xy}	42.98	[kgm/m]	α	-2.73	[°]

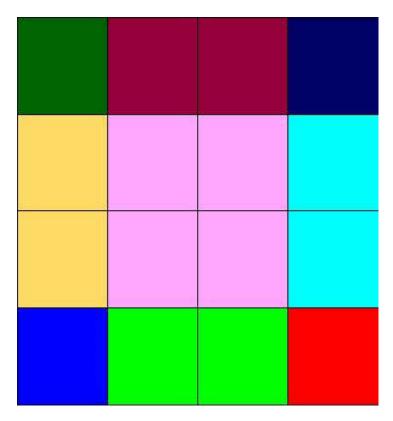
C. C/D D:-:		Acc	iaio	Calcestruzzo			
	Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	ε _{max} ‰	θ [°]
	0.13	Estradosso	0.448	-0.025	-0.039	-3.500	86.14
		Intradosso	34.031	0.227	38.193	0.027	-4.45

Rete		Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	25.9	312.8
Totali	25.9	312.8

▲Area, Volume, incidenze

Superficie 25.9 [m²]

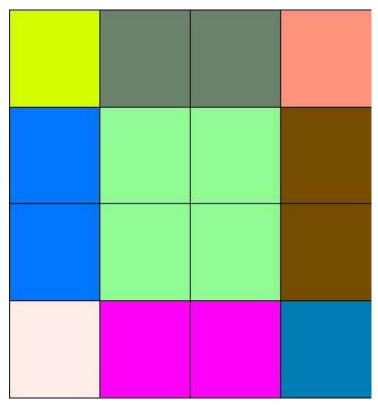
Volume 10.3 [m³]


Peso totale armature 625.6 [kg]

Incidenza armature per unità di superficie 24.2 [kg/m²]

Incidenza armature per unità di volume 60.4 [kg/m³]

▲Lastra_696-700-424-420


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

-	Colore	Armature
ſ		bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
		bottom ø 14/20' X c=3.50 [cm]
		bottom ø 14/20' Y c=3.50 [cm]
ſ		

_
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \epsilon t)$ (Hognestad)

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \epsilon c1/\epsilon c2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 700 603

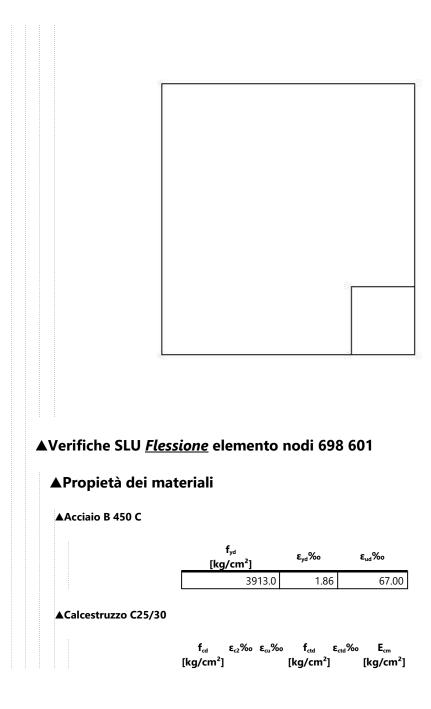
▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

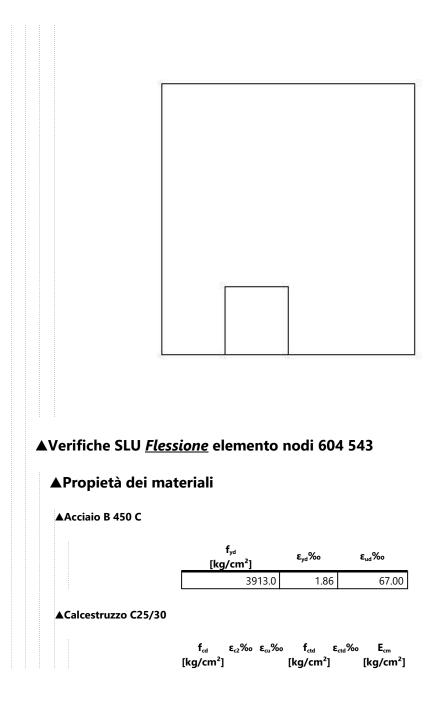
Estradosso				Intradosso				
Af _x		Af _y	, ,			,	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50	

▲Azioni di verifica combinazione 1 (1.88 0.29 [m])

	$M_{xx} \\$	208.53	[kgm/m]	M ₁₁	-335.64	[kgm/m]
	M_{y}	78.10	[kgm/m]	M ₂₂	49.02	[kgm/m]
I	M_{xy}	M _{xy} -180.94 [kgm/m]		α	35.09	[°]

C C/D	D!-!	Acc	iaio	Calcestruzzo			
Cr=5/K	Posizione	ε,‰	ε _y ‰	ε _{min} ‰	ε _{max} ‰	θ [º]	
0.02	Estradosso	4.849	1.890	9.333	-1.880	-36.25	
	Intradosso	0.033	0.604	3.423	-3.500	49.09	

141.7 -2.00 -3.50	12.0 0.08	141666.7
-------------------	-----------	----------


• sezione 2 H=40.00 [cm]

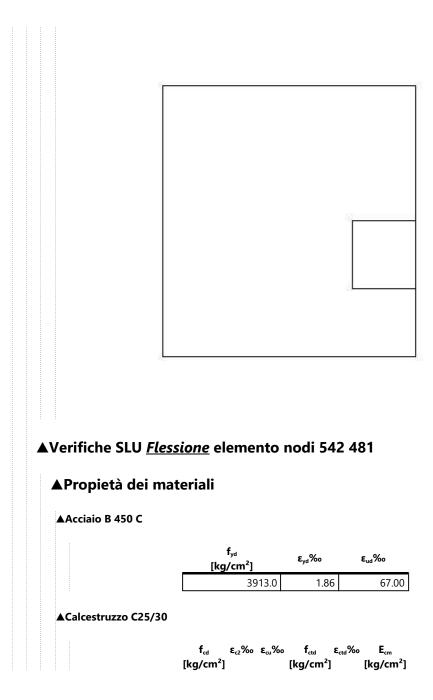
Estradosso			Intradosso					
	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
[0	:m²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
	7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50

▲Azioni di verifica combinazione 2 (0.81 0.29 [m])

M_{xx}	144.90	[kgm/m]	M ₁₁	-226.09	[kgm/m]
M _y	64.15	[kgm/m]	M ₂₂	17.03	[kgm/m]
M _{xy}	-114.66	[kgm/m]	α	35.30	[°]

C C /D	D :- :	Acci	aio	Calcestruzzo		
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{max} ‰	θ [°]
0.02	Estradosso	17.147	2.706	23.378	-1.250	-24.49
	Intradosso	0.083	0.335	1.642	-3.500	56.28

141.7 -2.00 -3.50 12.0 0.08 141666.7
--


• sezione 2 H=40.00 [cm]

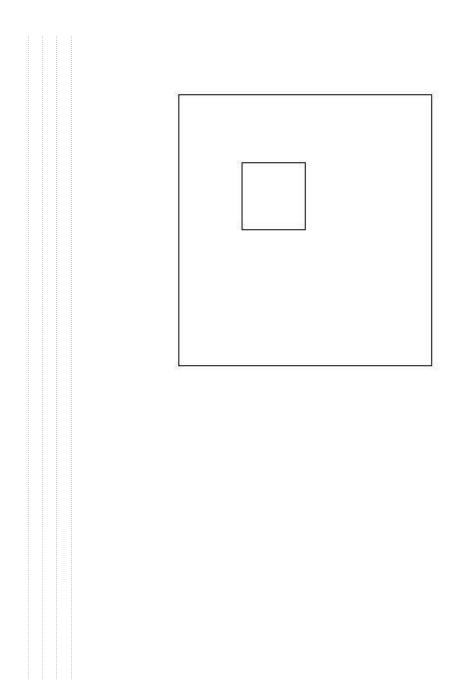
	Estra	dosso			Intra	dosso	
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50

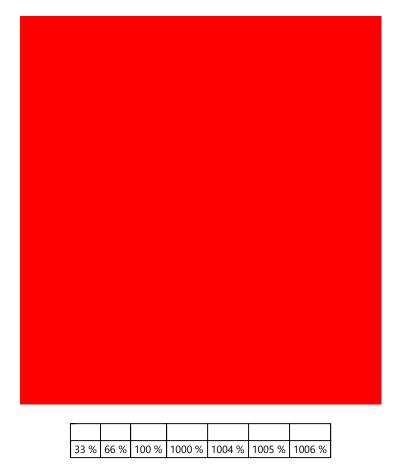
▲Azioni di verifica combinazione 1 (1.88 0.86 [m])

M_{xx}	348.05	[kgm/m]	M ₁₁	-394.89	[kgm/m]
M _y	-23.33	[kgm/m]	M ₂₂	70.17	[kgm/m]
M _{xy}	-139.96	[kgm/m]	α	18.50	[°]

C C /D	D :- :	Acciaio		Calcestruzzo		
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	‰ ε _{max} ‰ θ	
0.02	Estradosso	12.451	3.356	18.664	-1.057	-29.20
	Intradosso	-0.520	0.951	2.130	-3.500	59.37

141.7 -2.00 -3.50 12.0 0.08 141666.7
--


• sezione 2 H=40.00 [cm]


_	Estradosso			Intradosso				
		,	,	,,-4	Af _x	,4	,	J,-4
[0	:m²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
	7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.81 1.44 [m])

M _{xx}	-221.44	[kgm/m]	M ₁₁	191.05	[kgm/m]
M_{y}	-311.93	[kgm/m]	M ₂₂	342.33	[kgm/m]
M _{xy}	-60.61	[kgm/m]	α	26.63	[°]

Cr=S/R Posizion		Ace	ciaio	Calcestruzzo		
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	ε _{max} ‰	θ [º]
0.03	Estradosso	0.153	0.421	-0.102	-3.500	-28.19
	Intradosso	8.814	27.429	40.438	-0.018	60.44

▲Computo reti di armatura

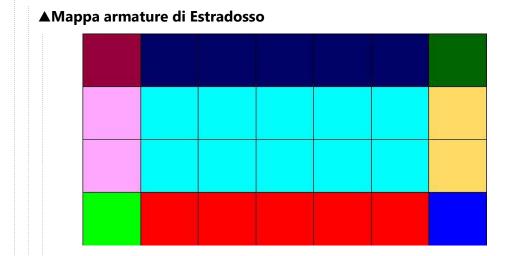
▲Computo armature estradosso

Rete	Area [m²]	
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	4.9	59.7
top ø 14/20' X c=3.50 [cm]	1.2	7.5
top ø 14/20' X c=3.50 [cm]	1.2	7.5
top ø 14/20' Y c=3.50 [cm]	1.2	7.5
top ø 14/20' Y c=3.50 [cm]	1.2	7.5

Totali 9.9 89.6 **▲Computo armature intradosso** Area Peso Rete [m²] [kg] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] 4.9 59.7 bottom ø 14/20' X c=3.50 [cm] 1.2 7.5 7.5 bottom ø 14/20' X c=3.50 [cm] 7.5 bottom ø 14/20' Y c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm] 7.5 1.2 9.9 89.6

▲Area, Volume, incidenze

Superficie 4.9 [m²]


Volume 2.0 [m³]

Peso totale armature 179.2 [kg]

Incidenza armature per unità di superficie 36.2 [kg/m²]


Incidenza armature per unità di volume 90.6 [kg/m³]

▲Lastra_700-616-389-424

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' Y c=3.50 [cm] top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
·	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• fc_{d,biaxial}= fc_d (1 + 3.8 α) / (1.0+ α)² / α = ϵ c1/ ϵ c2 (EC2 Ponti 6.110)

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 469 399

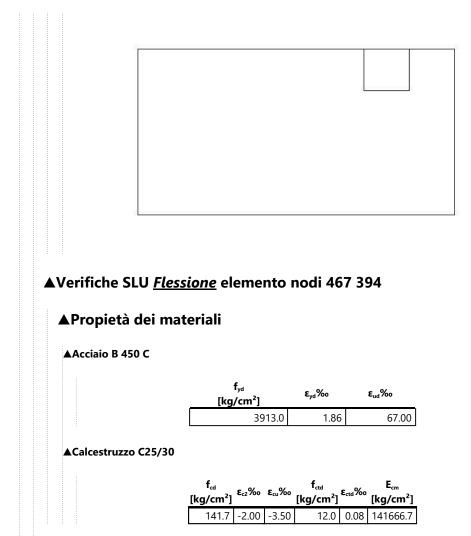
▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰			E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

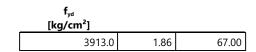
▲Sezione


• sezione 1 H=30.00 [cm]

	Estradosso				Intradosso				
Af _x		,	, ,	Af _x		,	$\mathbf{cf}_{y,Eq}$		
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]		
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50		

▲Azioni di verifica combinazione 1 (3.46 2.01 [m])

l	$M_{\scriptscriptstyle xx}$	-13.69	[kgm/m]	M ₁₁	109.50	[kgm/m]
	M_{y}	261.80	[kgm/m]	M ₂₂	-357.61	[kgm/m]
ĺ	M_{xy}	188.61	[kgm/m]	α	26.93	[°]


Cr=S/R Posizione		Acc	Acciaio Calcest			truzzo	
Cr=5/K	Posizione	ε,‰	ε _y ‰	ε _{min} ‰	ε _{max} ‰	θ [º]	
0.03	Estradosso	1.893	3.101	7.714	-2.086	49.86	
	Intradosso	1.346	-0.055	4.157	-3.500	-38.01	

• sezione 1 H=30.00 [cm]

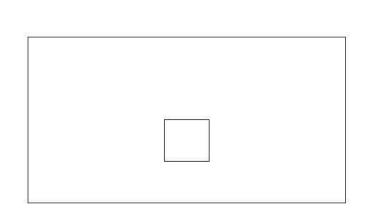
Estradosso				Intradosso			
Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}
[cm ²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]

L	15.39 3.50 1	5.39 3.50	15.39 3.50	15.39 3.50
▲Azioni di ve	erifica combii	nazione '	1 (4.09 2.0	01 [m])
	M _{xx} 163.12	[kgm/m]	M ₁₁ -320.52	[kgm/m]
	M _y 133.23	+	M ₂₂ 24.16 α -42.51	[kgm/m]
▲Verifiche				
	Cr-S/D Dosimi	Accia	aio Cal	cestruzzo
	Cr=S/R Posizio	ε _x ‰	ε _y ‰ ε _{min} ‰ ε	ε _{max} ‰ θ [°]
	0.03 Estrado	sso 2.256	1.828 6.734	-2.014 43.29
	Intrado	sso 0.124 (0.251 3.239	-3.500 -45.94
8				
				-
2				
▲Verifiche SLU	<u>Flessione</u> ele	emento n	nodi 593 5	535
▲ Propietà de	ni materiali			
▲Acciaio B 450 C				
			ε _{yd} ‰	ε _{ud} ‰

▲Calcestruzzo C25/30

[f_{cd} [kg/cm ²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]	
	141.7	-2.00	-3.50	12.0	0.08	141666.7	

▲Sezione


• sezione 1 H=30.00 [cm]

	Estradosso				Intradosso				
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}		
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]		
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50		

▲Azioni di verifica combinazione 1 (2.20 0.86 [m])

M	хх	-208.57	[kgm/m]	M ₁₁	208.53	[kgm/m]
M	l _y	-630.82	-630.82 [kgm/m]		630.86	[kgm/m]
M	ху	4.12	[kgm/m]	α	-0.56	[°]

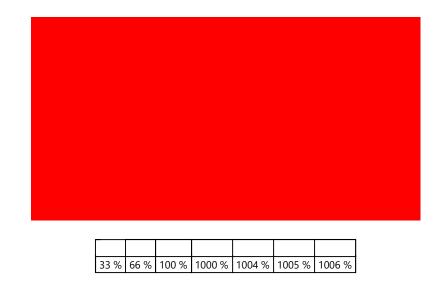
Cr=S/R Posizione		Acc	iaio	Calcestruzzo			
	Cr=5/R	Posizione	1e ε _× ‰ ε _y ‰ ε		$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
	0.09	Estradosso	-0.076	0.496	-0.104	-3.500	1.39
		Intradosso	0.101	23.812	27.829	0.108	-88.32

▲Verifiche SLU *Flessione* elemento nodi 539 484

▲Propietà dei materiali

 f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰
3913.0	1.86	67.00

▲Calcestruzzo C25/30


f _{cd} [kg/cm²]	ε _{c2} ‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione

• sezione 1 H=30.00 [cm]

Estradosso			Intradosso				
Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}
[cm ²] / m	[cm]						

▲Azioni di	vei	ттіса	C	ombina	izione	1 (0	.31 1.4	44 [M])
		Г	M _{xx}	337.00	[kgm/m]	M ₁₁	-362.88	[kgm/m]
			M _y	-86.32	[kgm/m]	+	112.20	
			М _{ху}	-107.82	[kgm/m]	α	13.50	[°]
▲ Verifiche								
_ vernicile					Acci	aio	Cal	cestruzzo
		Cr=S	/R	Posizione	ε _χ ‰	ε _y ‰	ε _{min} ‰	ε _{max} ‰ θ [°
		0.0)3	Estradosso	_	1.327	13.616	-1.314 -24.8
				Intradosso	-0.634	1.340	2.510	-3.500 63.8

▲Computo reti di armatura

▲Computo armature estradosso

Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	10.1	122.3
top ø 14/20' X c=3.50 [cm]	1.4	8.8
top ø 14/20' X c=3.50 [cm]	1.4	8.7
top ø 14/20' Y c=3.50 [cm]	2.5	15.3
top ø 14/20' Y c=3.50 [cm]	2.5	15.3
Totali	18.1	170.3

▲Computo armature intradosso

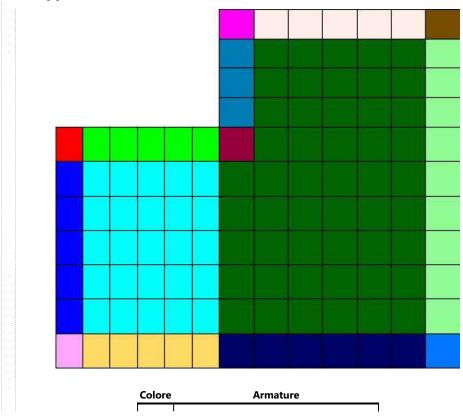
Rete	Area [m²]	Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	10.1	122.3
bottom ø 14/20' X c=3.50 [cm]	1.4	8.8
bottom ø 14/20' X c=3.50 [cm]	1.4	8.7
bottom ø 14/20' Y c=3.50 [cm]	2.5	15.3
bottom ø 14/20' Y c=3.50 [cm]	2.5	15.3

Totali 18.1 170.3

▲Area, Volume, incidenze

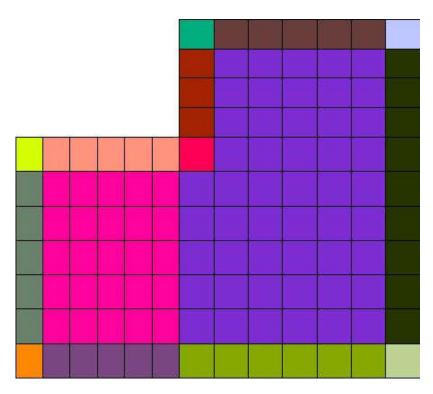
Superficie 10.1 [m²]

Volume 3.0 [m³]


Peso totale armature 340.7 [kg]

Incidenza armature per unità di superficie 33.7 [kg/m²]

Incidenza armature per unità di volume 112.2 [kg/m³]


▲Lastra_741-605-616-700-696-748

▲Mappa armature di Estradosso

top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
top ø 14/20' X c=3.50 [cm]
top ø 14/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

\blacktriangle Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 et)$ (Hognestad)

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c1/\varepsilon c2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 733 742

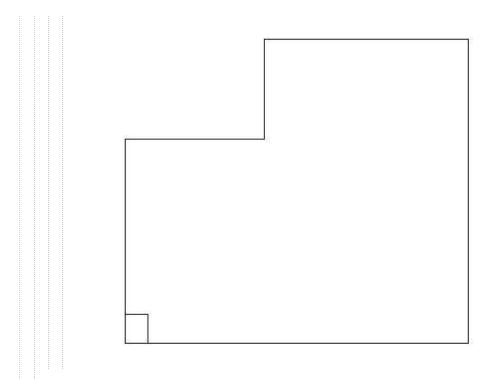
▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	$\epsilon_{yd}\%$ o	ε _{ud} ‰	
3913.0	1.86	67.00	

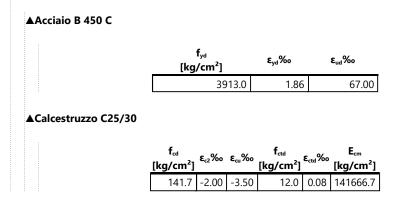
▲Calcestruzzo C25/30

▲Sezione


• sezione 1 H=30.00 [cm]

	dosso	Intradosso					
Af _x						Af _y	
[cm-] / m	[cm]	[cm-] / m	[cm]	[cm-] / m	[cm]	[cm²] / m	[cm]
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50

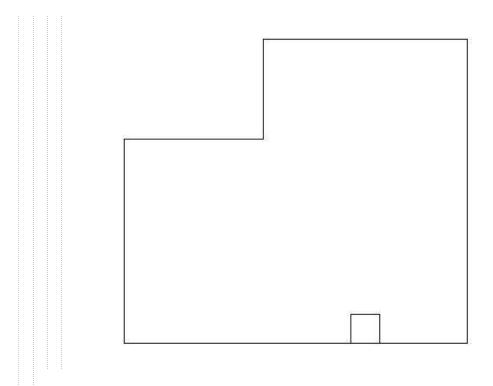
▲Azioni di verifica combinazione 1 (0.25 0.31 [m])


M _{xx}	352.22	[kgm/m]	M ₁₁	-401.95	[kgm/m]
My	-55.64	[kgm/m]	M ₂₂	105.37	[kgm/m]
M _{xy}	-150.85	[kgm/m]	α	18.25	[9]

Cr=S/R Posizione		Acci	aio	Calcestruzzo		
Cr=5/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
0.03	Estradosso	7.829	1.087	11.932	-1.528	-26.46
	Intradosso	-0.522	0.753	2.244	-3.500	58.73

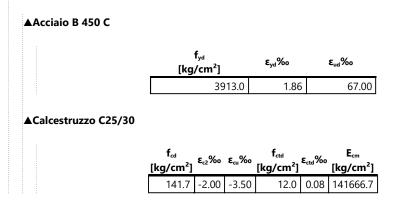
▲Verifiche SLU *Flessione* elemento nodi 642 653

▲Propietà dei materiali


• sezione 1 H=30.00 [cm]

Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$
[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm ²] / m	[cm]
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50

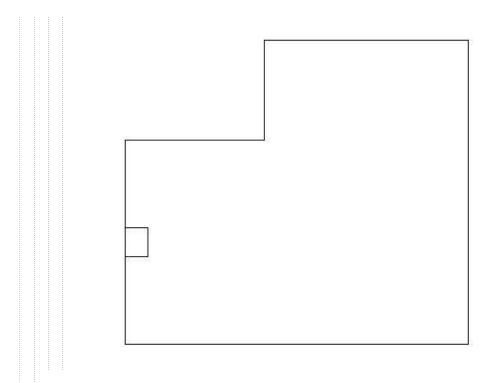
▲Azioni di verifica combinazione 1 (5.20 0.31 [m])


	M_{xx}	162.32	[kgm/m]	M ₁₁	-1218.15	[kgm/m]
	M_{y}	1216.77	[kgm/m]	M ₂₂	-160.94	[kgm/m]
I	M_{xy}	-38.12	[kgm/m]	α	-2.07	[º]

Cr=S/R Posizione		Acc	Acciaio		Calcestruzzo			
	Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.09	Estradosso	0.538	17.335	20.990	0.018	-80.12	
		Intradosso	-0.024	-0.399	-0.057	-3.500	7.78	

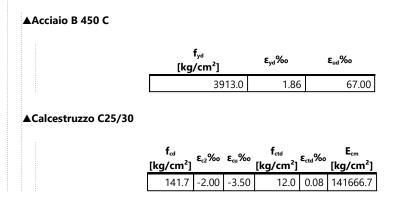
▲Verifiche SLU *Flessione* elemento nodi 736 745

▲Propietà dei materiali


• sezione 1 H=30.00 [cm]

Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50

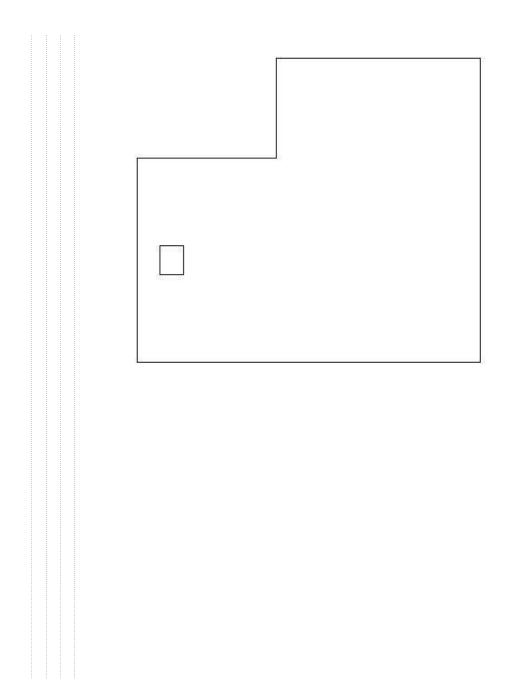
▲Azioni di verifica combinazione 1 (0.25 2.20 [m])

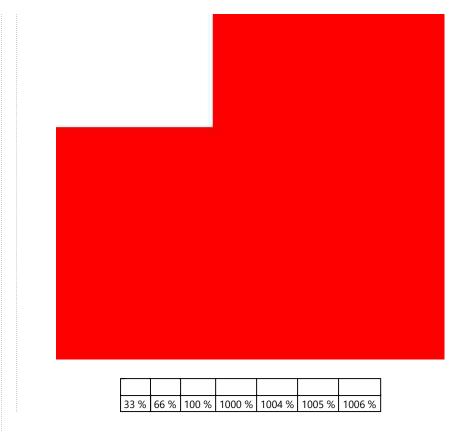

	M_{xx}	1517.90	[kgm/m]	M ₁₁	-1518.52	[kgm/m]
	M_{y}	267.94	[kgm/m]	M ₂₂	-267.32	[kgm/m]
I	M_{xy}	-27.78	[kgm/m]	α	1.27	[°]

C. C/D D:-:		Acciaio		Calcestruzzo			
	Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
	0.11	Estradosso	17.631	0.349	21.067	0.067	-7.43
		Intradosso	-0.379	-0.057	-0.090	-3.500	84.13

▲Verifiche SLU *Flessione* elemento nodi 728 737

▲Propietà dei materiali


• sezione 1 H=30.00 [cm]


Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]	[cm ²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (0.75 2.20 [m])

	M_{xx}	537.05	[kgm/m]	M ₁₁	-537.20	[kgm/m]
	M_{y}	202.60	[kgm/m]	M ₂₂	-202.46	[kgm/m]
I	M_{xy}	-7.00	[kgm/m]	α	1.20	[°]

C C/D Di-i		Acciaio		Calcestruzzo			
	Cr=S/R Posizione		ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{max} ‰	θ [°]
	0.07	Estradosso	24.012	0.262	28.128	0.230	-3.32
		Intradosso	0.530	-0.100	-0.155	-3.500	87.26

▲Computo reti di armatura

▲Computo armature estradosso

Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	13.2	159.8
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	28.8	348.5
top ø 14/20' X c=3.50 [cm]	2.2	13.4
top ø 14/20' X c=3.50 [cm]	4.1	24.8
top ø 14/20' X c=3.50 [cm]	1.7	10.5
top ø 14/20' Y c=3.50 [cm]	2.3	14.2
top ø 14/20' Y c=3.50 [cm]	2.3	14.0

top ø 14/20' Y c=3.50 [cm]	4.6	28.1
Totali	59.5	613.4

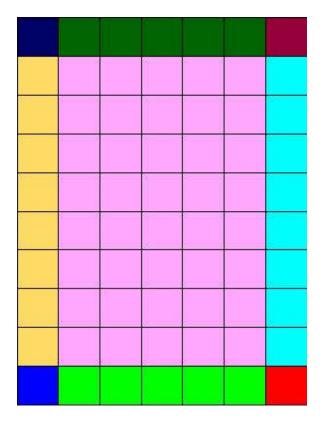
▲Computo armature intradosso

Rete	Area [m²]	Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	13.2	159.8
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	28.8	348.5
bottom ø 14/20' X c=3.50 [cm]	2.2	13.4
bottom ø 14/20' X c=3.50 [cm]	4.1	24.8
bottom ø 14/20' X c=3.50 [cm]	1.7	10.5
bottom ø 14/20' Y c=3.50 [cm]	2.3	14.2
bottom ø 14/20' Y c=3.50 [cm]	2.3	14.0
bottom ø 14/20' Y c=3.50 [cm]	4.6	28.1
Totali	59.5	613.4

▲Area, Volume, incidenze

Superficie 42.0 [m²]

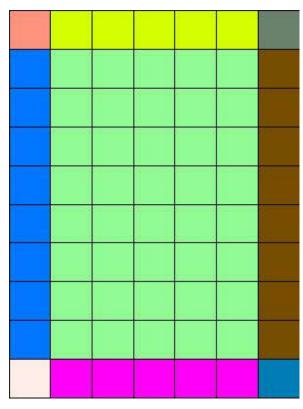
Volume 12.6 [m³]


Peso totale armature 1226.8 [kg]

Incidenza armature per unità di superficie 29.2 [kg/m²]

Incidenza armature per unità di volume 97.3 [kg/m³]

▲Lastra_741-748-114-107


▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 16/20' X c=3.50 [cm]
	top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 16/20' X c=3.50 [cm]
	top ø 16/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 16/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 16/20' X c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 16/20' X c=3.50 [cm] top ø 16/20' Y c=3.50 [cm]

▲Mappa armature di Intradosso

Colore	Armature
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]

	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]
·	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	bottom ø 16/20' X c=3.50 [cm]
	bottom ø 16/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \epsilon c1/\epsilon c2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Shell* elemento nodi 137 113

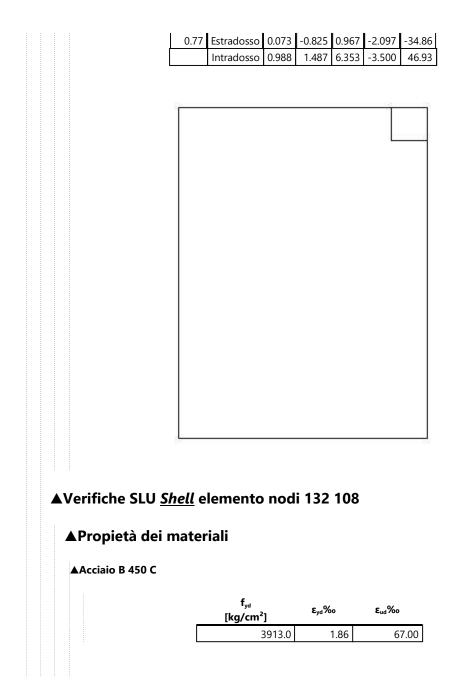
▲Propietà dei materiali

▲Acciaio B 450 C

▲Calcestruzzo C25/30

f _{cd} [kg/cm²]	ε.2‰	ε _{cu} ‰	f _{ctd} [kg/cm²]	ε _{ctd} ‰	E _{cm} [kg/cm²]
141.7	-2.00	-3.50	12.0	0.08	141666.7

▲Sezione


• sezione 2 H=40.00 [cm]

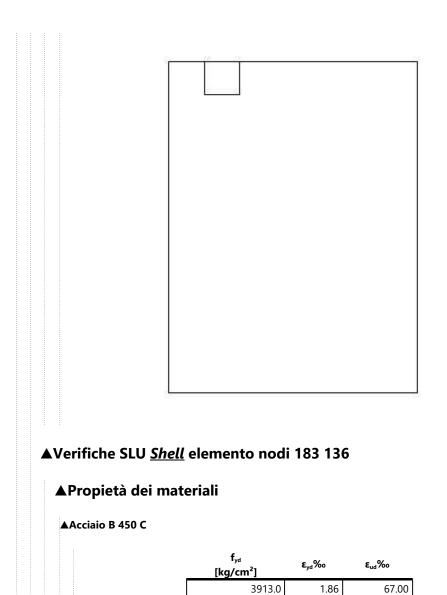
Estradosso				Intradosso			
Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}
[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
		4		47.75	2.50	17.75	2.50

▲Azioni di verifica combinazione 2 (4.09 5.59 [m])

	N _x	-51173.2	[kg/m]	N ₁₁	-28081.9	[kg/m]
	N _y	-118645.3	[kg/m]	N ₂₂	-141736.6	[kg/m]
١	N _{xy}	45730.0	[kg/m]	α	26.79	[°]
Ν	∕ I _{xx}	-3646.83	[kgm/m]	M ₁₁	708.47	[kgm/m]
1	M _y	-17262.05	[kgm/m]	M ₂₂	20200.41	[kgm/m]
Ν	I_{xy}	-6974.26	[kgm/m]	α	22.85	[°]

▲Calcestruzzo C25/30

▲Sezione


• sezione 2 H=40.00 [cm]

Estradosso				Intradosso				
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
7.70	3.50	17.75	3.50	7.70	3.50	17.75	3.50	

▲Azioni di verifica combinazione 1 (0.94 5.59 [m])

N _x	-687.6	[kg/m]	N ₁₁	-217.6	[kg/m]
N _y	-4762.8	[kg/m]	N ₂₂	-5232.8	[kg/m]
N _{xy}	-1461.6	[kg/m]	α	-17.83	[°]
M _{xx}	-110.84	[kgm/m]	M ₁₁	1090.84	[kgm/m]
M _y	1828.21	[kgm/m]	M ₂₂	-2808.22	[kgm/m]
M _{xy}	-1691.36	[kgm/m]	α	-30.09	[°]

C C /D	Dii	Acciaio		Calcestruzzo		
Cr=5/K	Posizione	ε,‰	ε _y ‰	ε _{min} ‰	ε _{max} ‰	θ [º]
0.17	Estradosso	2.205	1.695	7.626	-3.500	-44.03
	Intradosso	1.819	0.155	4.927	-3.178	38.59

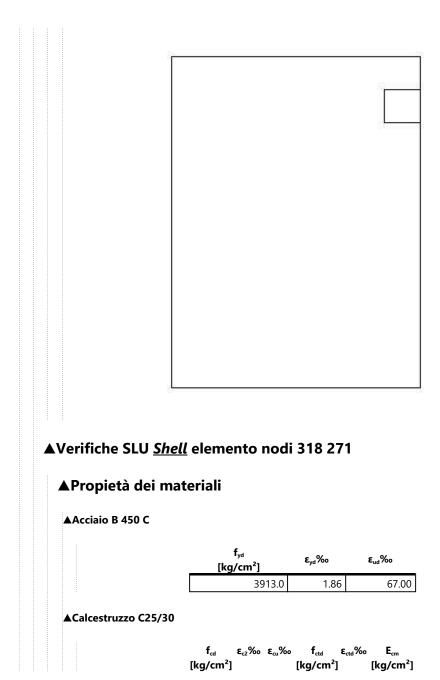
▲Calcestruzzo C25/30

 f_{cd} ϵ_{c2} % ϵ_{cu} % f_{ctd} ϵ_{ctd} % g/cm^2] [kg/cm²]

[kg/cm²]

141.7 -2.00 -3.50 12.0	0.08 141666.7
------------------------	---------------

▲Sezione


• sezione 2 H=40.00 [cm]

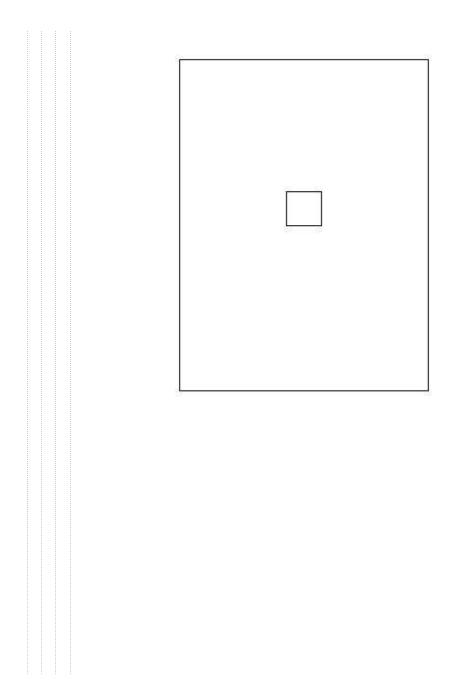
Estradosso					Intra	dosso	
Af _x	$cf_{x,Eq}$	Af _y	$cf_{y,Eq}$	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
17.75	3.50	7.70	3.50	17.75	3.50	7.70	3.50

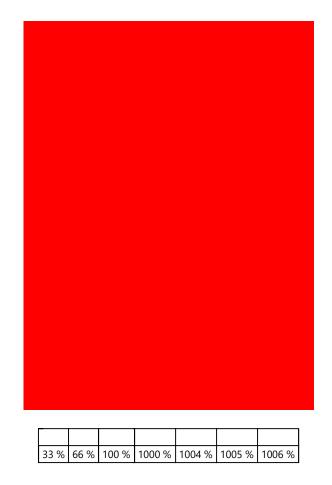
▲Azioni di verifica combinazione 2 (4.09 5.00 [m])

N _x	-4060.3	[kg/m]	N ₁₁	-3221.5	[kg/m]
N _y	-78515.4	[kg/m]	N ₂₂	-79354.2	[kg/m]
N _{xy}	7947.1	[kg/m]	α	6.03	[°]
M _{xx}	-206.97	[kgm/m]	M ₁₁	-213.18	[kgm/m]
M_{y}	-876.67	[kgm/m]	M ₂₂	1296.82	[kgm/m]
M _{xy}	676.68	[kgm/m]	α	-31.84	[°]

Cr=S/R Posizione		Acc	iaio	Ca	lcestruz	zo	
		Posizione	ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	ε _{max} ‰	θ [°]
	0.16	Estradosso	-0.128	-3.074	-0.004	-3.500	11.46
		Intradosso	-0.010	-0.615	0.055	-0.379	-20.19

▲Sezione


• sezione 2 H=40.00 [cm]


Estradosso					Intra	dosso	
Af _x	,	,	,,-4	Af_{x}		,	J/-4
[cm ²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (2.20 3.23 [m])

N _x	-13990.4	[kg/m]	N ₁₁	-16015.2	[kg/m]
N _y	-6970.3	[kg/m]	N ₂₂	-4945.5	[kg/m]
N _{xy}	4279.4	[kg/m]	α	-25.32	[°]
M _{xx}	-4861.84	[kgm/m]	M ₁₁	4864.44	[kgm/m]
M _y	-2720.56	[kgm/m]	M ₂₂	2717.96	[kgm/m]
M _{xy}	74.66	[kgm/m]	α	1.99	[°]

Cr=S/R Posizione		Acc	iaio	Ca	lcestruz	zo
		ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	ε _{max} ‰	θ [°]
0.28	Estradosso	-0.806	-0.108	-0.241	-3.500	-75.18
	Intradosso	20.382	2.854	26.033	0.032	20.43

▲Computo reti di armatura

▲Computo armature estradosso

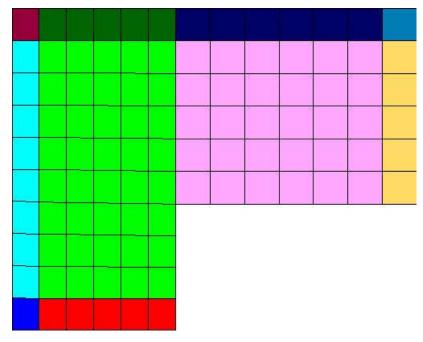
Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	25.9	312.5
top ø 16/20' X c=3.50 [cm]	3.7	28.9
top ø 16/20' X c=3.50 [cm]	3.7	29.3
top ø 16/20' Y c=3.50 [cm]	2.6	20.5
top ø 16/20' Y c=3.50 [cm]	2.6	20.5

	Totali	38.4	411.7
4	Computo armature intradosso		
	Rete	Area [m²]	a Peso] [kg]
	bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm	1] 25.9	312.5
	bottom ø 16/20' X c=3.50 [cm	1] 3.7	28.9
	bottom ø 16/20' X c=3.50 [cm	1] 3.7	29.3
	bottom ø 16/20' Y c=3.50 [cm	1] 2.6	20.5
	bottom ø 16/20' Y c=3.50 [cm	1] 2.6	20.5
	Tota	li 38.4	411.7

▲Area, Volume, incidenze

Superficie 25.9 [m²]

Volume 10.3 [m³]


Peso totale armature 823.4 [kg]

Incidenza armature per unità di superficie 31.8 [kg/m²]

Incidenza armature per unità di volume 79.6 [kg/m³]

▲Lastra_748-696-420-385-10-114

▲Mappa armature di Estradosso

Colore	Armature
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]
	top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm]

top ø 14/20' X + ø 14/20' Y c=3.50 [cm] top ø 14/20' X c=3.50 [cm] top ø 14/20' Y c=3.50 [cm] **▲**Mappa armature di Intradosso Colore **Armature** bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm] bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X c=3.50 [cm]

bottom ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]

bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]
bottom ø 14/20' X c=3.50 [cm]
bottom ø 14/20' Y c=3.50 [cm]

▲Impostazioni di verifica

▲Curva σ/ε Calcestruzzo secondo:

Hognestad

▲Modellazione softening (trazione/compressione)

• $fc_{d,soft} = fc_d 0.9/sqrt(1+400 \text{ }\epsilon t) \text{ (Hognestad)}$

▲Modellazione compressione biassiale

• $fc_{d,biaxial} = fc_d (1 + 3.8 \alpha) / (1.0 + \alpha)^2 / \alpha = \varepsilon c 1/\varepsilon c 2 (EC2 Ponti 6.110)$

▲Curva σ/ε Acciaio secondo:

• Elastico plastico (EC2 standard)

▲Elementi più sollecitati per tipologia di sezione

▲Verifiche SLU *Flessione* elemento nodi 159 50

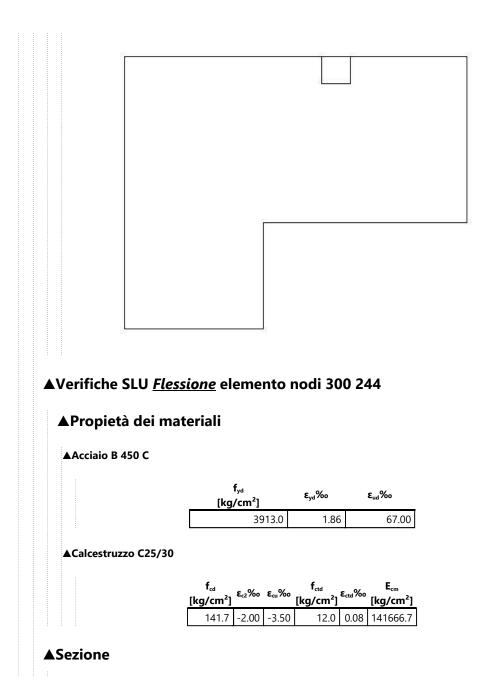
▲Propietà dei materiali

▲Acciaio B 450 C

f _{yd} [kg/cm²]	ε _{yd} ‰	ε _{ud} ‰	
3913.0	1.86	67.00	

▲Calcestruzzo C25/30

▲Sezione

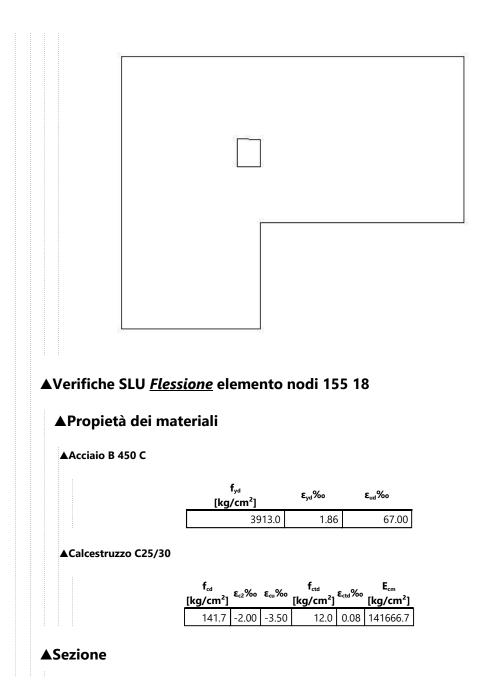

• sezione 2 H=40.00 [cm]

Estradosso				Intradosso				
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
7.70	3.50	15.39	3.50	7.70	3.50	15.39	3.50	

▲Azioni di verifica combinazione 1 (4.57 5.58 [m])

M_{xx}	-146.86	[kgm/m]	M ₁₁	253.06	[kgm/m]
M_{y}	1985.10	[kgm/m]	M ₂₂	-2091.31	[kgm/m]
M _{xy}	-487.55	[kgm/m]	α	-12.29	[°]

Cr=S/R Posizione		Acc	iaio	Calcestruzzo			
		ε _× ‰	ε _y ‰	$\epsilon_{\text{min}}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
	0.11	Estradosso	2.354	19.914	25.431	-0.535	-69.74
		Intradosso	0.437	-0.609	0.700	-3.500	19.93

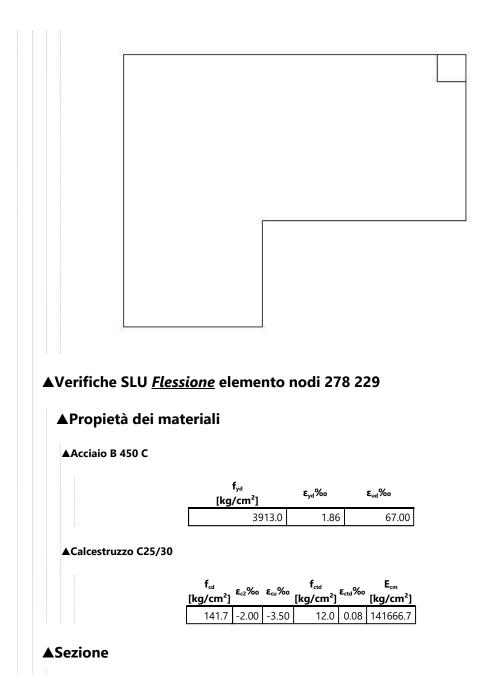

• sezione 2 H=40.00 [cm]

Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm ²] / m	[cm]	[cm²] / m	[cm]
7.70	3.50	7.70	3.50	7.70	3.50	7.70	3.50

▲Azioni di verifica combinazione 1 (2.75 3.79 [m])

	M _{xx}	2698.85	[kgm/m]	M ₁₁	-2699.81	[kgm/m]
I	M_{y}	154.92	[kgm/m]	M ₂₂	-153.96	[kgm/m]
	M_{xy}	-49.36	[kgm/m]	α	0.45	[°]

c c/D		Acc	iaio	Calcestruzzo			
Cr=S/R	Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]	
0.26	Estradosso	33.819	0.063	37.793	0.009	-2.33	
	Intradosso	0.415	-0.008	-0.012	-3.500	88.03	

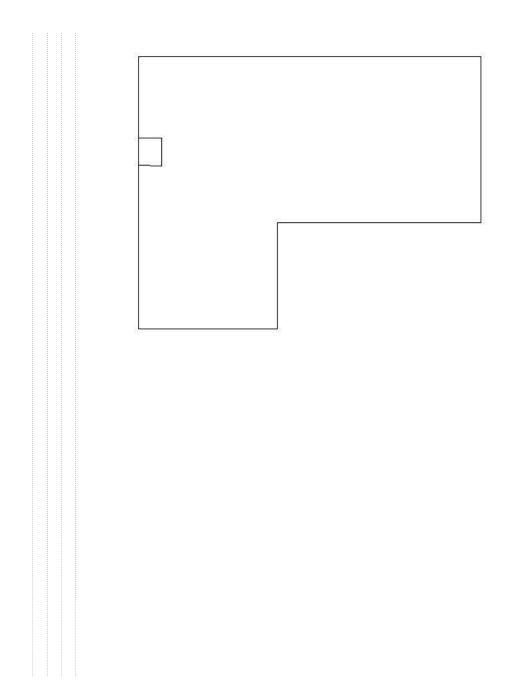

• sezione 2 H=40.00 [cm]

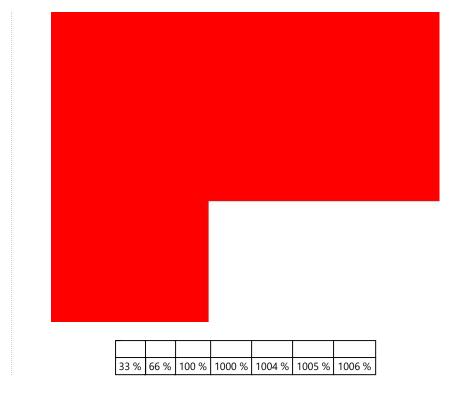
	Estradosso				Intradosso			
	,	,	J,1		,	Af _y	J/-4	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
15.39	3.50	15.39	3.50	15.39	3.50	15.39	3.50	

▲Azioni di verifica combinazione 2 (7.09 5.58 [m])

M _{xx}	1849.96	[kgm/m]	M ₁₁	-1919.71	[kgm/m]
M_{y}	-4378.50	[kgm/m]	M ₂₂	4448.25	[kgm/m]
M _{xy}	-662.79	[kgm/m]	α	6.01	[°]

	c c/D		Ace	ciaio	Calcestruzzo		
Cr=S/R F		Posizione	ε,‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
	0.23	Estradosso	0.820	-0.687	1.090	-3.500	-12.74
		Intradosso	0.421	21.436	25.098	-0.697	78.24


• sezione 2 H=40.00 [cm]


	Estradosso				Intradosso			
Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{y,Eq}$	
[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	[cm²] / m	[cm]	
15.39	3.50	7.70	3.50	15.39	3.50	7.70	3.50	

▲Azioni di verifica combinazione 1 (0.25 3.82 [m])

M _{xx}	4980.36	[kgm/m]	M ₁₁	-4983.82	[kgm/m]
M_{y}	464.36	[kgm/m]	M ₂₂	-460.91	[kgm/m]
M_{xy}	124.88	[kgm/m]	α	-2.24	[°]

	c c/D		Acciaio		Calcestruzzo		
Cr=S/R		Posizione	ε _× ‰	ε _y ‰	$\epsilon_{min}\%$	$\epsilon_{\text{max}}\%_{\text{o}}$	θ [°]
	0.25	Estradosso	25.728	0.276	29.081	0.019	5.75
		Intradosso	-0.414	-0.024	-0.034	-3.500	-85.16

▲Computo reti di armatura

▲Computo armature estradosso

Rete	Area [m²]	Peso [kg]
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	17.7	213.7
top ø 14/20' X + ø 14/20' Y c=3.50 [cm]	15.7	189.9
top ø 14/20' X c=3.50 [cm]	3.0	17.9
top ø 14/20' X c=3.50 [cm]	2.2	13.5
top ø 14/20' Y c=3.50 [cm]	4.4	26.4
top ø 14/20' Y c=3.50 [cm]	1.7	10.5
Totali	44.7	471.9

▲Computo armature intradosso

Rete	Area [m²]	Peso [kg]
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	17.7	213.7
bottom ø 14/20' X + ø 14/20' Y c=3.50 [cm]	15.7	189.9
bottom ø 14/20' X c=3.50 [cm]	3.0	17.9
bottom ø 14/20' X c=3.50 [cm]	2.2	13.5
bottom ø 14/20' Y c=3.50 [cm]	4.4	26.4
bottom ø 14/20' Y c=3.50 [cm]	1.7	10.5
Totali	44.7	471.9

▲Area, Volume, incidenze

Superficie 33.4 [m²]

Volume 13.4 [m³]

Peso totale armature 943.9 [kg]

Incidenza armature per unità di superficie 28.3 [kg/m²]

Incidenza armature per unità di volume 70.7 [kg/m³]

- En.Ex.Sys. WinStrand
- Verifiche lastre/piastre