

COMUNE DI NARO

COMUNE DI LICATA

Proponente

SIRIO RINNOVABILI S.R.L.

Largo Augusto n.3 20122 Milano pec:siriorinnovabili@legalmail.it

NICOLA GALDIERO
NICOLA GALDIERO
NICOLA GALDIERO
NICOLA GALDIERO
NICOLA GALDIERO
NICOLA AVELALE
NO ISCRIZIONE
17370

N° ISCRIZIONE: 17962 Collaboratori:

PASOMALE ESPOSITO

Ing. M.Ciano

Progettazione

Viale Michelangelo, 71 80129 Napoli TEL. 081 579 7998 mail: tecnico@insesrl.it

Amm. Francesco Di Maso Ing. Nicola Galdiero Ing. Pasquale Esposito Dott. G. Giardina
Dott. Angelo Scuderi
Eikon servizi per i beni culturali SAS
Geol. V.E. Iervolino
SR International Srl
Arch. C. Gaudiero
Ing. F. Quarto
Ing. R. D'Onofrio

Nome Elaborato:

∃laborato

RELAZIONE CAMPI ELETTRICI E MAGNETICI

00	Ottobre 2023	PRIMA EMISSIONE	INSE Srl	INSE Srl	Sirio Rinnovabili s.r.l.
Rev.	Data	Oggetto della revisione	Elaborazione	Verifica	Approvazione
Scala:	-:-				

Scala: -:-

Formato: A4 Codice Pratica S314 Codice Elaborato MS314-OEL02-R

Cod. MS314-OEL02-R

Data

Ottobre 2023

Rev. 00

Sommario

1	PREMESSA						
2	RICHIAMI NORMATIVI						
3	NOR	NORMATIVA DI RIFERIMENTO					
	3.1	LEGGI	,				
	3.1						
	3.2	NORME TECNICHE	4				
	3.2.1	Norme CEI	2				
4		PI ELETTRICI E MAGNETICI					
-							
5	VALU	JTAZIONE CEM - CAVIDOTTI AT 36 KV	6				
	5.1	CONFIGURAZIONE DI CALCOLO	7				
	5.2	CALCOLO DEL CAMPO MAGNETICO	8				
	5.3	MAPPE COLORATE – VALUTAZIONE DpA	11				
6	CABI	NA DI SMISTAMENTO 36 KV "UTENTE"	15				
_	CON	CLUCIONI	4.5				

Cod. MS314-OEL02-R

Data Ottobre 2023

Rev. 00

1 PREMESSA

La società Sirio Rinnovabili Srl, è proponente di un progetto di produzione di energia rinnovabile da fonte eolica ubicato nel Comune di Naro in provincia di Agrigento con annesse opere di connessione nei Comuni di Naro (AG), Campobello di Licata (AG) e Licata (AG).

L'ipotesi progettuale prevede l'installazione di n.12 aerogeneratori della potenza nominale di 6,0 MW per una potenza complessiva di impianto pari a 72 MW. Gli aerogeneratori saranno collegati tra loro attraverso cavidotti interrati a 36 kV che collegheranno il parco eolico ad una cabina utente 36 kV di smistamento e sezionamento e da questa alla futura SE RTN di trasformazione 220/36 kV di Licata (AG), che rappresenta il punto di connessione dell'impianto alla RTN.

La società Terna ha rilasciato alla Società Sirio Rinnovabili S.r.l. la "Soluzione Tecnica Minima Generale" n. 202301751 del 03/05/2023 indicando le modalità di connessione che, al fine di razionalizzare l'utilizzo delle opere di rete per la connessione, prevede la condivisione dello stallo AT nel futuro stallo 36 kV di una nuova stazione di trasformazione 220/36 kV della RTN, da inserire in entra-esce su entrambe le terne della linea RTN "Favara – Chiaramonte Gulfi".

Pertanto, il progetto del collegamento elettrico del suddetto parco alla RTN prevede la realizzazione delle seguenti opere:

- a) Rete in cavo interrato in AT a 36 kV dall'impianto di produzione prima alla cabina di smistamento e sezionamento 36 kV, poi alla stazione di trasformazione RTN 220/36 kV;
- b) Cabina di smistamento e sezionamento 36 kV;
- c) SE 220/36 kV RTN localizzata nel territorio comunale di Licata (AG);

Le opere di cui ai punti a) e b) costituiscono opere di utenza del proponente. L'opera di cui al punto c) costituisce opere di Rete e sono state progettate da altro produttore.

La presente relazione illustra il calcolo dei campi elettrici e magnetici e la fascia di rispetto relativi alle opere di cui ai punti a) e b).

2 RICHIAMI NORMATIVI

Le linee guida per la limitazione dell'esposizione ai campi elettrici e magnetici variabili nel tempo ed ai campi elettromagnetici sono state indicate nel 1998 dalla ICNIRP.

Il 12-7-99 il Consiglio dell'Unione Europea ha emesso una Raccomandazione agli Stati Membri volta alla creazione di un quadro di protezione della popolazione dai campi elettromagnetici, che si basa sui migliori dati scientifici esistenti; a tale proposito, il Consiglio ha avallato proprio le linee guida dell'ICNIRP.

Cod. MS314-OEL02-R

Data

Rev. 00 Ottobre 2023

Successivamente nel 2001, a seguito di un'ultima analisi condotta sulla letteratura scientifica, un Comitato di esperti della Commissione Europea ha raccomandato alla CE di continuare a adottare tali linee guida.

Successivamente è intervenuta, con finalità di riordino e miglioramento della normativa allora vigente in materia, la Legge quadro 36/2001, che ha individuato ben tre livelli di esposizione ed ha affidato allo Stato il compito di determinare e di aggiornare periodicamente i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità, in relazione agli impianti suscettibili di provocare inquinamento elettromagnetico.

L'art. 3 della Legge 36/2001 ha definito:

- limite di esposizione il valore di campo elettromagnetico da osservare ai fini della tutela della salute da effetti acuti;
- valore di attenzione, come quel valore del campo elettromagnetico da osservare quale misura di cautela ai fini della protezione da possibili effetti a lungo termine;
- l'obiettivo di qualità come criterio localizzativo e standard urbanistico, oltre che come valore di campo elettromagnetico ai fini della progressiva minimizzazione dell'esposizione.

Tale legge quadro italiana (36/2001), come ricordato sempre dal citato Comitato, è stata emanata nonostante che le raccomandazioni del Consiglio della Comunità Europea del 12-7-99 sollecitassero gli Stati membri ad utilizzare le linee guida internazionali stabilite dall'ICNIRP; tutti i paesi dell'Unione Europea, hanno accettato il parere del Consiglio della CE, mentre l'Italia ha adottato misure più restrittive di quelle indicate dagli Organismi internazionali.

In esecuzione della predetta Legge, è stato infatti emanato il D.P.C.M. 08.07.2003, che ha fissato il limite di esposizione in 100 μT per l'induzione magnetica e 5 kV/m per il campo elettrico; ha stabilito il valore di attenzione di 10 µT, a titolo di cautela per la protezione da possibili effetti a lungo termine nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere; ha fissato, quale obiettivo di qualità, da osservare nella progettazione di nuovi elettrodotti, il valore di 3 µT. È stato altresì esplicitamente chiarito che tali valori sono da intendersi come mediana di valori nell'arco delle 24 ore, in condizioni normali di esercizio. Non si deve dunque fare riferimento al valore massimo di corrente eventualmente sopportabile da parte della linea.

Al riguardo è opportuno anche ricordare che, in relazione ai campi elettromagnetici, la tutela della salute viene attuata – nell'intero territorio nazionale – esclusivamente attraverso il rispetto dei limiti prescritti dal D.P.C.M. 08.07.2003, al quale soltanto può farsi utile riferimento.

In tal senso, con sentenza n. 307 del 7.10.2003 la Corte costituzionale ha dichiarato l'illegittimità di alcune leggi regionali in materia di tutela dai campi elettromagnetici, per violazione dei criteri in tema di ripartizione di competenze fra Stato e Regione stabiliti dal nuovo Titolo V della Costituzione.

Cod. MS314-OEL02-R

Data Ottobre 2023

Rev. 00

3 NORMATIVA DI RIFERIMENTO

3.1 LEGGI

- Regio Decreto 11 dicembre 1933 n° 1775 "Testo Unico delle disposizioni di legge in merito alle acque ed agli impianti elettrici.
- Legge 23 agosto 2004, n. 239, "Riordino del Settore Energetico nonché delega al Governo per il riassetto delle disposizioni vigenti in materia di energie".
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", (G.U. n. 55 del 7 marzo 2001).
- Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", (GU n. 200 del 29-8-2003).
- Decreto del Presidente del Consiglio dei Ministri 8 giugno 2001 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità.
- Legge 24 luglio 1990 n° 241, "Norme sul procedimento amministrativo in materia di conferenza dei servizi".
- Decreto Legislativo 22 gennaio 2004 n° 42 "Codice dei Beni Ambientali e del Paesaggio".
- Decreto Del Presidente Del Consiglio Dei Ministri 12 dicembre 2005 "Verifica Compatibilità
 Paesaggistica ai sensi dell'art 146 del Codice dei Beni Ambientali e Culturali".
- Decreto Ministeriale del 21 marzo 1988,"Disciplina per la costruzione delle linee elettriche aeree esterne" e successivi.
- Decreto Legislativo 21 dicembre 2003 n.°387 "Attuazione della Direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili".
- Decreto Ministero Ambiente e Tutela del Territorio del 29 maggio 2008 in merito ai criteri per la determinazione della fascia di rispetto.

3.2 NORME TECNICHE

3.2.1 Norme CEI

- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", prima edizione, 1996-07.
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz - 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01.
- CEI 106-11, "Guida per la determinazione della fascia di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art.6).

Cod. MS314-OEL02-R

Data

Rev. 00 Ottobre 2023

Pag. 5

CAMPI ELETTRICI E MAGNETICI

L'elettrodotto (sia aereo che in cavo) durante il suo normale funzionamento genera un campo elettrico ed un campo magnetico. Il primo è proporzionale alla tensione della linea stessa, mentre il secondo è proporzionale alla corrente. Entrambi decrescono molto rapidamente con la distanza dalla sorgente (conduttore).

Per il calcolo dei campi è stato utilizzato il programma "EMF Vers 4.03", in conformità alla norma CEI 211 -4 in accordo a quanto disposto dal D.P.C.M. 08/07/2003.

La metodologia di calcolo utilizzata per determinare i valori dei campi elettromagnetici è basata sull'algoritmo bidimensionale normalizzato nella CEI 211-4, considerato idoneo per la maggior parte delle situazioni pratiche riscontrabili per le linee aeree e in cavo. In particolare, il campo di induzione magnetica viene simulato utilizzando un algoritmo numerico basato sulla legge di Biot - Savart, mentre il campo elettrico viene simulato a mezzo di calcoli basati sul metodo delle cariche immagini. Alla frequenza di rete (50 Hz), il regime elettrico è di tipo quasi stazionario, e ciò permette la trattazione separata degli effetti delle componenti del campo elettrico e del campo magnetico. Questi ultimi in un punto qualsiasi dello spazio in prossimità di un elettrodotto trifase sono le somme vettoriali dei campi originati da ciascuna delle tre fasi e sfasati fra loro di 120°. In particolare, nel caso di un cavo interrato, il terreno di ricopertura ha un effetto schermante che annulla completamente il campo elettrico a livello del suolo. I risultati delle simulazioni sono rappresentati nei paragrafi che seguono.

I valori restituiti sono illustrati mediante due diverse modalità:

- I profili laterali visualizzano le curve del campo elettrico e dell'induzione magnetica calcolati dal programma per la configurazione degli elettrodotti in esame su un piano parallelo al piano di campagna (suolo). I valori delle ascisse sono espressi in metri ed indicano la distanza dal punto di origine del sistema cartesiano di riferimento, mentre l'ordinata è espressa in μT o kV/m e rappresenta il valore del campo calcolato relativamente a punti situati all'altezza del piano considerato rispetto al piano di campagna.
- Le mappe verticali rappresentano, mediante la visualizzazione di aree colorate, l'andamento dei campi calcolati nella sezione verticale perpendicolare all'asse dell'elettrodotto; i valori espressi in metri sull'ascissa indicano la distanza rispetto al punto di origine del sistema cartesiano di riferimento, l'ordinata rappresenta invece, sempre in metri, l'altezza da terra.

La linea elettrica in cavo interrato non produce campo elettrico per la presenza della guaina metallica collegata a terra e dallo schermo effettuato dal terreno e pertanto vengono illustrati gli andamenti del campo magnetico e solo per le sezioni dove si riscontrano le condizioni definite dalla normativa vigente.

Cod. MS314-OEL02-R

Data Ottobre 2023

Rev. 00

5 VALUTAZIONE CEM - CAVIDOTTI AT 36 KV

Per il collegamento tra gli aerogeneratori, la cabina di smistamento e sezionamento 36 kV è stato scelto di posare cavi AT in alluminio unipolari da 120 e 240 mm² per i quali sono stati realizzati i calcoli elettrici per ricavarne la distanza di prima approssimazione.

Per il collegamento tra la cabina di smistamento e sezionamento a 36 kV e la futura SE 220/36 kV RTN sita nel comune di Licata (AG) si è scelto invece di posare tre cavidotti AT da 36 kV unipolari aventi sezione del conduttore di 500 mm².

Lo schema tipo del cavo 36 kV è il seguente:

APPLICATIONS AND CHARACTERISTICS

In HV energy distribution networks for voltage systems **up to 42kV.**Suitable for fixed installation indoor or outdoor laying in air or directly or indirectly buried, also in wet location.

SHOCK PROOF SK2 has a very good shock resistance characteristics. The two special outer sheaths provide an excellent protection against impact and mechanical abuse during the lifetime of the cable.

Shock Proof SK2 cable performances has been evaluated against mechanical protection by the abrasion test and the impact test included in CEI 20-68 standard.

This type of cable can be directly buried without additional protections because it is comparable to an armoured cable.

FUNCTIONAL CHARACTERISTICS

Rated voltage U_0/U : 20,8/36 kV Maximum voltage U_m : 42 kV Test voltage: 2,5 U_o Max operating temperature of conductor: 90 °C

Max short-circuit temperature: 250 °C (for max 5 s)

Max short-circuit temperature (screen): 150 °C

CONSTRUCTION

- 1. Conductor
- stranded, compacted, round, aluminium class 2 acc. to IEC 60228
- 2. Conductor screen
- extruded semiconducting compound
- 3. Insulation
 - extruded cross-linked polyethylene (XLPE) compound
- 4. Insulation screen
 - extruded semiconducting compound fully bonded
- 5. Longitudinal watertightness
 - semiconducting water blocking tape
- 6. Metallic screen and radial water barrier aluminium tape longitudinally applied (nominal thickness = 0,20 mm)
- 7. First sheath 1
 - extruded PE compound
- 8. Second sheath 2
 - extruded PE compound colour: red with improved impact resistance

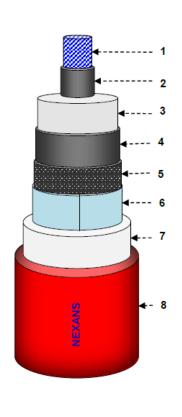
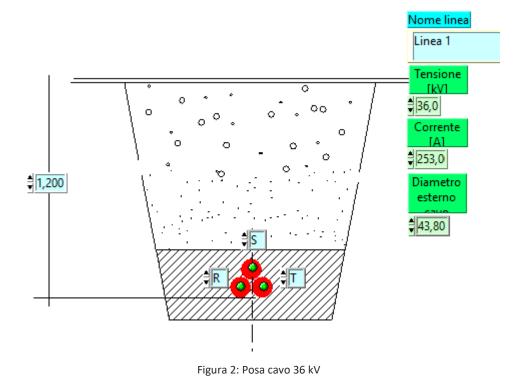


Figura 1: Schema tipo del cavo 36 kV

Cod. MS314-OEL02-R

Data Ottobre 2023


Rev. 00

5.1 CONFIGURAZIONE DI CALCOLO

Il cavo sarà posato, lungo il tracciato, in configurazione a trifoglio, con schermi collegati con il sistema "cross bonding", temperatura del conduttore non superiore a 90°, profondità di posa 1,20 m, temperatura del terreno 20°C, resistività termica del terreno 1,5°Cm/W.

Il tracciato del cavo presenterà pertanto, a titolo esemplificativo, la seguente sezione tipica di posa per un cavidotto da 120 mm² riportata schematicamente in figura 2, nella quale il cavidotto sarà collocato ad una profondità di 1,2 m. il valore di corrente varia a seconda della sezione del cavidotto adoperato in opera, ed in particolare:

	Corrente di calcolo (A)
120 mm ²	253
240 mm ²	370
500 mm ²	545

Nei tratti in cui in trincea si prevede la posa di due o tre cavidotti questi verranno posti tra loro ad una distanza di circa 30 cm tra l'interasse.

Cod. MS314-OEL02-R

Data Ottobre 2023 Rev. 00

5.2 CALCOLO DEL CAMPO MAGNETICO

Con la suddetta geometria di posa e con i valori di massimo carico descritti nel paragrafo precedente si è proceduto al calcolo del campo magnetico ad un metro sul suolo per le varie configurazioni di calcolo in progetto. Per tutte le condizioni di calcolo il massimo valore dell'induzione magnetica ad 1 metro da terra deve essere inferiore al limite di esposizione pari a 100 μ T imposto dalla normativa. Si riporta di seguito l'andamento del campo magnetico per le varie configurazioni di calcolo adottate in progetto:

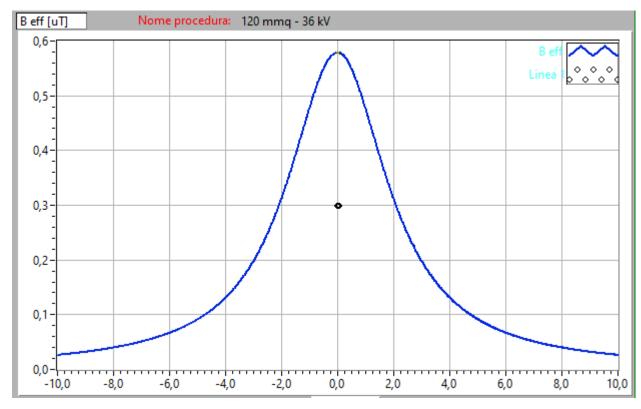


Figura 3:. Profilo laterale induzione magnetica (B) a 1 m da terra- V=36 kV- B=0,57 μ T- 1 cavo 120 mm 2

Cod. MS314-OEL02-R

Data
Ottobre 2023

Rev. 00

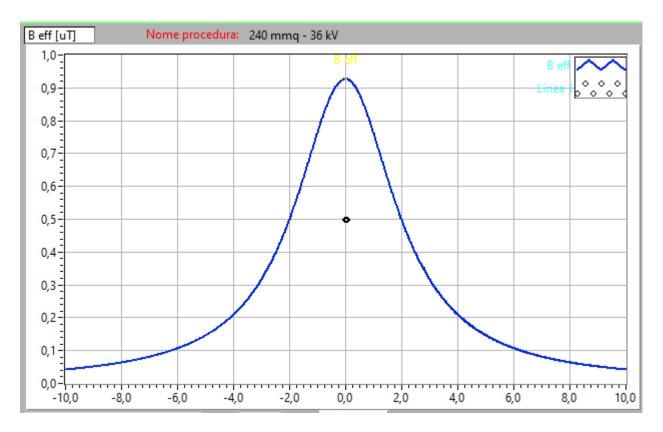


Figura 4: Profilo laterale induzione magnetica (B) a 1 m da terra- $V=36~kV-B=0.93~\mu T-1$ cavo 240 mm 2

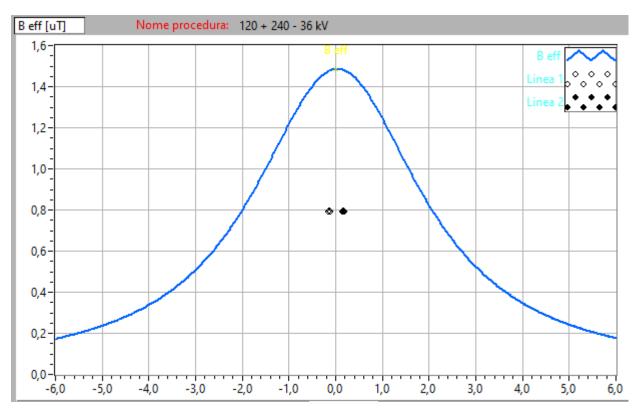


Figura 5: Profilo laterale induzione magnetica (B) a 1 m da terra- V=36 kV- B=1,48 μT- 1 cavo 120 e 240 mm²

Cod. MS314-OEL02-R

Data
Ottobre 2023

Rev. 00

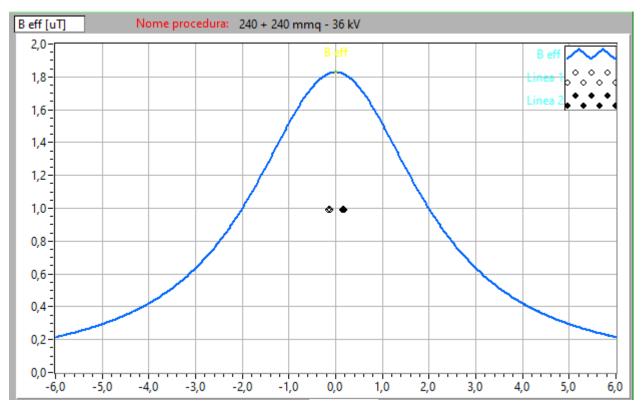


Figura 6: Profilo laterale induzione magnetica (B) a 1 m da terra- V=36 kV- B=1,83 $\mu T- 2$ cavi 240 mm²

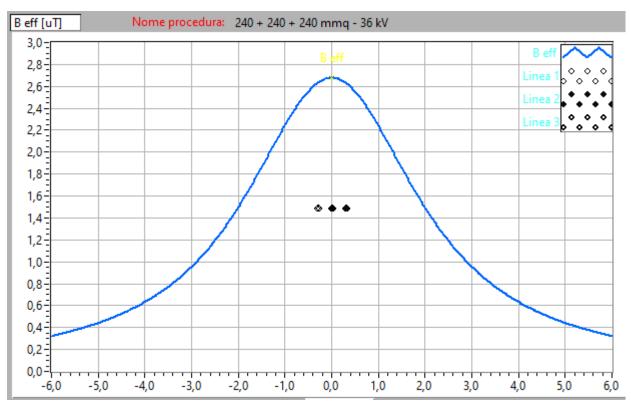


Figura 7: Profilo laterale induzione magnetica (B) a 1 m da terra- V=36 kV- B=2,68 μT- 3 cavi 240 mm²

Cod. MS314-OEL02-R

Ottobre 2023

Rev. 00

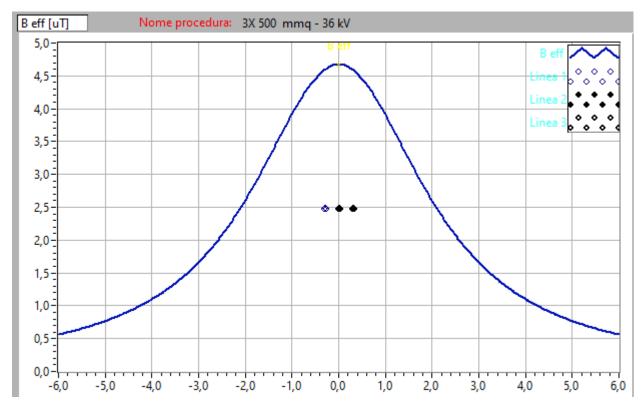


Figura 8: Profilo laterale induzione magnetica (B) a 1 m da terra- V=36 kV- B=4,67 μT- 3 cavi 500 mm²

Per tutte le condizioni di calcolo il massimo valore dell'induzione magnetica ad 1 metro da terra risulta essere inferiore al limite di esposizione pari a 100 μ T imposto dalla normativa. Anche nella configurazione di calcolo più gravosa, rappresentata nella figura 8 il valore massimo del campo magnetico calcolato ad un metro da terra è di 4,67 μ T, ben inferiore al limite normativo.

5.3 MAPPE COLORATE – VALUTAZIONE DPA

Si riporta di seguito l'andamento della fascia di rispetto e della relativa Distanza di Prima Approssimazione per le configurazioni di calcolo in progetto. Come di seguito riportato si riscontra che il massimo valore della DpA viene assunta nel tratto di collegamento tra la cabina di smistamento e sezionamento 36 kV e la futura stazione di trasformazione e condivisione 220/36 kV RTN dove sarà prevista la posa di 3 cavidotti da 500 mm².

Di seguito si riportano le mappe colorate dalle quali è possibile ricavare il valore della DpA generata:

Cod. MS314-OEL02-R

Data
Ottobre 2023

Rev. 00

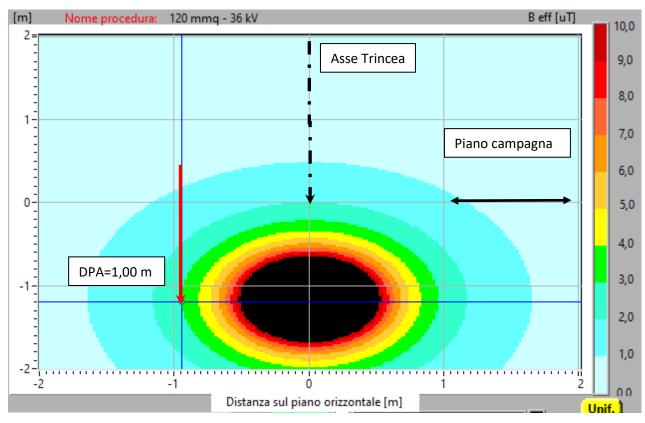


Figura 9: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA - V=36 kV - 1 cavo 120 mm²

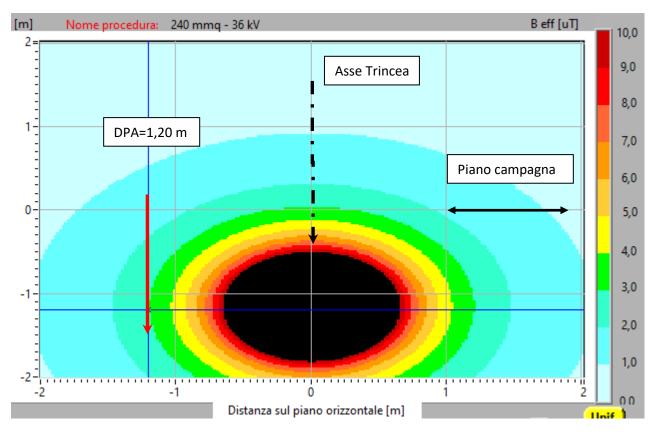


Figura 10: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA - V=36 kV - 1 cavo 240 mm²

Cod. MS314-OEL02-R

Data Ottobre 2023

Rev. 00

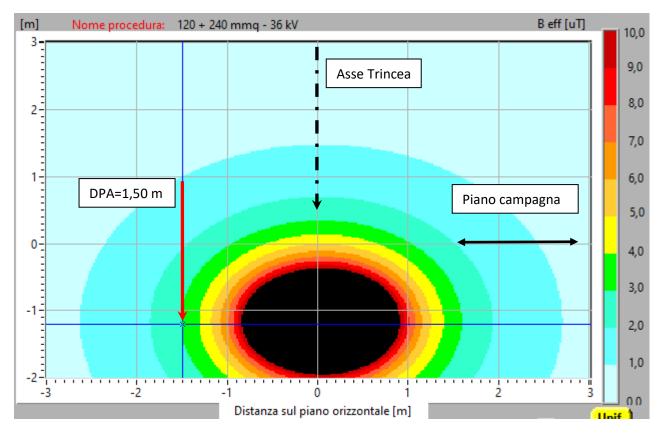


Figura 11: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA-V=36 kV-1 cavo 120 e 240 mm²

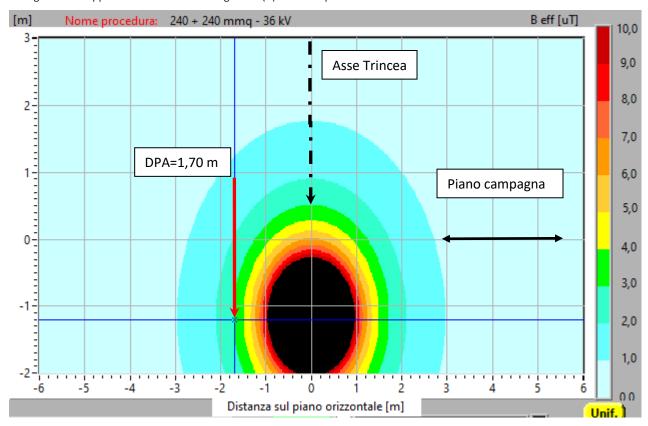


Figura 12: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA - V=36 kV - 2 cavi 240 mm²

Cod. MS314-OEL02-R

Data

Rev. 00 Ottobre 2023

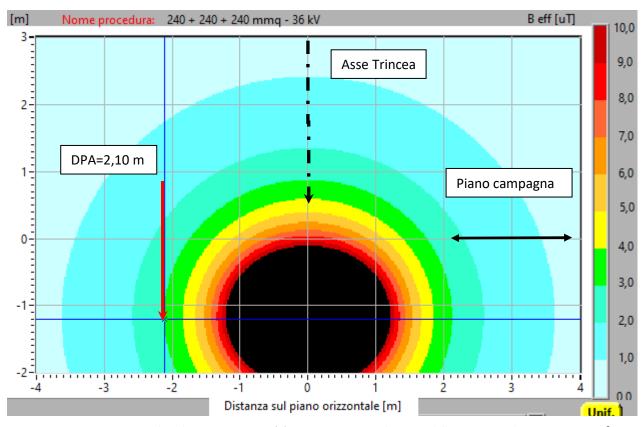


Figura 13: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA - V=36 kV - 3 cavi 240 mm²

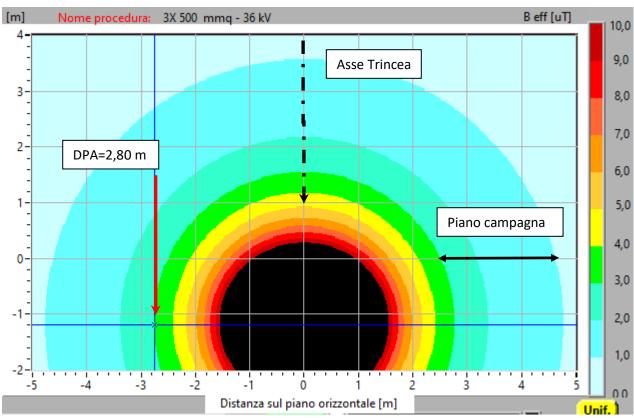


Figura 14: Mappa verticale induzione magnetica (B) sezione tipo con indicazione della DPA - V=36 kV - 3 cavi 500 mm²

Cod. MS314-OEL02-R

Data Ottobre 2023

Rev. 00

Come precedentemente anticipato, il valore massimo della DpA (distanza alla quale il valore di induzione magnetica è pari a 3 μ T) è di 3,00 m a sinistra e a destra dall'asse e pertanto la fascia di rispetto per tutto questo tratto vale circa 6 m (arrotondamento per eccesso della DPA).

6 CABINA DI SMISTAMENTO 36 KV "UTENTE"

La cabina di smistamento e sezionamento 36 kV essendo costituita da singoli scomparti metallici assemblati tra loro e realizzata in un locale all'interno di un'area recintata, per questa tipologia di impianti la Dpa e, quindi la fascia di rispetto, rientra, prevedibilmente, nei confini di pertinenza dell'impianto.

7 CONCLUSIONI

Di seguito si riportano i risultati dei calcoli effettuati per la determinazione delle fasce di rispetto ai sensi della normativa vigente calcolate in funzione del valore di corrente permanente nominale del cavo prescelto come prescritto dal DM Ministero Ambiente del 29.05.2008 e s.m.i.

Riepilogo Dpa e fasce di rispetto per tratte di impianto:

	Dpa (m)	Fascia di rispetto (m)
AT - 120 mm ²	+/- 1,00 m	2,00 m
AT - 240 mm ²	+/- 1,50 m	3,00 m
AT – 120+240 mm ² AT – 2x 240 mm ²	+/- 2,00 m	4,00 m
AT – 3x 240 mm ²	+/- 2,50 m	5,00 m
AT – 3x 500 mm ²	+/- 3,00 m	6,00 m

Come si evince dalla corografia e dalla planimetria catastale, all'interno dell'area di prima approssimazione (Dpa) precedentemente calcolata, non ricadono edifici o luoghi adibiti ad abitazione con permanenza non inferiore alle 4 ore. Nei tratti che lo prevederanno, sarà necessario l'utilizzo di canalette schermanti, le quali abbattono i valori della fascia DpA.

Pertanto, dal punto di vista della compatibilità elettromagnetica le opere elettriche progettate, sono conformi alla normativa vigente.