

REGIONE SARDEGNA COMUNE DI CARBONIA

Provincia del Sud Sardegna

Titolo del Progetto

PROGETTO DEFINITIVO

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO FOTOVOLTAICO DENOMINATO "GREEN AND BLUE MALADEDDU" DELLA POTENZA DI 28 507.500 kW IN LOCALITÀ "MALADEDDU" NEL COMUNE DI CARBONIA

Identificativo Documento

REL_SP_09_ACU

ID Progetto GBM Tipologia R Formato A4 Disciplina AMB

Titolo

VALUTAZIONE IMPATTO ACUSTICO

FILE: REL_SP_09_ACU.pdf

IL PROGETTISTA Arch. Andrea Casula

GRUPPO DI PROGETTAZIONE

Arch. Andrea Casula Geom. Fernando Porcu Dott. in Arch. J. Alessia Manunza Geom. Vanessa Porcu Dott.Agronomo Giuseppe Vacca Archeologo Marco Cabras Geol.Marta Camba Ing. Antonio Dedoni

COMMITTENTE

INNOVO DEVELOPMENT 4 SRL

Rev.	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
Rev.	Settembre 2023	Prima Emissione	Blu Island Energy	Innovo Development 4 Srl	Innovo Development 4 Srl

PROCEDURA

Valutazione di Impatto Ambientale ai sensi dell'art.23 del D.Lgs.152/2006

GREEN ISLAND ENERGY SAS Via S.Mele, N 12 - 09170 Oristano tel&fax(+39) 0783 211692-3932619836 email: greenislandenergysas@gmail.com

NOTA LEGALE: Il presente documento non può tassativamente essere diffuso o copiato su qualsiasi formato e tramite qualsiasi mezzo senza preventiva autorizzazione formale da parte di Green Island Energy SaS

Provincia del Sud Sardegna

COMUNE DI CARBONIA

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO

AGRO-FOTOVOLTAICO

DENOMINATO "GREEN AND BLUE MALADEDDU"

DELLA POTENZA DI 28 507.500 kW

IN LOCALITÀ "MALADEDDU" NEL COMUNE DI CARBONIA

RELAZIONE PREVISIONE DI IMPATTO ACUSTICO

INDICE

1. INTRODUZIONE	2
2. NORMATIVA DI RIFERIMENTO	3
3. CONTENUTI DELLA DOCUMENTAZIONE DI IMPATTO ACUSTICO	
4. DESCRIZIONE DELL'OPERA	7
4.1 GENERALITA'	
4.2 ORARI DI ATTIVITA'	
5. DESCRIZIONE DELLE CARATTERISTICHE COSTRUTTIVE DEI LOCA	
6. CONTESTO URBANISTICO	11
7. CONTESTO ACUSTICO	12
7.1 CLASSE ACUSTICA DELL'AREA DI STUDIO	12
7.2 DEFINIZIONE DEI LIMITI DI RIFERIMENTO	13
7.3 APPLICAZIONE DEL CRITERIO DIFFERENZIALE - IMPIANTI A CICLO	12
PRODUTTIVO CONTINUO	
7.5 STUDIO E INDICAZIONE DEI LIVELLI DI RUMORE PREESISTENTI IN PROSSIM	_
DEI RICETTORI	
8.1 MODELLO DI PREVISIONE	
8.1.1 Basi teoriche dell'algoritmo di calcolo	
8.1.3 Diffusione acustica in campo libero	
8.2 DATI TECNICI IN INGRESSO	25
8.2 SINTESI DELLE ELABORAZIONI	
8.2.1 Valutazione delle stime previsionali ottenute	
8.2.3 Previsione rispetto ai valori limite differenziali di immissione	
9. PREVISIONE DEI LIVELLI SONORI GENERATI DAL TRAFFICO	20
VEICOLARE INDOTTO	29
10 INTERVENTI DI BONIFICA	30
11. IMPATTO ACUSTICO IN FASE DI CANTIERE	
11.1 APPARECCHIATURE E MACCHINARI	
11.3 INTERVENTI ATTI ALLA MITIGAZIONE DEL RUMORE	
11.3.1 Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:	
11.3.3 Transito dei mezzi pesanti	34
12. TECNICO COMPETENTE IN ACUSTICA AMBIENTALE	35
13. CONCLUSIONI	36
Allegati	

1. INTRODUZIONE

Il presente documento di Valutazione di Impatto Acustico, redatto in ottemperanza ai disposti stabiliti dall'art. 8 della legge 26 ottobre 1995, n. 447, riguarda lo studio delle immissioni sonore connesse alla realizzazione di un impianto agro-fotovoltaico denominato "Green and Blue Maladeddu" di produzione di energia elettrica da fonte fotovoltaica della potenza di 28 507.500 kW nel territorio del Comune di Carbonia (SU), in località "Maladeddu" e delle relative opere connessione Carbonia e Gonnesa (SU).

Il presente documento viene elaborato dal sottoscritto Ing. Antonio Dedoni "Tecnico Competente in Acustica" (ex art.2, comma 6 e segg. della legge 447/95) al fine di certificare in via preliminare la compatibilità delle immissioni sonore connesse all'impiego delle opere in progetto rispetto al contesto acustico attualmente caratterizzante l'area ospite (rumore residuo). In tale ambito di studio si osservano le indicazioni contenute nel documento tecnico regionale che detta le "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale", approvato con Deliberazione della Giunta Regionale n° 62/9 del 14/11/2008.

Per chiarezza espositiva il presente documento di previsione di impatto acustico riporta, per ciascun capitolo che lo compone, esplicito riferimento alle lettere identificative dell'elenco contenuto nella parte V "Impatto acustico e clima acustico" del già citato Documento Tecnico regionale.

Nel momento in cui si produce la presente relazione di valutazione di previsione di impatto acustico l'attività non è ancora in atto; pertanto l'obiettivo che si prefigge è quello di stimare o prevedere se vi siano le condizioni affinché, dopo l'installazione dei nuovi macchinari, le emissioni sonore prodotte dalla stessa avvengano nei limiti di legge vigenti o di altri criteri di valutazione presa a riferimento.

Lo studio di impatto acustico prevede due distinte fasi di analisi:

• in prima istanza il progetto dell'opera, struttura o attività viene sottoposto ad una preliminare valutazione basata sui dati tecnici sulla base dei quali, con l'ausilio di modelli di calcolo, si procede ad una stima delle eventuali variazioni del clima acustico caratterizzante la zona che ospiterà l'insediamento produttivo. Lo studio comprende le stime previsionali di impatto ambientale, conseguenti all'inserimento dell'opera, struttura o attività, nelle aree interessate dalle emissioni ed immissioni sonore, mediante modelli matematici in grado di simularne, tenendo conto degli effetti combinati delle apparecchiature, macchine e impianti, del vento e della morfologia ambientale, la propagazione sonora. In questa fase è già possibile formulare una valutazione della compatibilità ambientale in relazione alle attuali norme disciplinanti l'inquinamento acustico, e formulazione del giudizio di conformità acustica;

 in un secondo tempo si procederà alle verifiche tecniche sul campo atte alla definizione della rumorosità intervenuta a seguito della realizzazione ed attivazione del nuovo insediamento produttivo.

2. NORMATIVA DI RIFERIMENTO

Le normative generali che disciplinano la materia sono le seguenti:

- Legge 26 Ottobre 1995, n° 447 (Legge Quadro sull'inquinamento acustico): questa legge stabilisce i principi fondamentali in materia di tutela dell'ambiente esterno e dell'ambiente abitativo dall'inquinamento acustico;
- D.P.C.M. 1 Marzo 1991 (Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno): questo decreto, per la parte ancora in vigore, indica i limiti massimi di rumore da rispettare in funzione della classificazione in zone del territorio comunale e fornisce indicazioni in merito alla strumentazione fonometrica e alle modalità di misura del rumore:
- D.M. 11 Dicembre 1996 (Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo): questo decreto definisce gli impianti a ciclo produttivo continuo, classifica gli impianti esistenti e gli impianti nuovi e indica i criteri di applicabilità del criterio differenziale;
- D.P.C.M. 14 Novembre 1997 (Determinazione dei valori limite delle sorgenti sonore): questo decreto contiene le definizioni e le quantificazioni relative ai valori di emissione, immissione, differenziali, di attenzione e di qualità che le attività umane sono tenute a rispettare;
- D.P.C.M. 05 Dicembre 1997 (Determinazione dei requisiti acustici degli edifici): questo decreto disciplina i requisiti acustici delle sorgenti sonore interne agli edifici, i requisiti acustici passivi degli edifici e dei loro componenti in opera, rivolto ai progettisti e costruttori;
- Decreto Ministero Ambiente 16 Marzo 1998 (Tecniche di rilevamento e misurazione dell'inquinamento acustico): questo decreto riporta le modalità sulla base delle quali il tecnico competente in acustica deve effettuare le misurazioni fonometriche e redigere il conseguente rapporto di valutazione;
- Deliberazione R.A.S. n° 62/9 del 14/11/2008: "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale";

3. CONTENUTI DELLA DOCUMENTAZIONE DI IMPATTO ACUSTICO

Ai sensi dell'art.8, comma 5 della Legge 447/95, la valutazione di impatto acustico deve essere redatta sulla base dei criteri stabiliti dall'art. 4, comma 1, lettera I) della stessa norma, modalità di cui all'art. 4 della legge 4 gennaio 1968, n. 15.

Pertanto, nella redazione del presente documento tecnico, verranno opportunamente ricalcate integralmente le indicazioni contenute nelle "Direttive regionali in materia di inquinamento acustico ambientale", ai sensi dell'Art.4 della Legge Quadro 26 Ottobre 1995, n° 447", adottati con Deliberazione R.A.S. n. 62/9 del 14/11/2008.

Ai sensi della normativa regionale, la documentazione di impatto acustico deve prevedere, per quanto possibile, gli effetti acustici conseguenti alla realizzazione di una nuova opera e al suo esercizio per verificarne la compatibilità con le esigenze di uno standard di vita equilibrato della popolazione residente, al fine di una corretta fruibilità dell'area e nel rispetto degli equilibri naturali.

La medesima norma stabilisce altresì che la documentazione deve descrivere lo stato dei luoghi e indicare le caratteristiche dei ricettori circostanti, in quanto per una corretta ed esaustiva valutazione non si può prescindere dal contesto in cui viene a collocarsi la nuova sorgente sonora; deve inoltre contenere elementi relativi alla quantificazione degli effetti acustici in prossimità dei ricettori, in particolare di quelli sensibili quali scuole, asili nido, ospedali, case di cura e di riposo e dovrà inoltre prevedere, al fine del rispetto dei valori limite, eventuali interventi di mitigazione, qualora necessari a seguito della valutazione.

La documentazione di impatto acustico deve essere predisposta da tecnico competente in acustica ambientale e sottoscritta dal proponente, deve essere tanto più dettagliata quanto più è rilevante il potenziale inquinamento acustico derivante dalla realizzazione dell'opera e/o attività in progetto, ed è previsto che sia costituita da una relazione tecnica e da elaborati planimetrici.

In particolare la relazione tecnica dovrà contenente i seguenti elementi:

- a) descrizione della tipologia dell'opera o attività in progetto, del ciclo produttivo e tecnologico, degli impianti, delle attrezzature e dei macchinari che verranno utilizzati, dell'ubicazione dell'insediamento e del contesto in cui viene inserita;
- b) descrizione delle caratteristiche costruttive dei locali (coperture, murature, serramenti, vetrate ecc.) con particolare riferimento alle caratteristiche acustiche dei materiali utilizzati;
- c) descrizione delle sorgenti rumorose connesse all'opera o attività, con indicazione dei dati di targa relativi alla potenza acustica e loro ubicazione. In situazioni di incertezza progettuale sulla tipologia o sul posizionamento delle sorgenti sonore che saranno effettivamente installate è

- ammessa l'indicazione di livelli di emissione stimati per analogia con quelli derivanti da sorgenti simili (nel caso non siano disponibili i dati di potenza acustica, dovranno essere riportati i livelli di emissione in pressione sonora);
- d) indicazione degli orari di attività e di quelli di funzionamento degli impianti principali e sussidiari. Dovranno essere specificate le caratteristiche temporali dell'attività e degli impianti, indicando l'eventuale carattere stagionale, la durata nel periodo diurno e notturno e se tale durata è continua o discontinua, la frequenza di esercizio, la possibilità (o la necessità) che durante l'esercizio vengano mantenute aperte superfici vetrate (porte o finestre), la contemporaneità di esercizio delle sorgenti sonore, eccetera;
- e) indicazione della classe acustica cui appartiene l'area di studio. Nel caso in cui l'amministrazione comunale non abbia ancora approvato e adottato il Piano di classificazione acustica è cura del proponente ipotizzare, sentita la stessa Amministrazione comunale, la classe acustica da assegnare all'area interessata.
- f) identificazione e descrizione dei ricettori presenti nell'area di studio, con indicazione delle loro caratteristiche utili sotto il profilo acustico, quali ad esempio la destinazione d'uso, l'altezza, la distanza intercorrente dall'opera o attività in progetto, con l'indicazione della classe acustica da assegnare a ciascun ricettore presente nell'area di studio avendo particolare riguardo per quelli che ricadono nelle classi I e II;
- g) individuazione delle principali sorgenti sonore già presenti nell'area di studio e indicazione dei livelli di rumore preesistenti in prossimità dei ricettori di cui al punto precedente. L'individuazione dei livelli di rumore si effettua attraverso misure articolate sul territorio con riferimento a quanto stabilito dal D.M. Ambiente 16/03/1998 (Tecniche di rilevamento e di misurazione dell'inguinamento acustico);
- h) calcolo previsionale dei livelli sonori generati dall'opera o attività nei confronti dei ricettori e dell'ambiente esterno circostante indicando i parametri e i modelli di calcolo utilizzati. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello differenziale deve essere effettuata nelle condizioni di potenziale massima criticità del livello differenziale;
- i) calcolo previsionale dell'incremento dei livelli sonori in caso di aumento del traffico veicolare indotto da quanto in progetto nei confronti dei ricettori e dell'ambiente circostante;
- I) descrizione degli eventuali interventi da adottarsi per ridurre i livelli di emissioni sonore al fine di ricondurli al rispetto dei limiti associati alla classe acustica assegnata o ipotizzata per ciascun ricettore. La descrizione di detti interventi è supportata da ogni informazione utile a specificare le

- loro caratteristiche e a individuare le loro proprietà di riduzione dei livelli sonori, nonché l'entità prevedibile delle riduzioni stesse;
- m) analisi dell'impatto acustico generato nella fase di realizzazione, o nei siti di cantiere, secondo il percorso logico indicato ai punti precedenti, e puntuale indicazione di tutti gli appropriati accorgimenti tecnici e operativi che saranno adottati per minimizzare il disturbo e rispettare i limiti (assoluto e differenziale) vigenti all'avvio di tale fase, fatte salve le eventuali deroghe per le attività rumorose temporanee di cui all'art. 6, comma 1, lettera h, e dell'art. 9 della legge 447/1995;
- n) indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7.

La sopraccitata relazione può non contenere tutti gli elementi sopra indicati a condizione che sia puntualmente giustificata l'inutilità di ciascuna informazione omessa.

Per chiarezza espositiva e semplificazione istruttoria le informazioni omesse e le relative giustificazioni devono fare esplicito riferimento alle lettere identificative dell'elenco. La planimetria in scala adeguata, (es.: 1:2000) dovrà evidenziare:

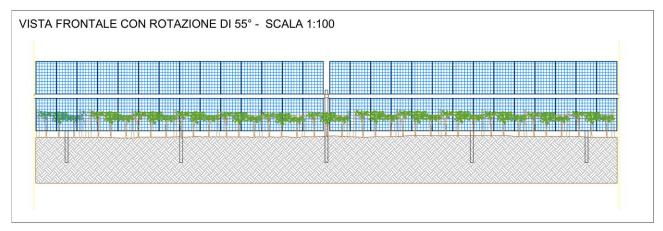
- l'area di studio interessata;
- l'ubicazione dell'intervento in progetto;
- l'ubicazione dei ricettori e delle principali sorgenti sonore preesistenti;
- l'indicazione delle quote altimetriche.

La domanda di licenza o di autorizzazione all'esercizio delle attività che si prevede possano produrre valori di emissione superiori a quelli di legge, deve contenere l'indicazione delle misure previste per ridurre o eliminare le emissioni sonore causate dall'attività o dagli impianti. La relativa documentazione deve essere inviata al Comune al fine del rilascio del relativo nullaosta.

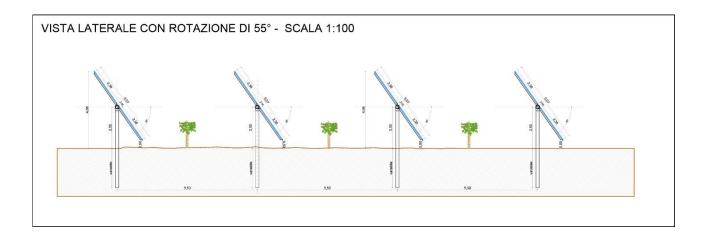
4. DESCRIZIONE DELL'OPERA

4.1 GENERALITA'

Il sito su cui si prevede la realizzazione dell'impianto agro-fotovoltaico proposto è accessibile dalle strade secondarie che si dipartono dalla Strada Statale SS126 che dal comune di Carbonia conduce a quello di Gonnesa.


L'accesso al lotto, nei quali saranno installati i pannelli fotovoltaici, è garantito dalle numerose strade esistenti. Tali strade, allo stato attuale, hanno una pavimentazione in asfalto, consentendo la perfetta transitabilità dei veicoli. La larghezza in sezione delle suddette strade, è di 4 m, pertanto i mezzi utilizzati nelle fasi di cantiere e di manutenzione in fase di esercizio, possono utilizzare la viabilità esistente senza difficoltà.

La realizzazione dell'impianto sarà eseguita mediante l'installazione di moduli fotovoltaici a terra installati su sistema ad inseguimento monoassiale che raggiunge +/- 55°G di inclinazione rispetto al piano di calpestio sfruttando interamente un rapporto di copertura non superiore al 50% della superficie totale. Il fissaggio della struttura di sostegno dei moduli al terreno avverrà a mezzo di un sistema di fissaggio del tipo a infissione con battipalo nel terreno e quindi amovibile in maniera tale da non degradare, modificare o compromettere in qualunque modo il terreno utilizzato per l'installazione e facilitarne lo smantellamento o l'ammodernamento in periodi successivi senza l'effettuazione di opere di demolizione scavi o riporti. Il movimento dei moduli avviene durante l'arco della giornata con piccolissime variazioni di posizione che ad una prima osservazione darà l'impressione che l'impianto risulti fermo.


L'impianto in progetto, del tipo ad inseguimento monoassiale (inseguitori di rollio), prevede l'installazione di strutture di supporto dei moduli fotovoltaici (realizzate in materiale metallico), disposte in direzione Nord-Sud su file parallele ed opportunamente spaziate tra loro (interasse di 9.50 m), per ridurre gli effetti degli ombreggiamenti.

Le strutture di supporto sono costituite fondamentalmente da tre componenti

- 1) I pali in acciaio zincato, direttamente infissi nel terreno;
- 2) La struttura porta moduli girevole, montata sulla testa dei pali, composta da profilati in alluminio, sulla quale vengono posate due file parallele di moduli fotovoltaici
- 3) L'inseguitore solare monoassiale, necessario per la rotazione della struttura porta moduli.

L'inseguitore solare serve ad ottimizzare la produzione elettrica dell'effetto fotovoltaico (il silicio cristallino risulta molto sensibile al grado di incidenza della luce che ne colpisce la superficie) ed utilizza la tecnica del backtracking, per evitare fenomeni di ombreggiamento a ridosso dell'alba e del tramonto. In pratica nelle prime ore della giornata e prima del tramonto i moduli non sono orientati in posizione ottimale rispetto alla direzione dei raggi solari, ma hanno un'inclinazione minore (tracciamento invertito). Con questa tecnica si ottiene una maggiore produzione energetica dell'impianto agro-fotovoltaico, perché il beneficio associato all'annullamento dell'ombreggiamento e superiore alla mancata produzione dovuta al non perfetto allineamento dei moduli rispetto alla direzione dei raggi solari.

Per la Conversione e trasformazione dell'energia saranno installati due blocchi del tipo Shelter a formare delle Power Station. Ogni struttura sarà realizzata con componenti prefabbricati e preassemblati da posizionare al di sopra il piano di calpestio opportunamente livellato e riempito con materiale idoneo al carico delle apparecchiature che conterrà tutti i cunicoli necessari per il passaggio dei cavi e dovrà avere caratteristiche costruttive conformi alla Normativa CEI 016 Vigente. Tale sistema sarà accessoriato al fine di contenere tutte le apparecchiature necessarie di protezione, conversione, trasformazione e ausiliarie compresi tutti i collegamenti tra le stesse.

Verranno eseguite tutte le connessioni dei moduli fotovoltaici, scelti in funzione delle migliori garanzie ed efficienze presenti attualmente sul mercato che consentono di avere le maggiori potenze con la minima superficie per 700 W per ciascun modulo, che formeranno le stringhe per il successivo collegamento ai quadri di campo dai quali si deriveranno le linee di connessione alle Power Station contenenti gli inverters e i dispositivi di trasformazione e protezione per la connessione alle cabine di ricevimento per l'immissione dell'energia in rete.

L'impianto fotovoltaico proposto prevede complessivamente una potenza d'installazione nominale pari 28 507.500 kW e una produzione di energia annua pari a 49 187 455.95 kWh (equivalente a 1 725.42 kWh/kW), derivante da 40 725 moduli che occupano una superficie di 126 491.85 m², ed è composto da 5 generatori.

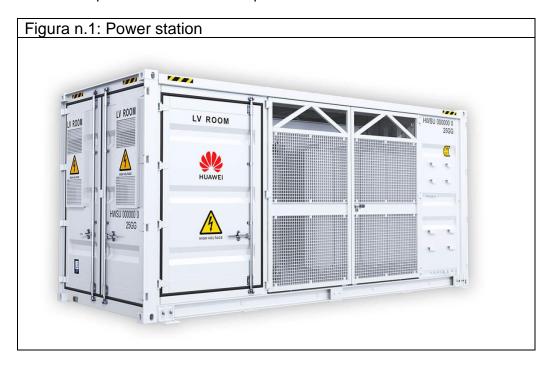
4.2 ORARI DI ATTIVITA'

L'impianto opera a ciclo continuo 24 ore su 24. Gli inverter saranno in funzione esclusivamente nelle fasi di produzione energetica, ossia durante il periodo di insolazione diurna, mentre i trasformatori BT/MT opereranno anche nel periodo notturno.

4.3 APPARECCHIATURE E MACCHINARI

Le sorgenti sonore di interesse sono rappresentate dai trasformatori BT/MT delle Power Station. Può ritenersi trascurabile il rumore generato degli inverter e dei quadri elettrici di campo e della cabina di concentrazione. Il funzionamento dei trasformatori è continuo sulle 24 ore, mentre nelle ore notturne, quando l'impianto non è più in grado di produrre energia, gli inverter si disattivano.

Si riporta di seguito i dati di rumorosità dei trasformatori:

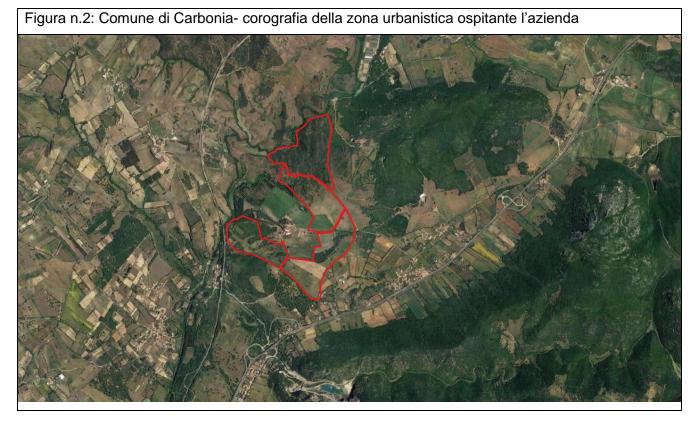

TRASFORMATORI POWER STATION (ubicati all'interno di strutture prefabbricate tipo Shelter)

Livello di potenza sonora stimato è pari a 79.0 dBA.

Livello di pressione sonora stimato ad un metro è pari a 69.0 dBA

5. DESCRIZIONE DELLE CARATTERISTICHE COSTRUTTIVE DEI LOCALI

I Power Station, per la conversione e la trasformazione dell'energia, saranno realizzati con blocchi del tipo Shelter. Ogni struttura sarà realizzata con componenti prefabbricati e preassemblati da posizionare al di sopra il piano di calpestio opportunamente livellato e riempito con materiale idoneo al carico delle apparecchiature che conterrà tutti i cunicoli necessari per il passaggio dei cavi e dovrà avere caratteristiche costruttive conformi alla Normativa CEI 016 Vigente. Il potere fonoisolante è funzione dello spessore delle pareti e della superficie delle aperture e delle griglie di aerazione; è stato stimato un potere fonoisolante R'w pari a 5 dB.


6. CONTESTO URBANISTICO

L'area interessata ricade interamente nel territorio del comune di Carbonia provincia del Sud Sardegna.

L'Impianto Agrofotovoltaico "Green and Blue Maladeddu" è ubicato nel comune di Carbonia, all'interno della zona E (AGRICOLA) sottozona E2ab, E5 collocato a Est della frazione di Carbonia denominata Cortoghiana e a nord del centro abitato di Carbonia.

Nella Cartografia IGM ricade nel foglio 555 SEZ. III Portoscuso della cartografia ufficiale IGM in scala 1:25.000; Mentre nella Carta Tecnica Regionale ricade nella sezione 555140 Cortoghiana.

La seguente Figura n.2 riporta la corografia dell'area ospitante l'attività (evidenziata in rosso).

7. CONTESTO ACUSTICO

7.1 CLASSE ACUSTICA DELL'AREA DI STUDIO

In attesa dell'approvazione del piano di Classificazione del Comune di Carbonia, l'art. 8 comma 1 del D.P.C.M. 14 Novembre 1997 prevede l'applicazione dei limiti di cui all'art. 6 comma 1 del D.P.C.M. 1 Marzo 1991, riportati nella tabella seguente:

Tabella: Limiti di accettabilità [art.6 D.P.C.M. 1 Marzo 1991]

Zonizzazione acustica	Tempi di riferimento				
[Art. 6 D.P.C.M. 1 Marzo 1991]	Limite diurno (h 06-22) L _{Aeq} [dB(A)]	Limite notturno (h 22-06) L_{Aeq} [dB(A)]			
tutto il territorio nazionale	70	60			
Zona A ¹ (D.M. 1444/68)	65	55			
Zona B ² (D.M. 1444/68)	60	50			
Zona esclusivamente industriale	70	70			

In particolare, poiché il sito interessato alle misurazioni appartiene alla zona "tutto il territorio nazionale" di cui al dm 1444/68, i limiti assoluti di immissione da rispettare, per i diversi punti di misura, saranno i seguenti:

Zonizzazione acustica	Tempi di riferimento				
[Art. 6 D.P.C.M. 1 Marzo 1991]	Limite diurno (h 06-22)	Limite notturno (h 22-06)			
Ţ	L _{Aeq} [dB(A)]	L _{Aeq} [dB(A)]			
tutto il territorio nazionale	70	60			

Sulla base delle tipologie di insediamenti produttivi, l'area limitrofa all'impianto è assimilabile ad una Classe III della Legge quadro 447/95.

7.2 DEFINIZIONE DEI LIMITI DI RIFERIMENTO

Premesso quanto riportato al precedente paragrafo, i limiti acustici di riferimento ai quali l'attività dovrà subordinarsi, ai sensi della Legge quadro 447/95 vengono di seguito assunti:

- I cosiddetti "valori limite di assoluti di immissione", riferiti all'ambiente esterno in prossimità del ricettore, come specificato dall'Art.2, comma 1, lettera f), comma 2 e comma 3, lettera a) della Legge n.447/95 e dall'Art.3 del DPCM 14.11.1997;:
- I cosiddetti "valori limite differenziali di immissione" specificati dall'Art.2, comma 1, lettera f), comma 2 e comma 3, lettera b) della Legge n.447/95, da applicarsi all'interno dell'ambiente abitativo recettore, come definiti dall'Art.4 del D.P.C.M. 14.11.1997 (il cui superamento deve essere verificato secondo le note stime del "criterio differenziale" già adottate nel D.P.C.M. 01.03.1991), sono fissati in 5 dB per il periodo diurno e 3 dB per il periodo notturno. Secondo lo stesso disposto, qualora il livello del rumore ambientale sia inferiore a 50 dBA di giorno e 40 dBA di notte nelle condizioni di finestre aperte ed inferiore a 35 dBA di giorno e 25 dBA di notte nelle condizioni di finestre chiuse, ... ogni effetto del rumore è da ritenersi trascurabile ..., qualsiasi sia il valore differenziale riscontrabile.

Nella tabella seguente sono riportati i limiti acustici per l'ambiente esterno per la classe acustica III.

Tabella n.1: Limiti acustici validi per l'ambiente esterno - Classe III.

	Art.2		Art.3		A	Art.7		Art.6	
	Tabella B		Tabella C		Tabella D		(comma 1, lett. A)		
	Valori limite		Valori limite assoluti		Valori		Valori di attenzione*		
	di emissione (dBA)		di immissione (dBA)		di qualità (dBA)		riferiti 1h (dBA)		
Classe	diurno	notturno	diurno	notturno	diurno	notturno	Diurno	notturno	
III	55	45	60	50	57	47	70	50	

7.3 APPLICAZIONE DEL CRITERIO DIFFERENZIALE - IMPIANTI A CICLO PRODUTTIVO CONTINUO

L'Impianto, oggetto del presente studio, essendo un apparato tecnologico destinato a rimanere costantemente in attivo nell'arco delle 24 ore, è da considerarsi un Impianto a Ciclo Produttivo Continuo.

Il suddetto Impianto è pertanto assoggettato al Decreto del Ministero dell'Ambiente 11 Dicembre 1996 "Applicazione del criterio differenziale per gli impianti a ciclo produttivo continuo" in attuazione

dell'art.15 comma 4 della Legge 447/95. Tale decreto definisce gli impianti a ciclo produttivo continuo nel modo seguente:

- impianti di cui non è possibile interrompere l'attività senza provocare danni all'impianto stesso,
 pericolo di incidenti o alterazioni del prodotto o per necessità di continuità finalizzata a garantire
 l'erogazione di un servizio pubblico essenziale;
- quelli il cui esercizio è regolato dai contratti nazionali di lavoro sulle ventiquattro ore per cicli settimanali, fatte salve le esigenze di manutenzione;

La medesima norma del DM 11/12/1996, attraverso le definizioni di cui all'art. 2, distingue gli impianti a ciclo produttivo continuo in "esistenti" e "nuovi":

- sono definiti impianti esistenti quelli già in esercizio o autorizzati prima del 19 marzo 1997 (data di entrata in vigore del decreto stesso) nonché quelli per i quali sia già stata presentata istanza di autorizzazione entro tale data;
- sono definiti *impianti nuovi* (tutti gli altri) quelli realizzati o autorizzati successivamente al 19 marzo 1997.

Il Decreto del Ministero dell'Ambiente 11 Dicembre 1996 disciplina le modalità di applicazione del "criterio differenziale" per gli impianti a ciclo produttivo continuo ubicati in zone non esclusivamente industriali e quelli ubicati in zone esclusivamente industriali che dispiegano i propri effetti acustici in zone diverse da quelle esclusivamente industriali. L'Impianto in progetto rientra pertanto nel secondo caso (Impianto Nuovo). Tale D.M. prevede che tutti gli impianti a ciclo produttivo continuo, sia esistenti sia nuovi, siano tenuti a rispettare i limiti di zona fissati a seguito dell'adozione dei provvedimenti Comunali di cui all'art. 6 comma 1 lettera a della Legge 447/95 (zonizzazione acustica), ovvero (ex art 8 del D.P.C.M. 14.11.1997) in mancanza di specifici provvedimenti, i già citati limiti stabiliti dall'art. 6 del D.P.C.M 1 Marzo 1991.

Lo stesso D.M. prevede inoltre che gli *impianti a ciclo produttivo continuo nuovi* (impianti realizzati dopo il 19 Marzo 1997), *il rispetto del criterio differenziale* è condizione necessaria per il rilascio della relativa concessione.

In relazione alla classificazione acustica dell'area ospite, ed in considerazione dei criteri normativi suesposti, i limiti di riferimento che l'Impianto sarà tenuto a rispettare sono stabiliti secondo i seguenti criteri:


- i valori limite assoluti di immissione del Piano di Classificazione Acustica del Territorio Comunale, stabiliti nell'area ospite (*Aree di tipo misto, Classe III*) in 60 dB(A) nel periodo diurno e in 50 dB(A) nel periodo notturno;

- in relazione agli effetti acustici eventualmente dispiegati in zone diverse da quelle esclusivamente industriali, dovranno essere rispettati i relativi valori limite differenziali di immissione in tutti gli ambienti abitativi insediati nelle aree circostanti, classificate dalla Classe I alla Classe V, qualora interessate dalla rumorosità dell'opera in progetto; tali limiti sono stabiliti in 5 dB durante il periodo di riferimento diurno (06,00 - 22,00) e in 3 dB durante il periodo di riferimento notturno (22,00 - 06,00) dall'art.4, comma 1 del DPCM 14/11/1997.

7.4 SORGENTI SONORE E RICETTORI PRESENTI NELL'AREA DI STUDIO

I ricettori presenti nelle vicinanze sono costituiti prevalentemente da attività agricole con edifici a servizio dell'attività. I ricettori sorgono a non meno di 10 m dal confine della pertinenza fondiaria.

La Figura 3 mostra la localizzazione dei ricettori più vicini al fondo destinato a ospitare il nuovo impianto fotovoltaico. I ricettori sono individuati con le sigle da Ric1 a Ric4.

L'individuazione dei ricettori è stata condotta mediante l'ausilio della cartografia ufficiale di riferimento, delle ortofoto e un sopralluogho sul campo. Il censimento ha portato all'individuazione di 4 fabbricati edilizi destinati ad uso abitativo.

Ricettore	Tipologia
Ric 1	Abitazione
Ric 2	Abitazione
Ric 3	Abitazione
Ric 4	Abitazione

7.5 STUDIO E INDICAZIONE DEI LIVELLI DI RUMORE PREESISTENTI IN PROSSIMITÀ DEI RICETTORI

Al fine di verificare l'attuale situazione di rumorosità che caratterizza le zone limitrofe all'area interessata dallo studio, il giorno 29/09/2023, sono state eseguite apposite rilevazioni fonometriche eseguite secondo i criteri e metodi stabiliti dal DM 16/03/98.

La seguente Figura 4 riporta la localizzazione del punto di rilevamento.

Figura n.4: Comune di Carbonia– individuazione del punto di misura ante-operam

Rica

Rica

Rica

Rica

Rica

Rica

Rica

REL_SP_09_ RELAZIONE ACUSTICA

La rumorosità della zona è imputabile prevalentemente alla viabilità locale.

La seguente Tabella 2 riporta la misura della rumorosità residua ante-operam, rappresentativa del clima acustico preesistente alla realizzazione dell'opera in progetto.

Tabella n.2: Localizzazione delle postazioni di rilevamento e misura del rumore residuo anteoperam

Postazione	Localizzazione	Classe acustica	Parametro rilevato	Periodo di misura	Durata della misura	Livello sonoro misurato	L90
Punto di misura	In prossimità del ricettore Ric 2	III	Rumore residuo	diurno	1200 sec	38.5 dB(A)	33.5 dB(A)

I livelli sonori registrati presso il punto di misura sono tipici di rumorosità residua in zone similari, destinate ad uso prevalentemente agricolo.

Non sono state eseguite le misure nel periodo notturno in quanto a causa dell'assenza di sorgenti sonori significate, è ipotizzabile, in assenza di traffico, attendersi un rumore all'interno dell'abitazione simile all'indicatore statistico L90 (rumore residuo), pertanto nettamente inferiore a 40 dB(A). Considerata l'assenza di sorgenti sonore rilevanti, è auspicabile attendersi gli stessi valori di rumorosità residua presso tutti i ricettori.

8. PREVISIONE DI IMPATTO ACUSTICO

Secondo le linee guida regionali, la valutazione di impatto acustico deve essere fondata sui dati dei livelli sonori generati dalla sorgente sonora esaminata nei confronti dei ricettori limitrofi e dell'ambiente esterno circostante. Particolare attenzione deve essere posta alla valutazione dei livelli sonori di emissione e di immissione assoluti, nonché ai livelli differenziali, qualora applicabili, all'interno o in facciata dei ricettori individuati. La valutazione del livello differenziale deve essere effettuata nelle condizioni di potenziale massima criticità.

8.1 MODELLO DI PREVISIONE

L'impatto acustico nel territorio circostante l'insediamento produttivo viene valutato in via previsionale mediante l'effettuazione di simulazioni che consentano di costruire delle curve isofoniche (curve di ugual livello sonoro). Ciò allo scopo di verificare che l'insediamento non arrechi disturbo agli attuali utilizzi del territorio ed in ogni caso di verificare il rispetto dei limiti di legge. La stima viene effettuata considerando il contributo acustico specifico di ciascuna macchina in ciascun punto di riferimento preso a campione, rappresentativo degli effetti acustici delle sorgenti sonore specifiche.

L'algoritmo di calcolo utilizzato per la simulazione considera i sequenti elementi:

- emissione caratteristica di ciascuna macchina nelle condizioni di massima potenza;
- distanza reale del ricettore rispetto a ciascuna macchina;
- eventuale presenza di ostacoli nel percorso acustico di ciascuna macchina.

Il calcolo si basa sull'applicazione delle leggi fisiche che disciplinano le grandezze acustiche, i cui effetti sull'ambiente circostante, dovuti alla propagazione, vengono esaminati col supporto di software di elaborazione grafica e matematica (Microsoft Excel, QGIS e I-Noise).

Per determinare gli effetti acustici sul territorio circostante connessi all'insediamento dell'unità produttiva si è tenuto conto del contributo acustico di ciascuna macchina all'interno dell'impianto fotovoltaico.

Per la previsione degli effetti acustici dell'insediamento produttivo si tiene conto, in prima istanza, dell'attenuazione sonora dovuta alla distanza, variabile che incide marcatamente sul fenomeno della propagazione sonora.

Altri fattori che concorrono all'attenuazione o che possono influenzare la distribuzione spaziale del fenomeno sonoro sono rappresentati dall'attenuazione dovuta alla resistività e al potere fonoassorbente dell'aria, attenuazione dovuta al potere fonoassorbente della pioggia, della neve, della

nebbia, al gradiente termico e alla turbolenza atmosferica, che verranno eventualmente considerati qualora si dovesse incorrere all'eventuale superamento dei limiti di legge.

Per gli stessi motivi non si tiene conto, in prima analisi, dell'attenuazione dovuta alla presenza di ostacoli naturali e della vegetazione, data la non uniforme distribuzione delle curve di isolivello della mappa (che in taluni casi possono determinare effetti di "ombra acustica") e della non uniforme conformazione della vegetazione.

Non va trascurato infatti che l'effettiva attenuazione sonora legata a tali variabili non sempre corrisponde alle stime teoriche, poiché l'attenuazione acustica dovuta alle barriere assume minore importanza all'aumentare della distanza della barriera dalla sorgente e di per sé può essere causa di turbolenze aerodinamiche o di riflessioni sonore che influenzano il livello sonoro, tanto da rendere scarsamente rappresentative le stime previsionali.

La presenza di vegetazione può essere di per sé fonte di rumore (frusciare del manto erboso, generazione di sibili dovuti a turbolenze aerodinamiche), effetti che non vengono assunti dall'elaborazione previsionale.

I margini di incertezza della procedura di calcolo sono correlati, oltre alle variabili sopradescritte (non computabili in modo oggettivo) alla variabilità del potere fonoassorbente del terreno e di eventuali ostacoli, alla variazione del clima che influenza l'attivazione contemporanea di una pluralità di macchinari. Per questo in prima istanza la valutazione considera una poco probabile "situazione peggiore" che tiene conto del funzionamento contemporaneo di tutte le unità esterne ed i possibili effetti acustici in tutte le direzioni.

8.1.1 Basi teoriche dell'algoritmo di calcolo

L'algoritmo di calcolo si fonda su considerazioni tipiche dell'acustica tecnica e sull'impiego di alcune grandezze caratteristiche quali la potenza, l'intensità e l'impedenza acustica (dalle quali, tramite opportuni calcoli, si risale al livello di pressione sonora, cioè al rumore), la direttività delle sorgenti di rumore e le modalità di diffusione della potenza acustica nello spazio. Viene inoltre considerata l'attenuazione del rumore nella sua propagazione nello spazio in seguito alla distanza, alle caratteristiche del mezzo e alla presenza di ostacoli naturali e artificiali. Vengono infine introdotti gli effetti conseguenti al gradiente termico, al vento e alla turbolenza atmosferica.

8.1.2 Terminologia

La potenza sonora viene espressa come livello in dB, relativamente ad un certo livello di riferimento:

$$L_{W} = 10 \log_{10} \frac{W}{W_{0}}$$

dove: W_0 è il livello di riferimento stabilito in $10^{-12}~W$

La potenza acustica è una caratteristica della sorgente, non varia con la distanza essendo il prodotto della intensità per la superficie di propagazione. La potenza acustica per una sorgente omnidirezionale è altresì espressa dalla relazione:

$$W = SI$$

che rappresenta il prodotto della intensità acustica (I) in un punto qualunque intorno alla sorgente, alla distanza "d" volte la superficie della sfera di propagazione (S), il cui raggio sia la distanza "d" stessa. Essa rappresenta l'energia irradiata in tutte le direzioni nell'unità di tempo ed è data dalla somma delle intensità acustiche locali sulla superficie sincrona di propagazione:

$$W = \int_{s} i_{\delta a}$$

dove: W = potenza acustica

S = superficie della sfera di raggio d

iδa = intensità sull'area infinitesima δa

Attraverso opportuni calcoli può essere determinato il livello di pressione sonora in dBA che può attendersi in qualunque punto riportato sul terreno. Il calcolo tiene conto della reale posizione geografica di ciascuna sorgente sonora, che in questo caso vengono ipotizzate in opportune unità di trattamento aria, ed di ciascun punto di riferimento nel quale si voglia stimare il livello dell'emissione sonora dell'insieme dei macchinari. L'algoritmo di calcolo tiene evidentemente conto della rumorosità specifica generata dalle potenziali apparecchiature rumorose specifiche in massimo regime di funzionamento. L'intensità acustica è data dalla seguente relazione:

$$I = \frac{W}{S}$$

L'intensità acustica di ciascuna unità di trattamento aria, calcolata sui dati di pressione sonora rilevati in prossimità della macchina forniti dal costruttore attraverso appositi test fonomerici, definisce la quantità di energia che passa nell'unità di tempo attraverso l'unità di superficie; si esprime in W/m² ed è data dalla seguente relazione:

$$I = \frac{p^2}{Z} (W/m^2)$$

in cui:

p = pressione acustica (PA)

Z = rappresenta l'impedenza acustica del mezzo (Kg/m²s) cioè la resistenza che la sorgente deve vincere per mettere in vibrazione il mezzo

I = intensità acustica (W/m²)

Una sorgente di rumore può irradiare la stessa quantità di energia acustica in tutte le direzioni dello spazio (sorgente omnidirezionale) o può irradiarne quantità diverse nelle varie direzioni (sorgente direttiva). L'intensità acustica media (Im) viene ricavata da più misure fatte intorno alla sorgente, alla distanza "d" volte la superficie della sfera o semisfera di propagazione (S) il cui raggio sia la distanza "d". La potenza sonora di una sorgente direttiva sarà pertanto pari a

$$W = ImS$$

Il fattore di direttività $Q\theta$, è il rapporto fra il quadrato della pressione sonora $p\theta$, misurata ad un angolo θ , ad una distanza "d" dalla sorgente e il quadrato della pressione sonora p, misurata alla stessa distanza di una sorgente omnidirezionale che emette la stessa potenza sonora (ovvero la pressione sonora calcolata sull'intensità acustica media lm):

$$Q_{\theta} = \frac{p_{\theta}^{2}}{p_{1}^{2}} = \frac{10^{(Lp\theta p\theta /)}}{10^{(Lps/10)}}$$

In questo caso l'intensità acustica alla distanza "d" dalla sorgente ad un angolo θ sarà data da:

$$I = \frac{WQ_{\theta}}{S}$$

L'indice di direttività sarà dato da:

$$DI = 10 \log Q$$

8.1.3 Diffusione acustica in campo libero

Se consideriamo le onde longitudinali e sferiche emesse da una sorgente puntiforme S in un mezzo omogeneo, si osserva che l'energia che si irradia è, in un certo punto P1 a distanza d1, distribuita sulla sfera di centro S e raggio d1; in un punto P2 posto a maggiore distanza d2, la stessa energia è distribuita sulla superficie della sfera di centro S e raggio d2. La superficie di una sfera è

proporzionale al quadrato del suo raggio, per cui l'intensità dell'onda sarà inversamente proporzionale al quadrato della distanza dalla sorgente; pertanto se in P1 l'intensità vale I1, il suo valore I2 in P2 è legato a I1 dalla relazione:

$$\frac{\mathbf{I_1}}{\mathbf{I_2}} = \left(\frac{\mathbf{d_2}}{\mathbf{d_1}}\right)^2$$

Nel considerare la direttività delle sorgenti si deve tenere presente che le relative onde sonore si propagheranno inizialmente secondo fronti d'onda cilindrici, ma all'aumentare della distanza la propagazione avverrà secondo fronti d'onda sferici. La transazione avverrà in modo progressivo ed a una prevista distanza dalla sorgente, ottenibile mediante il seguente rapporto, in cui I è la lunghezza della sorgente:

$$d = \frac{I}{\pi}$$

Nel campo vicino alla sorgente (d < I/π) la diminuzione del livello sonoro è uguale a 3 dB per ogni raddoppio della distanza e 6 dB nel campo lontano (d > I/π).

Calcolando l'intensità acustica in un punto qualsiasi della mappa dovuta alla risultante della somma dell'energia sonora di ciascuna macchina in relazione alla sua distanza dal punto di riferimento, si risale al corrispondente livello sonoro atteso. Oltre all'attenuazione dovuta alla diminuzione dell'intensità acustica all'aumentare del raggio della superficie sincrona sferica di propagazione, vi sono fattori di attenuazione che la tecnica acustica considera, quali:

- attenuazione dovuta alla resistività dell'aria
- attenuazione dovuta al potere fonoassorbente dell'aria
- attenuazione dovuta al potere fonoassorbente della pioggia, della neve, della nebbia
- attenuazione dovuta alla vegetazione
- attenuazione dovuta al vento, al gradiente termico, alla turbolenza atmosferica
- attenuazione dovuta alla presenza di ostacoli naturali e artificiali offerti dai fabbricati

Solamente alcuni di questi termini devono essere tenuti in considerazione e cioè l'assorbimento dell'aria, degli ostacoli e la vegetazione previsti. Tutti gli altri termini di riduzione infatti, si riferiscono a particolari situazioni meteorologiche che in acustica non devono essere prese in considerazione se non in casi in cui esse rappresentano la normalità della situazione.

L'attenuazione del suono dovuta al potere fonoassorbente dell'aria può essere calcolata per una temperatura di 20 °C mediante l'espressione:

$$A_2 = 7.4 \frac{f^2 d}{\theta} 10^{-8}$$

dove con f si indica il valore centrale della banda di frequenza considerata (convenzionalmente adottata in 500 Hz), con θ l'umidità relativa (%) e con d la distanza tra la sorgente ed il punto di ascolto considerato.

L'attenuazione del suono dovuta alla vegetazione sarà tanto maggiore quanto più fitta sarà la vegetazione stessa e dipenderà direttamente dalla frequenza del suono in esame; essa potrà essere calcolata mediante la seguente espressione:

$$A5 = (0.18 \log f - 0.31) d$$
 (per erba o cespugli)

$$A5 = (0.01 f 1/3) d$$
 (per foreste)

dove con f si indica il valore centrale della banda di frequenza considerata e con d la lunghezza della vegetazione considerata (m).

L'attenuazione dovuta alla presenza di ostacoli naturali (fabbricati interni e muri di confine) può essere determinata conoscendo i parametri geometrici dell'ostacolo stesso.

Conoscendo la distanza fra il punto d'ascolto considerato e l'ostacolo, l'altezza efficace dell'ostacolo e la distanza fra la sorgente e l'ostacolo stesso, si può calcolare una frequenza, detta caratteristica, e trovare l'attenuazione offerta dall'ostacolo stesso. La frequenza caratteristica andrà calcolata mediante la seguente espressione:

$$f_1 = \frac{ac}{2H^2}$$

dove:

a: indica la distanza sorgente-ostacolo

c: indica la velocità del suono (m/s)

H: indica l'altezza efficace dell'ostacolo

Altri fattori che concorrono alla variabilità della propagazione sonora nell'aria e conseguenti effetti anomali sono la temperatura e la presenza del vento.

La velocità del suono "c" è legata alla temperatura assoluta dell'aria, secondo la seguente relazione:

$$c = \sqrt{\frac{\gamma P_o}{\rho_o}} = \sqrt{\gamma \frac{R}{M} T}$$

dove: R è la costante dei gas perfetti (= 8,314 MKS)

M è la massa molecolare (= 0,029 per l'aria)

T è la temperatura assoluta in °K

γ è il rapporto tra i calori specifici cp e cv (= 1,4)

Pertanto:

$$c = \sqrt{\frac{1,4*8,314*T}{0,29}} = 20,05\sqrt{T} \cong 331,4+0,6t \text{ (m/s)}$$

che rappresenta la velocità del suono in aria secca, alla pressione atmosferica e alla temperatura centigrada t (°C).

Come la temperatura, anche il vento ha una azione perturbatrice sulla propagazione sonora, nel senso che questa risulta favorita oppure ostacolata a seconda che il punto di ascolto si trovi sottovento (ossia dalla parte in cui spira il vento) o sopravento (ossia dalla parte da cui il vento proviene). Ciò deriva dal fatto che in ogni punto della superficie d'onda la perturbazione si trasmette con una velocità che è la risultante vettoriale della velocità di propagazione in aria calma e della velocità del vento nel punto considerato.

Naturalmente nella realtà le cose non sono così semplici poiché la sua direzione, soggetta a fenomeni vorticosi e turbolenze, subisce continue modificazioni.

8.2 DATI TECNICI IN INGRESSO

I dati di ingresso utilizzati sono stati pertanto i seguenti:

- tempo di riferimento, diurno e notturno;
- rumorosità residua misurata;
- numero e caratteristiche dei macchinari installati nell'ambiente esterno ed all'interno dei locali;
- rumorosità emessa dai macchinari installati LWA;
- dati meteoclimatici (Taria = 20 °C; Velocità del vento max 5 m/sec)

I dati di output generati sono stati i seguenti:

- livello di rumore ambientale LA conseguente al contributo di tutti i macchinari azionati contemporaneamente, nella condizione di flusso veicolare nullo (condizione peggiore).

L'esame dei dati acustici ottenuti con l'ausilio delle istruzioni fornite dal costruttore dell'apparecchiatura o assunti per analogia, viene riassunta la pressione acustica di ciascuna sorgente secondo la Tabella n.3 che segue.

Tabella n.3: Dati acustici delle sorgenti esaminate

Apparecchiatura	Sorgente	N. Totali /	Regime di	Localizzazione	LP stimato a
		N.	funzionamento	[Aperto/chiuso]	1 m [dBA)
		Esercizi			
Trasformatori	S1	5/5 Power Station	Continuo	Chiuso	62

8.2 SINTESI DELLE ELABORAZIONI

Si riporta di seguito la planimetria con indicazione delle sorgenti rumorose all'interno dell'impianto fotovoltaico (trasformatori) ed i ricettori individuati per lo studio previsionale.

Figura n.5: Localizzazione dei punti ricettori e delle sorgenti

Nelle seguenti tabelle, e nella planimetria di esercizio allegata, si riportano i dati salienti derivanti dalle elaborazioni matematiche. Lo studio previsionale ha riguardato la quota piano campagna (nel quale si è assunta l'altezza del recettore pari a 4 m).

Tabella n.4a: Elaborazione impatto acustico - quota piano campagna periodo diurno

Ricettore	Distanza minima sorgenti (m)	quota ricezione (m)	Immissione specifica dB(A)	Impianto
Ric 1	320	4.0	24.7	Carbonia
Ric 2	123	4.0	29.3	Carbonia
Ric 3	135	4.0	28.3	Carbonia
Ric 4	110	4.0	30.0	Carbonia

Tabella n.4b: Verifica del limite assoluto di immissione – periodo diurno

Ricettore	Immissione specifica dB(A)	Rumore residuo dB(A)	Livello di rumore ambientale dB(A)	Classe acustica	Valore limite immissione dB(A) 06 ÷ 22	Rispetto limite assoluto di immissione diurno
Ric 1	24.7	38.5	38.68	III	60	SI
Ric 2	29.3	38.5	38.99	III	60	SI
Ric 3	28.3	38.5	38.90	≡	60	SI
Ric 4	30.0	38.5	39.07	≡	60	SI

Tabella n.4c: Verifica del limite assoluto di immissione – periodo notturno

Ricettore	Immissione specifica dB(A)	Rumore residuo dB(A)	Livello di rumore ambientale dB(A)	Classe acustica	Valore limite immissione dB(A) 22 ÷ 06	Rispetto limite assoluto di immissione notturno
Ric 1	24.7	33.5	34.04	III	60	SI
Ric 2	29.3	33.5	34.90	III	60	SI
Ric 3	28.3	33.5	34.65	III	60	SI
Ric 4	30.0	33.5	35.10	III	60	SI

Tabella n.4d: Verifica limite differenziale di immissione – periodo notturno

				Rumore		Rispetto
				all'interno del		limite
	Immissione	Rumore	Livello di	ricettore	Incremento	differenziale
Ricettore	specifica	residuo	rumore	(condizione	differenziale	di
Ricettore	dB(A)		ambientale	finestre	dB(A)	immissione
	UD(A)	dB(A)	dB(A)	aperte).	UD(A)	notturno
				Abbattimento		
				3 dB(A)		
Ric 1	24.7	33.5	34.04	31.04	0.54	n.a.
Ric 2	29.3	33.5	34.90	31.90	1.40	n.a.
Ric 3	28.3	33.5	34.65	31.65	1.15	n.a.
Ric 4	30.0	33.5	35.10	32.10	1.60	n.a.

8.2.1 Valutazione delle stime previsionali ottenute

Le stime conducono a ritenere l'installazione dei nuovi macchinari non realizzerà alcuna immissione di interesse, per gli aspetti stabiliti dalla norma. Infatti le immissioni riconducibili all'attività si prevedono inferiori ai limiti di zona del territorio circostante le pertinenze fondiarie del sito ospite.

8.2.2 Previsione rispetto ai valori limite assoluti di immissione

I limiti di riferimento, in relazione alle relative zone adiacenti le pertinenze fondiarie, in assenza del Piano di Zonizzazione Acustica del Comune di Carbonia, sono stati ipotizzati in classe III.

Nelle aree contigue alla pertinenza fondiaria dell'azienda, si prevedono pertanto livelli di immissione inferiori ai limiti stabiliti dall'art.3 del DPCM 14/11/1997.

8.2.3 Previsione rispetto ai valori limite differenziali di immissione

Le stesse immissioni all'interno degli ambienti abitativi presi a riferimento si prevedono inferiori ai limiti di applicabilità dei valori limite differenziali di immissione, stabiliti dall'art. 4, comma 1 del DPCM 14/11/1997 in 50 dB(A) durante il periodo di riferimento diurno (06,00 - 22,00) e in 40 dB(A) durante il periodo di riferimento notturno (22,00 - 06,00). Ai sensi dell'art.4, comma 2 della medesima norma, infatti, l'immissione viene ritenuta trascurabile, a prescindere dal livello differenziale riscontrato.

Tali presupposti si richiamano al fatto che all'interno dell'ambiente abitativo, in condizioni di rilevamento a finestre aperte, il valore dell'immissione giunge ridotto rispetto al livello che si registra all'esterno dell'edificio, ciò a causa dell'effetto fonoisolante dell'apertura lasciata dall'infisso spalancato che è generalmente compresa tra 2 ÷ 4 dB(A).

9. PREVISIONE DEI LIVELLI SONORI GENERATI DAL TRAFFICO VEICOLARE INDOTTO

Per traffico indotto si intendono i mezzi veicolari leggeri e pesanti che circolano, stazionano, caricano e scaricano all'interno dell'area di Progetto.

Per la realizzazione del progetto, le varie fasi di lavorazione inducono un traffico di mezzi pesanti all'interno dell'area di intervento e nella strada statale. Si stima che, durante le attività di costruzione, una media di circa 20 veicoli al giorno transiterà sulla viabilità locale da/per l'area di cantiere. Considerando le attività di cantiere in svolgimento dalle 8:00 alle 18:00, tale flusso determina una circolazione media di 2 veicoli all'ora, che andrà a insistere sulla strada; pertanto non si ipotizza alcun contributo sostanziale sulla densità del transito veicolare riconducibile alla presenza dell'attività.

10 INTERVENTI DI BONIFICA

Dalle misure effettuate pertanto non risulta necessaria, in questa sede di valutazione, l'adozione di eventuali interventi per ridurre i livelli di emissioni sonore, tenuto conto dei limiti acustici di riferimento.

11. IMPATTO ACUSTICO IN FASE DI CANTIERE

La rumorosità prodotta durante questa fase di realizzazione sarà quella normalmente riscontrabile nei cantieri edili, quindi dovuta soprattutto all'utilizzo dei mezzi quali autocarri, pale meccaniche, asfaltatrici, rulli, escavatore, piattaforma semovente su ruote gommate, grader, terna, rullo, compattatore, gru telescopica, tagliapunti, trapani, sega elettrica, martello demolitore, betoniera.

Tutte le macchine e le attrezzature tecnologiche utilizzate dovranno essere conformi ai limiti di emissione sonora previsti dalla normativa europea e dovranno essere accompagnate da apposita certificazione.

Si prevede che le attività operative del cantiere impegneranno una fascia oraria continuativa compresa dalle ore 08:00 fino alle ore alle ore 18:00.

Sarà cura del Responsabile dei lavori richiedere la specifica autorizzazione all'Autorità Comunale per attività rumorose temporanee, come previsto nella Parte V delle citate "Direttive regionali in materia di inquinamento acustico ambientale e disposizioni in materia di acustica ambientale", approvate con Deliberazione della Giunta Regionale n° 62/9 del 14/11/2008.

La domanda di autorizzazione verrà predisposta in conformità alle disposizioni del regolamento comunale e dovrà essere corredata da una planimetria in scala opportuna, nonché da apposita relazione tecnica a firma di tecnico competente. Gli elaborati tecnici dovranno evidenziare:

- · la durata, in termini di numero di ore o di giorni, dell'attività di cui si chiede l'autorizzazione;
- le fasce orarie interessate:
- le relative caratteristiche tecniche dei macchinari e degli impianti rumorosi utilizzati, ivi compresi i livelli sonori emessi;
- la stima dei livelli acustici immessi nell'ambiente abitativo circostante ed esterno:
- la destinazione d'uso delle aree interessate dal superamento dei limiti di rumore consentiti.

Qualora si riscontrassero emissioni superiori a quelle consentite verrà focalizzata l'attenzione sulla opportunità di una oculata programmazione delle fasi maggiormente rumorose in modo tale che queste evitino o limitino al massimo l'eventuale molestia nei confronti degli edifici vicini.

Si procederà inoltre alla richiesta di deroga ai limiti acustici per lo svolgimento di tali limitate operazioni particolari in un ristretto numero di giorni lavorativi.

Per quanto concerne le autorizzazioni in deroga, si rammenta che la suddetta normativa regionale stabilisce che il Comune:

- può autorizzare, se previsto nel proprio regolamento, deroghe temporanee ai limiti di rumorosità definiti dalla legge n. 447/95 e i suoi provvedimenti attuativi, qualora lo richiedano particolari esigenze locali o ragioni di pubblica utilità. Il provvedimento autorizzatorio del Comune deve comunque prescrivere le misure necessarie a ridurre al minimo le molestie a terzi e i limiti temporali e spaziali di validità della deroga;
- rilascia il provvedimento di autorizzazione con deroga dei limiti, previo parere favorevole dell'Agenzia Regionale per la Protezione dell'Ambiente (A.R.P.A.S.);
- conserva e aggiorna il proprio registro delle deroghe;
- specifica con regolamento le modalità di presentazione delle domande di deroga.

La norma regionale precisa che i limiti della deroga devono sempre essere considerati come limiti di emissione dell'attività nel suo complesso, intesa come sorgente unica.

Tali limiti sono sempre misurati in facciata degli edifici in corrispondenza dei ricettori più disturbati o più vicini. Le misurazioni vanno effettuate conformemente a quanto prescritto nel D.M. 16 marzo 1998 recante "Tecniche di rilevamento e di misurazione dell'inquinamento acustico". Per quanto riguarda gli interventi di urgenza, giova rammentare che questi sono comunque esonerati dalla richiesta di deroga al Comune.

Il traffico indotto durante la fase di cantiere sarà dovuto principalmente all'approvvigionamento dei materiali e dei macchinari e al trasporto del personale di cantiere ed assimilabile a quello durante l'esercizio dell'impianto.

11.1 APPARECCHIATURE E MACCHINARI

Le sorgenti di rumore saranno costituite dall'insieme delle apparecchiature utilizzate nelle varie fasi di lavorazione. Gli impatti sulla componente rumore risultano determinati dalla rumorosità intrinseca dei macchinari impiegati per lo svolgimento delle attività previste per la realizzazione dell'intervento e dalle attività stesse.

Vengono di seguito elencate le sorgenti rumorose previste nella fase di cantiere.

Descrizione delle sorgenti sonore:

Escavatore $LW_{(dBA)} =$ 106.0 $LW_{(dBA)} = 101.0$ Autocarro Gru/autogru $LW_{(dBA)} = 91.0$ Rullo compattante $LW_{(dBA)} = 101.0$ Miniescavatore $LW_{(dBA)} = 96.0$ Pala Meccanica $LW_{(dBA)} = 101.0$ **Battipalo** $LW_{(dBA)} = 108.5$ Motosaldatrice $LW_{(dBA)} = 96.0$

Attraverso il data base dei macchinari indicati nelle schede tecniche sono state associate delle probabili rumorosità generate in fase di esercizio. A questo punto:

- analizzando la tipologia dei mezzi adoperati;
- dalla rumorosità da essi prodotta;
- dagli orari di attività del cantiere;
- dalla durata delle operazioni;

è stato ritenuto opportuno, visto il numero consistente di fasi lavorative e di ricettori da indagare, anziché sommare di volta in volta il rumore emesso da un determinato numero di attrezzature in funzione a poca distanza le une dalle altre, quantificare in fase progettuale preliminare il rumore medio emesso dai mezzi di cantiere in fase di esercizio, utilizzando il Leg medio.

Questo in quanto, nonostante i macchinari che si prevede vengano adoperati anche in contemporanea, siano in grado di generare rumorosità più elevate (vedasi il Leq Teorico) difficilmente si potranno avere, realisticamente, situazioni di propagazione della massima rumorosità di ciascuna singola sorgente in corrispondenza di un ipotetico punto di misura. Questo in quanto le sorgenti (evidentemente) non potrebbero mai occupare contemporaneamente il medesimo punto di operatività.

In presenza di precise indicazioni progettuali in merito alle attività di cantiere e, in particolare, alla tipologia e numero dei macchinari utilizzati e al numero di ore di attività, è possibile valutare il livello di potenza complessivo relativo al periodo di riferimento diurno in cui si svolgeranno tutte le attività.

Il livello di potenza complessivo del cantiere viene riportato nella seguente tabella:

Tabella n.5: Fase di cantiere: sorgenti sonore esaminate

1	Fase di cantiere						
Periodo di riferimento		Diurno		Durata	Quota piano	Altezza	
				lavorazione (h)	lavorazione (m)	Sorgenti	
		(06:00 - 22:00)		8	p.c.m.	1,5	m
ID	Mozzo i	mniogato	Quantità	potenza sonora	ore lavorazione	% attività	
	Mezzo impiegato		Quantita	dB(A)	ore lavorazione	/o attivita	
	Escavatore		1	106.0	6.0	75.0	%
	Autocarro		2	101.0	6.0	75.0	%
	Gru/autogru		2	91.0	6.0	75.0	%
	Miniescavatore Pala Meccanica Battipalo Motosaldatrice		1	96.0	4.0	50.0	%
			1	101.0	4.0	50.0	%
			1	108.5	6.0	75.0	%
			1	96.0	6.0	75.0	%
	•		,			•	
A.	Potenza sonora massima caratteristica della fase di lavoro					112.0	dB(A)
B.	Potenza sonora generata dalla fase, mediata sulla durata della lavorazione 110.0 dB(A)					dB(A)	

Si riporta di seguito la tabella di propagazione sonora del cantiere, assumendo cautelativamente la contemporaneità operativa di tutti i mezzi di cantiere ed ipotizzando che siano distribuiti nei punti più prossimi ai ricettori.

Tabella n.6: Propagazione emissione sonora cantiere

Punto	Qualificazione del punto di misura	LAeq Sorgenti
Rif.		dB(A)
1	Ric 1	56.0
2	Ric 2	65.5
3	Ric 3	65.0
4	Ric 4	68.3

Dalla tabella, e dalla planimetria di cantiere allegata, si evince che i valori di rumorosità delle attività di cantiere sono superiori ai limiti di emissione della zona per il periodo diurno. Durante la fase di realizzazione dell'opera, per il tipo di valutazioni compiute in relazione alla natura di cantiere analizzato, non può comunque escludersi che gli interventi progettuali previsti possano determinare, anche se per brevi periodi, condizioni di potenziale disturbo acustico nei confronti dei ricettori individuati. In ogni caso, per l'esecuzione dei lavori si dovrà ricorrere a specifica autorizzazione in deroga ai termini della L. 447/1995.

11.3 INTERVENTI ATTI ALLA MITIGAZIONE DEL RUMORE

Relativamente alla logistica di cantiere, è inoltre possibile, già in questa fase, prevedere azioni atte a limitare, il più possibile alla fonte, il livello di rumorosità dei macchinari impiegati. A tale scopo si riportano le seguenti prescrizioni e attenzioni.

11.3.1 Scelta delle macchine, delle attrezzature e miglioramenti prestazioni:

- utilizzo di macchine ed attrezzature omologate in conformità alle direttive della Comunetà Europea e ai successivi recepimenti nazionali;
- impiego, se possibile, di macchine movimento terra ed operatrici gommate piuttosto che cingolate;
- installazione, se già non previsti e in particolare sulle macchine di una certa potenza, di silenziatori sugli scarichi;
- utilizzo di gruppi elettrogeni e compressori insonorizzati.

11.3.2 Manutenzione dei mezzi e delle attrezzature:

- eliminazione degli attriti attraverso operazioni di lubrificazione e ingrassaggio;
- sostituzione dei pezzi usurati e che lasciano giochi;
- controllo e serraggio delle giunzioni;
- bilanciatura delle parti rotanti delle apparecchiature per evitare vibrazioni eccessive;
- verifica della tenuta dei pannelli di chiusura dei motori;
- manutenzione delle sedi stradali interne alle aree di cantiere e delle piste esterne al fine di evitare la formazione di buche.

11.3.3 Transito dei mezzi pesanti

- riduzione delle velocità di transito in presenza di residenze nelle immediate vicinanze delle piste di cantiere;
- · limitazione dei transiti dei mezzi nelle prime ore della mattina e nelle ore serali.

Oltre alle azioni indicate, valide per l'intero tratto soggetto ad interventi, si ritiene necessario porre particolare attenzione ai tratti di lavorazioni ubicati in corrispondenza delle residenze. Si ritiene opportuno in tali aree, per quanto possibile, limitare le ore di funzionamento dei macchinari più rumorosi, ripartendo eventualmente le attività su di un maggior numero di giorni, evitando le fasce orarie maggiormente sensibili (prime ore della mattina, dalle ore 12.00 alle ore 14.00, ore serali).

12. TECNICO COMPETENTE IN ACUSTICA AMBIENTALE

L'indicazione del provvedimento regionale con cui il tecnico competente in acustica ambientale, che ha predisposto la documentazione di impatto acustico, è stato riconosciuto "competente in acustica ambientale" ai sensi della legge n. 447/1995, art. 2, commi 6 e 7 è riportato in allegato.

13. CONCLUSIONI

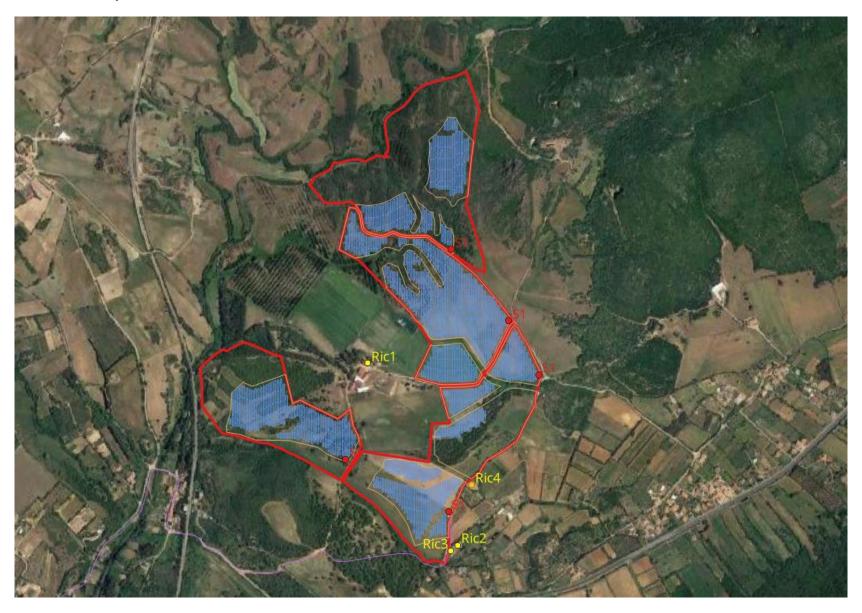
Dai dati ottenuti in questa sede di valutazione di impatto acustico, si prevede che il rumore immesso nell'ambiente esterno limitrofo dal nuovo impianto fotovoltaico, realizzato nel Comune di Carbonia (SU), in località "Maladeddu", durante la fase di esercizio non determinerà il superamento dei limiti stabiliti dalle norme disciplinanti l'inquinamento acustico, di cui alla Legge quadro 447/95 e successivi regolamenti di attuazione.

Durante la fase di realizzazione dell'opera, per il tipo di valutazioni compiute in relazione alla natura di cantiere analizzato, è comunque possibile in questa sede affermare che gli interventi progettuali previsti potrebbero determinare, anche se per brevi periodi, condizioni di elevato impatto acustico nei confronti delle abitazioni e dei territori circostanti le aree di lavoro. Da quanto sopra consegue che per l'esecuzione dei lavori si dovrà ricorrere a specifica autorizzazione in deroga. In particolare, durante i lavori di infissione dei pali in prossimità dei ricettori, è ragionevole prevedere il superamento dei limiti stabiliti dalla normativa vigente. In ogni caso, per l'esecuzione dei lavori si potrà ricorrere a specifica autorizzazione in deroga, come espressamente previsto dalla L. 447/1995.

Le previsioni riportate nei precedenti paragrafi mantengono la loro validità qualora i dati relativi alla rumorosità emessa dagli impianti, le caratteristiche degli insediamenti circostanti e le componenti del rumore residuo, mantengano la configurazione e le caratteristiche ipotizzate. Il margine d'errore è quello previsto dalla norma ISO 9613-2 e dipende principalmente dall'approssimazione dei dati di pressione acustica relativa alle macchine.

Alla luce di quanto sopra esposto, il sottoscritto Ing. Antonio Dedoni, con studio professionale in Cagliari, Via Mameli 157 Cagliari, Tel. 3929014642, iscritto all'Ordine degli Ingegneri della Provincia di Cagliari con il n°5398, Tecnico Competente in acustica ambientale, giusta la Determinazione n° 650/10, formulata dal Direttore Generale dell'Assessorato Difesa Ambiente, ai sensi dell'art. 2 comma 7 della Legge 26 Ottobre 1995, n° 447 ("Legge quadro sull'inquinamento acustico"), formula giudizio previsionale di CONFORMITÀ ACUSTICA per l'impianto agro-fotovoltaico, sito in località "Maladeddu", nel Comune di CARBONIA.

Cagliari 02 Ottobre 2023


Il Tecnico Competente in Acustica

Il Titolare della Ditta

ALLEGATI

- Planimetria generale impianto
- Certificato di riconoscimento dei requisiti tecnico-professionali del Tecnico Competente R.A.S.
 Assessorato Difesa Ambiente
- Certificato di riconoscimento Enteca
- Certificati strumentazione
- Planimetria livelli di emissione fase di esercizio
- Planimetria livelli di emissione fase di cantiere

Planimetria impianto

REGIONE AUTONOMA DELLA SARDEGNA

ASSESSORATO DELLA DIFESA DELL'AMBIENTE

Direzione generale dell'ambiente Servizio tutela dell'atmosfera e del territorio

DETERMINAZIONE N.650 PROT 14448 DEL 1 6 GIU. 2010

Oggetto: Riconoscimento qualifica professionale di tecnico competente in acustica ambientale.

Art. 2, commi 6 e 7, L. 26.10.1995 n. 447. / Delib. G.r. n. 62/9 del 14.11.2008.

Ing. Dedoni Antonio.

VISTO la l.r. 13 novembre 1998, n. 31 recante "disciplina del personale regionale e dell'organizzazione degli uffici della Regione" e successive modifiche ed integrazioni;

VISTO l'art. 2, commi 6, 7 e 8 della legge quadro sull'inquinamento acustico n. 447 del 26.10.1995, ai sensi del quale:

- viene individuata e definita la figura professionale del tecnico competente in acustica ambientale;
- vengono definiti i requisiti per poter svolgere l'attività di tecnico competente in acustica ambientale;
- viene stabilito che detta attività può essere svolta previa presentazione di apposita domanda all'Assessorato regionale competente in materie ambientali;

VISTO il decreto del Presidente del consiglio dei ministri 31 marzo 1998;

VISTO Delibera della Giunta regionale n. 62/9 del 14.11.2008 recante "Direttive regionali in materia di inquinamento acustico ambientale" e disposizioni in materia di acustica ambientale;

VISTO le modifiche al Regolamento della Commissione esaminatrice, apportate dalla stessa nella seduta del 6 dicembre 2005 a seguito dell'emanazione della sopra citata norme regionali sull'inquinamento acustico;

ESAMINATO il documento istruttorio relativo alla richiesta avanzata dall'Ing. Dedoni Antonio nato a Cagliari il 03.09.1976, redatto dalla Commissione esaminatrice nella seduta del 11.06.2010;

REGIONE AUTONOMA DELLA SARDEGNA

ASSESSORATO DELLA DIFESA DELL'AMBIENTE

PRESO ATTO che nel citato documento istruttorio la Commissione ha espresso parere favorevole al predetto riconoscimento;

RITENUTO di far proprie le valutazioni conclusive espresse dalla Commissione esaminatrice nel sopra citato documento istruttorio;

CONSIDERATO che il relativo provvedimento pertiene alle competenze del Direttore del Servizio tutela dell'atmosfera e del territorio, ai sensi delle linee guida sull'inquinamento acustico approvate con delibera g.r. n. 62/9 dell'14.11.2008;

DETERMINA

- ART. 1 E' riconosciuta, con la presente determinazione, all'Ing. Dedoni Antonio nato a Cagliari il 03.09.1976, la qualifica professionale di tecnico competente in acustica ambientale, ai sensi dell'art. 2, comma 6 e 7, legge 26.10.1995, n. 447 e della delibera g.r. n. 62/9 del 14.11.2008.
- ART. 2 Il presente riconoscimento consente l'esercizio dell'attività di tecnico competente in acustica ambientale anche nel territorio delle altre regioni italiane, così come disposto dall'art. 2, comma 6 del d.p.c.m. 31 marzo 1998.
- ART. 3 L'Assessorato della difesa dell'ambiente provvederà all'inserimento del nominativo sopra citato nell'apposito **Elenco regionale** dei tecnici competenti in acustica ambientale, di prossima pubblicazione sul BURAS.

La presente determinazione viene comunicata all'Assessore della difesa dell'ambiente ai sensi dell'art. 21, comma 9, della I.r. 13 novembre 1998, n. 31.

Il Direttore del Servizio

Roberto Pisu

V.U./serv.t.a.t. V.D.E./ serv.t.a.t. & G.O./ serv.t.a.t.

ENTECA_{Elenco Nazionale dei Tecnici Competenti in Acustica}

Home Tecnici Competenti in Acustica Corsi Login

Numero Iscrizione Elenco Nazionale	4078
Regione	Sardegna
Numero Iscrizione Elenco Regionale	221
Cognome	Dedoni
Nome	Antonio
Titolo studio	laurea in ingegneria
Estremi provvedimento	Det. D.S./D.A n. 650 del 16.06.2010
Luogo nascita	Cagliari
Data nascita	03/09/1976
Codice fiscale	DDNNTN76P03B354V
Regione	Sardegna
Provincia	CA
Comune	Cagliari
Via	via Goffredo Mameli
Сар	09123
Civico	157
Nazionalità	italiana
Email	antonio.dedoni@gmail.com
Telefono	
Cellulare	3929014642
Dati contatto	Via Mameli 157 - 09123 Cagliari
Data pubblicazione in elenco	10/12/2018

Sky-lab S.r.l.

Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 5783463 skylab.tarature@outlook.it

Centro di Taratura LAT N° 163 Calibration Centre

LAT N° 163

Pagina 1 di 6 Page 1 of 6

CERTIFICATO DI TARATURA LAT 163 28262-A Certificate of Calibration LAT 163 28262-A

- data di emissione 2022-10-03 date of issue ANTONIO DEDONI - cliente 09100 - CAGLIARI (CA) ANTONIO DEDONI destinatario 09100 - CAGLIARI (CA) receiver

Si riferisce a Referring to

- oggetto Filtri 1/3

- costruttore Larson & Davis manufacture

- modello 831 model - matricola serial number

data di ricevimento oggetto 2022-09-30 date of receipt of item - data delle misure 2022-10-03 date of measurements

- registro di laboratorio Reg. 03 laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 163 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Direzione Tecnica (Approving Officer)

Firmato digitalmente da: Emilio Giovanni Caglio Data: 03/10/2022 14:47:21

Sky-lab S.r.l.

Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 5783463 skylab.tarature@outlook.it

Centro di Taratura LAT N° 163 Calibration Centre Laboratorio Accreditato di Taratura

Accredited Calibration Laboratory

LAT Nº 163

Pagina 1 di 10 Page 1 of 10

CERTIFICATO DI TARATURA LAT 163 28261-A Certificate of Calibration LAT 163 28261-A

 - data di emissione date of issue
 2022-10-03

 - cliente customer
 ANTONIO DEDONI 09100 - CAGLIARI (CA)

 - destinatario receiver
 ANTONIO DEDONI

 09100 - CAGLIARI (CA)
 OPI000 - CAGLIARI (CA)

Si riferisce a Referring to

- oggetto Fonometro

Nem - costruttore
manufacturer Larson & Davis

- modello 831
model 323
- matricola 3223
serial number 3223
- data di ricevimento oggetto date of receipt of tem 4222-10-03

date of measurements
- registro di laboratorio
- laboratory reference
- Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 163 rilasciato in accordo di decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the receability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration coefficiates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura il corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2

Direzione Tecnica (Approving Officer)

Firmato digitalmente da: Emilio Giovanni Caglio Data: 03/10/2022 14:47:01

Sky-lab S.r.l.

Area Laboratori Via Belvedere, 42 Arcore (MB) Tel. 039 5783463

Centro di Taratura LAT Nº 163 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory

LAT Nº 163

Pagina 1 di 4 Page 1 of 4

CERTIFICATO DI TARATURA LAT 163 28260-A Certificate of Calibration LAT 163 28260-A

- data di emissione 2022-10-03 date of issue ANTONIO DEDONI cliente customer destinatario ANTONIO DEDONI 09100 - CAGLIARI (CA) receiver

Si riferisce a Referring to

- registro di laboratorio

laboratory reference

- oggetto Calibratore costruttore Larson & Davis manufacturer modello CAL200 matricola 9945 serial number data di ricevimento oggetto 2022-09-30 date of receipt of item - data delle misure 2022-10-03 date of measurements

Reg. 03

istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI). Questo certificato non può essere riprodotto in da parte del Centro.

modo parziale, salvo espressa autorizzazione scritta

Il presente certificato di taratura è emesso in base

all'accreditamento LAT N° 163 rilasciato in accordo

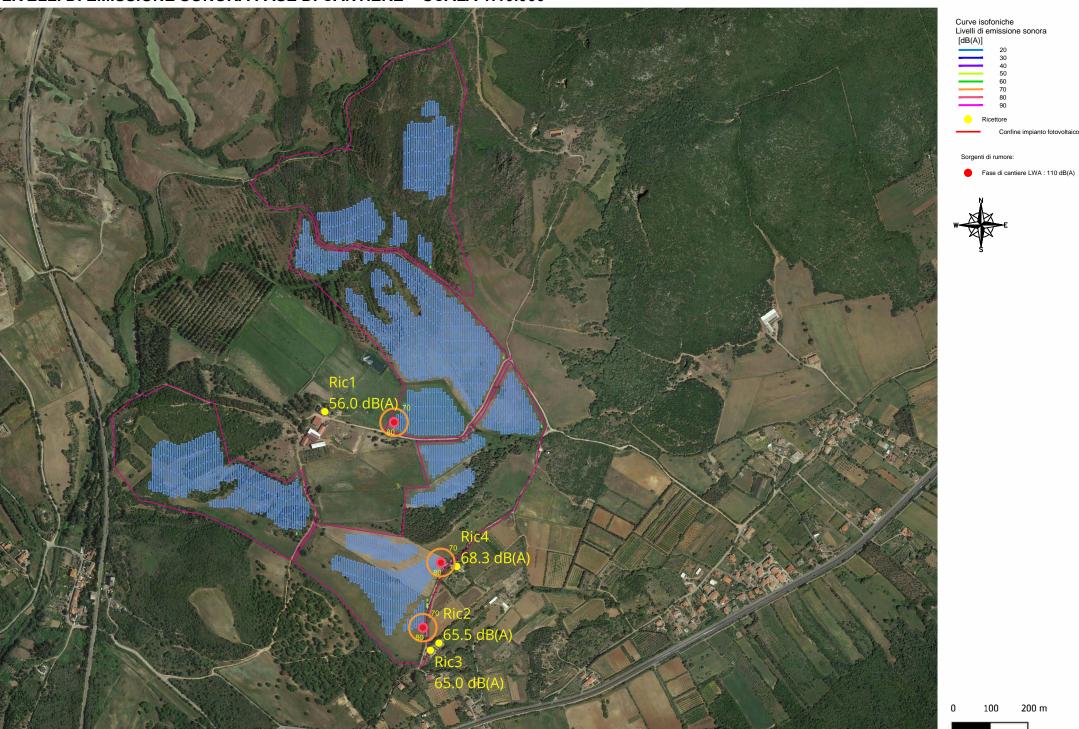
ai decreti attuativi della legge n. 273/1991 che ha

This certificate of calibration is issued in compliance with the accreditation LAT N° 163 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the international System of Units (SI).

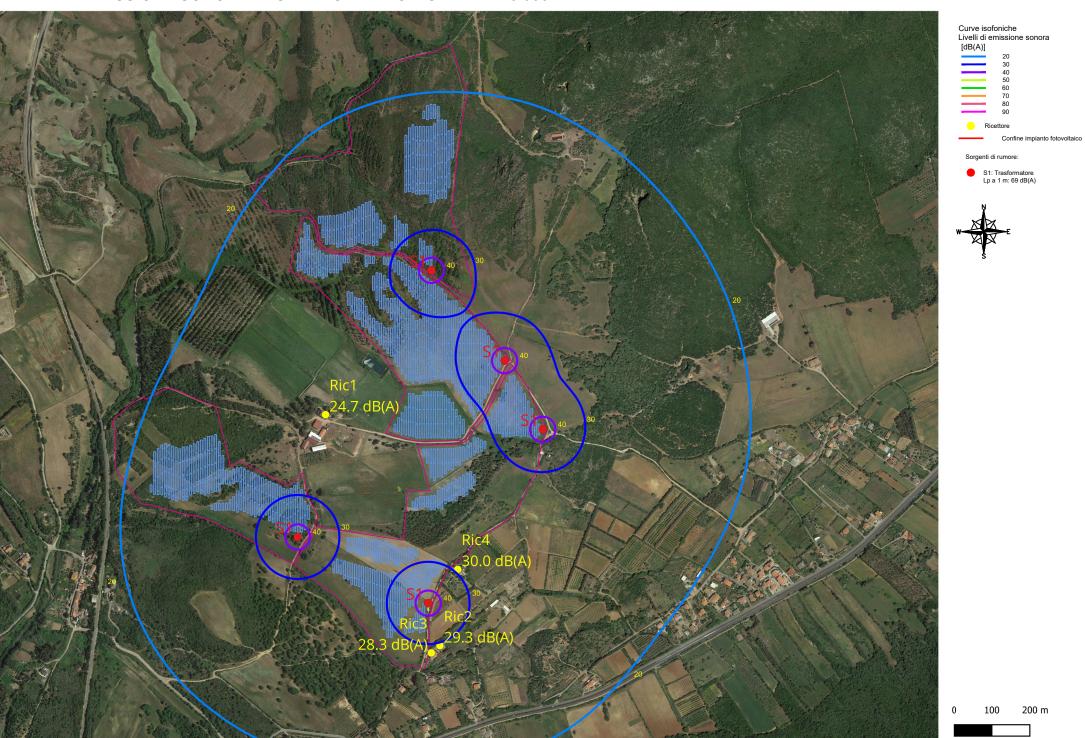
This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.


Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02, Usually, they have been nated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.


> Direzione Tecnica (Approving Officer)

Firmato digitalmente da: Emilio Giovanni Caglio Data: 03/10/2022 14:46:40

LIVELLI DI EMISSIONE SONORA FASE DI CANTIERE - SCALA 1:10.000

LIVELLI DI EMISSIONE SONORA FASE DI ESERCIZIO - SCALA 1:10.000

